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1 Introduction

Since the seminal contribution of Sims (1980), numerous structural VAR methods have been

developed to study the propagation of unobserved unanticipated shocks to a dynamic system

of observed macroeconomic variables. These identification schemes which rely on exclusion or

signs constraints derived from economic analysis typically involve restrictions on the second-

order moments of the shocks but leave their higher-order moments unrestricted.1

When shocks are not far from being Gaussian, higher moments restrictions are of little use

to identification as they are close to being redundant with the ones imposed on second-order

moments. However, macroeconomic and financial data often look non-Gaussian with normal-

times variations coexisting with unpredictable and unusually large positive or negative changes.

Examples are recessions induced by the various types of financial crises (a stock market crash,

a currency crisis, a sudden credit crunch, a sovereign debt crisis); or inflation surges induced by

large supply disruptions; or abrupt changes in the sovereign risk of a country perceived by the

markets. These large and unpredictable events can be viewed as being triggered by structural

shocks that are drawn from a distribution with fat tails of potentially asymmetric mass.

In this paper, we introduce a new identification method that combines inequality restrictions

on higher-order moments of the distribution of structural shocks with second order-moments

restrictions that have become popular in the structural VAR literature.

We postulate that the DGP of the economy is a VAR with uncorrelated non-gaussian struc-

tural shocks. This allows us to depart from gaussianity while keeping the simplicity of a linear

transmission mechanism. In this setup, as we show, orthonormal rotations of the underlying

shock processes leave their variance-covariance matrix unchanged but have an impact on their

third and fourth moments and it is impossible to recover the “true impact” of a structural shock

on the observable variables without reproducing its correct higher-moment. Therefore, higher-

order moment restrictions can be treated as necessary conditions to identify a set of structural

shocks of interest.

In practice, imposing exact equality restrictions on higher moments of structural shocks

is challenging. Indeed, these shocks are not directly observable. Moreover, higher order mo-

ments in-sample estimates can be very imprecise for sample of the size typical in macroeco-

nomic applications. Our approach is more flexible: We impose inequality restrictions on higher

moments—typically the third and/or the fourth moments—of structural shocks of interest that

we postulate to be non-Gaussian. Such postulated non-gaussian feature can be motivated by

indirect empirical evidence or by economic reasoning. We show analytically how the identified

set shrinks when we impose an inequality restriction on the third moment of the structural

shock in a simple illustrative case. We also show that the resulting set of rotations can also be

1See Nakamura and Steinsson (2018b) for a recent survey.
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empty if the higher moment inequality restrictions are inconsistent with the underlying data

generating process.

The implementation of our method requires to deal with two difficulties. First, to address

the potential small-sample bias issue associated with the estimation of higher order moments.

To do so we treat the distribution of the structural shock of interest non-parametrically and

impose restrictions on the distance between different percentiles of the empirical distribution

to generate the desired asymmetry and/or fat-tailedness.2 Second, to estimate and conduct

inference in a VAR with non-Gaussian errors. To do so, we use a Bayesian approach building

on the work by Petrova (2022) to which we add a few simulation steps to achieve identification

via higher-moment restrictions.

We study the performances of our method by applying it to observations obtained from

simulations of (i) a calibrated textbook New Keynesian model in which we assume a Laplace

distribution for the monetary policy shock, and (ii) a medium scale DSGE model estimated on

US data. As we document, the monetary policy shock recovered from that estimated model

exhibits significant excess kurtosis. We identify a monetary policy shocks by combining the sign

restrictions of Uhlig (2005) with a higher-order moment inequality restriction requiring that the

shock also exhibits minimal excess-kurtosis.

Our method clearly outperforms the agnostic sign-identification restrictions of Uhlig (2005)

even when applied to large samples. As we document, the reason is that the higher order moment

restriction allows to substantially reduce the combinations of supply and demand shocks that

masquerade as monetary policy shocks underlined by Wolf (2020). In addition, our approach

performs better than a method which relies on the spectral decomposition of the third and/or

fourth moments of structural shocks which are assumed to be non-gaussian and independent.

This more restrictive approach allows to point identify the structural shock of interest and

performs very well for very large samples. However, our method is much more accurate when

applied to samples of the size typical for macro analysis. The reason is that in-sample estimates

of higher-order moments proves to be quite challenging and often sensitive to outliers and minor

perturbation of the data.

We then use our identification method to study three empirical questions. In a first applica-

tion, we revisit the transmission of monetary policy shocks to output and inflation. We start by

documenting that while various measures of monetary policy shocks proposed in the literature

have a correlation that can be quite low, they all feature significant kurtosis compared to Gaus-

sian processes. We thus identify a monetary policy shock by imposing that this shock features

2Loosely speaking, robust estimators of the kurtosis for example consider the ratio between the distance of the
percentiles in the tails and the distance between the percentiles close to the median. In the case of leptokurtic shocks,
the larger the numerator, the thicker the tails; the smaller the denominator the more clustered is the distribution
around the median. Robust estimators of the skewness compute the distance between mean and median.
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an excess kurtosis larger than the smallest value estimated for the observed monetary policy

surprises. In addition, we postulate the usual Uhlig (2005)’s sign restrictions that monetary

policy shocks move the interest rate and prices move in opposite directions, while leaving the

impact on real activity unrestricted. We consistently find that a monetary policy tightening

induces a significant contraction in output. In contrast, consistent with earlier evidence, the

impact of monetary policy shock on output is non-significant when using sign restrictions only.

In a second application, we study the transmission of sovereign spread shocks to macroeco-

nomic outcomes in the euro area. Standard identification techniques suggest that the macroe-

conomic consequences of this type of shocks are quite insignificant. But this is in strike contrast

with the prominence of these shocks for the Euro Area policymakers following the 2010-2012

Euro Area sovereign debt crisis. One reason may be that these shocks are difficult to identify.

We show that higher-moment inequality restrictions can help in detecting significant macro ef-

fects of these shocks. We estimate a macro-financial VAR model of the euro area which includes

the Italian-German spread on sovereign bonds. We think of sovereign risk shocks as shocks

that can ’relatively’ frequently be very large and positive, that is which feature a positively

skewed distribution with fat-tails. We therefore constraint that sovereign spread shocks meet

some inequality constraints on their third and fourth moments. We combine these higher-order

moment restrictions with the following sign restrictions: a sovereign spread shock increases on

impact the 10 year Italian government bond yield and increases the Italian-German spread. We

find that an increase in sovereign spread leads to an immediate tightening of credit conditions.

The real economy of the EA also responds on impact after the spread shock and these effects

are re-absorbed in less than three years after the shock. The effects on the unemployment rate

of the EA are quite more severe and longer lasting. In contrast, the macroeconomic impact of

the sovereign shocks is found to be non-significant when one relies on traditional identification

schemes, such as Cholesky orthogonalization or sign restrictions to identify them.

Finally, in a third application, we investigate the impact that exogenous changes in geopo-

litical risks have on the US economy. We use the geopolitical risk index constructed by Caldara

and Iacoviello (2022) using newspaper coverage of geopolitical tensions. This index is both

right-skewed and fat-tailed reflecting that geopolitical tensions can lead to very large positive

increases in geopolitical risks and that happen relatively frequently compared to the Gaussian

case. We thus combine third and fourth-order moment inequality restrictions with sign restric-

tions to identify such geopolitical risk shocks. We obtain much larger effect of such risk on the

macroeconomic aggregates than what Caldara and Iacoviello (2022) obtained with a recursive

identification scheme using the same VAR. One potential reason is that the newspaper coverage

may also capture policy reaction to geopolitical tensions, for instance military spending news, or

unscheduled FOMC meetings, which can mitigate the estimated effect of the initial geopolitical
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risk shocks. Importantly, using sign restrictions alone leads to very imprecise hence statistically

non-significant estimated macroeconomic effects of geopolitical risk shocks.

The paper is organized as follows. Next section (1.1) discusses the existing literature. Section

2 presents our identification approach and details the estimation strategy. Section 3 shows the

role of kurtosis in identifying the effect of monetary policy on output in standard NK models.

Sections 4-6 illustrate the usefulness of our approach in three empirical applications: measuring

the real effects of the US conventional monetary policy, the impact of sovereign spread shocks

in the euro area and the transmission of geopolitical risk shocks. Section 7 concludes.

1.1 Literature review

Our paper contributes to the literature that relies on non-Gaussian features of macroeconomic

or financial data to identify structural shocks. Existing methods typically assume a specific non-

Gaussian distribution for the VAR reduced form errors and postulate that these are independent

(see Lanne, Meitz and Saikkonen 2017, Gouriéroux, Monfort and Renne 2017, 2019, Jarociński

2021, among others). These strong assumptions allow to point identify the system of underlying

structural shocks. Other scholars (e.g. Lanne, Liu and Luoto 2022, among others) achieve

statistical identification of the structural shocks by minimizing the distance between the VAR

model-implied empirical innovation higher-order moments and sample counterparts. Finally,

some studies exploit time variation in the conditional variance of shocks to identify them (see

Rigobon 2003, Lewis 2021, among many others). Lewis (2024) provides a survey of identification

methods using higher-order moments properties.

Montiel Olea, Plagborg-Møller and Qian (2022) underline two potential drawbacks of these

methods. First, they achieve point-identification of shocks by relying on strong statistical as-

sumptions, in particular by ruling out situations where shocks can be large at the same time,

which may be less justified than restrictions based on economic reasoning. Second, they suffer

from potentially large in-sample biases as they rely on point-estimates of higher-order moments

for all the shocks in the system, each of these being very sensitive to outliers for sample of

limited size. By contrast, we make much less restrictive assumptions as we merely postulate

deviations from Gaussianity for the structural shocks of interest. We do not rely on the inde-

pendence of shocks and allow for co-skewness and co-kurtosis. We also treat the higher-order

moments properties as necessary restrictions that structural shocks should fulfill. Importantly,

differently from previous literature, this generates a set-identification of the shock of interest as

opposed to the system point identification. This in turn allows to couple these restrictions with

other popular macroeconomic assumptions based on the signs (or zero) impact of the shock on

the endogenous variables, magnitude or elasticity bounds or narrative restrictions on historical

episodes. In this respect our approach does not substitute to economic reasoning. Moreover,
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our methodology does not rest on in-sample estimates of the empirical innovation higher-order

moments. It imposes inequality restrictions on the higher moments of the structural shock itself

using non-parametric robust methods based on the distance between different percentiles of the

shock empirical distribution.

Our approach is also related to the works aiming at sharpening set-identified structural

shocks obtained with restrictions derived from theory. Kilian and Murphy (2012), Arias, Rubio-

Ramı́rez and Waggoner (2018), Wolf (2020, 2022) underline that imposing sign restrictions alone

is often too weak to provide adequate identification of structural shocks. We show that exploiting

higher-order moment restrictions can sharpen the identification of non-Gaussian shocks achieved

by imposing sign restrictions. Our method is thus complementary to recent methods which solve

that issue by either combining sign and narrative restrictions (Antolin-Diaz and Rubio-Ramı́rez

2018) or by using proxy-structural shocks as external instruments (Stock and Watson 2012,

Mertens and Ravn 2013, Gertler and Karadi 2015, Barnichon and Mesters 2020). We also

use properties of proxy-structural shocks to achieve identification in some of our applications.

However, instead of orthogonality conditions postulated in the external instrument approach, we

focus on higher-order moments inequality restrictions which can be less restrictive hence more

robust.3 Moreover, while they can be useful, our methodology does not require such external

information to be implemented. It only exploits information that is internal to our model and

can thus be implemented even for sample periods where external instruments are not available.

Our paper is also related to the work by Drautzburg and Wright (2023) where they propose a

robust frequentist approach to narrow the identification set of structural shocks. They refine the

identification set by discarding rotations that are not consistent with statistical independence

of the structural shocks and look at higher order moments of candidate shocks to enforce that.

However, the use of the higher moment restrictions is different from what we do. Specifically,

their methodology rules out shocks whose higher moments are not consistent with independence.

We do not impose that. In contrast, we require that a specific structural shock has important

non-Gaussian features. Moreover, their approach requires computing the higher order moments

(or the marginal empirical distribution) of all the structural shocks in the system which grows

with the dimension of the VAR. Our restrictions are constructed on a handful of higher moments

and do not depend on the number of endogenous variables in the VAR.

