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Abstract

We develop a model of learning through experimentation in a principal-agent
framework. Investors only observe an experiment’s outcome, but entrepreneurs can
impact the information contained in the outcome through the experiment’s design.
Investors prefer ‘killer experiments’ that are more likely to correctly identify true
successes and failures, but entrepreneurs prefer to design experiments that are less
likely to fail. We show that the ensuing moral hazard can create a market failure in
financing the venture, which cannot be resolved through higher-powered incentives
for the entrepreneur such as standard ‘pay for performance’ contracts. Our results
speak to an important potential friction in the commercialization of innovations,
particularly ones in areas such as ‘Deep Tech’ ventures based on fundamental sci-
ence, that lack well-understood methodologies for investors to effectively validate
the information contained in early experiments.
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1 Introduction

One of the most striking facts about the development of new technologies is how poor

initial experiments can be at identifying whether or not those technologies will work

at scale. In the pharmaceutical industry, for example, less than 10% of New Molecular

Entities identified at the preclinical stage – following extensive lab experiments – progress

through clinical trials to launch (Paul et al. 2010). Similar observations about the poor

predictability of early lab experiments have been noted across several other industries

(Siegmund et al. 2021; Greenwood et al. 2022).

The inherent uncertainty around radical innovations partly explains the low pre-

dictability of future success by early experiments. Nevertheless, given the billions of

dollars invested each year into projects that ultimately go on to fail across these sectors,

the ability to develop more effective early indicators of success goes to the heart of some

first order concerns among Venture Capital (VC) investors, corporate R&D divisions and

policy makers involved in providing financing for these innovations. Any potential fric-

tions that might prevent the development of more predictive early experiments are worth

investigating given the stakes.

In this paper, we focus on one such friction stemming from moral hazard in the design

of early experiments with unfamiliar technologies. To emphasize the role that this friction

plays relative to others that have been discussed in the literature (e.g., Bergemann and

Hege (1998); Manso (2011)), we develop a model of learning through experimentation

in a principal-agent framework that shuts down the informational frictions considered in

this literature but introduces a novel one focused on experiment design. Specifically, all

information about the project’s value as well as priors about its likelihood of working

is assumed to be public knowledge and is therefore known to both the investor and
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the entrepreneur. We motivate such a context using an example where an entrepreneur

is commercializing a scientific invention such as a new cancer therapeutic, where the

entrepreneur does not have any information advantage about the likelihood of it being

successful.1

We focus attention on how an experiment’s design can impact the information con-

tained in the outcome of the experiment. Similar to the medical diagnostics literature

where tests vary in their sensitivity (true positive rate) and specificity (true negative rate),

we characterize an experiment’s design by the degree to which it is likely to correctly iden-

tify viable/unviable technologies at the experimental stage. More robust experiments –

with higher sensitivity and specificity – have fewer false positives and fewer false negatives.

In our model, the entrepreneur is assumed to not have sufficient funds to develop

the invention himself, and depends on a VC to finance commercialization. The VC can

finance an initial experiment to learn if the technology is likely to be viable, for example

by examining whether a therapeutic candidate meets certain critical milestones related to

in vivo experimental models in the lab. Based on the results from this experiment, she can

choose to finance the development of the venture at the next stage or abandon funding

its development. The VC will only fund the experiment and subsequent development

if it is an NPV positive investment, but should she finance the venture’s development,

uncertainty about commercial viability is only resolved after her final investment has been

made.

Asymmetry between the principal and the agent in our context stems from two sources.

First, we assume that while the VC only cares about the NPV of the investment, the

1There is only one project that the entrepreneur works on in our model, and there is no diversion of
effort or cash by the entrepreneur. In other words, to highlight the mechanism we emphasize, we shut
down the typical sources of adverse selection and moral hazard articulated in principal-agent models on
the financing of innovation.
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entrepreneur/scientist also derives private benefits advancing science and working on the

venture. The second source of asymmetry stems from the fact that although the VC can

verify the outcome of an experiment – e.g. whether a particular technical milestone in

the lab experiment has been met or not – the experiment’s design, is largely a matter

for the entrepreneur/scientist, who alone has the knowledge of how best to tweak the

parameters of the experiment. All the VC can ascertain is the parameter set of possible

experiment designs, but she cannot observe all the detailed tweaking that has gone into

the experiment design. Since the experiment design impacts the degree to which the early

experiment correctly identifies viable/unviable projects, it can impact the likelihood of

meeting a given milestone. For example, an experiment that is worse at identifying

unviable ventures is likely to generate more false positives and will therefore be more

likely to pass the milestone.

This setup delivers several results. First, we show that although both the VC and the

entrepreneur share the same prior about the project’s likelihood of success and value if

successful, they differ in the degree to which they want to learn from the experiment. Since

the VC finances the experiment (and the subsequent scale up if the experiment shows

promise), she is sensitive to ‘throwing good money after bad’ and is keen to identify

unviable projects as soon as possible. She therefore prefers ‘killer experiments’ that

minimize both false positives and false negatives as much as possible. On the other hand,

the entrepreneur gets private benefits from continuation and does not bear the cost of

financing an ultimately unviable venture. He therefore does not want the investor to shut

down the project prematurely, so does not want the VC (or himself) to learn whether the

project is likely to be unviable. Conditional on receiving funding to run the experiment,

the entrepreneur prefers to design experiments that maximize the likelihood of generating

a positive test outcome (and therefore false positives) – since such experiments minimize
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the chance that the project is shut down by the VC. It is important to emphasize that

in this model, the entrepreneur does not have more information than the investor about

whether the project will work, nor does he shirk or divert resources. Moral hazard arises

from the fact that he has a differential incentive relative to the VC to learn if the project is

unviable. Once the entrepreneur/scientist has secured funding to conduct an experiment,

he cannot commit to designing the ‘killer experiment’ that the VC would like him to run.

Second, we show that this moral hazard in experiment design can lead to large ineffi-

ciencies. This is because the VC knows the entrepreneur’s incentives, and in the absence

of being able to verify the experiment’s design, (correctly) assumes that if funded, he will

design an experiment with the greatest potential false positives. Experiments with the

most false positives are also the most inconclusive from the perspective of the VC. She

cannot update her priors as much when she sees the experiment passing the milestone

given its low information content. This makes it less likely for her to finance the develop-

ment (or the initial experiment) and leads to a lower likelihood of the entrepreneur being

funded relative to a benchmark without this friction. It can even lead to complete market

failure for funding the venture. In instances where there is sufficient value for the VC to

invest in spite of the friction, the venture will get funded, but would fail too often once

implemented relative to a benchmark without this friction.

