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Abstract

In this paper, we produce population estimates for the US in the 1960s at a newly available level
of detail, by age, year, and county, covering ages 1 through 20. To do so, we train an artificial
neural network on a rich set of demographic features on data from the 1970s and 1980s. We
train our model to predict reported population counts from the Survey of Epidemiology and End
Results. The contributions of this paper are twofold. First, we produce and make our new pop-
ulation estimates publicly available. These estimates outperform a linear interpolation bench-
mark; the median absolute percentage error is about 59% smaller using an out-of-sample testing
data set. Our second contribution is to frame population estimation as a prediction problem and
to demonstrate that tools from the machine learning literature can give improved estimates for
this class of problem. This new approach can be used for other population prediction exercises.
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1 Introduction

In this paper, we use supervised learning to produce new population estimates for the US in the 1960s at

a newly available level of detail: by age, year, and county, covering ages 1 through 20.1

Estimates at this level of detail are available for 1960 from tabulations of the 1960 Census and beginning

in 1969 from Census estimates. For data starting in 1969, researchers often use a version of the Census

estimates produced by the Survey of Epidemiology and End Results (SEER). However, there are no available

population counts at the county-age-year level for 1961 through 1968. In this paper, we aim to fill in this

gap with predictions generated by a neural network model, which we then compare to a commonly used

linear interpolation benchmark.2

There are no readily available data sources that provide direct estimates for the 1961-1968 period, and

researchers who study economic occurrences of the 1960s typically construct their own. For example, Bailey

(2012) examines general fertility rates by linearly interpolating county-level population estimates from the

1950, 1960, and 1970 Censuses (an approach similar to that demonstrated by Haines & ICPSR (2010)).

Thompson (2018) uses county population to scale treatment exposure: Head Start funding is divided by the

linearly interpolated count of children aged three to six, using 1960 Census and 1969 SEER data. Ludwig

& Miller (2007) address the same challenge slightly differently, using raw counts from the 1960 Census.

There is no universal choice for population estimates, which is needed in order to build outcome variables,

key explanatory variables, or controls.

To create population predictions, we train an artificial neural network on a rich set of demographic fea-

tures, using data from the 1970s and 1980s. Our primary predictive features include linear interpolation

(which is commonly used to in estimates in current applications), and demographic cohort component es-

timates. We also include information on broader county demographics and time series-based measures,

totaling over 200 predictive features. We train our predictive model on a 75% sample of counties, using

data from the 1970s and 1980s. We assess its performance on a “test sample” of 12.5% of counties from the

same time period and reserve a further 12.5% as our “hold-out sample.” The “hold-out sample” (inspired

by Toutanova & Wu (2014) and Kleinberg et al. (2018)) is reserved to further check the testing performance

once the paper has been conditionally accepted.

The contributions of this paper are twofold. First, we produce and make our new population estimates

publicly available. These estimates outperform a linear interpolation benchmark; the median absolute per-

centage error is about 59% smaller using the out-of-sample testing data set. Proportional improvements are

similar across county population sizes. Improvements are relatively larger for years in the middle of the

decade. Our second contribution is to frame population estimation as a prediction problem, and to demon-

strate that tools from the machine learning literature can improve estimates for this class of problem.

1Our population estimates can be downloaded at https://github.com/henrymanley/population predictions 1960s
2The Census/SEER estimates may be imperfect due to under or over-counting. We do not worry about those enumeration issues

and treat these estimates as our goal.
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2 Data

We compile county-age-year population counts from the 1960 Census (Haines & ICPSR, 2010) and the

1969-1989 SEER. In this paper, we call the population counts from these sources “ground truth,” and this

forms our outcome variable to be predicted.3 We use these data to generate predictive features, train our

prediction model, and assess its out-of-sample performance.

We additionally use birth records from the Vital Statistics Natality Files (NCHS, 2023a),4 and death

records from the Vital Statistics Multiple Cause of Death Data by age from 1960-1989 (NCHS, 2023b). We

discuss how we turn these “raw ingredients” into predictive features in Section 4.

The conceptual geographic unit of our analysis is a county. However, there are many documented in-

stances of counties changing their borders, merging into neighboring counties, or seceding into independent

entities. Additionally, different sources and years of raw data encode county identifiers differently. To build

a balanced county-year panel, we create a time-invariant identifier that accounts for changes in the underly-

ing status of counties. We refer to our geographic identifier, the county, as “super FIPS,” which retrofits the

scheme of the 3,083 U.S. counties in 1989 to all preceding years in our sample. Online Appendix C details

this process.

Our final dataset encompasses ages 0 to 20, years 1960 to 1989, and super FIPS of 3,083 counties. In

total, this sums to 1,942,290 county-age-year observations. Approximately 27% of these observations are

from 1961-1968, for which ground truth does not exist.

3 Prediction problem

SEER publishes annual population estimates starting in 1969. For years prior to this, the best data on

population counts (at the county and single year of age level) is reported in the decadal Census. This means

there are no available population counts at the county-age-year level for 1961 through 1968. In empirical

settings where these counts are important, researchers need to estimate them. One popular strategy is to

use age-based linear interpolation (henceforth LI). This involves “drawing” a line between the counts in

1960 and 1969 for each single year of age. Alternatively, another reasonable choice might be to interpolate

between counts by birth cohort linearly. An additional choice is to use “cohort components” methods. This

strategy considers, for example, the 1960’s count of a year-olds as a predictor for 1961’s count of a+1 year-

olds, subtracting out deaths. In general, there are several possible methods, each generating slightly different

population estimates. It is unclear which to use. As an example, Figure 1 illustrates the performance of LI

for Orange County, California.

This paper casts the goal of generating population estimates by county, age, and year from 1961 to 1968

as a prediction problem. We propose combining the predictions from different strategies. For example, we

see in Figure 1 that LI accurately predicts population in the 1980s but deviates significantly in the 1970s. Is

there a way to teach a model to avoid using LI in cases like Orange County in the 1970s?

3Our prediction exercise can be thought of as targeting “what would Census/SEER have estimated the population as?” We do
not attempt to model discrepancies between Census estimates and actual population counts.