Finally, the paper is connected to the literature arguing that assuming rare and large shocks

help to understand how financial markets price macroeconomic risks (Barro 2006, Gabaix 2012,

Gourio 2012) and more generally to the works showing that macroeconomic data favors mod-

els featuring non-gaussian shocks (e.g. Cúrdia, Negro and Greenwald 2014). We assume that

3Nakamura and Steinsson (2018a), Miranda-Agrippino and Ricco (2021), Jarociński and Karadi (2020), Andrade
and Ferroni (2021) provide evidence that high-frequency surprises that are often used as proxy for monetary policy
shocks can fail to meet the orthogonality condition of an instrument.
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structural shocks are non-gaussian and use this properties to narrow the estimated effects of

those shocks on macroeconomic variables. Aruoba and Drechsel (2022) apply natural processing

language techniques to construct a monetary policy shock that is purged of the potential non-

gaussianity in the Fed staff information. We document that several proxies of existing monetary

policy shocks exhibit non-gaussianity and use that property to identify their effects.

2 Identification with higher-order moments

To better isolate the identification problem we abstract momentarily from estimation issues and

assume that the econometrician observes a vector of empirical innovations, ιt, where ιt is a

n × 1 vector of uncorrelated innovations with unit variance, i.e. ιt ∼ (0, I). These empirical

innovations can be thought as the orthogonalized reduced form residuals of a VAR model ob-

tained from a long time series of data. Importantly, we assume that the empirical innovations

are combinations of n unobserved structural shocks, νt, with unit variance and non-trivial third

or fourth moments, i.e. E(ν3i,t) = ζi ̸= 0 or E(ν4i,t) = ξi ̸= 3 for some i. Moreover, we assume

that E(νi,tνj,tνk,t) = 0 for all i ̸= j, k, E(νi,tνj,tνk,tνn,t) = 0 for all i ̸= j, k,m and E(ν2i,tν
2
j,t) = 1

for all i ̸= j. Finally, there is a linear mapping between empirical innovations and structural

shocks, i.e.

ι1,t = α1,1ν1,t + ...+ α1,mνn,t,

...

ιn,t = αn,1ν1,t + ...+ αn,nνn,t,

and we define with Ao the matrix collecting the structural coefficients αi,j . Since both ιt and

νt are uncorrelated with unit variance, it must be that A′
oAo = AoA

′
o = I and the following

equations hold ιt = Aoνt and A′
oιt = νt. When νt is a Gaussian distributed random vector,

moments higher than the second are not useful for identification since third moments are zero

and fourth moments are invariant to orthonormal rotations, as shown in appendix A.2.1.

The higher order moments have been used in Independent Component Analysis (ICA) for

reconstructing the original (demixed) sources of variations from a vector of mixed signals. The

core result of this literature is that if at most one of the components νt is Gaussian, A is

point identified up to sign change and permutation of its columns; therefore, all the structural

shocks can be reconstructed from the empirical innovations. This result is shown by Comon

(1994, Theorem 11) and has been discussed and used for identification in the literature, see also

Gouriéroux et al. (2019) and Lanne et al. (2017).

Regardless of the number of non-Gaussian shocks (provided that the shock of interest is

non-normal distributed), statistical point-identification of the impact of the structural shock of

interest can be derived using the full array of higher order moments of the empirical innovations.
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Notice that we can express the (n× n2) matrix collecting the third moments as follows

E(νtν
′
t ⊗ ν ′t) =

n∑
i=1

ζiJi ⊗ e′i,

where ei is the n× 1 vector with zeros everywhere except a one in the ith position, Ji the n×n

matrix of zeros everywhere except one in the ith position of the main diagonal. It is easy to

show that the squared third moment matrix is a (n× n) diagonal matrix

E(νtν
′
t ⊗ ν ′t)E(νtν

′
t ⊗ ν ′t)

′ =

(
n∑

i=1

ζiJi ⊗ ei

)(
n∑

i=1

ζiJi ⊗ ei

)′

= Λζ ,

where Λζ is a diagonal matrix collecting the squared third moments of the structural shocks,

see appendix A.2.2 for a formal derivation. The matrix collecting the empirical innovation third

moments can be expressed as E(ιtι
′
t ⊗ ι′t) = AoE(νtν

′
t ⊗ ν ′t)(Ao ⊗Ao)

′ and the matrix collecting

the squared third moments of the empirical innovations is given by

E(ιtι
′
t ⊗ ι′t)E(ιtι

′
t ⊗ ι′t)

′ = AoΛζA
′
o,

which gives rise to a eigenvalue/eigenvector or spectral decomposition. In particular, the eigen-

value corresponds to the square of the third moments of the structural shock and the corre-

sponding unit-length eigenvector coincides with the column of the original mixing or impact

matrix, up to a sign switch and permutation of columns. As long as the shock of interest has

non-zero third moment, we can identify its impact on the empirical innovations using the full

array of empirical innovations third moments.

Similar arguments carry over for forth moments. In fact, we can express the (n2×n2) matrix

collecting the fourth moments in excess of the standard normal ones as follows

E(νtν
′
t ⊗ ν ′t ⊗ νt)−Kz =

n∑
i=1

xiJi ⊗ Ji,

where xi is the excess kurtosis of the structural shock i (i.e. xi = ξi−3) and Kz is the matrix of

fourth moments of a normal standard multivariate distribution. The latter is a diagonal matrix

with non-zero elements only on the positions j(n+1)−n for j = 1, ..., n. The matrix collecting

the fourth moments of the empirical innovations, ιt, in excess of the standard normal ones can

be expressed as

E(ιtι
′
t ⊗ ι′t ⊗ ιt)−Kz = (Ao ⊗Ao)(E(νtν

′
t ⊗ ν ′t ⊗ νt)−Kz)(Ao ⊗Ao)

′ =

= PΛξP
′,

where Λξ is a diagonal matrix where the first largest n eigenvalues corresponds to the excess

kurtosis of the structural shocks, see appendix A.2.3. For example when the shock of interest
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has the largest fourth moment, one can derive the column of the original rotation matrix by

taking the first n elements of the first eigenvector and divide it by the absolute value of the

first elements of the eigenvector, i.e. P (1 : n, 1)/
√
|P (1, 1)| for j = 1, ..., n. More generally,

one can consider the procedure outlined in Kollo (2008) to reconstruct the full impact matrix,

see appendix A.2.4 for more details. Up to a permutation of columns and a sign switch, the

resulting matrix coincides with the original impact matrix.

It is important to highlight two points. First, structural shocks need to have zero cross

third and fourth moment. As in structural models disturbances are typically assumed to be

statistically independent, the latter represents a reasonable assumption. Second, even if one is

interested in identifying the impact of one single shock, one needs to compute the full set of the

third or fourth moments of the empirical innovations (or their consistent estimates) to retrieve

the column of interest of the rotation matrix. And the number of moments grows significantly

with the number of the empirical innovations, i.e. with the size of the VAR model. Moreover

and more importantly, estimates of the fourth or third sample moments can be very sensitive

to outliers or minor perturbation of the data and their estimates might be imprecise in short

samples. This in turns might lead to corrupted estimates of the shock’s impact on observables;

we show this point in section 3.2 using as laboratory a standard macro New-Keynesian model.

Rather than achieving structural identification from estimates of the the empirical innova-

tions higher moments, our preferred approach is to impose inequality restrictions on the higher

moments of the structural shock itself. Our approach requires only estimating one single mo-

ment (i.e. the skewness or kurtosis) of the structural shock of interest for which we can easily

compute robust estimators based on the percentile of the empirical distribution of the shock,

e.g. see appendix A.4; thus avoiding computing a large number of sensitive sample third or

fourth moments. Moreover, the inequality restriction imposes weaker conditions generating set-

identification as opposed to point-identification and it can be coupled with other assumptions,

such as signs, zeros, narrative, magnitude and/or statistical independence restrictions. In this

sense higher-moments inequality restrictions aremodular, as they can be flexibly used standalone

or in combination with other assumptions.

We consider a weaker result that maps the higher moments of the structural shock to the

column that measures its impact on the empirical innovations; this relationship allows us to

discard matrices that do not generate the desired properties of the shock of interest. This result

is shown more formally in the following propositions. Without loss of generality assume that

we are interested in the last (nth) shock, and let αn bet the rightmost (nth) columns of Ao

(the true impact matrix), which measure the impact of the structural shocks on the empirical

innovations.

Proposition 1 Let ν̆n,t = a′
nιt be a candidate structural shock with an a unit-length vector of
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weights. When an = αn where αn is the ‘true’ impact of the structural shock on the empir-

ical innovations, then candidate shock (ν̆n,t) has the same higher-order property of the ‘true’

structural shock.

The proof is in the appendix A.2. The proposition offers a necessary condition for identification.

Consider a rotation matrix that violates the higher moment condition, that is E(ν̆4n,t) ̸= ξn or

E(ν̆3n,t) ̸= ζn, then according to the propositions it must be the case that an ̸= αn. In other

words it is impossible to get the true rotation matrix without generating the correct higher

moments. This implies that in the estimation procedure we can discard all the rotations that

are inconsistent with the postulated higher order moments of the structural shock because

these rotations are inconsistent with the true impact of the structural shock on the empirical

innovations. Clearly, since we do not directly observe structural shock we typically ignore their

higher order properties. However, economic insight and measured proxies might inform us on the

nature of the higher moments of a particular macro shock. For example, in section 4.1 we show

that the typical observed measures of monetary policy shocks are leptokurtic. While we might

ignore the exact amount of ‘taildeness’, we have estimates that points at values statistically and

significantly larger than the normal distribution and use those as reference values. Similarly,

one could argue that uncertainty measured by the market-implied volatility could be driven by

an underlying process whose distribution has a thick left tail so that extreme negative events

are more likely. Therefore, positive skewness might be assumed.

When higher moments restrictions have sufficient grounds for justification, then these restric-

tions might be useful for identification. Since the rotation matrix modifies the higher moments

of the candidate identified shock, the set of admissible rotations can be reduced by imposing

the desired higher moments to lie in a preassigned interval. Clearly, if the ‘true’ moments of the

structural shocks of interest are inconsistent with the restriction, the set of admissible rotations

is empty. E.g., if we assume that monetary policy shocks are leptokurtic while they are not

in the true data generating process, we will not find rotations satisfying the restrictions. It is

important to highlight that similar considerations apply also to sign, magnitude or narrative

restrictions; if we impose ‘incorrect’ restriction on –say– the IRF of the structural shocks either

the set of accepted rotation is empty or the identification of the shock is corrupted because it

does not reflect the sign pattern of the data generating process. On the contrary, this class of

restrictions allows to shrink the set of rotations when the underlying data generating process is

consistent with the postulated restrictions.

2.1 Robust Higher-Order Moment Estimators

Estimates of fourth and third sample moments (i.e. kurtosis and skewness) can be very sen-

sitive to outliers with short samples, see Kim and White (2004). In this paper we propose to
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use a robust non-parametric approach to compute asymmetries and tailedness. These robust

estimators are constructed using the empirical distribution of the structural shocks of interest.

For fourth moments or tailedness, robust estimators considers the ratio between the distance of

the percentiles in the tails and the distance between the percentiles close to the median. For

example, the larger the numerator, the thicker the tails; the smaller the denominator the more

clustered is the distribution around the median and hence the more leptokurtic the shock is.

For third moments or asymmetries, robust measures exploit the standardized distance between

median and mean. In the appendix (section A.4) we discuss some of these robust estimators

more in details. In what follow we define asymmetries and taildeness with

S(x) = F−1(0.5)− x̄

std(x)
, K(x) =

F−1(0.975)− F−1(0.025)

F−1(0.75)− F−1(0.25)
, (1)

where F−1(α) is the α-percentile of the empirical distribution of x.

2.2 Bayesian Estimation and Identification

Our estimation and identification approach can be described as follows. We assume that the

observed data are generated by a V AR(p) model,

yt = Φ1yt−1 + ...+Φpyt−p +Φ0 + ut,

where yt is n × 1 vector of endogenous variables, Φ0 is a vector of constant and Φj are n × n

matrices. We assume y0, . . . , y−p+1 are fixed. We assume that ut are i.i.d. zero mean random

vectors with unconditional covariance matrix Σ. We assume that the VAR reduced form shocks

are linear combination of the unobserved structural shocks, νt, i.e.

ut = Σ1/2ιt = Σ1/2 Ω νt,

where Σ1/2 is the Cholesky factorization of Σ and Ω is an orthonormal matrix, i.e. ΩΩ′ =

Ω′Ω = I. The structural shocks, νt, are zero-mean orthogonal shocks with unitary variance, i.e.