Our model therefore provides a theoretical rationale for both the low predictability

(and high failure rate) of funded projects as well as the general lack of funding for ‘deep

tech’ ventures building on fundamental science. While the challenges of financing such

ventures has been the focus of a number of recent studies, our model provides a different,

complementary, explanation for the low levels of VC funding available for these sectors.

It also provides a theoretical underpinning for findings by Guedj and Scharfstein (2004)

who show that startups are more likely than mature firms to advance from Phase I to
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Phase II clinical trials, but conditional on passing, tend to have less promising clinical

results in their Phase II trials and their Phase II drug candidates are also less likely to

advance to Phase III and to receive FDA approval.

Third, we show that in most instances, the VC cannot align the entrepreneur’s incen-

tives to design a more informative experiment with standard pay-for-performance con-

tracts. This is mainly because the entrepreneur does not bear the cost of financing the

development of the venture; there is no downside risk for the entrepreneur. Therefore,

being able to continue working on developing the project provides option value. He gets

private benefits from working on the project and moreover, if the venture is viable, he

gets a financial return. Providing him more ‘skin in the game’ only makes the option

more valuable.

Fourth, we show that expanding the contract space to reward ‘proof of failure’ can

help address this challenge, but this expansion is very sensitive to the size of the payment,

so will require an understanding of the entrepreneur’s private benefit from continuing to

work on the venture. If the VC does not pay the entrepreneur enough, the moral hazard

is not solved. If the VC compensates the entrepreneur too highly, the entrepreneur is now

incentivized to design experiments with excessive false negatives which can lead the VC

to miss out on funding promising viable ventures. The challenge is particularly stark if

the experiment’s design is such that the sensitivity and specificity are substitutes and is

attenuated in cases where they are complements.

Finally, we discuss several policy solutions, including the role of an organization that

can validate the experiment design and thereby help address the market failure.
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2 Relation to Literature

Our analysis builds on the theoretical literature on the financing of innovation and ven-

ture capital in a principal-agent framework (Aghion and Bolton 1992; Hellmann 1998),

particularly the theories focusing on the entrepreneur’s discretion to influence the learn-

ing of the project’s value and hence investor’s financing decisions (Bergemann and Hege

1998; Cornelli and Yosha 2003; Bergemann and Hege 2005). Specifically, Bergemann and

Hege (1998) analyze a situation where the entrepreneur can divert funds (or effort) to her

private ends instead of investing into experimenting with the project. Cornelli and Yosha

(2003) address the window-dressing problem of performance signals by the entrepreneur to

secure further funding. Bergemann and Hege (2005) study the dynamic agency conflicts

surrounding the timing of terminating a research project under an infinite funding horizon

and compare the overall efficiency of arm’s length financing (actions are unobservable)

and relationship financing (observable actions). In their analysis, the agency problem

can generally be mitigated or resolved through ’skin-in-the-game’ incentive contracting,

such as staged financing (Bergemann and Hege 1998), convertible securities (Cornelli and

Yosha 2003), and state-contingent control rights (Aghion and Bolton 1992; Hellmann

1998). We focus on a different type of moral hazard problem embedded in staged financ-

ing, arising from the ability of the entrepreneur to manipulate, in a general fashion, the

learning technology that generates information indicative of the project’s value. We also

show that such agency problems cannot be resolved through higher-powered incentives

for the entrepreneur.

Second, our theory is linked to the burgeoning entrepreneurship literature that treats

entrepreneurial decision-making as strategic learning and experimentation (Gans, Stern,

and Wu 2019; Camuffo et al. 2020; Agrawal, Gans, and Stern 2021; Camuffo et al. 2022).
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In particular, Gans, Stern, and Wu (2019) argue that actors should design experiments

that focus on information that is relevant to their particular decision. Agrawal, Gans,

and Stern (2021) further highlights the potential tradeoff in the choice over the exper-

iments when validating entrepreneurial ideas. Within this body of work, however, few

models address the need to persuade investors to provide funding for the project and

experiments, with the exception of Karp, Shelef, and Wuebker (2024). Using a Bayesian

persuasion framework introduced by Kamenica and Gentzkow (2011), Karp, Shelef, and

Wuebker (2024) finds that under a wide range of conditions, actors prefer to reduce the

informativeness of the experiment to enhance credible ’cheap talk’ persuasion even when

the fully informative experiment is available. In this persuasion-based theory, the re-

ceiver is assumed to be fully informed about the designer’s experimental strategy and

the resulting information environment. On the contrary, what characterizes the essence

of the agency problem in our setting is the lack of such understanding. In other words,

the Bayesian persuasion approach endows the experiment designer with full commitment

power of her choice over the information structure (Kolotilin 2015; Fréchette, Lizzeri,

and Perego 2022). In contrast, our analysis stems from the absence of such commitment

power, an assumption particularly suitable in ventures based on fundamental science and

technology for which a huge knowledge gap exists between the founder and the venture

capitalists.

Our work is also related to the empirical literature on the agency frictions in the

financing of innovation (Gompers 1995; Hellmann and Puri 2000; Kaplan and Strömberg

2003; Guedj and Scharfstein 2004; Hall and Lerner 2010), around the challenge faced

by deep tech ventures to get funded and scale up (Lerner and Nanda 2020; Fosfuri and

Nagar 2023; Dalla Fontana and Nanda 2023). For instance, Dalla Fontana and Nanda

(2023) document that VC financing accounts for a tiny share of all patents related to
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Net Zero, and that the patenting focus of VC-backed firms has shifted away from “deep

tech” in recent years. Fosfuri and Nagar (2023) show that startups at the frontier of

science experience delays in VC funding, which impede its commercialization. Recent

theories have been proposed to account for such difficulties. Arora, Fosfuri, and Roende

(2022) reason that the allocation of costs across the different stages of the R&D process

affects the division of innovative labour. As a result, startups facing both technology

and market uncertainty are unable to find the required VC funding. Kremer, Levin, and

Snyder (2022) provide a formal analysis of the effect of Advance Market Commitments

in stimulating investment by suppliers of products to low-income countries with limited

monopoly rents. We contribute to this discussion by studying an unexplored friction:

moral hazard in experimental design that can be so severe that it leads to complete

market failure in the financing of deep tech ventures. The implications for validating

the experiments is well aligned with the notion of the Technology Readiness Level scale,

proposed as an aid in better-informed decision-making regarding investments in several

nascent tech industries including battery technologies, quantum, and machine learning

(Lavin et al. 2022; Greenwood et al. 2022; Purohit et al. 2024).

