Female labor force participation and intergenerational mobility

Jørgen Modalsli¹ Claudia Olivetti² M. Daniele Paserman³ Laura Salisbury⁴

¹Oslo Business School at Oslo Metropolitan University

²Dartmouth College and NBER

³Boston University and NBER

⁴York University and NBER

NBER Summer Institute, Inequality and Macroeconomics July 2024

- Major development over the last half century: large scale entry of married women into the labor force.
- A massive change in way families allocate time and nature of investments in children.
- Did this affect the transmission of socioeconomic status across generations?
 - And if so, in what direction?

- Document trends in mothers' LFP and intergenerational elasticity (IGE) in Norway (cohorts born 1960s-1990s).
- Decomposition of changes in IGE into parts due to
 - Changes in mothers' LFP (entry and selection)
 - Structural changes
- Illustrate theoretical link between mothers' labor force participation and intergenerational persistence. Answer ambiguous.

How can female LFP affect intergenerational transmission?

- Basic premise: child human capital is a function of parental money inputs and time inputs.(Del Boca et al., 2014; Agostinelli and Sorrenti, 2020; Caucutt et al., 2020)
- Women's entry into LF shift away from time inputs toward money inputs.
- Effect on intergenerational persistence depends on:
 - Degree and *nature* of assortative mating.
 - Child human capital production function:
 - Relative importance of time and money inputs.
 - Selection of mothers into labor force.
 - Wage and income elasticities of women's labor supply.

- In time series, cross-county panel, and individual level data: negative association between mothers' LFP and IGE.
- Decomposition: about 40-60% of decline in IGE attributable to changes in mothers' LFP. Selection of women in LF has a smaller effect (and in the opposite direction).
- Statistical model highlights the role of:
 - Time inputs in the production of human capital
 - Nature of assortative mating: high income men married to women with high child-rearing productivity.

Related literature

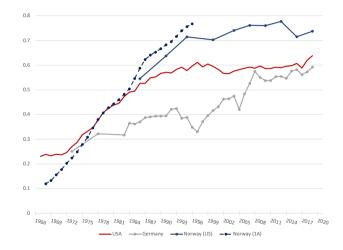
- Large literature investigating relationship between parents' and children's SES:
 - Empirical literature on intergenerational mobility (Surveys: Solon, 1999; Black and Devereux, 2011; Mogstad and Torsvik, 2023)
 - Theory of intergenerational transmission (Becker-Tomes, 1979, 1986; Cunha and Heckman, 2007; Lee and Seshadri, 2019)
- Child development production function (Cunha et al., 2010; Del Boca et al., 2014; Agostinelli and Sorrenti, 2021; Caucutt et al., 2020).
- Inequality and assortative mating (Fernández and Rogerson 2001; Fernández, Guner and Knowles, 2005; Mogstad et al., 2019; Lang and Gihleb, 2020)
- IGE, maternal labor supply and child development in Norway (Bütikofer et al. 2022; Havnes and Mogstad, 2011, 2015)
- Mothers and the IGE (Modern Sweden: Nybom and Vosters, 2023; historical US: Althoff et al., 2024)

- Norwegian individual-level full-count administrative data
 - Excellent intergenerationally linked data
 - Society with low IGE and high degree of gender equality.
- Excellent data on income of parents and children, for cohorts born between 1960s and 1990s.
- Individual annual labor income; spouses taxed separately.

Data Details

Trends in mothers' labor force participation

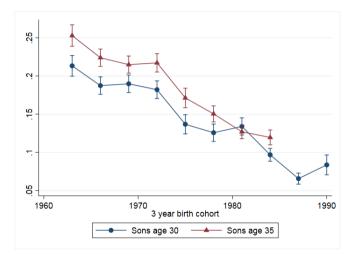
Share of mothers of 5-year olds that are working



Data details: measuring the IGE

- Focus on father-son IGE.
 - Measure used in vast majority of literature, analytical tractability, similar trends if family income/daughters.
- Income:
 - Baseline: Income at age 30 or 35 (3-year average), combined with father's income at age 5.
 - Sample: father-son pairs in which father participates in LF when son is 5 years old.
 - Cohorts: pool together three adjacent birth years.
 - Sample sizes: roughly 25,000-90,000 depending on cohort.
- As in IGE literature, use $y = \log(\text{annual income})$
 - $\bullet\,$ For child generation, add $0.01\times population\,\,mean\,\,income$ before taking logs, to include those with zero income
 - Extensive robustness to alternative treatment of zeros.

