HANK's Response to Aggregate Uncertainty in an Estimated Business Cycle Model

Cosmin Ilut¹, Ralph Luetticke², and Martin Schneider³

¹Duke University, ²University of Tuebingen, and ³Stanford University

NBER SI 2024

- Time-varying uncertainty is key for the study of business cycles and asset prices
- Both aggregate and idiosyncratic uncertainty matter, but are studied in isolation so far
- This is for technical reasons: With expected utility preferences, changes in uncertainty have only second-order effects on utility and choice
- HANK models are typically solved at first-order

- Develop & estimate two-asset HANK model with time variation in **both** aggregate uncertainty about TFP & idiosyncratic income risk
 - aggregate uncertainty = ambiguity, modeled using multiple priors preferences
 - very tractable: ambiguity has first-order effects on utility, is reflected in equations for the steady state and linear dynamics
- Uncertainty affects households' savings and portfolio choice, asset prices
- Allow for (first-order) effect of aggregate uncertainty on intertemporal choices by firms: e.g. precautionary motives in price & wage setting

- Aggregate uncertainty shocks interact with heterogeneity to generate powerful comovement
- Ambiguity about TFP jointly explains more than 60% of cyclical variation in key macroeconomic aggregates as well as in the excess return on capital and the real interest rate
- HANK frictions allow the model to fit investment and excess return on capital much better than a RANK model with aggregate uncertainty shocks
- Mechanism: capital owners' countercyclical substitution away from capital, an asset that is not only uncertain (4.7% premium) but also illiquid (1.4% premium on average)

Ambiguity

Preferences: Ambiguity Aversion

- Exogenous state for household i: vector $s_{i,t} \in S$, with history $s_i^t = (s_{i,1}, ..., s_{i,t}) \in S^t$
- Consumption plan (over goods and leisure) $C_i = C_{i,t}(s_i^t)$
- Recursive multiple-priors utility (Epstein and Schneider, 2003)

$$U_t\left(C_i; s_i^t\right) = u\left(C_{i,t}\left(s_i^t\right)\right) + \beta \min_{p \in \mathcal{P}_t\left(s_i^t\right)} E^p\left[U_{t+1}\left(C_i; s_i^t, s_{i,t+1}\right)\right]$$

- Primitives
 - felicity u (eg. GHH), discount factor β , one-step-ahead belief sets $\mathcal{P}_t(s_i^t)$
 - larger $\mathcal{P}_t(s_i^t) \to \text{more ambiguity about } s_{i,t+1}$
 - state dependence of $\mathcal{P}_t(s_i^t)$ captures e.g. arrival of information
- Why this functional form?
 - worst case belief endogenous depends on C_i

• Parameterize one-step ahead belief sets $\mathcal{P}_t(s_i^t)$ by mean of TFP innovations

$$\log Z_{t+1} = \rho_z \log Z_t + \mu_t + \epsilon_{t+1}^Z; \quad \epsilon^Z \sim i.i.dN(0, \sigma_z)$$

$$\mu_t \in [-a_t, a_t]$$

- Higher $a_t \rightarrow$ larger belief set \rightarrow more ambiguity about TFP in t+1
- Stochastic process for a_t :

$$a_t - \bar{a} = \rho_a(a_{t-1} - \bar{a}) + \epsilon_t^a$$

• long run mean $\bar{a} > 0$, persistence $0 \le \rho_a < 1$, and $\epsilon_t^a \sim i.i.d \ N(0, \sigma_a)$

Ambiguity in Equilibrium

- Perception of endogenous variables
 - have defined ambiguity about exogenous TFP shocks
 - agents understand law of motion of economy, as usual
 - also perceive ambiguity about wages, returns etc.
- Need to find (endogenous) equilibrium belief together with optimal choices
- This model: worst case belief is always low mean TFP
- Given equilibrium law of motion, characterize path of variables under true DGP

$$\log Z_t = \rho_z \log Z_{t-1} + \epsilon_t^Z$$

Ambiguity and Decision Rules

- Objective of the firm
 - Linearization leads to risk-neutrality without ambiguity
 - Ambiguity is about the mean: as if risk-neutral owner with $\mu_t^* = -a_t$
 - all agents share that common belief = objective of the firm well defined
 - precautionary motive in firm's intertemporal decisions
- Correlated wedges: precautionary motive in *all* intertemporal decisions
 - households save & choose portfolios as if future expected wages & returns are low
 - interest rate reflects benefit of safety
 - capital premium reflects compensation for uncertainty
 - firms invest & set prices as if future expected cost is high

