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Abstract

We study competition and innovation in the liquid crystal display (LCD) industry.
New products and productivity growth account for 71% and 39% of total welfare,
respectively. Social returns on technological investments were high, but most firms’
private returns were low because of large sunk costs. We then investigate the effects of
market structure on innovation by simulating all possible mergers among seven major
firms. Some mergers could increase firms’ incentive to innovate, but their effects become
mostly negative when five or fewer firms exist. Our extensive sensitivity analysis shows
mergers could be pro-innovation only under very low price-sensitivity of demand.

1 Introduction

Innovation and productivity growth play a central role in improving social welfare. Recent
studies in industrial organization (IO) on the long-term evolution of market power rediscover
the big benefits to consumers of technological progress, which tend to dwarf the impact of
increasing market power (if any) in the wholesale (Ganapati 2021), automobile (Grieco,
Murry, and Yurukoglu 2023), and cement (Miller, Osborne, Sheu, and Sileo 2023) indus-
tries. The renewed antitrust-policy interest in innovation is apparent in the most recent US
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Merger Guidelines as well.1 The economic literature has identified many types of innovation
and determinants of productivity at the level of firms and industries. Product innovation
is one of them. Process innovation—cost-reducing technical change— is another. The ef-
fects of firms’ external environments, such as competition, improved inputs from suppliers
(“upstream innovation”), and government policy, have been studied as well. Given that a
multitude of factors can drive innovation and productivity growth, a natural question is:
Which of them matters most? However, an influential survey by Syverson (2011) concludes
that “the relative quantitative importance of each... is still unclear” (p. 358), limiting our
ability to understand and explain the long-run welfare performance of innovative industries.

Figure 1: Product and Process Innovations in the LCD Industry

(a) Unit Shipment by Size (b) Average Price and Cost

Note: Global, industry-wide aggregate in terms of (a) units of LCD panels and (b) square meters, respectively.

This paper presents concrete empirical evidence based on a decade-long study of the
global market for liquid crystal display (LCD) panels. Most computers and electronic prod-
ucts rely on LCD panels as a key device, making them one of the most widely used new
products in recent history. The industry experienced rapid technological progress during
our sample period (2001–2011)—the use of larger new products became increasingly com-
mon while the average manufacturing cost per square meter (m2) decreased by 77% from
$3,015 to $692 (Figure 1). Unusually detailed data are available, including not only prices,
sales volumes, and product characteristics but also the entire record of investments in fab-
rication plants (“fabs”) at all major firms, as well as their technological specifications and
fab-product-level manufacturing costs. The availability of cost data (in addition to the more
conventional sales data) means that we can not only estimate a demand model to evaluate

1The 2023 Merger Guidelines, released by the Department of Justice and the Federal Trade Commission,
is available at https://www.justice.gov/d9/2023-12/2023%20Merger%20Guidelines.pdf. This 50-page
document mentions “innovation” and related concepts on almost every page.
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the welfare gains from new products but also quantify the benefits of cost-reducing invest-
ments. Furthermore, the industry-wide record of fab investments allows us to conduct a
comprehensive benefit-cost analysis to measure the return on technological investments. In
short, the LCD industry presents a rare opportunity to measure the benefits and costs of
various types of innovation in a highly relevant empirical context.

The richness of data allows us to conduct a systematic welfare analysis of innovation
in five steps. First, we use the sales data to estimate a demand model for differentiated
products—a prerequisite to quantifying the value of new products as in Trajtenberg (1989)
and Petrin (2002). Second, we use the cost data to estimate the relationship between manu-
facturing cost and its determinants, including investments in new-generation fabs (“vintage
capital”) and the accumulation of know-how through experience (“learning by doing”). Third,
these demand and cost estimates allow us to calculate equilibrium outcomes under various
counterfactual scenarios. We compare welfare outcomes with and without each factor to
quantify its benefits to consumers and producers. Fourth, we compare these benefits with
the costs of fab investments—the main driver of both process and product innovations in this
industry—to quantify their social and private returns. Fifth, we calculate and compare the
return on investment (ROI) under all conceivable market structures to measure the effect of
competition on innovation. Taken together, these analyses provide one of the most detailed
and comprehensive assessments of technical change in the literature.

We find massive impacts of both types of innovation. Without product innovation, the
global welfare in 2001–2011 would have been 70.6% lower; without process innovation, it
would have been 38.9% lower.2 Substantial heterogeneity exists underneath these overall
effects. Process innovation played a relatively more important role in the notebook and
monitor segments than in the TV segment, in which the impact of product innovation—
especially the introduction of larger products—was disproportionately larger than any other
factors.3 Our benefit-cost analysis suggests social returns were large, with ROI of 68.9% even
at a relatively high annual discount rate of 10%. However, the industry as a whole earned
only modest profits relative to the sunk cost of fab investments. The industry-wide internal
rate of return (IRR, a break-even discount rate at which the discounted present value of
benefits exactly offsets that of costs) was only 4.05%. This level of IRR is unattractive for
risky investments, such as those in a fast-changing global markets for high-tech products.

2Perceptive readers might wonder why the 77% decrease in manufacturing cost (in Figure 1) resulted
in only a 39.4% welfare increase. The reason is that only about a half of the 77% cost reduction can be
attributed to LCD-panel manufacturers’ process innovation. The rest is due to reductions in input costs,
the impact of which is separately measured in Appendix A.5.2.2.

3Tablet computers are not included in our dataset because they emerged as a major category after our
sample period. Smaller LCD panels below 10 inches are not included either, because they tend to be
manufactured by fringe firms with smaller, older fabs, and for miscellaneous niche applications.
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Unsurprisingly, some firms’ individual private returns were small or negative, but competitive
pressure forced them to invest in new-generation fabs.

We further investigate the role of competition in shaping firms’ incentive to innovate by
simulating all possible mergers among seven major firms. Results suggest positive incentive
effects of some mergers, but the outcomes become increasingly more heterogeneous and
negative with the progress of industry consolidation. Once the number of main players
reaches five or below, the majority of mergers hinders innovation. Our sensitivity analysis
shows that these findings are robust to most changes—small and large—in parameter values;
the overall patterns could qualitatively change only under extremely low price-sensitivity of
demand.

We have organized the rest of the paper as follows. The remainder of this section reviews
the related literature. Section 2 explains the institutional/technological context. Section 3
describes our data on sales, costs, and investments. Section 4 reports demand estimates.
Section 5 quantifies the welfare impact of LCD innovations. Section 6 calculates the social
and private returns on technological investments. Sections 7 and 8 present merger simulations
and their sensitivity analysis, respectively. Section 9 concludes.

Related Literature and Contributions. This paper contributes to several strands of the
empirical literature in IO and the economics of innovation. First, the estimation of the value
of new products has a long tradition in economics since Griliches (1957) and is one of the
most popular applications of modern demand analysis, as exemplified by Trajtenberg (1989),
Hausman (1996), Greenstein (1996), and Petrin (2002). More recent contributions include
Eizenberg (2014); Ciliberto, Moschini, and Perry (2019); and Grieco, Murry, and Yurukoglu
(2023). Whereas most of these studies rely on sales data alone, our plant-level data on costs
and investments allow us to directly measure costs—without additional assumptions on firms’
competitive conduct—and to study the effects of both product and process innovations.

Second, process innovation has been studied within a large literature on productivity.
Syverson’s (2011) survey lists more than ten determinants of firm-level productivity, two
of which are closely related to process innovation: vintage capital and learning by doing.
Thompson’s (2010, 2012) reviews of the learning-by-doing literature point out that vintage
capital and other determinants of production costs are typically unobserved and create an
omitted variable problem. Benkard (2000); Levitt, List, and Syverson (2013); and Sinclair,
Klepper, and Cohen (2000) address this problem by focusing on a single product, plant, and
firm, respectively, for which detailed data are available. We take a similar, data-driven ap-
proach but cover the global markets for LCD panels including all major firms and their fabs.
With such data, we can not only measure each factor’s contribution to physical productivity
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but also conduct an industry-wide welfare analysis, evaluate social and private returns on
investments, and assess the impact of competition on innovation.4

Third, the relationship between competition and innovation is one of the most studied
topics in economics.5 Its popularity reflects both the importance of the research question
and the difficulty in convincingly answering it. One challenge is modeling, as it requires a
delicate balance between realism and tractability. Nevertheless, recent papers have made
progress in clarifying and narrowing the range of plausible results,6 and a growing number
of empirical IO papers study information technology (IT) and other innovative industries.7

Another challenge is measurement. Innovation can take many different forms, each of which
requires good data and careful econometrics (see above); measuring competition is nontrivial
as well.8 We address these problems with a combination of rich data and a simple, static
model of demand and supply, thereby complementing these dynamic-structural works with
concrete evidence from a more data-driven approach.9

2 Innovations in the LCD Industry

This section provides the institutional context: industry background (section 2.1), produc-
tion technology (section 2.2), and the definition of various types of innovation (section 2.3).

4With our eventual analysis of benefits and costs of innovation, this research also joins the long list of
papers that estimate returns to investments in research and development (R&D) and other innovation assets,
a comprehensive survey of which is offered by Hall, Mairesse, and Mohnen (2010).

5See reviews by Cohen (2010); Shapiro (2012); Gilbert (2020); Federico, Scott Morton, and Shapiro
(2020); Bryan and Williams (2021); Griffith and Van Reenen (2023); and Lefouili and Madio (2024).

6Marshall and Parra’s (2019) computational theory work offers a catalogue of possible results under
different assumptions and parameter values. Igami and Uetake’s (2020) structural econometric work proposes
a tractable model of a dynamic oligopoly game and shows empirical patterns that resemble one of the
numerical examples in Marshall and Parra (2019).

7See, for example, Goettler and Gordon (2011), Conlon (2012), Igami (2017, 2018), Björkegren (2019),
Yang (2020), Mohapatra and Zhang (2023), Khmelnitskaya (2023), and Qiu (2023).

8Many of the commonly used statistics are either problematic or insufficient for antitrust purposes. See
Miller et al. (2022) for the endogeneity problem with the Herfindahl-Hirschman Index (HHI). Markups are
equally endogenous, and they can be influenced by price-fixing collusion as well. The number of firms is
not a sufficient statistic in most of the realistic models of oligopoly. Structural parameters of demand that
determine the degree of horizontal product differentiation, such as the variance of idiosyncratic preference
shocks, is not policy-relevant because it cannot be controlled by the regulators.

9Finally, this paper joins recent papers in empirical IO that investigate long-run industry trends. Exam-
ples include Collard-Wexler and de Loecker’s (2015) study of the steel industry; Asker, Collard-Wexler, and
de Loecker’s (2019) welfare analysis of the crude-oil cartel; Backus, Conlon, and Sinkinson’s (2021) study
of common ownership in the cereal industry; Grieco, Murry, and Yurukoglu’s (2023) study of market power
and welfare in the automobile industry; and Miller, Osborne, Sheu, and Sileo’s (2023) study of technology
adoption and market power in the cement industry. Whereas most papers examine mature industries, we
study innovation in a new industry with rapid technological changes.
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2.1 Industry Background

Japanese electronics makers (e.g., Sharp, Panasonic, Sony, Hitachi, and Toshiba) pioneered
the development and commercialization of the LCD technology until the early 1990s, but two
Korean manufacturers, Samsung and LG, rapidly caught up and expanded market shares in
the late 1990s. In response to these low-cost rivals, Japanese firms recruited Taiwanese firms
as contract manufacturers because manufacturing costs are even lower in Taiwan. However,
they eventually became independent competitors and almost drove Japanese firms out of the
global markets for IT applications (notebook PCs and desktop monitors) by 2001.

The dot-com bust in 2001 dampened the demand for many IT products including LCD
panels. The resulting price decreases motivated AU Optronics (AUO), the largest Taiwanese
producer at the time, to organize a price-fixing scheme with three other Taiwanese firms
(CMO, CPT, and HS) as well as Samsung and LG. This collusive arrangement—called the
“crystal cartel”—started its monthly price-targeting meetings in October 2001 and lasted
until February 2006, when Samsung and LG applied for the corporate leniency programs at
the US Department of Justice and the European Commission.10

LCD-TVs became mainstream household products in Japan and other East Asian economies
since around 2004 and then in North America since around 2007. Macroeconomic downturns
hit the industry in the Great Recession (2008:Q4–2009:Q2), temporarily suppressing the de-
mand for all applications. Samsung and LG expanded market shares during and after this
crisis, whereas some of the weaker Taiwanese firms reduced their presence in the global
market around this period.

Most of the once-dominant Japanese firms exited the “large-area display” markets (as
these IT/TV segments with 10-inch panels or larger are collectively known) by the end of
the decade. The only exception was Sharp, which kept investing in new-generation fabs.
Meanwhile, mainland Chinese firms started entering low-end product categories, sometimes
by purchasing the used equipment from Japan, but their market shares were negligible
throughout the 2000s. Thus, the six crystal-cartel firms (and Sharp) are the only players of
strategic importance in our main sample period (2001:Q1–2011:Q4).

2.2 Production Technology

The production process for LCD panels is capital-intensive. Firms have to invest billions
of dollars in fabs and manufacturing equipment. The technology is knowledge-intensive
as well, because these physical assets are commercially useless unless production engineers

10We take these developments as given and leave the task of endogenizing collusion and innovation (within
a dynamic-game framework) to Igami, Qiu, and Sugaya (2023).
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tune their parameters to improve yield (the rate of defect-less products in total output).
Nevertheless, once these physical requirements are satisfied, the costs of more basic inputs
such as labor and electricity play a critical role in competition and survival, as the exit of
relatively high-cost Japanese firms illustrates.

LCD panels contain many different components and materials, including sheet glass, color
filters, polarizers, backlights, and liquid crystal. Their suppliers are mostly located in Japan
for historical/technological reasons (i.e., engineering, fine chemicals, and electronic devices
are among the most globally competitive industries of Japan).

Dozens of different products exist within each of the three main applications (notebooks,
monitors, and TVs), but all of them can be produced using the same fab and equipment as
long as the physical sizes of input glass and output panels are compatible. This flexibility
stems from the fact that most components and materials are common across products. The
only binding constraint is that large panels cannot be cut out of a small sheet glass. Hence, a
fab’s physical capacity and technological generation are defined by the size of the input glass
(“mother glass”) that it can handle. The most advanced fabs at the beginning of 2001 used
the fourth-generation (4G) technology and its variant (4.5G), which process 730mm×920mm
input glass and could produce up to 40-inch panels. Subsequently, the frontier technology
shifted to 10G, which uses 2,850mm×3,250mm input glass, by the end of our sample period
(2011:Q4).

2.3 Definition of Innovation

Following Schumpeter (1934) and many other studies, we use the most basic definition of
innovation as “new combination of productive means” (p. 66). We focus on the first two of
his five categories of innovation: (i) “the introduction of a new good or of a new quality of a
good” and (ii) “the introduction of a new method of production.”11 Even though our empirical
context is clearly high-tech and involves cutting-edge technologies of the time, we would like
to remind the readers that these economic definitions of innovation are not predicated on
either scientifically new discoveries or the legal formalities of obtaining patents. Hence, our
analysis is agnostic about the exact source of new goods and methods (e.g., whether LCD
innovations should be labeled as “invention” or “technology adoption”).12

11The other three are: (iii) “the opening of a new market,” (iv) “the conquest of a new source of supply
of raw materials or half-manufactured goods,” and (v) “the carrying out of the new industrial organization
of any industry.” Our empirical context features some elements of them as well, such as the “upstream
innovation” that we discuss at the end of this subsection closely relates to (iv). But we consider the precise
measurement of (i) and (ii) as our primary contribution.

12We emphasize this point because many new LCD products and processes are not patented inventions,
unlike new drugs, for example.
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We operationalize the notion of product innovation by organizing it into two subcate-
gories: physically larger products and other new products. We distinguish between size and
other observed characteristics because certain sizes require newer generations of fabs and
are, therefore, clearly tied to specific investments. By contrast, other product characteristics
have no direct connections to tangible assets.

Similarly, we separately identify two channels of process innovation, vintage capital and
learning by doing, both of which drive cost reductions. First, the “vintage” effect is rooted
in the fact that unit costs of manufacturing are lower at newer fabs. A larger sheet of
glass can be cut into a larger number of panels of a given size. Because the fixed cost of
handling a sheet glass increases less than proportionally to its surface area, the average
unit cost per panel decreases with a larger mother glass. Second, the “learning” effect is
underpinned by the fact that the average unit cost decreases as yield improves, that is, as the
fraction of defective products decreases. This process takes many months because production
engineers can experiment with only a limited number of technical configurations within a
given time interval. As in other capital-intensive industries such as chemical processing and
semiconductors, “learning primarily results from the fine-tuning of production techniques”
(Benkard 2000, p. 1036).13 Learning by doing in the LCD context is a matter of searching
for optimal parameters of manufacturing equipment.

Finally, we acknowledge the fact that the costs of raw materials and components tend to
decrease over time due to innovations in the upstream industries (fine chemicals and other
materials). This mechanism is not attributable to LCD-panel manufacturers, which is the
main focus of our study. Hence, we do not include this factor as a subcategory of process
innovation. Nevertheless, it is a major contributor to the overall cost reductions. We call it
“upstream innovation” and report its effects in Appendix section A.5.2.2.

3 Data

This section explains our data, including their source, preprocessing, and salient patterns.
Our main source is Display Search, a specialized data provider for flat display panels. Their
information is widely used as a key reference by both buyers and sellers of LCD panels in the
global wholesale market. The original dataset consists of three components: sales (section
3.1), costs (section 3.2), and investments (section 3.3).

13By contrast, in labor-intensive industries such as aircraft and shipbuilding, “learning primarily results
from workers becoming more efficient at the task they perform through multiple repetitions” (Benkard 2000,
p. 1036).
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3.1 Prices, Quantities, and Product Characteristics

The average sales price and total shipment volume are recorded at quarterly frequency
between 2001:Q1 and 2011:Q4 at the level of product, which is finely defined as a combination
of (i) supplier, (ii) application, (iii) size, (iv) resolution, and (v) backlight. For example, an
LCD panel made by LG for notebook PCs, with 14.1-inch diagonal length, 1280×800 pixels,
and light-emitting-diode (LED) backlights is a unique product. Based on this definition,
the total number of unique products is 1,081. Even if we ignore supplier identity (i) and
exclusively focus on physical characteristics (ii)–(v), as many as 302 products appear on
record.

