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Abstract
The past few years have seen a shift in many universities’ admission policies from
test-required to either test-optional or test-blind. This paper uses laboratory experi-
ments to examine students’ reporting behavior given their application package and
the school’s interpretation of non-reported standardized test scores. We find that vol-
untary disclosure is incomplete and selective, while subjects exhibit the ability to learn
about the hidden school interpretations. Student subjects are more likely to hide their
private information when the school is more lenient for non-reporting and when they
receive a better draw on their other attribute observable to the school.

Using a structural model of student reporting behavior, we simulate admission
outcomes for 16 counterfactual test-optional policies. Then, we examine the potential
tradeoff between academic preparedness and diversity in a school’s admission cohort.
We find that test-blind is the worst in both dimensions, while test-required admits stu-
dents with better academic preparedness and more diverse non-test attributes than 11
of the 16 test-optional policies. The few test-optional policies that are not dominated
by test-required have more diversity but lower academic preparedness on average
than test-required. This tradeoff occurs because our subjects do not possess perfect
information of the school policy. When we simulate under perfect information, these
two test-optional policies are also dominated by test-required in both dimensions.
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1 Introduction

In the past few years, many universities have dropped their SAT and ACT requirements,
switching to a test-optional or test-blind admission procedure. While most schools ini-
tially did so to accommodate applicants during the worst of the COVID-19 pandemic, the
shift away from score requirements has become popular even as threats from the pan-
demic recede. Education experts — including economists, other social scientists, policy
makers, and practitioners — debate whether dropping the SAT and ACT requirements
contributes to better admission outcomes, especially in light of the education inequalities
across applicants of different family and economic backgrounds.

This paper focuses on one important but understudied factor in this debate: when
students have the option to disclose or hide their standardized test scores, this decision
is likely strategic. Schools’ admission office may or may not take such strategic behavior
into account, but students’ strategic decision would depend on their belief of how the
admission office would interpret non-reporting, which in turn affects the final admission
outcomes.

Existing evidence already points to the potential importance of selective reporting.
According to Freeman, Magouirk and Kajikawa (2021), the percent of students report-
ing SAT score in college application has declined sharply from 73% during the 2019-2020
season to 40% in 2020-2021 while the percent of common app member colleges that did
not require test scores rose from roughly one-third to 89%. This is opposite to the clas-
sical disclosure theory (Milgrom, 1981; Grossman, 1981), which predicts that a rational
receiver of the disclosure signal should assume all non-reported students have the worst
test scores and therefore all students except for those with the worst scores should report.
Clearly, the reality is far from the unraveling equilibrium. Take the University of Texas
Austin as an example. Its press release on March 11, 2024 states that 42% of its freshman
applications for Fall 2024 reported their standardized scores and the median SAT score
of these reporting students is much higher than that of those who did not report (1420
versus 1160).1 Given such selection, it is not surprising that most colleges ranked top 100
by the US News & World Report have seen their distribution of SAT scores of the admit-
ted class improve in the past few years, because this distribution is conditional on the
admitted students that had reported SAT scores to the college. 2

1Source: https://news.utexas.edu/2024/03/11/ut-austin-reinstates-
standardized-test-scores-in-admissions/.

2Figures A.1 and A.2 show the trends in SAT and ACT scores in the last few years. Among applicants
who submitted their SAT/ACT scores and got admitted to the top-100 schools ranked by U.S. News, there
was an increasing trend in average test scores in the past few years.
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One may argue that strategic reporting is of little importance because standardized
test score is only one of many student attributes that admission officers may consider in a
college application. Admission officers may be able to guess the non-reported test scores
because these observable factors are correlated with test scores. However, such correla-
tion is often imperfect. Growing evidence suggests that standardized test scores such as
SAT and ACT are highly predictive of students’ academic performance in college as well
as career earnings even after controlling for other observable student attributes (Bettinger,
Evans and Pope, 2013; Sanchez and Comeaux, 2020; Chetty, Deming and Friedman, 2023;
Cascio et al., 2024). Some of these findings — or the logic behind them — may have driven
schools like MIT, Dartmouth, Yale, Brown, and the University of Texas at Austin to return
to the test-required policy. However, the vast majority of colleges are still test-optional,
some schools (such as University of California) have gone to the extreme of test-blind
(namely not accepting any score reporting even if the student volunteers to disclose it).
These ongoing developments motivate us to study the incentive and consequences of
voluntary reporting of standardized test scores.

The key questions we ask in this paper are three-fold: First, how do students choose
to report or not report their standardized test score when they observe their own score
in private but recognize that their other application materials (GPA, family economic sta-
tus, activities, etc.) are observable to the college? Second, how would students’ strategic
reporting behavior affect the college’s admission outcome in terms of academic prepared-
ness and diversity of admitted students? Third, how should a college choose among test-
required, test-blind and test-optional policies if it appreciates both academic preparedness
and diversity of the admitted class?

We answer these questions in a clean lab setting where a number of human subjects
(applicants) play a simple college admission game for 50 rounds. In each round, each
subject receives a private endowment A and a public endowment B. The endowments
are randomly drawn with a positive correlation between A and B. Each student’s B is
automatically observable to the college but students choose whether to report A to the
college. Upon student choice of reporting or non-reporting, the college (simulated by
computer) admits half of the applicants that it believes to have the best total endowment
(A+B).

Our experiments, as well as a model of the simple admission game, highlight two
strategic incentives in student reporting. First, students with a higher score are more
likely to report, and this incentive is stronger when the college interprets non-reported
score more harshly. If the school interprets non-reporting as the worst score possible,
everyone would have an incentive to report except for those of the worst score, leading
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to the classical unraveling equilibrium. However, if the school interprets non-reporting
strictly above the worst score (for an ideological reason for example), only those that
have a score above the school’s interpretation of non-reporting would have an incentive
to disclose. We refer to this threshold-based incentive as “partial unraveling.”

While the partial unraveling incentive focuses on the applicant’s own score, the sec-
ond incentive of strategic reporting also depends on the other application materials that
the college observes on the applicant. This is modeled as the public endowment in our
model and experiment. To the extent that the school believes in a positive correlation
between the public and private endowments of the student, it will infer a non-reporting
student’s private endowment based on her public endowment. This conditional inter-
pretation introduces a ”reverse unraveling” incentive because students with better public
endowment would expect more favorable interpretation of non-reporting by the school,
which in turn discourages her from reporting.

Not only does the reverse unraveling incentive reduce information available to a test-
optional school and therefore force it to rely more on the public endowment in admis-
sion decision, it but also affects the distribution of the admitted class. More specifi-
cally, students with high public endowment but low private endowment (e.g. high-SES-
low-achieving students) can better hide behind their high public endowment under test-
optional than test-required, at the expense of low public endowment high private en-
dowment (low-SES-high-achieving) students. This leads to less diversity as measured by
the standard deviation of the public endowment of admitted students and less academic
preparedness as measured by the average private endowment of admitted students.

Test-blind is even worse than test-optional in both dimensions, because it deprives
any opportunity of low-SES-high-achieving students standing out via voluntary report
of test score, and maximize the favorable mask on high-SES-low-achieving students. The
lack of information on private endowment implies that a test-blind school has to rely on
public endowment only to predict each applicant’s total endowment. Given the positive
correlation between private and public endowments, it ends up admitting students with
the highest public endowment. This reduces diversity and academic preparedness of the
admitted class, relative to all test-optional and test-required policies.

In short, our illustrative model suggests that the perceived tradeoff between academic
preparedness and diversity does not exist if students are all rational and have perfect
information on the school’s interpretation of non-reporting. Test-required would Pareto
dominate test-optional in both dimensions, which further dominates test-blind.

Of course, in reality, students may not be fully rational and may not have perfect in-
formation on the school’s interpretation of non-reporting. To mimic the real world, we
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informed our lab subjects that A and B are randomly drawn but positively correlated, we
allowed subjects to learn their own admission outcome in each round, we also told sub-
jects the 25th and 75th percentiles of the private endowment of the students that reported
their private endowment and got admitted in the last round (akin the US News Report
in reality). By design, the subjects do not know how the school interprets non-reporting
exactly but they can learn about it round by round through the observed admission out-
comes and admission distributions. Within this framework, we test two test-optional
policies (T1 and T2), with T2 being more lenient than T1 in the school’s interpretation of
non-reporting.

Despite the imperfect information, we observe strong evidence in support of par-
tial unraveling and reverse unraveling. In particular, when the school interprets non-
reporting as having a private endowment equal to half of the 25th percentile of the dis-
closed private endowment of admitted students in the last round (our T1 treatment), the
average reporting rates increase monotonically from 21.7% to 93.5% if the subject’s pri-
vate endowment A goes from the lowest (1) to the highest (5). Most of these reporting
rates decrease if the school interprets non-reporting more leniently as having a private
endowment equal to the average of the 25th and 75th percentiles of the reported private
endowment among students admitted in the last round (our T2 treatment). These pat-
terns suggest that higher-score students are more likely to report, especially when the
school interprets non-reporting harshly, confirming the partial unraveling incentive.

Furthermore, within the same treatment, if we compare students with exactly the same
private endowment (say A = 3) but different public endowment, those with the lowest
public endowment (B = 1) are most eager to report (89.6% in T1 and 81.9% in T2), but
the vast majority of those with the highest public endowment (B = 5) are reluctant to
report (only 21.4% report in T1 and 11.9% report in T2). The sharp drop of reporting rate
by public endowment confirms the reverse unraveling incentive.

Because the reverse unraveling incentive counters the partial unraveling incentive and
the two endowments are positively correlated, the unconditional probability of reporting
(across all values of private endowment in the same treatment) is still higher for those
with the highest public endowment. This is consistent with the real world statistics re-
ported by the University of Texas Austin – the SAT reporting rate is higher for students in
the top 6% of their high school class than all applicants in total (49% vs. 42%), although
the majority in both groups choose non-reporting. This also suggests that a simple com-
parison of reporting rate by public endowment alone can be misleading because even if
the reverse unraveling incentive cancels out the partial unraveling incentive on average,
their seemingly comparability masks important distributional changes driven by strate-
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gic reporting.
In addition to these two strategic incentives, we also find evidence that subjects learn

round by round about the hidden admission policy, but in the meantime, there is a small
probability that subjects follow a naive rule of thumb of not reporting until their private
endowment is strictly above the population average regardless of the admission history
they can observe in the lab. These imperfections in rationality and information set do not
overturn the insights from the model with perfect information. When we use the empiri-
cally estimated parameters to simulate reporting decision and admitted outcomes across
16 test-optional policies, we find test-required performs better in both the average pre-
paredness and diversity of the admitted students than 11 of the 16 test-optional policies,
and test-blind is always the worst in both dimensions.