Additionally, the paper speaks to the theoretical research on strategic interactions

when an agent generates information through costly research to persuade a principal to

approve an activity, an example being the regulatory process for drug approval (Di Tillio,

Ottaviani, and Sørensen 2017; Henry and Ottaviani 2019; Bates et al. 2022; Balasubra-

manian, Pierce, and Cummings 2022; Bates et al. 2023). Specifically, Henry and Otta-

viani (2019) compares organizations with different commitment power of informer and

evaluator and shows that granting authority to the informer is socially optimal when

information acquisition is sufficiently costly. Bates et al. (2022) discuss how the principal

and agent can enter into a contract with payoffs based on statistical evidence that is
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robust to strategic action. Bates et al. (2023) view the agent as acting according to an

implicit prior distribution and show how the principal can deduce information about this

prior distribution from the agent’s behavior. In all three instances, the underlying learn-

ing problem, typically a result of asymmetric information, exhibits statistical properties

that can be exploited by the principal to make inferences. In our setting, however, the

one-dimensional milestone tied to staged financing fundamentally limits such statistical

inference. Moreover, Di Tillio, Ottaviani, and Sørensen (2017) analyze persuasion bias

in randomized controlled trial design when the agent can use private information to ma-

nipulate the outcome of the experiment and discuss the welfare impact of three different

types of strategic deviations. Chassang, Padró i Miquel, and Snowberg (2012) also study

the design of randomized controlled experiments, with the distortion coming from exper-

imental subjects’ unobserved effort. In both cases, the structure of the learning problem

differs from ours as given by the statistical regularities inherent in their specific settings.

Lastly, our work is closely related to medical research that surveys the overall perfor-

mance of clinical trials and investigates specific ways to improve efficacy. In particular,

the moral hazard problem identified in this paper is consistent with the presence of low

success rates in subsequent clinical trial phases (Paul et al. 2010) . The economic reason-

ing offers a rationale as to why pivotal trials are often initiated with insufficient evidence

(Kim et al. 2022) and the existence of a general lack of efficacy in the intended disease

indication (Hingorani et al. 2019). Although our analysis does not directly address the

question of how to improve clinical trial designs in a specific setting, the model highlights

the two parameters - the type 1 (false-positive) and type 2 (false-negative) error rates of

the experiments - and more crucially, their range of values as determinants of the potential

efficacy of any tests in light of the agency problem.
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3 The Model

We develop a contracting model for a venture between a risk-neutral venture capitalist

(the investor) and a risk-neutral entrepreneur (the entrepreneur), where conditions for

the venture’s success can be assessed with an experiment.

3.0.1 Timing

The model is static, and broken into three periods. Period 0 is the contracting period

when the investor makes a take-it-or-leave-it offer to the entrepreneur over an investment

in the venture. Period 1 is the experimentation period when the entrepreneur conducts an

experiment to determine whether necessary conditions for the venture’s success are met.

Below, to fix ideas, we consider the venture’s technical feasibility as one such condition.

Period 2 is the implementation period when the venture is fully developed, conditional on

a follow-up investment based on the experiment results, and payoffs are realized. If the

investor does not provide further investment, the venture is abandoned.

3.0.2 Technology

The venture v has two states, v ∈ V, 0. It either succeeds and generates a value V , or fails,

with the scrap value assumed to be 0 for simplicity. The venture requires K to develop

the venture fully, with K < V . Ex-ante, the belief that the venture will be profitable is

p0, which is common knowledge. We also assume that

p0V −K < 0. (1)

Failing any additional knowledge on the workability of this technology (a necessary con-

dition for the venture to be profitable), the investor and entrepreneur will not pursue this
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venture. In other words, ex-ante, the venture has a negative NPV. More information can

be gained by conducting an experiment.

3.0.3 Experiment

The entrepreneur has the exclusive capability to run an experiment (say, a lab test) that

can generate information on the workability of the technology. The cost of the experiment

is C > 0. The entrepreneur has the latitude to design the experiment to produce signals

with varying false negative or false positive outcomes. This test can return two possible

signals, s: F if the test fails the test, and P if the technology passes the test.

It may be helpful to begin by describing the benchmark of a perfect experiment.

If technical feasibility is a sufficient and necessary condition for the venture’s success,

then an experiment that can conclusively determine the feasibility of the technology is a

perfect experiment. If the technology passes the test in the lab, the entrepreneur knows

for sure that the venture will be successful, and if it fails the test, the entrepreneur knows

with equal certainty that the venture will flop. Given the prior p0, the expected payoff

from running the perfect experiment and implementing the technology if and only if a

successful result is produced in the lab is:

p0(V −K)− C.

We shall of course assume that

p0(V −K)− C > 0 (2)

The availability of a perfect experiment makes the venture positive NPV. Comparing

conditions (1) and (2), it is immediately obvious what the value of running such an
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experiment is. By paying the cost of C, the investor eliminates the risk of sinking a large

investment of K into an unprofitable venture, which, ex-ante, happens with probability

1− p0.

In reality, however, verifying the existence of a necessary condition can reduce a ven-

ture’s risk, but only to a certain extent. To simply the risks involved in developing a

venture, we characterize the experiment by s1, the probability that the test succeeds for

a technology that is workable in practice and hence the venture can generate V , and s2,

the probability that the test fails when the technology is not workable in practice and

hence the venture is a flop:

P (s = P |v = V ) = s1

P (s = F |v = 0) = s2

In other words, we define s1 to be the parameter that reflects the specificity of the

experiment, with (1− s1) denoting the rate of false negative test outcomes. Similarly, we

define s2 to be the parameter that reflects the sensitivity of the experiment, with (1− s2)

denoting the rate of false positive test outcomes. The entrepreneur can jointly choose

the parameter values (s1, s2) within a set S of possible test designs, S = [s1, s1]× [s2, s2],

where 0 ≤ si < si ≤ 1 for i = 1, 2.

For any given experiment characterized by s1 and s2, now the expected payoff from

running such an experiment and investing K to implement the technology if and only if

a pass signal P is generated is:

πs1,s2 = p0s1V − [p0s1 + (1− p0)(1− s2)]K − C (3)
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Comparing conditions (1) and (3), in this imperfect world, the net gain from running

such an experiment, ∆πs1,s2 , is given by

∆πs1,s2 = (K − p0V − C) + p0s1(V −K)− (1− p0)(1− s2)K

Holding K, p0, V , and C constant, and given that V > K, it is obvious that the net

gain from the experiment is strictly increasing in both s1 and s2. This implies that the

best experiment design in terms of maximizing value gained from information discovery

is the one with the greatest specificity (the highest s1) and the greatest sensitivity (the

highest s2). Note that a perfect experiment has s1 = 1 and s2 = 1, the greatest specificity

and sensitivity possible, and therefore, if available, yields the highest gain.

