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Abstract

This paper develops a test for coefficient stability in spatial regressions. The test

is designed to have good power for a wide range of persistent patterns of coefficient

variation, be applicable in a wide range of spatial designs, and to accommodate both

spatial correlation and spatial heteroskedasticity in regressors and regression errors.

The test approximates the best local invariant test for coefficient stability in a Gaussian

regression model with Lévy-Brown motion coefficient variation under the alternative,

and is thus a spatial generalization of the Nyblom (1989) test of coefficient stability in

time series regressions. An application to 1514 zip-code level bivariate regressions of

U.S. socioeconomic variables reveals widespread coefficient instability.
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1 Introduction

This paper develops a test for coefficient stability in spatial regressions. The test is designed

to have good power for a wide range of persistent patterns of coefficient variation, be appli-

cable in a wide range of spatial designs, and allow for both spatial correlation and spatial

heteroskedasticity in regressors and regression errors.

A specific empirical question helps motivate our analysis. Health insurance is not universal

in the United States and is often provided by an employer. Are employees at private companies

more or less likely to have health insurance than employees at other establishments (public,

non-profit, self-employment, etc.)? And, if so, how large is the effect? Panel (a) of Figure 1

shows data on health insurance coverage (HIC) and private company employment (PCE) in

roughly twenty thousand geographical regions (“zip codes”) across the continental U.S. The

data are discussed in detail in Section 4; for now we note that the data are ranks measured

in percentiles, so for example, a value of 0.75 indicates that the zip code ranks in the 75th

percentile for that variable. Consider the regression of HIC on PCE. Estimation of the slope

coefficient β is complicated by the high degree of spatial correlation in the two variables.

Time series regressions with highly serially correlated data can produce spurious regressions

(Granger and Newbold (1974)) which yield unstable estimates, and spatial regressions with

highly spatially correlated data suffer the same defect (Müller and Watson (2023)). Thus,

before estimating β the data are spatially differenced using the GLS transformation advocated

by Müller and Watson (2023), as shown in panel (b). Panel (c) shows a scatterplot of the

transformed data with the resulting value of β̂ = −0.25, suggesting that PCE is associated

with a reasonably large drop in health insurance coverage. Panel (c) also shows scatterplots

using data only for California and Wisconsin. The estimated value of β in California is more

than twice as large as in Wisconsin, and a Chow test of the null hypothesis of equal coefficients

rejects with a t-statistic of 3.3. Should a researcher conclude that the HIC-PCE regression is

unstable across the U.S.?

A moment’s thought prompts caution reaching this conclusion. First, why consider only

California and Wisconsin? Were these states chosen after “snooping” at the values of the

OLS coefficients? If so, then the Chow test’s critical value needs to be adjusted using a

spatial analogue of the method developed by Andrews (1993) for time series regressions. More

generally, how can one test for the wide variety of ways that regression coefficient might vary
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Figure 1: Health Insurance Coverage and Employment by Private Companies

Notes: Panel (a) plots the health insurance coverage rate and the fraction of workers employed at private

companies across 21,194 zip codes in the continental United States. Panel (b) shows the same data after

applying a GLS transformation for Lévy Brownian motion spatial correlation. Panel (c) shows scatterplots

using the GLS-transformed data from panel (b).
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across space? In the HIC-PCE example, β might change discretely across state boundaries,

or change more continuously with the type of employers in a region, or some combination of

both. A useful test should have power against many different forms of spatial variation. A

second concern is that socioeconomic data are not i.i.d. over space but typically exhibit spatial

correlations and also spatial heteroskedasticity, such as a higher variance in some regions than

others. Such variation might be mistaken for a spatially varying coefficient.

Coefficient stability tests that meet these challenges have been developed for time series

applications, including the widely-used tests developed in Nyblom (1989) and Andrews (1993).

While these tests were designed with particular types of time variation in mind (martingale

variation in Nyblom (1989) and a single discrete break in Andrews (1993)) they are known

to have good power for more general (persistent) patterns of coefficient variation (e.g., Elliott

and Müller (2006)). And if one computes the critical value using Hansen’s (2000) bootstrap

scheme, then these tests are also robust against time-varying second moments, albeit at the

cost of assuming serially uncorrelated regression errors.

The literature on testing for stability in spatial regressions is less well developed. Anselin

(1990) derives a Chow test for spatial instability across two known regions, allowing for spa-

tially correlated residuals. We are not aware of generalizations to testing for instability across

two unknown regions. And, while there is an applied literature estimating “local” spatial

regressions (see, for example, Fotheringham, Brunsdon, and Charlton (2002) and Fother-

ingham, Oshan, and Li (2024)), the stability tests using these methods that we are aware

of are predicated on restrictive assumptions such as i.i.d. observations (e.g., the bootstrap

methods discussed in Mei, Xu, and Wang (2016) or Fotheringham, Oshan, and Li (2024)).

This paper’s contribution is a spatial stability test that is locally best against martingale-like

random coefficient variation in a canonical spatial regression model (in analogy to Nyblom

(1989)), controls size under general distributional assumptions and spatial autocorrelation

(in analogy to Andrews (1993)), and accommodates spatially varying second moments (in

analogy to Hansen (2000)). The combination of robustness to correlated regression errors

and second-moment instabilities is new also relative to the time series literature.

The paper is organized as follows. Section 2 lays out a canonical spatial regression model

involving a dependent variable, y, a regressor of interest, x, with coefficient β and a vector

of controls, z. In this model, the regressors are taken as fixed and the regression error is

i.i.d. standard normal, making it straightforward to develop a test for spatial stability of β
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with desirable optimality properties. Section 3 studies the large-sample properties of a version

of this test under more realistic assumptions. Section 4 introduces a large spatial socioeco-

nomic data set for the United States that is used to calibrate a set of simulation experiments

to evaluate properties of the proposed test in realistic empirical settings. The section con-

cludes by applying the proposed test to examine stability in over 1500 regressions involving

variables from the dataset. It finds widespread spatial instability. The final section offers

some concluding remarks. An online appendix includes a “user’s guide” that summarizes the

necessary calculations for computing the test statistic, its p-value and other statistics measur-

ing the variability in the coefficients. The appendix also presents the required modifications

of the various formulae for applications using instrumental variables.

2 A Canonical Spatial Regression Model with Varying

Coefficients

We begin by studying a canonical spatial regression model with varying coefficients. The

simple structure of the canonical model makes it easy to highlight several key features of

the testing problem, and an optimal test in the canonical model follows from straightforward

calculations.

Thus, consider a regression of yl on a scalar regressor of interest xl and p− 1 controls zl,

yl = xlβl + z′lα + ul, l = 1, . . . , n, (1)

where the observations (yl, xl, zl) are associated with known spatial locations sl ∈ S ⊂ Rd,

for d ≥ 1. We are interested in testing the null hypothesis that βl is constant across space,

that is

H0 : βl = β against Ha : βl ̸= βℓ for some 1 ≤ l, ℓ ≤ n. (2)

In the canonical model, we assume that ul ∼ iidN (0, 1) and {xl, zl} are nonstochastic.

Let wl = (xl, z
′
l)
′ and δ = (β, α′)′. Then (1) can be written as

yl = w′
lδ + el, el = ul + (βl − β)xl, l = 1, . . . , n. (3)

For the purpose of learning about variation in βl, the vector δ is a nuisance parameter, and

4



we focus on tests that are invariant to the transformations

y → y +Wd for all d ∈ Rp

where y = (y1, . . . , yn)
′ and W = (w1, . . . , wn)

′, effectively eliminating δ from the analysis.

One maximal invariant to these transformations is given by the residuals ê = y −Wδ̂, where

δ̂ is the OLS regression coefficient δ̂ = (W ′W )−1W ′y.

A standard calculation shows that the best invariant test of (2) against the alternative

{βl}nl=1 = {β1
l }nl=1 rejects the null hypothesis for large values of

∑n
l=1 β

1
l xlêl. Evidently, the

optimal test depends on the particular configuration of the spatially varying β′
ls, so there is

no uniformly most powerful test, and any particular choice of {β1
l }nl=1 leads to poor power

properties under some alternative {βl}nl=1.