The few test-optional policies that are not dominated by test-required demonstrate
more diversity but lower academic preparedness than test-required. This tradeoff occurs
because our subjects do not possess perfect information of the school policy. When we
simulate under perfect information, these two test-optional policies are also dominated
by test-required in both dimensions.

Related literature. Our study contributes to two strands of the literature. First, we add
to the literature on the role of standardized test in college admissions. While test-optional
policies were largely concentrated in selective liberal arts colleges, the last decade has
witnessed the expansion of test-optional adoption to an abundance of schools of vari-
ous types. This expansion was further accelerated by the COVID-19 pandemic. Early
papers have empirically studied the effects of test-optional policies using pre-pandemic
data (Belasco, Rosinger and Hearn, 2015; Saboe and Terrizzi, 2019; Bennett, 2022). They
find limited effect of test-optional policies on increasing the application volume and the
diversity of enrolled students, including the proportion of Pell Grant recipients enrolled.
Test-optional policies did result in higher reported SAT scores, which could boost the
ranking of schools (Dynarski et al., 2023). A recent empirical study analyzes applicants
to 50 major U.S. colleges for entry in Fall 2021, and find strategic disclosure of test scores
among these applicants (McManus, Howell and Hurwitz, 2023). Consistent with our find-
ings, they find applicants withheld low scores and disclosed high scores, and that their
disclosure choices are dependent on their other academic characteristics, colleges’ selec-
tivity and testing policy statements. They do not find large differences in test disclosure
strategies by applicants’ race and socioeconomic status.

In addition to these empirical studies, there is also a theoretical literature on test-
optional college admissions. Borghesan (2022) develop an equilibrium model that allows
applicants to endogenously determine their test-taking and school-application decisions,
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and colleges to adjust admissions thresholds to maximize their objectives. The model
predicts reduced student quality at elite schools and negligible increase in college atten-
dance for low-income students under a test-blind policy. While reduced standardized-test
weight in college admission seems unappealing from previous studies, Dessein, Frankel
and Kartik (2023) argue that social pressure could justify test-optional policies. They
propose a model in which college disagrees with the society on the desired composi-
tion of admitted students, and show that a test-optional policy could help college reduce
the “disagreement cost” with society. Related to our discussion of the tradeoff between
academic preparedness and diversity, Liang, Lu and Mu (2021) study the tradeoff be-
tween accuracy and fairness in a broader context. They show that excluding test scores is
welfare-reducing as long as group identity (e.g., race) is a permissible input in admission
decisions, while it might be preferred with an affirmative action ban.

Our study is different from the above test-optional literature in that we use lab experi-
ments to exclude endogeneity concerns, while focusing on applicants’ strategic reporting
behavior. This allows us to elicit subject beliefs, construct a model of applicant reporting
decision, and simulate reporting behavior and admission outcome for any given counter-
factual school policies. Our model does not capture the cost of test preparation, and thus
does not speak to the test-taking margin.

Beyond college admissions, standardized exams are used for screening in many other
contexts. Most related to our work is Moreira and Pérez (2022), who study the impact of
the 1883 Pendleton Act. They find that the introduction of competitive exams increased
the representation of individuals with high education but limited connections, and re-
duced the share of lower-socioeconomic status federal employees selected.

Second, our study is related to the literature on voluntary disclosure of verifiable infor-
mation. The classical unraveling results suggest that the same outcome from mandated
disclosure can be achieved if the (voluntarily) disclosed information is verifiable and the
related costs are close to zero (Milgrom, 1981; Grossman, 1981). In practice, however,
voluntary disclosure is far from complete in many industries (Dranove and Jin, 2010; Jin,
Luca and Martin, 2021; Feltovich, Harbaugh and To, 2002; Eyster and Rabin, 2005; Board,
2009; Hirshleifer and Teoh, 2003). The voluntary disclosure of standardized test is no dif-
ferent: less than half of college applicants submitted SAT or ACT scores in the year of
2022-2023.3 Unraveling does not arrive in our model because school’s belief about non-
disclosed test scores does not degenerate to the worst possible score and is dependent
on the applicant’s non-test characteristics. When the quality is multi-dimensional and the

3Source: https://s3.us-west-2.amazonaws.com/ca.research.publish/Deadline+
Updates/DeadlineUpdate-_030223.pdf.
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voluntarily disclosed element is correlated with other elements, the receiver (school) does
not necessarily interpret non-reporting as the worst. This disincentivizes the disclosure
of non-favorable information.

This paper proceeds as follows. Section 2 defines the college application problem and
uses an illustrative model to compare the admission outcomes of test-required, test-blind
and test-optional policies. Section 3 outlines the experiment design. Section 4 discusses
the results from the experiments. Section 5 presents a structural model of subject report-
ing decision and Section 6 presents a welfare analysis. Section 7 concludes.

2 The College Application Problem

In this section, we first describe a simplified college application problem and discuss the
predicted admission outcomes under test-required, test-blind, and test-optional policies.
This illustrative model aims to highlight students’ strategic choice of score reporting and
the important role that the school’s interpretation of non-reporting plays in this process.
Then we outline the college application problem in our experiments, which allows sub-
jects to have imperfect information on the school’s interpretation of non-reporting.

2.1 A Simplified Problem

Setting. Consider a single-college application problem, with N student applicants. Each
student’s application profile has two components: a private endowment A (standardized
test scores) and a public endowment B (e.g., high school GPA, letters of recommendation,
extracurricular activities). The student observes her own private and public endowments
and chooses to either report or not report the private endowment. All students under-
stand that private and public endowments are positively correlated in the applicant pop-
ulation, and every one’s public endowment is automatically observable to the college.
Without loss of generality, we can rewrite A as:

A = αB + e (1)

where α > 0 and e is independent of B. In words, e represents the “new” information
in a student’s A that cannot be inferred from her public endowment B. The student
observes her own A and B and thus e, but the college cannot observe her A or e unless
she reports A. After each student makes the reporting decision, the college takes a guess
on each student’s private endowment, and admits N/2 students based on each student’s
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perceived total endowment T . For simplicity, we assume B and e conform to a uniform
distribution between 0 and 1 independently.

School. The school admits students based on T = Ā+B, where Ā is the school’s belief
of a student’s private endowment based on the student’s reporting decision (R). If A was
reported (R = 1), Ā is equal to the true A. If A was not reported (R = 0), Ā would be
given by the function g(B), which takes the form:

g(B) = αB + c (2)

where c is a constant and α is the same as the α in Equation 1 because the positive cor-
relation between A and B is assumed to be public knowledge. One can also interpret α
as the probability under which the school interprets non-reported private endowment as
perfectly identified by the student’s public endowment; otherwise, the school interprets
non-reported private endowment as a constant (c/(1 − α)). Either way, higher α denotes
stronger correlation between the two endowments, and therefore less new information
contained in private endowment conditional on public endowment. Given α, higher c

implies that the school would interpret the non-reported A more leniently. We can sum-
marize the school’s expectation of A as:

Ā =

A if R = 1

αB + c if R = 0.
(3)

Student. If students have perfect information on the school-belief function g(B) and
they act fully rational to maximize the admission probability, they should report if their
private endowment is higher than school’s expectation of non-reported private endow-
ment. In other words, they follow the reporting rule:

R = 1

{
A > αB + c

}
= 1

{
e > c

}
(4)

where the student reports if her private endowment A is above the threshold αB + c.
Put it another way, conditional on the student’s public endowment B, she would only
report if the new information contained in her private endowment is above the school’s
interpretation of this new information upon non-reporting (e > c).

Two incentives are worth highlighting. First, students with higher A are more likely to
report A. This selection has been well documented in the classical unraveling literature:
higher quality firms are more motivated to disclose their product quality to the public
because their true quality exceeds consumer interpretation of non-disclosed quality. Con-
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ditional on α and B, the threshold of reporting (αB + c) increases with c, which suggests
that a more lenient interpretation of non-reporting would motivate more students to hide
the score. When the school has the harshest interpretation (c = 0), every one discloses
because e > 0 everywhere, leading to the classical unraveling equilibrium. But as long
as c > 0, students with e < c would choose non-reporting. We refer to this incentive
as “partial unraveling.” More lenient interpretation of non-reporting leads to less partial
unraveling.

The second incentive of strategic reporting is less obvious: since public and private
endowments are positively correlated (α > 0), students with higher public endowment
(higher B) face a higher reporting threshold (αB + c). Put it another way, if a student
earns a relatively high but not full score in the standardized test, she is more reluctant to
report the score if she comes from a high-income family, enrolls in a good high school,
has high GPAs, etc. This happens because the school would interpret her non-reported
score more favorably based on her high public endowment, a logic we refer to as “reverse
unraveling.”4

In our model, partial unraveling and reverse unraveling cancel out each other, because
we assume α is public knowledge and e is independent of B by definition. This leads to an
overall reporting rule of e > c regardless of B. If the school’s belief of α (or the students’
understanding of the school’s belief of α) is different from the actual α, the two incentives
may not completely cancel out each other.

Admission outcome. Figure 1 shows the composition of the admission cohort un-
der different admission policies. In each of the six subfigures, the square represents a
uniform distribution of e and B in the applicant population. Subfigures (a), (b) and (c)
present the admission outcome under test-required, test-blind, and test-optional, respec-
tively. Subfigure (d) highlights the difference between test-required and test-blind; sub-
figure (e) highlights the difference between test-required and test-optional; and subfigure
(f) highlights the difference between two test-optional policies of different leniency.

Let us first consider the test-required policy. Because we assume T = A + B = (1 +

α)B+e, the indifferent curve that represents a particular value of T is a downward sloping
straight line with slope −(1+α). To maximize total endowment of admitted students, the
school would find an indifferent curve that represents the population median of total

4Note that this is different from the counter-signalling effect shown in Feltovich, Harbaugh and To
(2002); Bederson et al. (2018). Counter-signalling is more complicated than reverse unraveling, because to
ensure counter-signalling as a subgame perfect equilibrium one needs the disclosed signal to be coarser
than the true quality and the presence of another exogenous but noisy signal. Otherwise, the equilibrium
with rational expectation boils down to classical unraveling. Here we shy away from multiple and coarse
signals but allow the school’s interpretation of non-reporting to be exogenous and non-rational so that the
interpretation may not coincide with the average private endowment of those who choose non-reporting.
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(a) Test-Required (TR) (b) Test-Blind (TB) (c) Test-Optional (TO)

(d) TR vs. TB (e) TR vs. TO (f) Harsh vs. Lenient TO

Figure 1: Composition of the Admission Cohort

Note: This figure provides an illustration of the composition of the admission cohort under test-required,
test-blind, and test-optional admission policies. Assuming the school admits half of all applicants, the blue
shaded areas in subfigures (a), (b), and (c) represent admitted applicants. In subfigures (c), (d), and (e), we
show the difference in admission composition between test policy pairs.

endowment and admit every student with a total endowment above it. This corresponds
to the blue shaded area in Figure 1(a). More specifically, the school would reject anyone
with B < 1

2
− 1

2(1+α)
regardless of their test score (referred to as “straight reject”), accept

anyone with B > 1
2
+ 1

2(1+α)
(referred to as “straight accept”), and trade off between B and

e for any students in between (referred to as “tradeoff group”). A higher α implies less
new information in test score, which makes the T-indifferent curve steeper and therefore
expands the straight reject and straight accept groups. As a result, test score matters for
fewer students in the tradeoff group.

