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Potential Mechanisms for (Anti-)In-Group Bias

To help us better understand di�erences in decisions, we introduce a model of

judge decision-making with three potential ingredients:

1. Taste-based group preferences for defendants:

previous literature has focused on pro-in-group bias (e.g. Shayo and Zussman, 2011), but

other work is mixed (e.g. Ash et al., 2021).

2. Information on recidivism risk:
defendants might vary in their riskiness (Arnold et al., 2022); information on that riskiness

might vary according to group identity (Cornell and Welch, 1996; Fisman et al., 2017).

3. Group image concerns:

anti-in-group harshness due to perceived harm to the image of the group (Guo et al., 2023);

Defendant race is highly correlated with victim race (Depew et al., 2017).

We �nd evidence for (2) and (3) in driving the decisions of Wisconsin judges.
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Contribution

� Large body of evidence on criminal-justice disparities (Anwar and Fang, 2006; Fagan

and Ash, 2017; Arnold, Dobbie, and Yang, 2018).

� Not only due to bias/prejudice � can be due to statistical discrimination,
errors in outcome predictions, etc. (Arnold, Dobbie, and Hull, 2022; Canay, Mogstad,

and Mountjoy, 2020).
� Mixed evidence on in-group disparities (Shayo and Zussman, 2011; Lim, Silveira, and

Snyder, 2016; Anwar, Bayer, and Hjalmarsson, 2019; Ash, Asher, Bhowmick, Bhupatiraju, Chen,

Devi, Goessmann, Novosad, and Siddiqi, 2021).

� We show that group image concerns and information are important factors

in group disparities.

� Relevant for interpreting previous evidence on in-group bias.

� Relevant to policy decisions on reducing those disparities.
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Background and Data



Institutional Setting

� Circuit Courts Overview

� 69 Circuit Courts, each serving a county.

� Cases are initiated by a prosecutor �ling a complaint.

� Cases are then (as good as) randomly assigned to judges.

Sentencing Guidelines
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Data Sources:

� Wisconsin Circuit Court Access API:

� Universe of criminal cases from 2005 to 2017 (N = 882K ).

� Defendants' information (dob, gender, race, address).

� Case information (name of judge and prosecutor, charge, sentencing, etc.).

� New data collection on judge biographies (gender, race, campaign

donations, etc.).

Summary Statistics Summary Statistics for Judges

8 / 26



Measuring Recidivism Risk with Machine Learning

Following Ash, Goel, Li, Marangon, and Sun (NeurIPS 2023):

� ML outcome:

� Recidivism (de�ned as re-o�ense within 2 years from the date of disposition).
Re-o�ense distribution

� ML predictors:

� Criminal history (using extended panel 1970-2019), case characteristics,

gender, and age.

� ML algorithm:

� XGBoost, gradient boosted variant of random forests getting state-of-the-art

performance on tabular datasets (Chen and Guestrin, 2016). XGBoost

� Evaluation: performance in held-out test set (Acc. = 0.65, AUC = 0.7).
Model Performance
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Predicting Recidivism Risk
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Overall Judge In-Group Bias



Empirical Strategy: Estimation of In-Group Bias

Incarceration decision in case/defendant i , judge j , court/county c , time t:

yijct =β1BlackDefi + β2BlackJudgej + β3BlackDefi × BlackJudgej

+ αct + αs
i + αj + X ′

ijctδ + εijct

� αct = county×time �xed e�ects, αs
i =charge severity �xed e�ects:

� Leverage (conditional) random assignment of judges to cases.
Randomization Check

� αj = judge �xed e�ects:

� adjust for all judge characteristics that are constant across cases.

� Xijct includes additional defendant, judge, and case characteristics.

� e.g. �exible controls for defendant recidivism risk (ventile FE).

� Clustering by county-year (robust to clustering by judge).
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In-Group Bias: Main Regression Results
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Drivers of Judge In-Group Bias



A Model of Judge Sentencing

� Judge j with type θj ∈ {0, 1} decides Yij ∈ {jail, release}, gets utility U(Yij).

� Defendant i with type θi ∈ {0, 1} and recidivism risk ri (more below).