This suggests using a weighted average power criterion over the various possible values of

{βl}nl=1. Maximizing weighted average power is equivalent to maximizing power against the al-

ternative where βl is random and drawn from the probability distribution that is proportional

to the weighting function. We will use

H∗
a : βl − β = κL(sl), l = 1, . . . , n (4)

where κ > 0 measures the size of the instability and L(s) is a Lévy (1948)-Brownian motion on

S. Lévy-Brownian motion is a continuous parameter mean-zero Gaussian process with almost

surely continuous sample paths and covariance kernel equal to kL(s, r) = E[L(s)L(r)] =
1
2
(||r|| + ||s|| − ||s − r||). It provides an attractive weighting function because L induces a

Wiener process along each line: For all v0, v1 ∈ Rd with ||v1|| = 1, L(v0+ tv1)−L(v0) ∼ W(t),

where W(t) with t ∈ R is a standard scalar Wiener process. Thus, the parameter variation

along each direction is a martingale, suitably generalizing Nyblom’s (1989) assumption for

parameter variation in time. Let ΣL be the n× n covariance matrix of (L(s1), . . . , L(sn))
′.

As discussed in Chapter 5.5. of Ferguson (1967), the invariant test of H0 that maximizes

the slope of the power function against alternatives H∗
a at κ = 0 rejects for large values of

∂ log(f(ê|κ))/∂κ|κ=0, where f(ê|κ) is the density of ê under H∗
a . A calculation shows that

this locally best invariant test equivalently rejects for large values of

ξ∗ = n−1ê′DxΣLDxê
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where Dx = diag(x1, . . . , xn), and the level α critical value is given by the 1 − α quantile of

ξ∗ that is induced by el = ul ∼ iidN (0, 1).

Since Dxê is orthogonal to a constant, ξ∗ can be rewritten as ξ∗ = n−1ê′DxΣ̄LDxê, where

Σ̄L = M1ΣLM1 and M1 is the n× n projection matrix that projects off the constant vector.

Let Σ̄L = RΛR′ be the spectral decomposition of Σ̄L, where the matrix of eigenvectors

R = (r1, . . . , rn) is normalized to satisfy n−1R′R = In, and Λ = diag(λ1, . . . , λn) with λ1 ≥
λ2 ≥ · · · ≥ λn = 0 are the eigenvalues of Σ̄L, scaled by n−1. In this notation,

ξ∗ =
n∑

j=1

λj

(
n−1/2

n∑
l=1

rj,lxlêl

)2

.

Figure 2 shows selected eigenvectors rj for the locations of the empirical example of the

introduction. The statistic ξ∗ detects spatial variation in βl by checking whether inner-

products of the empirical scores xlêl and the eigenvectors rj are more variable than expected

given the randomness in ul, with more weight given to inner-products with eigenvectors

corresponding to the largest eigenvalues.

To simplify the asymptotic analysis in the general model introduced in the next section,

we use an approximation to ξ∗,

ξq =

q∑
j=1

λj

(
n−1/2

n∑
l=1

rj,lxlêl

)2

(5)

for some fixed q, such as q = 15. The quality of the approximation of ξ∗ by ξq depends on

the distribution of eigenvalues λj of Σ̄L, which tend to decay rapidly. For instance, with the

21,194 zip-code locations from the empirical example of the introduction, λ1/ tr Σ̄L = 0.42,

λ2/ tr Σ̄L = 0.16, λ15/ tr Σ̄L = 0.005 and
∑15

j=1 λj/ tr Σ̄L = 0.87, so one would expect the loss

of using ξq rather than ξ
∗ to be fairly minimal.

Before leaving the canonical model, we define two pieces of notation that will be useful in

the following section. The first defines the q × 1 vector Yn and the diagonal matrix Λq as

Yn,j = n−1/2

n∑
l=1

rj,lxlêl, Yn = (Yn,1, ..., Yn,q)
′, and Λq = diag(λ1, . . . , λq), (6)
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Figure 2: Selected eigenvectors

Notes: The figure shows eigenvectors for the demeaned Lévy Brownian motion covariance matrix evaluated

at the location of 21,194 zip codes in the continental United States.

so the test statistic ξq in (5) becomes the quadratic form

ξq = Y ′
nΛqYn. (7)

The second piece of notation writes Yn,j as a weighted average of el instead of the residuals

êl. Using êl = el − w′
l(δ̂ − δ), a calculation yields

Yn,j = n−1/2

n∑
l=1

rj,lxlêl = n−1/2

n∑
l=1

r̄e′j,lwlel (8)

where r̄ej,l is the p× 1 vector

r̄ej,l = rej,l −

(
n−1

n∑
ℓ=1

wℓw
′
ℓ

)−1

n−1

n∑
ℓ=1

wℓw
′
ℓr

e
j,ℓ with rej,l = (rj,l, 0, . . . , 0)

′. (9)
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The representation of the test statistic ξq in (7) with Yn given in (8) provides a natural

framework for the analysis of the distribution of ξq under the null and alternative hypothesis.

In the canonical model, el = ul ∼ iidN (0, 1) under the null hypothesis, so that Yn is a zero-

mean normal random variable with a covariance matrix that depends the weights rej , and ξq

is a quadratic form that involves Yn and the eigenvalues {λi}qi=1 that appear in Λq. Under

the alternative, el = ul + xl(βl − β), so Yn incorporates an additional term involving the

spatially varying coefficients {βl}, which could be considered as fixed constants (inducing a

non-zero mean in Yn) or realizations of Lévy-Brownian motion under (4) (augmenting the

covariance matrix of Yn). Thus, the distribution of the test statistic ξq under both the null

and alternative hypothesis follows directly in the canonical model.

The large-sample distribution of ξq under more general assumptions can be deduced anal-

ogously using a central limit result for weighted averages of wlul and large sample limit results

for the weights r̄ej,l and eigenvalues λi. As a practical matter, the most important modification

of the analysis for the canonical model is the use of a spatial HAC estimator for the variance

of Yn The following section provides the analysis.

3 Large-Sample Analysis

The analysis in this section proceeds in five steps. The first studies the large-sample behavior

of the eigenvectors and eigenvalues (rj, λj) that are used to form ξq. Recall that (rj, λj) are

constructed from Σ̄L, the demeaned version of the Lévy-Brownian motion covariance matrix,

and therefore do not depend on the data {yl, wl}. However, they do depend on the locations

{sl}, and the analysis begins with assumptions about the distribution of these locations. The

second step involves the large-sample behavior of weighted averages of terms such as wlul

and wlw
′
l that appear in Yn. The third step combines the results from the previous steps to

deduce the large-sample behavior of Yn, and ξq. The fourth step in the analysis studies the

properties of an estimator for parameters that characterize the limiting distribution of ξq.

The fifth and final step of the analysis discusses estimates of parameter variation under the

alternative including the parameter κ in (4) and the parameter path {βl}.
Throughout we allow for a double-array structure where the values or distribution of

{sl}nl=1 and {(wl, ul)}nl=1 are allowed to vary with n, but this dependence on n is not made

explicit in the notation.
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3.1 Assumptions and the Large-Sample Distribution of ξq

3.1.1 Locations and Large-Sample Behavior of (rj, λj)

We make the following assumption on the locations.

Condition 1. The locations sl are nonstochastic and elements of the compact set S ⊂ Rd,

d ≥ 1, and the empirical distribution Gn of {sl}nl=1 converges weakly to G, an absolutely

continuous distribution on S with bounded density g.

Random locations can be accommodated by Condition 1 by conditioning, as long as the

data generating process for the locations is independent of all other random elements of the

regression model. The assumption that the empirical distribution converges does not seem

overly limiting in this context; for instance, it would hold almost surely if the locations were

sampled i.i.d. from density g.