Following the same logic, when a school adopts a test-blind policy, it can only admit
students based on expected total endowment, which can be written as E(T |B) = E((1 +

α)B + e|B) = (1 + α)B + 1
2
. The indifference curve representing a particular value of
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E(T |B) is a straight vertical line and the school would admit any students with a public
endowment above the population median. This gives us the blue shaded area in Figure
1(b).

Putting test-required and test-blind in one graph, Figure 1(d) shows that test-blind
benefits the students that have high public endowment but low private endowment (in
the yellow shaded area), since they are able to hide their less-favorable standardized test
scores behind their above-average public endowment. It hurts applicants with low pub-
lic endowment but high private endowment (in the green shaded area) because it shuts
down the channel (standardized test) through which they can stand out and showcase
their competence.

Compared to test-required, test-blind reduces the academic preparedness and diver-
sity of admitted students, if we define academic preparedness as the average A and diver-
sity as the standard deviation of B of the admitted class. To see this, imagine we replace
a random student in the green area with a random student in the yellow area. It is easy to
show that the replaced student always have a higher A = αB+e and a lower B than the re-
placing student, which will pull down the average academic preparedness and diversity
of the admitted class. This implies that test-required would Pareto dominate test-blind if
the school appreciates both academic preparedness and diversity.

Test-optional lies somewhere in between test-required and test-blind. As shown in
Figure 1(c), when the school interprets non-reported A as Ā = αB + c, any student with
e > c would report A and any student with e < c would not report. This implies that
the school’s expected total endowment for a student depends on her reporting decision
R, namely E(T |B,R) = E((1 + α)B + e|B,R) = (1 + α)B + max(e, c). This means the
T-infererence curve is kinked at e = c, with a downward slope of −(1 + α) when e > c

and a slope of infinity when e < c. Again, the school looks for a T-indifference curve that
corresponds to the population median and admits all students with the expected total
endowment above it. This corresponds to the blue shaded area in Figure 1(c).

Similar to the case of test-required, the school rejects every student with B < 1
2
− 1−c2

2(1+α)

no matter whether the student reports or does not report A (straight reject), admits every
student with B > 1

2
+ (1−c)2

2(1+α)
(straight accept), and trade offs between B and the reported

A for any student in between (“tradeoff group”). Any student in this tradeoff group but
does not report A would be rejected. Note that these cutoffs depend on c: when the
school adopts a more lenient interpretation of non-reported score (higher c), it expands
the straight reject and straight accept groups. As a result, the tradeoff group shrinks and
fewer students choose to report, both of which diminish the information value of test
score. When c is extremely lenient (c = 1), it eliminates the tradeoff group and the regime
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is equivalent to test-blind. When c is extremely harsh (c = 0), it motivates every student
to report and the complete unraveling makes the regime equivalent to test-required.

Figure 1(e) further compares the discrepancy of admission outcomes between test-
required and test-optional. Similar to test-blind, test-optional rejects the low-SES-high-
achieving students in the green area and admits the high-SES-low-achieving students in
the yellow area. It is easy to show that replacing a random student in the green area
with a random student in the yellow area would lead to a strict decline of A and a strict
increase of B, pulling down the average academic preparedness and diversity of the ad-
mitted class. In short, test-required Pareto dominates any test-optional policy if the school
appreciates both academic preparedness and diversity.

Figure 1(f) compares two test-optional policies with different leniency. As discussed
before, a harsher interpretation of non-reporting would motivate more students to report,
which pushes the downward sloping boundary of the admitted group to the left among
reported students and the vertical boundary of the admitted group to the right among
non-reported students. Consequently, a harsher test-optional policy rejects the high-SES-
low-achieving students in the yellow area in exchange for the low-SES-high-achieving
students in the green area, which increases the average academic preparedness and di-
versity of the admitted class.

Overall, the illustrative model concludes that the perceived tradeoff between aca-
demic preparedness and diversity is non-existent in the simplified admission problem:
when private and public endowments are positively correlated, the school’s interpreta-
tion of non-reporting is known to students, and all students are rational in their strategic
reporting behavior, the Pareto dominance follows the order of:

Test-required ≫ Harsh test-optional ≫ Lenient test-optional ≫ Test-blind.

Is there any scenario where this order of Pareto dominance may break down if we
change some assumptions in the illustrative model? The lab experiment presented be-
low would relax the assumption of student rationality and perfect information. Here we
briefly discuss how the model would change if the school has different preferences on the
students’ private and public endowments.

It is not difficult to show that, as long as the school has a positive marginal utility
on A and B and treat the two as perfect substitutes, we can redefine one of the two en-
dowments, re-scale the total endowment function and the positive correlation between
the two endowments, and make it equivalent to the illustrative model. The model will
change if the school has a negative marginal utility on B but a positive marginal utility
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on A.
This would introduce a tradeoff between (1) a positive preference on B because higher

B implies higher A, and (2) a fundamental distaste on B. If we assume (1) dominates (2)
so that the school still prefers to admit students with higher B if A is not observable,
then test-optional (or test-blind) could increase the average academic preparedness of
admitted students above that of test-required. This is because it replaces some low-SES-
high-achieving students with some high-SES-low-achieving students but the definition of
high-achieving is compromised due to the school’s fundamental distaste of B. As before,
test-optional (or test-blind) still reduces the diversity of admitted students as compared
to test-required, so we may have a tradeoff between lower diversity and better academic
preparedness by different admission policies. The rest of the paper ignores this theoret-
ical possibility because it is unrealistic to assume a typical college in the US would have
a fundamental distaste on other application materials such as GPA and extracurricular
activities.

2.2 A College Application Problem Without Perfect Information

One key assumption that we make in the simplified problem is that students have perfect
information on the school’s interpretation of non-reported private endowment under a
test-optional policy. This, however, is rarely the case in reality as colleges do not fully dis-
close that information. Thus, college applicants’ actual reporting behavior and admission
outcome may deviate from what one would predict under perfect information. To better
reflect the reality, this subsection extends the simplified problem by allowing students
to play the admission game in multiple rounds, to obtain their own admission outcome
in each round, and to observe some statistics of the college’s admission outcomes in the
past. The extended model is outlined below.

School. In period t, each student has a public endowment, Bt, and a private endow-
ment, At. The school admits students based on Tt = Āt+Bt, where Āt is the school’s belief
of a student’s private endowment. Let the school’s belief of a student’s non-reported pri-
vate endowment be given by the function g(Bt, xt−1, yt−1), where xt−1 and yt−1 are the
25th and 75th percentile of At−1 of those who reported it and got admitted in the previ-
ous period (mimicking the 25th and 75th score percentiles reported in the U.S. News).
Specifically, define gt = g(Bt, xt−1, yt−1) as:

g(Bt, xt−1, yt−1) =

Bt with prob. α

γ0 + γ1xt−1 + γ2yt−1 with prob. 1− α.
(5)
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With probability α, the school interprets non-reported private endowment as perfectly
identified by the student’s public endowment; with probability (1 − α), the school in-
terprets non-reported SAT/ACT scores as a linear function of admission statistics of the
previous entering cohort. Here we use three parameters (γ0, γ1, γ2) to describe the func-
tion gt because the classical unraveling theory implies that the school should interpret
all non-reported A as the worst possible outcome, but the school may deviate from the
classical unraveling theory for ideology reasons. In particular, a generous interpretation
of non-reported A may imply a a high γ2 and a low γ1, but a cynical interpretation of non-
reporting may imply a high γ1 and a low γ2. As described later, our experiment introduces
some variations in γs to represent different school interpretation of non-reporting.

Moreover, students do not have perfect information on the school-belief function gt.
Assume a student’s belief of gt takes the form

ĝ(Bt, xt−1, yt−1) =

Bt with prob. α̂

γ̂0 + γ̂1xt−1 + γ̂2yt−1 with prob. 1− α̂

so that a student’s subjective expectation of the school’s guess, Āt, is:

Es[Āt|Bt, xt−1, yt−1, Rt = 0] = α̂Bt + (1− α̂)[γ̂0 + γ̂1xt−1 + γ̂2yt−1]

Student. Let p denote the probability of admission, and let Ua, U r (Ua > U r) denote
the utilities from admission and rejection, respectively. A student’s utility maximization
problem in period t is: given Bt, maxRt∈{0,1} EU = ptU

a + (1 − pt)U
r. We can write pt as

a weakly increasing function f of total endowment, Tt. It follows that maximizing EU is
equivalent to maximizing pt = f(Tt) = f(Bt + Āt). Then, a student reports in period t if

f(Bt + At)︸ ︷︷ ︸
Admission prob. from reporting

> α̂f(Bt +Bt) + (1− α̂)f(Bt + γ̂0 + γ̂1xt−1 + γ̂2yt−1)︸ ︷︷ ︸
Expected admission prob. from non-reporting

= f(Bt + Es[Āt|Bt, xt−1, yt−1, Rt = 0]− π(ρ))

where π(ρ) is an increasing function of some measure of risk aversion. The second equal-
ity gives the value of total endowment such that the student would be indifferent between
having that value and a lottery indicated by the RHS of the first inequality. Since f(Tt) is
increasing in Tt, the decision rule is simplified to:

Rt = 1

{
At > Es[Āt|Bt, xt−1, yt−1, Rt = 0]− π(ρ)

}
(6)
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Note that π(ρ) does not represent aversion to the admission probability. It can be inter-
preted as the aversion to the uncertainty in student’s mind about how the school would
interpret non-reporting (i.e. the uncertainty about the true α and γs). Note that the uncer-
tainty may still exist even if the students chooses to report, because different school inter-
pretation of non-reporting may affect her relative ranking among all applicants. Holding
everything else constant, more risk averse players may be more or less likely to report
their private endowment, At, depending on how she perceives the uncertainty would
affect her differently in the case of reporting versus non-reporting.

3 Experiment Design

In our experiments, subjects completed 50 rounds of game and additional tasks depend-
ing on the treatment. Instructions of the experiment were presented and read to the sub-
jects at the beginning of the session. The Appendix contains the full instructions. At the
end of each session, subjects were paid, privately and in cash, their show-up fee plus any
additional earnings from the experiment.