4We compile birth records by county and year from county-year aggregate files for 1960 through 1968 and from microdata
starting in 1968.
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To answer this question, we use 1969-1989 data from SEER to generate two decades of complete popu-

lation estimates by age and year for each U.S. county (N = 3,083). For each decade, we emulate the missing

data problem of the 1960s by defining decadal endpoints (i.e., 1970 and 1979; 1980 and 1989) that we would

need to interpolate between in the face of a similar constraint. Because we observe ground truth in these

years, we can evaluate the quality of the predictions that each strategy yields. One challenge in this exercise

is that the goodness of fit could be calculated using only in-sample data. That is, a model that generates

accurate predictions in the 1970s and 1980s might be overfit and produce poor predictions for the 1960s.

This is especially problematic because there are no data to validate predictions for the 1960s. To simulate

the out-of-sample nature of the 1960s, we construct a supervised learning framework where a randomly

selected 75% of counties in our sample are used to train our prediction model, 12.5% are used to test the

accuracy of this model, and the remaining 12.5% are stowed away as hold-out counties. Figure 2 illustrates

this breakdown. The general idea is to learn a relationship between population counts (Y ) and observable

predictive features (X) based on data from the training counties and then evaluate their accuracy using data

from the testing counties. Data from hold-out counties are not used in either step and instead are a final step

in evaluating how well the trained model generalizes to unseen data.5

Generally, the goal of this supervised learning exercise is to learn the best mapping of Y = f (X) and

apply it to generate population predictions, Ŷ = f (X1960s). This exposition of the problem is helpful because

of its importance of both the X and also the functional form, f (·). Section 4 discusses the features we

construct that go into X . Section 5.1 discusses the details of f (·). In this paper, we train an artificial neural

network for f (·).

4 Predictive features

There are several ways to produce population estimates by county, age, and year in the 1960s. Instead of

proceeding with just one approach, our strategy is to combine them into a rich set of predictive features that a

machine learning model can learn from. This model then generates out-of-sample predictions of population

counts, including for the 1960s. To do so, we build over three thousand features, consistently defined within-

decade from 1960 to 1989. However, most of these features are transformations and variations of four basic

building block demographic estimates. We discuss these features in the rest of this section.

4.1 Four basic demographic estimates

The most fundamental population estimate we use is linear interpolation (LI).6 In addition, we construct

three “cohort component” features: age-forward (AF), age-backward (AB), and migration-adjusted age-

forward (MAAF). These population estimates use a cohort-component model that calculates changes in

population by birth cohort. To explain the construction of these estimates, let us consider the 1955 birth

cohort who was five years old in 1960. Age-forward works by subtracting the number of five-year-old

deaths in 1960 to estimate the count of six-year-olds in 1961. This subtraction of deaths by a single year

5We will not use the hold-out data until after this paper’s conditional acceptance.
6In addition to its later-discussed benchmark role, LI is also used to derive many of the predictive features described in this

section.
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of incrementing age is applied to a birth cohort until the end of the decade, in this case, 14-year-olds in

1969. An analogous method is implemented for the age-backward estimate, with a key difference being the

direction in which the recursion occurs— it starts at the end of the decade and moves backward in time,

indexing a single birth cohort and adding to it the count of deaths by decrementing age.

These cohort-based methods can incorporate a degree of curvature that linear interpolation cannot. One

limitation is that they lack an important component of population flows: migration. To adjust for this, we

interpret the difference between the age-forward estimate and the SEER tabulation at the end of a given

decade as an estimate of net migration.7 We then linearly interpolate this migration estimate over the decade

and add it to the age-forward estimate to generate its migration-adjusted version.

Several of these baseline demographic estimates require data from years that span other decades and,

in some cases, ages and years that extend our sample. For example, AB will need estimates of ages 21-28

to provide mid-decade estimates for 20-year-olds. Online Appendix A shows the mathematical formulas

used to arrive at these measures, and the cohorts and years required to calculate them. We apply an inverse

hyperbolic sine transformation (IHS) to each measure because population counts are heavily right-skewed

and contain zeros. The remainder of this section builds from these baseline estimates to generate the other

predictive features our model uses. Broadly, these features span six distinct categories.

4.2 Other features built from the core predictors

Transformations of baseline demographic estimates: While LI is a strong predictor of population counts,

it is less effective when within-decade population growth is not linear. This can occur when other base-

line demographic estimates – AF, AB, and MAAF – differ from LI. We transform these cohort compo-

nent estimates into measures of deviations from LI. For example, for AF, this is written as arcsinh(AF)−
arcsinh(LI), which represents AF’s percentage difference from LI. We speculate that instances where a

cohort-component-based feature like AF is meaningfully different from LI are ones where LI alone might

yield poor predictions.

In addition to the baseline demographic estimates and their deviation-from-LI variants, we include ver-

sions that are interacted with the last digit of the year (e.g., 3 for 1973). The motivation for this interaction

is that LI should be a better predictor at the beginning and end of the decade compared to the middle of

the decade. This is because LI is constructed as an interpolation between decadal endpoints. Similarly, we

expect that AF is better at the beginning of the decade than it is at the end, and the opposite is true for AB.

Including a version of the baseline demographic estimates that interact with the last digit of the year provides

our model with rich information that it can use to learn when one measure is preferred over another.

Variations on linear interpolation: Our core LI predictive feature is based on interpolating over the

decade for a given age. It is also based on interpolating the level of population counts, which we then apply

the IHS transformation to. We use three additional LI measures based on variations in these choices. The

first of these is to interpolate within a birth cohort over the decade. For example, this would interpolate

the 1955 birth cohort counts between 1960 and 1969, assigning the interpolated value to the 1955 birth

7A similar procedure was implemented by Egan-Robertson et al. (n.d.).

5



cohort for each of the intervening years. We label this cohort-based LI, which differs from our baseline

age-based LI measure. A separate variation is to perform the IHS transformation before interpolation. This

has the effect of allocating population changes along a constant-growth-rate path rather than a constant-

levels-change path. This “IHS first, then interpolate” approach can be applied to both the age-based and

cohort-based approaches. Altogether, this gives us four different candidate LI measures.

