## **Testing Coefficient Variability in Spatial Regressions**

Ulrich Müller and Mark Watson

**Princeton University** 

July 9, 2024: NBER-SI

## A Motivating Example: Health insurance and employment across 21k zip codes

#### Data by zip code: Levels



• Units: Variables are measured in percentiles across the 21k zip codes.

## A Motivating Example (continued)



#### Scatter Plots and OLS estimates: Levels

## A Motivating Example (continued)





## A Motivating Example (continued)



| <b>^</b>                  | ~                     | ~                            |
|---------------------------|-----------------------|------------------------------|
| 0 $0$ $0$ $0$ $0$ $0$ $0$ |                       |                              |
| $R \equiv -0.75.00075$    | $R \equiv -0.4440043$ | $R \equiv -11 + 8 + 11 + 17$ |
| D = -0.23(0.02)           | D = -0.44(0.03)       | D = -0.10(0.07)              |
|                           | F                     | F ( /                        |
|                           |                       |                              |

#### **Spatial Variation in the Regression Coefficient?**



 $\hat{\beta} = -0.25 \ (0.02)$   $\hat{\beta} = -0.44 \ (0.03)$   $\hat{\beta} = -0.18 \ (0.07)$ 

Familiar Issues: (a) Why California and Wisconsin? (b) Other states? (c) How does the coefficient change (if at all) across the U.S.?

## **Time Series Regression Precendents?**

- Discrete Breaks: Chow (1960), Quandt (1960), Andrews (1993), ...
- Martingale Variation: Nyblom (1989), ...
- Inference refinements: Serial Correlation (Newey-West (1987), 2nd-moment heterogeneity (Hansen (2000)), ...
- Lots on estimation and modelling ...

## **Spatial Regressions:**

- Chow tests (with spatially correlated errors): Anselin (1990), ...
- Local Spatial Regressions: Fotheringham et al (2002, 2024), ... (inference assume *iid* observations)

## This Paper:

- Nyblom-like test spatial variation in coefficients (best local Lévy-Brownian motion variation)
  - Size under general distributional assumptions and spatial correlation (like Andrews (1993))
  - Accomodates spatially varying second moments (like Hansen (2000))

# **Outline:**

- 1. Canonical Gaussian model  $\Rightarrow$  test statistic
- 2. Validity of test under more general assumptions: distribution, spatial correlation, 2nd moments, etc.
- 3. Power under different local alternatives
- 4. Details: Computing the test statistic. Computing other statistics measuring spatial variation.
- 5. Simulation experiments (Empirical calibration)
- 6. Instability over the U.S. in 1514 regressions involving 62 socio-economic variables.

#### **Canonical Gaussian Model:**

$$y_l = x_l \beta_l + \dots (z'_l \alpha) \dots + u_l, \ l = 1, \dots, n,$$

$$= x_l \beta + e_l$$
 with  $e_l = u_l + x_l (\beta_l - \beta)$ 

- $y_l, x_l, u_l$  are scalars
- $(y_l, x_l)$  are associated with known spatial locations  $s_l \in \mathcal{S} \subset \mathbb{R}^d$ , for  $d \ge 1$
- $u_l \sim iid\mathcal{N}(0, 1)$  and  $\{x_l\}$  is nonstochastic.
- Null and alternative:

 $H_0: \beta_l = \beta$  against  $H_a: \beta_l \neq \beta_\ell$  for some  $1 \leq l, \ell \leq n$ .

• Invariance:  $y \to y + xb$ . (Test will be based on the OLS residuals  $\hat{e}_l$ .)

#### **Best Local Test:**

Best test against alternative  $\{\beta_l\}_{l=1}^n = \{\beta_l^1\}_{l=1}^n$  rejects the null hypothesis for large values of

$$\sum_{l=1}^n \beta_l^1 x_l \hat{e}_l$$

- But ... what value of  $\{\beta_l\}_{l=1}^n = \{\beta_l^1\}_{l=1}^n$  should one use?
  - Standard Suggestion: Consider many possible values of  $\{\beta_l\}_{l=1}^n$  and evaluate tests based on weighted average power
    - \* Same as using alternative with a stochastic model for  $\{\beta_l\}_{l=1}^n$  using the weight function as pdf.
- We use:

$$H_a^*: \beta_l - \beta = \kappa L(s_l), \ l = 1, \dots, n$$

where L(s) is Lévy-Brownian motion (LBM) and  $\kappa$  is a scale.

- Lévy-Brownian motion: Spatial generalization of Brownian motion.
  - \* Gaussian process with  $\mathbb{E}[L(s)L(r)] = \frac{1}{2}(||r|| + ||s|| ||s r||)$ , etc.
- Best local test is Score/LM test for  $\kappa = 0$  versus  $\kappa > 0$ .