Our main sessions were conducted at the Experimental Economics Lab at the Univer-
sity of Maryland (EEL-UMD). In this laboratory, subjects were separated with dividers,
and each subject was provided with a personal computer terminal.

Each Round. In our experiments, the subject was the sender (or the “applicant”) and
the computer was the receiver (or the “program”). In each round and for each player,
the computer randomly drew a whole number from the set {1, 3, 5}, called the “public
endowment”. Each number in the set was equally likely to be drawn. Then, for each sub-
ject, the computer drew a second whole number, called the “private endowment”, with
the following rule: with 50% chance the private endowment is equal to the public endow-
ment, with 50% chance the private endowment is chosen from the set {1, 2, 3, 4, 5} with
equal probability on each number in the set. For example, if the randomly chosen public
endowment was 3, then with 60% chance the private endowment would be 3, and each
number in the set {1, 2, 4, 5} has 10% chance of being chosen. The rule was designed such
that the correlation between the public and private endowment was around 0.5, a num-
ber close to the reported correlation between high school GPA and SAT scores (Westrick
et al., 2020).

Each subject was shown her public endowment and private endowment. Subjects
were made aware of the state spaces of both endowments and the positive correlation
between the two, but were not told the probability distribution of either endowment.
Each subject was also shown the admission statistics from the previous round: the 25th
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and 75th percentiles of the private endowment for those who reported it and were subse-
quently admitted, and the mean of the public endowment for those who were admitted.
Then, subjects were given the option to either “report” or “not report” their private en-
dowments, with the understanding that the computer knew their public endowments.
There was no time limit for the subject decision.

After all subjects made their reporting decisions, the computer calculated a total en-
dowment for each subject. If a subject’s private endowment was reported, the total en-
dowment would be the sum of the actual public and private endowments. If a subject’s
private endowment was not reported, the computer took a guess on it, and assigned the
sum of public endowment and the guess of private endowment as the total endowment.
Then, the computer ranked all subjects in the session by their total endowments, and ad-
mitted the top half of subjects. Subjects were shown their own admission results and the
admission statistics of the current round, which would be reminded in the next round.

At the end of the experiment, two random rounds were selected for payment. Each
subject were paid $6 for each admission in those rounds. The maximum amount of pay-
ment through this channel is $12, when the subject was admitted in both randomly se-
lected rounds. Therefore, it is in each subject’s best interest to be admitted by the program
in every round.

Treatment Variation. Our primary treatment variations occurred on the program’s
guess of a subject’s private endowment if it was not reported. In other words, the treat-
ment variations came from the selection of parameters in the expression of school-belief
function g(Bt, xt−1, yt−1) in Equation 5. 5

T1: gt = Bt with prob. 0.5, gt = 0.5xt−1 with prob. 0.5

T2: gt = Bt with prob. 0.5, gt = 0.5xt−1 + 0.5yt−1 with prob. 0.5

Our main sessions only varied γ2, while setting γ0 = 0, γ1 = 0.5, and α = 0.5 in both the
real correlation of public and private endowments and the weight that the school puts on
public endowment when it takes a guess about non-reported private endowment. In the
first treatment (T1), we set γ2 = 0; in the second treatment (T2), we set γ2 = 0.5. Therefore,
the program places harsher punishment on non-reporting in T1 than in T2. All subjects
in a session were randomly assigned to a treatment for the entire session at the begin-
ning of the experiment. Subjects in different treatments were given the same instructions,
but might receive differential feedback through their own admission outcomes and the

5In our “independent treatment”, which is not discussed in this draft, we have additional treatment
variations. Specifically, we set α = 0, γ1 = 0, and vary γ2.
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admission statistics in each round.
After all subjects completed 50 rounds, we used the multiple price list method (Holt

and Laury, 2002) to elicit risk attitudes. This allows us to control for subjects’ relative risk
preferences when modelling their reporting choices. We randomly selected one lottery
choice in each session and paid the subjects accordingly. The complete list of of lottery
choices are included in the Appendix.

4 Results

In our main sessions, we observed 285 subjects making a total of 14,250 reporting deci-
sions. Over 18 sessions, the mean session size was approximately 16. We used a show-up
fee of $10, and on average subjects earned $18.30. The minimum payment was $11, and
the maximum was $27.

We assigned 144 subjects to the first treatment (T1), and 141 subjects to the second
treatment (T2). Table 1 shows the summary statistics of subjects in the main sessions.
We had a slightly higher number of women than men in both treatments. All subjects
were undergraduate students, with roughly half of them being white, and 40 percent of
them being freshmen. Subjects’ experience from college applications and standardized
tests were balanced across treatments. They had similar number of test attempts, SAT
and ACT test scores, number of schools applied. They also made similar SAT and ACT
submission choices when they applied to college.

To complement our lab results, we also run simulations under the same setting (16
players per session, 9 sessions each for T1 and T2) but where players have perfect in-
formation on the school-belief function gt and report if their true private endowment is
higher than the expected school-belief of their non-reported private endowment, i.e.

Rt = 1

{
At > E[Āt|Bt, xt−1, yt−1, Rt = 0]

}
(7)

Note that the expectation here does not have a subscript s due to its objectivity. Real and
simulated subject behavior may differ in that: (i) real subjects do not know gt but the
computer knows, (ii) real subjects may have risk aversion but the computer does not, (iii)
real subjects may not be full rational but the computer is, and (iv) real subjects may learn
between rounds but the computer does not. In our structural model, we address (i) by
estimating subject belief of gt or eliciting it from survey questions, (ii) by including the
risk measure of each subject, (iii) by introducing a probability of irrationality, and (iv) by
only focusing on later-round results.
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Table 1: Summary Statistics of Main Sessions

T1 T2 T1-T2 p-value
(1) (2) (3) (4)

Demographics
Female 0.53 0.56 -0.03 0.58
Asian 0.32 0.32 0.00 1.00
Black 0.14 0.09 0.05 0.22
White 0.49 0.49 -0.00 0.96
Others 0.06 0.10 -0.04 0.17
Freshman 0.38 0.41 -0.04 0.53
Sophomore 0.17 0.19 -0.02 0.70
Junior 0.21 0.23 -0.03 0.60
Senior 0.24 0.16 0.08 0.09

Standardized Test
Number of Attempts 1.90 1.85 0.04 0.77
SAT Math Score 693.10 684.19 8.91 0.47
SAT Reading Score 677.54 689.29 -11.75 0.25
ACT Score 29.53 31.43 -1.90 0.04
Number of Schools Applied 7.52 7.77 -0.25 0.65
Non-Report as Bad Signal 0.53 0.65 -0.12 0.03
Send SAT/ACT to All Schools 0.47 0.43 0.04 0.50
Did Not Take SAT/ACT 0.12 0.17 -0.06 0.32
School Test-Blind 0.08 0.07 0.00 0.93
Had Low Scores 0.57 0.65 -0.08 0.29
UMD as First Choice 0.33 0.33 0.01 0.90

N 144 141 285
* Notes: This table reports the summary statistics of subjects in our experiments. The first two columns show
the summary statistics of demographics and experience with college applications for subjects in treatments
T1 and T2, respectively. Column 3 shows the difference between the first two columns, and Column 4
presents the p-value for the difference.

4.1 Trends in Admission Statistics

Figure 2 shows the trends in admission statistics, i.e. the 25th and 75th percentiles of the
private endowment of those who reported it and were offered admission in the previous
period. Subfigures (a) and (c) come from lab data under T1 and T2, respectively, and (b)
and (d) come from the corresponding simulation results.

In the first round, we set the initial “previous” 25th and 75th percentiles of the private
endowment as 2 and 4. The 75th percentiles quickly converge to 5 in both treatments and
in both simulations. For T1, the 25th percentile goes up immediately and starts fluctuat-
ing around 4. A similar trend is observed in our simulation. For T2, we see a small and
gradual increase in the 25th percentile of private endowment after the initial round and
till round 10. It then starts fluctuating around 4.5, being slightly lower than the simu-
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(a) T1: lab (b) T1: simulation

(c) T2: lab (d) T2: simulation

Figure 2: Trends in Admission Statistics

Note: This figure shows the trends in admission statistics by round. Subfigures (a) and (c) present the
trends in the 25th and 75th percentiles of private endowment from those who reported it and were offered
admission in the lab under T1 and T2, respectively. Subfigures (b) and (c) present the trends when we
simulate subject reporting decision with perfect information under T1 and T2, respectively.

lated 25th percentile in most rounds. In general, we see that the admission statistics in
the lab are similar to those from the simulation, indicating only small differences in the
composition of the entering cohort between the field and the world where students are
well-aware of the school’s belief and behave rationally. Given a pre-determined school-
interpretation of non-reporting, the “converging” of admission statistics is fast, even with
a small sample per application cycle. The difference in admission statistics between T1
and T2 also signifies subjects’ ability to learn from the feedback available to them. Since
subjects in T1 and T2 were provided with identical instructions at the beginning of the
experiments, the difference in learning experience came from the admission statistics and
their own admission outcomes from previous rounds.
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Table 2: Summary of Subject Reporting Rates

Treatment T1 T2

All Rounds Rounds 1-20 Rounds 21-50 All Rounds Rounds 1-20 Rounds 21-50

Panel A: avg. reporting rate by private endow.
A=1 0.217 0.227 0.210 0.156 0.171 0.146
A=2 0.294 0.304 0.288 0.283 0.292 0.277
A=3 0.490 0.465 0.506 0.344 0.405 0.304
A=4 0.818 0.806 0.827 0.793 0.775 0.805
A=5 0.935 0.937 0.933 0.939 0.931 0.944

Panel B: avg. reporting rate by public endow.
B=1 0.498 0.508 0.491 0.455 0.463 0.449
B=3 0.493 0.495 0.491 0.384 0.428 0.355
B=5 0.662 0.659 0.664 0.647 0.638 0.653

Total N 7200 2880 4320 7050 2820 4230
* Notes: This table reports a summary of subject reporting rates during the experiment. For each private or
public endowment, we report the average reporting rates of private endowment in all rounds, in the first
20 rounds, and in the last 30 rounds.

4.2 Reporting Decision

Panel A of Table 2 presents the average reporting rate in T1 and T2 by subjects’ private
endowment. As predicted by the “partial unraveling” incentive, subjects with higher
private endowments are more likely to report: in T1, the reporting rate increases from
21.7% when A = 1, to 29.4% if A = 2, 49% if A = 3, 81.8% if A = 4, and 93.5% if
A = 5. This monotonic relationship between reporting and private endowment continues
to hold in T2, but the absolute magnitudes of reporting rate decline from T1 to T2 for
every level of private endowment except for A = 5. Again, this is consistent with the
partial unraveling incentive because the school in T2 is more lenient in its interpretation
of non-reporting.