Our baseline LI goes from year 0 of a decade through year 9 of that decade (e.g., 1970 to 1979). If we

instead interpolate from year 0 to the next decade’s year 0 (1970 to 1980), we can compare the interpolated

value for the year ending in 9 (1979) to the truth for that year. We speculate that the error from this interpo-

lation could be a useful predictor for the remaining years in that decade, and perhaps especially so for the

later years in the decade. We include this error, as well as its interaction with dummy variables for the last

digit of the year, as predictor variables.

Measures of variance and curvature: LI will perform relatively poorly when the population counts

evolve non-linearly. Using our cohort-based migration-adjusted age-forward measure (as well as its IHS

transformation), we compute a measure of curvature over the decade. To do this, for each county-age cell,

we first calculate a quadratic in-time regression model over the 1960-1969 time span (and for each subse-

quent decade): Ycat = β0 +β1 · t +β2 · t2. From this model, we calculate a measure of curvature for each

year as curvi,t =
f ′′

(1+ f ′2)3/2 , with f ′ = β1 + 2 ·β2 · t and f ′′ = β2. In rare cases this produces outlier values

of measured curvature, and so we replace values with a Windsorization-type procedure. Specifically, we

replace values more extreme than µcurve ± 3 ·σcurve with the value µcurve ± 4 ·σcurve , with µcurve,σcurve the

mean and standard deviation of the curvature measure. We include these measures of curvature, and their

absolute value, along with their group-decade average. The idea is to allow for up- or down-weighting of

the different core estimates, in response to different amounts of measured curvature.

Separately, we speculate that variation in the population counts within a cell over the decade could be

informative. We calculate the within-decade variance of the baseline demographic estimates, births, and

deaths, and use these as predictive features.

Demographic features, age & race: A county’s demographic characteristics might provide relevant in-

formation for population count prediction. For example, consider the college town of Ithaca, New York.

Ithaca is home to two large universities – Ithaca College and Cornell University – that together nearly equal

the city’s population. College towns will have a disproportionately large count of 18-21-year-olds, which es-

pecially distorts prediction in small, rural populations like Ithaca. To incorporate this aspect of college-based

migration, we use the Census (1960) or SEER (1970, 1980) tabulations at the beginning of each decade to

estimate the fraction of a county’s college-aged population. Because our main sample includes counts of

0-20 year-olds, we estimate this fraction by dividing the count of 17-20 year-olds by the total count of 0-20-

year-olds. Additionally, we produce measures of (i) the share of the total population (among all ages) of 0-20

year-olds, and (ii) the share of the 0-20 population that is non-white. Together, these features characterize

potentially meaningful variations in the age and race of populations across counties.
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Time series inspired features: Annual lags and leads of the population might be additionally predictive

of counts. However, we cannot formulate contemporaneous time series measures for the 1960s, since the

population data to create them do not exist. The best that we can do in a mode that respects the missing data

in the 1960s is to generate one-decade-ahead averages. To begin, we hold county-age fixed and generate a

ten-year lead measure (e.g., for 5-year-olds in 1963, this is the count of 5-year-olds in 1973). One variant of

this approach is to hold county-age fixed and average the counts recorded one decade into the future (e.g.,

for 5-year-olds in 1963, this is the average count of 5-year-olds in the 1970s). We explore two additional

dimensions. First, we replicate the aforementioned county-age-based measures but hold county-cohorts

fixed instead (e.g., the simple 10-year lead measure for 5-year-olds in 1963 would be the count of 15-year-

olds in 1973). Second, we swap our various demographic estimates for true population counts to construct

the leads. This includes age-based LI, cohort-based LI, and each in their “IHS first” units.

“Utility” features: To conclude, we construct a set of features that, on their own, are likely weak predic-

tors of population counts. However, when interacted with other measures described in this section, these

“utility” features might provide additional explanatory power. One previously mentioned example is the

encoding of the last digit of the year. Interacting last-digit indicators with, say, LI or MAAF, allows our

model to learn to rely on the estimate that provides a more reasonable prediction by year. This is helpful

because almost all our features are calculated within-decade and carry advantages and disadvantages based

on their imputation method. We also create a measure of the “distance from the nearest decade”,8 generate a

single year of age indicator variables, include age directly, and calculate an average county population aged

0-20 in decadal end years.

5 Methods

5.1 Prediction model

The goal of this paper is to predict population counts (Ycat) in the 1960s, indexed by county c, age a, and

year t. Because these counts are heavily right skewed and contain zeros9, we apply the inverse hyperbolic

sine (IHS) transformation to Ycat and its population-based predictive features (LI, AF, AB, MAAF). Each

feature is normalized to have a mean of zero and a standard deviation of one. Next, we leverage the fact that

linear interpolation alone explains 99.8% of the variance in population counts and transform the outcome of

interest into a measure of percentage deviation from linear interpolation.10 This measure is written as:

∆cat = arcsinh(Ycat)−arcsinh(LIcat) (1)

where ∆cat , the difference between “ground truth” and linear interpolation, is the value that our model

predicts. Given the series of transformations to Ycat , we apply their inverse to ∆̂cat to obtain population

8Calculated as min(mod(t,10),9−mod(t,10)).
9From 1970 to 1989, there are 3,083 counties × 21 ages × 20 years = 1,294,860 county-age-year cells in our data; 19 of these

cells contain zero population counts.
10This estimate comes from the R2 in the regression of ground truth on linear interpolation, each IHS transformed and using only

counties in the training dataset. The estimated coefficient β̂ on arcsinh(LI) is .9989 (t = 1.7×104).
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predictions in levels.