Because Lévy-Brownian motion is self-similar, L(νs) ∼ ν1/2L(s) for all ν > 0, the test

statistic ξq and its critical value scale proportionally with the scale of {sl}nl=1. The test based

on ξq is thus invariant to the transformations {sl}nl=1 → {νsl}nl=1, ν > 0. The assumption

of a sample size independent sampling region S is thus merely for notational convenience; if

the “original” locations s∗l are obtained from increasing domain asymptotics with s∗l ∈ Sn =

νnS = {s : ν−1
n s ∈ S} and νn is diverging, as in say Lahiri (2003), then the rescaled locations

sl = ν−1
n s∗l satisfy {sl}nl=1 ⊂ S.

Condition 1 imposes sufficient structure to study the asymptotic behavior of the weights

λj and the eigenvectors rj that appear ξq: Define L̄(s) = L(s) −
∫
L(r)dG(r), a demeaned

Lévy-Brownian Motion on S. By Mercer’s Theorem, the (continuous) covariance kernel k̄L of

L̄ has a spectral decomposition

k̄L(r, s) = E[L̄(s)L̄(r)] =
∞∑
j=1

λ0jφj(s)φj(r) (10)

where λ01 ≥ λ02 ≥ . . ., and the eigenfunctions φj(s) = λ−1
j

∫
φj(r)k̄L(r, s)dG(r) are contin-

uous for λ0j > 0, orthonormal
∫
φi(s)φj(s)dG(s) = 1[i = j] and orthogonal to a constant,∫

φj(s)dG(s) = 0, j = 1, 2, . . .. Lemma S.1 in Müller and Watson (2023) establishes that

under Condition 1 and for any finite q, the largest q eigenvalue-eigenvector pairs (λj, rj) of Σ̄L
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become well approximated by the corresponding eigenvalue-eigenfunction pairs of k̄L, that is

sup
j≤q

|λj − λ0j | → 0 (11)

sup
1≤l≤n,j≤q

|rj,l − φj(sl)| → 0. (12)

3.1.2 Large-Sample Behavior of Weighted Averages of {wlul, wlw
′
l}

We now turn to an appropriate high-level assumption about the behavior of weighted averages

of wlul and wlw
′
l.

Condition 2. (a) There exists a function Ωwu : S 7→ Rp×p and a positive sequence an such

that for any uniformly convergent sequence of functions hn : S 7→ Rp with (continuous) limit

h : S 7→ Rp,

a−1/2
n n−1/2

n∑
l=1

hn(sl)
′wlul ⇒ N

(
0,

∫
h(s)′Ωwu(s)h(s)dG(s)

)
(13)

where Ωwu(s) is positive semi-definite (p.s.d.) for all s ∈ S, and sups∈S ||Ωwu(s)|| <∞;

(b) there exists a p.s.d. matrix-valued function Ωww : S 7→ Rp×p with sups∈S ||Ωww(s)|| <∞
such that for any continuous h : S 7→ Rp,

n−1

n∑
l=1

wlw
′
lh(sl)

p→
∫

Ωww(s)h(s)dG(s). (14)

Condition 2(a) assumes a central limit theorem to hold for smoothly weighted averages

of wlul. It also implies joint convergence of any finite number of such weighted averages via

the Cramér-Wold device. It is less strong than a functional central limit theorem since there

is no (implicit) assumption on stochastic equicontinuity. The presence of an accommodates

the possibility that the spatial dependence of wlul is strong enough to affect the rate of

convergence.

Lahiri’s (2003) Theorems 3.1 and 3.2, for example, imply Condition 2(a) for hn = h, and

a
−1/2
n n−1/2

∑n
l=1(hn(sl) − h(sl))

′wlul
p→ 0 follows from arguments employed in his proof (see

Lemma 12 of Müller and Watson (2022) for details). Note that even if {wlul}nl=1 is strictly

stationary, the asymptotic covariance matrix Ωwu(s) is not necessarily constant: Lahiri’s

Theorem 3.2 yields Ωwu(s) to be a weighted average of the variance and long run variance
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of wlul, with weights that are proportional to the density g. Thus, Ωwu(s) is in general

non-constant as soon as the (limiting) density of locations g is not uniform. Intuitively, the

contribution to the variance from areas with many locations is amplified because the locations

are necessarily close and hence more strongly spatially correlated.

Condition 2(b) assumes a law of large numbers for weighted averages of wlw
′
l. The presence

of Ωww(s) in the expression for the limit allows for spatial nonstationarities, such as a different

value for E[wlw
′
l] in the east and the west of the sample. One could again apply Lahiri’s (2003)

results, or invoke the mixing conditions in Jenish and Prucha (2009) to obtain sufficient

conditions for the convergence in part (b).

Finally, we impose one of two possible assumptions on the evolution of βl under the

alternative.

Condition 3. (a) βl − β = a
1/2
n n−1/2b(sl), l = 1, . . . , n for some sample size independent

continuous function b : S 7→ R; or
(b) βl − β = κnL(sl) with κn = a

1/2
n n−1/2γ for some sample size independent γ ≥ 0,

l = 1, . . . , n.

The local alternatives of the null hypothesis of stable coefficients are of order Op(a
1/2
n n−1/2),

a rate which is related to the rate of convergence of the CLT in Condition 2(a). Intuitively,

slower rates of convergence for the CLT degrade the signal-to-noise ratio in the weighted

averages Yn, making it harder to detect any instability, so the local alternative has to be

relatively larger. Conditions 3(a) (and 2(b)) can be generalized to allow for a finite number

of discontinuities in b to accommodate discrete breaks in βl across regions in S.

3.1.3 Limiting Distribution of Yn and ξq

Combining these high level assumptions with the identities in (8) and (9) and additional

arguments yields the following result.

Theorem 1. (a) Under Conditions 1-2 and 3(a), a
−1/2
n Yn ⇒ Y0 + B, where Y0 ∼

N (0, V0), Bi =
∫
φ̄e
i (s)

′Ωwx(s)b(s)dG(s), V0,i,j =
∫
φ̄e
i (s)

′Ωwu(s)φ̄
e
j(s)dG(s), φ̄e

j(s) =

φe
j(s)−

(∫
Ωww(r)dG(r)

)−1 ∫
Ωww(r)φ

e
j(s)dG(r), Ωwx is the first column of Ωww and φe

j(s) =

(φj(s), 0, . . . , 0)
′, i, j = 1, . . . , q. Furthermore,

a−1
n ξq ⇒ (Y0 +B)′Λ0

q(Y0 +B) (15)
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where Λ0
q = diag(λ01, . . . , λ

0
q).

(b) Under Conditions 1-2 and 3(b), a
−1/2
n Yn ⇒ Y0 + γY1 where Y1,j =∫

φ̄e
j(s)

′Ωwx(s)L(s)dG(s) and Y1 ∼ N (0, V1) independent of Y0 with V1,i,j =∫ ∫
φ̄e
i (s)Ωwx(s)k̄L(s, r)φ̄

e
j(r)

′Ωwx(r)dG(s)dG(r), i, j = 1, . . . , q. Furthermore,

a−1
n ξq ⇒ (Y0 + γY1)

′Λ0
q(Y0 + γY1). (16)

The limiting distribution of ξq in part (b) is a quadratic form in q jointly normal variables,

with a covariance matrix V0 + γ2V1 that is a somewhat complicated function of the eigen-

functions φj of the covariance kernel of Lévy-Brownian motion, and the asymptotic behavior

of weighted averages of wlul and wlw
′
l. It is instructive to consider a baseline case where

Ωww(s) = Ωwu(s) = Ip. From the orthogonality of the eigenfunctions φi, we obtain V0 = Iq

and V1 = Λ0
q, so under Condition 3(b)

a−1
n ξq ⇒ Z ′(Λ0

q + γ2(Λ0
q)

2)Z =

q∑
j=1

(λ0j + (γλ0j)
2)Z2

j with Zj ∼ iidN (0, 1),

a weighted average of independent chi-squared random variables (cf. equation (3.3) of Nyblom

(1989)). The presence of Lévy-Brownian motion type-variability of βl is seen to affect the

asymptotic distribution of ξq via the squared eigenvalues in this baseline case. Thus, if

the eigenvalues decay quickly, very little power will be lost by the truncation at the first q

eigenvalues for all moderately large q.