If we compare the starting rounds (1-20) and ending rounds (21-50) within each treat-
ment, the reporting rate declines over time in T2 for all A < 4, but it only drops in T1
for A = 1 and A = 2. Since subjects started with exactly the same setting in T1 and T2,
this suggests that subjects’ initial belief of school interpretation of non-reporting may be
closer to the true interpretation of T1 than to that of T2. Over time, subjects learn that
the school in T2 is more lenient and therefore become more likely to withhold their low
scores.

Panel B of Table 2 summarizes the average reporting rate in T1 and T2 by subjects’
public endowment. In both T1 and T2, the reporting rate is slightly lower when B = 3

than when B = 1. This is consistent with the reverse unraveling incentive, because by
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(a) B=1 (b) B=3

(c) B=5

Figure 3: Reporting Rates in Rounds 21-50

Note: This figure presents the reporting rates by public and private endowments in the last 30 rounds of
the experiment. Each subfigure represents one possible public endowment (B) and the horizontal axis in
each subfigure represents the private endowment (A). The light gray bars show the reporting rates under
T1, and the dark gray bars show the reporting rates under T2.

definition subjects with B = 3 are more likely to receive higher A than subjects with B = 1

but they are no more likely to report. However, when the public endowment increases
to B = 5, the reporting rate is 66.2% in T1 and 64.7% in T2, which seems much higher
than the reporting rate when B = 1 or B = 3 (38-50%). At the first glance, this pattern
goes against the reverse unraveling prediction. This is because subjects with a higher B
are also more likely to receive a higher A, and the average reporting rate by B mixes the
partial unraveling incentive with the reverse unraveling incentive.

More specifically, Figure 3 presents the observed reporting rates given the public en-
dowment B and private endowment A. Here we compute the reporting rates for rounds
21 to 50 because over 80 percent of subjects report that they have formed a belief of the
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school’s interpretation of non-reporting by round 20. 6

If we focus on the same private endowment (say A = 3), most subjects with the lowest
public endowment (B = 1) are eager to report (89.6% in T1 and 81.9% in T2), but most
subjecst with the highest public endowment (B = 5) are reluctant to report (only 21.4%
report in T1 and 11.9% report in T2). The same pattern occurs for A = 1 and A = 2. Such
a drastic decline of reporting rate by B, conditional on the same A, reflects the reverse
unraveling incentive.

If reverse unraveling holds, how can we explain the relatively high average report-
ing rate in Panel B of Table 2 for all subjects with B = 5? The main reason was that
when public endowment was the highest (B = 5), by construction the private endow-
ment would also be the highest (A = 5) with 60% chance, and over 90% of the highest
private endowments were reported during the experiment because of the partial unrav-
eling incentive. Thus, the high average reporting rate by B, which is unconditional on A,
reflects a mixture of the reverse unraveling incentive (conditional on the same A) and the
partial unraveling incentive (across different A).

Another way to read Figure 3 is to compare subjects’ reporting behavior with what
we would expect in theory if subjects are fully rational and know the school’s interpre-
tation function beforehand. Table 3 shows the hypothetical reporting decision indicated
by Equation 7. If subjects were successful in learning from their admission results in the
first 20 rounds and forming an accurate belief of the school-belief function gt, we should
only observe significant gaps in reporting rates between T1 and T2 under the following
three cases: (A=2, B=1), (A=3, B=3), (A=4, B=5). To be specific, in these cases a perfect-
information fully-rational subject would always report under T1 and always not report
under T2 because the school is more lenient for non-reporting in T2.

Figure 3 shows a few deviations from these hypotheses. When B = 1, we observe no
significant difference in reporting rates between T1 and T2 at A = 2 (mainly due to over-
reporting under T2), but significantly higher reporting rate under T1 at A = 1. When
B = 3, we do observe significantly higher reporting rate under T1 at A = 3, but it is still
far from full reporting (at 49%). When B = 5, we observe higher reporting rates under T1
at A = 4, but the difference is not statistically significant (mainly due to over-reporting
under T2). There is also significantly higher reporting rate under T1 at A = 3. These
deviations signal differences between the hypothetical decision rule given by Equation 7
and the actual decision rule given by Equation 6, suggesting that lab subjects may have
some departure from full rationality or perfect information.

To better understand subjects’ round-by-round learning, Figure 4 reports the trends

6Figure A.3 shows the rounds at which subjects formed the final belief of the school’s interpretation.
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Table 3: Hypothetical Reporting Rule with Perfect Information

Public Endowment School-Belief Report under T1 Report under T2

Bt = 1

{
T1: 0.5 + 0.25xt−1 ≈ 1.5

T2: 0.5 + 0.25(xt−1 + yt−1) ≈ 2.875
if At ∈ {2, 3, 4, 5} if At ∈ {3, 4, 5}

Bt = 3

{
T1: 1.5 + 0.25xt−1 ≈ 2.5

T2: 1.5 + 0.25(xt−1 + yt−1) ≈ 3.875
if At ∈ {3, 4, 5} if At ∈ {4, 5}

Bt = 5

{
T1: 2.5 + 0.25xt−1 ≈ 3.5

T2: 2.5 + 0.25(xt−1 + yt−1) ≈ 4.875
if At ∈ {4, 5} if At ∈ {5}

* Notes: This table reports the hypothetical reporting rule (indicated by Equation 7) when subjects have per-
fect information about the school’s interpretation of non-reported private endowment. Column 2 reports
the true school-belief under T1 and T2 given the public endowment in Column 1. Columns 3 and 4 show
the values of private endowment with which subjects with perfect information would report under T1 and
T2, respectively.

(a) T1: lab (b) T2: lab

Figure 4: Trends in Subject Reporting Rates

Note: This figure shows the trends in subject reporting rates in the lab. We present a separate trend for each
possible public endowment (B) under T1 and T2. The reporting rates are averaged across every 5 rounds.

in subject reporting rates from round 1 to round 50 in T1 and T2 separately. We do not
see a clear trend or convergence in reporting rates under T1: the lines are fairly flat over
time regardless of the public endowment. Similar (absence of) trends are observed un-
der T2 when public endowment was either low (B=1) or high (B=5). When the public
endowment was of medium value (B=3), the reporting rate dropped from roughly 55%
to 40% and then remained flat for the rest of the session. In general, Figure 4 shows no
clear evidence of subject learning but it has not yet associated a subject’ own experience
from previous rounds with the same subject’s reporting decision in later rounds, which
we will further explore in Section 5.
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Figure 5: Reporting Rates by Gender and Race

Note: This figure presents the reporting rates under T1 and T2 by (self-reported) gender and race in the
last 30 rounds of the experiment. The graph on the left shows the reporting rates for female and male. The
graph on the right shows the reporting rates for Asian, Black, and White subjects.

Finally, Figure 5 shows the reporting rates by gender and race in rounds 21 through
50. The reporting rates are significantly higher for male in T1, but not in T2. When we
look at reporting rates by race, Asian subjects have roughly 5 percent higher reporting
rates than Black and White subjects in T1. In T2, all three races have similar reporting
rates. In both illustrations, the reporting rates are higher in T1 than in T2, suggesting that
all subgroups realized that the school has a harsher interpretation of non-reporting in T1.

5 Structural Estimation of Reporting Decision

To study the relationship between the real school belief and subject perception of it, we
estimate a structural model of subject reporting decision. Recall that we assume a sub-
ject’s belief of the school belief of non-reported private endowment, ĝ(Bt, xt−1, yt−1), is Bt

with probability α̂ and γ̂0 + γ̂1xt−1 + γ̂2yt−1 with probability 1 − α̂. Consider a discrete
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choice model. Let the utilities of report and not-report in period t be given by

VRt=1 = At

VRt=0 = Es(Āt)− π(ρ) + ϵ

= α̂ ·Bt + (1− α̂)[γ̂0 + γ̂1 · xt−1 + γ̂2 · yt−1]− δ · ρ+ ϵ

where ϵ is the logit error. As discussed previously, we used the multiple price list method
to elicit risk preference of each subject. ρ represents the question number at which each
subject switched from getting a lottery to getting a sure prize. A higher ρ suggests higher
risk aversion. Given the utilities, a rational subject would report in period t if VRt=1 >

VRt=0.
To capture subject learning at any point in the experiment, we define a total of eight

learning variables for each subject at each round: subject reporting rate under the same
private endowment in all previous rounds, subject reporting rate under the same pub-
lic endowment in all previous rounds, subject acceptance rate pooled and by reporting
decision under the same private endowment in all previous rounds, subject acceptance
rate pooled and by reporting decision under the same public endowment in all previous
rounds. These variables provide a simple but comprehensive summary of a subject’s ex-
perience during the experiment up to a given round. Since subjects in different treatments
were told the same instructions, learning was also the major distinction of each treatment
specification.

The parameters of the discrete model were estimated using maximum likelihood. The
results are provided in Table 4. We set the coefficient of At in the logit model to always
be one, so that the coefficients in the table can be translated to the model parameters with
a minus sign. Columns 1 and 2 show that limiting the sample to the last 30 rounds do
not change the estimates of the logit model. In other words, there is no direct evidence
for subjects updating their reporting decision rule overtime, given their private endow-
ment, public endowment, previous admission statistics, and risk attitudes. However,
when we include the learning variables and a full set of subject covariates in the model,
the coefficient for public endowment more than doubled, while the coefficient for admis-
sion statistics from the previous round decreased in magnitudes. 7 The estimates in the
first two columns are likely biased as subject demographics and their previous experi-
ence both in college application and in the lab influenced their reporting decision rule.
The coefficient for the risk aversion index also became statistically indistinguishable from

7The set of subject covariates include subject demographics and their own experiences in college appli-
cation, e.g., standardized test scores, reporting decisions. They are summarized in Table 1.
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Table 4: Logit Model Estimation of Reporting Decisions

(1) (2) (3) (4)
All Rounds Rounds 21-50 Rounds 21-50 Rounds 21-50

Public Endow. B -0.34∗∗∗ -0.34∗∗∗ -0.72∗∗∗ -0.69∗∗∗

(0.01) (0.01) (0.08) (0.10)
Q1 (previous round) -0.20∗∗∗ -0.23∗∗∗ -0.14∗∗∗ -0.09

(0.03) (0.04) (0.05) (0.06)
Q3 (previous round) -0.10 -0.12 -0.12 -0.19

(0.08) (0.11) (0.14) (0.15)
Risk Aversion Index -0.03∗∗ -0.04∗∗ -0.04

(0.01) (0.02) (0.03)

Learning X X
Subject Covariates X
Subject FE X

N 14250 8550 8550 8550
* Notes: This table reports estimates from a logistic regression of subject reporting decision. The learning
variables in Columns 3 and 4 include subject reporting rate under the same private endowment in all
previous rounds, subject reporting rate under the same public endowment in all previous rounds, subject
acceptance rate pooled and by reporting decision under the same private endowment all previous rounds,
subject acceptance rate pooled and by reporting decision under the same public endowment all previous
rounds. The subject covariates in Column 4 include those summarized in Table 1. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

zero. A significant negative coefficient would suggest that more risk averse subjects are
less likely to report, contradicting our hypothesis. However, it is still surprising that the
coefficients remain negative across all models. One explanation is that, while the model
assumes reporting implies certainty and non-reporting implies uncertainty, in reality a
subject would still face the uncertainty of not knowing the school’s admission policy and
other applicants’ reporting decisions even if she reported. In the last column we add
subject fixed effects to the model. The coefficient for the 25th percentile of private endow-
ment decreased by half and become insignificant, while the others are similar to those in
the third column (hereinafter “model 3”).