νt ∼ (0, I). Standard inference on VAR parameters typically postulates a multivariate normal

distribution for the reduced form innovations. Such an assumption cannot be considered in our

context. We propose to adopt a robust Bayesian approach which allows to construct posterior

credible sets without the need for distributional assumptions of the reduced form residuals. The

Bayesian approach we use builds on the work by Petrova (2022), where she propose a robust and

computationally fast Bayesian procedure to estimate the reduced form parameters of the VAR

in the presence of non-Gaussianity. The robust approach relies on the asymptotic normality of

the Quasi Maximum Likelihood (QML) estimator4 of reduced form parameters, autoregressive

4The QML is the maximum estimator of the quasi-likelihood. The quasi-likelihood in this context coincides with
the likelihood of the VAR when incorrectly assuming normality of the reduced form residuals.
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coefficients (Φj with j = 1, ..., p) and covariance matrix (Σ). The QML estimators are consistent.

However, inference on Σ is asymptotically different when the true error distribution has excess

kurtosis relative to the multivariate normal density; similarly, inference on the intercept is also

affected whenever the innovations are generated from a non-symmetric distribution. Petrova

(2022) derives the closed form expression for the asymptotic covariance matrix and intercept

of the QML estimator allowing for fast simulation from its asymptotic distribution. Combined

with a prior, one can draw the VAR reduced form parameters from the posterior distribution

without specifying the shock distribution and allowing for asymmetries and fat-tails or thin-

tails.5 Assume that we are interested in identifying the last shock, νn,t, let Σ
(j) and Φ(j) be the

jth draw from the reduced form parameters poterior, we can identify the structural shock using

higher-order restrictions as follows.

• Draw Ω̆ from a uniform distribution with the Rubio-Ramı́rez, Waggoner and Zha (2010)

algorithm and

I. compute the impulse response function and check if the sign (or any other economic)

restrictions are verified,

II. compute the implied structural shocks

ν̆
(j)
t = Ω̆′

(
Σ(j)

)−1/2
(yt − Φ

(j)
1 yt−1 − ...− Φ(j)

p yt−p − Φ
(j)
0 ),

II. compute S(ν̆(j)n,t) and/or K(ν̆
(j)
n,t) and check if the higher-order moment inequality re-

strictions are satisfied.

If both [I] and [III] are satisfied, keep the draw Ω(j) = Ω̆. Else repeat [I], [II] and [III].

After a suitable number of iterations, the draws are representative of the posterior distribution

of the impulse responses of interest. The estimation of the reduced form parameters and the

computation of the impulse responses using the higher-order moments is performed using the

toolbox described in Ferroni and Canova (2021).6

2.3 Analytical example

In this section we offer an analytical example to illustrate the main point of the paper, that

is inequality restrictions on higher moments of the structural shock can lead to restrict the

identified set of the structural parameter. Assume that n = 2 and that ν1,t ∼ (0, 1) and

ν2,t ∼ (0, 1). Moreover, we assume that the third moments of the structural shocks are zero and

one respectively, i.e. E(ν31,t) = 0 and E(ν32,t) = 1, and and cross third moments are zero, i.e.

5See appendix A.5 for more details on the estimation.
6Codes for replication can be found on the Github page.
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E(ν1,tν2,t) = E(ν1,tν
2
2,t) = E(ν21,tν2,t) = 0. The structural equations are

ι1,t = cos θoν1,t − sin θoν2,t,

ι2,t = sin θoν1,t + cos θoν2,t,

where θo is the ‘true’ unknown angle of rotation with θo ∈ (−π/2, π/2) and AoA
′
o = A′

oAo = I.

We assume θo ̸= 0 else the problem is trivial. The econometrician does not observe νt and only

observes ιt. It is trivial to notice that first and second moments do not depend on θo; hence it

is not possible to retrieve Ao. However, third moments do. In particular, the population third

moments of the observed empirical innovations are given by E(ι31,t) = − sin3 θo, E(ι32,t) = cos3 θo,

E(ι21,tι2,t) = sin2 θo cos θo, and E(ι1,tι
2
2,t) = − sin θo cos

2 θo. Using the insights of the previous

section, we can retrieve the impact matrix from the third moments of the empirical innovations.

First notice that

E(ιtι
′
t ⊗ ι′t) =

(
sin2 θo − sin2 θo cos θo

− sin θo cos θo cos2 θo

)
︸ ︷︷ ︸

Ω

⊗
(
− sin θo cos θo

)
.

Since Ω is an idempotent matrix, we have that E(ιtι
′
t ⊗ ι′t)E(ιtι

′
t ⊗ ι′t)

′ = Ω. The characteristic

polynomial of Ω is (sin2 θo − λ)(cos2 θo − λ)− sin2 θo cos
2 θo and the associated eigenvalues are

zero and one respectively. This means that the first structural shock third moment equals zero

and the second structural shock third moment equals one. The eigenvector associated with the

non-zero eigenvalue is
(
− sin θo cos θo

)′
.

Our preferred approach does not use the third moments of the empirical innovations directly

and imposes weaker restrictions. In particular, we assume that the second shock has positive

skewness. Moreover, we do not make assumptions about the third moment of the other shock.

Yet, we can restrict considerably the identified set. More formally, we only consider the set of

rotations such that the following inequality is verified,

E(ν̆32,t) > 0.

Let A be a generic rotation with angle θ, i.e. A =

(
cos θ − sin θ
sin θ cos θ

)
and let ν̆t = A′ιt. The

corresponding population moment is then

E(ν̆32,t) = E(− sin θι1,t + cos θι2,t)
3 = [sin θ sin θo + cos θ cos θo]

3

= [sign(cos θo) cos(θ − θo)]
3 > 0.

Since sign(cos θo) = 1 for all θo ∈ (−π/2, π/2), the latter is positive whenever cos(θ − θo) > 0,

which occurs when in the region of points where7

max{−π/2, θo − π/2} < θ < min{π/2, θo + π/2}.
7More details on the solution can be found in the appendix A.3.1.
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This condition allows to shrink the set of admissible rotations which otherwise would be the set

θ ∈ (−π/2, π/2); in particular, when θo is positive (negative), the lower (upper) bound shrinks.

There is a discontinuity at θo = 0. In such a case, the first (second) structural shock coincides

with the first (second) empirical innovation, all third moments are zero but the third moment

of the second empirical innovation, Eι32,t, and there is no point in considering them as a system

of mixed signals.

3 The effects of monetary policy shocks on output

Inequality restrictions on higher moments are not only important from a statistical viewpoint

as they sharpen our identification sets as we discussed in the previous section. They are also

economic meaningful as they can, in certain situations, better isolate the effect of economic

shocks in our standard macro models.

With an agnostic identification procedure Uhlig (2005) finds that monetary policy shocks

have no clear effect on output. He imposes sign restrictions on inflation and interest rate (moving

in opposite directions) and is agnostic about the response on output. Wolf (2020) shows that

Uhlig (2005)’s result is consistent with the standard New Keynesian (NK) model and this occurs

because supply and demand shocks tend to masquerade or disguise as monetary policy shocks

when only sign restrictions on inflation and interest rate are imposed. He concludes that pure

sign restrictions are quite weak identifying information. Identification can be improved with

instruments or restriction on the reaction coefficients of the policy function as in Arias, Caldara

and Rubio-Ramı́rez (2019).

Higher moments inequality restrictions can also resolve the masquerading shocks problem

when the monetary policy shock has fourth moment sufficiently different from supply and de-

mand. We show this result using a three equations NK model and a more realistic model with

a variety of shocks and frictions in the same spirit as Christiano, Eichenbaum and Evans (2005)

or Smets and Wouters (2007).

3.1 NK model

We consider the simplest static version of the NK model. Detailed derivations of the conventional

three-equation New Keynesian model are offered in Gaĺı (2015). The model in its log linearized

form is described by three equations,

yt =yt+1|t − (it − πt+1|t) + σdϵ
d
t ,

πt =βπt+1|t + κyt − σsϵ
s
t ,

it =ϕππt + ϕyyt + σmϵmt .
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y is real output; i is the nominal interest rate (the federal funds rate); and π is inflation.

The model has three structural disturbances: a demand shock ϵdt , a supply shock ϵst , and a

monetary policy shock ϵmt . The first equation is a standard IS-relation (demand block), the

second equation is the New Keynesian Phillips curve (supply block), and the third equation

is the monetary policy rule (policy block). It is straightforward to show that this benchmark

model is static and admits the closed-form solution:

xt =

yt
πt
it

 =
1

1 + κϕπ + ϕy

 σd ϕπσs −σm
κσd −(1 + ϕy)σs −κσm

(ϕy + κϕπ)σd −ϕπσs σm

  ϵdt
ϵst
ϵmt

 = Aoϵt.

Unlike standard practice, we depart from the assumptions of normality of shocks and postulate

that the monetary policy has positive excess kurtosis. We consider Gaussian supply and demand

shocks and leptokurtic monetary policy shocks. In particular, we assume that

ϵdt ∼ N(0, 1), ϵst ∼ N(0, 1), ϵmt ∼ Laplace(0, 1).

The excess kurtosis of the Laplace (Gaussian) distribution is 3 (0). We assign the following

values to the parameters σs = σd = σm = 1, ϕπ = 1.5, ϕy = 0.5 and κ = 0.2 and simulate a

long time series of data, T = 100, 000, compute the sample covariance of the data and generate

candidate rotations using the Haar prior (see Rubio-Ramı́rez et al. (2010)).

The masquerading effect discussed in Wolf (2020) is displayed in left panel of figure 1 which

reports the scatter plot of all the supply and demand realizations with blue circles and with red

circles the scatter plot of the combination of realizations that generate a negative comovement

of inflation and interest rate. The latter occurs when supply shocks are relatively small, i.e. the

support of demand (−4, 4) is roughly double the support of supply (−2, 2). Moreover, the scatter

plot also reveals an upward sloping relationship between supply and demand, meaning that the

realizations tend to have the same sign. If we focus on positive realizations, while supply pushes

inflation down, the endogenous part of the monetary policy rule responding to the increase

in output dominates prescribing an interest rate hike; hence, this combination of demand and

supply generates a pattern similar to a policy tightening. However, unlike a monetary policy

tightening, the large demand expansion and the mildly positive supply drive output up.

As a result, if one imposes sign restrictions only on inflation and interest rate, the impact

on output can be both positive and negative because the masquerading effect of supply and

demand shocks. This is visible in the right panel of figure 1 where the blue bars report the

distribution of the impact on output of monetary policy shocks identified with sign restriction

only. We notice immediately that the support can be positive and negative.

When we complement the sign restrictions with a moment restriction on the excess kurtosis

of monetary policy shock, the impact distribution changes. In particular, we postulate that

the excess kurtosis of monetary policy shocks needs to be larger than a threshold value k, i.e.
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E(ϵ̆4t )−3 > k, and we consider different values for the this threshold. When we impose that the

excess kurtosis of monetary policy shocks ought to be larger than 1.5, almost all the positive

responses of output are chopped away and the distribution tilts towards negative outcomes only

as indicated by the red-colored bars in the right top panel of figure 1.

Clearly the bounds for the excess kurtosis are crucial to shrink the identified set. A lower

threshold for the kurtosis of the monetary policy shock would increase the support of the impact

distribution on y, while a higher threshold would work in the opposite direction of shrinking the

distribution around the true negative value. The role of this threshold is reported in figure 1

panel (d) where we plot with a blue line the probability of positive response of output against

different values of k, the lower bound of the excess kurtosis interval. The figure reports also

the acceptance rate when only considering sign restrictions (grey line) and the acceptance rate

when using signs and excess kurtosis restrictions (red line). When k = 0, roughly one fourth

of rotations are accepted with sign only and with sign and kurtosis restrictions, respectively;

the probability that the response of output is positive is roughly one half. As we increase the

minimum value for the excess kurtosis, fewer rotations verify both the signs and the excess

kurtosis restrictions, and the probability of a positive response of output to a monetary policy

shock declines. Eventually it becomes zero when we impose that the excess kurtosis of monetary

policy shocks needs to be larger than 1.8.

In the next section, we explore the validity of these conclusions in a more realistic model

which features a number of real and nominal frictions and where we do not take a stand on the

underlying distribution of the shocks.
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(a) Realizations of demand and supply shocks: all
(blue circles) and masqueraded MP (red circles).

Impact Distribution on y
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(b) Distribution of MP impact on output with sign
and with moment and sign restrictions.
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(c) Probability of positive response of y at different
restrictions on monetary policy excess kurtosis.