The entrepreneur, in effect, faces a multitasking problem in designing the test (how

specific and how sensitive to make the test). The contracting problem between the en-

trepreneur and the venture capitalist, therefore, has elements of a multitask Principal-

Agent problem (Holmstrom and Milgrom, 1991). A key consideration in multitasking

Principal-Agent problems is whether the tasks are independent, complementary, or sub-

stitutes. For the problem, we consider this issue boils down to the question of whether

the entrepreneur can manipulate the specificity and sensitivity of the test independently,

whether a more specific test is also more sensitive (complementary tasks), or whether

greater specificity necessarily means less sensitivity (substitutable tasks). We consider

each case in turn.

For simplicity, we assume that each test specification has the same cost C > 0. In

the case of independent tasks, we assume that s1 and s2 can be chosen independently

by the entrepreneur within the test set S = [s1, s1] × [s2, s2], where 0 ≤ si < si ≤ 1 for

i = 1, 2. In the case of substitute tasks, we consider the extreme case where specificity
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and sensitivity are perfect substitutes, which means that the sum of the parameter values

s1and s2 always add up to a constant κ, so that s1 + s2 = κ, where 1 < κ < 2. The

test set in this case of perfect substitutes thus takes the form S = {(s1, s2) | s1 + s2 =

κ, s1 ≤ s1 ≤ s1, and s2 ≤ s2 ≤ s2}. We assume s1 + s2 > κ. Hence, the entrepreneur

can maximize specificity by setting s1 = s1 or maximize sensitivity (setting s2 = s2),

but he cannot do both. At the frontier, a more sensitive test is inevitably a less specific

test, and vice-versa. In the case of complementary tasks, we again consider an extreme

case where sensitivity and specificity are perfect complements. This means that the test

designs are all such that s2 = λs1 where λ ∈ (0, 1), so that the test set is given by

S = {(s1, s2) | s2 = s2 + λs1, s1 ≤ s1 ≤ s1, and s2 ≤ s2 ≤ s2}. Thus, in the perfect

complements case, any improvements in test design improve both the sensitivity and

specificity of the test.

To fix ideas, we could think of a setting where specificity and sensitivity are substitutes

as one where the experimental design involves setting a temperature for experimentation

on a particular chemical reaction. It might be that the chemical reaction is more likely

to occur at higher temperatures, regardless of the quality of the technology being used,

which would mean that there would a high number of true positives, but likewise a high

number of false positives at higher temperatures. On the other hand there would be a

high number of true and false negatives at lower temperatures. In this case, the specificity

and the sensitivity of the experiment would negatively comove with each other.

A setting where specificity and sensitivity are complements could be one where the

resolution of a camera used to identify the chemical reaction can be improved. At a

higher resolution, false positives and false negatives would likely be lower meaning that

the specificity and the sensitivity would positive comove with one another.
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We are interested in situations where, absent any additional costs or frictions, it is

socially desirable to run an experiment to test conditions such that a profitable venture

can be realized in case of favourable test results, i.e. ∃(s1, s2) ∈ S, such that πs1,s2 > 0.

Given the above analysis, a necessary condition for this to be the case is that

p0s1V − [p0s1 + (1− p0)(1− s2)]K − C > 0. (4)

That is, under the most informative test with s1 = s1 and s2 = s2, it must be the

case that running the experiment and developing the technology when the experiment is

successful yields a positive net present value. We shall assume that condition (4) holds

strictly.

The Contracting ProblemWhile the investor only cares about the monetary payoff

from her investment, the entrepreneur derives a non-pecuniary utility Z per period from

working on the venture. The entrepreneur has no money and requires funding from the

investor to carry out the experiment. We also assume that the investor can only use equity

shares (in a successful venture) to incentivize the entrepreneur. The outside option for

both the investor and the entrepreneur is 0. There is also no discounting.

Suppose that the investor and entrepreneur agree on a contract in period 0, which

commits the investor to pay C for the experiment in period 1 and the entrepreneur

to undertake an experiment. The contract can also specify an ownership stake α for

the investor in the venture should the venture go ahead at the end of period 1 and an

ownership stake (1 − α) for the entrepreneur. However, the contract cannot specify the

design (s1, s2) of the experiment because this is not describable.

Note, to satisfy the investor’s participation constraint, a necessary condition is
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αV ≥ K

With that, the first question we want to answer is, do the entrepreneur and the investor

have conflicting objectives regarding the test design?

For any given α ∈ [K
V
, 1], the investor has a utility function from an experiment

characterized by s1 and s2,

UI = p0s1αV − [p0s1 + (1− p0)(1− s2)]K − C (5)

Likewise, the entrepreneur’s utility function if he pursues the venture with an experi-

ment characterized by s1 and s2 is given by

UE = p0s1(1− α)V + [p0s1 + (1− p0)(1− s2)]Z + Z

3.1 Solving the Contracting Problem: Choice of Experiment

What experiment design will the entrepreneur choose under a contract that provides

funding C to run an experiment and gives an ownership stake α ∈ [K
V
, 1] to the investor

(a typical arrangement found in practice for VC financing)? We begin our analysis of the

entrepreneur’s test design problem by considering first the case of independent tasks.

Independent Tasks. The entrepreneur’s test set is given by S = [s1, s1] × [s2, s2],

and the entrepreneur can independently choose any test design in this set.

Suppose to begin with that the venture will go ahead if the technology successfully

passes the test in the lab, for any given α, then the entrepreneur’s optimal experiment

design problem becomes:
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max
s1,s2∈S

p0s1(1− α)V + [p0s1 + (1− p0)(1− s2)]Z + Z

It is easy to see that the entrepreneur’s utility is increasing in s1 and decreasing in s2.