To generate predictions, we follow the supervised learning procedure described in Section 3 that maps

our predictive feature set to ground truth, given by ∆̂cat = f (Xcat)+εcat . Using data from the 2,312 counties

assigned to the training dataset, we train a densely connected artificial neural network (ANN) to learn the

mapping of f (·). Our network consists of an input layer, three hidden layers, and one output layer. The input

layer has 171 nodes, which is equal to the number of predictive features that are filtered through a first-stage

collinearity check.11 There are 140 nodes in each hidden layer. Each layer is initialized with Gaussian

random weights and biases, and each node in a given hidden layer applies a rectified linear activation func-

tion to its inputs. The weights in the network are updated over a series of 200 epochs with batch sizes of

20,000 county-age-years; the magnitude of each update uses the Adam optimization algorithm (Kingma &

Ba, 2014). To reduce overfitting, we apply an L1 regularization penalty to the weight vector.12 The value of

each tuning parameter (number of nodes in a hidden layer, epochs, batch size, and L1 penalty) is chosen by a

custom five-fold cross-validation algorithm that targets median absolute error. The details of this algorithm

are described in Online Appendix B.

5.2 Re-transformation bias

Our prediction model targets ∆cat in Equation (1), but we are ultimately interested in predictions for

population counts Ycat . Because the function sinh(·) is nonlinear, we need to account for re-transformation

bias. To do so, we generate predicted populations by rearranging Equation 1 and multiplying by an inflation

factor like so:

Ŷcat = sinh(∆̂cat +arcsinh(LIcat)) · exp(σ̂2
ε /2) (2)

with σ̂2
ε a testing sample estimate of the MSE for ∆̂cat . The inflation factor exp(σ̂2

ε /2) is approximately

0.0009, indicating a trivial adjustment.

5.3 Measuring goodness of fit

Because population counts are right-skewed, we use median absolute percentage error (MAPE) to mea-

sure the goodness of fit of the neural network. Since it relies on the median error, it is less sensitive to

outliers than the alternative root mean squared error. We calculate MAPE as:

MAPE(Ycat ,Ŷcat) = 100 ·median(
|Ycat − Ŷcat |

Ycat
) (3)

where the magnitude of each residual (|Ycat −Ŷcat |) is scaled by ground truth (Ycat) and multiplied by one

hundred. Our results aggregate MAPE down to the age, year, and county size levels. MAPE is examined

separately for predictions generated by our preferred neural network model, its variants, and LI.

11Using OLS, we regress ∆cat onto Xcat and drop any collinear features before passing them to the neural network. This helps to
shrink the number of parameters the network needs to estimate and update without losing any predictive information.

12The L1 regularization penalty λ = ψ/slopes, with slopes = ( f eatures ·width)+2∗width2 +width and ψ tuned to be 0.03.

8



6 Results

6.1 Predictive accuracy

County population size is an important feature of how we present our results. Figure 3 shows the dis-

tribution of average county population counts summed over ages 0-20, from 1970 to 1989. We use this

distribution to create three county-size bins— small, medium, and large— that contain approximately a

third of the counties in our sample. When applying the IHS transformation, the average county-level popu-

lation counts approximate a normal distribution.

We select three case study counties, one from each size bin and all members of our testing set, to show

the results of our prediction model graphically. Figure 4 previews the results of our neural network predic-

tion model to document the process we follow to select “case study” counties. We select counties whose

predictions are representative of the average performance, comparing the neural network against linear in-

terpolation. For each size bin, we choose a county that falls near the intersection of the averages of MAPE

generated from each model. This leads us to choose Ellsworth County, Texas; Columbia County, New York;

and Orange County, California.

Figure 5 shows the time series for the number of four-year-olds in each of these three counties. “Ground

truth” is missing from 1961-1968, which motivates the prediction problem. In cases where the population

changes linearly (e.g., Orange County, CA in the 1980s), linear interpolation will be an accurate method to

recover the missing data. However, in some periods, population changes are not linear (e.g., Orange County,

CA in the 1970s). In these cases, other predictive features that reflect county-decade curvature in population

counts could be better. For instance, migration-adjusted age-forward (MAAF, described in Section 4) tracks

much closer to the truth in Orange County, CA in the 1970s.

Linear interpolation and migration adjusted age forward are two examples of the 203 predictive features

we build and feed to the neural network. Illustrated in Figure 6, the neural network generates predictions

that track closer to the true counts of four-year-olds than either of the individual features do. The model

succeeds at predicting population counts in decades, both with and without curvature. Each case study

county comes from the testing data, meaning the neural network did not use data from these counties during

its training.

Until now, our results have been illustrated using county case studies. Figure 7 aggregates the accuracy

of our neural network model and linear interpolation by single year of age in panel (a) and by single year

in panel (b). The results, in terms of MAPE, are shown separately by county size in the first three columns

and aggregated across all counties in the rightmost column. Across all ages, the neural network generates

more accurate predictions than linear interpolation. These predictions are also much less sensitive across

ages than linear interpolation. Particularly, linear interpolation struggles to predict counts of 5-10-year-olds.

The neural network does not have this difficulty, yielding predictions that are ∼3 percentage points closer

to the truth. Similarly, when considering predictions across time, the neural network dominates. This is

especially true in the middle of each decade. In general, the neural network tends to be about 2.39 percent

closer to the true population count than linear interpolation. This corresponds to a 59% reduction in MAPE.

Both the neural network and linear interpolation do better for larger counties and for years closer to decadal
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endpoints.

Table 1 shows additional results on the distribution of the absolute percentage errors for the testing

sample. The neural network yields population predictions that are significantly more accurate than linear

interpolation across the distribution. The difference in the mean prediction error is more pronounced than

the median error.13

In summary, our results indicate that the neural network gives meaningful improvements across all

county sizes, ages, and calendar years.

6.2 Magnitude of differences: Neural network vs. linear interpolation

Section 6.1 shows that population predictions from the neural network are more accurate than linear

interpolation, using data from the 1970s and 1980s. For our main use case of 1960s populations, we do

not have “ground truth” to compare against. In this section, we examine the difference between our new

estimates and those from linear interpolation.