Figure 1: Masquerading effect (a); impact distribution of monetary policy on output (b); distribution
of excess-kurtosis for the masquerading shock; and (c) probability of positive response of y after a
monetary policy tightening.
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3.2 Smets and Wouters (2007) model

The Smets and Wouters (2007) (SW) model is perhaps the most well-known example of an

empirically successful structural business cycle model. In this model the fluctuations in economic

activity, labor market variables, prices and interest rate are explained by handful of shocks; these

are technology, risk premium, investment demand, monetary policy, government/exogenous

spending, and price and wage markups shocks. We use this model as a laboratory to show

how the higher order moments can sharpen identification. In most of the analysis here we

consider the SW posterior mode parameterization and the smoothed estimates of the shocks

using postwar US data on output, consumption, investment, real wages, inflation, interest rate

and hours worked as in their original work.8

As in the simple NK model version, also in the SW model demand and supply shocks can

generate in combination a sign pattern for inflation and interest rate similar to that produced

by a monetary policy shock; hence the transmission of monetary policy shocks to output might

be difficult to isolate using only sign restrictions. Figure 2 reports –from top to bottom– the

impulse response of technology (supply), risk premium (demand) and monetary policy shocks

to output, inflation and interest rate in the SW model respectively; the last raw displays the

dynamic transmission of the sum of supply and demand where the responses of inflation and

interest rate have similar patterns as the responses to monetary policy.

It is important to highlight that the difficulty to identify shocks with sign restrictions is not

restricted only to the transmission of monetary policy shocks; in fact, there are other situations

where shocks might get confounded when only sign restrictions are imposed. As an example,

consider the situation where the econometrician is interested in identifying the impact of demand

shocks on the labor market and to identify the shock of interest she imposes sign restrictions

on output, prices and interest rate (all moving in the same direction) and leaves the response

of the labor market variable unrestricted. In the context of the SW model, two supply shocks

(technology and price mark up shock) in combination can generate the same pattern of responses

for output, inflation and interest rate as the demand shock (risk premium). In fact, a positive

technology shock pushes output up and modestly but persistently inflation down. At the same

time a markup shock increases inflation significantly in the short run but have little impact on

output. The resulting net effect of these two shocks is an increase in both prices and quantities.

Monetary policy responds to the shocks by rising rates and overall the impact of these supply

shocks resemble a demand type disturbance. However, while the risk premium shock depresses

the demand for hours worked, the impact of the mongrel shock (technology + price mark up

8Our implementation of the Smets-Wouters model is based on Dynare (see Adjemian, Bastani, Juillard, Karamé,
Maih, Mihoubi, Perendia, Pfeifer, Ratto and Villemot (2011)) replication code kindly provided by Johannes Pfeifer.
The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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shock) on hours worked is actually positive. As a result, sign restrictions on output, inflation

and interest rate would not be able to isolate the impact of the demand shock to the labor

market variable.9
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Figure 2: SW estimates of impulse response functions. From top to bottom technology, risk premium
and monetary policy shocks and the sum of demand and supply shocks.

Simulated data We generate artificial data from the SW model by bootstrapping their esti-

mated smoothed values for the technology, risk premium and monetary policy shocks. Figure 3

reports the estimated shocks realizations (top panels) and the empirical probability distribution

against the normal one (bottom panels). Estimated shocks display deviations from normality.

All shocks seems to display some form of fat-tails. In particular, we compute a robust measure

of kurtosis using equation (1). The robust measure of excess kurtosis for the SW monetary

policy shock equals 2, whereas any robust measure of skewness is very close to zero. Drawing

randomly from the empirical distribution of the structural shocks, we generate a long sample

of data consisting of 50,000 observations for output, inflation and interest rate, estimate the

reduced form VAR parameters and study how monetary policy shocks transmit in the VAR

with different set of restrictions and identification schemes.

Identifying monetary policy shocks – large samples We study the identification of

monetary policy shocks using sign restrictions and sign and higher-order moments restrictions.

9See Figure 15 in the appendix.
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Figure 3: SW estimated shocks: form left to right technology, risk premium and monetary policy
shocks. Top panels realizations, bottom panels probability distribution against the normal.

In particular, we assume that after a monetary policy shock,

- Inflation decreases on impact and for two consecutive quarters,

- Interest rate increases on impact and for two consecutive quarters,

- Monetary policy shocks are leptokrutic, i.e. monetary policy robust measure of excess

kurtosis larger than 1.6.

The threshold value for the monetary policy robust kurtosis is chosen to be larger than roughly

80% of the value estimated in the empirical distribution.10 No restriction is imposed on output.

We estimate a VAR with twenty lags and rotate the reduced-form Least Square VAR innovations

so that the sing restrictions on the impulse responses are satisfied. We construct 50,000 accepted

rotations using Rubio-Ramı́rez et al. (2010) algorithm. For each of these rotations, we verify

if the higher moment restriction is verified; and if so, we keep the candidate rotation. We also

compute the rotation matrix by using the eigenvalue decomposition discussed in Section 2. For

each identification scheme we compute the impulse responses which are reported in figure 4,

where the first raw reports the 90% and 99% identified sets of impulse responses using sign

10Thresholds lower than one do not alter the identified set, see Figure 17 in the appendix, and the probability that
output is positive one year after the tightening is about 40% both with sign and with sign and higher-order moment
restrictions. This occurs because both demand and supply are somehow leptokurtic; however, their tails are not fat
enough to masquerade as a monetary policy shock with leptokurticity larger than 1.3. with such a threshold we start
seeing the higher-order moments identified set to shrink relative to the sign restricted identified set.
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restrictions only and the second raw using sign and the higher moment inequality restriction

on the monetary policy shock fourth moment. The blue line in each panel displays the true

monetary policy impulse responses and the red dashed line the impulse responses computed

using the eigenvalue decomposition of the matrix collecting all the fourth moments of the VAR

empirical innovations.

As in the simple NK model case, the set of responses identified by sign restrictions is so wide

that the impact of monetary policy shock on output is inconclusive. On the contrary, higher

order moments help refining the transmission of monetary policy shocks to output. In the case

of inequality restrictions, the 90% identified set suggests the most of the output trajectories

are negative at least after few quarters in line with what the theory predicts. Interestingly,

the identification using the spectral or eigenvalue decomposition of the empirical innovation

fourth moment matrix singles out the correct rotation matrix and identifies very precisely the

transmission of a monetary policy impulse. It is important to stress however that the quality

of this identification rests on the fact that we have a long span of data and the estimates of the

fourth order moments of the empirical innovations are very precise. With shorter samples, the

quality of point identification deteriorates and inequality restrictions perform better as we show

in the next section.

Finally it is important to notice that higher moments restrictions shrink the identified set

also when we impose the sign restrictions that a monetary policy shock generates on the observed

variables; figure 16 in the appendix report the magnitude of the refinement of the identified set

in the context of the SW model.

Identifying monetary policy shocks – short samples The identification based on

the spectral decomposition requires computing all the fourth moments of the VAR empirical

innovations, a number which grows with the size of the VAR. Moreover, when the time series

is short, sample counterparts of the fourth moments can be poorly estimated and be sensitive

to outliers; thus the quality of point identification deteriorates significantly. In this respect,

identification based on higher moment inequality restrictions has the advantage that it requires

computing only the fourth moment of the shock of interest, which in our case is the kurtosis of

the monetary policy shock.

To show that the latter argument applies to our business cycle model, we run the following

Montecarlo exercise. We constructed 500 different set of data each consisting of 200 observations

length on output, inflation and interest rate. For each dataset we estimated a VAR and computed

the monetary policy impulse responses using the spectral or eigenvalue decomposition and the

sign and higher-moment inequality restrictions. Figure 5 reports the dispersion of the (median)

point estimate across identification schemes. With short samples, the spectral decomposition

generates very dispersed point estimates which includes positive responses of output and prices
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after a monetary policy shock. This does not occurs with our preferred identification scheme,

where point estimate of the responses of output and inflation are robustly estimated to be

negative.

Moreover, not only the median impulse response functions are better estimated but also the

uncertainty is smaller. Figure 6 reports the median value of the upper and lower bounds of the

68% high probability density (HPD) sets across different artificial samples with different identi-

fication schmes, sign restrictions (top row), higher-moment eigenvalue decomposition (mid row)

and sign and higher-moment inequality restrictions (bottom row). Results confirm that bounds

of the HPD set response of output are negative with the sign and higher-moment inequality

restrictions. This is not the case for the eigenvalue decomposition nor the pure sign restrictions

identification.
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Figure 4: IRF using sign (first row) and sign and higher moment inequality (second row) restrictions.
The blue solid line is the true impulse response. The red dashed line indicate the point identification
using the eigenvalue decomposition of the fourth moments of empirical innovations. The dark (light)
gray areas report the 90% (99%) identified set. Reduced-form parameters VAR estimates are based
on a sample of 50,000 observations.
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4 Empirical Application I: monetary policy in the US

Our first empirical application studies the transmission mechanism of conventional monetary

policy in the US using a minimal set of assumptions about the sign pattern of the impulse

responses in the same spirit of Uhlig (2005). The scope is to study the real effect of monetary

policy without imposing any assumption on the reaction of output. The sign restrictions are

complemented with the requirement that monetary policy shocks are drawn from a leptokurtic

distributions, where most realizations are tiny but large deviations are more likely than with

normal distributed shock. Next section discusses whether this assumption is reasonable.

4.1 Higher moments of monetary policy shock proxies

While structural shocks are not observable, various scholars have constructed measurable proxies

for a number of structural shocks using a variety of methods and datasets, see Ramey (2016)

for a survey. Scope of this section is to study the third and fourth moment properties of the

estimated measures of monetary policy shocks, a particular type of demand shock for which we

have a good number of measurements. One popular way to isolate monetary policy surprises

is to look at the daily or intraday variations of interest rates around central bank monetary

policy decisions and announcements. The high frequency of the data makes it more likely that

such changes reflect unexpected shifts in the monetary policy stance. In particular, Jarociński

(2021) showed that in a narrow window around FOMC announcements federal funds rate futures

(and the SP500 index) variations are typically small but sometimes quite big suggesting that

monetary policy surprises are leptokurtic. We show in this section that this property extends

to many other observed proxies of monetary policy shocks studied in the literature and it is not

specific to the U.S. experience.

In the context of the U.S. monetary policy surprises extracted from high frequency datasets

we consider the monetary policy proxy used in Gertler and Karadi (2015) (GK), in Miranda-

Agrippino and Ricco (2021) (MAR) and in Jarociński and Karadi (2020) (JK). Some of these

proxies control for the information/Delphic effect of monetary policy (as discussed in Campbell,

Evans, Fisher and Justiniano (2012) or Nakamura and Steinsson (2018a)). We also look at the

raw (unrotated) first three principal components of the intraday variations of the interest rates

term structure around FOMC announcements (i.e. USf1-USf3). With lower frequency data,

e.g. months, it is more difficult to isolate monetary policy surprises as other non-policy shocks

can materialize and some structure is needed. Various scholars have used different methods to

identify monetary policy with low frequency data, and here we consider the most popular ones.

In particular, we consider the Romer and Romer (2004) (RR)11 narrative instrument, Sims and

11We consider here the series constructed in Wieland and Yang (2020) who extend the Romer-Romer (2004) monetary
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Zha (2006) (SZ) monetary policy innovations estimated from a SVAR with regimes shifts and

the monetary policy shock estimated in the Smets and Wouters (2007) (SW) DSGE model.

Finally, we also consider the natural language measure constructed by Aruoba and Drechsel

(2022) (AD) where they look at the change in the target interest rate which cannot be predicted

by the textual information contained in the documents prepared by Federal Reserve staff in

advance of policy decisions.

For the Euro Area we consider the monetary policy surprises constructed in Andrade and

Ferroni (2021), where they look at the high-frequency variations of future OIS contracts around

the ECB monetary policy decisions and press conference and distinguish between conventional

(AF(target)) and forward guidance shocks (AF(FWG)) controlling for information/Delphic ef-

fects (AF(delphic)). We also look at the unrotated first three principal components of variations

of the Euro Area interest rates futures around the ECB decision and communication constructed

in Altavilla, Brugnolini, Gürkaynak, Motto and Ragusa (2019) (EAf1-EAf3).

For the UK, Gerko and Rey (2017) construct monetary policy surprises by calculating the

change of three-month sterling future rates around the release of the minutes of the MPC

(GR(minute)) and inflation report (GR(IR)). The monetary policy surprises constructed in

Cesa-Bianchi, Thwaites and Vicondoa (2020) (CBTV) is based on the changes in three months

Libor around monetary policy events using the methodology in Gürkaynak, Sack and Swanson

(2005). Kaminska and Mumtaz (2022) extract monetary policy surprises from the high frequency

variations of the full yield curve of UK government bonds (KM). Finally, Cloyne and Hurtgen

(2016) employ the Romer-Romer identification approach to construct a measure of UK monetary

policy shocks (CH). We treat all these measures as contaminated proxies of the UK monetary

policy shocks.