Hence, it immediately follows that

Lemma 1. With independent tasks, ∀α ∈ [K
V
, 1], the entrepreneur’s optimal experiment

sets s1 = s1 and s2 = s2

Proof : See the discussion above. ■

Irrespective of how much skin the entrepreneur has in the game, and no matter how

small Z is (in fact, Z can be ϵ), the entrepreneur’s preferred experiment design maximizes

the probability of continuation. Indeed, the design where s1 = s1 and s2 = s2 maximizes

the probability that the technology passes the test in the lab and that the venture will

be undertaken. The entrepreneur seeks success in the lab because this ensures that the

venture will go ahead and that the venture will be fully developed. The entrepreneur wants

to reduce the risk that he is unable to continue working on the venture. No amount of

skin in the game will undo this objective because the entrepreneur is not committing

any funding to the venture. All the funding comes from the investor. Moreover, if the

entrepreneur has a stake (1 − α) > 0 in the venture, he will only profit if the venture is

developed and successful, which is conditional on passing the test in the lab.

Understanding this, the investor will not issue equity shares in the contract and antic-

ipates that the experiment design chosen will differ from her preferred experiment. The

test chosen by the entrepreneur exposes the investor to a greater risk of the venture failing

conditional on the continuation and can significantly diminish the expected investment

payoff. In particular, if

18



p0s1V − [p0s1 + (1− p0)(1− s2)]K − C < 0. (6)

Then, the investor will be unwilling to fund the experiment.

Comparing the left-hand side of conditions (4) and (6), the agency problem results in

an expected financial loss of (1 − p0)(s2 − s2)K. Denote the range of sensitivity in the

available set (s2 − s2) as ∆s2 , then we have,

Proposition 1. With independent tasks,

� If condition (6) does not hold, then the investor will fund the experiment and provide

follow-up funding conditional on passing the experiment, with no equity share issued

to the entrepreneur (α = 1).

– The entrepreneur will choose the experiment with s1 = s1 and s2 = s2.

– Conditional on passing the experiment, however, the venture would fail more

often than the first best scenario, resulting in a venture valuation loss of (1−

p0)∆s2K.

� If condition (6) holds, there is a market failure: the investor will not make a deal

with the entrepreneur, and no experiment is conducted.

Note, if s2 = 0, a market failure is certain, as it can easily be checked that, πs1,s2=0 as

defined in equation 3, the net present value of running an experiment with zero sensitivity

is strictly negative, regardless of the level of specificity. Combining this with the condition

4 that the most informative test yield positive NPV, we have the following result,

Proposition 2. Suppose condition (4) holds. For any venture with fixed parameters K,

V , C, and p0, and allow the experiment set/technology space S to vary, then
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� ∃∆⋆
s2
, such that if ∆s2 > ∆⋆

s2
, then we are in the scenario of market failure even

though absent moral hazard problem, the venture has positive NPV. And if ∆s2 ≤

∆⋆
s2
, the experiment is funded but is inefficiently conducted.

� If ∆s2 ≤ ∆⋆
s2
, the inefficiency cost resulting from the less conclusive experiment

being chosen is proportional to ∆s2.

Substitute Tasks. The entrepreneur’s test set is now given by S = {(s1, s2) | 0 ≤

si ≤ κ and s1+s2 = κ}, with s1+s2 > κ. Suppose again that the venture will go ahead if

the technology successfully passes the test in the lab. For any given α, the entrepreneur’s

optimal experiment design problem is then given by:

max
s1

s1p0[(1− α)V + Z] + (1− p0)(1−max(κ− s1, s2))Z + Z

The entrepreneur, a fortiori, now always maximizes s1 so that we now have s1 = s1 and

s2 = max(κ− s1, s2), regardless of α.

Understanding that, the investor will not issue equity shares and hence α = 1. Now the

investor’s utility function conditional on funding the experiment with s1 and s2 = κ− s1

becomes,

UI = p0s1V − [p0s1 + (1− p0)(1−max(κ− s1, s2)]K − C (7)

In this case, the investor’s preferred experiment depends on whether the substitution

bites at the corner solution. Specifically,

Proposition 3. With substitute tasks, ∀α, the entrepreneur’s optimal experiment sets

s1 = s1 and s2 = max(κ− s1, s2), while the investor’s prefered experiment varies:
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� If κ − s1 ≤ s2, the investor’s preferred experiment is the same as that of the en-

trepreneur’s, that is, s1 = s1 and s2 = s2

� If κ − s1 > s2, the investor’s preferred experiment vastly differs from that of the

entrepreneur’s, that is, s1 = s1 and s2 = κ− s1

Proof : Basic algebra. ■

Intuition: the investor and the entrepreneur are fundamentally aligned on the param-

eter choice of specificity. High specificity per se increases both the likelihood of passing

the test and the expected payoff. However, the investor and the entrepreneur are fun-

damentally misaligned on the parameter choice of sensitivity, as demonstrated by the

independent tasks case. This is because higher sensitivity increases the value of the ex-

periment and hence the expected payoff from investment by reducing the false positive

rate and decreasing the likelihood of passing the test. Therefore, choosing the highest

likelihood of a pass signal does not come at a huge cost if the available specificity is

sufficiently high and on the margin, increasing specificity does not lower sensitivity.

However, if increasing specificity comes at the cost of lowering sensitivity on the

margin, then the investor would prefer a more sensitive test to screen off bad apples,

while the entrepreneur, as analyzed before, would always prefer a less sensitive one. The

investor is even more worse off in this situation than in the independent tasks case.

Complementary Tasks. The entrepreneur’s test set is now given by S = {(s1, s2) |

s1 ≤ s1 ≤ s1 and s2 = s2 + λs1, s2 ≤ s2 ≤ s2}, where λ ∈ (0, 1). For simplicity, suppose

s2+λs1 ≤ s2. If the venture goes ahead conditional on the technology successfully passing

the test in the lab, for any given α, now the entrepreneur’s optimal experiment design
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problem becomes:

max
s1

s1p0[(1− α)V + Z] + (1− p0)Z(1− s2 − λs1) + Z

Differentiating with respect to s1, we obtain that the entrepreneur maximizes s1 (and

therefore also s2 as much as possible) if and only if

p0[(1− α)V + Z]− (1− p0)λZ > 0 (8)

When (1− α) = 0, this condition reduces to

p0Z − (1− p0)λZ > 0.

Note that if p0 < 1/2 and λ is close to 1, this condition is violated, so that the entrepreneur

is willing to choose a maximally sensitive (and specific) test only if he has sufficient skin

in the game.