Despite this product variety, LCD panels are traded as commodities in the global whole-
sale market. Product specifications are standardized to promote technical compatibility
throughout the IT supply chain. In terms of demand, only a handful of products are popu-
lar at any point in time. In terms of technology, a single fab can manufacture all different
varieties using the same equipment as long as its input-glass size is compatible (see section
2.2). As a result, most of the mainstream products are supplied by multiple firms. Products
with the same physical characteristics are nearly perfect substitutes for each other regardless
of supplier identities.

Figure 2 plots prices, costs, and sales, from which five patterns emerge. First, prices and
costs tend to decrease over time. Second, prices show some cyclical movements along the
downward trend, whereas costs do not.14 Third, the price-cost margin seems to decrease
over time, presumably because the cartel existed only in the first half of the data (2001:Q4–
2006:Q1). Fourth, the shipment volume grew rapidly over time, as LCD panels became
mainstream products in all applications. Fifth, the Great Recession manifested itself in
2008:Q4–2009:Q2 as negative shocks to both prices and quantities. For summary statistics
of sales data, including product characteristics, see Table 14 in Appendix A.3.1.

3.2 Manufacturing Costs

The second database records the average unit cost of manufacturing LCD panels at a quar-
terly frequency between 2000:Q2 and 2016:Q4. Information is available at the level of prod-
ucts as physically defined by (ii)–(v) in the sales data. This database is designed to replicate
how their unit costs vary with the age of a fab, technological generation of manufacturing
equipment, geographical location (Japan, Korea, and Taiwan), and other technical details.

14The cyclical nature of IT demand seems responsible. The purchasing behavior of PCs and their periph-
erals tends to follow multi-year cycles. See Matthews (2005) for a detailed account of the “crystal cycles,” in
which small shifts in demand can lead to larger swings in prices.
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Figure 2: Prices, Costs, and Sales
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Note: Panels (a), (b), and (c) plot the global, industry-wide average prices and costs by physically defined product.

Panels (d) and (e) plot aggregate sales quantities by application.

Thus, precise cost data are available at the level of product-fab-quarter triplets.15 We focus
on the “cash cost” part of the data and exclude the “depreciation” part because the latter
is an accrual-based accounting measure of capital cost and does not constitute economic
marginal cost. Such fine-tuning is made possible by the availability of an extremely detailed
cost breakdown. For summary statistics of cost data, see Table 15 in Appendix A.3.2.

3.3 Investments in New Fabs

The third database contains a comprehensive record of all major firms’ investments in new
fabs at a monthly frequency between December 1994 and July 2024 (including planned future
investments). For each of the few hundred fabs, we observe its technological generation of
manufacturing equipment, production capacity, and the timing of investment. The timing
record includes monthly time stamps in three stages of fab investments: equipment purchase
order, delivery and installation, and mass-production ramp. The average wait time between

15Such detailed engineering estimates are available because LCD panels have a highly modular architecture
and a relatively straightforward manufacturing process. Information is available on the prices of key materials
and components (e.g., glass, color filter, polarizer, liquid crystal, driver integrated circuit, and backlight).
As a result, “LCD manufacturers have nowhere to hide profit margins,” according to our interview with a
staff analyst at Display Search.
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order and full-scale production is approximately 12 months.

4 Demand Estimation

We use the data on sales and costs for 2001:Q1–2011:Q4 to estimate a random-coefficient
nested-logit model of demand for differentiated products (section 4.1). Based on the es-
timated demand model, we calculate the implied equilibrium prices under monopoly and
Bertrand competition (section 4.2). We compare the actual prices in the data against these
theoretical predictions to assess the extent of market power during the sample period. These
estimates lay the foundation for our welfare analysis in sections 5 and 6.

4.1 Model and Estimates

We specify buyer i’s utility from LCD panel j in period t as

uijt = αipjt +
∑
s

βs
1{sizej = s} + βr ln ppij + βbledj + ξjt + ζist + (1 − ρ)εijt, (1)

where pjt is price, 1{sizej = s} is an indicator for size-s product, ln ppij is picture resolution
measured by the natural logarithm of pixels per square inch (PPI), ledj is a dummy variable
for LED-based backlights, ξjt represents other product qualities that are not observed, and
ζist and εijt are buyer-specific preference shocks.16 We assume that εijt is i.i.d. Gumbel and
that ζist has the unique distribution such that ε∗ijt ≡ ζist + (1 − ρ)εijt is i.i.d. Gumbel as
well. βs, βr, and βb are coefficients of size, resolution, and backlight type, respectively. We
incorporate heterogeneity in the price coefficient as αi = α/yi, where yi is i’s income level
drawn from the income distribution in the relevant mid-to-high-income countries.17

Three considerations guide this specification. First, we incorporate all observable product
characteristics, including size, PPI, and backlight type, to ensure proper accounting of prod-
uct innovations. Second, we allow as much flexibility as possible in capturing contributions
of lower prices and larger sizes, which are the primary channels through which process and
product innovations increase welfare, respectively. Obtaining reasonable estimates of α and

16The Display Search sales data focus on wholesale transactions of LCD panels, which become key com-
ponents of final products. We abstract from the downstream supply chain and model it as a collection of
individual buyers and their representatives.

17We use data from the World Bank on the population and income levels of the Organisation for Economic
Co-operation and Development (OECD) member countries for which complete time series are available. We
abstract from the details of the supply chain and sales channels between the LCD-panel manufacturers and
final users.
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βs is critical for our purposes.18 Third, we abstract from the durable-good aspect for three
reasons.19 One is that LCD panels were relatively new in 2001–2011; replacement demand
played a limited role relative to first-time buyers. Another reason is data availability—we
are not aware of reliable data on product ownership with a global coverage for our sample
period. The final and most important reason is that we are deliberately keeping our model
simple and static to fully exploit the unusually detailed data and generate findings that are
data-driven and transparent.

We address the endogeneity concern that prices pjt and within-nest market shares might
be correlated with unobserved quality ξjt by using four types of instrumental variables (IVs):
(i) the unit cost of production cjt, (ii) a dummy variable indicating the existence of the
cartel in 2001:Q4–2006:Q1, (iii) the number of products in each category—defined by size,
resolution, backlight type, and their combinations—, and (iv) the measures of product dif-
ferentiation proposed by Gandhi and Houde (2023). We use the estimation algorithm of
Berry, Levinsohn, and Pakes (1995) in Conlon and Gortmaker’s (2020) PyBLP Python im-
plementation.20

Table 1 reports our demand estimates for each of the three applications (notebook, mon-
itor, and TV). All price coefficients are negative, but their magnitude varies from notebook
(more negative) to TV (less negative). The median own-price elasticities are −6.78 (note-
book), −9.73 (monitor), and −4.31 (TV).21 These estimates suggest lower prices significantly
increase utility, thereby leaving ample room for process innovation (cost reduction) to im-
prove welfare. The nest parameter values are 0.629 (notebook), 0.805 (monitor), and 0.725
(TV), highlighting the importance of size categories in buyers’ decisions. The size-bin coef-
ficients show that certain sizes, such as 14”–16” (notebook), 18”–24” (monitor), and 32”–55”
(TV), are particularly popular. The appeal of these products means ample room exists for
product innovation to improve welfare as well. The coefficients on the two other physical
characteristics (PPI and LED) are also positive, as expected.22

18This specification follows Berry, Levinsohn, and Pakes (1999). Its combination with the size-bin nests
is similar to the specification used by Brenkers and Verboven (2006) for European car markets. We ex-
perimented with additional nests and/or additional random coefficients led to counter-intuitive estimates
due to multicollinearity problems. As Grigolon and Verboven (2014) show, adding random coefficients and
nests on other (continuous) product characteristics leads to imprecise or unreasonable estimates due to
multicollinearity when these variables are correlated with the main ones (i.e., prices and sizes in our case).

19We refer readers interested in durability to Conlon (2012).
20PyBLP can automatically construct and include two categories of differentiation IVs: (a) the Euclidean

distance between a focal product and all other products—in each of the continuous product characteristics—
and (b) their interactions. We use both of them. We thank Jeff Gortmaker for sharing these details.

21The median of all products’ own-price elasticities across three applications is −6.69. We interpret these
relatively high elasticities as reflecting the fact that multiple similar products existed within most of the
narrowly defined product categories.

22The only exception is β̂b < 0 for monitors. Many CCFL-based products remained popular in this appli-
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Table 1: Demand Estimates

Application Notebook PC Desktop monitor TV
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Price (α) −309.6 27.9 −155.6 5.6 −41.5 2.5
Size nests (ρ) 0.629 0.025 0.805 0.016 0.725 0.020
Size = 12” (β12) 1.596 0.076 − − − −
Size = 13” (β13) 1.929 0.088 − − − −
Size = 14” (β14) 2.906 0.095 − − 1.892 0.185
Size = 15” (β15) 3.291 0.129 − − − −
Size = 15.4” (β15.4) 2.920 0.103 − − − −
Size = 16” (β16) 3.006 0.114 4.872 0.080 2.821 0.156
Size = 17” (β17) 2.629 0.112 − − − −
Size = 18” (β18) 0.525 0.164 6.159 0.089 1.917 0.176
Size = 20” (β20) − − 7.230 0.106 4.135 0.176
Size = 22” (β22) − − 6.753 0.110 3.979 0.194
Size = 24” (β24) − − 6.276 0.110 3.360 0.183
Size = 26” (β26) − − − − 4.691 0.194
Size = 27” (β27) − − 5.856 0.134 − −
Size = 28” (β28) − − − − 3.822 0.266
Size = 30” (β30) − − − − 5.302 0.261
Size = 32” (β32) − − − − 6.464 0.209
Size = 40” (β40) − − − − 6.135 0.228
Size = 45” (β45) − − − − 5.997 0.233
Size = 50” (β50) − − − − 6.066 0.253
Size = 55” (β55) − − − − 6.248 0.287
Size = 60” (β60) − − − − 5.548 0.358
Size ≥ 65” (β65) − − − − 6.074 0.389
Resolution (βr) 1.416 0.192 3.025 0.273 0.190 0.072
LED (βb) 0.124 0.045 −0.134 0.040 0.259 0.039
Firm = Samsung 0.195 0.051 0.113 0.044 0.250 0.045
Firm = LG 0.091 0.053 0.186 0.039 0.094 0.037
Firm = CMO −0.127 0.059 −0.161 0.041 0.072 0.044
Firm = AUO − − − − − −
Firm = Sharp −0.476 0.073 −0.078 0.059 −0.067 0.042
Firm = CPT −0.251 0.068 −0.123 0.048 −0.281 0.064
Firm = HS −0.540 0.083 −0.062 0.055 −0.822 0.089
Firm = Others −0.248 0.052 −0.089 0.042 −0.354 0.046
Constant −7.580 0.582 −17.973 1.163 −10.819 0.388
Time dummies Yes Yes Yes
Own elasticity −6.78 −9.73 −4.31
1st-stage R2: price 0.941 0.893 0.920
1st-stage R2: share 0.378 0.370 0.453
Number of obs. 4,140 3,374 3,582

Note: The sample period is 2001:Q1–2011:Q4. “Price” is measured in current US dollars. “Size nests” refers to
the nest parameter. The omitted size categories are 11”, 14”, and 12” for notebook, monitor, and TV applications,
respectively. “Resolution” is measured in the natural logarithm of pixels per square inch (PPI). “LED” is an indicator
for LED-based backlights, where the omitted category is CCFL-based ones. AUO is the omitted category for firm
dummies. “Own elasticity” is the median own-price elasticity across all observations within each application. We
report the R2s of the regressions of prices and within-nest market shares on all IVs and other regressors as “1st-stage
R2” to demonstrate their relevance, even though the BLP procedure does not involve first-stage regressions as in
two-stage least squares.

cation despite the influx of LED-based ones. This product feature is not directly related to fab investments
and does not play any major role in our subsequent analysis.
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Figure 3: Comparison of Actual Price with Theoretical Benchmarks

Note: This graph compares the average price in the data with three theoretical benchmarks: (i) monopoly, (ii)

Bertrand-Nash, and (iii) social planner. See Appendix A.4.2 for similar plots by application.

4.2 Monopoly, Bertrand-Nash, and Social-Planner Benchmarks

We assess the extent of market power by comparing the actual average price in the data
with three theoretical benchmarks: (i) monopoly, (ii) Bertrand-Nash, and (iii) social plan-
ner. Monopoly means all firms’ all products are priced at high levels as if the entire industry
maximized producer surplus (PS); social planner would instead maximize consumer sur-
plus (CS) with marginal-cost pricing, thereby maximizing social welfare (SW) as well. The
Bertrand-Nash prices are based on the actual product-ownership pattern across firms, each
of which unilaterally maximizes its firm-level profit.

Figure 3 shows the actual price was relatively close to the monopoly level in 2001:Q1–
2004:Q3, which is broadly consistent with the existence of the cartel in the first half of
our data. Some of the price spikes in these years are known to have been caused by a
combination of positive demand shocks and industry-wide capacity constraints, which our
model abstracts from. The actual price fluctuated around the Bertrand-Nash benchmark
since 2004:Q4, which suggests the LCD cartel became less effective in its last several quarters
of operation. Finally, the negative impact of the Great Recession (2008:Q4–2009:Q2) and
its aftermath is evident in the last three years of our data as the actual price fell below the
Bertrand-Nash level.

The main takeaway from this price-comparison graph is that monopoly pricing and
Bertrand-Nash prices offer reasonable approximation to the data in 2001:Q1–2004:Q3 and
2004:Q4–2011:Q4, respectively. Accordingly, we use this combination (sequence) of conduct
assumptions in our subsequent analyses in sections 5–8.23

23We also compute some of the key results in sections 5 under an alternative assumption of Bertrand-Nash
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5 Welfare Gains from Innovations

This section quantifies the welfare impact of LCD innovations. Sections 5.1 and 5.2 focus
on product innovation and process innovation, respectively. Section 5.3 reorganizes their
findings by interpreting each new generation of fabs as a bundle of specific types of product
and process innovations.

5.1 Product Innovation

This subsection measures the welfare impact of product innovation. We first explain two
kinds of product innovation that we study (section 5.1.1) and then conduct counterfactual
simulations to quantify their welfare effects (section 5.1.2).

5.1.1 Two Types of Product Innovation

We distinguish between two types of product innovation: (i) larger products and (ii) other
new products. We briefly explain each of them in the following.

The industry introduced LCD panels of ever larger sizes by using newer, larger manufac-
turing equipment and fabs. The largest available products in 2001:Q1 (the beginning of our
data) were 15.7-inch notebooks, 24-inch monitors, and 28-inch TVs. Any products larger
than these sizes were new in this sense.

Figure 4: Number of Products

Note: This graph counts the number of products defined by all observable characteristics on record, that is, (i)–(v)

in section 3.1 including supplier identity. Appendix A.5.1.1 reports the same information by application.

throughout the sample period in Appendix A.5.3.
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Not all new products were larger than the existing ones, but they represented new com-
binations of size, resolution, and backlight type. Newer products tended to feature higher
resolution (PPI) and better backlights (LED), but many of them offer size-resolution combi-
nations that are simply different from—not necessarily physically superior to—the existing
ones.

Figure 4 plots the numbers of larger new products and other new products, respectively,
alongside the count of existing products as of 2001:Q1 (“initial products”). Appendix A.5.1
provides further details, including by-application versions of Figure 4, the visualization of
all products’ locations in the product-characteristics space, and product-level statistics.

5.1.2 Counterfactual: No Product Innovation

We quantify the effects of the two types of product innovation by simulating counterfactual
market equilibria without new products.

Table 2 compares the welfare performance of the actual product portfolio with three
counterfactual simulations: (i) without larger panels that did not exist in 2001:Q1, (ii)
without other new products that did not exist in 2001:Q1, and (iii) their combination. The
results are quite heterogeneous between IT (notebooks and monitors) and TV.

Table 2: Welfare Impact of Product Innovation, 2001–2011

Welfare measure Consumer surplus Producer surplus Social welfare
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
Baseline 57.9 (±0) 27.5 (±0) 85.4 (±0)
(i) Without larger products 52.7 (−9.0) 25.5 (−7.5) 78.1 (−8.5)
(ii) Without other new products 32.6 (−43.6) 19.0 (−31.0) 51.6 (−39.6)
(i) + (ii) 24.7 (−57.3) 15.6 (−43.5) 40.3 (−52.8)
B. Monitor
Baseline 157.3 (±0) 73.7 (±0) 231.0 (±0)
(i) Without larger products 153.2 (−2.6) 72.4 (−1.8) 225.6 (−2.3)
(ii) Without other new products 75.3 (−52.1) 43.8 (−40.6) 119.1 (−48.4)
(i) + (ii) 70.7 (−55.0) 42.1 (−42.9) 112.8 (−51.2)
C. TV
Baseline 186.0 (±0) 54.7 (±0) 240.7 (±0)
(i) Without larger products 45.1 (−75.7) 13.2 (−75.8) 58.4 (−75.8)
(ii) Without other new products 148.4 (−20.2) 46.4 (−15.1) 194.8 (−19.1)
(i) + (ii) 6.1 (−96.7) 4.4 (−91.9) 10.5 (−95.6)
D. All applications
Baseline 401.2 (±0) 156.0 (±0) 557.1 (±0)
(i) Without larger products 251.0 (−37.4) 111.1 (−28.8) 362.1 (−35.0)
(ii) Without other new products 256.3 (−36.1) 109.2 (−30.0) 365.6 (−34.4)
(i) + (ii) 101.5 (−74.7) 62.1 (−60.2) 163.6 (−70.6)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

The contributions of (ii) are much greater than those of (i) in the relatively mature
markets of notebooks and monitors. For notebooks, Panel A shows the total welfare impact
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of (i) is 8.5%, whereas that of (ii) is an order of magnitude larger at 39.6%. The reason
is that the largest initial product size in 2001:Q1 (15.7 inch) already covered most of the
popular sizes. Hence, most of the new products in high demand fell under category (ii).
Similarly, the largest initial size of monitors (24 inch) was sufficiently large to cover most
popular products. Panel B shows the impact of eliminating (i) is only 2.3%. Other new
products play a much bigger role (48.4%). Their combined welfare contribution is 52.8%
and 51.2% for notebooks and monitors, respectively.