Figure 8 shows the median absolute percentage difference (MAPD) between linear interpolation and our

neural network predictions in the 1960s. It shows that the neural network’s predictions differ from linear

interpolation by roughly 5%. Panel (a) plots MAPD by single year of age. In the most extreme case, the

models differ by ∼7% and in the most benign case, a ∼2%. The differences are most pronounced for 1-5

year-olds and 15-20 year-olds. Panel (b) plots MAPD by single year; the models differ the most in the

middle of the decade. This matches our intuition about prediction errors growing larger in distance from

decadal endpoints. In contrast to the testing sample performance in Section 6.1, the percentage differences

do not appear to be sensitive to population size. We present more detailed results on the distribution of

absolute percentage differences in the testing data in Table 2. We present absolute percentage differences

for all counties, pooling testing and training data, in Online Figures Appendix Figure 1 and Appendix Table

2, and show that the results are similar. In addition, as seen in Online Table Appendix Table 3, differences

between our new measure and LI are slightly larger when weighting each observation by the underlying

population size.14

7 Robustness

7.1 Sensitivity to choice of prediction algorithm

In this section, we re-run our prediction exercise described in Section 3 using different choices of predic-

tion algorithm. Each model that we explore – random forest regression (RF), gradient-boosted trees (GB),

OLS and LASSO – uses the training sample discussed in Section 3 and predictive features described in

Section 4 to learn its parameters and generate population predictions. Then, out-of-sample performance is

evaluated using the testing data in comparison to our preferred neural network model.

13In addition, Online Appendix Table 1 describes the distribution of absolute percentage errors, weighted by population size. We
show that the MAPE is 70% lower using the neural network compared to LI.

14Because population counts are not observed in the 1960s, we use ŷANN+ŷLI
2 as an estimate of population to weight the distribution

of absolute percentage difference.
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A perennial goal in supervised learning is tuning your model to include the empirically optimal set of

parameters. In our context, determining this set of tuning parameters is computationally taxing. As a result,

we follow an ad-hoc tuning procedure for each model.

For the RF model, we tune one parameter – the number of regression trees to average over in the forest.

Indeed, there are other parameters one can tune – e.g., minimum leaf size, maximum tree depth, number of

features to sample in each tree – but we proceed with the understanding that these parameters are meaning-

fully subsumed by a conservative choice in the number of trees to include or are related to reducing training

computational resources, which we are agnostic to. Our preferred RF model has a minimum leaf size of two

observations, samples from a share of all 203 predictive features equal to
√

203
203 in each tree, and is tuned to

create and average over, 150 trees. We explored 10, 25, 50, 75, 100, 150, 200, and 300 as candidates for the

number of trees.

For the GB model, we tune two parameters – the number of trees and the maximum tree depth. We

hold the learning rate fixed at 0.075 and the maximum number of features equal to
√

203
203 . The maximum

tree depth parameter implies the complexity of the interactions that can occur in a single tree: the deeper

the tree, the more combinations of features that can occur, and the more conditions that get applied to

those features. We consider this parameter somewhat balanced by the tree count parameter insofar as more

complex interactions could lead to overfitting. However, averaging over many individually overfit trees

leads to a less biased prediction. Of course, this is not exactly precise, and so we choose to tune both. Our

preferred model has a maximum tree depth of eight and creates a total of 400 trees.

OLS does not have parameters to tune. LASSO has one – the penalty weight applied to the sum of the

magnitudes of the regression coefficients – which we identify as 1.9× 10−5 via five-fold cross-validation.

This selection results in the choice of 130 non-zero coefficients (64% of all features).

We show the MAPE results of this horse race by single year of age and year in Online Appendix Figure

2. The ANN dominates across almost all ages and all years. Using OLS or LASSO leads to a marginal

improvement over using LI alone. However, there are large reductions in MAPE when employing RF or

GB. Absolute percentage differences in predictions generated by each model and LI for the 1960s are shown

in Online Appendix Figure 3.

7.2 Sensitivity to choice of predictive features

In this subsection, we consider how the quality of the prediction model is impacted by the choice of

predictive features (covariates). Our main model includes 203 features. We consider ten alternative sets of

predictive features, each one based on eliminating a subset of the main model’s features.

Because the ANN model relies on a set of tuning parameters, and the optimal set of tuning parameters

can depend on the feature set, for each of our alternative feature sets, we engage in a modest re-tuning of

the ANN model before generating predictions. For computational reasons, we do not fully explore the space

of tuning parameters for each model. Instead, we do the following. First, we set the “minibatch size” to 1-

million, based on our impression that it was the least important parameter and that setting it to a large value

could improve computational time. Second, starting from the main model’s tuning parameters, we profile

over a range of XX values of the L1 penalty parameter, using 5-fold cross-validation (CV) as our measure
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of goodness of fit. Starting from the best-obtained value, we then profile over XX choices for the number of

hidden nodes per layer. Following that, we undertake one more profile over the L1 penalty parameter. We

use the best CV goodness of fit to choose the tuning parameters, re-train the ANN based on these, and then

consider the out-of-sample goodness of fit using the testing sample.

Results from this exercise are in Table 3. We see that [results in progress; to be updated later].

7.3 Sensitivity to choices of testing and training samples

Our main training sample consists of a 75% sample of counties observed in the years 1971-1978 and

1981-1988. Our main testing sample consists of a further 12.5% sample of counties observed in the same

years. We chose this as our primary testing sample because it offers a clean out-of-sample interpretation for

measuring goodness of fit. However, it relies on within-time-period data, while our use case for the model

is predictions for the 1960s. Here, we explore sensitivity to cross-decade measures of goodness of fit. Table

XX illustrates our alternative models.

These models are based on three different training samples and a variety of samples used to measure

goodness of fit. In each case, the goodness of fit samples are “out-of-sample” in that their data points were

not used to train the prediction model. We have chosen these specifications with the goal of learning more

about the importance of the cross-county versus cross-decade nature of out-of-sample. We choose to train

only on our training data, and to exclude any data from the hold-out sample in this subsection, until after we

are given a “conditional accept’ decision from the editor.

For each of the training samples, we re-tune the ANN parameters for the L1 penalty and the number of

nodes per hidden layer. We do so in a fashion analogous to that described in Section 7.2.15

[Results in progress and discussion still to come.]