We summarize this discussion in the proposition below:

Proposition 4. When (s1, s2) are complementary tasks, the entrepreneur’s optimal ex-

periment sets s1 = s1 and s2 = s2 +λs1 if and only if the entrepreneur has sufficient skin

in the game that

1− α ≥ Z(λ(1− p0)− p0)

p0V
. (9)

Proof : See the discussion above. ■

It follows from condition (9) that the more the entrepreneur values doing science (the

higher is Z) the more the entrepreneur must be financially rewarded to design a more

conclusive test (such that s1 = s1 and s2 = s2 + λs1). A more conclusive test may reveal
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that the technology the entrepreneur has studied is a dead end (at least as far as the

application the VC is interested in is concerned). This would put any future funding to

do more science at risk. Under low-powered financial incentives the entrepreneur therefore

prefers to design a test that is more likely to pass, and would assure the continuation of his

future scientific endeavours, than take the risk that a more stringent (but more conclusive)

test might fail. Similarly, the more conclusive the test is (as measured by a higher λ) the

more the entrepreneur must be rewarded financially.

However, it can be profitable for the VC to finance the experiment for some parameter

values when the two tasks are complementary, whereas such investment will not be worth

it if s1 and s2 are independent or substitute tasks.

Proposition 5. When (s1, s2) are complementary tasks, the investor is willing to fund

the experiment if

s1(p0V − (Z −K)(λ(1− p0)− p0)) ≥ [((1− p0)(1− s2)]K + C (10)

Proof : The investor must provide a share of the final value of the venture (1− α) to

the entrepreneur such that condition (9) holds. Assuming that this condition is binding,

and substituting for α in the condition below

p0s1αV − [p0s1 + (1− p0)(1− s2)]K ≥ C,

we obtain condition (10), which ensures that with minimum skin in the game for the en-

trepreneur (so that he has an incentive to choose a maximally conclusive test design), the

investor at least breaks even in expectation by funding the experiment, and subsequently

the venture, should the experiment produce a positive test outcome. ■
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3.2 Paying for Failed Test

One reason why there is a deep tech market failure is that the financial compensation

structure of the entrepreneur is inadequate. In essence, the entrepreneur is rewarded if

the venture is implemented. He gets a share of the realized value (even if only a small

one) if the technology is successful and he faces no downside risk, as he does not put up

any money to fund the venture. What is more, the entrepreneur derives private benefits

from doing science and gets rewarded with more private benefits if he can continue to

do science. In contrast, the investor faces all the downside risk and has a risky upside,

particularly if the lab test is not very conclusive.

How can the entrepreneur be given better incentives to design a more conclusive

experiment? We show next that the entrepreneur can be given incentives to choose the

most conclusive experiment design s1 = s1 and s2 = s2 if he gets compensated for a failed

test rather than for passing a test in the lab.

Independent Tasks. Consider first the case where s1 and s2 are independent tasks.

If compensation is based on proof of failure, then the entrepreneur’s objectives could be

better aligned with those of the investor. Concretely, suppose that the contract between

the entrepreneur and the investor, based on Proposition 1, includes a payment X > 0

conditional on the outcome s = F . The entrepreneur’s best response in the experiment

design problem in period 1 is then the solution to the following maximization problem:

max
s1,s2∈S

p0s1Z + (1− p0)(1− s2)Z + [p0(1− s1) + (1− p0)s2)]X + Z (11)

Differentiating with respect to s1 and s2, the following proposition immediately ob-

tains.

Lemma 2. The entrepreneur chooses s1 = s1 and s2 = s2 if X ≥ Z.
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Proof : Collecting terms we obtain that the entrepreneur’s objective function (11)

can be written as

s1p0[Z −X] + s2(1− p0)[X − Z] + p0X + (1− p0)Z + Z (12)

In effect, the payment X ≥ Z for producing the outcome s = F fully compensates for

the opportunity cost of getting a negative test result. Therefore, by rewarding a failed

test, the VC can ensure that the entrepreneur is no longer distorted away from the most

conclusive test possible. The investor may be willing to finance the experiment under

these terms, and fund the venture should the technology successfully pass the test.

Proposition 6. When (s1, s2) are independent tasks, the investor is willing to fund an

experiment with compensation for failed test X = Z if

p0[s1(V −K)− (1− s1)Z)]− (1− p0)[s2Z + (1− s2)K]− C ≥ 0 (13)

Proof : When condition (13) holds, the investor at least breaks even in expectation

when financing the entrepreneur who will, according to Lemma 2, conduct the most

informative experiment when compensated for failed test. ■

Comparing condition (13) with condition (4), by compensating for a failed test, the

investor is in expectation spending [p0(1−s1)+(1−p0)s2]Z more than the first best case.

Given Z << Y , the private benefit Z to the entrepreneur from doing science is likely

to be significantly smaller than the net present value in the first best scenario, therefore

condition (13) can almost be satisfied for free.

If we compare condition (13) with condition (6), the gross gain for the investor from

compensating for the failure, is total inefficiency cost (1 − p0)(s̄2 − s2)K. If Z << K,
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the net gain is large, thus, compensating for the failed test might just be what tilts the

venture from a negative to a positive NPV venture for the investor.

Substitute Tasks. When tasks are perfect substitutes, it is not possible to provide

incentives to the entrepreneur to both maximize s1 and s2. It is one or the other. This is

the typical multitask moral hazard problem.

As Holmstrom and Milgrom (1991) have argued, providing low-powered incentives to

the entrepreneur may be the best solution for the investor. If s1 is high enough, it may

indeed pay he VC not to give any skin in the game to the entrepreneur, but to reward the

entrepreneur for proof of failure. This would induce the entrepreneur to maximize the

sensitivity of the experiment (giving up on improving the specificity of the experiment),

which would benefit the VC by reducing the risk of false positives.

Proposition 7. When (s1, s2) are substitute tasks, the investor is willing to fund an

experiment with a reward for proof of failure X = Z if

p0[s1(V −K)− (1− s1)Z)]− (1− ξ0)π0[s2Z + (1− s2)K]− C ≥ 0 (14)

Proof : When condition (14) holds the VC at least breaks even in expectation when

funding a conclusive test that rewards the entrepreneur for proof of failure and maximizes

the sensitivity of the experiment. ■

Complementary Tasks. When tasks are perfect complements it is possible for the

VC to give incentives to the entrepreneur to maximize both s1 and s2 by providing either

sufficient skin in the game or by rewarding proof of failure. Providing sufficient skin in

the game requires condition (9) to hold, which could be onerous for the VC. Alternatively,

if the VC rewards proof of failure, the entrepreneur has sufficient incentives to maximize

both s1 and s2 if X = Z, which could be much cheaper for the VC.

26



Proposition 8. When (s1, s2) are complementary tasks, it is cheaper to reward the en-

trepreneur for proof of failure if

p0(1− s1) + (1− p0)(1− s2 − λs1) ≤ λ(1− p0)− p0 (15)

Proof : When X = Z the entrepreneur is indifferent between any (s1, s2) ∈ S since

irrespective of the outcome of the experiment the entrepreneur obtains Z. If the technol-

ogy passes the test, the entrepreneur can continue to do science and obtains Z in kind.