In both treatments in the lab, we assign 50% weight to the public endowment in the
school’s interpretation of non-reported private endowment (i.e., α = 0.5). The coefficients
in the last two columns suggest that the elicited weight on public endowment are 0.72-
0.75. Thus, subjects tend to overweight their public endowment and underweight school
attributes when they make reporting decisions.

The predicted subject reporting rates from these model specifications are presented
in Table 5, panel A. Models 3 and 4 predict reporting rates much closer to the actual
rates than model 2, suggesting that an model of subject reporting decision should include
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subject attributes and subject learning. Adding subject attributes or subject fixed effects
also substantially increases the model’s likelihood: from -4,018 to -3,029 or -2,835. While
the average distance between pooled actual and predicted reporting rates are low (1.5
for model 3 and 1.4 for model 4), the difference could be quite large when we focus on
a particular treatment. In particular, the actual reporting rate in T2 when the private
endowment was 3 was 30.4%, while the model predictions are 35.1% or 33.9%; the actual
reporting rate in T2 when the private endowment was 4 was 80.5%, while the model
predictions are 76.6% or 76.2%. In general, the model fit is better in T1 than in T2. 8

Subject Naivety. To incorporate the possibility that a subject may naively follow some
rule of thumb and do not engage in any learning from round to round, we introduce two
naivety parameters that capture the likelihood with which the subject chooses report or
not report naively in each round. We assume the naive rule of thumbs are:

Rule of thumb 1: Rt|naive = 1 if At ∈ {4, 5}

Rule of thumb 2: Rt|naive = 0 if At ∈ {1, 2, 3}

Let the probability of being naive be θ1 when the private endowment was less than or
equal to 3, and θ2 when the private endowment was larger than 3, then the likelihood of
reporting is

Pr(Rt = 1) =

(1− θ1) · Pr(Rt = 1|rational) if At ∈ {1, 2, 3}

θ2 + (1− θ2) · Pr(Rt = 1|rational) if At ∈ {4, 5}

where Pr(Rt = 1|rational) =
exp(VRt=1)

exp(VRt=1)+exp(VRt=0)
. The predictions of our model with

naivety are presented in Table 5, panel B. The addition of naivety parameters increases
total log likelihoods, and reduces the average distance between pooled actual reporting
rates and predicted reporting rates from a range of 1.4-6.8 to a range of 1.0-3.1. In models
3 and 4, we estimate θ1 to be 3% and θ2 to be 7-8%, which are small but non-trivial. The av-
erage distances for models 3 and 4 are reduced by roughly one third from those in panel
A. When we look at predictions in a particular treatment, the average distance between
the actual and predicted rates becomes slightly larger in T1 and smaller in T2. In gen-
eral, the model’s ability to explain subject reporting decision is better when we include

8To better capture subject learning and better predict subject reporting decision, we are exploring a
Bayesian learning model in which subjects form a belief about the probability of each possible school in-
terpretation formula, and update their belief at the end of each round based on the observed admission
statistics and their admission outcome. This would also allow us to relax the assumptions we make when
we later perform counterfactual simulations.
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Table 5: Structural Model Predicted Reporting Rates

Panel A:
Reporting rate (%)

All Treatment: T1 Treatment: T2

Actual Model (2) Model (3) Model (4) Actual Model (3) Model (4) Actual Model (3) Model (4)
A=1 17.9 19.1 17.5 18.0 21.0 19.7 20.7 14.6 15.2 15.2
A=2 28.3 29.8 25.1 25.3 28.8 26.9 26.9 27.7 23.1 23.6
A=3 40.6 51.8 42.8 42.6 50.6 50.4 51.1 30.4 35.1 33.9
A=4 81.6 72.7 80.2 80.1 82.7 83.7 83.8 80.5 76.6 76.2
A=5 93.8 82.8 93.5 93.2 93.3 93.8 93.4 94.4 93.2 93.1

Avg. distance (unweighted) 6.8 1.5 1.4 1.0 0.8 3.0 2.8
Total log likelihood -4018 -3029 -2835

Panel B:
(%) with Naivety All Treatment: T1 Treatment: T2

Actual Model (2) Model (3) Model (4) Actual Model (3) Model (4) Actual Model (3) Model (4)
A=1 17.9 16.4 17.0 17.5 21.0 19.1 20.1 14.6 14.8 14.7
A=2 28.3 25.6 24.3 24.6 28.8 26.1 26.1 27.7 22.4 22.9
A=3 40.6 44.6 41.6 41.3 50.6 48.9 49.5 30.4 34.1 32.9
A=4 81.6 86.6 81.6 81.7 82.7 84.8 85.1 80.5 78.2 78.1
A=5 93.8 91.6 93.9 93.8 93.3 94.2 93.9 94.4 93.7 93.6

Avg. distance (unweighted) 3.1 1.2 1.0 1.9 1.5 2.4 2.1
Naivety (θ1) 0.51 0.03 0.03
Naivety (θ2) 0.14 0.07 0.08
Total log likelihood -3864 -3021 -2830
* Notes: This table reports the actual subject reporting rates, the predicted reporting rates from our structural model, and their differences. Panel A
reports these statistics from three different model specifications presented in Table 4. Both pooled reporting rates and reporting rates by treatments
are presented. Panel B reports the same set of statistics when we allow subjects to be naive with a positive probability. θ1 represents the probability
that subjects never report when their private endowment (A) was less than or equal to 3, regardless of their public endowment (B). θ2 represents the
probability that subjects always report when their private endowment (A) was higher than 3, regardless of their public endowment (B). The naivety
parameters are estimated using maximum likelihood estimation.
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subject fixed effects than when we add subject attributes. This is because subject fixed
effects capture more subject characteristics that predict reporting decisions than what we
observe from survey responses.

6 Welfare Implications

6.1 Academic Preparedness and Diversity Tradeoff

In this section we discuss the tradeoff between academic preparedness and diversity of
a school’s entering cohort. Assuming that schools always admit the top candidates (i.e.
candidates with the highest overall endowment) until they reach fully capacity, the com-
position of the admission cohort will be different when schools commit to different in-
terpretations of non-reporting. At one extreme, a school that mandates standardized test
reporting aims at admitting students with the highest academic preparedness, but some
may worry that this is at the expense of a less diverse entering cohort, offering less op-
portunities for disadvantaged students with little test-preparation resource. At the other
extreme, a school that does not consider standardized test as part of the college applica-
tion intends to attract a more diverse application pool, but may have limited ability to
identify students with the best school readiness. Most schools that adopt a test-optional
policy fall between these two extremes. While these schools have their own objective
functions on the composition of the entering cohort, it is still unclear how the tradeoff
between academic preparedness and diversity looks like given a school’s interpretation
of non-reported standardized test scores.

To demonstrate this tradeoff for school policies other than those appeared in our ex-
periments, we use the structural model in Section 5 to simulate student reporting deci-
sions and admission outcomes for counterfactual school interpretations.

Given any set of {α, γ0, γ1, γ2}, we run the simulation as follows: first, we simulate
a pool of 16 subjects with each subject being a “representative” subject in our experi-
ments. In other words, for categorical subject attributes (e.g., gender, race, school year),
the simulated subject pool will have the same composition as those in our lab sessions; for
non-categorical subject attributes (e.g, SAT/ACT scores, number of SAT/ACT attempts,
number of schools applied), we assign each simulated subject the average value of those
in our lab sessions. Second, we assign private and public endowments under the same
procedure as in the lab. We construct the learning variables defined in Section 5, and up-
date them for every round of simulation. We simulate 50 rounds of reporting decisions
and admission outcomes given the school interpretation, the estimated model parame-
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Table 6: List of School Interpretations of Non-Reporting

Setting α γ0 γ1 γ2 E[At|Rt = 0]

Experiment
T1 0.5 0 0.5 0 0.5Bt + 0.25xt−1

T2 0.5 0 0.5 0.5 0.5Bt + 0.25(xt−1 + yt−1)

Counterfactual
C1 0.5 0 1 0 0.5Bt + 0.5xt−1

C2 0.5 0 0 1 0.5Bt + 0.5yt−1

C3 0.5 1 0 0 0.5Bt + 0.5
C4 0.5 3 0 0 0.5Bt + 1.5
C5 0.5 5 0 0 0.5Bt + 2.5
C6 0.25 0 1 0 0.25Bt + 0.75xt−1

C7 0.25 0 0 1 0.25Bt + 0.75yt−1

C8 0.25 1 0 0 0.25Bt + 0.75
C9 0.25 3 0 0 0.25Bt + 2.25
C10 0.25 5 0 0 0.25Bt + 3.75
C11 0.75 0 1 0 0.75Bt + 0.25xt−1

C12 0.75 0 0 1 0.75Bt + 0.25yt−1

C13 0.75 1 0 0 0.75Bt + 0.25
C14 0.75 3 0 0 0.75Bt + 0.75
C15 0.75 5 0 0 0.75Bt + 1.25
C16 1 . . . Bt

* Notes: This table reports the list of counterfactual school interpretations of non-reported private endow-
ment that we simulated. The variation in these test-optional school policies come from the selection of
parameters α, γ0, γ1, γ2, which we introduced in Equation 5.

ters from Table 4, Model 3, and the naivety probabilities reported in Table 5. Finally, we
repeat the first two steps for each counterfactual setting for 100 times. Keeping the sub-
ject size and the number of rounds consistent to those in the lab will allow us to compare
the simulated results to our experiment results, and running a large number of simulated
sessions will absorb the variation in the simulated results caused by the small sample size
in each session. We use the average outcomes in rounds 35-50 as bases for computation
in this section.