Table 1 reports the robust measures of skewness and excess kurtosis along with the 95%

confidence intervals obtained by bootstrapping the series. While there is no clear evidence

about skewness of the monetary policy surprises, all the proxies have a statistically significant

excess kurtosis. The point estimates are very dispersed. For the US, the excess kurtosis ranges

from a low of 1.4 to a upper estimate of 11 when we use the monetary policy innovation of

GK. For the EA, the lower bound is 1.3 and the upper is 3.4. Similar considerations for the

UK monetary policy measures. It is important to highlight that these observed measures of

monetary policy shocks are constructed using different methods, different datasets, different

time spans and countries. Yet, regardless of that all proxies are leptokurtic.

Finally, it is important to highlight that these different measures spam relatively different

information sets; e.g. in the US the HF measures of monetary policy surprises and the narrative

instrument constructed by RR are barely correlated, about 0.2 see figure 14 in the appendix. To

policy shock series.
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the extent that they measure the same underlying shock, it is not straightforward to assess which

proxy better characterizes monetary policy shocks and should be used to instrument the reduced

form residuals VAR for identification. On the contrary, all monetary policy shock proxies are

robustly leptokurtic; and this property being common across measures can be leveraged to refine

the identification of monetary policy shocks.

Ex-Kurtosis Skewness Sample Size Sample Coverage

SW 2.0 [0.4, 3.2] -0.0 [-0.1, 0.1] 179 1960-2004
SZ 3.8 [1.8, 6.3] 0.0 [-0.0, 0.1] 518 1960-2003
RR 3.2 [1.8, 5.1] 0.0 [-0.1, 0.1] 468 1969-2007
GK 11.3 [5.9, 18.2] -0.3 [-0.3, -0.2] 269 1990-2012
MAR 3.3 [1.2, 5.9] -0.1 [-0.2, 0.0] 228 1991-2009
JK 8.8 [5.4, 15.8] -0.1 [-0.2, -0.0] 323 1990-2016
AD 3.1[1.4, 7.0] -0.0[-0.1, 0.1] 313 1982-2008
USf1 1.4 [0.3, 3.5] 0.1 [-0.0, 0.2] 204 1994-2017
USf2 3.0 [1.4, 7.1] 0.1 [-0.0, 0.2] 204 1994-2017
USf3 1.9 [0.5, 4.4] 0.0 [-0.1, 0.1] 204 1994-2017

AF(target) 2.5 [0.6, 5.3] -0.0 [-0.2, 0.1] 134 2004-2015
AF(delphic) 1.3 [0.2, 3.9] -0.0 [-0.2, 0.1] 134 2004-2015
AF(FWG) 1.4 [0.2, 3.6] 0.0 [-0.1, 0.1] 134 2004-2015

EAf1 3.4 [1.4, 5.6] -0.0 [-0.2, 0.1] 197 2002-2019
EAf2 1.5 [0.3, 3.9] -0.1 [-0.2, 0.0] 197 2002-2019
EAf3 1.1 [0.2, 3.4] 0.0 [-0.1, 0.2] 197 2002-2019

CH 13 [5.9, 38] 0 [-0.1, 0.1] 348 1997-2015
GR(minutes) 2.5 [1.3, 4.9] -0 [-0.2, 0.1] 211 1997-2015

GR(IR) 3.6 [2.8, 4.6] -0.1 [-0.2, 0.0] 211 1997-2015
CBTV 3.4 [0.6, 7.5] -0.1 [-0.2, 0.0] 212 1979-2007
KM 5.3 [2.3, 11.2] -0.0 [-0.1, 0.1] 235 1997-2016

Table 1: Proxies of Monetary Policy shocks/surprises: Ex-Kurtosis & Skewness - Bootstrap; median
and in parenthesis 95% confidence intervals. Proxies descriptions, sources and tags are in Table 2.

4.2 Monetary policy transmission with sign and kurtosis restrictions

We consider the dataset studied in Uhlig (2005) and use observations on real activity, prices and

interest rates from 1965m1 to 2003m12; in particular, the dataset consists of the Real GDP (y),

the GDP Deflator (pi), the Commodity Price Index (pcom) and the Federal Funds Rate (FFR).

We estimate the VAR parameters assuming 12 lags, obtain the whitened reduced form residuals

and study their empirical probability distribution properties. As the QML or least square (LS)
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estimates of the autoregressive coefficients are asymptotically consistent, so the LS residuals are

treated as consistent estimators of the reduced form shocks.
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Figure 7: Whitened Least Square residuals.

Figure 7 plots the least square estimates of the whitened VAR reduced form shock, i.e.

the reduced form residuals orthogonalized using the Cholesky factorization of the least square

estimates of the residuals covariance matrix. The first row of the figure displays the estimated

series and the second row compares the probability plot of the empirical distribution against

a standard normal distribution (dash line); departures from the dash line indicate departures

from the normality assumptions. Departures for normality are not fully evident for the output

and prices whitened residuals; while there are few observations in the tails that lie far from

the normal distribution implied ones, the Kolmogorov-Smirnov (K-S) test fails to reject the

null that they could have come from a standard normal distribution; their respective p−values

are 0.12 and 0.42. More evident departures from normality arise for the whitened residuals of

the commodity prices and of the federal funds rate where the K-S test p−values are 0.07 and

0.00 respectively. The FFR residuals seems to be characterized by a large negative value at

the beginning of the 80’s. Even after removing the extreme values (min and max) of the FFR

residuals, we still reject the null of normality with a p−value smaller than 1e-8. As a matter

of fact the robust measure of skewness are all very close to zero, whereas the robust measures

of kurtosis of the federal funds rate residual is significantly larger than those implied by the

Gaussian distribution. Hence, the source of non-Gaussianity seems more evident in the tails

thickness rather than in the asymmetry of the distribution.
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Following the literature of the identification of monetary policy shocks using sign restric-

tions, we assume that monetary policy shocks move the interest rate and the price levels in

opposite directions; in particular, we assume that an unexpected monetary policy shock induces

an increase in the federal funds rate and a decline in the GDP deflator and in the price of

commodities on impact and for the following six months. Based on our previous discussions and

analysis, we assume further that the monetary policy shocks are significantly leptokurtic. In

particular, we assume that the shock has the robust measure of excess kurtosis larger than 1.2.

The choice of this value is motivated by the analysis in section 4.1 where the lowest value of the

robust excess kurtosis across different estimates of US monetary policy surprises is 1.4, i.e. see

the first column of table 1. As a reference, a random variable distributed –say– as mixture of

two normal distributions where the random variable is drawn with a 0.8 (0.2) probability from

(three times) the standard normal distribution has a robust excess kurtosis of 1.5. With this

distribution, the probability of observing a realization distant two (three) standard deviations

away from the mean is 25% (700 %) more likely that in the standard normal case.

Figure 8 reports the impulse response function (IRF) of the variables of interest to a monetary

policy shock. In the first row we reports the IRF identified with sign restrictions constructed

using robust Bayesian methods and flat priors. The second row the analog IRF imposing sign

and higher moment restrictions. In all panels the black line reports the median estimate and

the (light) dark gray the 68 (90) % confidence sets. As discussed in section 3, monetary policy

shocks have no clear effect on output when using only sign restrictions on interest rate and

inflation are assumed. When we impose the inequality restriction on the excess kurtosis of

monetary policy shocks, almost all the positive responses of output are chopped away and the

distribution tilts towards negative outcomes only, as indicated by 68% and 90% bands in the

bottom right panel of figure 8. So a monetary policy tightening consistently reduces output.

This is not the only difference in the transmission of monetary policy shocks between the two

identification schemes; magnitudes are also very different. For the same 25 bps increase in the

federal fund rate on impact, prices decline significantly less, about half of the size, in the case

where the inequality restriction on the monetary policy excess kurtosis are imposed, suggesting

that the macroeconomic propagation of monetary policy is weaker when we isolate candidate

shocks that display fat-tails.

5 Empirical Application II: spread shocks in the EA

In the past decade the Euro Area has been characterized by large movements in sovereign

spreads, i.e. the differential between the yield on long term government bonds of –say– Italy

and Germany. While some of these movements are the results of changes in the economic

fundamentals, some others are the results of political risks generating tensions in sovereign yield
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Figure 8: Impulse responses to a monetary policy shock. Sign restrictions first row. Sign and kurtosis
restrictions last row.

markets. Large movements in sovereign spreads have macroeconomic consequences but isolating

the portion of these fluctuations due to changes in the economic fundamentals and those due to

changes in political and sovereign risks is difficult. Some scholars have looked at financial market

reactions around key political events, see e.g. Bahaj (2020) or Balduzzi, Brancati, Brianti and

Schiantarelli (2023); the high frequency window makes it likely that the variations in market

instruments are orthogonal to existing information and current economic conditions. Some

other scholars have treated the sovereign spread itself as an exogenous process in structural

dynamic general equilibrium models, see e.g. Bocola (2016) or Corsetti, Kuester, Meier and

Muller (2013). In both setups, the default on sovereign debt evolves stochastically, capturing

the uncertainty that surrounds the political process, and it is typically modeled as a random
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variable drawn from a Bernoulli distribution with time-varying probability; this often generates

distributions for the endogenous variables with non-trivial third and fourth moments.12 Hence,

higher moments restrictions can be thought in this context as characterizing sovereign risk or

spread shocks and used for identification.

We consider EA data on industrial production (IP), core HICP (Core), unemployment rate,

a measure of borrowing costs (EBP),13 the one year Euribor, the spread between the 5 year

Italian and German bond yield, and the 10 year Italian and German government bond yields

from 1999m1 to 2019m12. We estimate a VAR model with six lags and uninformative priors for

the parameters of interest. Using the LS estimates, we constructed first the LS reduced form

residuals, and looked at their higher moments properties. In this case as well departures for

normality are not evident for some variables. The K-S test rejects the null that the borrowing

costs, the one year Euribor and the spread could have come from a standard normal distribu-

tion; for the remaining variables the test fails to reject the null. Figure 9 plots the least square

estimates of the whitened VAR reduced form spread shock; the right panel of the figure dis-

plays the estimated series and the central panel compares the probability plot of the empirical

distribution against a standard normal distribution (dash line), and the right panel shows the

histogram. In this case, there is suggestive evidence that the spread is positively skewed and

has fat-tails.
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Figure 9: Whitened Least Square residual of the spread.

Our preferred identification scheme assumes that the spread shock increases the 5 year yield

BTP-Bund spread, increase the 10 year Italian government bond yield and the borrowing costs

on impact and for the following month; we assume further that the spread shock has sample

12For example, Bocola (2016) studied the implications of an exogenous increase in sovereign risk for financial inter-
mediation and showed that it can generate non-trivial third and fourth moments. In particular, the positive probability
of a future default on the sovereign debt generates skewed and fat-tailed distributions of financial frictions which in
his model are captured by the Lagrange multiplier on the incentive constraints of bankers.

13We use the non-financial corporation borrowing costs constructed in Gilchrist and Mojon (2017).
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skewness larger than one and sample excess kurtosis larger than three. For comparison, we

also look at a pure sign restriction identification and at the recursive ordering identification

where the spread shock is impacting macroeconomic and credit conditions only with a month

lag. Figure 10 reports the impulse responses to a spread shock using a recursive ordering (first

column), with sign restrictions (second column), and sign and higher moment restrictions (third

column); impulse responses are normalized so that the maximum median effect on the spread

over the response horizon is one percent.

The identification using signs and higher moments restrictions produces interesting dynamic

responses. An increase in spread of one percent generates an increase in the long term Italian

bond of 50 bps and a flight to quality to Germany with a decline in the ten year yield of about

40 bps after one year. Credit conditions tighten immediately and borrowing costs increase more

than one-to-one to the increase in the sovereign spread. Real variables also respond on impact

after the spread shock: industrial production contracts and the unemployment rate increases.

The peak effects after the shock are within six months for industrial production and eighteen

months for unemployment. In less than three years the shock is absorbed. The price level for

core good and services responds more sluggishly and slowly declines albeit non significantly.

Overall these effects resemble those of a negative demand shock. In this depressed demand

environment the one year Euribor drops suggesting an accommodative response of monetary

policy. Most of these effects are significant statistically and in magnitudes, but short lasting.