3.2 Estimation of the Parameters Characterizing the Limiting Dis-

tribution of Yn and ξq

To test the null hypothesis of coefficient stability based on ξq, one needs to estimate Λ0
q and

V0, and if we want to conduct inference about κn under Condition 3(b), then we also need an

estimator for V1.

Consistent estimation of Λ0
q by Λq is immediate from (11). Consistent estimation of V1 is

achieved by the straightforward plug-in estimator with elements

V̂1,i,j = n−2

n∑
l,ℓ=1

r̄e′i,lwlxlk̄n(sl, sℓ)r̄
e′
j,ℓwℓxℓ

p→ V1,i,j
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as shown in Theorem 2 below.

Estimation of V0 is harder, as it needs to account for potential spatial correlation in wlul.

We suggest the kernel estimator

V̂0,i,j = n−1

n∑
l,ℓ=1

υ̂l,ikc(sl, sℓ)υ̂ℓ,j, υ̂l,j = r̄e′j,lwlêl (17)

with kernel

kc(s, r) = exp(−c||s− r||) =
∞∑
j=1

ψj(s)ψj(r). (18)

Here ψj are the eigenfunctions of kc on S satisfying
∫
ψj(s)ψi(s)dG(s) = 0 for i ̸= j, scaled

by the square root of the eigenvalues. For any fixed c, this kernel estimator puts non-zero

weight on all cross products υ̂l,j υ̂ℓ,j, even those whose distance ||sl − sℓ|| is a positive fraction

of the diameter of the sampling region S. As such, V̂0 is a “fixed-b” HAR estimator in the

spirit of Kiefer and Vogelsang (2005) and considered in the spatial context in Bester, Conley,

Hansen, and Vogelsang (2016).

Let ζk,j,l = ψk(sl)r̄
e
j,l. Then

n∑
l=1

ψk(sl)υ̂l,j =
n∑

l=1

ζ ′k,j,lwlêl =
n∑

l=1

ζ̄
′
k,j,lwlel

where in analogy to (9)

ζ̄k,j,l = ζ ′k,j,l −

(
n−1

n∑
ℓ=1

wℓw
′
ℓ

)−1

n−1

n∑
ℓ=1

wℓw
′
ℓζk,j,ℓ.

Theorem 2. (a) Under Conditions 1-2 and 3(b), V̂1
p→ V1.

(b) Under Conditions 1-3, a−1
n V̂0 ⇒ Ṽ c

0 where

Ṽ c
0,i,j =

∞∑
k=1

(∫
ζ̄k,i(s)

′dJ(s)

)(∫
ζ̄k,j(s)

′dJ(s)

)
(19)

with ζ̄k,j(s) = ζk,j(s) −
(∫

Ωww(r)dG(r)
)−1 ∫

Ωww(r)ζk,j(r)dG(r), ζk,j(s) = ψk(s)φ̄
e
j(s), and

under Condition 3(a), dJ(s) = g(s)1/2Ωwu(s)
1/2dWp(s) + Ωwx(s)b(s)g(s)ds whereas under

Condition 3(b), dJ(s) = g(s)1/2Ωwu(s)
1/2dWp(s) + γΩwx(s)L(s)g(s)ds, with Wp a p× 1 stan-

13



dard Wiener process on S, i, j = 1, . . . , q.

(c)

Ṽ c
0

p→ V0 as c→ ∞. (20)

Part (b) of Theorem 2 derives the limiting distribution of V̂0, suitably scaled. For any

fixed c, this distribution is non-degenerate, as one would expect from a fixed-b kernel variance

estimator. At the same time, part (c) shows that for a large enough c, the limiting distribution

becomes arbitrarily close to being a point mass at the target V0. In other words, for large

enough but fixed c, Theorem 2 shows that the estimator a−1
n V̂0 has negligible asymptotic bias

and sampling variability.

One could presumably obtain a formally consistent estimator a−1
n V̂0 by letting c slowly

increase with n.We do not do so for three reasons: First, the introduction of such an arbitrary

slowly diverging sequence does not change the small sample behavior of the resulting V̂0, so

acknowledging its variability is arguably a more honest approach to inference. Second, the

derivation of consistency under such a slowly diverging sequence c = cn requires additional

regularity conditions beyond Condition 2, while the provably excellent properties of V̂0 under

large but fixed c do not. Lastly, choosing c unnecessarily large reduces the robustness of

inference against spatial correlation in {wlul}, as it increases the potential bias in V̂0 that

arises from downweighing cross products υ̂l,j υ̂ℓ,j whose distance ||sl − sℓ|| is small but non-

negligible.

Remark 3.1. In practice, the estimator V̂0 requires a choice of c for the kernel kc in (18).

We find it useful to parameterize c in terms of the implied average value of kc(sl, sℓ) over

distinct locations. Thus, let cρ̄ solve ρ̄ = 1
n(n−1)

∑
l

∑
ℓ ̸=l kc(sl, sℓ), so that larger values of ρ̄

lead to more diffuse kernels and ρ̄ = 0 yields the kernel appropriate for spatially uncorrelated

observations. In the empirical analysis in the next section we consider values of ρ between

0 and 0.03. These values produce estimates of V̂0 with a reasonably small amount of sam-

pling variability in the canonical model: the coefficient of variation of trace(V̂0) ranges from

approximately 0.02 to 0.15 for 0 ≤ ρ ≤ 0.03. For comparision, recall that σ̂2 = n−1
∑n

i=1 Z
2
i ,

the variance estimator in the classical Gaussian model with Zi ∼ iidN (0, 1), has a coefficient

of variation of (2/n)1/2, which takes on values less than 0.15 for n ≥ 85.

Remark 3.2. The estimator V̂0 can also be obtained from a bootstrap scheme: Condi-

tional on the data, let η be a mean zero stochastic process on S with covariance kernel

14



E[η(r)η(s)] = kc(s, r). Let u∗l = êlη(sl) be the fixed regressor multiplier bootstrap draw

of the OLS innovations ul. The natural bootstrap approximation to the distribution of

Yn,j = n−1/2
∑n

l=1 rj,lxlêl under the null hypothesis is given by Y ∗
j = n−1/2

∑n
l=1 rj,lxlû

∗
l ,

where û∗l are the OLS residuals of a linear regression of u∗l on wl. A straightforward calcula-

tion shows that the resulting bootstrap covariance matrix estimator of Y ∗ = (Y ∗
1 , . . . , Y

∗
q ) is

numerically identical to V̂0. If in addition, the bootstrap multiplier process η(·) is Gaussian,

then Y ∗ ∼ N (0, V̂0) conditional on the data.

Hansen (2000) suggests a closely related fixed regressor multiplier bootstrap approximation

for the distribution of tests statistics for the null hypothesis of coefficient stability in time

series regressions, albeit with i.i.d. multipliers, as his model has ul serially independent. Also

see Conley, Gonçalves, Kim, and Perron (2023) for an application of the dependent multiplier

bootstrap in spatial econometrics in another context.

3.3 Asymptotic Inference About Spatial Variation

3.3.1 Tests of Coefficient Stability

Theorem 1 yields that under the null hypothesis (2),

a−1
n ξq ⇒ Y ′

0Λ
0
qY0, Y0 ∼ N (0, V0)

and Theorem 2 shows that a−1
n V̂0 is an accurate estimator of V0 for large enough c. Noting

that the (generally unknown) rate a−1
n cancels, we can hence simply compute ξq as defined in

(5) and compare it to the 1−α quantile of Y ∗′
0 ΛqY

∗
0 , where Y

∗
0 ∼ N (0, V̂0) conditional on the

data. For large enough c, this test will will have an asymptotic null rejection rate arbitrarily

close to α under Conditions 1 and 2.