Father-son intergenerational elasticity



Clear downward trend in father-son IGE

- Repeat same analyis at the regional level (19 counties, same time period)
- Simple TWFE model in first differences.

$$\Delta IGE_{c,t}^{S} = \alpha + \beta \Delta LFP_{c,t} + \delta_{t} + \gamma_{c} + \epsilon_{c,t}$$

where

- *c* indexes county, *t* indexes cohort.
- ΔIGE is change in father-son IGE.
- ΔLFP is change in mother's LFPR.

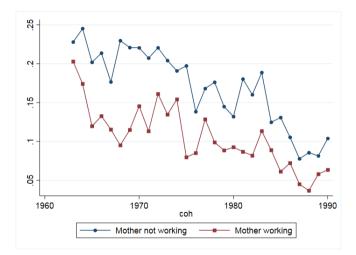
IGE and FLFP – county-cohort panel

	(1)	(2)	(3)	(4)
Son's income	$log(y'+0.01\overline{y'})$	log(y')	$log(y'+0.01\overline{y'})$	log(y')
Δ Mother's LFPR	-0.607	-0.328	-0.860	-0.561
	(0.248)**	(0.185)*	(0.318)***	(0.260)**
Observations	171	171	133	133
R^2	0.193	0.202	0.156	0.121
Son's Age	30	30	35	35
County FEs	Y	Y	Y	Y
Cohort FEs	Y	Y	Y	Y

Dependent variable: ΔIGE^S at county-cohort level

Higher increase in mothers' LFP is associated with stronger *decrease* in intergenerational (father-son) persistence

Individual level data



IGE is consistently higher in families in which mother does not work.

FLFP and IGM

IGE and FLFP – individual level

	(1)	(2)	(3)	(4)
Log father's inc	0.136***		0.136***	0.150***
	(71.81)		(71.44)	(67.55)
Mother's LF $(0/1)$		0.0259*** (10.69)	0.0244*** (10.07)	0.669*** (12.73)
f. inc * mother LF				-0.0525*** (-12.28)
Constant	10.51***	12.15***	10.51***	10.34***
	(449.76)	(2769.55)	(448.04)	(379.01)
Child cohort dummies	Yes	Yes	Yes	Yes
Observations	535244	542970	533448	533448
t statistics in parentheses				

t statistics in parentheses

 * p < 0.05, ** p < 0.01, *** p < 0.001

Summary

- In time series, panel data, there is a negative association between mothers' LFP and intergenerational elasticity.
- Individual level data: IGE is lower in families in which mothers work. Possible interpretations:
 - Direct effect of mother's employment on transmission of economic status.
 - Selection: in families in which IGE is lower, mothers more likely to enter LF.
- Can we say anything about the mechanisms driving intergenerational transmission based on these patterns?
 - Accounting exercise: decompose ΔIGE into parts due to changes in mothers' LFP, selection, structural changes.
 - Statistical model: understand the role of assortative mating, time and money investment in children.

Accounting exercise: decomposing changes in the IGE

• We are interested in decomposing the change in IGE: $\Delta IGE \equiv \Delta \frac{Cov(y,y')}{V(y)}$

$$\Delta \textit{IGE} = rac{\Delta \textit{Cov}(y,y')}{V(y)} + \textit{Cov}(y,y')\Deltarac{1}{V(y)}$$

- IGE can fall because:
 - Cov(y, y') falls.
 - V(y) increases.

- Define two groups: mother works (g = 1) and mother does not work (g = 0).
- y_g , y'_g are father's & son's income for group g.
- Define π as share of families with g = 1.

- We show that ΔIGE can be written as a sum of three terms:
 - **1** Labor force effect: due to entry of mothers into LF.
 - Selection effect: which mothers enter the labor force? Married to high or low income husbands?
 - Structural effect: all other factors affecting the transmission of economic status across generations (technological changes, institutions, skill premium, education reforms, etc.)

Decomposition details

Labor force effect

- Definitions:
 - π : share of families in which mother works (g = 1).
 - y_g, y'_g : father and son's income in group g.
- Labor force effect

$$\frac{1}{V(y)}\Big(\mathit{Cov}(y_1,y_1')-\mathit{Cov}(y_0,y_0')\Big)\Delta[\pi]$$

- $\Delta \pi > 0$: LF effect is negative (IGE decreases) if $(Cov(y_1, y_1') Cov(y_0, y_0')) < 0$
- Intuition: more weight to families with smaller IGE.