The identification with a recursive ordering offers a very different picture, with some puzzling

patterns. A one percent increase in the spread triggers an increase in the 10 year Italian

bond yield, no impact on the German analog (if anything it increases) and an increase in the

short term risk free rate. Credit costs tend to increase modestly, with the peak effect of the

spread shock on borrowing costs occurring after 18 months at about one fifth of the size of the

spread shocks. Industrial production increases in the short run and declines after two years; the

unemployment rate increases for several months after the shock reaching its peak in three to four

years after the impulse. The price level only modestly increases but it is not significant. Finally,

The identification using only sign restrictions would not generate any statistically significant

response.
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Figure 10: Impulse responses to a spread shock. Recursive ordering first row. Sign restrictions second
row. Sign, skewness and kurtosis restrictions last row. Impulse responses are normalized so that the
maximum median impact on the spread is 1 percent.
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6 Empirical Application III: The Macroeconomic Effects of
Geopolitical Risk

Caldara and Iacoviello (2022) develop an index of geopolitical risks based on newspaper coverage.

As illustrated in Figure 11 the index is skewed to the right and leptokurtic consistent with the

intuition that geopolitical risks are characterized by spikes in international tensions which are

large and relatively frequent.
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Figure 11: GPR index

Caldara and Iacoviello (2022) also provide a structural VAR analysis of the macroeconomic

effects of geopolitical risk (GPR) for the US economy. Their VAR consists of eight quarterly

variables: (i) the log of the GPR index: (ii) the VIX; (iii) the log of real business fixed investment

per capita; (iv) the log of private hours per capita; (v) the log of the S&P 500 index; (vi) the

log of the WTI price of oil; (vii) the yield on two-year US Treasuries; (viii) the Chicago Federal

Reserve National Financial Conditions Index (NFCI). The estimation sample is 1986:Q1 to

2019:Q4 and the VAR admits two lags.

They assume that any contemporaneous correlation between the GPR index and the other

variables in the VAR comes from the causal effect of the GPR shock on the other variables. In

other words they identify a GPR shock using a Cholesky scheme, with the GPR index ordered
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first. They obtain significant effects on macroeconomic aggregates as reported in Figure 12

which replicates their results.
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Figure 12: Impulse responses to a GPR shock. Recursive ordering. 2 standard deviation increase.

The recursive ordering used in Caldara and Iacoviello (2022) is a natural assumption as the

GPR index captures exogenous events that are not caused, at least within a quarter, by US

macroeconomic performances. However, large adverse geopolitical events will lead to policy

reaction, in particular from fiscal policy, think of the military spending shocks, and from mon-

etary policy, think of the Fed emergency reaction to 09/11. There is a risk that the GPR index

partially captures such unforeseen policy surprises, for instance through articles discussing the

policy reaction to the geopolitical tensions. This could explain why they obtain that, although

the geopolitical tensions last well over one year after the initial GPR shock, the VIX starts to

decline, the 2-year bond yield declines, and overall financial conditions, as captured by the NFCI

index, loosen.

One way to address this potential issue is to use sign restrictions, requiring that the GPR
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shock increases the GPR index on impact, and tighten financial conditions by lowering the

SP500 and increasing the 2-year US treasury yield. However, unreported results show that the

set identification achieved using these sign-restrictions alone lead to median IRFs that are not

significantly different from zero, as the set of admissible rotations is too large.

We investigate an alternative identification scheme which combines these sign restrictions

with restrictions on HOM of the GPR shock, which is assumed to have infrequent large positive

realizations. More specifically, in addition to the sign restrictions above, we impose that the

distribution of GPR shocks is skewed to the right with a median of the distribution of GPR

shock greater or equal to .1, and leptokurtic, with an excess kurtosis greater or equal to .9,

implying that the probability of observing a realization two or three standard deviations away

from the mean are much more likely that in the standard normal case. The results are presented

in Figure 13. The precision of the impulse response function estimates declines compared to the

recursive ordering as we achieve set-identification rather than point identification. However, we

find evidence of larger and more persistent macroeconomic effects of the GPR shock identified

through this method.
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Figure 13: Impulse responses to a GPR shock. HOM restrictions. 2 standard deviation increase.
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7 Conclusion

We propose a novel set of necessary conditions based on higher moments to identify structural

shocks from empirical innovations. Higher moment inequality restrictions constraint the struc-

tural shocks to have non-trivial third or fourth moments, i.e. different from the Gaussian-implied

analogs. We show how the (sign-)identified set shrinks when these restrictions are introduced,

both analytically and numerically. We show also that higher moment restrictions are economic

relevant as they can sharpen the identification of economic shocks. In particular, we show how

the excess kurtosis restriction can help isolating the impact of monetary policy shock on output

from the supply and demand masquerading shock in standard New Keynesian (NK) models.

Using a Bayesian robust approach we apply our identification scheme to study the transmission

of conventional monetary policy shocks in the U.S. before the financial crisis, the propagation

of sovereign spread shocks in the Euro Area, and the macroeconomic impact of geopolitical risk

shocks.
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A Appendix

A.1 Additional Tables and Figures

tag Paper Description Frequency country

SZ Sims and Zha (2006) SVAR zero restrictions M US
RR Romer and Romer (2004) narrative M US
GK Gertler and Karadi (2015) HF M US
MAR Miranda-Agrippino and Ricco (2021) HF corrected for info-effect M US
JK Jarociński and Karadi (2020) HF corrected for info-effect M US
SW Smets and Wouters (2007) DSGE Q US

AF Andrade and Ferroni (2021) HF corrected for info-effect M EA

GK(M) Gerko and Rey (2017) HF around minutes M UK
GK(IR) Gerko and Rey (2017) HF around the inflation report M UK
CBTV Cesa-Bianchi et al. (2020) HF around monetary policy events M UK
KM Kaminska and Mumtaz (2022) HF around monetary policy events M UK
CH Cloyne and Hurtgen (2016) narrative M UK

Table 2: Various monetary policy surprises, estimates and sources.

45



-40 -20 0 20
corr = 0.3

-4

-2

0

2

S
Z

RR

-4 -2 0 2
corr = 0.5

-0.2

-0.1

0

S
Z

GK

-4 -2 0 2
corr = 0.4

-0.4

-0.2

0

0.2

S
Z

MAR

-4 -2 0 2
corr = 0.4

-0.4

-0.2

0

S
Z

JK

-0.5 0 0.5
corr = 0.2

-0.2

-0.1

0

R
R

-0.5 0 0.5
corr = 0.1

-0.4

-0.2

0

0.2
R

R

-0.5 0 0.5
corr = 0.1

-0.4

-0.2

0

0.2

R
R

-0.2 -0.1 0
corr = 0.6

-0.2

0

0.2

G
K

-0.2 -0.1 0
corr = 0.6

-0.4

-0.2

0

0.2

G
K

-0.2 0 0.2
corr = 0.8

-0.4

-0.2

0

0.2

M
A

R
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A.2 Proof of Propositions

Notation First, define ek as the n× 1 vector with zeros everywhere except a one in the kth

position, Jk the n × n matrix of zeros everywhere except one in the kth position of the main

diagonal and Jjk the n × n matrix of zeros everywhere except one in the (j, k)th element. For

example, when n = 3, k = 2 and j = 3 we have

e′2 =
(
0 1 0

)
, J2 =

0 0 0
0 1 0
0 0 0

 and J3,2 =

0 0 0
0 0 0
0 1 0

 .

Notice that

e′k ⊗ ek =Jk,k = Jk,

e′j ⊗ ek =Jk,j ,

e′j ⊗ ek =eke
′
j .

Denote with In the identity matrix of size n and with vec(X) the column-wise vecotrization of

X. The following identities hold

vec(In) =

n∑
i=1

ei ⊗ ei,

vec(In)vec(In)
′ =

(
n∑

i=1

ei ⊗ ei

)(
n∑

i=1

ei ⊗ ei

)′

=

(
n∑

i=1

ei ⊗ ei

)(
n∑

i=1

e′i ⊗ e′i

)
=

=

n∑
k,j=1

(ek ⊗ ek)(e
′
j ⊗ e′j) =

n∑
k,j=1

eke
′
j ⊗ eke

′
j =

=

n∑
k,j=1

Jk,j ⊗ Jk,j .

Define the commutation matrix, Kn,n, the (n
2×n2) matrix consisting of n×n blocks where the

(j, i)−element of the (i, j) block equals one, elsewhere there are all zeros. Notice that

Kn,n =

n∑
k,j=1

Jk,j ⊗ Jj,k.

Assumptions about the structural shocks ν: We assume that the strucutral shocks

are independent and identically distributed over time. Moreover, we postulate that

• E(ν2i,t) = 1 and E(νi,tνj,t) = 0 for all i, j;

• E(ν3i,t) = ζi and E(νi,tνj,tνk,t) = 0 for all i ̸= j, k;

• E(ν4i,t) = ξi, E(ν2i,tν
2
j,t) = 1 for all i ̸= j, and E(νi,tνj,tνk,tνm,t) = 0 for all i ̸= j, k,m.
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Define the empirical innovation as

ιt = Aoνt,

where Ao is the true orthonormal rotation matrix. Finally, define the candidate structural

shocks, ν̆t, as ν̆t = A′ιt, and denote with αk and ak are the kth column of Ao (the true impact

matrix) and A (a candidate rotation) respectively.

A.2.1 Normal distribution fourth moments

In this section we show that the fourth moments of a multivariate normal distribution are

invariant to orthonormal rotation matrix. Denote with Kz the matrix that collects the fourth

moments of the standard normal distribution, which are given by

Kz = In2 +Kn,n + vec(In)vec(In)
′,

see Kollo (2008) for more details. First, we show that Kz is invariant to orthonormal rotations.

Using the property of the commutation matrix14 that Kn,n(A⊗B) = (B⊗A)Kn,n, we have that

the commutation matrix is invariant to any orthonormal rotation Ω, i.e. (Ω⊗Ω)′Kn,n(Ω⊗Ω) =

Kn,n(Ω ⊗ Ω)′(Ω ⊗ Ω) = Kn,n(Ω
′ ⊗ Ω′)(Ω ⊗ Ω) = Kn,n(Ω

′Ω ⊗ Ω′Ω) = Kn,n. Moreover, using

the relationship between the vectorization and Kronecker product, i.e. vec(ABC) = (C ′ ⊗
A)vec(B), we have that (Ω⊗Ω)′(vec(In)vec(In)

′)(Ω⊗Ω) = (Ω′⊗Ω′)vec(In) ((Ω
′⊗Ω′)vec(In))

′ =

vec(Ω′InΩ)vec(Ω
′InΩ)

′ = vec(In)vec(In)
′. Therefore, we have that

(Ω⊗ Ω)′ Kz (Ω⊗ Ω) = Kz.

Denote with Kn the matrix that collects the fourth moments of the multivariate normal distri-

bution with covariance Σ, which is given by

Kn = (In2 +Kn,n)(Σ⊗ Σ) + vec(Σ)vec(Σ)′.

Using the same properties of matrices and Kronecker products it is straightforward to show that

Kn = (Σ1/2 ⊗ Σ1/2)′ Kz (Σ1/2 ⊗ Σ1/2).

14See e.g. Schott (2016) (Theorem 8.26 at page 342)
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A.2.2 Third moments

Assume that E(ν3n,t) = ζn ̸= 0. The (n × n2) matrix collecting the structural shocks third

moments can be written as

E(νtν
′
t ⊗ ν ′t) = E(νtν

′
t ⊗ [

(
ν1,t ... 0

)
+ · · ·+

(
0 ... νn,t

)
]) =

= E(ν1,tνtν
′
t ⊗ e′1 + ...+ νn,tνtν

′
t ⊗ e′n) =

= E(ν1,tνtν
′
t)⊗ e′1 + ...+ E(νn,tνtν

′
t)⊗ e′n =

= ζ1J1 ⊗ e′1 + ...+ ζnJn ⊗ e′n =

=
n∑

k=1

ζkJk ⊗ e′k.

Using the properties of the Kronecker product, i.e. (A⊗B)(C ⊗D) = AC ⊗BD, notice that(
n∑

i=1

ζiJi ⊗ ei

)(
n∑

i=1

ζiJi ⊗ ei

)′

=

=

n∑
i=1

ζ2i
(
Ji ⊗ e′i

) (
Ji ⊗ e′i

)′
+

n∑
i ̸=k

ζiζk
(
Ji ⊗ e′i

) (
Jk ⊗ e′k

)′
︸ ︷︷ ︸

=0

=

=
n∑

i=1

ζ2i
(
Ji ⊗ e′i

) (
ei ⊗ J ′

i

)
=

n∑
i=1

ζ2i
(
Ji ⊗ e′i

) (
ei ⊗ J ′

i

)
=

=
n∑

i=1

ζ2i Jiei ⊗ (Jiei)
′ =

n∑
i=1

ζ2i ei ⊗ e′i =

=

n∑
i=1

ζ2i J
′
i =

ζ21 . . . 0
...