The full list of simulated counterfactual school interpretations is presented in Table
6. To present the academic preparedness and diversity tradeoff, we define “Academic
Preparedness” as the average private endowment of the admitted cohort, and “Diversity”
as the standard deviation of public endowment of the admitted cohort. We assume that,
conditional on the quality of students that they admit, colleges prefer a more diverse
cohort; and conditional on the diversity of the admitted students, collages prefer students
with better academic preparedness. In other words, the college objective functions are
increasing in admitted student’s SAT/ACT scores and in the dispersion of the non-test
attribute, which presumably has a higher correlation with the applicant’s socioeconomic
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Figure 6: Academic Preparedness and Diversity Tradeoff

Note: This figure shows the academic preparedness and diversity of the admission cohorts under various
admission policies, based on simulation results from our structural model. The “academic preparedness”
is defined as the average of the private endowment, and “diversity” is defined as the standard deviation
of the public endowment. Each point on the graph represents one possible admission policy. The admis-
sion policies include two treatments in our experiment (T1, T2), test-required (TR), test-blind (TB), and the
counterfactual test-optional policies (C1-C16).

status. 9

Figure 6 shows the tradeoff illustration for the full set of school policies, including
the two treatments in our experiment (T1, T2), test-required (TR), test-blind (TB), and the
counterfactuals (C1-C16). There are a few main takeaways from this figure. First, there
does not appear to be much of a tradeoff: school policies that admit students with higher
quality also admit students from a more diverse background. With a test-blind policy, the
school cannot distinguish applicants with high standardized test scores given the non-test
attribute. Assuming a positive correlation between standardized test performance and
the strength of non-test attribute, the school will admit those that have the highest public
endowments. This reduces the diversity of the public endowment. Also, these students
may or may not have high private endowments, thus the average private endowment is
brought down. Voluntary reporting raises a lesser degree of the same concern. Compared
to a test-required policy, it makes standardized test performance less visible, and forces

9In this section, we use “private endowment” interchangeably with “standardized test scores” or
“SAT/ACT scores”, and use “public endowment” interchangeably with “non-test attribute”.
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the school to rely more on the public endowment for admission. This partially reduces
the diversity of public endowment and the average of the private endowment.

A test-required leads to an admission cohort with the highest average private endow-
ment. It is clearly desirable if a school wants to prioritize the admission of students with
better academic background. It also admits one of the most diverse cohort in non-test
attributes. While test-blind and test-optional schools are limited in their ability to do so, a
test-required school provides students with a weak non-test attributes an opportunity to
stand out through standardized tests. On the contrary, a test-blind policy is dominated by
all other policies plotted in Figure 6 in both academic preparedness and diversity. By ig-
noring an important information (standardized test), it ties the hands of a school, leaving
less room for the school to find the best strategy to optimize its objective function.

Eleven of the 16 counterfactual test-optional policies fell somewhere in between test-
required and test-blind. They dominated test-blind but are dominated by test-required.
Algorithms that give the most generous interpretation to non-reporting (e.g., C7, C10),
and thus are closest to test-blind, are the ones that achieve the lowest academic prepared-
ness and lowest diversity. For those that penalize non-reporting the most (e.g., C3, C8,
C13), and thus are closest to test-required, opposite results are found as expected.

Interestingly, our simulations suggest that some test-optional policies that enforce se-
vere punishment on non-reporting (e.g. C3, C8) may admit students from a more diverse
non-test attributes than test-required. This would not be the case when applicants have
perfect information on the school’s interpretation of non-reported test scores.

Figure 7 presents the simulated tradeoff when students have perfect information on
the school’s back-end algorithm. This could happen when school publicly announces
and credibly commits to its interpretation of non-reported standardized tests, and stu-
dents fully understand the announced policy. In contrast, students in the real world may
exhibit some naivety due to the lack of application information or the inability to fully
comprehend a school’s policy. In the imperfect-information simulations (Figure 6), we
assume the same naivety probabilities as those reported in Table 5, Column 3. Compar-
ing Figures 6 and 7, we observe that the simulated outcomes with perfect information
are more aggregated and positioned very similarly as those with imperfect information,
except that test-required would lead to a more diverse cohort under perfect information
than all test-optional policies.

What drives the difference we observe (on C3 and C8 for example) between Figure
6 and 7? Using our lab setting as background, when the school punishes non-reporting
really hard, in the perfect information case almost everybody would report. However,
when subjects are not aware of the extremely harsh punishment, they don’t report when
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Figure 7: The Tradeoff with Perfect Information

Note: This figure shows the academic preparedness and diversity of the admission cohorts under various
admission policies, assuming that applicants have perfect information on the school’s interpretation of non-
reported standardized tests.

they have relatively low or really low A compared to B because of the reverse unravel-
ing incentive. For example, as shown in Figure 3, when B = 3, the reporting rates are
low when A <= 3. This will provide some opportunity for low public endowment and
high private endowment subjects (e.g., B = 1, A = 5) to get admitted because now they
have a very good chance to win against some medium public endowment subjects (e.g.,
B = 3, A = 3) since the latter might not report. The admittance of low public endowment
subjects then contributes to the increase in diversity in Figure 6. Similar reasoning can
be applied to the real-world college application process, in which some low-SES-high-
achieving students may benefit from (undisclosed) test-optional policies that severely
punish non-reporting but some students with a relatively high income do not fully un-
derstand this and choose not to report due to reverse unraveling. Nevertheless, for most
other test-optional policies, fully disclosing or hiding the actual school interpretation of
SAT or ACT scores if they are not reported leads to similar admission portfolios.

To summarize, our simulations show that a test-blind policy is dominated by either
test-optional or test-required policy in the academic preparedness and the diversity of the
admission cohort. Test-required admits students with the highest academic preparedness
and from a diverse background. While most test-optional policies are dominated by test-
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(a) Test-Required (TR) (b) Test-Blind (TB) (c) Test-Optional (TO)

(d) TR vs. TB (e) TR vs. TO (f) Harsh vs. Lenient TO

Figure 8: Composition of the Admission Cohort

Note: This figure provides an illustration of the composition of the admission cohort under test-required,
test-blind, and test-optional admission policies when there is an admission quota on the public endow-
ment. In particular, the school admits one third of its cohort from each of low, medium, and high public
endowment. Assuming the school admits half of all applicants, the blue shaded areas in subfigures (a), (b),
and (c) represent admitted applicants. In subfigures (c), (d), and (e), we show the difference in admission
composition between test policy pairs.

required, some may be desirable when the school prioritizes the diversity of its entering
cohort and severely punishes SAT/ACT non-reporting. However, this gain of diversity
(at some cost of academic preparedness) is likely transitory as we only find it present
when students are not fully aware of the school’s admission policy.

6.2 Imposing Admission Quota by Public Endowment

The results shown in Figure 6 are consistent with what we have illustrated in Section 2 for
the simple college application problem (Figure 1). Test-required benefits applicants with
low non-test attribute and high standardized test score, thus allowing a more diverse
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admission cohort. Test-optional admits more high non-test attribute applicants who hide
their unfavorable standardized tests. The more generous the school is with regard to non-
reporting, the more low non-test attribute, high standardized test score applicants would
be hurt (by not getting admission). Test-blind allows the least diverse admission cohort
because it only admits applicants with the highest non-test attributes.

In reality, schools may refrain from admitting students with the highest perceived total
endowment as some argue they may not be the ones with the highest marginal returns
from schooling (Dale and Krueger, 2002; Brand and Xie, 2010). Figure 8 shows otherwise
identical compositions as in Figure 1 but with the school imposing an admission quota
by public endowment. In particular, we assume the school categorizes applicants into
three categories: applicants with high, medium, or low public endowments. The school
admits one third of their students from each level. We see the exact same patterns as
those in Figure 1. The previous conclusions hold within each group of applicants. Within
each level of public endowment, test-required admits the most applicants with low public
endowments, test-blind admits the least, and test-optional lies between the two. The
analysis can be extended to school policies with alternative forms of quotas, but they
send similar messages.

7 Conclusion

In the past few years, many universities have dropped their SAT or ACT requirements,
switching to a test-optional or test-blind admission procedure. While schools have dif-
ferent objective functions with respect to the composition of their entering cohorts, it is
unclear how a school should select an admission policy that best represents its interests.
A major decision for test-optional schools to make is: how to interpret non-reported stan-
dardized tests?

In this paper, we study students’ reporting choices given their application package
and the school’s admission statistics from the past, and how these choices drive the
school’s final admission outcomes. More importantly, we study how student reporting
and admission outcomes may differ when the school commits to different interpretations
of non-reporting. To overcome the endogeneity criticisms that may come from using ob-
servational data, we run a series of controlled lab experiments in a large public university.
We address a single-college application problem, in which a student subject’s application
package has two components: standardized test score (private endowment) and non-test
attribute (public endowment), and the school admits students with the highest perceived
sum of these two endowments.
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We find that the voluntary disclosure of standardized test scores is far from complete,
and that this is because the school (our back-end computer) does not give sufficient pun-
ishment to non-reporting. Although our experiments do not disclose to student subjects
how the school would interpret non-reporting, they manage to learn about the hidden
rule. The extent to which they withhold the private endowment is dependent on the hid-
den school interpretation. Subjects are also more likely to hide their (low) private test
scores when they receive a better draw on their observable attribute.

Then, we construct a structural model of applicant reporting choice that captures sub-
ject learning during the experiment. The model also allows for the possibility that subjects
naively follow some rule of thumb and do not engage in strategic learning and reporting
from round to round. Using our structural model, we simulate applicants’ reporting be-
havior and admission outcomes under counterfactual school policies. We then discuss
a school’s tradeoff between admitting students with better academic preparedness and
admitting a more diverse cohort. Our simulation suggests that a test-blind policy is dom-
inated by either test-optional or test-required policy in the academic preparedness and
the diversity of the admission cohort. Test-required admits students with the highest aca-
demic preparedness and from a diverse background. While most test-optional policies are
dominated by test-required, some may be desirable when school prioritize the diversity
of its entering cohort and severely punishes SAT/ACT non-reporting. However, this gain
of diversity (at some cost of academic preparedness) is likely transitory as we only find
it present when students are not fully aware of the school’s admission policy. The same
results can be extended to schools that impose admission quotas by non-test attributes.

Because the reporting decision is strategic and schools intentionally interpret non-
reporting away from its true meaning (in terms of real scores), it encourages lower scores
to hide. The more generous the school is in this interpretation, the more it depresses score
reporting. On the surface, this may help low-SES students because they have lower scores
than high-SES students and would have more incentives to hide if both groups face the
same disclosure threshold. But given the positive correlation between family background
and test score, high-SES students would have a higher disclosure threshold and therefore
are more likely to hide given the same score. This means a low-SES student with a test
score may compete against a high-SES student without a score and still lose. In other
words, the naive “help” that the test-blind and test-optional policies intend to provide to
low-SES students may end up hurting them. Voluntary reporting appears to be a wrong
tool for diversity.