Estimating a two-asset HANK model with aggregate and idiosyncratic uncertainty

Households		Production	Government
Obtain income	Trade Assets	Produce and differentiate goods	Monetary & fiscal authority
Wages			
• idiosyn. risk			
• taxes and transfers			
• sticky wages			
Interest on bonds			
• set by monetary authority			
Illiquid capital			
• earns net MPK			
All non-wage rents			
• go to rich entrepreneurs			

Households		Production	Government
Obtain income	Trade Assets	Produce and differentiate goods	Monetary & fiscal authority
Wages	Bonds		
• idiosyn. risk	• traded every period		
 taxes and transfers sticky wages	• = government issued + household borrowing		
Interest on bonds			
• set by monetary authority	Illiquid capital		
Illiquid capital	• trading friction:		
• earns net MPK	access position with some probability		
All non-wage rents			
• go to rich entrepreneurs			

Households		Production	Government
Obtain income	Trade Assets	Produce and differentiate goods	Monetary & fiscal authority
Wages idiosyn. risk taxes and transfers sticky wages 	 Bonds traded every period = government issued + household borrowing 	Intermediate goods pro- ducers • rent capital and labor • competitive national markets	
Interest on bonds set by monetary authority 	Illiquid capital	Resellers differentiate goods set prices (sticky) 	
Illiquid capital earns net MPK 	• trading friction: access position with some probability	• CES production function	
All non-wage rents go to rich entrepreneurs 		Capital goods producers turn final into capital good 	

Households		Production	Government
Obtain income	Trade Assets	Produce and differentiate goods	Monetary & fiscal authority
Wages • idiosyn. risk • taxes and transfers • sticky wages Interest on bonds • set by monetary authority Illiquid capital • earns net MPK All non-wage rents • go to rich entrepreneurs	 Bonds traded every period = government issued + household borrowing Illiquid capital trading friction: access position with some probability 	Intermediate goods pro- ducers • rent capital and labor • competitive national markets Resellers • differentiate goods • set prices (sticky) Bundlers • CES production function Capital goods producers • turn final into capital good	 Monetary authority Taylor rule reacts to inflation and output deviations Fiscal authority raises taxes cyclical spending issues debt a rule to stabilize debt in the long run

Estimation

- Shocks
 - $\bullet\,$ TFP, ambiguity, idiosyncratic income risk, monetary policy, inflation target
- Infer parameters from joint effect on stochastic steady state & dynamics
 - 1. Solve steady-state + first-order dynamics with ambiguity about TFP, which yields the ergodic distribution of the model with aggregate uncertainty
 - 2. Do Bayesian estimation based on dynamics
- Observables (1985-2019)
 - $\bullet\,$ long run averages: wealth/output, liquid/illiquid wealth, capital premium
 - demeaned time series: $\Delta logC$, $\Delta logH$, $\Delta logI$, nominal rate, inflation, capital premium

Model Fit

Identification: Long Run

- 6% avg capital premium: compensation for trading friction or uncertainty?
- Both forces generate premium, but different portfolio effects
 - more trading friction shifts portfolio \rightarrow higher liquid/illiquid wealth ratio
 - more uncertainty increases savings, capital \rightarrow lower liquid/illlquid wealth ratio
- Results
 - 1.4% premium from trading friction, 4.7% from uncertainty; estimated $\underline{Z} = .99$: agents plan as if TFP 1% lower in long run
 - trading friction much lower than estimates without ambiguity (5% trading prob.), estimation also recovers standard investment adjustment cost values
 - 21% hand-to-mouth households, only 5% if ambiguity is turned off \rightarrow interaction between standard HANK effects & aggregate uncertainty

- What drives the business cycle: income risk or ambiguity about aggregate TFP?
- Ambiguity shock activates correlated wedges in recession
 - 1. lower consumption demand drives down consumption, hours, output, interest rate
 - 2. lower capital demand drives down investment & price of capital, increases capital premium
 - 3. cautious price/wage setting: dampens effect on inflation, lower hours
- Income risk shock: more precautionary savings, hard time explaining investment
- Ambiguity shock accounts for bulk of business cycle variation
 - 60% of output, 70% of investment, 80% of consumption, 60% of excess capital returns

Historical Decomposition of Consumption & Investment

The Role of HANK frictions

- Counterfactual RANK version: shut down income risk & trading friction
 - RANK model misses volatility in investment & capital premium
 - ambiguity shock explains only 7% of investment (vs 72% in HANK)

The Role of HANK frictions

- Key feature of HANK: portfolio adjustment of the rich
 - rich households hold most capital, drive investment dynamics Cross-section
 - rich have relatively little labor income, try to sell capital
 - ambiguity shock has large effect on investment & capital premium
- RANK representative agent instead worries about both capital return & labor income
 - not just substitution, but also precautionary savings in capital
 - ambiguity shock moves consumption & interest rate, not investment & capital premium
- Liquidity frictions amplify & propagate ambiguity shocks
 - capital less attractive for the rich \rightarrow stronger substitution away after shock