By contrast, larger products were much more important than other new products in the
TV segment, and their combined welfare contribution was truly remarkable. The elimination
of larger TVs above 28 inch and other new varieties would have reduced SW by 75.8% and
19.1%, respectively, for a combined impact of 95.6%. The magnitude is staggering yet
reasonable because only 11 products of relatively small sizes existed in 2001:Q1; most of the
popular sizes (e.g., 32 inch and 40 inch) did not. Hence, Panel C is effectively quantifying
the welfare impact of the emergence of LCD-TVs an entirely new class of products.

The overall welfare impact of product innovations across all three applications is 70.6%
(Panel D). The relative contributions of larger products (35.0%) and other new products
(34.4%) are nearly identical at this aggregate level. The main takeaway is that product
innovation matters a lot and that the relative importance of different types of product
innovation varies with the lifecycle-stage of each product category.

5.2 Process Innovation

This subsection measures the welfare impact of process innovation. We first identify multiple
channels of process innovation by running a regression of cost data on various determinants
(section 5.2.1). We then simulate counterfactual trajectories of costs and market outcomes
by hypothetically eliminating each channel of process innovation at a time (section 5.1.2).

5.2.1 Determinants of Manufacturing Cost

One of the main advantages of our empirical setting is that we have detailed cost data,
which we derived from the widely used engineering model of unit cost by Display Search. Its
precision and reliability are externally validated by the fact that both the buyers and sellers
of LCD panels extensively use it as a key reference for their actual commercial transactions
(see section 3.2). We use this dataset to estimate the relationship between manufacturing
cost and its many determinants.
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We specify the cost of manufacturing product j in fab k at time t as

ln cjkt =
∑
g

θg1{genk = g}+
∑
a

θa1{agekt = a}+ θodfodfk︸ ︷︷ ︸
process innovations

+ θcfcff(k)t

+
∑
c

θc1{capakt = c}+ δ̃t + δ̃f(k) + δ̃j︸ ︷︷ ︸
time, firm, & product dummies

+ ηjkt, (2)

where 1{genk = g} is an indicator for generation-g fab, 1{agekt = a} is an indicator for
age-a fab, odfk is a dummy variable for the one-drop-fill (ODF) method of putting liquid
crystal between glass sheets,24 cff(k)t is a dummy for the in-house manufacturing of color
filters (CFs),25

1{capakt = c} is an indicator for capacity-utilization-level bin c, δ̃t is a time
dummy, δ̃f(k) is a firm dummy, δ̃j is a product dummy, and ηjkt captures all other non-
systematic factors and measurement error (i.e., the gap between the engineering estimate
and the actual cost).26 Coefficients θg, θa, θodf , θcf , and θc represent the effects of the five
technological determinants.

For our analysis of process innovation, the most important parameters are θg (the effects
of different capital vintages), θa (the effects of fab’s age/experience), and θodf (the effect of the
ODF process). They are directly related to firms’ fab investments, that is, conscious decisions
taken by the LCD manufacturers. By contrast, we do not interpret θcf (the cost saving from
in-house CFs) and θc (the effect of capacity utilization) as process innovation.27 The time
fixed effects δ̃t capture changes in the input costs of raw materials and key components, some
of which reflect process innovations and other changes in the upstream industries, including
glass and other materials, fine chemicals, and electronic devices.28 The fixed effects for firms
and products, δ̃f(k) and δ̃j, may contain some technological elements as well, but they are
not directly related to process innovation.

Table 3 reports the result of cost regressions across columns in an increasing order of
flexibility. Column 1 uses a linear functional form for all regressors, whereby we replace the

24This method improved productivity by reducing the time and steps required for the “cell” process as well
as the amount of wasted liquid crystal. It was first introduced by Hitachi Industries, a leading equipment
manufacturer, in 2002 and commercialized in 5G fabs. See Akabane (2014) for the technical details.

25CFs are one of the key components that can be either externally sourced or internally manufactured.
26In principle, the gap between the engineering estimate (our data) and the actual economic cost may

contain a systematic difference, which could bias the mean of ηjkt away from zero. In practice, the intuitive
patterns in Figure 3, as well as the reasonable fit between the theoretically predicted prices (based on the
cost data) and the actual price, suggest no systematic biases.

27θcf reflects the internalization of an upstream industry’s rent, not any physical improvement; capacity
utilization is not a technological choice but an equilibrium object that reflects many factors including demand
shocks and rivals’ reactions.

28Appendix A.5.2.2 measures their welfare contributions.
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dummies for θg, θa, and θc with linear terms, δ̃t with a time trend, and δ̃j with observed
product characteristics. Column 2 adds quadratic terms of three fab-level variables (genk,
agekt, and capakt) and time. Column 3 adds back δ̃t for each period. Column 4 is our
preferred specification with a full set of dummies (i.e., equation 2), which we use in all of
our subsequent analyses.

Table 3: Determinants of Manufacturing Cost

Specification (1) (2) (3) (4)
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
A. Fab specs
Tech. gen. −0.045 (0.000) −0.208 (0.002) −0.178 (0.002) − (−)
Tech. gen. squared − (−) 0.012 (0.000) 0.010 (0.000) − (−)
Fab age −0.003 (0.000) −0.015 (0.000) −0.015 (0.000) − (−)
Fab age squared − (−) 0.000 (0.000) 0.000 (0.000) − (−)

ODF method (θodf ) −0.102 (0.001) −0.005 (0.001) −0.011 (0.001) −0.006 (0.001)
In-house CF (θcf ) −0.022 (0.001) 0.011 (0.001) −0.011 (0.001) 0.003 (0.001)
Capa. util. −0.213 (0.004) −0.244 (0.032) −1.171 (0.037) − (−)
Capa. util. squared − (−) 0.038 (0.021) 0.596 (0.025) − (−)
B. Firm specs
Tier-1 −0.194 (0.003) −0.105 (0.003) −0.108 (0.003) −0.085 (0.003)
Korea −0.107 (0.001) −0.111 (0.001) −0.111 (0.001) − (−)
Taiwan −0.286 (0.003) −0.192 (0.003) −0.196 (0.003) − (−)
C. Product specs
Surface area 0.925 (0.001) 0.932 (0.001) 0.932 (0.001) − (−)
Monitor −0.106 (0.001) −0.109 (0.001) −0.108 (0.001) − (−)
TV 0.086 (0.002) 0.077 (0.002) 0.074 (0.002) − (−)
LED (edge) 0.060 (0.001) 0.064 (0.001) 0.064 (0.001) − (−)
LED (direct) −0.132 (0.001) −0.127 (0.001) −0.126 (0.001) − (−)
D. Time and others
Time −0.030 (0.000) −0.092 (0.002) − (−) − (−)
Time squared − (−) 0.000 (0.000) − (−) − (−)
Constant 13.533 (0.013) 20.133 (0.153) 9.193 (0.027) 5.175 (0.018)
Tech. gen. dummy (θg) No No No Yes
Fab age dummy (θa) No No No Yes
Capa. util. dummy (θc) No No No Yes
Firm dummy (γ̃f ) No No No Yes
Product dummy (ν̃j) No No No Yes
Time dummy (µ̃t) No No Yes Yes
Number of obs. 341,216 341,216 341,216 341,216
R2 0.963 0.966 0.969 0.984
Adjusted R2 0.963 0.966 0.969 0.984

Note: The dependent variable is the natural logarithm of the unit cash cost of producing an LCD panel. Standard
errors are in parentheses. See the main text for the explanation of the regressors. All estimates are based on the
ordinary-least-squares (OLS) regressions and meant to summarize the engineering cost estimates underlying the
data.

Let us review the results in column 1 because its simplicity helps us understand how these
factors affect cost. First, the estimates in section A (fab-level characteristics) suggest: (i) a
new-generation technology reduces cost by 4.5%, (ii) an extra quarter of operation reduces
cost by 0.3%, (iii) the introduction of the ODF method reduces cost by 10.2%, (iv) in-house
CFs reduce cost by 2.2%, and (v) changing capacity utilization from 0% to 100% reduces
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cost by 21.3%. Second, section B (firm-level characteristics) shows that the indicators for
“tier-1,” Korean, and Taiwanese firms (the reference category is “tier-2” Japanese firms)
are associated with approximately 10%–30% cost advantages.29 Third, section C (product
characteristics) suggests: (i) a 1% increase in the size of the panel (measured by surface
area in m2) leads to a less-than-proportional increase in cost (0.93%); (ii) monitor panels are
10.6% less costly than notebook panels (reference category), whereas TV panels are 8.6%
costlier; (iii) the cost performance of LED backlights could be either inferior or superior to
CCFL ones (reference category) depending on the exact type and layout (“edge” or “direct”).
Finally, the time-trend estimate in section D suggests the input cost decreases by 3% per
quarter on average. These linear estimates are missing certain important heterogeneity and
nonlinearity (see below) but still achieves the adjusted R2 of 0.963 because we observe and
control for literally everything that goes into the engineering cost model that generated our
data.

Figure 5 visualizes the heterogeneity and nonlinearity that become evident in the most
flexible specification (column 4 of Table 3). Panel (a) shows heterogeneous impacts of tech-
nological generations, whereby G5, G6, and G8.5 led to larger cost reductions than other
vintages. Likewise, Panel (b) reveals that more than half of learning by doing occurs within
the first two quarters of volume production. Yield improvement continues until year six,
but subsequently stops and moves into reverse as physical depreciation (e.g., wear and tear)
starts to kick in.30 The maximum productivity gain from each of these two channels is close
to 30%. Hence, both vintage capital and learning by doing are quantitatively important and
comparable in magnitude.

Panel (c) of Figure 5 suggests the presence of discontinuity in the effect of capacity
utilization. Unit cost does not vary by more than 2% if a fab operates within the 75%–
100% range, which is almost always the case in our sample period except for the Great
Recession.31 However, operating below 75% (and then below 60%) results in disproportionate
cost disadvantages because of the lumpiness in the typical labor schedule, whereby four
groups of workers take turns to perform three 8-hour shifts per day (the fourth shift is a
break). Finally, Panel (d) plots the estimates of the calendar-time effects, which reflect the
secular decreasing trend in the cost of raw materials and key components. Relatively little

29The tier-1 category applies to only several firms in Japan and Korea based on their historical status as
the leaders of the LCD technology, which reflects their technological expertise and preferential treatment by
key suppliers.

30The shape of the experience curve—including the upward-sloping part—is common across all vintages
of fabs, and hence is not an artifact of the right-censoring of data (i.e., the sample period ends before
newer-vintage fabs gain experience).

31The mean and standard deviation of capacity utilization in our data are 83% and 10%, respectively. The
median is 85%. See Appendix A.3.2 for more summary statistics.
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Figure 5: How Unit Cost Declines with Vintage, Experience, Capacity Utilization, and Time

(a) Capital Vintage (b) Experience

(c) Capacity Utilization (d) Calendar Time

Note: These graphs visualize our preferred estimates of the nonlinear effects of selected factors on column 4 of

Table 3. The solid lines with markers plot coefficient estimates of the dummy variables for (a) technological

generations of manufacturing equipment, (b) fab’s age since the beginning of volume production, (c) capacity-

utilization bins, and (d) calendar quarters, respectively. The dashed lines represent their 95% confidence intervals.

improvement occurred until 2004, but the subsequent advances led to an industry-wide cost
reduction by more than an order of magnitude.32

5.2.2 Counterfactual: No Process Innovation

We measure the welfare impact of process innovation by simulating “but-for” costs and then
computing “but-for” equilibrium outcomes based on these costs. First, we hypothetically
eliminate the vintage-capital effects by setting θg = 0, which means firms can no longer
invest in new-generation fabs and equipment.33 Second, we turn off learning by doing by

32The timing of acceleration around 2004 roughly coincides with the takeoff of LCD-TVs as mainstream
household goods in East Asia. The entire supply chain attracted investments around this period.

33We bundle the effect of the ODF process θodf with this category because it was typically adopted in the
installation of 5G fabs, forming part of newer vintages.
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setting θa = 0, which means production engineers can no longer reoptimize the production
lines or the equipment’s parameters to improve yield. Based on these counterfactual histories
of costs, we recompute equilibrium prices, sales, and welfare outcomes in each t.

Table 4: Welfare Impact of Process Innovation, 2001–2011

Welfare measure Consumer surplus Producer surplus Social welfare
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
Baseline 57.9 (±0) 27.5 (±0) 85.4 (±0)
(i) No vintage capital 51.3 (−11.3) 24.8 (−10.0) 76.1 (−10.9)
(ii) No learning by doing 38.2 (−34.0) 18.2 (−33.8) 56.4 (−33.9)
(i) + (ii) 33.2 (−42.7) 16.1 (−41.6) 49.3 (−42.3)
B. Monitor
Baseline 157.3 (±0) 73.7 (±0) 231.0 (±0)
(i) No vintage capital 138.4 (−12.0) 68.5 (−7.0) 207.0 (−10.4)
(ii) No learning by doing 102.6 (−34.8) 47.1 (−36.1) 149.8 (−35.2)
(i) + (ii) 87.8 (−44.2) 42.9 (−41.8) 130.7 (−43.5)
C. TV
Baseline 186.0 (±0) 54.7 (±0) 240.7 (±0)
(i) No vintage capital 167.0 (−10.2) 48.9 (−10.6) 215.9 (−10.3)
(ii) No learning by doing 139.8 (−24.8) 41.2 (−24.7) 181.0 (−24.8)
(i) + (ii) 124.3 (−33.2) 36.4 (−33.4) 160.7 (−33.2)
D. All applications
Baseline 401.2 (±0) 156.0 (±0) 557.1 (±0)
(i) No vintage capital 356.7 (−11.1) 142.2 (−8.8) 498.9 (−10.5)
(ii) No learning by doing 280.6 (−30.0) 106.5 (−31.7) 387.2 (−30.5)
(i) + (ii) 245.2 (−38.9) 95.4 (−38.8) 340.6 (−38.9)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

Table 4 reports CS, PS, and SW. We discuss our main findings based on the aggregate
numbers in Panel D because all three applications are similarly impacted. The absence of (i)
vintage-capital effects would have reduced SW by 10.5%; the elimination of (ii) learning by
doing would have had a larger impact of 30.5%. This difference stems from the fact that (i)
affects only newer fabs, whereas (ii) affects all fabs. The combination of (i) and (ii) would
have led to a welfare loss of 38.9%.34

5.3 New-Generation Fabs as Bundles of Innovations

Sections 5.1–5.2 presented unusually detailed evidence on the impact of innovation, but
treating various types of innovations as separate phenomena would be a misrepresentation
of the LCD technology. An important subset of them arrived in “bundles”—embodied by
new generations of fabs. Accordingly, we reorganize some of the preceding results by the
technological generation of fabs, each of which encapsulates a combination of specific product

34Appendix A.5.2.2 reports additional results related to the time effects in Figure 5 (d), which we attribute
to the effects of upstream innovation.
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and process innovations.Because fab investments are well measured in our data, the findings
in this subsection will be directly useful in section 6 and later.

Exactly which subcategories of product and process innovations belong to such a bundle?
Of the two types of product innovation, the first one (larger new products) is closely con-
nected to new-generation fabs. Larger panels require larger mother-glass sheets, which only
larger equipment and fabs can handle. The newest fab generation at the beginning of our
data (2001:Q1) was 4.5G, which could produce notebook and monitor panels of all sizes but
not TV panels above 40 inches.35 Hence, no LCD-TVs above 40 inches would have existed
without the post-4.5G technologies.36 By contrast, the second type of product innovation
(other new products) does not rely on new-generation fabs. Of the two channels of process
innovation, vintage capital is synonymous with new-generation fabs, whereas learning by
doing applies to all generations. In summary, new-generation fabs represent a bundle of
larger new products and vintage-capital effects.

We assess the welfare contribution of each technological generation as follows. First, we
hypothetically eliminate all capital vintages beyond 4.5G, along with any larger new products
and cost advantages due to vintage-capital effects that rely on them. This counterfactual sce-
nario forms the basis for measuring the contributions of all post-4.5G technologies. Second,
we add back the 5G technology. The difference between this simulation and the previous
4G–4.5G-only simulation reflects the marginal contribution of the 5G fabs. Subsequently,
we cumulatively add back each of the 5.5G, 6G, 7G, 8G, 8.5G, and 10G technologies at a
time, the comparisons of which reveal their respective contributions.

Table 5 summarizes the welfare contribution of each technological generation and conveys
two findings. First, new vintages increased welfare, but their marginal contributions tend
to diminish in later generations. The 5G fabs had by far the largest impact because its
productivity effect is large—see Figure 5 (a) in section 5.2.1—and because a host of popular
new products (45”–55” TVs) relied on this vintage. By contrast, the marginal contribution
of 10G is negligible.37

Our second finding is that the impact of new-generation fabs is much larger for TVs
(Panel C) than for IT applications (Panels A and B). For example, 5G fabs increased SW by
32.3% for TVs, but only by 9.3% and 9.7% for notebooks and monitors, respectively. Larger-

35The supply of 45”–55” TV panels had to wait until 5G fabs began mass production, and 60”–65” TV
panels until 5.5G fabs.

36Note this definition of “larger new products” is slightly different from the one we used in section 5.1,
which was not precisely connected to the physical size limit of each fab generation. In this subsection, only
TVs above 40 inches are considered “larger new products” because they could not be manufactured by a
4.5G fab, the newest available technology as of 2001:Q1.

37In fact, it is slightly negative because its cost structure is slightly inferior to 8.5G according to our cost
regression in Table 3 and Figure 5. Only Sharp invested in 10G during our sample period.