In our setting, we assume that all applicants have taken the standardized test and have
received their test scores. While other studies have proposed models that incorporate an
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applicant’s endogenous test-taking and school application decisions (Borghesan, 2022),
we do not capture student behavior in those margins. The school objective function may
also include factors such as social pressure (Dessein, Frankel and Kartik, 2023). We leave
the exploration of improved general equilibrium results to future research.

37



References

Bederson, Benjamin B., Ginger Zhe Jin, Phillip Leslie, Alexander J. Quinn, and Ben
Zou. 2018. “Incomplete Disclosure: Evidence of Signaling and Countersignaling.”
American Economic Journal: Microeconomics, 10(1): 41–66.

Belasco, Andrew S, Kelly O Rosinger, and James C Hearn. 2015. “The test-optional
movement at America’s selective liberal arts colleges: A boon for equity or something
else?” Educational Evaluation and Policy Analysis, 37(2): 206–223.

Bennett, Christopher T. 2022. “Untested admissions: Examining changes in applica-
tion behaviors and student demographics under test-optional policies.” American
Educational Research Journal, 59(1): 180–216.

Bettinger, Eric P., Brent J. Evans, and Devin G. Pope. 2013. “Improving college perfor-
mance and retention the easy way: Unpacking the ACT exam.” American Economic
Journal: Economic Policy, 5(2): 26–52.

Board, Oliver. 2009. “Competition and disclosure.” The Journal of Industrial Economics,
57(1): 197–213.

Borghesan, Emilio. 2022. “The Heterogeneous Effects of Changing SAT Requirements in
Admissions: An Equilibrium Evaluation.”

Brand, Jennie E, and Yu Xie. 2010. “Who benefits most from college? Evidence for
negative selection in heterogeneous economic returns to higher education.” American
Sociological Review, 75(2): 273–302.

Cascio, Elizabeth, Bruce Sacerdote, Doug Staiger, and Michele Tine. 2024. “Report From
Working Group on the Role of Standardized Test Scores in Undergraduate Admis-
sions.” Dartmouth University.

Chetty, Raj, David J. Deming, and John N. Friedman. 2023. “Diversifying Society’s Lead-
ers? The Determinants and Causal Effects of Admission to Highly Selective Private
Colleges.” NBER Working Paper #31492.

Dale, Stacy Berg, and Alan B Krueger. 2002. “Estimating the payoff to attending a more
selective college: An application of selection on observables and unobservables.” The
Quarterly Journal of Economics, 117(4): 1491–1527.

Dessein, Wouter, Alex Frankel, and Navin Kartik. 2023. “Test-Optional Admissions.”
arXiv preprint arXiv:2304.07551.

Dranove, David, and Ginger Zhe Jin. 2010. “Quality disclosure and certification: Theory
and practice.” Journal of Economic Literature, 48(4): 935–963.

Dynarski, Susan, Aizat Nurshatayeva, Lindsay C Page, and Judith Scott-Clayton. 2023.
“Addressing nonfinancial barriers to college access and success: Evidence and policy
implications.” In Handbook of the Economics of Education. Vol. 6, 319–403. Elsevier.

38



Eyster, Erik, and Matthew Rabin. 2005. “Cursed equilibrium.” Econometrica,
73(5): 1623–1672.

Feltovich, Nick, Richmond Harbaugh, and Ted To. 2002. “Too cool for school? Signalling
and countersignalling.” RAND Journal of Economics, 630–649.

Freeman, Mark, Preston Magouirk, and Trent Kajikawa. 2021. “Applying to college in a
test-optional admissions landscape: trends from Common App data.” commonapp.org.

Grossman, Sanford J. 1981. “The informational role of warranties and private disclosure
about product quality.” The Journal of Law and Economics, 24(3): 461–483.

Hirshleifer, David, and Siew Hong Teoh. 2003. “Limited attention, information disclo-
sure, and financial reporting.” Journal of Accounting and Economics, 36(1-3): 337–386.

Holt, Charles A, and Susan K Laury. 2002. “Risk aversion and incentive effects.”
American Economic Review, 92(5): 1644–1655.

Jin, Ginger Zhe, Michael Luca, and Daniel Martin. 2021. “Is no news (perceived as) bad
news? An experimental investigation of information disclosure.” American Economic
Journal: Microeconomics, 13(2): 141–173.

Liang, Annie, Jay Lu, and Xiaosheng Mu. 2021. “Algorithm Design: A Fairness-Accuracy
Frontier.” arXiv preprint arXiv:2112.09975.

McManus, Brian, Jessica Howell, and Michael Hurwitz. 2023. “Strategic Disclosure of
Test Scores: Evidence from US College Admissions. EdWorkingPaper No. 23-843.”
Annenberg Institute for School Reform at Brown University.

Milgrom, Paul R. 1981. “Good news and bad news: Representation theorems and appli-
cations.” The Bell Journal of Economics, 380–391.

Moreira, Diana, and Santiago Pérez. 2022. “Who Benefits from Meritocracy?” National
Bureau of Economic Research.

Saboe, Matt, and Sabrina Terrizzi. 2019. “SAT optional policies: Do they influence grad-
uate quality, selectivity or diversity?” Economics Letters, 174: 13–17.

Sanchez, Henry, and Eddie Comeaux. 2020. “Report of the UC Academic Council Stan-
dardized Testing Task Force.” University of California Systemwide Academic Senate.

Westrick, Paul A, Jessica P Marini, Doron Shmueli, Linda Young, Emily J Shaw,
and Helen Ng. 2020. “Validity of SAT® for Predicting First-Semester, Domain-Specific
Grades.” College Board.

39



A Appendix: Supplementary Materials

Figure A.1: Trends in Reported SAT Reading and Math Scores

Note: This figure shows the trends in SAT reading and math scores at the top-100 schools ranked by U.S.
News in the past five years. The scores in this figure represent the average test scores of those applicants
who reported their scores and were admitted to these schools. Source: Department of Education and U.S.
News.
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Figure A.2: Trends in Reported ACT Scores

Note: This figure shows the trends in ACT composite score at the top-100 schools ranked by U.S. News
in the past five years. The scores in this figure represent the average test scores of those applicants who
reported their scores and were admitted to these schools. Source: Department of Education and U.S. News.
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Figure A.3: Time of Belief Formation

Note: This figure shows the distribution of rounds at which subjects (self-reported) formed their beliefs
of the school-interpretation of non-reported private endowment. Specifically, the statistics are drawn from
the responses to this survey question at the end of the experiment: “When, during the experiment, did you
realize the program’s interpretation?”.
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Experimental Instructions

Welcome

You are about to participate in an experiment on decision-making, and you will be paid
for your participation in cash, privately at the end of the experiment. What you earn
depends partly on your decisions, and partly on chance. Please silence and put away your
cellular phones now. The entire session will take place through your computer terminal.
Please do not talk or in any way communicate with other participants during the session.
We will start with a brief instruction period. During the instruction period, you will be
given a description of the main features of the experiment and will be shown how to use
the computers. If you have any questions during this period, raise your hand and your
question will be answered so everyone can hear.

Instructions

1. The experiment you are participating in consists of 50 rounds. At the end of the
final round, the computer will select two random rounds, and you will be paid
based on your outcomes in those two rounds (in addition to the $10 show-up fee).
Everybody will be paid in private. You are under no obligation to tell others how
much you earned.

2. You are an applicant for a competitive program. Every round, the program admits
half of the applicants based on its belief of each applicant’s endowment. In the
case of multiple applicants, with equal perceived endowment, competing for one
or more admission seats, the program will randomly pick the competing applicants
for admission with equal probability. It is in your best interest to be admitted by
the program in every round, since it increases the chance of you being paid if that
round is selected at random. For each admission you get in the two randomly se-
lected rounds, you will be paid $6 (with a maximum of $12 in total if you get two
admissions) in addition to the $10 show-up fee.

3. In each round, the computer will generate two numbers, A and B. A is drawn from
the set {1, 2, 3, 4, 5} and B is drawn from the set {1, 3, 5}. These two numbers, A and
B, are the only two components of your endowment, and they will be displayed on
your screen. The sum of A and B (i.e., A+B) is your overall endowment. A is private
information and is unknown to the program. B is public information and is known
to the program. You will choose whether or not to report A, having in mind that
the program knows your B. If you choose to report A, you can only report the true
number. Otherwise, you do not report and send no message to the program.

4. If you report, the program knows both A and B, and identifies your overall endow-
ment perfectly. If you do not report, the program only knows B. Then, the program
will form a belief about your A, and subsequently a belief about your overall en-
dowment summing A and B. The program’s belief of A is positively correlated with
its knowledge of B. In other words, the higher is your B, the higher is the chance that

43



the program thinks your A is high. The program will admit half of the applicants
with the highest overall endowment based on its knowledge or belief of each appli-
cant’s overall endowment. After you choose to report or not report A, the admission
result will be displayed on your screen.

5. Before you make your choice, the screen will display the following admission statis-
tics from the last round: “Of all the applicants that were admitted to the program in
the last round, including those who reported their A and those who did not report
their A, the average value of B is Z. Of all the applicants that reported their A, and
were admitted to the program in the last round, the 25th percentile of A was X and
the 75th percentile of A was Y. The higher the program thinks your endowment is,
the higher is the probability that you will be admitted.”

6. During the experiment, an understanding of the concepts of 25th percentile and
75th percentile is crucial. In short, the 25th percentile is the value at which 25%
of the endowments lie below that value; the 75th percentile is the value at which
75% of the endowments lie below that value. On the first page of your screen, you
will see some examples of lists of numbers and their corresponding 25th and 75th
percentiles. Please read the examples carefully before you move on to the next page.
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Risk Aversion Elicitation

Instructions: In the following, you will face 10 decisions listed on your screen. Each de-
cision is a paired choice between “Option A” and “Option B”. You must choose between
lottery A and lottery B, with lottery A delivering $2 with certainty, and lottery B delivers
$1 with probability p and $3 with probability (1-p). At the end of the survey, one random
decision question will be picked and you will be paid the $ amount that is provided by
the lottery which you picked in that decision question (if you choose option A, you will
be paid $2 for sure; if you choose option B, you will be paid either $1 or $3 given their
corresponding probabilities).

1. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 1/10 opportunity of $1, 9/10 opportunity of $3

2. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 2/10 opportunity of $1, 8/10 opportunity of $3

3. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 3/10 opportunity of $1, 7/10 opportunity of $3

4. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 4/10 opportunity of $1, 6/10 opportunity of $3

5. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 5/10 opportunity of $1, 5/10 opportunity of $3

6. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 6/10 opportunity of $1, 4/10 opportunity of $3

7. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 7/10 opportunity of $1, 3/10 opportunity of $3

8. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 8/10 opportunity of $1, 2/10 opportunity of $3

9. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 9/10 opportunity of $1, 1/10 opportunity of $3

10. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 10/10 opportunity of $1, 0/10 opportunity of $3
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