## Best Local Test (continued)

**Best local test:** Reject for large values of quadratic form of  $\{x_l \hat{e}_l\}$  around LBM covariance matrix:

$$\xi^* = n^{-1} \hat{e}' D_x \bar{\Sigma}_L D_x \hat{e}$$

where  $\overline{\Sigma}_L$  is the covariance matrix of (demeaned) L at the sample locations  $(s_1, ..., s_n)$  and  $D_x = \text{diag}(x_l)$ 

#### Best Local Test (continued)

- A useful re-writing of  $\xi^*$ 
  - Write the spectral decomposition of  $\overline{\Sigma}_L = R\Lambda R'$  where columns of R are eigenvectors and  $\Lambda$  is diagonal with eigenvalues (ordered from largest to smallest) on diagonal.
  - Then

$$\begin{aligned} \xi^* &= n^{-1} \hat{e}' D_x \bar{\Sigma}_L D_x \hat{e} \\ &= \sum_{j=1}^n \lambda_j \left( n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l \right)^2 \\ &= \sum_{j=1}^n \lambda_j Y_j^2 \text{ with } Y_j = n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l \end{aligned}$$

• A cheat (facilitates large-sample analysis in more general model)

$$\xi^* = \sum_{j=1}^n \lambda_j Y_j^2 \approx \sum_{j=1}^q \lambda_j Y_j^2 = \xi$$

#### Moving beyond the canonical model:

• Model:

$$y_l = x_l \beta_l + u_l, \ l = 1, \dots, n$$

• Test statistic:

$$\xi_{n} = \sum_{j=1}^{q} \lambda_{j,n} Y_{j,n}^{2} \text{ with } Y_{j,n} = n^{-1/2} \sum_{l=1}^{n} r_{j,l,n} x_{l} \hat{e}_{l} = n^{-1/2} \sum_{l=1}^{n} \widetilde{r}_{j,l,n} x_{l} e_{l}$$

- Large-*n* assumptions:
  - Locations:  $(\lambda_{j,n}, r_{j,l,n}) \dots \{s_l\}$  are non-stochastic with empirical CDF  $G_n \to G$  with density  $g \dots$  then  $(\lambda_{j,n}, r_{j,l,n})$  converges to eigenvalues and eigenfunctions of covariance kernel of demeaned L.
  - CLT and LLN allowing for spatial correlation and spatially varying 2nd moments: \* CLT for  $a_n^{-1/2} n^{-1/2} \sum_l h(s_l) x_l u_l$ \* LLN for  $n^{-1} \sum_l h(s_l) x_l^2$
  - Local alternatives:  $\beta_l \beta = \kappa_n b(s_l), \kappa_n = a_n^{1/2} n^{-1/2}$  where b is a continuous function (could be L(s)).

#### Large-*n* results:

• From above

$$Y_{j,n} = n^{-1/2} \sum_{l=1}^{n} r_{j,l,n} x_l \hat{e}_l$$
  
=  $n^{-1/2} \sum_{l=1}^{n} \widetilde{r}_{j,l,n} x_l e_l$  (but remember that  $e_l = u_l + x_l (\beta_l - \beta)$ )  
=  $n^{-1/2} \sum_{l=1}^{n} \widetilde{r}_{j,l,n} x_l u_l + n^{-1/2} \sum_{l=1}^{n} \widetilde{r}_{j,l,n} x_l^2 (\beta_l - \beta)$ 

• So (with assumptions)

$$Y_n \Rightarrow Y \sim N(0, V_0 + V_1)$$

- (Deterministic b(s) replaces  $V_1$  with non-zero mean.)
- Estimators

$$\hat{V}_{0,i,j} = n^{-1} \sum_{l,\ell} (\tilde{r}_{j,l,n} x_l \hat{e}_l) k_c(s_l, s_\ell) (\tilde{r}_{i,\ell,n} x_\ell \hat{e}_\ell)$$

with  $k_{c}(s, r) = \exp(-c||s - r||)$ . (*c* is bandwidth parameter.)

- Consistency as  $c \to 0$
- $\hat{V}_1$ : see paper

# That summarizes much of the theory. Now on to a dataset:

- 62 Socioeconomic variables (population, educational attainment, income, employment, race, citizenship, health, marital status, mobility, ... ) from ACS. 5-year averages from 2018-2022.
- GLS transform applied to all of the variables
- n = 21, 194 zip codes in 48-states + DC.



• 1,514 Bivariate regressions using the 62 variables.

## Simulation Results: (see paper)

- Use data to calibrate a variety of DGPs (under null and alternative, including discrete breaks)
- Issue: effect of bandwidth choice for covariance matrix estimate on size and power.

## Empirical Results (1514 bivariate regressions)

- Units: Measured in percentiles across the 21k zip codes.
- Results Summary:

|                                               | Quantile (across 1,514 regressions) |      |      |       |       |  |  |
|-----------------------------------------------|-------------------------------------|------|------|-------|-------|--|--|
|                                               | 0.05                                | 0.25 | 0.50 | 0.75  | 0.95  |  |  |
|                                               | (a) OLS estimates                   |      |      |       |       |  |  |
| $ t_{\hat{eta}} $                             | 0.63                                | 3.75 | 8.28 | 14.60 | 29.36 |  |  |
| $ \hat{eta} $                                 | 0.01                                | 0.05 | 0.11 | 0.22  | 0.45  |  |  |
|                                               | (b) Spatial variation in $\beta$    |      |      |       |       |  |  |
| $\xi_{15}$ p-value                            | 0.00                                | 0.02 | 0.07 | 0.20  | 0.52  |  |  |
| $\sigma_{\Delta^{1000km}}(\hat{\kappa}^{MU})$ | 0.00                                | 0.03 | 0.05 | 0.09  | 0.18  |  |  |

## A Motivating Example (again)

Data by zip code: GLS transformed



Scatter plots and OLS estimates: GLS transformed data



## A Motivating Example (again)

Estimates of  $\beta$  in the HIC-PCE regression



(a) Local regression (500 nearest neighbors) (b) Lévy Brownian motion spatial variation



## **Concluding Slide**