23



Table 5: Welfare Impact of New Technologies, 2001–2011

Welfare measure Consumer surplus Producer surplus Social welfare
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
4G–4.5G only (baseline) 51.3 (±0) 24.8 (±0) 76.1 (±0)
4G–5G only 56.2 (+9.6) 26.9 (+8.7) 83.2 (+9.3)
4G–5.5G only 56.9 (+10.9) 27.2 (+9.6) 84.1 (+10.5)
4G–6G only 57.4 (+11.9) 27.3 (+10.4) 84.8 (+11.4)
4G–8G only 57.8 (+12.6) 27.5 (+10.9) 85.2 (+12.0)
4G–10G 57.9 (+12.7) 27.5 (+11.1) 85.4 (+12.2)
B. Monitor
4G–4.5G only (baseline) 138.4 (±0) 68.5 (±0) 207.0 (±0)
4G–5G only 154.1 (+11.4) 72.9 (+6.3) 227.0 (+9.7)
4G–5.5G only 154.2 (+11.4) 72.9 (+6.3) 227.0 (+9.7)
4G–6G only 156.0 (+12.7) 73.3 (+7.0) 229.4 (+10.8)
4G–8G only 157.0 (+13.4) 73.6 (+7.4) 230.6 (+11.4)
4G–10G 157.3 (+13.7) 73.7 (+7.6) 231.0 (+11.6)
C. TV
4G–4.5G only (baseline) 131.3 (±0) 36.6 (±0) 167.8 (±0)
4G–5G only 172.1 (+31.1) 49.9 (+36.5) 222.0 (+32.3)
4G–5.5G only 174.6 (+33.0) 51.1 (+39.7) 225.7 (+34.5)
4G–6G only 182.6 (+39.1) 53.5 (+46.3) 236.1 (+40.7)
4G–8G only 185.2 (+41.1) 54.4 (+48.8) 239.7 (+42.8)
4G–10G 186.0 (+41.7) 54.7 (+49.6) 240.7 (+43.4)
D. All applications
4G–4.5G only (baseline) 321.0 (±0) 129.9 (±0) 450.9 (±0)
4G–5G only 382.5 (+19.2) 149.7 (+15.3) 532.2 (+18.0)
4G–5.5G only 385.7 (+20.2) 151.1 (+16.3) 536.8 (+19.1)
4G–6G only 396.1 (+23.4) 154.2 (+18.7) 550.2 (+22.0)
4G–8G only 400.0 (+24.6) 155.5 (+19.7) 555.5 (+23.2)
4G–10G 401.2 (+25.0) 156.0 (+20.1) 557.1 (+23.6)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.
Rows for “4G–7G only” and “4G–8.5G only” are omitted because their outcomes are nearly identical to
“4G–8G only” and “4G–10G,” respectively. See Appendix A.5.3 for a robustness check with respect to the
assumption on competitive conduct.

product innovation was a major driving force in the nascent market for LCD-TVs and heavily
relied on the new vintages of capital investment. By contrast, the panels for notebooks
and monitors had limited room for product innovation with larger-product innovation by
2001:Q1. This contrast conforms to the characterization of typical product life cycles (e.g.,
Klepper 1996): product innovation matters relatively more in earlier stages of a new market,
whereas process innovation becomes essential in later stages once the industry converges on
a “dominant design” of popular products.

These subtleties notwithstanding, the main message is simple: new-generation fabs made
substantial contributions to welfare. However, whether these benefits exceeded the huge
costs of fab investments is a separate question, which we investigate in section 6.
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6 Social and Private Returns on Investment

The welfare analysis in section 5 showed sizeable social benefits from fab investments in
the order of billions of dollars per calendar quarter. However, whether these investments
generated a positive return is not obvious because the industry spent more than a hundred
billion dollars on new fabs during the sample period. This section incorporates the cost of
fab investments and measures their returns.

Section 6.1 calculates the realized return on investment (ROI) evaluates the aggregate
ROI under the actual market structure (i.e., seven major firms and fringe). Section 6.2 eval-
uates ROI under hypothetical monopoly. Section 6.3 incorporates more realistic, strategic
considerations and measures oligopolistic firms’ individual incentives innovate, which forms
the basis for our analysis of competition and innovation in sections 7 and 8.

6.1 High Social Returns, Low Private Returns

This subsection introduces the cost of fab investments and measures their returns. We define
suitable measures of social and private ROI along the way.

Table 6 lists the total dollar amount of fab investments by firm. Samsung and LG of
Korea lead the industry with $28.6 billion and $27.1 billion, respectively, followed by CMO
($25.1 billion) and AUO ($19.9 billion) of Taiwan. Their smaller rivals, CPT ($5.3 billion)
and HS ($2.3 billion), lag behind as they stopped investing in new fabs in the mid-2000s.
Sharp ($9.8 billion) is the only Japanese firm with comparable footprints. “Others” are
mostly fringe firms in Japan, with only $5.5 billion of collective investments.

Table 6: Cost of Fab Investments by Firm, 2001–2011

Firm Location Total fab investment ($)
Samsung South Korea 28.598
LG South Korea 27.106
CMO Taiwan 25.149
AUO Taiwan 19.925
Sharp Japan 9.813
CPT Taiwan 5.289
HS Taiwan 2.296
Others Mostly Japan 5.526
Industry total − 123.703

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

Figure 6 compares the aggregate social benefits and costs in (undiscounted) time series.
“Social benefits” plot the difference between the actual SW with all generations of fabs (4G–
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10G) and the counterfactual SW with only 4G–4.5G fabs,38

∆SWt(a, ã) ≡ SWt(a)− SWt(ã), (3)

and “fab costs” plot the industry’s total investment in each period,

∆FCt(a, ã) ≡ FCt(a)− FCt(ã), (4)

where a ≡ (af )
F
f=1 and ã ≡ (ãf )

F
f=1 denote the actual and counterfactual profiles of invest-

ment strategies (“actions”) for F oligopolistic firms, respectively.
For simplicity, we denote each firm’s entire history of fab investments in a lump-sum

manner as af ∈ {0, 1}, where af = 1 summarily represents all of firm f ’s actual investments
in 2001:Q1–2011:Q4, and af = 0 indicates no investment during the same period (i.e., no
progress beyond the initial technology with 4G–4.5G fabs). The no-investment counterfac-
tual of this subsection sets ãf = 0 for all f . By treating the actual course of investments a

as a fixed, lump-sum choice, we are implicitly interpreting the entire sample period within a
static framework akin to a two-period model.

Figure 6: Social Benefits and Costs of Fab Investments (Undiscounted)

Note: “Social benefits” aggregate all new-generation (5G–10G) fabs’ welfare contribution in each quarter, ∆SWt,

which corresponds to our analysis in section 5.3. “Fab costs” aggregate the industry-wide total investment costs

in each quarter, ∆FCt, shown as negative numbers in the graph for intuitive visualization. “Net benefits” show

their difference in each quarter, NBt ≡ ∆SWt −∆FCt. See the main text for more precise definitions.

38This definition is exactly the same as in section 5.3. We keep using the same assumptions on firms’
conduct based on the results in section 4.2: monopoly pricing in 2001:Q1–2004:Q3 followed by Bertrand-
Nash pricing in 2004:Q4–2011:Q4.
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Figure 6 shows the costs were larger than the benefits in period-by-period comparisons
until around 2007, at which point ∆SWt started to exceed ∆FCt. This picture is intuitive
but incomplete for an analysis of long-term investments. A more comprehensive evaluation
must incorporate time discounting as well as continuation values after the sample period.

Table 7 shows the benefit-cost analysis with time discounting at the annual rates of 1%,
2.5%, 5%, and 10%, respectively. Regarding the post-sample period, we simply assume that
the incremental social benefit remains constant at its 2011:Q4 level (i.e., ∆SWt = ∆SWT

for all t > T , where T is 2011:Q4) and that no new fab investments would take place (i.e.,
∆FCt = 0 for all t > T ).

Table 7: Social and Industry Returns on Fab Investments

Annual discount rate 1% 2.5% 5% 10%
1. Change in consumer surplus, DPV (∆CS) 1,645.7 594.1 250.2 88.7
2. Change in producer surplus, DPV (∆PS) 477.0 173.8 74.5 27.4
3. Change in social welfare (= 1 + 2), DPV (∆SW ) 2,122.7 767.9 324.7 116.1
4. Fab investment cost, DPV (∆FC) 116.6 106.7 92.1 68.9
5. Change in net social value (= 3− 4), ∆NSV 2,006.1 661.2 232.5 47.2
6. Change in net producer value (= 2− 4), ∆NPV 360.4 67.1 −17.7 −41.4

Note: All discounted present values (DPVs) are in billion US dollars as of 2001:Q1 unless otherwise noted.

Rows 1–3 report the discounted present values (DPVs) of the changes in CS, PS, and
SW as of 2001:Q1, respectively; row 4 reports the DPV of total fab costs. DPV is defined
as DPV (∆X(a, ã)) ≡

∑∞
t=0 δ

t∆Xt(a, ã), where δ ≡ 1
1+r

is the discount factor, r > 0 is the
discount rate, t = 0 corresponds to 2001:Q1, and ∆X ∈ {∆CS,∆PS,∆SW,∆FC}. Based
on these measures, we define the change in net social value as

∆NSV (a, ã) ≡ DPV (∆SW (a, ã))−DPV (∆FC(a, ã)). (5)

Row 5 shows that the net benefit is positive even at a relatively high discount rate of 10%.
Thus, the investments in 5G–10G technologies were socially valuable.

Whether these investments made commercial sense is another story. Row 6 reports the
industry-wide net present value (NPV), defined as the change in the net producer value,

∆NPV (a, ã) ≡ DPV (∆PS(a, ã))−DPV (∆FC(a, ã)). (6)

Even though ∆NPV (a, ã) > 0 at low r, it is clearly negative at 5% and above. The industry-
wide internal rate of return (IRR)—the break-even discount rate—is 4.05%. This level of
return is not appealing from financial perspectives because it barely covers the lowest-possible
cost of capital (risk-free rates). Moreover, the true return is likely to be even lower because
the cost of fab is only a component of the overall costs for developing and implementing new
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technologies.39 In short, the industry as a whole represented only a mediocre investment
opportunity at best.

Table 8: Realized Private Return by Firm

Annual discount rate 1% 2.5% 5% 10%
A. Change in producer surplus, DPV (∆PSf )
Samsung 173.9 64.8 28.8 11.4
LG 189.1 70.0 30.9 12.3
CMO 39.3 13.6 5.3 1.6
AUO 51.4 18.8 8.1 2.9
Sharp 61.1 21.7 8.9 2.9
CPT −2.0 −1.1 −0.8 −0.6
HS 0.5 0.3 0.2 0.2
Others −36.2 −14.2 −6.9 −3.2

B. Fab investment cost, DPV (∆FCf )
Samsung 26.9 24.6 21.1 15.7
LG 25.4 23.2 19.8 14.5
CMO 23.7 21.6 18.5 13.6
AUO 18.9 17.4 15.2 11.6
Sharp 9.2 8.4 7.2 5.2
CPT 5.1 4.8 4.4 3.6
HS 2.2 2.1 1.9 1.5
Others 5.2 4.7 4.1 3.1
C. Change in net producer value (= A−B), ∆NPVf

Samsung 147.0 40.3 7.7 −4.3
LG 163.6 46.8 11.1 −2.2
CMO 15.7 −8.0 −13.2 −12.0
AUO 32.5 1.4 −7.1 −8.7
Sharp 51.9 13.3 1.7 −2.4
CPT −7.1 −6.0 −5.2 −4.2
HS −1.8 −1.8 −1.7 −1.4
Others −41.4 −19.0 −11.0 −6.3

Note: All DPVs are in billion US dollars as of 2001:Q1 unless otherwise noted.

Despite low aggregate returns, some firms were much more profitable than others. Table
8 decomposes the realized returns in Table 7 into individual firms. Panels A, B, and C report
DPV (∆PSf ), DPV (∆FCf ), and ∆NPVf , respectively. Panel C shows Samsung and LG as
clear winners of the investment race, with positive ∆NPVf at r = 5%. The performances of
CMO, AUO, and Sharp are less stellar. Even worse, CPT, HS, and Others suffered negative
returns even at 1% discount rate; they would have been better off had the industry not
moved on to the post-4.5G technologies.40 Innovations did not “lift all boats.”41

39Other costs (e.g., R&D efforts behind new products and processes) are not precisely measured and could
not be used in our analysis.

40Some readers might wonder why such unprofitable firms did not exit. We propose three interpretations.
First, CPT and HS did stop investing in new fabs by the mid 2000s, dropping out of the investment race,
and many fringe firms in Others did exit the industry altogether. Second, their revenues and expenditures
were an order of magnitude smaller than those of the top-five firms, which means even minor errors (e.g., due
to misspecification or mismeasurement) could change the sign of their ROI estimates. Third, government
subsidies might have helped them survive.

41Some readers might wonder why the price-fixing cartel did not extend the scope of cooperation to
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6.2 Greater Appropriability under Monopoly

The preceding analysis highlights relatively low realized returns. Competition reduces firms’
ability to appropriate social returns. Could less competitive market structure, such as
monopoly, have helped promote innovation by improving private ROI?

We repeat the analysis of Table 7 under a counterfactual market structure with monopoly.
First, we simulate equilibrium prices and sales in each period under the assumption that all
products were sold by a monopolist.42 Second, we eliminate all fabs with the post-4.5G
technologies and recompute another trajectory of monopoly prices and sales. Third, we
calculate the difference in welfare outcomes between these two situations.

Table 9: Industry-wide Returns under Monopoly

Annual discount rate 1% 2.5% 5% 10%
1. Change in consumer surplus, DPV (∆CS) 889.6 322.4 136.8 49.3
2. Change in producer surplus, DPV (∆PS) 749.2 271.6 115.3 41.6
3. Change in social welfare (= 1 + 2), DPV (∆SW ) 1,638.9 594.1 252.1 90.9
4. Fab investment cost, DPV (∆FC) 116.6 106.7 92.1 68.9
5. Change in net social value (= 3− 4), ∆NSV 1,522.3 487.3 160.0 22.0
6. Change in net producer value (= 2− 4), ∆NPV 632.6 164.9 23.2 −27.2

Note: All DPVs are in billion US dollars as of 2001:Q1 unless otherwise noted.

Table 9 reports ROI results under monopoly. Rows 1–3 show that monopoly reduces
the positive impact of innovations on CS by approximately 45% compared with the actu-
al/oligopoly case in Table 7, increases the gains in PS by approximately 55%, and reduces
the total welfare gain by approximately 22% (at all levels of r). Consequently, ∆NSV de-
creases by between 24.1% (at r = 1%) and 53.4% (at r = 10%), whereas ∆NPV significantly
improves. Hence, monopoly increases PS at the expense of CS and SW, which is one of the
most basic lessons in economics.

This basic lesson notwithstanding, some readers might be tempted by the positive impact
of monopoly on ∆NPV (a, ã) to infer that monopoly would be good for innovation. However,
that is not a foregone conclusion for two reasons. First, innovation is not the ultimate social
goal in its own right but only a means to achieve it. Rows 3 and 5 of Table 9 show massive
decreases in DPV (∆SW ) and ∆NSV relative to the actual oligopoly. Thus, monopoly can-
not be socially desirable in the current context. Second, these negative welfare results may
still understate monopoly’s true negative impact on SW. Industry reports routinely charac-
terized the behavior of the oligopolistic firms as an investment arms race, which suggests

investments. The results in panel C suggest that the winners of the investment race (e.g., Samsung and LG)
would not have agreed to reduce investments.

42Section 6.1 assumed monopoly pricing (only) in 2001:Q1–2004:Q3 to mimic the cartel’s influence in
reality, whereas ection 6.2 assumes monopoly for the entire sample period (including 2004:Q4–2011:Q4).
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that monopoly might have invested much less aggressively.

6.3 Competitive Pressure under Oligopoly

The preceding analyses compared outcomes with and without all/any fab investments. The
latter, no-investment (ã = 0) counterfactual is equivalent to an industry-wide ban on invest-
ments. However, no single firm had the ability to impose such a ban in reality. Hence, even
though section 6.1 presented valid measures of aggregate returns and their firm-level de-
composition, they fail to capture individual firms’ strategic incentives, which this subsection
properly measures.

We investigate whether each firm could have increased profits by unilaterally deviating
from a = 1 and not investing in any new fabs. Let ǎ(f) ≡ (ǎf ′)Ff ′=1 denote such a counter-
factual profile of investments, where ǎf = 0 and ǎf ′ = 1 for all f ′ ̸= f . Then the difference
in focal firm f ’s NPV between a and ǎ(f),

∆NPVf (a, ǎ(f)) ≡ DPV (∆PSf (a, ǎ(f)))−DPV (∆FCf (a, ǎ(f))), (7)

represents its incentive to invest in this strategic environment.

Table 10: Returns Relative to Unilateral No-Investment Deviation

Annual discount rate 1% 2.5% 5% 10%
A. Change in producer surplus, DPV (∆PSf )
Samsung 244.7 91.7 41.2 16.7
LG 245.4 92.3 41.9 17.5
CMO 85.3 30.3 12.4 4.2
AUO 88.7 32.7 14.2 5.4
Sharp 68.6 24.8 10.5 3.7
CPT 1.4 0.7 0.4 0.2
HS 2.2 1.1 0.7 0.4
Others 1.2 0.4 0.2 0.0
B. Fab investment cost, DPV (∆FCf )

(Omitted: same as in Table 8)
C. Change in net producer value (= A−B), ∆NPVf

Samsung 217.8 67.2 20.1 1.0
LG 219.9 69.2 22.1 3.0
CMO 61.7 8.8 −6.1 −9.4
AUO 69.8 15.3 −1.0 −6.3
Sharp 59.4 16.4 3.3 −1.5
CPT −3.7 −4.1 −4.0 −3.4
HS 0.0 −0.9 −1.2 −1.1
Others −4.0 −4.3 −3.9 −3.0
Sum of positive changes 628.6 176.8 45.4 4.0
Sum of negative changes −7.7 −9.4 −16.1 −24.8
Sum of all changes, SII 620.9 167.4 29.4 −20.8

Note: All DPVs are in billion US dollars as of 2001:Q1 unless otherwise noted.
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Table 10 shows that most firms had positive incentives to invest at r = 2.5% and that
Samsung and LG had positive incentives even at r = 10%. The weakest firms’ (CPT, HS,
and Others) incentives are still non-positive at any r, but the magnitude of losses is now
much smaller than in Table 8. The differences between Tables 10 and 8 reflect the effects of
strategic incentives in a racing environment. The rewards and threats from business stealing
seem to have created sufficient incentives for most firms to keep investing.43 No-investment
was not an attractive alternative for them.