Counterfactual: High Liquidity

The Role of Cautious Price & Wage Setting

- Counterfactual version that shuts down effect of ambiguity on price & wage setting
 - eliminates shifts in price & wage Phillips curves due to ambiguity
 - retains other wedges, e.g. consumption demand
- Right after ambiguity shock, recession with more deflation (about 50%)
 - firms do not worry about future cost increases, set lower prices
- In medium run, higher employment (about 50%)
 - firms do not worry, set lower wages, hire more workers
- Ambiguity in Phillips curves dampens deflationary effect from low demand

Counterfactual: No Ambiguity in Phillips Curves

- After ambiguity shock price of capital falls, then recovers
 - $\bullet\,$ predictably high capital premium in recessions, as in data
- Why is excess return on capital predictably high after recessions?
 - short run: compensation for trading frictions as investors try to sell capital
 - medium run: compensation for aggregate uncertainty
- HANK frictions are crucial
 - concentrated ownership + liquidity component of premium spikes up after shock
 - capital premium flat in RANK counterfactual

Results: Capital Premium

Results: Variance Decomposition

Conclusion

HANK's response to aggregate uncertainty is key for short- and long-run outcomes

- Capital premium mainly reflects compensation for aggregate uncertainty, but illiqudity amplifies volatility
- Aggregate uncertainty generates HtM households with less portfolio frictions

HANK frictions amplify the business cycle consequences of aggregate uncertainty

- Ambiguity about TFP jointly explains more than 60% of cyclical variation
- Strong substitution distinguishes aggregate from idiosyncratic uncertainty shocks

Additional Slides

Utility Specification

• Utility function:

$$u\left(c_{it} - h_{it}\frac{n_{it}^{1+\gamma}}{1+\gamma}\right)$$

• FOC wrt labor supply yields:

$$h_{it}G'(n_{it}) = w_t h_{it}.$$

• Demand for x_{it} can be rewritten as:

$$x_{it} = c_{it} - h_{it}G(N_t) = c_{it} - \frac{w_t h_{it} N_t}{1 + \gamma}$$

Household Optimization Problem

• Value function V^a for the case where the household adjusts its capital holdings, the function V^n for the case in which it does not adjust, and the expected continuation value, \mathbb{W} , over both,

$$V_t^a(b,k,h) = \max_{b'_a,k'} u[x(b,b'_a,k,k',h)] + \beta \mathbb{E}_t \mathbb{W}_{t+1}(b'_a,k',h') + V_t^n(b,k,h) = \max_{b'_n} u[x(b,b'_n,k,k,h)] + \beta \mathbb{E}_t \mathbb{W}_{t+1}(b'_n,k,h') ,$$
$$\mathbb{W}_{t+1}(b',k',h') = \lambda V_{t+1}^a(b',k',h') + (1-\lambda)V_{t+1}^n(b',k',h') .$$

• Expectations about the continuation value are taken with respect to all stochastic processes conditional on the current states. Maximization is subject to the corresponding budget constraint. The distribution Θ_t then evolves according to

$$\Theta_{t+1}(b',k',h') = \lambda \int_{b'=b^*_{a,t}(b,k,h),k'=k^*_t(b,k,h)} \Phi(h,h') d\Theta_t(b,k,h) + (1-\lambda) \int_{b'=b^*_{a,t}(b,k,h),k'=k} \Phi(h,h') d\Theta_t(b,k,h) .$$

Embedded in an otherwise standard NK model

• Factor Prices equal marginal products

$$w_t^F = \alpha m c_t Z_t \left(\frac{u_t K_t}{N_t}\right)^{1-\alpha}, \qquad r_t^F + q_t^F \,\delta(u_t) = u_t (1-\alpha) m c_t Z_t \left(\frac{N_t}{u_t K_t}\right)^{\alpha},$$

where $\delta(u_t) = \delta_0 + \delta_1 \left(u_t - 1\right) + \delta_2 / 2 \left(u_t - 1\right)^2$

• Capital Price equals costs of production of capital

$$\begin{split} 1 = & q_t^F \left[1 - \frac{\phi}{2} \left(\frac{I_t}{I_{t-1}} - 1 \right)^2 - \phi \left(\frac{I_t}{I_{t-1}} - 1 \right) \frac{I_t}{I_{t-1}} \right] \\ & + \beta q_{t+1}^F \phi \left(\frac{I_{t+1}}{I_t} - 1 \right) \left(\frac{I_{t+1}}{I_t} \right)^2 \end{split}$$