If the technology fails the test, the entrepreneur is rewarded financially the amount Z for

proof of failure. When indifferent, the entrepreneur can be assumed to choose the test

design that is best for the VC. Under this test design the VC pays the entrepreneur Z

with probability p0(1− s1)+ (1− p0)(1− s2−λs1). If the VC instead provides skin in the

game incentives, then she must grant the entrepreneur a share of the value of the venture

1− α =
Z(λ(1− p0)− p0)

p0V
,

which is worth ex-ante

(1− α)p0V = p0V [
Z(λ(1− p0)− p0)

p0V
] = Z(λ(1− p0)− p0).

It is straightforward to verify that when condition (15) holds, this is more expensive for

the VC. ■
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4 Policy Responses

When optimal contracting between the VC and the entrepreneur/scientist is unable to

overcome the moral hazard problem in experiment design, third-party institutional inter-

ventions can be useful. In this section, we analyze several plausible interventions with

independent tasks only.

4.1 The Third Party (Planner’s) Problem

We have seen that the VC prefers the most informative experiment design, while the

entrepreneur/scientist prefers experiment designs more likely to result in a positive test

outcome. What is the planner’s preferred experiment design and incentive contract with

the entrepreneur/scientist and VC? The social planner’s objective is to maximize expected

social surplus from the experiment:

USP = p0s1V − [p0s1 + (1− p0)(1− s2)](K − Z)− C + Z.

If the social planner could pick s1 and s2 freely, he would therefore set s1 = s1 and

s2 = s2 - the same choice the VC would make. It follows that when the VC incentivizes

the entrepreneur to choose her preferred design by X to pay for validation, she induces

the first-best outcome. This outcome could also be implemented as a conditional transfer

made by the social planner to the entrepreneur. A payment to the entrepreneur of Z (the

smallest payment to induce an informative experiment) would have a PV of (p0(1− s1)+

(1−p0)s2)Z ≡ ZPV . The social planner could also instead of making a conditional transfer

of Z upon a failed experiment, incentivize the entrepreneur by making a conditional

transfer to increase V in case of success, or an unconditional transfer to reduce the cost

of the experiment C.
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Setting the PV of the three possibilities equal to each other, we can measure the

impact of spending ZPV in three different ways:

1. Impact via validation: If the planner makes a conditional payment of ZPV to the

entrepreneur if the technology fails the experiment, the social benefit is (1−p0)(s2−

s2)K

2. Impact via C reduction: If the planner subsidizes the cost of running the experiment

by ZPV , the social benefit is also ZPV .

3. Impact via V increase: If the planner subsidizes the benefit of the technology, shoul

dit prove viable by ZPV , the social benefit is p0s1ZPV .

Reducing cost strictly dominates increasing reward, as the cost must be paid, and the

reward may never arrive. For sufficiently small values of Z, paying for validation has an

even bigger impact on welfare than subsidizing the experiment.

4.2 The Role of Universities as Venture Incubators

In this subsection, we explore the role an intermediary, such as a university, can play in

reducing moral hazard, absent the option discussed in the previous subsection.

The moral hazard problem arises from the knowledge gap between the investor and the

entrepreneur around the informativeness of the experiment. When the investor does not

have the capability to effectively validate the information contained in the experiments

conducted by the entrepreneur, moral hazard can result in a complete market failure or

at least vastly reduce the learning efficiency.

A potential solution to this problem is to involve a third-party organization that is able

and willing to verify the informativeness of the experiment. The university is a natural
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candidate for playing such a crucial role. A university houses experts across diverse fields

who can provide peer reviews, ensuring that the experiment’s methodology, data analysis,

and conclusions meet high standards. Universities also have state-of-the-art laboratories

and equipment that allow for precise replication and verification of experiments. By lever-

aging academic expertise, resources, and collaborative frameworks, universities have the

capability to ensure that scientific experiments are thoroughly vetted and validated. As

implied by Proposition 2, the problem of market failure can be resolved, if the validation

provided by the university can reduce the wide range of possible sensitivity measures

∆s2 = s̄2 − s2 from a value above ∆⋆
s2

to a value below. Moreover, the more effective the

validation (the higher reduction of ∆⋆
s2
), the higher the valuation of the venture.

Why is it in the university’s interest to provide such objective, high-quality validation

while the individual entrepreneur/scientist cannot commit to doing so? The universities

compete with each other to attract funding for cutting-edge research and the commer-

cialization of innovations. Hence, a university values the credibility of being able to

effectively validate early experiments, which directly makes the university more compet-

itive in the market for financial resources and, at the same time, reflects the academic

excellence of the institution, strengthening its academic reputation. The effect is particu-

larly pronounced around areas such as “Deep Tech” where such moral hazard problem is

most severe (∆s2 is high, hence the odds are market failure absent validation). Another

reason why the university can and is willing to develop a credible reputation while an in-

dividual entrepreneur/scientist cannot is because the university is and will be engaged in

repeated interaction with the financiers, while an individual entrepreneur/scientist likely

will interact only once or limited times with the market.
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4.3 Learning Spillovers and Sequential Learning

In our main analysis, we have assumed for simplicity that the venture is a standalone

project, and the experiment result is relevant only to the venture itself. In practice,

however, learning from an experiment aiming to test the technical feasibility of one project

may have a knowledge spillover effect for a host of other projects.

We model this more general problem in the following way. Suppose that the feasi-

bility of the venture’s technology relies on the success of two separate and independent

components: a component G, which is a general purpose component and can be common

to many different startup enterprises, and a component r which is a application specific

component and is idiosyncratic to the entrepreneur’s chosen venture. We assume that

each component can take the value 1 if it is workable in practice and 0 if it is not. Specif-

ically, we assume that 0 < P (G = 1) ≡ π0 < 1 and 0 < P (r = 1) ≡ ξ0 < 1. Therefore,

the technology’s development is successful with probability p0 ≡ π0ξ0.

Each experiment is characterized again, by respectively s1 the probability that the

test succeeds for a technology that is workable in practice, and s2 the probability that the

test fails when the technology is not workable in practice, with the following experimental

technology:

P (s = P |G = 1, r = 1) = s1

P (s = F |G = 1, r = 0) = s2

P (s = F |G = 0) = 1

Note that s1 and s2 only depend on the idiosyncratic component, r. If G = 0, the

experiment fails.
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This setup captures the idea that new technologies developed for one project often have

other potential applications. In the presence of multiple potential projects, an experiment

can reveal information about both the promise of a new technology for a specific project

and the more general applicability to other projects.