8 Conclusion

In this paper, we explore the possibility of recasting intercensal population estimation in the 1960s as a

prediction exercise. Our neural network (ANN) model outperforms a LI benchmark by 59%. Improvements

in predictive accuracy compared to LI are primarily driven by the flexibility of our model and the construc-

tion of a rich set of predictive features. We publish population counts – for ages 1-20 from 1961-1968 for

almost all U.S. counties– predicted by our model.

Separate from providing new and improved predictions, this paper demonstrates the scope for supervised

learning to improve population estimation strategies.

15The main exception is that for each candidate tuning parameter value, we train the ANN model eight times using different
random seeds, and use the average of the CV goodness of fit to choose our tuning parameters.
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Figure 1: A motivating example of the missing data problem: Orange County, CA

Notes: This figure illustrates the missing data problem that arises in 1961-1968 as a result of a gap in reporting between the
1960 census and the inaugural SEER estimates in 1969. Plotted is the estimate for the count of four year-olds in Orange County,
California. A dashed grey line shows the prediction given by age-based linear interpolation. A vertical grey line divides the 1960s
from the other two decades.

Figure 2: Setting up the supervised learning exercise

Notes: This chart shows the breakdown of our county-year panel into training, testing, and hold-out datasets. There are a total
of 3,083 counties in our sample. Our prediction framework only incorporates data between and not including decadal endpoints.
Population counts in 1960s represent the target data.
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Figure 3: Distribution of county population counts

Notes: This figure shows the distribution of mean county-level population counts for those aged 0-21 from 1970-1989. This mean
is calculated by summing counts of 0-20 year-olds by year, and then averaging across years within counties. Only counties in our
testing sample are used (N = 385). For each county, this mean is reported in IHS units. Two dashed vertical lines display the county
size bins described in Section 6.1, which we use to present our results in terms of baseline county population size. As a result, there
are three population size “regions” – small, medium, and large.
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Figure 4: Selecting case study counties

Notes: This figure illustrates the procedure by which we select case study counties. Each panel shows results of our neural network
prediction model separately by county-level population size. Each light, unshaded blue dot is a single testing county (N = 385).
The median absolute percentage error of the neural network is plotted on the y-axis and the median absolute percentage error of
linear interpolation is plotted on the x-axis. These two statistics are calculated across all ages and out-of-sample years. Each plot
includes a red 45-degree line, which represents the point where the median absolute error of each model is theoretically equal. The
mean value of each axis is shown via a dashed blue line. The general motivation for this exercise is to choose counties to case-study
that are representative of the “average” performance. Thus, we selectively label (in dark, shaded blue) a single county near in the
intersection of the dashed blue lines.
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Figure 5: County case studies: prediction problem

Notes: Using the counties identified in Figure 4, these plots show the time series for the number of four-year-olds (in hundreds)
from 1960-1989. Hollow diamonds show the “ground truth” count of four-year-olds per the 1960 census and 1969-1989 SEER
files. Indeed, the series for 1961-1968 is incomplete. The dashed gray line shows the count of four-year-olds predicted by linear
interpolation. A solid green line shows the count of four-year-olds predicted by the cohort component migration adjusted age
forward method, as described in Section 4.
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Figure 6: County case studies: horserace

Notes: Using the counties identified in Figure 4, these plots display predictions of the count of four-year-olds (in hundreds) from
1960-1989. Predictions generated from our neural network model are shown by a solid blue line. Predictions drawn from linear
interpolation are shown by a dashed gray line. The “ground truth”, as represented by the 1960 Census and 1969-1989 SEER
tabulations, is plotted as hollow diamonds. Because our model does not predict population counts in years ending in zero or nine
(or what we denote as decadal end-caps), the time series for each prediction is missing in such years. This is because we already
have available to us the value of ground truth in 1960 and 1969 and our prediction problem is to interpolate values between these
years. This distinction ports directly to how we calculate out-of-sample goodness of fit, with the added caveat that we do not include
zero-year-olds. A vertical grey line distinguishes where the predictions become out-of-sample: the 1960s.
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Figure 7: Out-of-sample predictive accuracy: testing counties

Notes: Panel (a) shows median absolute percentage error (MAPE) by single year of age (1-20), calculated using linear interpolation
(gray line connecting dots) and our neural network predictions (blue line connecting diamonds). MAPE by age is calculated for
only testing counties, separately by size (small, medium, and large). It represents the median error as a percentage of “ground
truth”. The rightmost panel pools across all testing counties (N = 385). This corresponds to 123,200 county-age-years. Panel (b)
shows MAPE by single calendar year. For each panel, only years between decadal end-caps are used (so those ending with one or
eight). This can be seen visually in Panel (b), where the series are missing for 1970, 1979, 1980, and 1989. Because we do not
observe “ground truth” population counts in the 1960s, we cannot directly assess the accuracy of predictions over this period.
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Figure 8: Differences across predictions: testing counties

Notes: Panel (a) shows the absolute percentage difference (APD) between our neural network predictions and linear interpolation
by single year of age (1-20) for the 1960s. APD is calculated separately by county size (small, medium, and large), and the
rightmost panel pools across all testing counties (N = 385). This corresponds to 61,600 county-age-years. Panel (b) illustrates APD
by calendar year. Like before, only prediction data from 1961-1968 is used since these are the years for which there exists a gap in
“ground truth” population counts.
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Prediction Model County Size Mean 1st ptile 10th ptile 50th ptile 90th ptile 99th ptile

Neural Net Small 3.91 0.04 0.44 2.54 8.55 23.54
Medium 2.15 0.03 0.27 1.50 4.57 10.54

Large 1.51 0.02 0.19 1.07 3.29 7.43
All 2.63 0.03 0.28 1.65 5.75 16.84

LI Small 5.83 0.05 0.84 4.54 12.33 23.64
Medium 4.78 0.07 0.74 3.89 9.79 18.22

Large 4.50 0.07 0.69 3.65 9.37 16.78
All 5.09 0.07 0.76 4.04 10.64 20.23

Table 1: Distribution of absolute percentage errors: testing counties

Notes: This table shows summary statistics on the distribution of absolute percentage errors generated by predictions from linear
interpolation and from our neural network model. This distribution is summarized by county size, along several percentiles. The
50th percentile corresponds to the median absolute percentage error (MAPE), which is disaggregated in Figure 8. Values shown
are computed using only testing counties (N = 385), ages 1-20. This corresponds to 123,200 county-age-years.