Selection effect

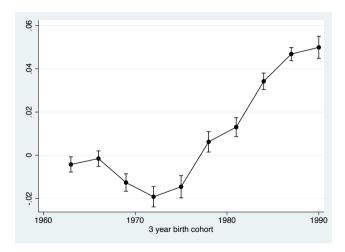
• Selection effect:

$$\frac{1}{V(y)}(\overline{y}_1 - \overline{y}_0)(\overline{y'}_1 - \overline{y'}_0)\Delta[\pi(1 - \pi)] \\ + \frac{1}{V(y)}\pi(1 - \pi)\Delta[(\overline{y}_1 - \overline{y}_0)(\overline{y'}_1 - \overline{y'}_0)]$$

- Sign of this term depends on $(\overline{y}_1 \overline{y}_0)$, $(\overline{y'}_1 \overline{y'}_0)$ and $\Delta[(\overline{y}_1 \overline{y}_0)(\overline{y'}_1 \overline{y'}_0)]$
- Selection of women into labor force, gap in children outcomes between working/non working mothers, and how these change over time.
 - Observable in the data.

Selection of mothers into LFP

Coefficient from regression of mothers' LFP indicator on fathers' income



Modalsli, Olivetti, Paserman, Salisbury

Accounting exercise: results

Cohort	IGE	ΔIGE	LF effect	Selection effect	Structural effect
1963	0.225				
1975	0.146	-0.0788	-0.0349 (44.9%)	-0.000888 (0.5%)	-0.0430 (54.6%)
1990	0.0839	-0.0618	-0.0372 (63.3%)	0.00601 (-12.8%)	-0.0306 (49.5%)

• Findings:

- LF effect accounts for 45%-63% of the total decline in IGE, depending on time period.
- Selection effect negligible in early period, acts to slightly increase IGE in the later period.
- Next: reduced form model of son's income to shed light on mechanisms driving LF and selection effects.

- Reduced form, statistical model of child's earnings and mother's labor supply.
- Son's income y' is a function of father's income y, mother's labor productivity w, mother's time at home h and mother's productivity in childrearing q :

$$y' = \eta_0 + \eta_y y + \eta_w w(1-h) + \eta_q qh + u \tag{1}$$

- Reduced form, statistical model of child's earnings and mother's labor supply.
- Son's income y' is a function of father's income y, mother's labor productivity w, mother's time at home h and mother's productivity in childrearing q :

$$y' = \eta_0 + \eta_y y + \eta_w w(1-h) + \eta_q qh + u \tag{1}$$

• Mother's labor supply endogenous:

$$1 - h = \alpha_0 + \alpha_w w - \alpha_q q - \alpha_y y + \epsilon \tag{2}$$

Model: Implications for intergenerational mobility

- Conventional father-son IGE (intergenerational mobility): $IGE^{S} = \frac{Cov(y',y)}{V(y)}$
- Special case: IGE when mothers specialize in childrearing (h = 1, "regime 0"):

$$\textit{IGE}_0^{S} = \eta_y + \eta_q rac{\textit{Cov}(y,q)}{V(y)}$$

• General case (mothers may work for pay, $h \leq 1$, "regime 1"):

$$IGE_1^S = IGE_0^S + \eta_q \left(\frac{Cov(y,w)}{V(y)} - \frac{Cov(y,q)}{V(y)}\right) E[1-h] + (\eta_w - \eta_q) \frac{Cov(y,w(1-h))}{V(y)}$$

Decomposing the change in IGE

- Simplifying assumptions/notation: $E[w] = E[q]; \phi_w \equiv \frac{Cov(y,w)}{V(y)}, \phi_q \equiv \frac{Cov(y,q)}{V(y)}.$
- Then: Change in father-son IGE between any two periods can be written as

$$IGE_{t_1}^S - IGE_{t_0}^S = \underbrace{\eta_q(\phi_w - \phi_q)\Delta E[1 - h]}_{\text{Labor supply effect}} + \underbrace{(\eta_w - \eta_q)\Delta \frac{Cov(y, w(1 - h))}{V(y)}}_{\text{Selection effect}}$$

Decomposing the change in IGE

- Simplifying assumptions/notation: $E[w] = E[q]; \phi_w \equiv \frac{Cov(y,w)}{V(y)}, \phi_q \equiv \frac{Cov(y,q)}{V(y)}.$
- Then: Change in father-son IGE between any two periods can be written as

$$IGE_{t_1}^S - IGE_{t_0}^S = \underbrace{\eta_q(\phi_w - \phi_q)\Delta E[1 - h]}_{\text{Labor supply effect}} + \underbrace{(\eta_w - \eta_q)\Delta \frac{Cov(y, w(1 - h))}{V(y)}}_{\text{Selection effect}}$$

- Womens' entry into the labor market has two effects:
 - Labor supply effect: Assortative mating affects IGE. Net effect depends on whether there is more sorting on w or q.
 - Selection effect: If mothers positively selected into LF (Cov(y, w(1-h)) > 0) and money inputs have a greater effect than time inputs ($\eta_w \eta_q > 0$), mothers' entry into LF gives relative advantage to sons of high-income fathers raises IGE.

