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A Motivating Example: Health insurance and
employment across 21k zip codes

• Units: Variables are measured in percentiles across the 21k zip codes.
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A Motivating Example (continued)
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A Motivating Example (continued)
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A Motivating Example (continued)

4



Spatial Variation in the Regression Coefficient?

Familiar Issues: (a) Why California and Wisconsin? (b) Other states? (c) How does the coefficient

change (if at all) across the U.S.?
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Time Series Regression Precendents?

• Discrete Breaks: Chow (1960), Quandt (1960), Andrews (1993), ...

• Martingale Variation: Nyblom (1989), ...

• Inference refinements: Serial Correlation (Newey-West (1987), 2nd-moment heterogeneity

(Hansen (2000)), ...

• Lots on estimation and modelling ...

Spatial Regressions:

• Chow tests (with spatially correlated errors): Anselin (1990), ...

• Local Spatial Regressions: Fotheringham et al (2002, 2024), ... (inference assume iid observa-

tions)
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This Paper:

• Nyblom-like test spatial variation in coefficients (best local Lévy-Brownian motion variation)

– Size under general distributional assumptions and spatial correlation (like Andrews (1993))

– Accomodates spatially varying second moments (like Hansen (2000))

Outline:

1. Canonical Gaussian model ⇒ test statistic

2. Validity of test under more general assumptions: distribution, spatial correlation, 2nd moments,

etc.

3. Power under different local alternatives

4. Details: Computing the test statistic. Computing other statistics measuring spatial variation.

5. Simulation experiments (Empirical calibration)

6. Instabillity over the U.S. in 1514 regressions involving 62 socio-economic variables.
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Canonical Gaussian Model:

yl = xlβl + ... (z′lα) ... + ul, l = 1, . . . , n,

= xlβ + el with el = ul + xl(βl − β)

• yl, xl, ul are scalars

• (yl, xl) are associated with known spatial locations sl ∈ S ⊂ Rd, for d ≥ 1

• ul ∼ iidN (0, 1) and {xl} is nonstochastic.

• Null and alternative:

H0 : βl = β against Ha : βl ̸= βℓ for some 1 ≤ l, ℓ ≤ n.

• Invariance: y → y + xb. (Test will be based on the OLS residuals êl.)
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Best Local Test:

Best test against alternative {βl}nl=1 = {β1
l }nl=1 rejects the null hypothesis for large values of

n∑
l=1

β1
l xlêl

• But ... what value of {βl}nl=1 = {β1
l }nl=1 should one use?

– Standard Suggestion: Consider many possible values of {βl}nl=1 and evaluate tests based

on weighted average power

∗ Same as using alternative with a stochastic model for {βl}nl=1 using the weight function

as pdf.

• We use:

H∗
a : βl − β = κL(sl), l = 1, . . . , n

where L(s) is Lévy-Brownian motion (LBM) and κ is a scale.

– Lévy-Brownian motion: Spatial generalization of Brownian motion.

∗ Gaussian process with E[L(s)L(r)] = 1
2(||r|| + ||s|| − ||s− r||), etc.

• Best local test is Score/LM test for κ = 0 versus κ > 0.
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Best Local Test (continued)

Best local test: Reject for large values of quadratic form of {xlêl} around LBM covariance matrix:

ξ∗ = n−1ê′DxΣ̄LDxê

where Σ̄L is the covariance matrix of (demeaned) L at the sample locations (s1, ..., sn) and Dx =

diag(xl)
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Best Local Test (continued)

• A useful re-writing of ξ∗

– Write the spectral decomposition of Σ̄L = RΛR′ where columns of R are eigenvectors

and Λ is diagonal with eigenvalues (ordered from largest to smallest) on diagonal.

– Then

ξ∗ = n−1ê′DxΣ̄LDxê

=

n∑
j=1

λj

(
n−1/2

n∑
l=1

rj,lxlêl

)2

=

n∑
j=1

λjY
2
j with Yj = n−1/2

n∑
l=1

rj,lxlêl

• A cheat (facilitates large-sample analysis in more general model)

ξ∗ =
n∑

j=1

λjY
2
j ≈

q∑
j=1

λjY
2
j = ξ
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Moving beyond the canonical model:

• Model:

yl = xlβl + ul, l = 1, . . . , n

• Test statistic:

ξn =

q∑
j=1

λj,nY
2
j,n with Yj,n = n−1/2

n∑
l=1

rj,l,nxlêl = n−1/2
n∑
l=1

r̃j,l,nxlel

• Large-n assumptions:

– Locations: (λj,n, rj,l,n) ... {sl} are non-stochastic with empirical CDF Gn → G with

density g ... then (λj,n, rj,l,n) converges to eigenvalues and eigenfunctions of covariance

kernel of demeaned L.

– CLT and LLN allowing for spatial correlation and spatially varying 2nd moments:

∗ CLT for a
−1/2
n n−1/2

∑
l h(sl)xlul

∗ LLN for n−1
∑

l h(sl)x
2
l

– Local alternatives: βl − β = κnb(sl), κn = a
1/2
n n−1/2 where b is a continuous function

(could be L(s)).
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Large-n results:

• From above

Yj,n = n−1/2
n∑
l=1

rj,l,nxlêl

= n−1/2
n∑
l=1

r̃j,l,nxlel (but remember that el = ul + xl(βl − β))

= n−1/2
n∑
l=1

r̃j,l,nxlul + n−1/2
n∑
l=1

r̃j,l,nx
2
l (βl − β)

• So (with assumptions)

Yn ⇒ Y ∼ N(0, V0 + V1)

– (Deterministic b(s) replaces V1 with non-zero mean.)

• Estimators

V̂0,i,j = n−1
∑
l,ℓ

(r̃j,l,nxlêl)kc(sl, sℓ)(r̃i,ℓ,nxℓêℓ)

with kc(s, r) = exp(−c||s− r||). (c is bandwidth parameter.)

– Consistency as c → 0

• V̂1: see paper
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That summarizes much of the theory. Now on to a
dataset:

• 62 Socioeconomic variables (population, educational attainment, income, employment, race,

citizenship, health, marital status, mobility, ... ) from ACS. 5-year averages from 2018-2022.

• GLS transform applied to all of the variables

• n = 21, 194 zip codes in 48-states + DC.

• 1,514 Bivariate regressions using the 62 variables.
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Simulation Results: (see paper)

• Use data to calibrate a variety of DGPs (under null and alternative, including discrete breaks)

• Issue: effect of bandwidth choice for covariance matrix estimate on size and power.

Empirical Results (1514 bivariate regressions)

• Units: Measured in percentiles across the 21k zip codes.

• Results Summary:

Quantile (across 1,514 regressions)

0.05 0.25 0.50 0.75 0.95

(a) OLS estimates

|tβ̂| 0.63 3.75 8.28 14.60 29.36

|β̂| 0.01 0.05 0.11 0.22 0.45

(b) Spatial variation in β

ξ15 p-value 0.00 0.02 0.07 0.20 0.52

σ∆1000km (κ̂MU) 0.00 0.03 0.05 0.09 0.18

15



A Motivating Example (again)
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A Motivating Example (again)

Estimates of β in the HIC-PCE regression
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Concluding Slide
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