3.3.2 Confidence Interval and Median Unbiased Estimator of the Magnitude of

Instability

Now consider the problem of constructing a confidence interval for the scale of the Lévy-

Brownian motion-type instability κn = n−1/2a
1/2
n γ under Conditions 1-2 and 3(b). For a

given value of κn = κ0n, Theorems 1 and 2 show that the quantiles of ξq are well approximated

by the quantiles of

(Y ∗
0 + n1/2κ0nY

∗
1 )

′Λq(Y
∗
0 + n1/2κ0nY

∗
1 ) (21)
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with Y ∗
1 ∼ N (0, V̂1) independent of Y

∗
0 ∼ N (0, V̂0) conditional on the data, at least as long

as κ0n is not too large and c is large enough. Denote the quantile function of the distribution

of (21) by q̂(·|κ0n). A level 1 − α interval estimator for κn, α < 1/2, is given by the interval

[κ̂Ln , κ̂
U
n ] where κ

L
n solves q̂(1−α/2|κ̂Ln) = ξq and q̂(α/2|κ̂Un ) = ξq. The asymptotic coverage of

this interval will become arbitrarily close to 1 − α if Conditions 1-2 and 3(b) hold, and c is

sufficiently large.

One might alternatively seek a point estimator of κn that is approximately median un-

biased. Such an estimator κ̂MU
n is simply obtained by solving q̂(0.5|κ̂MU

n ) = ξq. Again, if

Conditions 1-2 and 3 (b) hold then for large enough c, P(κ̂MU
n > κn) becomes arbitrarily close

to 0.5 as n → ∞. See Stock and Watson (1998) for analogous calculations in unstable time

series regressions.

3.3.3 Estimates of the Parameter Path

Finally, one might be interested in estimating the value of βl = β + κnL(sl) for l = 1, . . . , n

directly. From Theorem 1(b), we have a
−1/2
n Yn ⇒ Y = Y0 + γY1 where Y0 ∼ N (0, V0) is

independent of Y1 and Y1,i =
∫
φ̄e
i (s)

′Ωwx(s)L(s)dG(s). Inspection of the proof of Theorem

1(b) shows that this convergence holds jointly with the trivial convergence L⇒ L, that is, the

statistical dependence between Y and L approximates the small sample relationship between

Yn and the spatial variation in βl.

Note that E[L(s)Y ] = γσLY (s) for s ∈ S, where σLY (s) has ith element∫
φ̄e
i (r)

′Ωwx(r)kL(s, r)dG(r). By the usual formula for the conditional normal distribution,

we hence obtain E[L(s)|Y ] = γσLY (s)
′(V0 + γ2V1)

−1Y. The small sample version is readily

obtained by replacing all quantities by sample analogues

β̂l = β̂ + n1/2κ2nσ̂LY (sl)
′(V̂0 + nκ2nV̂1)

−1Yn

where the ith element of σ̂LY (s) is given by n−1
∑n

l=1 r̄
e′
i,lwlxlkL(sl, s).

Implementing this estimator requires choosing a value for κn, and a simple approach relies

on κ̂MU
n . Alternatively, one could average the estimators β̂l over the posterior distribution

for κn using some prior and the likelihood based on the asymptotic normality of Yn, which is

proportional to det(V̂0 + nκ2nV̂1)
−1/2 exp[−1

2
Y ′
n(V̂0 + nκ2nV̂1)

−1Yn].
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4 Monte Carlo Results and Empirical Analysis

Section 1 introduced data on health insurance coverage (HIC) and private company employ-

ment (PCE) across zip codes in the continental United States. In this section we use these

variables together with sixty other socioeconomic variables to investigate two questions: How

well do the methods developed in Sections 2 and 3 perform in realistic environments cali-

brated to these data? And how stable or unstable are the bivariate relationships between

these socioeconomic variables in the U.S.?

We begin with a description of the data.

4.1 Data Description

All data are from the American Community Survey, 5-year estimates from 2018-2022, for the

zip codes regions (“zcta”) making up the contiguous 48 states and the District of Columbia.

The dataset contains sixty-two variables measuring population, educational attainment, in-

come, employment, race, citizenship, health, marital status, mobility, and a handful of other

indicators. The online appendix provides a detailed description of the variables. The under-

lying dataset is a balanced panel of roughly thirty thousand zip codes. Zip codes containing

a small number of observations (generally 250 or fewer) were merged with adjacent zip codes,

resulting in a balanced panel of n = 21, 194 regions. The (approximate) center of each region

was used as its location, sl, and distances between regions are measured by the great circle

formula. For simplicity, we continue to refer to these regions as zip codes. Figure 3 plots their

locations.

The raw data were transformed in three ways. First, in most cases, the variables were

scaled by the relevant population in the region. For example, HIC was measured as the

fraction of the zip code’s population with health insurance, and PCE was measured as the

fraction of workers over the age of 16 employed at private companies. Second, each variable

was then converted to a percentile over the universe of zip codes. For example, a value of

0.75 for a variable in a given zip code indicates that this zip code ranks in the 75th percentile

for this variable. This means that a regression coefficient of, say β = 0.10, implies that the

percentile rank of the y-variable is predicted to increase by 1 percentage point when the rank

of the x-variable increases by 10 percentage points.

The resulting variables typically exhibited strong spatial persistence as indicated by the
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Figure 3: Zip code locations in the dataset

Notes: Each dot shows the approximated center of one of the 21,194 zip codes in the dataset.

spatial unit roots test from Müller and Watson (2023). For example, for the HIC and PCE

variables plotted in panel (a) of Figure 1 the spatial unit root tests had p-values of 0.50 and

0.25, respectively; the unit root null hypothesis was not rejected at the 5% level for 45 of

the remaining 60 variables. As noted in the introduction, strong spatial persistence can lead

to spurious regressions, and to mitigate this concern all of the variables were transformed

using the same spatial differencing GLS transformation used for HIC and PCE in panel (b)

of Figure 1.

By selecting pairs of variables from the dataset we could obtain many bivariate regressions:

with 62 variables, it is possible to construct 3,782 bivariate regressions. But many of these

are uninteresting — half merely interchange the y and x variables, and several others involve

variables that are closely related by construction (e.g., the fraction of married adults and the

fraction of divorced adults). As described in the online appendix, we used simple rules to

eliminate pairs of closely-related variables, and for the remaining pairs random assignment

was used to determine which variable was y and which was x. This process resulted in 1,514

bivariate regressions that are used in the exercises reported below.
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4.2 Size, Power and Choice of Variance Estimator

The first set of exercises investigate the size and power properties of the ξq test. It focuses on

three questions. First, how does spatial correlation and spatial heteroskedasticity affect size

and power? Second, how does the choice of kernel used to construct the variance estimator V̂0

from (17) affect size and power? Third, does the test have power to detect “discrete” spatial-

breaks in the coefficients in addition to the Lévy-Brownian motion variation underlying the

design of the test? All experiments involve bivariate regressions of the form yl = α+xlβl+ul

where the locations sl indexing the observations are given by the zip-code locations shown in

Figure 3.

4.2.1 Monte Carlo Design

The experiments involve three ingredients: (i) the kernel used to compute V̂0, (ii) the process

generating the regressors and error {xl, ul}, and (iii) the process generating the coefficients

{βl}. We discuss these in turn.

As described in Remark 3.1, V̂0 is computed using the exponential kernel kc(r, s) =

exp(−c||r − s||), with c = cρ parameterized in terms of ρ, the implied average value of

kc(r, s) between locations. Our experiments use kernels corresponding to the three values

ρ̄ ∈ {0, 0.015, 0.03}. The kernels are denoted k0, k0.015 and k0.03.

The data generating processes (DGP) for {xl, ul} also use the covariance kernel kc, but

in a different way: they involve the zero-mean Gaussian processes η with covariance kernel

E[η(r)η(s)] = kc(r, s), denoted η ∼ Gc. For this process, smaller values of c correspond to

larger spatial correlation. In our dataset, locations are points in the continental U.S., and

it is natural to measure spatial correlation in terms of its half-life, that is the distance that

yields a spatial correlation of 1/2. Our DGPs for {xl, ul} will utilize Gc processes with c that

induces half-lives of 0, 10, 25, 50, and 100 kilometers.