Regarding the overall impact of competition on innovation, we find that the aggregate
incentive to innovate under the actual, seven-firm oligopoly was similar to (or greater than)
that under monopoly. Let us define the sum of individual incentives to innovate (SII) as

SII ≡
∑
f

∆NPVf . (8)

The bottom row of Table 10 shows that SII is $620.9 billion, $167.4 billion, $29.4 billion,
and $−20.8 billion, at 1%, 2.5%, 5%, and 10% discount rates, respectively. These sums
are similar to or greater than their monopoly counterparts in row 6 of Table 9. This result
suggests that the positive incentive effect of business stealing (competitive pressure) can
offset the negative incentive effect of the relative lack of appropriability under oligopoly. We
investigate this theme more systematically in sections 7 and 8.

7 Market Structure and the Incentive to Innovate

This section broadens the preceding analysis of market structure. Section 6 compared the
incentive to innovate under the actual oligopoly (with seven major firms and Others) and
hypothetical monopoly, but did not study any intermediate levels of concentration. We now
consider all possible combinations of firms and the resulting market structures.

Section 7.1 studies the impacts of seven-to-six mergers. Section 7.2 further investigates
the impacts of all possible mergers that would lead to more concentrated market structures
with five, four, three, two, and one firm(s). Section 7.3 examines several specific mergers to
gain further insights. Section 7.4 assesses the merit of “failing firm” defense by simulating
firm exits.

43CPT, HS, and Others mostly stopped investments in the first half of the sample period, which is consistent
with their non-positive ∆NPVf in Table 10 as well.
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7.1 Seven-to-Six Mergers

This subsection measures the effects of seven-to-six mergers on welfare and the incentive to
innovate. Our welfare measure continues to be the DPV of SW, but our analytical focus
is different from sections 5 and 6, which measured the gains from innovations in terms of
∆SW (a, ã). In this section, we calculate the levels of SW under different market structures
Ω—by which we denote the identity of the owner of each and every product—while holding
fixed the actual history of fab investments a. Likewise, we measure the effects of mergers on
the incentive to innovate by comparing SII under different Ω given the actual a.

The idea behind this counterfactual design is to go as far as we can with the simple
static model of BLP-style demand and supply, fully exploiting the richness of data with
product-and-fab-level details. The main benefits of this “static” approach are its simplicity,
its capacity to incorporate hundreds of differentiated products, and its direct connection to
the current practice in merger simulations for antitrust purposes. Its main drawback is that
we cannot allow the timing and amount of investments in a to change in response to the
change in Ω, which would require a multi-period dynamic model.44

Table 11: List of All Possible Seven-to-Six Mergers and Their Impacts

Rank Acquirer Target Welfare effect Incentive effect
∆DPV (SW ) (% change) ∆SII (% change)

1 Samsung LG −17.7 (−1.4) 0.2 (0.8)
2 LG AUO −7.6 (−0.6) 1.5 (5.1)
3 LG CMO −6.8 (−0.5) 1.2 (4.0)
4 Samsung CMO −6.7 (−0.5) 0.1 (0.3)
5 Samsung AUO −6.5 (−0.5) 0.1 (0.2)
6 Samsung Sharp −4.6 (−0.4) 1.2 (4.0)
7 CMO AUO −4.2 (−0.3) 0.6 (2.0)
8 LG Sharp −1.6 (−0.1) 0.4 (1.3)
9 CMO Sharp −0.9 (−0.1) −0.1 (−0.3)
10 AUO Sharp −0.9 (−0.1) 0.1 (0.3)
11 LG CPT −0.3 (−0.0) −0.2 (−0.7)
12 Samsung CPT −0.3 (−0.0) −0.1 (−0.4)
13 LG HS −0.2 (−0.0) 0.0 (0.0)
14 CMO CPT −0.2 (−0.0) −0.0 (−0.1)
15 AUO CPT −0.2 (−0.0) −0.0 (−0.1)
16 Samsung HS −0.1 (−0.0) 0.0 (0.1)
17 AUO HS −0.1 (−0.0) 0.0 (0.1)
18 CMO HS −0.1 (−0.0) 0.0 (0.1)
19 Sharp CPT −0.0 (−0.0) −0.0 (−0.0)
20 CPT HS −0.0 (−0.0) 0.0 (0.0)
21 Sharp HS −0.0 (−0.0) −0.0 (−0.0)

Note: The 21 possible mergers are sorted and ranked by the magnitude of (negative) welfare effect, ∆DPV (SW ).
All DPVs are in billion US dollars as of 2001:Q1 at r = 5%. The designation of “acquirer” and “target” firms is
purely illustrative and does not affect our simulation results—we list whichever merging party with a larger amount
of fab investment in Table 6 as the former and the other party as the latter.

44Our companion paper (Igami, Qiu, and Sugaya 2023) pursues this approach.
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Table 11 lists all of the 21 possible seven-to-six mergers in the descending order of the
magnitude of (negative) welfare effect, ∆DPV (SW ) at r = 5%.45 The top five mergers
involve Samsung, LG, CMO, and AUO (i.e., four largest firms by the amount of fab invest-
ments) and lead to sizeable reductions in SW.46 Mergers 6–10 are less powerful combinations
that often include Sharp, the fifth largest firm. Finally, the bottom half (ranks 11–21) lists
mergers involving CPT and HS, the two smallest firms, with negligible impacts on SW. These
results are straightforward and intuitive.

By contrast, mergers’ impact on the incentive to innovate is much more nuanced. Mergers
2, 3, and 6–8 lead to substantial increases in SII (1.3%–5.1%), whereas mergers 1, 4, and
5 have limited impacts (0.2%–0.8%). Thus, the magnitude of incentive effects is not closely
correlated with that of welfare effect. Another interesting finding is that seven out of the 21
mergers (9, 11, 12, 14, 15, 19, and 21) reduce SII, which makes them unambiguously bad
from social perspectives because ∆DPV (SW ) < 0 for all mergers. Curiously, these seven
cases involve Sharp, CPT, and/or HS, the three smallest firms. To the extent that smaller
firms are easier acquisition targets (e.g., because they are cheaper and attract less antitrust
scrutiny), they are more “realistic” mergers than others near the top of Table 11.

In summary, mergers’ impact on innovation incentives is quite heterogeneous and could
be positive or negative depending on the specific combination of firms, which suggests the
antitrust evaluation of innovation effects must be merger-specific. Because ∆SII could be
either positive or negative, the degree of required case-specificity is greater than that of a
more conventional, short-run welfare analysis (in which ∆DPV (SW ) is always negative).
Appendix A.7.1 compares these results with the cases of firm exit to assess the merit of
“failing firm” defense.

7.2 All Other Mergers and Market Structures

This subsection extends our merger simulations to include all possible combinations of firms.
We simulate all of the 140 five-firm market structures (i.e., there are 140 possible combina-
tions of the seven original firms into five new entities). Likewise, there are 350 four-firm, 301
three-firm, and 63 two-firm configurations, as well as one quasi-monopoly situation (“quasi”

45We do not consider mergers with Others until section 7.2 because it s a collection of many small firms.
We conduct a sensitivity analysis with different discount rates in section 8.2.

46A note on magnitude is in order. As in sections 5 and 6, we compute the entire sequence of equilibrium
outcomes in 2001:Q1–2011:Q4 (and beyond) under each simulated ownership structure Ω. However, because
we keep assuming that the cartel was fully effective (i.e., monopoly pricing prevailed) until 2004:Q3, the
impact of changing Ω manifests itself only in t >2004:Q3. Thus, even though ∆DPV (SW ) and ∆SII might
appear relatively small, it could be an artifact of time-discounting; the actual impact in each t >2004:Q3
could be much larger.
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because we keep Others independent); we simulate all of them. Finally, we also simulate
perfect monopoly in which all seven major firms and Others are consolidated.47

Figure 7: Effects of Market Structure on Social Welfare and Innovation Incentives

(a) Including Outliers (b) Excluding Outliers

Note: Each dot represents a specific configuration of firms, Ω, and color-coded by the number of active firms

(including Others). Both welfare and incentive effects are calculated as DPVs in billion US dollars as of 2001:Q1

at r = 5% and then expressed in terms of percentage changes from Ω0, the baseline (actual) market structure with

seven firms and Others. See Appendix A.7.2 for a detailed examination of the outliers, and section 8 for sensitivity

analyses.

Figure 7 visualizes all merger simulations. Each data point represents a specific configu-
ration of firms (i.e., a product-ownership structure Ω that arises from specific combinations
of firms), with its impact on welfare on the horizontal axis and its incentive effect on the
vertical axis. The reference point (0, 0) is the original market structure Ω0 with seven major
firms and Others, shown as a black dot (and labeled as N = 8 in the legend to acknowledge
the presence of Others as an independent firm). The effects of all other configurations are
expressed relative to DPV (SW ) and SII under this initial state Ω0.

Pink dots visually represent the 21 six-firm market structures that we examined in section
7.1 (labeled as N = 7 in the legend), most of which are near (0, 0). Likewise, purple dots
plot the 140 five-firm situations (N = 6). Their distribution is slightly more dispersed in
both horizontal and vertical dimensions and left-shifted relative to the pink dots. Table 12
confirms these impressions with more precise statistics (compare rows “6 + Others” and “5
+ Others”).

Similar but more nuanced patterns arise as we visually inspect the blue dots (N = 5),
green dots (N = 4), yellow dots (N = 3), and an orange dot (N = 2). Several outliers
in the top-center part of the plot might create an impression that industry consolidation

47This last setup is identical to that of section 6.2. Its comparison with all other mergers gives it a useful
context to understand the mechanism underlying our findings.
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Table 12: Summary of All Possible Market Structures and Their Effects

Number of Possible Welfare effect, ∆DPV (SW ) (%) Incentive effect, ∆SII (%)
firms config. Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

7 + Others 1 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 0.00
6 + Others 21 −0.2 0.3 −1.4 −0.0 0.8 0.1 1.6 −0.7 5.1 0.33
5 + Others 140 −0.5 0.6 −3.1 −0.0 1.5 0.4 2.1 −1.1 8.8 0.31
4 + Others 350 −1.0 0.8 −7.5 −0.1 1.8 1.1 2.6 −3.5 9.4 0.30
3 + Others 301 −1.7 1.3 −11.0 −0.5 1.3 0.6 3.6 −6.3 20.9 0.42
2 + Others 63 −3.4 2.4 −11.9 −1.6 −1.2 −2.8 5.9 −8.5 0.1 0.65
1 + Others 1 −12.3 − −12.3 −12.3 10.4 10.4 − 10.4 10.4 0.00
No Others 1 −20.9 − −20.9 −20.9 −21.0 −21.0 − −21.0 −21.0 1.00

Note: Both welfare and incentive effects are calculated as DPVs in billion US dollars as of 2001:Q1 at r = 5% and
then expressed in terms of percentage changes from Ω0, the original market structure with seven firms and Others.
The bottom row (No Others) is a perfect monopoly that consolidates Others as well.

would encourage innovation, but Table 12 shows that both the mean and median of ∆SII

decrease between N = 5 (four firms and Others) and N = 3 (two firms and Others),
whereas its variability increases—in terms of both standard deviation and min-max range.
Meanwhile, the fraction of market structures with ∆SII < 0 (in the right-most column)
drastically increases from 0.30 to 0.65. The orange dot (only one major firm and Others) is
a clear exception but would seem a risky target for public policy. Thus, the vast majority
of mergers results in steady shifts toward south-west, that is, reductions in both welfare and
innovation incentives. In Appendix A.7.2, we closely examine each of the outliers and find
that all of them are unrealistic cases.

The red dot (N = 1) in the lower-left corner of Figure 7 represents perfect monopoly,
which corresponds to the simulation in section 6.2. Its outcomes are strictly worse than
under any other market structures, with ∆DPV (SW ) = −20.9% and ∆SII = −21.0%.
Even though its greater market power helps monopoly appropriate more returns, the total
lack of business-stealing incentives makes it a lazy innovator.

Table 13: Summary of All Possible Mergers and Their Effects

Merger Possible Welfare effect, ∆DPV (SW ) (%) Incentive effect, ∆SII (%)
from/to mergers Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

7 to 6 21 −0.2 0.3 −1.4 −0.0 0.8 0.1 1.6 −0.7 5.1 0.33
6 to 5 315 −0.3 0.5 −2.6 −0.0 0.7 0.0 1.7 −3.5 6.4 0.48
5 to 4 1,400 −0.5 0.8 −6.4 −0.0 0.4 −0.1 2.1 −6.2 9.2 0.59
4 to 3 2,100 −1.0 1.3 −9.7 −0.0 −0.4 −0.5 3.2 −7.7 25.3 0.67
3 to 2 903 −2.3 2.6 −10.5 −0.0 −1.3 −2.7 6.4 −9.4 24.6 0.74
2 to 1 63 −9.2 2.4 −10.9 −0.5 12.1 13.6 6.2 −8.0 20.7 0.05
No Others 1 −9.8 − −9.8 −9.8 −28.4 −28.4 − −28.4 −28.4 1.00

Note: Both welfare and incentive effects are calculated as DPVs in billion US dollars as of 2001:Q1 at r = 5% and
then expressed in terms of percentage changes from the immediately preceding market structure of each merger.
The bottom row (No Others) is a merger to perfect monopoly that consolidates Others as well.

Table 13 examines the impacts of mergers more closely by focusing on the changes in
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DPV (SW ) and SII between the market structures immediately before and after each possi-
ble merger. Both the mean and median of ∆SII are positive for seven-to-six and six-to-five
mergers. However, the median incentive effect of five-to-four mergers is −0.1%, with 59% of
them resulting in negative changes. Even the mean—which tends to be influenced by positive
outliers—becomes negative (−0.4%) with four-to-three mergers. Two-to-one mergers are an
exception to this negative tendency, but any positive change at this stage is overshadowed
by the large negative impact of perfect monopoly in the last row.

In summary, two messages emerge from these results. One is that the much-debated
positive incentive effects of mergers do exist, but positive outcomes are far from being guar-
anteed because both their direction and magnitude are highly merger-specific. The other
message is that their direction becomes predominantly negative once the number of major
firms reaches five or four. Hence, even if the regulators are willing to permit mergers with
the hope of fostering innovation, their justification would become increasingly more difficult.

8 Sensitivity Analysis

The relationship between competition and innovation is complex and known to depend on
the parameters that govern demand, cost, and investment (e.g., Marshall and Parra 2019;
Lefouili and Madio 2024). Hence, our analysis would be incomplete without an assessment
of exactly how their relationship changes with these parameters. Section 8.1 shows the
robustness of our findings to small, plausible changes in parameter values, whereas Section
8.2 investigates the consequences of extremely large changes.

8.1 Robustness to Small Changes in Parameter Values

This subsection examines the robustness of our findings to small changes in three parameters:
price coefficient α, “quality” coefficients β ≡ (βs, βr, βb), and discount rate r.48 We perturb
α and β by their respective standard errors in Table 1; we set r ∈ {4%, 6%} instead of 5%.

Table 24 in Appendix A.8 shows the results are broadly similar to the baseline ones in
Table 13 (section 7.2). Mergers’ static-welfare effects barely change in these six alternative
settings. As in our main result, mergers’ innovation-incentive effects become negative in the
majority of five-to-four mergers (or whenever N ≤ 6 if we count Others as another firm).49

48We also show robustness with respect to the sunk cost of fab investments, FC, in section 8.2.
49This “tipping point” shifts to six-to-five mergers (or N ≤ 7 if we count Others) under two settings,

β = β̂ + SE(β̂) and r = 6%, which suggests even more stringent merger control would be desirable. See
panels (c) and (e) of Table 24.
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Thus, the competition-innovation relationship that we documented in section 7 is robust to
statistically plausible changes in parameter values due to sampling errors.

8.2 Conditions for Qualitatively Different Results

This subsection experiments with much larger changes in parameter values to determine the
conditions under which qualitatively different results could emerge. First, we multiply α and
β by 1.5 and 0.5, respectively, which are order-of-magnitude larger changes than those in
section 8.1. Second, we try r ∈ {2.5%, 10%}. Third, we multiply the sunk cost of fabs, FC,
by 1.5 and 0.5 as well.

Results (reported in Appendix A.8) suggest the overall pattern is robust to most of these
large changes. Only two of the eight results exhibit qualitatively different patterns. First,
drastically lower price-sensitivity (α = 0.5× α̂) makes mergers more pro-innovation. Second,
drastically lower quality-sensitivity (β = 0.5× β̂) makes mergers generally anti-innovation.

The mechanism behind these results is straightforward. Lower price-sensitivity means
higher ROI for innovating firms because they can charge higher prices for new products
and expect larger incremental profits from productivity growth. Mergers increase market
power, which further reinforces these higher expected returns. The same mechanism works
in reverse under lower β: lower quality-sensitivity means lower ROI for innovating firms
because buyers’ willingness to pay (WTP) is generally lower. Under such circumstances,
greater market power would not encourage investment and instead translate into the ability
to forgo innovations without a fear of losing business to competitors. Thus, both of these
special cases highlight the critical role of buyers’ WTP in incentivizing innovation.

The policy implication of these findings is that the innovation-based justification for
mergers deserves serious attention only when the price-sensitivity of demand is low. All
other cases—including our baseline results—suggest mergers tend to reduce the incentive to
innovate when the number of major firms is five or smaller.

9 Conclusion

Our analysis of the LCD industry conveys four messages. First, both product and process
innovations led to massive welfare improvements, the relative contributions of which varied
across market segments in different stages of product life cycle. Second, the sunk costs of
technological investments were so large that some firms’ realized financial returns were low,
even though their social returns were high. Third, some mergers among the seven major
firms could have increased their collective incentive to innovate. However, both the direction
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and magnitude of such effects are highly merger-specific, and the majority of mergers entails
negative consequences when the number of major firms is less than or equal to five. Fourth,
this competition-innovation relationship is robust to almost any variations in the key pa-
rameters. For mergers’ incentive effects to become clearly positive, the price-sensitivity of
demand must be extremely low.