Prediction Model County Size Mean 1st ptile 10th ptile 50th ptile 90th ptile 99th ptile

Neural Net vs. LI Small 4.48 0.06 0.64 3.47 9.34 18.12
Medium 4.07 0.06 0.56 3.18 8.84 15.72

Large 5.36 0.08 0.69 3.63 10.08 26.92
All 4.51 0.06 0.61 3.37 9.33 17.70

Table 2: Distribution of absolute percentage differences: testing counties

Notes: This table shows summary statistics on the distribution of absolute percentage differences in population counts generated
from predictions from linear interpolation and from our neural network model. This distribution is summarized by county size, along
several percentiles. The 50th percentile corresponds to the median absolute percentage difference (MAPD), which is disaggregated
in Figure 8. Values shown are computed using only testing counties (N = 385), ages 1-20. This corresponds to 61,600 county-age-
years.
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# of features minibatch size (×10−7) penalty weight (ψ) MAPE
Baseline 203 1 3.30 1.75

LI only 1 1 4.50 4.03
No LI 151 0.0016 6.59 3.40

No Cohort Components 91 1 6.75 1.75
No LI year 9 error 195 1 7.43 1.87

No Curvature 191 1 7.43 1.74
No Std. Dev. 197 1 4.50 1.75

No (c,y) demog 104 1 5.45 1.77
No F10. lead 191 1 0.539 1.80

No Utility Features 147 1 0.717 2.21
Change LHS 203 1 2.93 2.37

Table 3: Comparing predictive feature sets

This table shows the selected tuning parameters and MAPE for each neural network model we construct, using a different set of
predictive features. Each row corresponds to a different model with different predictive feautures. The number of features per model
is shown in the second column. MAPE values are calculated using only testing counties (N = 385), ages 1-20. This corresponds to
61,600 county-age-years.
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Online Appendix for “Backcasting Population Data in the 1960s with
Supervised Learning”

By Esra Kose, Henry Manley, Douglas L. Miller

A Formulating baseline estimates

Linear interpolation (age-based) To construct LIcat , we begin by letting r(t) = mod(t,10), where r in-
dexes relative years from the beginning of the decade. Then, for each decade, we let tmax = argmax

t
r(t) and

tmin = argmin
t

r(t) and substitute for t such that:

LIcat = Ycatmin +
(Ycatmax −Ycatmin)(t − tmin)

tmax − tmin = Ycatmin +
(Ycatmax −Ycatmin) · r(t)

9
(4)

where Ycatmin is the count at the beginning of the decade, Ycatmax is the count at the end, and their difference,
(Ycatmax −Ycatmin) is apportioned linearly1 over the decade. We know that for every decade, tmax − tmin = 9−
0= 9. As described in Section 4.2, there is additional consideration for the units of (Ycatmax −Ycatmin). Written
above, the most parsimonious version calculates the difference in levels. However, we also implement a
version with an IHS transformation that so that each year observes a constant growth rate. Additionally, we
build a version of linear interpolation indexed by birth cohort and not age.

Age forward & age backward Drawn from a cohort-component model, age forward (AFcat) works by
holding a birth cohort b(a, t) = t −a fixed through a decade and recursively subtracting deaths. This follows
from the intuition that the count of a year old’s this year is equal to the count of a+ 1 year-olds next year,
minus the count of deaths to a year-olds this year.

One important detail of the age-forward approach is that not all birth cohorts appear in every year. In
particular, it necessitates additional consideration for cohorts born mid-decade (e.g., the 1965 birth cohort).
As a result, we consider the availability of relative years to vary by cohort, such that tmax

b = argmax
t

rb(t)

and tmin
b = argmin

t
rb(t). Though, we also leverage prior definitions of tmin and tmax as cohort-invariant,

within-decade indices. Taken together, and by substituting in birth cohort for age, we arrive at the following
piecewise equation:

AFcat =


Ycbt, t = tmin

b = tmin

Bct, t = tmin
b ̸= tmin

b
AFcb,t−1 −Dcb,t−1, tmin

b < t ≤ tmax

 (5)

where the “base case” for a birth cohort that appears in every year of the decade is its count at the
beginning of the decade Ycbtmin . For birth cohorts born mid-decade, the count of births recorded in the
cohort-defining year, Bct serves as the base case. For every subsequent year, regardless of the number of
times it appears in a decade, each cohort is decremented by the count of deaths to those in b reported
during the preceding year, Dcb,t−1. This process recurses until the end of the decade is reached, where
t = tmax

b = tmax.
As the name implies, age backward (ABcat) is calculated by tracking a birth cohort backwards through

a decade. Like with age-forward, age-backward also has to handle the case of birth cohorts beginning mid-
decade. In practice, this means a cohort will “disappear” in the calculation of age-backward. Using the same
notation as above that substitutes age for birth cohort, age-backward is written, piecewise, as:

1The difference (Ycatmax −Ycatmin) is apportioned, annually, according to the t−tmin

tmax−tmin term.
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ABcat =

{
Ycbt , tb = tmax

AFcb,t+1 +Dcbt , tmin
b ≤ tb < tmax

}
(6)

where the population count at the end of the decade (Ycbt) is incremented each year, moving back in time,
by the count of deaths to those in b reported occurring in t, Dcbt . Note, “disappearing” cohorts are those
for which tmin

b > tmin. To construct consistent measures of age-backward for each age, we rely on data that
extend our sample described in Section 2. One such example is how age backward might calculate, say,
the count of 18-year-olds in 1961. Though our sample spans ages 0-21, we need to observe the 1943 birth
cohort in 1962-1969 to calculate age-backward. And if we need to the count of 21-year-olds in 1961, we
will need to recurse on the count of 30 year-olds in 1969 to get there. In practice, this means we need data
on up to max(a)+max(r(t)) = 21+9 = 30 year-olds, which is available in the SEER tabulations.