With this background the three data generating processes for {xl, ul} are:

• DGP1: xl and ul are generated by independent Gc processes.

• DGP2: xl is randomly selected from the 62 standardized variables in our dataset and

ul follows a Gc process.

• DGP3: {yol , xol } are a pair of series from the list of 1,514 bivariate regressions in our
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dataset. Then xl = xol ηx,l and ul = yol ηu,l where ηx,l and ηu,l follow independent Gc

processes.

In DGP1, the regressors and errors are spatially correlated (as indexed by the half-life used

to determine c), but spatially homoskedastic. In DGP2, xl are actual data (with real-world

spatial correlation and heteroskedasticity), while ul is spatially correlated but homoskedastic.

In DGP3, both xl and ul inherit the actual data’s spatial heteroskedasticity, but the data’s

spatial correlation is muted by multiplication with the η variables.

The final ingredient is the data generating process for βl. We consider three. The first

is the null model with βl = β (and where invariance makes the value of β irrelevant). The

second generates βl from the scaled Lévy-Brownian motion process with βl ∼ κL(sl), where

the parameter κ indexes the size of spatial variation in βl. In our application it is convenient

to measure this size in terms of the standard deviation of changes in βl over distances of 1000

kilometers, that is σ∆1000km = std(β(s)−β(r)) for ||s−r|| = 1000km. We chose four values of

κ corresponding to σ∆1000km ∈ {0.01, 0.025, 0.05, 0.10}. The third model allows βl to take on

different values in different regions of the country. We define regions in three ways: (i) by the

48 states plus the District of Columbia, (ii) by the nine Census regions, and (iii) by the eastern

and western regions of the U.S.1 In these experiments the value of βl is iidN (0, σ2
β) across

regions. In the experiments with spatially varying coefficients, the {xl, ul} are generated by

DGP-3 with {ηx,l, ηu,l} independent iidN (0, 1) random variables.

4.2.2 Results

Table 1 summarizes the results for size and for power against Lévy-Brownian motion variation

in the coefficients. The results show the standard trade-off between size control and power:

In the models with no spatial correlation (half-life equal to zero), the k0 kernel yields a size of

5% for each DGP and better power than the k0.015 and k0.03 kernels, but size control with the

k0 kernel deteriorates precipitously as spatial correlation increases (see the results DGP-1 in

panel (a)). In contrast, k0.015 controls size well for moderate spatial correlation (half-life less

than 25 kilometers) and k0.03 for somewhat more severe spatial correlation (but at the cost of

further reductions in power).

1For state-wide regions, the number of zip-code observations ranges from 18 (in the District of Columbia)
to 1,381 (in Texas); for Census regions, the number of observations range from 1,273 to 3,649; fo the east-west
regions there are 8,192 zip codes in the west and 13,002 in the east.
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Table 1: Size and power of nominal 5% tests
(a) Size of nominal 5% tests

Half-life DGP1 DGP2 DGP3

(in KM) k0 k.015 k.03 k0 k.015 k.03 k0 k.015 k.03

0 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.03

10 0.75 0.04 0.03 0.00 0.03 0.03 0.05 0.04 0.03

25 0.99 0.07 0.04 0.00 0.02 0.02 0.05 0.04 0.03

50 1.0 0.12 0.07 0.00 0.01 0.01 0.05 0.03 0.03

100 1.0 0.26 0.15 0.00 0.00 0.00 0.05 0.03 0.03

(b) Power of nominal 5% tests

σ∆1000km DGP1 DGP2 DGP3

k0 k.015 k.03 k0 k.015 k.03 k0 k.015 k.03

0.01 0.13 0.11 0.10 0.13 0.10 0.09 0.11 0.09 0.07

0.025 0.45 0.40 0.37 0.46 0.39 0.35 0.34 0.29 0.26

0.05 0.83 0.76 0.72 0.80 0.76 0.65 0.65 0.59 0.54

0.10 0.97 0.93 0.89 0.97 0.93 0.85 0.90 0.84 0.79
Notes: See the text for description of the DGPs. k0, k0.015 and k0.03 denote kernels with c chosen to yield

ρ̄ ∈{0, 0.015, 0.03}. The rejection frequency (“power”) shown in panel (b) are note size-adjusted and corre-

spond to sizes given in panel (a) for DGP3 and half-life equal to zero.

Perhaps most intriguingly, Table 1 shows that the tests are under-sized for DGP-2, most

notably for the k0 kernel. This reflects negative spatial correlation in the GLS-transformed

variables that are used as the regressors in this experiment. (The negative correlation is

inherited by the cross-products xlul when ul is positively spatially correlated.) One potential

explanation for the negative spatial correlation in x is sampling error in the zip-code level

American Community Survey data. Classical sampling error adds spatially uncorrelated noise

to the levels of the variables, which induces negative spatial correlations in the transformed

data, analogous to over-differencing in time series. One takeaway from these results is that,

for the GLS-transformed data that we will use in the regressions reported below, substantial

positive spatial correlation does not seem to be present. With this in mind, we use the k0.015

kernel in the empirical analysis, both when estimating V0 and in the construction of t-tests

for regression coefficients.

We do not present detailed results for the model with discrete shifts in β, but the experi-

ments indicate that the test has power to detect these discrete shifts, albeit more so for the

East-West and Census regions than for individual States. For example, with σβ denoting the

21



Table 2: Summary of Results from Bivariate Spatial Regressions
Quantile

0.05 0.25 0.50 0.75 0.95

(a) OLS estimates

|tβ̂| 0.63 3.75 8.28 14.60 29.36

|β̂| 0.01 0.05 0.11 0.22 0.45

(b) Spatial variation in β

ξ15 p-value <0.00 0.02 0.07 0.20 0.52

σ∆1000km (κ̂MU ) 0.00 0.03 0.05 0.09 0.18
Notes: The table shows selected quantiles for results from 1,514 regressions.

standard deviation of βl across regions, the test has 50% power when σβ ∈ {0.05, 0.06, 0.22}
for the {East-West, Census, State} designs. As expected, everything else being equal, the

more spatially persistent the evolution of βl under the alternative, the more powerful the test.

4.3 Spatial Instability in Bivariate Socioeconomic Regressions in

the U.S.

We now turn to the empirical analysis of the 1,514 bivariate spatial regressions involving

the 62 socioeconomic variables in the dataset. For each of the regressions we computed four

statistics: (i) β̂, the OLS estimate of β, (ii) tβ̂ = β̂/se(β̂), the associated t-statistic, (iii) ξ15,

the SVP test statistic using q = 15, and (iv) κ̂MU , the median unbiased estimate of κ. The

results are summarized in Table 2.

The first two rows of the table show the unsurprising fact that most socioeconomic vari-

ables are closely related: the absolute value of the t-statistic exceeds 2 in nearly 90 percent of

the regressions, the median absolute t-statistic is exceeds 8, and many values of β̂ are large

in a real-world sense with a median value of 0.11.

The results also suggest substantial instability in the regression coefficients: the null hy-

pothesis of spatial stability is rejected at the 5% level for over 40 percent of the regressions

and at the 10% level for nearly 60 percent. The median unbiased estimates of κ suggest that

the instability can be large: converted to values of the standard deviation of changes in βl

over 1000km (that is σ∆1000km), more than half the regressions have estimates of σ∆1000km that

exceed 0.05.

We end this section with one final set of calculations: estimates of βl over the U.S. for
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Figure 4: Estimates of β in the HIC-PCE regression

Notes: Panel (a) shows results using local regressions with 500 nearest neighbors. Panel (b) shows the sample

paths estimated using Gaussion regression formulae in Section 3.3.3.

the HIC-PEC regression introduced in Figure 1. Figure 4 presents two sets of estimates.