The unique strength of this study is in our unusually detailed data. To make our findings
as data-driven and transparent as possible, we deliberately kept our model simple—static
demand and supply without any “frills.” Results suggest rich data and a simple model can
shed new light on one of the most difficult and intriguing questions in IO and innovation.
Nevertheless, such a static framework has obvious limitations. One is that it cannot allow
the timing and amount of investments to change in response to the competitive environ-
ment. Another is that it cannot allow market structure to evolve with endogenous mergers,
innovations, and entry-exit dynamics (e.g., as in Igami and Uetake 2020). Finally, a static
model cannot disentangle the relationship between collusion and innovation, both of which
are present in our sample period. We are currently developing a dynamic-game model of
collusion and innovation in a companion paper (Igami, Qiu, and Sugaya 2023) to supplement
some of these fornoe dynamics.
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Appendix

The section numbers of the Appendix sections have gaps because they reflect those of the
related main-text sections, not all of which have corresponding supplementary materials.

A.3.1 Summary Statistics of Sales Data

Table 14: Summary Statistics (Sales)

Variable Unit Mean Std. dev. Minimum Median Maximum Num. of obs.
A. Notebook
Shipment 1,000 units 252.28 605.88 0.017 75.00 7,447.19 4,140
Price US dollar 136.32 75.69 38.50 118.00 481.67 4,140
Cost US dollar 97.32 45.95 25.73 84.74 235.48 4,140
Size Inch 14.35 1.72 10.40 14.10 20.00 4,140
Resolution PPI 111.37 16.13 83.00 110.00 171.00 4,140
LED Indicator 0.26 0.44 0.00 0.00 1.00 4,140
B. Monitor
Shipment 1,000 units 403.90 592.70 0.011 123.00 4,028.00 3,374
Price US dollar 241.03 269.06 42.00 145.68 2,084.44 3,374
Cost US dollar 156.56 88.91 42.33 136.41 664.71 3,374
Size Inch 19.42 3.44 12.10 19.00 31.50 3,374
Resolution PPI 92.94 12.14 65.00 91.00 204.00 3,374
LED Indicator 0.11 0.31 0.00 0.00 1.00 3,374
C. TV
Shipment 1,000 units 252.34 460.63 0.009 84.00 4,776.00 3,582
Price US dollar 457.47 579.19 42.00 268.00 5,303.38 3,582
Cost US dollar 390.82 354.84 47.29 285.36 3,995.51 3,582
Size Inch 30.21 12.76 10.00 26.00 80.00 3,582
Resolution PPI 61.28 18.86 28.00 57.00 102.00 3,582
LED Indicator 0.16 0.37 0.00 0.00 1.00 3,582
D. All applications
Shipment 1,000 units 298.40 563.10 0.009 86.45 7,447.19 11,096
Price US dollar 271.84 388.18 38.50 158.75 5,303.38 11,096
Cost US dollar 210.08 244.93 25.73 136.16 3,995.51 11,096
Size Inch 21.01 10.09 10.00 17.00 80.00 11,096
Resolution PPI 89.60 26.38 28.00 91.00 204.00 11,096
LED Indicator 0.18 0.39 0.00 0.00 1.00 11,096

Note: See the main text of section 4.1 for the details of the variables.
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A.3.2 Summary Statistics of Cost Data

Table 15: Summary Statistics (Costs)

Variable Unit Mean Std. dev. Minimum Median Maximum Num. of obs.
Cash cost US dollar 253.19 268.30 19.82 153.21 5,900.14 340,471
A. Fab specs
Tech. gen. Generation 5.83 1.38 4.00 5.50 10.00 340,471
Fab age Quarter 19.05 11.58 1.00 18.00 55.00 340,471
ODF method Indicator 0.89 0.32 0.00 1.00 1.00 340,471
In-house CF Indicator 0.37 0.48 0.00 0.00 1.00 340,471
Capa. util. Fraction 0.83 0.10 0.37 0.85 1.00 340,471
B. Firm specs
Tier-1 Indicator 0.48 0.50 0.00 0.00 1.00 340,471
Japan Indicator 0.19 0.10 0.00 0.00 1.00 340,471
Korea Indicator 0.30 0.46 0.00 0.00 1.00 340,471
Taiwan Indicator 0.51 0.50 0.00 1.00 1.00 340,471
C. Product specs
Notebook Indicator 0.23 0.42 0.00 0.00 1.00 340,471
Monitor Indicator 0.30 0.46 0.00 0.00 1.00 340,471
TV Indicator 0.47 0.50 0.00 0.00 1.00 340,471
Surface area m2 0.29 0.26 0.03 0.16 1.35 340,471
Resolution PPI 76.57 26.95 31.00 85.00 135.00 340,471
LED (edge) Indicator 0.47 0.50 0.00 0.00 1.00 340,471
LED (direct) Indicator 0.04 0.20 0.00 0.00 1.00 340,471

Note: See the main text of section 5.2.1 for the details of the variables.
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A.4.1 Unobserved Quality, Outside Goods, and Welfare Adjustment

Unobserved Product Quality and the Value of Outside Goods

As part of our investigation into product innovation, we closely examine the evolution of
unobserved product quality. A well-known problem in any discrete-choice demand models is
that the mean unobserved quality of the inside goods is not separately identified from the
mean value of the outside good. The existing literature offers two solutions. One is to assume
away any systematic change in the value of the outside good (ui0t = εi0t), which is what we
do in our baseline analysis in the main text. The other approach is to impose additional
restrictions on the unobserved quality of the inside goods, which is what we pursue in this
Appendix section as a sensitivity analysis.

Specifically, we allow utility from the outside option (i.e., not buying any LCD panel) to
change over time: ui0t = γt + ε0it. Moreover, we decompose ξjt into three terms,

ξjt = τt + ϕf(j) + ξ̃jt, (9)

where τt is the mean utility of the choice set in time t relative to the initial period, ϕf(j) is a
dummy for firm f (the owner of product j), and ξ̃jt is the product-time-specific unobserved
quality term. We assume E[ξ̃jt|zjt] = 0, where zjt is a set of instruments. To separately
identify the mean (unobserved) quality of the inside goods, τt, from the mean value of the
outside goods, γt, we follow Pakes, Berry, and Levinsohn (1993) to assume

∀j ∈ Ct : E[ξjt − ξj,t−1] = E[(τt − τt−1) + (ξ̃jt − ξ̃j,t−1)] = 0 (10)

where Ct is the set of continuing products offered in both time t and t − 1. In words,
even though unobserved product characteristics ξjt can change over time within the same
continuing product j, its mean change is assumed to be zero.

Figure 8 plots the net appeal of the inside goods (τt − γt) and its two components.
In the notebook and monitor markets, the net appeal follows a downward trend, which
suggests the inside goods became less attractive over time vis-à-vis the outside option. Its
decomposition into the mean unobserved quality of inside goods (τt) and that of the outside
goods (γt) shows that most of the downward trend stems from the increasing attractiveness
of the latter. Meanwhile, the former exhibits either negligible changes (in notebooks) or a
slightly decreasing trend (in monitors). These patterns are inconsistent with the fact that
the physical quality of LCD panels improved over time.50

50Examples of unrecorded product characteristics, such as the range of possible brightness, sharpness,
response speed, viewing angle, and other determinants of picture quality. Meanwhile, final-product-level
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Figure 8: Mean Values of Inside and Outside Goods

(a) Notebook (b) Monitor (c) TV

Note: See the main text of section A.4.1 for the underlying decomposition of the unobserved quality term.

Results are qualitatively different in the TV market. The net appeal of the inside goods
(τt − γt) does not follow any clear trend but fluctuates in a vaguely cyclical pattern. Its
decomposition suggests the mean unobserved quality of inside goods decreased in the first
few years and never recovered afterward. This result is counter-intuitive and difficult to
reconcile with the generally improving quality of LCD-TVs in reality.

In summary, the identifying assumption of Pakes, Berry, and Levinsohn (1993) has led to
uninterpretable results regarding the unobserved quality of inside goods in all segments. One
possibility is that assumption (10) might not be innocuous in the current high-tech context.
Another possibility is that unobserved quality changes were either relatively unimportant,
highly collinear with observed quality, or both.

Adjusting Welfare Measures Relative to the Outside Option

A standard measure of CS is the compensating variation of the product set relative to the
outside good in the same period. Hence, we denote the CS at time t given the outside-good
value γt by CSt(γt). Adjusting for this factor is potentially important when we want to
compare CS across time. For example, CS would seem to decrease during the economic
downturn because the value of the outside option (i.e., holding onto cash) increases due to
income shocks, even if the quality of inside goods stays constant. PS and SW can be similarly
affected by this factor.

To be consistent with the way we handle the value of the outside good in the above, we
follow Grieco, Murry, and Yurukoglu (2023) to adjust our welfare measures for the changes
in γt. First, we calculate the CS for each t using the outside good’s value for some other
period t′, CSt(γt′). Then, we average over the outside-good values in all sample periods to

characteristics (e.g., design aesthetics and user interface) are not relevant in our analysis because the dataset
focuses on the business-to-business markets of panels and not the business-to-consumer markets of final
goods.
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Figure 9: Comparison of Social Welfare

(a) Unadjusted (b) Adjusted

Note: See the main text of section A.4.1 for the details of “adjustment.”

construct the adjusted measure as

CSt =
1

T

T∑
t′=1

CSt(γt′), (11)

which removes changes in the value of outside goods. By using this measure, we may directly
compare the welfare values of product sets from different periods.

Figure 9 plots the unadjusted and adjusted versions of SW. The adjusted SW tends to be
larger than the unadjusted SW, especially in the later years, because the value of the outside
goods tends to increase over time in our estimates (see Figure 8 in section 4.1). Whereas
the unadjusted welfare plot closely reflects the price-comparison plot in Figure 3 (section
4.2) and is therefore reasonable, the adjusted welfare plot fails to capture the actual path
within a range of economically plausible values (i.e., between the planner’s and monopolist’s
solutions). For these reasons, we have chosen to stick with the unadjusted welfare measure
(and the assumption of ui0t = εi0t) in the main text and to regard the results in this Appendix
section as a sensitivity analysis.

Even if we completely switch to the adjusted welfare measures, we find that our numerical
results concerning the welfare gains from innovation in section 5 do not materially change
in terms of percentage change. By contrast, the welfare adjustment nontrivially affects the
results of our benefit-cost analysis in section 6. Welfare numbers are much larger across the
board after the adjustment, which mechanically increases the implied benefits of innovation
as well. Meanwhile, our measure of the sunk cost of fab investments directly comes from the
database and remains unchanged. The difference between benefits and costs becomes larger
as a result.
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A.4.2 Price Comparison by Application

Figure 10: Comparison of Prices by Application

(a) Notebook (b) Monitor (c) TV

Note: Each graph compares the average price in the data with three theoretical benchmarks: (i) monopoly, (ii)

Bertrand-Nash, and (iii) social planner.
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A.5.1.1 Product-Level Plots and Statistics by Survival Cohort

This Appendix section presents additional plots and detailed statistics of product-level data
by survival cohort. That is, we split all products into three or four categories based on their
presence at the beginning and end of our sample period (2001:Q1–2011:Q4): (i) initial, (ii)
middle, (iii) end, and (iv) all-time products.

Figure 11: Number of Products by Application

(a) Notebook (b) Monitor (c) TV

Note: These graphs count the number of products defined by all observable characteristics on record, that is,

(i)–(v) in section 3.1 including supplier identity.

Figure 11 is a detailed version of Figure 4 that shows the evolution of the number of
products by application. Initial products are present in 2001:Q1. Relatively few products
belong to this category (66 notebook, 42 monitor, and 11 TV panels) as the top rows of
Tables 16–18 show. Middle products are those that appear between 2001:Q2–2011:Q3 but
not in the initial or final period. The largest number of products belong to this category (269,
126, and 220 products, respectively), but their median duration (i.e., the number of periods
in which a product appears on record) is only seven calendar quarters in all applications.
This rapid turnover suggests firms were actively introducing and terminating new products.
End products are present in 2011:Q4, including 77 notebook, 118 monitor, and 145 TV
panels. Finally, we separately categorize seven monitor panels that appear in both 2001:Q1
and 2011:Q4 as all-time products, and exclude them from the first and third categories to
avoid double-counting.51 No such product exists for notebooks or TVs.

Figure 12 visualizes the positions of all products in the space of three main product
characteristics—size (horizontal axis), resolution (vertical axis), and backlight type (hollow
vs. filled circles)—again by application and survival cohort. As briefly described in section
5.1.1, newer products tend to feature larger size, higher resolution, and better backlights
(LED) as a general trend, but many of them seem to fill in the empty space with new

51The addition of the fourth category is the only difference relative to Figures 4 and 11, in which we count
category-(iv) monitor panels as part of category (i), for ease of exposition.
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size-resolution combinations that are not necessarily physically superior to the existing ones.
Detailed product-level statistics are reported in Tables 16, 17, and 18.

Figure 12: Evolution of Industry-wide Product Portfolios

(a) Notebook (b) Monitor

(c) TV

Note: Each circle represents a product, which is defined as a supplier-application-size-resolution-backlight com-

bination. Circle size reflects total unit shipments across all periods. “Initial products” are those that existed in

2001:Q1, the first period of our sales data. “Middle products” are those that entered the sample after 2001:Q1 and

exited before 2011:Q4, the final period of our sales data. “End products” are those that existed in 2011:Q4. A

small fraction of monitor products are both “initial” and “end” products; we have chosen to display them as part

of initial products (and not end products) for ease of exposition.
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Table 16: Summary Statistics by Product Cohort (1): Notebooks

Variable Unit Cohort Mean Stdev Min Med Max Num. products
Duration Quarter Initial 11.8 10.0 1.0 9.0 35.0 66
Duration Quarter Middle 9.6 8.4 1.0 7.0 34.0 269
Duration Quarter End 10.0 3.8 1.0 11.0 16.0 77
Revenue Million US dollar Initial 26.8 42.2 0.1 12.6 292.2 66
Revenue Million US dollar Middle 22.2 45.3 0.0 8.2 495.7 269
Revenue Million US dollar End 27.7 49.0 0.1 10.7 321.3 77
Share Percent Initial 1.48 2.30 0.00 0.72 18.27 66
Share Percent Middle 0.91 1.76 0.00 0.29 15.02 269
Share Percent End 1.17 2.23 0.00 0.42 15.17 77
Shipment 1,000 units Initial 145 235 0 66 1,797 66
Shipment 1,000 units Middle 204 472 0 60 5,266 269
Shipment 1,000 units End 524 1,037 1 180 7,447 77
Price US dollar Initial 198 66 86 190 482 66
Price US dollar Middle 139 71 39 123 407 269
Price US dollar End 64 21 39 61 206 77
Cost US dollar Initial 138 39 39 142 235 66
Cost US dollar Middle 98 42 27 88 232 269
Cost US dollar End 52 11 26 50 96 77
Size Inch Initial 13.8 1.3 10.4 14.1 15.7 66
Size Inch Middle 14.5 1.8 10.4 15.0 20.0 269
Size Inch End 14.4 1.8 10.4 14.1 18.4 77
Resolution PPI Initial 103 16 83 96 133 66
Resolution PPI Middle 112 16 83 110 171 269
Resolution PPI End 118 11 100 118 147 77
LED Indicator Initial 0.00 0.00 0.00 0.00 0.00 66
LED Indicator Middle 0.13 0.34 0.00 0.00 1.00 269
LED Indicator End 0.98 0.15 0.00 1.00 1.00 77

Note: “Duration” is the number of periods in which a product appears on record. “Share” is market
share within all inside goods. The unit of observation is product-quarter.
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Table 17: Summary Statistics by Product Cohort (2): Monitors

Variable Unit Cohort Mean Stdev Min Med Max Num. products
Duration Quarter Initial 11.5 9.5 1.0 9.0 41.0 42
Duration Quarter Middle 9.0 7.1 1.0 7.0 39.0 126
Duration Quarter End 12.5 9.8 1.0 10.0 43.0 118
Duration Quarter All-time 41.6 3.2 37.0 44.0 44.0 7
Revenue Million US dollar Initial 26.8 45.0 0.0 7.7 319.4 42
Revenue Million US dollar Middle 28.0 45.2 0.0 8.6 321.8 126
Revenue Million US dollar End 70.3 92.6 0.0 38.1 576.9 118
Revenue Million US dollar All-time 96.2 138.4 0.1 33.9 750.0 7
Share Percent Initial 1.17 1.99 0.00 0.25 12.22 42
Share Percent Middle 0.62 1.14 0.00 0.17 10.16 126
Share Percent End 1.57 1.91 0.00 0.92 12.92 118
Share Percent All-time 2.86 4.11 0.00 0.61 19.31 7
Shipment 1,000 units Initial 120 215 0 24 1,302 42
Shipment 1,000 units Middle 192 339 0 40 2,581 126
Shipment 1,000 units End 629 680 0 382 3,574 118
Shipment 1,000 units All-time 560 793 1 227 4,028 7
Price US dollar Initial 389 313 47 278 1,652 42
Price US dollar Middle 301 307 46 189 2,084 126
Price US dollar End 139 136 42 92 1,300 118
Price US dollar All-time 282 338 44 165 1,778 7
Cost US dollar Initial 216 81 65 198 467 42
Cost US dollar Middle 184 92 46 161 665 126
Cost US dollar End 115 61 42 97 517 118
Cost US dollar All-time 165 110 45 136 571 7
Size Inch Initial 16.9 2.5 12.1 15.4 22.0 42
Size Inch Middle 19.6 3.5 12.1 19.0 31.5 126
Size Inch End 20.4 3.1 15.0 19.0 30.0 118
Size Inch All-time 17.8 3.3 15.0 17.0 24.0 7
Resolution PPI Initial 91 13 71 88 192 42
Resolution PPI Middle 95 17 65 94 204 126
Resolution PPI End 92 6 81 90 120 118
Resolution PPI All-time 91 5 85 94 96 7
LED Indicator Initial 0.00 0.00 0.00 0.00 0.00 42
LED Indicator Middle 0.02 0.15 0.00 0.00 1.00 126
LED Indicator End 0.23 0.42 0.00 0.00 1.00 118
LED Indicator All-time 0.00 0.00 0.00 0.00 0.00 7