� Let mij = 1 if judge and defendant types match (θi = θj), mij = 0 otherwise.

Judge incarcerates if U(jail) > U(release):

U(release) = ϕmij − τ r̄ij

� ϕmij = taste-based group bias for the defendant.

� τ r̄ij = costs of recidivism; r̄ij = j 's expectation on i 's risk.

U(jail) = γmijsi − κ0

� γmijsi= group image concerns; si = |θi |, defendant share of type i .

� κ0 = additional (potentially judge-speci�c) incarceration cost.
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Judge Incarceration Decision

� Judge incarcerates if U(jail) > U(release), which can be rewritten as:

γmijsi + τ r̄ij >ϕmij + κ0.

� γmijsi , group image concerns

� τ r̄ij , information on riskiness

� ϕmij , preferences on defendant group
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γmijsi + τ r̄ij > ϕmij + κ0

� γmijsi= group image concerns (γ ≥ 0). Increases judge j 's bene�t from

incarcerating i when:

� i and j are in the same group (mij = 1).

� i 's group are responsible for a relatively large portion of crimes (si ≫ 0).

� Underlying mechanisms:

� group criminality damages group's social image (Marques and Yzerbyt, 1988; Guo et al.,

2023).

� if group is over-represented, can become a stereotypical association (Bordalo

et al., 2016).

� in-group criminals tend to have in-group victims (Depew et al., 2017).

� general deterrence e�ects of sentencing harshness could increase with group size

(e.g. Becker, 1968).
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Distinguishing Image Concerns from Defendant In-Group Bias

Judge incarcerates if

γmijsi + τ r̄ij > ϕmij + κ0

� γmijsi→ group image concerns, activated when i 's and j's group has higher

population share si > 0.

� ϕmij → group preferences for defendant, always active, even when si ≈ 0.

� Empirically:

� Estimate β3BlackDefi × BlackJudgej for j 's with high share of black

defendants and low share of black defendants.
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Anti-In-Group Bias Driven by Group Image Concerns
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Coe�cient plot for regression of incarceration outcome on interaction term for Black Judge × Black Defendant,
giving the di�-in-di� in-group bias e�ect. County-year FE and charge severity FE absorbed. Judge FE absorbed
as indicated. Top set: full sample; middle set: at least 50% of defendants in judge-year are black; bottom set:

Less than 50% of defendants in judge-year are black. Table Crimes with/without Victims 17 / 26



Information: Recidivism Risk Signal

� Defendant i has true (unobserved) recidivism risk ri , with prior

ri ∼ N (µi , 1).

� Judge j observes noisy signal r̃ij = ri + ϵij , where ϵij ∼ N (0, 1
ρij
)

� Posterior belief r̂i ∼ N
(
r̄ij ,

1
1+ρij

)
with

r̄ij = E(rij) =
1

1+ ρij

µi +
ρij

1+ ρij

r̃ij

� (can assume µi = 0 wlog)

� Assume ρij = ρ(ej ,mij , si) > 0, with the following �rst derivatives:

� ρe > 0, precision increases with judge experience ej .

� ρm > 0, precision increases if judge and defendant identity match (mij = 1)

(Cornell and Welch, 1996; Fisman et al., 2017).

� ρs > 0 if mij = 0; ρs = 0 if mij = 1: i.e., precision increases with defendant's

type share si , if judge and defendant group do not match. 18 / 26



Comparative statics on the risk signal

Judge incarcerates if

γmijsi + τ

(
ρij

1+ ρij

r̃ij

)
> ϕmij + κ0

∂U(jail)

∂ r̃ij
= τ

ρij

1+ ρij

> 0

→ Utility from jail increases with the risk signal → On average, defendants

with higher observed recidivism risk are more likely to be incarcerated.
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Judge experience and recidivism response

Assume

ρij = ρ(ej ,mij , si) = ρeej + ρmmij + ρs(1−mij)si

Then:

∂U(jail)

∂ r̃ij
= τ

ρ(·)
1+ ρ(·)

∂2U(jail)

∂ r̃ij∂ej
= τ

ρe

(1+ ρ(·))2
> 0

→ Cross-partial on risk signal and experience is positive; more experienced

judges get more bene�t from incarcerating higher-risk defendants.
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More-experienced judges are more responsive to risk
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Binscatters for the incarceration rate (residualized on court-year, charge severity, and judge FE), binned by
ventiles in recidivism risk, and plotted separately for above-median-experience judges (red) and

below-median-experience judges (blue). Table
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� Normalize ej = 0: ρij = ρ(ej ,mij , si) = ρmmij + ρs(1−mij)si .