. . .
...

0 . . . ζ2m

 = Λζ .

where Λζ is a diagonal matrix collecting the squared third moments of the structural shocks.

Notice that the cross product are zero since (Ji ⊗ e′i)(ek ⊗ J ′
k) = Jkei ⊗ e′kJ

′
i = 0. Using again

the property of the Kroeneker product, the third moments of the candidate structural shocks

are given by

E(ν̆tν̆
′
t ⊗ ν̆ ′t) = A′E(ιtι

′
tA⊗ ι′tA) = A′E(ιtι

′
t ⊗ ι′t)(A⊗A) =

= A′E(Aoνtν
′
tA

′
o ⊗ ν ′tA

′
o)(A⊗A) = A′AoE(νtνt ⊗ ν ′t)(A

′
o ⊗A′

o)(A⊗A) =

= A′AoE(νtνt ⊗ ν ′t)(A
′
oA⊗A′

oA) =

= A′Ao[ζ1J1 ⊗ e′1 + ...+ ζnJn ⊗ e′n](A
′
oA⊗A′

oA) =

= ζ1(A
′AoJ1 ⊗ e′1)(A

′
oA⊗A′

oA) + ...+ ζn(A
′AoJn ⊗ e′n)(A

′
oA⊗A′

oA) =

= ζ1A
′AoJ1A

′
oA⊗ e′1A

′
oA+ ...+ ζnA

′AoJnA
′
oA⊗ e′nA

′
oA.
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Notice that for all k = 1, ..., n,

e′kA
′
oA =

(
α′

ka1 α′
ka2 . . . α′

kan

)
;

A′AoJkA
′
oA =

a′
1α1 . . . a′

1αn

. . .

a′
nα1 . . . a′

nαn


0 . . . 0

1
0 . . . 0


α′

1a1 . . . α′
1an

. . .

α′
na1 . . . α′

nan

 =

=

(a′
1αk)(α

′
ka1) . . . (a′

kαk)(α
′
ka1)

. . .

(a′
1αk)(α

′
kan) . . . (a′

nαk)(α
′
kan)

 =

= A′αkα
′
kA.

Therefore we have for all k = 1, ..., n,

E(ν̆tν̆
′
t ⊗ ν̆ ′t) =

∑
k

ζkA
′AoJkA

′
oA⊗ e′kA

′
oA =

=
∑
k

ζk
(
α′

ka1 ×A′AoJkA
′
oA α′

ka2 ×A′AoJkA
′
oA . . . α′

kan ×A′AoJkA
′
oA
)
=

=
(∑

k ζkα
′
ka1 ×A′AoJkA

′
oA

∑
k ζkα

′
ka2 ×A′AoJkA

′
oA . . .

∑
k ζkα

′
kan ×A′AoJkA

′
oA
)
=

=
(
Φ(1) Φ(2) . . . Φ(n)

)
.

As E(ν̆3n,t) occupies the (n, n2) position in the matrix E(ν̆tν̆
′
t ⊗ ν̆ ′t), we can focus on the

(n, n)−element of Φ(m), i.e.

Φ(n) =
∑
k

ζkα
′
kan ×A′AoJkA

′
oA =

= ζ1α
′
1an ×A′AoJ1A

′
oA+ · · ·+ ζnα

′
nan ×A′AoJnA

′
oA

If an = αn, then α′
jan = α′

jαn = 0 with j ̸= n and α′
nan = α′

nαn = 1. Hence,

Φ(n) = ζnA
′AoJnA

′
oA

The (n, n)−element of Φ(n) equals ζm(a′
nαn)(α

′
nan) = ζm. Finally, notice that if ζn = 0, the

impact column vector an of the matrix A is not identified.
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A.2.3 Fourth moments

Assume that E(ν4n,t) = ξn ̸= 3. The (n2 × n2) matrix collecting the full set of structural shocks

fourth moments can be written as

K = E(νtν
′
t ⊗ ν ′t ⊗ νt) = E

(ν1,tνtν
′
t ⊗ e′1 + ...+ νn,tνtν

′
t ⊗ e′n)⊗

ν1,t
...

νn,t


 =

= E
(
(ν1,tνtν

′
t ⊗ e′1 + ...+ νn,tνtν

′
t ⊗ e′n)⊗ (ν1,te1 + ...+ νn,ten)

)
=

= E(ν21,tνtν
′
t)⊗ e′1 ⊗ e1 + ...+ E(ν2n,tνtν

′
t)⊗ e′n ⊗ en +

∑
j ̸=k

E(νj,tνk,tνtν
′
t)⊗ e′j ⊗ ek =

=

Eν41,t · · · 0
. . .

0 · · · Eν21,tEν2n,t

⊗ e′1 ⊗ e1 + ...+

Eν21,tEν2n,t · · · 0
. . .

0 · · · Eν4n,t

⊗ e′n ⊗ en

+
∑

j ̸=k j,k=1

 E(ν21,tνj,tνk,t) · · · E(ν1,tνn,tνj,tνk,t)
. . .

E(ν1,tνn,tνj,tνk,t) · · · E(ν2n,tνj,tνk,t)

⊗ Jk,j =

=

ξ1 · · · 0
. . .

0 · · · 1

⊗ e′1 ⊗ e1 + ...+

1 · · · 0
. . .

0 · · · ξn

⊗ e′n ⊗ en +
∑
j ̸=k

(Jj,k + Jk,j)⊗ Jk,j =

= ((ξ1 − 1)J1 + In)⊗ J1 + ...+ ((ξn − 1)Jn + In)⊗ Jn +
∑
j ̸=k

(Jj,k + Jk,j)⊗ Jk,j =

=
n∑

i=1

(ξi − 1)Ji ⊗ Ji + In ⊗ (J1 + · · ·+ Jn) +
∑
j ̸=k

(Jj,k + Jk,j)⊗ Jk,j =

=
n∑

i=1

(ξi − 1)Ji ⊗ Ji + In2 +
n∑

j ̸=k j,k=1

(Jj,k + Jk,j)⊗ Jk,j .

Since e′i ⊗ ei = Ji and e′j ⊗ ek = Jk,j , for any i, j, k; and In = J1 + · · · + Jn. It is convenient

to express the fourth moments in deviation from the standard normal distribution analogs. To

this end define ξi = xi + 3; when xi = 0 then the fourth moments coincide with the standard
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normal distribution ones. We can rewrite the fourth moments of the structural shock as follows

K =
n∑

i=1

(xi + 2)Ji ⊗ Ji + In2 +
n∑

j ̸=k j,k=1

(Jj,k + Jk,j)⊗ Jk,j =

=

n∑
i=1

xiJi ⊗ Ji + In2 + 2

n∑
i=1

Ji ⊗ Ji +

n∑
j ̸=k j,k=1

[Jj,k ⊗ Jk,j + Jk,j ⊗ Jk,j ] =

=
n∑

i=1

xiJi ⊗ Ji + In2 +

 n∑
i=1

Ji ⊗ Ji +
n∑

j ̸=k j,k=1

Jj,k ⊗ Jk,j

+

 n∑
i=1

Ji ⊗ Ji +
n∑

j ̸=k j,k=1

Jk,j ⊗ Jk,j

 =

=

n∑
i=1

xiJi ⊗ Ji + In2 +

n∑
j,k=1

Jj,k ⊗ Jk,j +

n∑
j,k=1

Jk,j ⊗ Jk,j =

=
n∑

i=1

xiJi ⊗ Ji + In2 +Kn,n + vec(In)vec(In)
′︸ ︷︷ ︸

Kz

=

=
n∑

i=1

xiJi ⊗ Ji +Kz,

where Kn,n is the commutation matrix, vec is the column-wise vectorization of matrix and

Kz denotes the matrix that collects the fourth moments of the standard normal distribution.

Therefore, we obtain that the the excess fourth moments of the structural shocks are given by

the following sum of diagonal matrices,

E(νtν
′
t ⊗ ν ′t ⊗ νt)−Kz =

n∑
i=1

xiJi ⊗ Ji.

It is straightforward now to derive the fourth moments of the candidate structural shocks

E(ν̆tν̆
′
t ⊗ ν̆ ′t ⊗ ν̆t) = E(A′ιtι

′
tA⊗ ι′tA⊗A′ιt) = E(A′[(ιtι

′
t ⊗ ι′t)(A⊗A)]⊗A′ιt) =

= E((A′ ⊗A′)[(ιtι
′
t ⊗ ι′t)(A⊗A)⊗ ιt]) =

= E((A′ ⊗A′)[(ιtι
′
t ⊗ ι′t)(A⊗A)⊗ ιt · 1]) =

= E((A′ ⊗A′)[(ιtι
′
t ⊗ ι′t ⊗ ιt)((A⊗A)⊗ 1)]) =

= (A′ ⊗A′)E(ιtι
′
t ⊗ ι′t ⊗ ιt)(A⊗A)

With similar algebra we get

E(ν̆tν̆
′
t ⊗ ν̆ ′t ⊗ ν̆t) = (A′ ⊗A′)(Ao ⊗Ao)E(νtν

′
t ⊗ ν ′t ⊗ νt)(A

′
o ⊗A′

o)(A⊗A) =

= (A′ ⊗A′)(Ao ⊗Ao)

(
n∑

i=1

xiJi ⊗ Ji +Kz

)
(A′

o ⊗A′
o)(A⊗A) =

= Kz + (A′ ⊗A′)(Ao ⊗Ao)

(
n∑

i=1

xiJi ⊗ Ji

)
(A′

o ⊗A′
o)(A⊗A)︸ ︷︷ ︸

K⋆
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In this case as well, with no departure from the normality (i.e. xi = 0 for all i) the rotation

matrix cannot be identified. Since we focus on the kurtosis of the shock ordered last, we are

interested in the (n2, n2)−element of the matrix E(ν̆tν̆
′
t ⊗ ν̆ ′t ⊗ ν̆t) we can disregard the first

matrix Kz and only consider the (n2, n2)− element of the matrix K⋆.

K⋆ = (A′ ⊗A′)(Ao ⊗Ao)

(
n∑

i=1

xiJi ⊗ Ji

)
(A′

o ⊗A′
o)(A⊗A) =

= (A′Ao ⊗A′Ao)

(
n∑

i=1

xiJi ⊗ Ji

)
(A′

oA⊗A′
oA) =

=
n∑

i=1

xi(A
′AoJiA

′
oA)⊗ (A′AoJiA

′
oA) =

=

n∑
i=1

xi(A
′αiα

′
iA)⊗ (A′αiα

′
iA).

The (n2, n2)−element of K⋆ is the sum of the square of the (n, n)−elements of the matrices

A′αiα
′
iA times xi for i = 1, . . . , n, which is given by

K⋆
(n2,n2) = x1(a

′
nα1)

2(α′
1an)

2 + · · ·+ xm(a′
nαn)

2(α′
nan)

2 =

= x1(a
′
nα1α

′
1an)

2 + · · ·+ xm(a′
nαnα

′
nan)

2.

Hence we have that K⋆
(n2,n2) +Kz

(n2,n2) = xn + 3 = ξn, if an = αn (since α′
jan = 0 if j ̸= n and

α′
nan = 1 ).

A.2.4 Eigenvector decomposition of fourth moments

The eigenvector decomposition of fourth moments is based on Kollo (2008) and it requires more

notation. The approach computes first the sum of the n2 blocks of (n × n) sub-matrices of

the fourth moment matrix and then take the eigenvalue/vector decomposition of the resulting

matrix. The eigenvectors associated to non-zero eigenvalues coincide with the columns of the

original rotation matrix up to a sign switch and permutation of columns.

Definition Let A be an m× n matrix and B an mr× ns partitioned matrix consisting of r× s

blocks Bi,j , i = 1, ...,m and j = 1, ..., n. The star product A ⋆ B of A and B is an r × s matrix

such that

A ⋆ B =
m∑
i=1

n∑
j=1

ai,jBi,j .