Note: “Duration” is the number of periods in which a product appears on record. “Share” is market
share within all inside goods. The unit of observation is product-quarter.
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Table 18: Summary Statistics by Product Cohort (3): TVs

Variable Unit Cohort Mean Stdev Min Med Max Num. products
Duration Quarter Initial 14.8 16.1 1.00 5.00 41.0 11
Duration Quarter Middle 8.3 6.5 1.0 7.0 30.0 220
Duration Quarter End 11.0 8.4 1.0 8.0 32.0 145
Revenue Million US dollar Initial 13.5 14.1 0.1 10.3 72.5 11
Revenue Million US dollar Middle 30.4 67.5 0.0 9.5 716.3 220
Revenue Million US dollar End 124.6 159.0 0.0 65.5 966.6 145
Share Percent Initial 5.47 8.00 0.00 2.01 47.62 11
Share Percent Middle 0.85 1.21 0.00 0.37 9.70 220
Share Percent End 1.23 1.68 0.00 0.59 9.60 145
Shipment 1,000 units Initial 67 61 0 54 266 11
Shipment 1,000 units Middle 95 155 0 34 1,125 220
Shipment 1,000 units End 452 615 0 227 4,776 145
Price US dollar Initial 266 286 55 179 1,899 11
Price US dollar Middle 501 565 46 270 5,303 220
Price US dollar End 427 496 42 280 4,901 145
Cost US dollar Initial 200 130 47 179 703 11
Cost US dollar Middle 416 399 61 291 3,996 220
Cost US dollar End 381 308 47 298 2,536 145
Size Inch Initial 16.0 3.4 10.0 15.0 28.0 11
Size Inch Middle 26.9 12.2 10.0 22.0 72.0 220
Size Inch End 35.5 11.6 15.6 32.0 80.0 145
Resolution PPI Initial 60 16 40 53 85 11
Resolution PPI Middle 64 21 30 60 102 220
Resolution PPI End 59 17 28 55 102 145
LED Indicator Initial 0.00 0.00 0.00 0.00 0.00 11
LED Indicator Middle 0.03 0.16 0.00 0.00 1.00 220
LED Indicator End 0.33 0.47 0.00 0.00 1.00 145

Note: “Duration” is the number of periods in which a product appears on record. “Share” is market
share within all inside goods. The unit of observation is product-quarter.
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A.5.2.2 Impact of Upstream Innovation

Table 19: Welfare Effects of Upstream Innovation, 2001–2011

Welfare measure Consumer surplus Producer surplus Social welfare
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
Baseline 57.9 (±0) 27.5 (±0) 85.4 (±0)
(iii) No upstream innovation 20.3 (−64.9) 12.5 (−54.5) 32.8 (−61.5)
(i) + (ii) + (iii) 9.8 (−83.0) 6.5 (−76.4) 16.3 (−80.9)
B. Monitor
Baseline 157.3 (±0) 73.7 (±0) 231.0 (±0)
(iii) No upstream innovation 71.5 (−54.6) 46.4 (−37.0) 117.9 (−49.0)
(i) + (ii) + (iii) 35.8 (−77.3) 25.9 (−64.9) 61.6 (−73.3)
C. TV
Baseline 186.0 (±0) 54.7 (±0) 240.7 (±0)
(iii) No upstream innovation 28.1 (−84.9) 9.5 (−82.6) 37.6 (−84.4)
(i) + (ii) + (iii) 14.5 (−92.2) 5.0 (−90.8) 19.5 (−91.9)
D. All applications
Baseline 401.2 (±0) 156.0 (±0) 557.1 (±0)
(iii) No upstream innovation 119.9 (−70.1) 68.5 (−56.1) 188.4 (−66.2)
(i) + (ii) + (iii) 60.1 (−85.0) 37.4 (−76.0) 97.5 (−82.5)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

A.5.3 Welfare Results under Alternative Assumption on Conduct

Our baseline assumption on firms’ competitive conduct in sections 5–8 is the combination of
monopoly pricing (2001:Q1–2004:Q3) and Bertrand-Nash prices (2004:Q4–2011:Q4). This
specification is empirically motivated by our markup-comparison results in section 4.2. Nev-
ertheless, because it is not the most typical setup in the context of demand-estimation
literature, we conduct a robustness check with respect to this specification here.

We report our results in sections 5.3 (welfare impact of new technologies) under an
alternative assumption of Bertrand-Nash throughout the sample period in Table 20. We
focus on this table because all of our subsequent analyses in sections 6–8 directly rely on
these numbers. In the notebook and monitor segments, the levels of CS, PS, and SW
are meaningfully different for obvious reasons (i.e., higher CS, lower PS, and higher SW
under the always-Bertrand assumption relative to the baseline first-monopoly-then-Bertrand
assumption). However, these different assumptions only mildly affect the percentage-change
results (i.e., up to a few percentage points of difference in CS and PS); the percentage-change
numbers for SW are almost identical to the ones in Table 5. In the TV segment, even the
levels of welfare outcomes almost remain unchanged. Because its market size was small in
the first few years of the sample period, the difference in conduct assumptions regarding
2001:Q1–2004:Q3 hardly matters. In summary, our main findings regarding the changes in
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welfare outcomes are robust.

Table 20: Welfare Impact of New Technologies under Always-Bertrand Assumption

Welfare measure Consumer surplus Producer surplus Social welfare
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
4G–4.5G only (baseline) 63.6 (±0) 20.2 (±0) 83.8 (±0)
4G–5G only 69.5 (+9.2) 22.3 (+10.3) 91.7 (+9.5)
4G–5.5G only 70.2 (+10.3) 22.5 (+11.4) 92.7 (+10.6)
4G–6G only 70.8 (+11.2) 22.7 (+12.3) 93.4 (+11.5)
4G–8G only 71.1 (+11.8) 22.8 (+13.0) 93.9 (+12.1)
4G–10G 71.2 (+11.9) 22.8 (+13.2) 94.1 (+12.2)
B. Monitor
4G–4.5G only (baseline) 192.8 (±0) 57.3 (±0) 229.1 (±0)
4G–5G only 192.8 (+9.7) 57.3 (+7.3) 250.1 (+9.2)
4G–5.5G only 192.8 (+9.7) 57.3 (+7.3) 250.1 (+9.2)
4G–6G only 194.6 (+10.7) 57.8 (+8.3) 252.4 (+10.2)
4G–8G only 195.5 (+11.3) 58.1 (+8.8) 253.6 (+10.7)
4G–10G 195.8 (+11.4) 58.2 (+9.1) 254.0 (+10.9)
C. TV
4G–4.5G only (baseline) 131.8 (±0) 36.7 (±0) 168.5 (±0)
4G–5G only 172.4 (+30.8) 50.2 (+36.7) 222.6 (+32.1)
4G–5.5G only 174.9 (+32.7) 51.3 (+39.9) 226.2 (+34.2)
4G–6G only 182.8 (+38.7) 53.8 (+46.5) 236.6 (+40.4)
4G–8G only 185.4 (+40.7) 54.7 (+49.1) 240.1 (+42.5)
4G–10G 186.2 (+41.2) 55.0 (+49.8) 241.2 (+43.1)
D. All applications
4G–4.5G only (baseline) 371.1 (±0) 110.3 (±0) 481.4 (±0)
4G–5G only 434.6 (+17.1) 129.7 (+17.6) 564.3 (+17.2)
4G–5.5G only 437.8 (+18.0) 131.1 (+18.9) 569.0 (+18.2)
4G–6G only 448.1 (+20.7) 134.3 (+21.7) 582.4 (+21.0)
4G–8G only 452.0 (+21.8) 135.6 (+23.0) 587.6 (+22.1)
4G–10G 453.1 (+22.1) 136.1 (+23.4) 589.2 (+22.4)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.
Rows for “4G–7G only” and “4G–8.5G only” are omitted because their outcomes are nearly identical to
“4G–8G only” and “4G–10G,” respectively.
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A.7 Additional Results of Merger/Market-Structure Simulations

A.7.1 Failing-Firm Defense

This subsection investigates the merit of the so-called “failing firm” defense of mergers. When
a firm is likely to exit and be liquidated along with its products, should the regulators permit
its “rescue” by a merger? Our results suggest the answer is “yes.”

Table 21 shows that the negative welfare effect of exit is an order of magnitude larger
than that of a merger in Table 11 (section 7.1). Hence, any seven-to-six merger is strictly
preferable to the exit of a firm and its products in terms of static welfare.

Table 21: How Exits Affect Welfare and Innovation Incentives

Case Exit by Welfare effect Incentive effect
∆DPV (SW ) (% change) ∆SII (% change)

1 Samsung −126.2 (−10.1) −3.5 (−9.6)
2 LG −108.6 (−8.7) −5.7 (−15.6)
3 CMO −54.0 (−4.3) 0.9 (2.6)
4 AUO −48.7 (−3.9) 1.1 (2.9)
5 Sharp −28.2 (−2.3) −2.6 (−7.2)
6 CPT −2.8 (−0.4) 0.0 (0.0)
7 HS −1.6 (−0.1) 0.0 (0.0)
8 Others −71.4 (−5.7) 0.1 (0.2)

Note: All DPVs are in billion US dollars as of 2001:Q1 at r = 5%. All changes are relative to Ω0, the original
market structure with seven firms and Others.

The innovation-incentive effect of exit is more complicated but does not overturn the
advantage of a merger-as-rescue. First, the exit of Samsung, LG, or Sharp would have
reduced SII by 7%–16% as they were the main innovators with clearly positive incentives.
Second, eliminating CMO or AUO would have increased SII by approximately one billion
dollars, which is comparable to the impact of the most innovation-friendly mergers in Table
11 (e.g., LG-AUO, LG-CMO, and Samsung-Sharp mergers). Third, SII hardly changes
with the exit of CPT, HS, or Others. In summary, merger seems preferable to exit in terms
of incentive effects as well because ∆SII of most seven-to-six mergers dominate their exit
counterparts—sometimes by wide margins.

A.7.2 Case Studies

This Appendix section closely examines the “outliers” in Figure 7 and several other market
structures. Our goal is to assess whether outliers should be taken seriously for public-policy
purposes and to gain further insights into the mechanism behind our findings in section 7.

Outliers. Table 22 lists the outliers in Figure 7, with ∆DPV (SW ) < −5%, in the as-
cending order of ∆DPV (SW ). The column labeled “market structure configuration” shows
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the exact ownerwhip structure Ω by presenting merged firms within a bracket. The full-
monopoly case in the top row is a true outlier with massively negative outcomes in terms of
both welfare and incentive effects, as we have already discussed in the main text.

Table 22: Case Studies of “Outlier” Market Structures

Case Market structure configuration Num. firms ∆DPV (SW ) ∆SII
(N) (% change) (% change)

1 {Samsung, LG,CMO,AUO, Sharp, CPT,HS,Other} 1 −20.9 −21.0
2 {Samsung, LG,CMO,AUO, Sharp, CPT,HS}, Other 2 −12.3 10.4
3 {Samsung, LG,CMO,AUO, Sharp, CPT}, HS,Other 3 −11.9 15.3
4 {Samsung, LG,CMO,AUO, Sharp,HS}, CPT,Other 3 −11.4 17.2
5 {Samsung, LG,CMO,AUO, Sharp}, {CPT,HS}, Other 3 −11.1 20.1
6 {Samsung, LG,CMO,AUO, Sharp}, CPT,HS,Other 4 −11.1 20.9
7 {Samsung, LG,CMO,AUO,CPT,HS}, Sharp,Other 3 −8.7 −1.8
8 {Samsung, LG,CMO,AUO,CPT}, {Sharp,HS}, Other 3 −8.3 2.8
9 {Samsung, LG,CMO,AUO,CPT}, Sharp,HS,Other 4 −8.3 2.9
10 {Samsung, LG,CMO,AUO,HS}, {Sharp, CPT}, Other 3 −7.9 3.9
11 {Samsung, LG,CMO,AUO,HS}, Sharp, CPT,Other 4 −7.8 4.4
12 {Samsung, LG,CMO,AUO}, {Sharp, CPT,HS}, Other 3 −7.5 6.7
13 {Samsung, LG,CMO,AUO}, {Sharp, CPT}, HS,Other 4 −7.5 7.5
14 {Samsung, LG,CMO,AUO}, {CPT,HS}, Sharp,Other 4 −7.5 7.2
15 {Samsung, LG,CMO,AUO}, {Sharp,HS}, CPT,Other 4 −7.5 7.9
16 {Samsung, LG,CMO,AUO}, Sharp, CPT,HS,Other 5 −7.5 8.0

Note: This table lists the outliers in Figure 7 with ∆DPV (SW ) < −5% in the ascending order of ∆DPV (SW ).
Firms in the same brackets are merged and maximize joint profits. Other definitions follow Table 12.

More interesting results arise in cases 2–6, where the incentive effects are large and
positive, with ∆SII > 10%. Case 2 is the quasi-monopoly with consolidation of the seven
major firms, which definitely enhances their market power (and the appropriability of social
returns) but falls short of totally eliminating competition and business-stealing incentives
for innovation. Whether the fringe firms in Others could exert such competitive pressure in
reality is questionable because these firms lack the physical capacity to drastically increase
outputs in the short run even if the quasi-monopoly engages in monopoly-like pricing. The
BLP-style static model abstracts from such capacity constraints, which is why the presence
of Others could matter so much in these simulations.

Cases 3–6 entail the largest positive incentive effects above 15%. They commonly feature
mergers of the top-five firms (Samsung, LG, CMO, AUO, and Sharp) while leaving out CPT
and HS—the weakest of the seven major firms, with low brand power, little investment, and
negligible or negative incentive to innovate (see Tables 1, 6, and 10, respectively). They are
unlikely to contribute to SII even if they are merged with other, stronger firms. Meanwhile,
their existence as independent competitors preserves the room for business stealing and
helps motivate the dominant player to invest. As in Case 2, whether CPT and HS in reality
could put such competitive pressure on the coalition of the stronger firms is questionable
due to capacity constraints. Nevertheless, the finding that the incentive to innovate hinges
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on a delicate balance between strong appropriability and business-stealing opportunities is
general and fundamental.

Cases 7–16 leave out Sharp as well and follow similar patterns albeit in smaller magnitude.
Note all of the 16 outliers (except cases 1–2) involve consolidation of the top-four firms while
leaving out weaker firms as independent competitors. We would like to point out that such
market structures are unlikely to emerge in a typical process of industry consolidation, in
which weaker (rather than stronger) players tend to become acquisition targets. Hence, we
regard these outliers as more of theoretical curiosities than relevant policy targets.

More Symmetric Cases with “National Champions.” Table 23 lists four cases of
more symmetric market structures than those in the “outliers.” Our purpose is to develop
intuition about the determinants of merger’s effects.

Table 23: Case Studies of “National Champion” Market Structures

Case Market structure configuration Num. firms ∆DPV (SW ) ∆SII
(N) (% change) (% change)

17 {CMO,AUO,CPT,HS}, Samsung, LG, Sharp,Others 5 −0.4 1.5
18 {Samsung, LG}, CMO,AUO,CPT,HS, Sharp,Other 7 −1.4 0.8
19 {Samsung, LG}, {CMO,AUO,CPT,HS}, Sharp,Other 4 −1.9 −4.3
20 {Samsung, LG}, {CMO,AUO,CPT,HS, Sharp}, Other 3 −2.2 −7.2

Note: Firms in the same brackets are merged and maximize joint profits. Other definitions follow Table 12.

Cases 17 and 18 show positive incentive effects. Case 17 consolidates the four Taiwanese
firms (CMO, AUO, CPT, and HS) into a single “national champion.” This case would seem
highly anti-competitive as it reduces the number of firms—including Others—from eight
to five. However, DPV (SW ) decreases by only 0.4% and SII increases by 1.5% from the
original market structure. Case 18 creates a national champion in Korea by merging Samsung
with LG. Even though N = 7 appears more competitive than N = 5, its performances fall
short of case 17.

By contrast, cases 19 and 20 entail negative incentive effects. Case 19 creates two na-
tional champions, in Taiwan and Korea respectively. Case 20 further accelerates industry
consolidation by letting Sharp of Japan join the Taiwanese national champion. The 7.2%
decrease in SII is close to the worst performance under N = 3 (see Table 12 in section 7.2).

These case studies suggest that the determinants of the incentive effects of mergers include
not only the number of firms—and the degrees of concentration and asymmetry among
them—but also the investment profile of all major players, both inside and outside mergers.
This observation further confirms our finding in section 7 that incentive effects are much
more merger-specific than static welfare effects.
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A.8 Details of Sensitivity Analysis

This Appendix section presents results of the sensitivity analyses in section 8.

Robustness to Small Changes. Table 24 reports detailed statistics for the six sensitivity
analyses in section 8.1. The welfare effects of mergers show only minor quantitative variation.
The innovation-incentive effects exhibit larger variation, but the general tendency of the
median outcomes and the fraction of cases with ∆SII < 0 is remarkably similar to the
baseline result in Table 13 (section 7.2).

Larger Changes in Demand-Side Parameters. Figure 13 (a) and (b) show that greater
(lesser) price-sensitivity of demand induces two changes. First, it makes the incentive effect of
mergers more negative (positive), as represented by a downward (upward) shift of data points.
This result is intuitive because firms cannot increase prices when buyers are highly price-
sensitive, which reduces the ROI for innovating firms. Second, the slope of the relationship
between competition and innovation becomes flatter (steeper), that is, ∆SII exhibits no
visible change (a tendency to increase) as N decreases—with the exception of N = 1. The
reason is that more concentrated market structure does not translate into much higher
markups when buyers are highly price-sensitive. Overall, greater price-sensitivity makes
most mergers socially undesirable. By contrast, lesser price-sensitivity opens the possibility
that positive ∆SII might partially offset negative ∆DPV (SW ) in the long run. The policy
implication of this finding is that an innovation-based justification of mergers has potential
merit only when the demand is not very price-sensitive.