The first, shown in panel (a), uses local regressions centered at each of 21,194 zip codes

and its 500 nearest neighbors. This is an example of a “geographically weighted regression”

often used in applied work (Fotheringham, Brunsdon, and Charlton (2002)), and suggests an

interesting pattern of spatial variation, with HIC and PEC strongly negatively correlated in

the west, but much less so in the upper Midwest, the Ohio valley and portions of the south.

The Lévy-Brownian motion model imposes smoothness on the evolution of βl and panel (b)

shows estimates that impose this Lévy-Brownian motion prior and estimates βl using the

weighted averages Yn, as described in Section 3.3.3, setting κ equal to the median unbiased

estimator. It indicates a similar geographic pattern for the coefficients, although with less

variation reflecting, in part, the smaller sampling error inherent in optimal signal extraction

methods.

5 Concluding Remarks

This paper has proposed a test for coefficient stability in spatial regressions. The test is

straightforward to construct and allows for spatial correlation in both regressors and regres-

sion errors, as well as for second-moment nonstationarities. Simulation experiments suggest

that the test performs well in realistic empirical settings. In an application to bivariate so-

cioeconomic regression across U.S. zip codes, we find evidence of substantial spatial variation
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in the coefficients.

We conclude by considering the question: Why should an empirical researcher test for

coefficient variation in their spatial regression? One answer is that spatial variation might

be a direct research question of interest. But beyond that obvious answer, the researcher

should be concerned about the interpretation of the OLS estimand in a constant-coefficient

regression. With spatial variation, the constant-coefficient estimand measures a spatial av-

erage population regression coefficient. This average does not correspond to the best linear

predictor conditional on a location. And, if the regression coefficent is meant to measure

the causal effect of a policy intervention, spatial heterogeneity might well affect the policy’s

desirability. Finally, instability of the coefficients within a sampled region makes extrapola-

tion of the “average” effect to other regions problematic, undermining external validity. To

our mind, these considerations support the routine use of coefficient stability tests in spatial

regressions, and we hope that the test proposed here is useful in that regard.
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A Proofs

Proof of Theorem 1:

For future reference, note that for any sequence of functions hn : S 7→ R that converges uniformly

to a continuous function h, sups∈S |hn(s) − h(s)| → 0, we have ||n−1
∑n

l=1wlw
′
l(hn(sl) − h(sl))|| ≤

sups∈S ||hn(s)− h(s)|| · n−1
∑n

l=1wlw
′
l

p→ 0 via (14), so that

n−1
n∑

l=1

wlw
′
lhn(sl)

p→
∫
S
Ωww(s)h(s)dG(s). (22)

(a) For arbitrary v1, . . . , vq ∈ R, we have a
−1/2
n

∑q
j=1 vjYn,j = a

−1/2
n n−1/2

∑n
l=1 r

′
v,lwlel with

rv,l =
∑q

j=1 vj r̄
e
j,l. Given (12) and Condition 2(b), it follows that supl |rv,l − φv(sl)|

p→ 0, where

φv(s) =
∑q

j=1 vjφ̄
e
j(s). We thus have

a−1/2
n

q∑
j=1

vjYn,j = a−1/2
n n−1/2

n∑
l=1

r′v,lwlul + n−1
n∑

l=1

r′v,lwlxlb(sl)

⇒ N
(∫

φv(s)
′Ωwx(s)b(s)dG(s),

∫
φv(s)

′Ωwu(s)φv(s)dG(s)

)
∼

q∑
j=1

vj(Bj + Y0,j)

where the convergence follows from applying Condition 2(a) and (22). The convergence a
−1/2
n Yn ⇒

Y0 + B now follows from the Cramér-Wold device, and (15) is a consequence of the continuous

mapping theorem.

(b) Let Qn(L) = n−1
∑

l=1 r
′
v,lwlxlL(sl), where rv,l is defined in the proof of part (a). We

now show that Qn(L)
p→ Q0(L) =

∫
φv(s)

′Ωwx(s)L(s)dG(s). The argument is as follows: because

Lévy-Brownian motion has almost surely continuous sample paths, L can be viewed without loss

of generality as a random element that takes values in the space of continuous functions on S,
equipped with the sup norm. Thus, for every ε > 0, there exists a compact set Cε of continuous

functions S 7→ R such that P(L ∈ Cε) > 1 − ε. On this set Cε, the convergence in probability

of Qn(h) = n−1
∑n

l=1 r
′
v,lwlxlh(sl) to Q0(h) =

∫
φv(s)

′Ωwx(s)h(s)dG(s) is uniform, that is, for all

ε0 > 0, suph∈Cε P(|Qn(h)−Q0(h)| > ε0) → 0. (Suppose otherwise. Then there exists a ε1 > 0 and a

subsequence of functions hn′ ∈ Cε such that along that subsequence, P(|Qn′(hn′)−Q0(hn′)| > ε0) >

ε1. Since Cε is compact, this subsequence hn′ has a further subsequence hn′′ that converges, and

along that subsequence, P(|Qn′′(hn′′)−Q0(hn′′)| > ε0) → 0 by virtue of (22), a contradiction.) We

conclude that 1[L ∈ Cm]Qn(L)
p→ 1[L ∈ Cm]Q0(L), and since P(L ∈ Cε) > 1− ε for arbitrary ε > 0,

also Qn(L)
p→ Q0(L). □
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Proof of Theorem 2:

(a) In the notation of the proof of Theorem 1, let ω2
v,n = n−2

∑n
l,ℓ=1 r

′
v,lwlxlk̄n(sl, sℓ)r

′
v,ℓwℓxℓ, where

k̄n(sl, sℓ) =
∑n

j=1 λjrj,lrj,ℓ is the l, ℓth element of Σ̄L. It suffices to show that ω2
v,n

p→ ω2
v =∫ ∫

φv(s)
′Ωwx(s)k̄L(s, r)φv(r)Ωwx(r)dG(s)dG(r).

Let m > p not depend on n. Recall that for an arbitrary p.s.d. matrix Σ

with largest eigenvalue λ̄Σ and arbitrary conformable vector v, v′Σv ≤ λ̄Σ||v||2. Thus

|ω2
v,n −

∑m
j=1 λj

(
n−1

∑n
l=1 r

′
v,lwlxlrj,l

)2
| ≤ λm+1

(
n−1

∑n
l=1 r

′
v,lwlxl

)2
. Using (12) and (22),

n−1
∑n

l=1 r
′
v,lwlxl

p→
∫
φv(s)Ωwx(s)dG(s), and from (11), λm+1 → λ0m+1. Thus, for every ε > 0,

we can choose m large enough so that P(λm+1

(
n−1

∑n
l=1 r

′
v,lwlxl

)2
> ε) → 0. Furthermore, apply-

ing (11), (12) and (22), we have n−1
∑n

l=1 r
′
v,lwlxlrj,l

p→
∫
φv(s)Ωwx(s)φj(s)dG(s), so that

m∑
j=1

λj

(
n−1

n∑
l=1

r′v,lwlxlrj,l

)2
p→ ω2

v,m

=

∫ ∫
φv(s)

′Ωwx(s)

 m∑
j=1

λ0jφj(s)φj(r)

φv(r)Ωwx(r)dG(s)dG(r).

From (10), also limm→∞ |ω2
v − ω2

v,m| = 0. Since m was arbitrary, ω2
v,n

p→ ω2
v follows.