The entrepreneur can jointly choose the parameter values (s1, s2) within a set S of

possible test designs. The best experiment design in terms of information discovery is the

one with the greatest specificity (the highest s1) and the greatest sensitivity (the highest

s2).

Accordingly, suppose a planner is considering investments in potentially N+1 different

projects, all based on the same general purpose component G. The specific applications

of each project have the same ξ0 and the same learning technology. Hence, the projects,

though different, are ex-ante identical from a learning perspective. The planner can learn

sequentially about the viability of each project. For simplicity, assume that the planner

can randomly pick one entrepreneur to run their experiment first and then have the re-

maining N entrepreneurs run their experiments simultaneously in the next period.

Conditional on a certain s1 and s2, the planner’s posterior distribution on G after a pass

or fail signal is:

P (G = 1|s = P ) = 1

P (G = 1|s = F ) =
(ξ0(1− s1) + (1− ξ0)s2)π0

(ξ0(1− s1) + (1− ξ0)s2)π0 + (1− π0)
≡ π1 < π0

Effectively, a pass signal indicates that the general component must be workable as the

experiment would have failed otherwise, while a fail signal could indicate that the general

component was not workable, or that the entrepreneur’s application was faulty. This con-
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trasts with the setup of the previous section, as a pass signal now has broader usefulness

than just reflecting the viability of the entrepreneur’s application.

The planner’s posterior distribution on r after a pass or fail signal is:

P (r = 1|s = P ) =
π0s1ξ0

π0ξ0s1 + π0(1− ξ0)(1− s2)

P (r = 1|s = F ) =
((1− π0) + π0(1− s1))ξ0

(ξ0(1− s1) + (1− ξ0)s2)π0 + (1− π0)

As before, a pass signal does not completely validate the entrepreneur’s tech nor does a

fail signal completely invalidate it, but now the presence of the general component reduces

the ability of all parties to infer the idiosyncratic quality of the tech.

Suppose the social planner could pick s1 and s2 directly. The social planner’s utility takes

the form:

UP = U(π0, s1, s2)︸ ︷︷ ︸
Utility from first venture

+((ξ0(1− s1) + (1− ξ0)s2)π0 + (1− π0))︸ ︷︷ ︸
Probability of a ‘fail’ signal

Nmax(U(π1, s
′
1F , s

′
2F ), 0)

+ (π0ξ0s1 + π0(1− ξ0)(1− s2))︸ ︷︷ ︸
Probability of a ‘pass’ signal

NU(1, s′1P , s
′
2P )

If the initial venture’s experiment yields a ‘pass’ signal, the general component is vali-

dated, and enters subsequent experiments with surety (probability of 1 instead of π0).

If the initial venture’s experiment yields a ‘fail’ signal, the general component might be

unworkable, or it might not, so the VC has a choice of funding the other N projects, or

abandoning them.
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Deriving UP with respect to s1 we get:

U ′
P = p0(V −K) + ξ0π0N(UI(1, s

′
1P , s

′
2P )− UI(π1, s

′
1F , s

′
2F ))

+
(π0s1 + (1− ξ0)(1− s2))K − ξ0s1αV

(ξ0(1− s1) + (1− ξ0)s2)π0 + (1− π0)
Nξ0π0((1− π0))

The above expression is always positive, so s1 = s1. The social planner has no incentive

to reduce the true positive rate. Having a higher s1 not only improves the informational

content of the experiment as a whole, but also allows for a better inference on the general

component of the technology. Differentiating UP with respect to s2 we get:

U ′
P = (1− ξ0)π0K + (1− ξ0)π0N(UI(π1, s

′
1P , s

′
2P )− UI(1, s

′
1F , s

′
2F ))

− (π0s1 + (1− ξ0)(1− s2))K − ξ0s1αV

(ξ0(1− s1) + (1− ξ0)s2)π0 + (1− π0)
(1− π0)(1− ξ0)π0NK

This expression is decreasing in N and will be negative for N sufficiently large.

Proposition 9. ∃N∗ such that ∀N ≤ N∗, the planner wants s1 = s1 and s2 = s2, and

∀N > N∗, the planner wants s1 = s1 and s2 = s2. The entrepreneur’s optimal s1 = s1

and s2 = s2 is invariant in N .

Proof : See the discussion above. ■

Intuitively, having a higher false positive rate reduces the informational content of the

experiment, which consequently reduces the planner’s ability to infer the quality of the

specific application to the first project being considered, but a positive signal necessarily

means that the general purpose technology is workable, so even a false positive, which

obfuscates the quality of the idiosyncratic experiment, is valuable for determining the via-

bility of the general component. Therefore if N is larger, the planner has a more congruent
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objective with the entrepreneur’s. If N is smaller, the planner’s objective is more con-

gruent with the VC’s. The value of an informative signal about the common component

is increasing in the number of projects that depend on that common component.

5 Conclusion

Given the huge uncertainty in the outcomes associated with new technologies, investors

financing these innovations engage in staged-financing which is equivalent to financing

a sequence of experiments over time. It is striking, however, that some of these early

experiments appear to be particularly poor at predicting whether a technology will work

at scale. The poor predictability of these early experiments also seems correlated with a

lack of venture capital financing, despite great potential societal need.

In this paper, we characterize early experiments in terms of their ability to capture

true positives and true negatives, and conversely the degree to which they lead to false

negatives or false positives. We highlight a novel source of moral hazard for the en-

trepreneur, that leads them to design experiments that are more inconclusive or have

lower learning efficacy. We show this moral hazard can lead to large inefficiencies, in-

cluding a lower likelihood of getting funded and among those that do get funded, leading

to greater failure (relative to a benchmark without this friction) at later stages. From a

theoretical perspective, we show that the nature of the moral hazard we identify cannot

be easily addressed through ‘skin in the game’ that is able to align incentives in many such

principal-agent models. It requires the principal to pay for failure, although this solution

is fragile as it can lead to ‘you get what you pay for’ with the entrepreneur designing

experiments that have too many false negatives that lead the experiment to fail even if

the project is viable.
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Our model provides a complementary explanation for the lack of funding for deep

tech ventures building on fundamental science, where it is harder for investors to validate

experiment designs. It also creates an understanding of how universities might commit to

being the bodies that validate the experiment designs from early de-risking experiments,

and how this can help alleviate the market failure arising from the friction.
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