In Figure 13 (c), greater sensitivity to product quality does not seem to change the
baseline pattern. By contrast, subfigure (d) shows that lesser quality-sensitivity makes the
impact of most mergers small and negative (note the narrow range of the vertical scale). We
interpret these results as follows. When buyers are ready to pay for higher product quality,
the greater appropriability under more concentrated market structure could sometimes en-
courage firms’ investments. Conversely, when their willingness to pay (WTP) for product
innovation is low, the lack of competition means firms could slack off by simply reducing
innovative efforts. Thus, any innovation-based justification of mergers has potential merit
only when the demand-side truly appreciates product innovations.

Larger Changes in Supply-Side Parameters. We now proceed to the two supply-side
parameters. Both of them affect the cost of LCD production, as r relates to the cost of
capital to finance investments, and FC is the upfront cost of investments.
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Table 24: Sensitivity (1)—Small Changes in Parameters

Merger Possible Welfare effect, ∆DPV (SW ) (%) Incentive effect, ∆SII (%)
from/to mergers Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

(a) Greater price-sensitivity, α = α̂− SE(α̂)
7 to 6 21 −0.2 0.3 −1.4 −0.0 1.2 0.2 2.4 −1.1 8.0 0.33
6 to 5 315 −0.3 0.5 −2.6 −0.0 1.0 0.0 2.6 −5.8 9.2 0.49
5 to 4 1,400 −0.5 0.8 −6.5 −0.0 0.3 −0.2 3.2 −10.2 13.2 0.60
4 to 3 2,100 −1.0 1.3 −9.8 −0.0 −1.1 −1.1 4.9 −12.8 37.4 0.70
3 to 2 903 −2.3 2.6 −10.6 −0.0 −3.3 −5.0 9.7 −15.6 36.2 0.78
2 to 1 63 −9.2 2.4 −11.0 −0.5 16.5 18.8 9.5 −12.3 30.6 0.05
No Others 1 −9.8 − −9.8 −9.8 −47.0 −47.0 − −47.0 −47.0 1.00

(b) Lesser price-sensitivity, α = α̂+ SE(α̂)
7 to 6 21 −0.2 0.3 −1.4 −0.0 0.6 0.1 1.3 −0.5 3.9 0.38
6 to 5 315 −0.3 0.5 −2.6 −0.0 0.6 0.0 1.3 −2.4 5.2 0.50
5 to 4 1,400 −0.5 0.8 −6.4 −0.0 0.4 −0.1 1.6 −4.3 7.5 0.58
4 to 3 2,100 −1.0 1.3 −9.7 −0.0 −0.0 −0.3 2.5 −5.4 20.3 0.65
3 to 2 903 −2.3 2.6 −10.5 −0.0 −0.4 −1.7 5.0 −6.6 19.9 0.70
2 to 1 63 −9.1 2.4 −10.9 −0.5 10.4 11.5 4.8 −6.0 16.9 0.05
No Others 1 −9.7 − −9.7 −9.7 −20.0 −20.0 − −20.0 −20.0 1.00

(c) Greater quality-sensitivity, β = β̂ + SE(β̂)
7 to 6 21 −0.2 0.3 −1.4 −0.0 0.2 0.0 0.6 −0.8 1.5 0.43
6 to 5 315 −0.3 0.5 −2.6 −0.0 0.1 0.0 0.7 −3.0 1.7 0.55
5 to 4 1,400 −0.5 0.7 −6.2 0.0 −0.2 −0.1 1.0 −4.1 1.7 0.65
4 to 3 2,100 −0.9 1.3 −8.9 0.0 −0.9 −0.5 1.4 −5.2 6.6 0.78
3 to 2 903 −2.1 2.4 −9.7 −0.0 −2.1 −2.2 2.2 −6.3 6.2 0.88
2 to 1 63 −8.6 2.3 −10.3 −0.6 1.0 1.2 1.8 −4.7 4.6 0.25
No Others 1 −11.0 − −11.0 −11.0 −16.8 −16.8 − −16.8 −16.8 1.00

(d) Lesser quality-sensitivity, β = β̂ − SE(β̂)
7 to 6 21 −0.2 0.4 −1.4 −0.0 0.6 0.0 1.1 −0.3 3.4 0.43
6 to 5 315 −0.4 0.5 −2.6 −0.0 0.6 0.0 1.2 −1.0 5.3 0.46
5 to 4 1,400 −0.6 0.8 −6.6 −0.0 0.7 −0.0 1.4 −2.8 9.8 0.51
4 to 3 2,100 −1.0 1.4 −10.4 −0.0 0.7 −0.1 2.2 −3.5 17.6 0.53
3 to 2 903 −2.5 2.7 −11.3 −0.0 1.3 −0.3 4.4 −4.0 17.4 0.55
2 to 1 63 −9.7 2.5 −11.5 −0.3 10.7 12.0 4.1 −4.3 15.1 0.05
No Others 1 −9.2 − −9.2 −9.2 −13.3 −13.3 − −13.3 −13.3 1.00

(e) Higher discount rate, r = 6%
7 to 6 21 −0.2 0.3 −1.4 −0.0 1.4 0.1 3.9 −3.8 11.5 0.48
6 to 5 315 −0.3 0.5 −2.6 −0.0 1.1 −0.0 4.2 −12.1 13.7 0.57
5 to 4 1,400 −0.5 0.7 −6.2 −0.0 0.0 −0.4 5.1 −17.8 18.5 0.64
4 to 3 2,100 −0.9 1.3 −9.4 −0.0 −2.4 −2.1 7.6 −23.3 61.3 0.71
3 to 2 903 −2.2 2.5 −10.2 −0.0 −6.1 −8.4 14.7 −28.5 59.4 0.81
2 to 1 63 −8.9 2.3 −10.6 −0.5 23.7 26.8 15.6 −18.3 53.8 0.05
No Others 1 −9.6 − −9.6 −9.6 −70.8 −70.8 − −70.8 −70.8 1.00

(f) Lower discount rate, r = 4%
7 to 6 21 −0.2 0.4 −1.4 −0.0 0.6 0.1 1.1 −0.3 3.4 0.33
6 to 5 315 −0.3 0.5 −2.7 −0.0 0.6 0.0 1.2 −2.1 4.4 0.44
5 to 4 1,400 −0.5 0.8 −6.7 −0.0 0.5 −0.0 1.4 −3.9 8.1 0.55
4 to 3 2,100 −1.0 1.4 −10.1 −0.0 0.2 −0.2 2.2 −4.8 18.3 0.61
3 to 2 903 −2.4 2.7 −10.9 −0.0 −0.1 −1.2 4.5 −5.7 17.9 0.68
2 to 1 63 −9.4 2.5 −11.3 −0.5 9.5 10.7 4.3 −4.9 14.8 0.05
No Others 1 −10.0 − −10.0 −10.0 −17.2 −17.2 − −17.2 −17.2 1.00

Note: See the note to Table 13 for definitions and explanations.

Figure 14 (a) and (b) show that a higher (lower) discount rate (i) reduces (increases) the
incentive to innovate across the board and (ii) makes the slope of the competition-innovation
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Figure 13: Sensitivity of Market-Structure Effects to Demand-Side Parameters

(a) Greater price-sensitivity, α = 1.5× α̂ (b) Lesser price-sensitivity, α = 0.5× α̂

(c) Greater quality-sensitivity, β = 1.5× β̂ (d) Lesser quality-sensitivity, β = 0.5× β̂

Note: These plots are constructed in the same way as Figure 7 under alternative parameter values. Their summary

statistics are reported in Table 25 below.

relationship flatter (steeper). The first effect is obvious because, as r increases (decreases),
the long-run benefits from investments become less (more) important relative to their short-
run costs. The second effect is more complicated but resembles some of the patterns in
section 8.1. When the gains from innovations are small, firms will not invest in them unless
competitive pressure forces them to do so. By contrast, when the gains are large, greater
market power could sometimes inflate these gains and encourage investment.

What are the policy implications? The mostly negative ∆SII under r = 10% suggests
that most mergers are clearly harmful when the cost of capital is realistically high (and/or
the promise of future benefits is uncertain). Conversely, the results under r = 2.5% suggests
mergers could sometimes help increase innovation when the cost of financing is low (and/or
the level of uncertainty is low)—with the caveat that the majority of four-to-three and three-
to-two mergers, as well as N = 1, is still unambiguously bad (see their underlying statistics
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Figure 14: Sensitivity of Market-Structure Effects to Supply-Side Parameters

(1) Higher discount rate, r = 10% (b) Lower discount rate, r = 2.5%

(c) Higher sunk costs, FC = 1.5× F̂C (d) Lower sunk costs, FC = 0.5× F̂C

Note: These plots are constructed in the same way as Figure 7 under alternative parameter values. Their summary

statistics are reported in Table 26.

in Table 25 below).52

Finally, Figure 14 (c) and (d) show total lack of sensitivity with respect to FC. Their
vertical scales vary, but the relative positions of all data points are exactly the same as in
Figure 7. Despite FC’s major role in benefit-cost calculations, this term cancels out when
we compare SII under different market structures.53

52Whether these values of r are realistic is a different question. In our view, r = 10% seems a plausible
level of capital cost for most private enterprises operating in a rapidly changing world of global high-tech
industries. By contrast, r = 2.5% seems unrealistically low because it could be well below the risk-free rate
of return, which means the latter result becomes relevant only under extraordinary circumstances. Given
that the incentive effects of mergers are mostly negative under r = 5% and 10% (especially when N ≤ 5),
defending mergers on the grounds of incentive to innovate seems difficult.

53Recall that we take the timing and amount of fab investments, a, in the data as given and fixed.
Endogenizing them requires an explicitly multi-period model, which is beyond the scope of this paper.
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Table 25: Sensitivity (2)—Larger Changes in Demand-Side Parameters

Merger Possible Welfare effect, ∆DPV (SW ) (%) Incentive effect, ∆SII (%)
from/to mergers Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

(a) Greater price-sensitivity, α = 1.5× α̂
7 to 6 21 −0.2 0.4 −1.5 −0.0 0.2 0.0 0.4 −0.2 1.5 0.48
6 to 5 315 −0.4 0.5 −2.8 −0.0 0.1 −0.0 0.5 −1.8 1.5 0.52
5 to 4 1,400 −0.6 0.8 −7.5 −0.0 −0.1 −0.0 0.7 −3.3 1.9 0.63
4 to 3 2,100 −1.1 1.5 −10.9 −0.0 −0.7 −0.4 1.1 −3.8 4.0 0.82
3 to 2 903 −2.6 3.0 −11.9 −0.0 −1.8 −1.8 1.6 −4.5 3.7 0.91
2 to 1 63 −10.4 2.7 −12.3 −0.6 0.4 0.6 1.2 −3.1 2.1 0.35
No Others 1 −9.3 − −9.3 −9.3 −11.5 −11.5 − −11.5 −11.5 1.00

(b) Lesser price-sensitivity, α = 0.5× α̂
7 to 6 21 −0.2 0.3 −1.2 −0.0 0.4 −0.0 0.8 −0.2 2.7 0.57
6 to 5 315 −0.3 0.4 −2.2 −0.0 0.5 −0.0 0.9 −0.5 3.6 0.50
5 to 4 1,400 −0.4 0.6 −4.9 −0.0 0.7 0.3 1.1 −0.9 6.1 0.43
4 to 3 2,100 −0.8 1.1 −8.2 −0.0 0.9 0.4 1.6 −1.3 14.4 0.37
3 to 2 903 −1.9 2.1 −8.8 −0.0 1.9 1.0 3.1 −2.2 14.2 0.32
2 to 1 63 −7.5 2.0 −9.1 −0.3 9.0 9.1 3.1 −2.2 13.2 0.05
No Others 1 −9.4 − −9.4 −9.4 −5.3 −5.3 − −5.3 −5.3 1.00

(c) Greater quality-sensitivity, β = 1.5× β̂
7 to 6 21 −0.1 0.3 −1.3 0.0 0.4 0.1 0.9 −0.4 3.8 0.19
6 to 5 315 −0.2 0.3 −1.9 0.0 0.3 0.0 1.0 −2.2 4.3 0.36
5 to 4 1,400 −0.3 0.5 −3.8 0.0 −0.0 −0.0 1.4 −6.0 6.8 0.55
4 to 3 2,100 −0.5 0.8 −6.0 0.0 −1.0 −0.5 2.4 −6.7 15.1 0.77
3 to 2 903 −1.3 1.7 −6.8 0.0 −2.8 −4.1 4.7 −7.9 14.5 0.86
2 to 1 63 −5.9 1.6 −7.2 −0.4 7.5 8.1 4.0 −4.2 12.2 0.08
No Others 1 −15.8 − −15.8 −15.8 −8.2 −8.2 − −8.2 −8.2 1.00

(d) Lesser quality-sensitivity, β = 0.5× β̂
7 to 6 21 −0.3 0.4 −1.2 −0.0 −0.0 −0.0 0.0 −0.1 0.0 0.95
6 to 5 315 −0.4 0.5 −3.0 −0.0 −0.0 −0.0 0.1 −0.2 0.0 0.96
5 to 4 1,400 −0.6 0.9 −8.4 −0.0 −0.1 −0.0 0.1 −0.3 0.0 0.98
4 to 3 2,100 −1.2 1.6 −10.8 −0.0 −0.1 −0.1 0.1 −0.4 −0.0 1.00
3 to 2 903 −2.8 3.2 −13.4 −0.0 −0.2 −0.3 0.1 −0.5 −0.0 1.00
2 to 1 63 −11.4 2.9 −13.4 −0.1 −0.3 −0.4 0.1 −0.5 −0.0 1.00
No Others 1 −8.5 − −8.5 −8.5 −0.3 −0.3 − −0.3 −0.3 1.00

Note: This table corresponds to Figure 13 in section 8.2. See the note to Table 13 for definitions and explanations.
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Table 26: Sensitivity (3)—Larger Changes in Supply-Side Parameters

Merger Possible Welfare effect, ∆DPV (SW ) (%) Incentive effect, ∆SII (%)
from/to mergers Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

(a) Higher discount rate, r = 10%
7 to 6 21 −0.2 0.3 −1.2 −0.0 −0.1 −0.0 1.6 −6.3 1.8 0.62
6 to 5 315 −0.3 0.4 −2.3 −0.0 −0.4 −0.1 1.9 −9.6 1.9 0.67
5 to 4 1,400 −0.5 0.6 −5.2 −0.0 −0.9 −0.2 2.4 −11.6 1.9 0.73
4 to 3 2,100 −0.8 1.1 −8.1 −0.0 −2.0 −0.9 3.1 −13.0 6.0 0.84
3 to 2 903 −2.0 2.2 −8.9 −0.0 −4.2 −3.4 3.8 −14.4 5.7 0.95
2 to 1 63 −7.8 2.0 −9.4 −0.5 −3.0 −3.7 3.8 −10.2 3.4 0.70
No Others 1 −8.6 − −8.6 −8.6 −187 −18.7 − −18.7 −18.7 1.00

(b) Lower discount rate, r = 2.5%
7 to 6 21 −0.2 0.4 −1.5 −0.0 0.5 0.0 0.9 −0.1 2.6 0.33
6 to 5 315 −0.3 0.5 −2.8 −0.0 0.5 0.0 1.0 −1.3 4.2 0.42
5 to 4 1,400 −0.6 0.8 −7.1 −0.0 0.5 0.0 1.1 −2.5 7.4 0.49
4 to 3 2,100 −1.0 1.4 −10.6 −0.0 0.5 −0.1 1.7 −3.0 14.1 0.55
3 to 2 903 −2.5 2.8 −11.4 −0.0 0.7 −0.5 3.4 −3.6 13.9 0.59
2 to 1 63 −9.8 2.6 −11.7 −0.4 7.9 8.4 3.3 −2.8 12.1 0.05
No Others 1 −10.3 − −10.3 −10.3 −10.3 −10.3 − −10.3 −10.3 1.00

(c) Higher sunk costs, FC = 1.5× F̂C
7 to 6 21 −0.2 0.3 −1.4 −0.0 1.4 0.2 2.8 −1.2 9.0 0.33
6 to 5 315 −0.3 0.5 −2.6 −0.0 1.2 0.0 3.1 −6.8 11.9 0.48
5 to 4 1,400 −0.5 0.8 −6.4 −0.0 0.7 −0.2 3.8 −13.2 15.7 0.59
4 to 3 2,100 −1.0 1.3 −9.7 −0.0 −0.8 −1.0 5.9 −16.5 40.3 0.67
3 to 2 903 −2.3 2.6 −10.5 −0.0 −2.7 −4.6 11.4 −20.0 39.1 0.74
2 to 1 63 −9.2 2.4 −10.9 −0.5 18.9 22.1 10.2 −26.2 28.9 0.05
No Others 1 −9.8 − −9.8 −9.8 −67.4 −67.4 − −67.4 −67.4 1.00

(d) Lower sunk costs, FC = 0.5× F̂C
7 to 6 21 −0.2 0.3 −1.4 −0.0 0.3 0.0 0.6 −0.3 2.0 0.33
6 to 5 315 −0.3 0.5 −2.6 −0.0 0.3 0.0 0.7 −1.4 2.5 0.48
5 to 4 1,400 −0.5 0.8 −6.4 −0.0 0.2 −0.0 0.8 −2.5 3.6 0.59
4 to 3 2,100 −1.0 1.3 −9.7 −0.0 −0.1 −0.2 1.3 −3.1 9.6 0.67
3 to 2 903 −2.3 2.6 −10.5 −0.0 −0.5 −1.0 2.5 −3.8 9.4 0.74
2 to 1 63 −9.2 2.4 −10.9 −0.5 4.6 5.2 2.3 −3.5 7.6 0.05
No Others 1 −9.8 − −9.8 −9.8 −11.7 −11.7 − −11.7 −11.7 1.00

Note: This table corresponds to Figure 14 in section 8.2. See the note to Table 13 for definitions and explanations.
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