Estimating the parameters

• We can say more by dividing the 1963-1990 period into two parts:

		ΔIGE	ΔLFP	ΔSEL
Data:	1963-1975	-0.090	0.308	-0.093
	1975-1990	-0.062	0.329	0.345

• We can write estimating equation in matrix form:

 $\begin{bmatrix} \Delta IGE_{1975-1963} \\ \Delta IGE_{1990-1975} \end{bmatrix} = \begin{bmatrix} \Delta LFP_{1975-1963} & \Delta SEL_{1975-1963} \\ \Delta LFP_{1990-1975} & \Delta SEL_{1990-1975} \end{bmatrix} \begin{bmatrix} \eta_q(\phi_w - \phi_q) \\ (\eta_w - \eta_q) \end{bmatrix}$

• The two composite parameters $\eta_q(\phi_w - \phi_q)$ and $\eta_w - \eta_q$ are just identified.

Identified parameters:

$$\begin{array}{ccc} \hline \eta_q(\phi_w - \phi_q) & & -0.270 \ (0.040) \\ \eta_w - \eta_q & & 0.076 \ (0.063) \end{array}$$

Identified parameters:		$egin{aligned} &\eta_{m{q}}(\phi_{m{w}}-\phi_{m{q}})\ &\eta_{m{w}}-\eta_{m{q}} \end{aligned}$		-0.270 (0.040) 0.076 (0.063)	
	$IGE_1^S - IGE_0^S$	=	$\eta_q(\phi_w - \phi_q)\Delta E[1-h]$	+	$(\eta_w - \eta_q)\Delta rac{Cov(y_m,w(1-h))}{V(y_m)}$
	Change in IGE	=	Labor supply effect	+	Selection effect
1963-1975	-0.090	=	-0.083	+	-0.007
1975-1990	-0.062	=	-0.089	+	0.026

Discussion

- Implications for underlying parameters:
 - There is more sorting on women's childrearing productivity than labor productivity.
 - Money inputs and (productivity adjusted) time inputs in production of children's human capital have similar returns ($\eta_w \approx \eta_q$).
- Is this sensible? Is this consistent with the literature?
- More sorting on *q* than *w*:
 - Simple assortative mating model (Becker) predicts negative sorting on labor income, due to specialization.
 - Acting wife? (Bursztyn et al., 2017)

- Large increase in mothers' LFP associated with strong decline in IGE in Norway between 1963 and 1990.
- Accounting exercise: about 45-63% of change in IGE accounted for by entry of mothers into labor force.
- Patterns can be rationalized by model with assortative mating on both market and child-rearing productivity if the latter dominates.

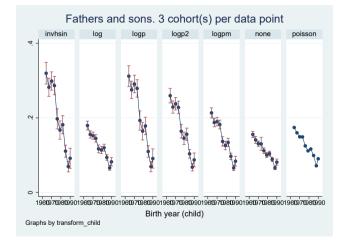
Thank You!

Additional slides

Data details: labor force participation

- No hours worked in income data; use income threshold to infer LF participation.
 - Treshold: Taxable income above public insurance index 1*G* (approx 12,000 USD in 2018 common approach)
 - Can cross-check definition in census years (1970, 80, 90)
- Combine with data from Norwegian Census and LIS for international comparisons.

Sensitivity of IGE to different treatment of zeros ${\sf Father}{\sf -Son}$ ${\sf IGE}$



Downward trend robust to different treatment of zeros, but magnitudes differ.

FLFP and IGM

Decomposing ΔIGE

• After some algebra:

$$\Delta IGE = \underbrace{\frac{1}{V(y)} \Delta[\pi] \left(Cov(y_1, y_1') - Cov(y_0, y_0') \right)}_{\text{Labor supply effect}} \\ + \underbrace{\frac{1}{V(y)} \Delta[\pi(1 - \pi)] (\overline{y}_1 - \overline{y}_0) (\overline{y'}_1 - \overline{y'}_0)}_{\text{Selection effect 1}} \\ + \underbrace{\frac{1}{V(y)} \pi(1 - \pi) \Delta[(\overline{y}_1 - \overline{y}_0) (\overline{y'}_1 - \overline{y'}_0)]}_{\text{Selection effect 2}} \\ + \underbrace{\frac{1}{V(y)} \left(\pi \Delta Cov(y_1, y_1') + (1 - \pi) \Delta Cov(y_0, y_0') \right) + Cov(y, y') \Delta \frac{1}{V(y)}}_{\text{Structural effect}}$$