• Phillips Curve under quadratic price adjustment costs

$$\log\left(\frac{\pi_t}{\bar{\pi}}\right) = \beta E_t \left[\left(\frac{\pi_{t+1}}{\bar{\pi}}\right) \frac{Y_{t+1}}{y_t} \right] + \kappa_y \left(mc_t - \frac{1}{\mu_t^y} \right)$$

• Wage Phillips Curve under quadratic price adjustment costs

$$\log\left(\frac{\pi_t^w}{\bar{\pi}^w}\right) = \beta E_t \left[\left(\frac{\pi_{t+1}^w}{\bar{\pi}^w}\right) \frac{N_{t+1}w_{t+1}^F}{N_t w_t^F} \right] + \kappa_w \left(\frac{w_t}{w_t^F} - \frac{1}{\mu_t^w}\right)$$

Back

Government

• Monetary policy follows Taylor rule

$$\log \frac{R_{t+1}^{b}}{\bar{R}^{b}} = \rho_{TR} \log \frac{R_{t}^{b}}{\bar{R}^{b}} + (1 - \rho_{TR})\theta_{\pi} \log \frac{(\prod_{t=1}^{t-3} \pi_{t})^{1/4}}{\bar{\pi}_{t}} + (1 - \rho_{TR})\theta_{y} \log \frac{Y_{t}}{\bar{Y}} + \varepsilon_{t}^{R}$$

• Government debt accumulation rule as in Woodford (1995):

$$\Delta \log B_{t+1} = \gamma_B \log \frac{B_t}{B} + \gamma_Y \log \frac{Y_t}{Y}$$

• Government spending determined by government budget constraint

$$G_t = B_{t+1} + T_t - R_t^b B_t / \pi_t$$
,

where $T_t = \tau (N_t w_t + \Pi_t^U + \Pi_t^F)$

Household Portfolio Heterogeneity

Magnitude of Ambiguity

- Steady state ambiguity
 - Estimate $\underline{Z} = .99$: agents plan as if TFP 1% lower in long run
 - Implied one-step ahead ambiguity:

$$\bar{a} = (1 - \underline{Z})(1 - \rho_z) = 0.13\%$$

• Model-consistency bound on a_t : a consistency criterion (Ilut and Schneider, 2014)

$$\bar{a} + 2\frac{\sigma_a}{\sqrt{1 - \rho_a^2}} \le 2\sigma_z$$

- do not entertain forecasts outside a 95% confidence interval, centered around the long-run mean of log Z_{t+1} , given its observed variation
- bound holds given estimates

▶ Back

Heterogeneous Capital Responses to Ambiguity Shock

Back

Results: Heterogeneous Capital Responses to Ambiguity Shock

Results: Impulse Responses to Idiosyncratic Income Risk Shock • Back

Results: Model Fit Quantities

Results: Model Fit Prices

Counterfactuals: Shutting Down Ambiguity for Selected Decisions

- Diagnose mechanism by counterfactuals where some decisions do not react to ambiguity:
 - in steady-state all agents use the same worst-case belief
 - but away from it, some agents may not respond to time-varying ambiguity
- For example, role of ambiguity in setting goods prices:
 - In Phillips Curve: conditionally RE belief over future inflation

$$\mathbb{E}_t \widehat{\pi}_{t+1} = \mathbb{E}_t^* \widehat{\pi}_{t+1} + \varepsilon_{\pi z} a_t$$

- undo the role of effective current pessimism about future TFP $(\mu_t^* = -a_t)$
- over future inflation, with $\varepsilon_{\pi z}$ the original equilibrium elasticity of inflation w.r.t. TFP • Back

Firm Problem under Ambiguity

• The firms' one-step ahead SDF

$$M_{t+1} = \beta \xi_{t+1} \widetilde{M} \left(s_t, s_{t+1} \right)$$

- $\widetilde{M}(s_t, s_{t+1}) \equiv \sum_i \alpha_{i,t} \widetilde{m}_i(s_t, s_{t+1})$, with $\alpha_{i,t}$ arbitrary weights st $\sum_i \alpha_{i,t} = 1$.
- Standard: agent specific risk-based $\widetilde{m}_i(s_t, s_{t+1})$ and common β
- Ambiguity: Common ξ_{t+1} ("change of measure"): $E_t[\xi_{t+1}] = 1$ such that for any Y_{t+1}

$$E_t^* [Y_{t+1}] = E_t [\xi_{t+1} Y_{t+1}]$$

- Log-linearizing firms' optimal decisions around worst-case steady state:
 - Risk-based component $\widetilde{M}(s_t, s_{t+1})$ does not matter to first order
 - Ambiguity about the means does, through the common change of measure $\Rightarrow as \ if risk neutral owner under worst-case beliefs$ • Back