Define with In the n× n matrix of ones. Notice that

In ⋆ E(ιtι
′
t ⊗ ι′t ⊗ ιt) = Im ⋆ (Ao ⊗Ao)(K −Kz)(Ao ⊗Ao)

′ =

=

n∑
i,j=1

(Ao ⊗ αi)(K −Kz)(αj ⊗Ao)
′.
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We use of the Lemma 1 in Kollo (2008), which we report here

Lemma Let M , N , U and V be n× n matrices and a, b be n× 1-vectors. Then

(M ⊗ a′)diag(Kn,n)(U ⊗ V )diag(Kn,n)(b⊗N) = Mdiag(a)(U ◦ V )diag(b)N,

where ◦ denotes the elementwise (Hadamard) product of matrices and diag is the diagonal

matrix constructed on the vector.

Let Λξ be the diagonal matrix collecting the excess fourth moments of the structural shocks,

i.e. E(ν4i,t)− 3; we have that

K −Kz = diag(Kn,n)(Λξ ⊗ In)diag(Kn,n).

We then have

Im ⋆ Ξ4 =

m∑
i,j=1

(Ao ⊗ αi)(K −Kz)(αj ⊗Ao)
′ =

=

m∑
i,j=1

(Ao ⊗ αi)diag(Kn,n)(Λξ ⊗ In)diag(Kn,n)(αj ⊗Ao)
′ =

=
m∑

i,j=1

Ao(Λξ ◦ In)diag(αi)diag(αj)A
′
o =

= Ao

 m∑
i,j=1

(Λξ ◦ In)diag(αi)diag(αj)

A′
o,

where the matrix in square brackets is diagonal. Therefore we can compute the eigenvalue/vetor

decomposition of the n× n matrix Im ⋆ E(ιtι
′
t ⊗ ι′t ⊗ ιt) and retrieve the impact matrix.

A.3 Examples

A.3.1 Bivariate case - third moments

To derive the identified set we use the following trigonometric identities:

a cosx+ b sinx = sgn(a)
√
a2 + b2 cos

(
x+ arctan

(
− b

a

))
;

x = arctan(tan(x)); tanx =
sinx

cosx
; tan(−x) = − tanx.

The higher-moment restrictions is then

(cos θ cos θo + sin θ sin θo)
3 >0

(sgn(cos θo) cos (θ − θo))
3 >0
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A.4 Robust estimates of kurtosis and skewness

Estimates of kurtosis and skewness based on fourth and third sample moments can be very

sensitive to outliers with short samples, see Kim and White (2004). When shocks are distributed

with t-student with low degrees of freedom, not even a million draws are enough to have median

unbiased estimates of kurtosis, see Ferroni and Tracy (2022). A number of robust measures

have been proposed in the literature and they all perform well for the sample size typically

considered in macroeconomics. These robust estimators are constructed using ratios of distance

between different percentiles of the empirical distribution. Loosely speaking, robust measures of

kurtosis consider the ratio between the distance of the percentiles in the tails and the distance

between the percentiles close to the median. The larger the numerator, the thicker the tails; the

smaller the denominator the more clustered is the distribution around the median. Hence, with

distributions centered around zero, realizations are often very small but sometime quite big.

Robust measures of skewness exploit the distance between median and mean. More formally,

let x be a random variable with cumulative density function F , the robust measures of kurtosis

considered are:

• Moors (1988) kurtosis:

Km(x) =
(p7 − p5) + (p3 − p1)

p2 − p4
,

where pj represents the octile of the empirical distribution of x, i.e. pj = F−1(j/8) with

j = 1, ..., 7. If x follows a Gaussian distribution, then Km(x) equals 1.23. Therefore the

excess kurtosis is given by EKm(x) = Km(x)− 1.23.

• Hogg (1972) kurtosis:

Kh(x) =
u0.05 − l0.05
u0.5 − l0.5

,

where uα(lα) is the average of the upper (lower) α percentile of the distribution of x. If x

follows a Gaussian distribution, then Kh(x) equals 2.59. Therefore the excess kurtosis is

given by EKh(x) = Kh(x)− 2.59.

• Crow and Siddiqui (1967) kurtosis:

Kcs(x) =
F−1(0.975)− F−1(0.025)

F−1(0.75)− F−1(0.25)
,

where F−1(α) is the α percentile of the distribution of x. If x follows a Gaussian dis-

tribution, then Kcs(x) equals 2.91. Therefore the excess kurtosis is given by EK(x)cs =

Kcs(x)− 2.91.

Robust measures of skewness considered are:

• Bowley (1926) skewness:

Sb(x) =
p3 + p1 − 2× p2

p3 − p1
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where pj represents the quartiles of the empirical distribution of the candidate shock, i.e.

pj = F−1(j/4) with j = 1, 2, 3.

• Groeneveld and Meeden (1984) skewness:

Sgm(x) =
mean−median

E|x−median|

where E|x−median| represents the average of the absolute deviation from the median.

• Kendall and Stewart (1977) skewness:

Sks(x) =
mean−median

σ

where σ is the standard deviation of the empirical distribution of the candidate shock.

Clearly, all these robust measures of skewness are zero with the normal distribution.

A.5 Estimation and Identification

In this section we briefly describe the estimation and identification strategy that we use to

estimate a VAR with non-Gaussian errors and to construct IRF using higher-order moment

restrictions. Let a V AR(p) be:

yt = Φ1yt−1 + ...+Φpyt−p +Φ0 + ut,

where yt is n × 1 vector of endogenous variables, Φ0 is a vector of constant and Φj are n × n

matrices. We assume y0, . . . , y−p+1 are fixed. We assume that ut are i.i.d. zero mean random

vectors with unconditional covariance matrix Σ. We assume that the VAR reduced form shocks

are linear combination of the unobserved structural shocks, νt, i.e.

ut = Σ1/2ιt = Σ1/2 Ω νt,

where Σ1/2 is the Cholesky factorization of Σ and Ω is an orthonormal matrix, i.e. ΩΩ′ =

Ω′Ω = I. The structural shocks, νt, are zero-mean orthogonal shocks with unitary variance, i.e.

νt ∼ (0, I).

Standard inference on VAR parameters typically postulates a multivariate normal distribu-

tion for the reduced form innovations. Such an assumption cannot be considered in our context.

We propose to adopt a robust Bayesian approach which allows to construct posterior credible

sets without the need for distributional assumptions of the reduced form residuals. The Bayesian

approach we use builds on the work by Petrova (2022), where she propose a robust and compu-

tationally fast Bayesian procedure to estimate the reduced form parameters of the VAR in the

presence of non-Gaussianity. While Bayesian inference about the autoregressive coefficients is
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asymptotically unaffected by the distribution of the error terms, inference on the intercept and

the covariance matrix are invalid in the presence of skewness and kurtosis.

The robust approach relies on the asymptotic normality of the Quasi Maximum Likelihood

(QML) estimator15 of reduced form parameters, autoregressive coefficients and covariances;

Petrova (2022) derives the closed form expression for the asymptotic covariance matrix of the

QML estimator allowing for fast simulation from its asymptotic distribution. In the case of sym-

metric distribution (no skewness), she shows that asymptotic valid inference for Σ can be per-

formed by drawing from the asymptotic normal distribution centered in the consistent estimator

of Σ, i.e. the QML estimator Σ̂, and with covariance matrix equal to 1
T

(
K̂ − vech(Σ̂)vech(Σ̂)′

)
,

where K̂ is a consistent estimator of the fourth moment of the VAR reduced form shocks. Im-

portantly, as previously mentioned, sample counterparts of the fourth moments can be poorly

estimated and be sensitive to outliers. We then follow Petrova (2022) and consider a shrinkage

approach which consists in tilting the sample fourth moments estimates of the reduced form

orthogonalized errors towards the normal distributed counterparts. In particular, the shrinkage

estimator for the kurtosis is defined as

K̂⋆ =
T

T + τ
K̂T +

τ

T + τ
D+

n (In +Kn,n + vec(In)vec(In)
′)D+′

n , (2)

where K̂T represents the sample fourth moments of the orthogonalized reduced form residuals,

i.e. K̂T = 1/T
∑

vech(ιtι
′
t)⊗vech(ιtι

′
t) with ιt = Σ̂−1/2ut; Kn,n is a commutation matrix, which

is a (n2×n2) matrix consisting of n×n blocks where the (j, i)−element of the (i, j) block equals

one, elsewhere there are all zeros; and D+
n is the generalized inverse of the duplication matrix

Dn.
16 The first bit of the equation (2) represents the sample fourth moments and the second

bit the fourth moments implied by a standard normal distribution; τ is the amount of shrinkage

that we assign to the normal implied moments; the larger this value the more weight we give to

the normality assumption.

It is important to highlight at this point that the sample fourth moments are used only to

construct the asymptotic covariance matrix of the reduced form VAR errors volatility matrix

which measures the asymptotic uncertainty around the consistent estimator of Σ. Fourth sample

moments are not used for the shock’s identification.

The posterior distribution of the autoregressive parameters conditional on Σ is standard and

any prior can be used for the purpose. When there important departures from symmetry, the

posterior distributions for the intercept term and the covariance matrix are not independent even

for large samples, so robust Bayesian inference requires consistently estimating third moments.

As for the fourth moments, we consider the consistent shrinkage estimator given by Ŝ⋆
T = T

T+τ ŜT

15The QML is the maximum estimator of the quasi-likelihood. The quasi-likelihood in this context coincides with
the likelihood of the VAR when incorrectly assuming normality of the reduced form residuals.

16For more details on the notation for the multivariate kurtosis see Kollo (2008).
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where ŜT = (1/T
∑

vech(utu
′
t)⊗ ut).

For inferential purposes it is useful to rewrite the VAR in a seemingly unrelated regression

(SUR) format. Let k = np+ 1, we have

Y︸︷︷︸
T×n

= X︸︷︷︸
T×k

Φ︸︷︷︸
k×n

+ E︸︷︷︸
T×n

,

with

Y =


y′1
y′2
...
y′T

 =


y1,1 y1,2 ... y1,n
y2,1 y2,2 ... y2,n
...

yT,1 yT,2 ... yT,n

 , X =


x′
0 1

x′
1 1
...

x′
T−1 1

 , xt
(np×1)

=


yt
yt−1
...

yt−p+1

 ,

Φ =


Φ′
1
...
Φ′
p

Φ′
0

 , E =

 u′1
...
u′T

 .

Assuming a flat prior17, the estimation identification procedure can be then summarized as

follows. Let Ŝ = (Y −XΦ̂)′(Y −XΦ̂) and Φ̂ = (X ′X)−1X ′Y , the steps of the Gibbs sampler

are for j = 1, ...., J

1. Draw Σ(j) from

N
(
vech(Ŝ), Ĉ

)
,

where Ĉ = 1
T D

+
n

(
Ŝ1/2 ⊗ Ŝ1/2

)
Dn

(
K̂⋆ − vech(In)vech(In)

′
)
D′

n

(
Ŝ1/2 ⊗ Ŝ1/2

)′
D+′

n cap-

tures the fourth moments.

2. Conditional on Σ(j), draw Φ(j) from

N
(
Φ̂,Σ(j) ⊗ (X ′X)−1

)
,

i. In case of an asymmetric distribution, the intercept, Φ0, is drawn from

N(Φ̂0 + Ŝ⋆Ĉ−1vech(Σ(j) − Ŝ),Σ(j) − 1/T Ŝ⋆
T Ĉ−1Ŝ⋆′

T ).

3. Draw Ω̆ from a uniform distribution with the Rubio-Ramı́rez et al. (2010) algorithm and

I. compute the impulse response function and check if the sign restrictions are verified,

II. compute the implied structural shocks

ν̆
(j)
t = Ω̆′

(
Σ(j)

)−1/2
(yt − Φ

(j)
1 yt−1 − ...− Φ(j)

p yt−p − Φ
(j)
0 ),

and check if the higher moment inequality restrictions are satisfied.

17Se the appendix for extending the Gibb sampler to informative priors.
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If both [I] and [II] are satisfied, keep the draw Ω(j) = Ω̆. Else repeat [I] and [II].

After a suitable number of iterations, the draws are representative of the posterior distribution

of interest. The estimation of the reduced form parameters and the computation of the impulse

responses and of the higher order moments is performed using the toolbox described in Ferroni

and Canova (2021).18

A.5.1 Informative priors

Assume a multivariate normal MN prior for the autoregressive parameters

Φ ∼ N(Φ0,Σ⊗ V ) =(2π)−nk/2|Σ|−k/2|V |−n/2 exp

{
−1

2
tr
[
Σ−1(Φ− Φ0)

′V −1(Φ− Φ0)
]}

.

Modify the second step of the Gibbs sample with the following

Φ|Σ, Y,X, ∼ N(Φ,Σ⊗ (X ′X + V −1)−1),

Φ = (X ′X + V −1)−1(X ′Y + V −1Φ0).

18Codes for replication can be found on the Github page.
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