� Then:

∂U(jail)

∂ r̃ij
= τ

ρ(·)
1+ ρ(·)

=

τ ρssi
1+ρssi

mij = 0

τ ρm
1+ρm

mij = 1

→ Judges get a more precise signal on their in-group (and are hence more

responsive for the in-group) when ρm > ρssi .

� Further:

∂2U(jail)

∂ r̃ij∂si
=

τ ρs
(1+ρssi )2

> 0 mij = 0

0 mij = 1

→ Cross-partial on risk signal and defendant share is positive when θi ̸= θj →
judges are less responsive to recidivism risk for other-type defendants when

they are a smaller share of the population.
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White judges are less responsive to riskiness of black defendants

when there are few black defendants
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Binscatters for the incarceration rate of black defendants, binned by ventiles in recidivism risk, and plotted

separately for white judges (blue) and black judges (red). Left graph: black defendants make up less than 50%

of a judge's caseload. Right graph: black defendants make up more than 50% of a judge's caseload. Table
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Robustness Checks

� Rule out alternative stories:

� Victimless crimes Victimless Crimes

� Prosecutor �xed e�ects Prosecutor Fixed E�ects

� E�ect of COMPAS Before COMPAS

� Judge response to economic status Zip Fixed E�ects

� Results are robust to:

� Alternative speci�cations County-Year-Severity FE

� Score predicted with a Logistic Classi�er Logistic Classi�er

� Alternative ways to calculate share of Black def. Alternative Shares

� Only courts with Black defendants Only Black Def.

� Only courts with Black judges Only Black Judges

� Risk score trained on lenient judges (selective labeling) Leninet Judges

2 Most Lenient Judges

� Controlling for �rst o�ense First O�ense Controls

� Removing One Black Judge at a time Removing Black Judges

� Interaction with share of Black Defendants Interacted with Shr. Black
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Conclusion



Conclusion

� Mixed evidence of group bias in criminal sentencing decisions in Wisconsin.

� In-group bias driven by

� Group-image concerns when there's a high share of minority defendants.

� More responsiveness to recidivism risk when there's a low share of minority

defendants.

� Upshot:

� Previous work documenting group biases should be reconsidered in light of

these alternative explanations.

� Results could be helpful in the design of policies to address criminal-justice

disparities.

Thank you!

Elliott Ash, ashe@ethz.ch

Claudia Marangon, cmarangon@ethz.ch
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Sentencing Guidelines

Follow ruling by Wisconsin Supreme Court case State v. Gallion (2004)

� Main objectives: community protection, punishment, rehabilitation,

deterrence.

� Factors considered: criminal record, nature of crime, defendant's personal

situation
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Summary Statistics - Judges by Leniency
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Victim vs. Victimless Crimes
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Coe�cient plot for regression of incarceration outcome on interaction term for Black Judge × Black Defendant,
giving the di�-in-di� in-group bias e�ect. County-year FE and charge severity FE absorbed. Judge FE absorbed
as indicated. Top set: full sample; middle set: at least 50% of defendants in judge-year are black; bottom set:
Less than 50% of defendants in judge-year are black. Crimes with/without victims were manually identi�ed by
looking at the class of the charge. Crimes for which the classi�cation was uncertain are excluded from this

analysis. Back (Image Concerns) Back (Robustness Checks)
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Prosecutor Fixed E�ects
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Controlling for First O�ense
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Interaction with Share of Black Defendants
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Removing Black Judges
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Coe�cient plot for regression of incarceration outcome on interaction term for Black Judge × Black Defendant,
giving the di�-in-di� in-group bias e�ect, removing one black judge at a time. County-year FE, charge severity

FE, recidivism risk FE and judge FE absorbed. Back
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