(b) We consider first the limit under Condition 3(a). Let η(·) be a mean-zero Gaussian pro-

cess on S with covariance kernel kc(s, r), which is continuous almost surely. By Theorem 3.1.2

of Adler and Taylor (2007), we can set η(s) =
∑∞

k=1 ψk(s)Zk, Zk ∼ iidN (0, 1) where the infi-

nite sum converges uniformly almost surely. Thus, for any ε > 0, there exists a finite m such

that with ηm(s) =
∑∞

k=m+1 ψk(s)Zk, there is a compact set Cm of continuous functions with re-

spect to the sup norm such that P(ηm ∈ Cm) > 1 − ε and on Cm, sups∈S |ηm(s)| ≤ ε. We have

E[ηm(s)ηm(r)] =
∑∞

k=m+1 ψk(s)ψk(r) so that kc(s, r) =
∑m

k=1 ψk(s)ψk(r) + E[ηm(s)ηm(r)], and

a−1
n n−1

n∑
l,ℓ

υ̂l,i

(
m∑
k=1

ψk(sl)ψk(sℓ)

)
υ̂ℓ,j ⇒

m∑
k=1

(∫
ζ̄k,i(s)

′dJ(s)

)(∫
ζ̄k,j(s)

′dJ(s)

)
(23)

by the same arguments employed in the proof of Theorem 1. Since Cm is compact, the convergence

a
−1/2
n n−1/2

∑
l h(sl)υ̂l,j ⇒ N (0,

∫
h(s)′Ωwu(s)h(s)dG(s)) holds uniformly over h ∈ Cm by the same

reasoning as employed in the proof of Theorem 1(b). Furthermore, by construction of Cm, for all h ∈
Cm,

∫
h(s)′Ωwu(s)h(s)ds ≤ ε2

∫
Ωwu(s)dG(s), so that P((1[ηm ∈ Cm]a

−1/2
n n−1/2

∑
l ηm(sl)υ̂l,j)

2 >
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2ε2
∫
Ωwu(s)dG(s)) → 0. We conclude that

lim sup
n→∞

P

a−1
n n−1

n∑
l,ℓ

υ̂l,j

( ∞∑
k=m+1

ψk(sl)ψk(sℓ)

)
υ̂ℓ,j > 2ε2

∫
Ωwu(s)dG(s)


= lim sup

n→∞
P

E

a−1
n n−1

n∑
l,ℓ

υ̂l,jηm(sl)ηm(sℓ)υ̂ℓ,j |{υ̂l,j}nl=1

 > 2ε2
∫

Ωwu(s)dG(s)

 ≤ 2ε.(24)

Furthermore, note that ∫
ζ̄k,i(s)

′dJ(s) =

∫
ψk(s)dJ̃i(s) (25)

where

dJ̃i(s) = φ̄e
i (s)

′dJ(s)− [φ̄e
i (s)

′Ωww(s)g(s)

(∫
Ωww(r)dG(r)

)−1 ∫
J(r)dr]ds

= g(s)1/2φ̄e
i (s)

′Ωwu(s)
1/2dWp(s) + B̃i(s)dG(s)

with

B̃i(s) = φ̄e
i (s)

′Ωwx(s)b(s)

−φ̄e
i (s)

′Ωww(s)

(∫
Ωww(r)dG(r)

)−1(∫
g(r)1/2Ωwu(r)

1/2dWp(r) +

∫
Ωwx(r)b(r)dG(r)

)
a scalar Gaussian random process on S with almost surely bounded sample paths.

By the Cauchy-Schwarz inequality, (Ṽ c
0,i,j)

2 ≤ Ṽ c
0,i,iṼ

c
0,j,j . From (a+ b) ≤ 2a2 +2b2 and (25) , we

have

∞∑
k=m+1

(∫
ζ̄k,i(s)

′dJ(s)

)2

≤ 2
∞∑

k=m+1

(∫
ψk(s)g(s)

1/2φ̄e
i (s)

′Ωwu(s)
1/2dW(s)

)2

+ 2
∞∑

k=m+1

(∫
ψk(s)B̃i(s)dG(s)

)2

and with kmc (r, s) =
∑∞

k=m+1 ψk(s)ψk(r)

E

[ ∞∑
k=m+1

(∫
ψk(s)g(s)

1/2φ̄e
i (s)

′Ωwu(s)
1/2dW(s)

)2
]

=

∫
kmc (s, s)φ̄e

i (s)
′Ωwu(s)φ̄

e
i (s)dG(s)

∞∑
k=m+1

(∫
ψk(s)B̃i(s)dG(s)

)2

=

∫ ∫
B̃i(r)k

m
c (r, s)Bi(s)dG(r)dG(s).
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As m → ∞, sups,r∈S |kmc (r, s)| → 0 by Mercer’s Theorem, so∑∞
k=m+1

(∫
ζ̄k,i(s)

′dJ(s)
) (∫

ζ̄k,j(s)
′dJ(s)

) p→ 0 as m → ∞. Combining this result with (23)

and (24) yields (19).

The result under Condition 3(b) follows analogously, using the same reasoning as employed in

the proof of Theorem 1(b).

(c) Again, consider the limit under Condition 3(a). Let

V ∗
i,j =

∞∑
k=1

(∫
ψk(s)g(s)

1/2φ̄e
i (s)

′Ωwu(s)
1/2dW(s)

)(∫
ψk(s)g(s)

1/2φ̄e
j(s)

′Ωwu(s)
1/2dW(s)

)
,

RBB
i,j =

∞∑
k=1

(∫
ψk(s)B̃i(s)dG(s)

)(∫
ψk(s)B̃j(s)dG(s)

)
,

RBW
i,j =

∞∑
k=1

(∫
ψk(s)B̃i(s)ds

)(∫
ψk(s)g(s)

1/2φ̄e
j(s)

′Ωwu(s)
1/2dW(s)

)
.

Then

Ṽ c
0,i,j = V ∗

i,j +RBB
i,j + 2RBW

i,j .

By the Cauchy-Schwarz inequality, (RBB
i,j )2 ≤ RBB

i,i R
BB
j,j and

RBB
i,i =

∫ ∫
B̃i(r)kc(r, s)B̃i(s)dG(r)dG(s)

≤ sup
s∈S

B̃i(s)
2 ·
∫ ∫

|kc(s, r)|dG(r)dG(s).

Similarly, the Cauchy-Schwarz inequality, (RBW
i,j )2 ≤ RBB

i,i V
∗
j,j . We further have

E[V ∗
i,j ] =

∫
kc(s, s)φ̄

e
i (s)

′Ωwu(s)φ̄
e
i (s)dG(s) =

∫
φ̄e
i (s)

′Ωwu(s)φ̄
e
i (s)dG(s)

since kc(s, s) = 1. Recall that for Xi, i = 1, . . . , 4 jointly mean-zero normal random variables with

covariances σij

E[(X1X2 − σ12)(X3X4 − σ34)] = σ13σ24 + σ14σ23.

Thus

Var[V ∗
i,j ] =

∞∑
k,l=1

(∫
ψk(s)ψl(s)φ̄

e
i (s)

′Ωwu(s)φ̄
e
i (s)dG(s)

)(∫
ψk(s)ψl(s)φ̄

e
j(s)

′Ωwu(s)φ̄
e
j(s)dG(s)

)

+

∞∑
k,l=1

(∫
ψk(s)ψl(s)φ̄

e
i (s)

′Ωwu(s)φ̄
e
j(s)dG(s)

)2

28



=

∫ ∫
φ̄e
i (s)

′Ωwu(s)φ̄
e
i (s)kc(s, r)

2φ̄e
j(r)

′Ωwu(r)φ̄
e
j(r)dG(r)dG(s)

+

∫ ∫
φ̄e
i (s)

′Ωwu(s)φ̄
e
j(s)kc(s, r)

2φ̄e
i (r)

′Ωwu(r)φ̄
e
j(r)dG(r)dG(s)

≤ 2 sup
s∈S

||Ωwu(s)|| · sup
1≤i≤q,s∈S

||φ̄e
i (s)||4 ·

∫ ∫
kc(s, r)

2dG(r)dG(s).

Since ∫ ∫
|kc(s, r)|dG(r)dG(s) → 0 and

∫
kc(s, r)

2dG(r)dG(s) → 0

as c → ∞, we conclude Ṽ c
0,i,j

p→ E[V ∗
i,j ] =

∫
φ̄e
i (s)

′Ωwu(s)φ̄
e
i (s)dG(s). The result under Condition

3(b) follows analogously. □
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