Migration-adjusted age forward Migration-adjusted age-forward is akin to the age-forward measure,
barring one additional consideration: it incorporates an estimate of net migration. This estimate comes from
the difference in the AF prediction and ground truth in the year tmax

b . For the majority of cohorts, this is
the difference in predictions at the end of the decade. Net migration is linearly interpolated for the count of
years the cohort appears in the decade. When combined and calculated separately by decade, this measure
is denoted as:

MAAFcat = AFcat +
(AFcbtmax

b
−Ycbtmax)(t − tmin

b )

tmax
b − tmin

b
(7)

where AFcbtmin
b

−Ycbtmin is the estimate of net migration that is scaled by the number of years from the
base cohort-decade year. Note, if AFcbtmin

b
> Ycbtmin , then this measure adds an estimate of net out-migration.

If the converse is true, we adjust AF according to an estimate of net in-migration.

B Custom cross validation algorithm

For our main estimates, we use the following tuning parameters:

• 3 hidden layers
• 120 nodes per hidden layer
• L1 penalization on weights, with penalty parameter given by λ = 0.03/slopes, where slopes =
( f eatures ·width)+2∗width2 +width

• 20,000 observations per minibatch
• 200 maximum epochs
• Rectified linear (ReLu) activation function in each node
• Adam optimization routine

The optimization algorithm (Adam) (Kingma & Ba, 2014), activation function (ReLu), and the use of an
L1 penalization on the weights are fixed choices, not chosen through tuning based on model performance.
The choice of three layers was based on informal comparisons we made during the process of tuning the
other parameters. The main parameters that we select through tuning are: the number of nodes per layer
(width), the L1 penalty parameter λ , the minibatch size, and the maximum number of epochs used to train
the model, φ = {nodes,λ ,batchsize,epochs}. We use 5-fold cross validation average Median Absolute Er-
ror as a measure of goodness of fit, with the folds defined over the training data, and observations randomized
into each fold based on their county.

With four model parameters to tune, the choice space is large. For a given set of candidate parameters,
the computer we used took an average of 30 minutes to compute a cross-validation goodness of fit measure.
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An additional complication is that due to the random initialization of the model parameters, the same set
of tuning parameters can produce slightly different models (and hence slightly different goodness-of-fit
measures). This led us to use the following algorithm to choose our tuning parameters:

1. Choose a set of grid points φ j ∈ Φ to consider as candidate tuning parameters.
2. For each grid point, compute a cross-validation measure of RMSE. Add this point and RMSE value

to the set of measurements, {φi,RMSEi}
3. Estimate a locally weighted polynomial using all completed measurements, R̂MSEi = f (φi)
4. Review the parameter values with the best predicted loss, using human judgement
5. Go back to step (1), with a new choice of grid points

In practice, for step (1) we often search over only two or three of the tuning parameters, holding the
other one or two parameters fixed. In the end, we performed a total of 273 estimates. This resulted in best
values of the tuning parameters as: number of nodes = 55, number of epochs = 80, L1 Penalty = 0.6/slopes
(with slopes = ( f eatures ·width)+2∗width2 +width), and minibatch size = 25,000. We then rounded the
number of nodes up to 60, reflecting the fact that several of the “runner-up” best predicted choices came
from this value.

C Harmonizing county identifiers over time and across datasets

The conceptual geographic unit of analysis in our paper is the county. Considering different sources of
data and different years, our paper combines several different datasets. Among these, county ID is recorded
in many different ways – including changes in recording within a data source across years. The table below
summarizes some of these differences. Separate from recording differences, there have been changes to
some county compositions over the years 1960-1990. Some counties have split or merged.

Source Years County ID encoding
Natality tabulations 1959-1967 text (County name)
Natality microdata 1968-1969 NCHS codes vintage 1962-1969
Natality microdata 1970-1981 NCHS codes vintage 1970-1981
Natality microdata 1982-1988 NCHS codes vintage 1982-1988
Mortality microdata 1960-1961 NCHS codes vintage 1960-1961
Mortality microdata 1962-1969 NCHS codes vintage 1962-1969
Mortality microdata 1970-1981 NCHS codes vintage 1970-1981
Mortality microdata 1982-1989 NCHS codes vintage 1982-1989
1960 Census population tabulations 1960 FIPS (1960 vintage)
SEER 1969-1999 SEER adjustments to FIPS

To construct our data set, we account for these two challenges by creating a series of cross-walks from
each data source into a “super FIPS” county measure. This is intended to be a geographic unit that is
consistent over time, which is as close as possible to the county, and into which each data source from each
year can be merged.

The details of the construction of these cross-walks are embedded in the Stata code among the supple-
mentary materials for this paper. Prior work by Autor & Dorn (2013) was greatly helpful as we built these
crosswalks. Here we note a few specific considerations and challenges:

• SEER pools all of Alaska and Hawaii into one geographic identifier per state. So we lose sub-state
geographic information for these two states.

• Virginia was a real challenge. Based on lots of web searching, we built a spreadsheet to encode the
information needed to handle the many special cases for Virginia across different years and datasets.
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• For SEER data for 1969-1979, all five NYC boroughs are given only one code. As a result, we
combine all of NYC into one super FIPS.

• Among the datasets that record counties by the text of their names, there are inconsistent spellings
and abbreviation conventions. Our crosswalks correct for these differences.
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Appendix Figure 1: Differences across predictions: all counties

Notes: Panel (a) shows the absolute percentage difference (APD) between our neural network predictions and linear interpolation by
single year of age (1-20) for the 1960s. APD is calculated separately by county size (small, medium, and large), and the rightmost
panel pools across all counties (training + testing) (N = 2,697). This corresponds to 863,040 county-age-years. Panel (b) illustrates
APD by calendar year. Like before, only prediction data from 1961-1968 is used since these are the years for which there exists a
gap in “ground truth” population counts. 27
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Appendix Figure 2: Performance by choice of prediction model: testing counties

Notes: Panel (a) shows median absolute percentage error (MAPE) by single year of age (1-20), calculated using linear interpolation
(black line connecting solid circles), our neural network predictions (blue line connecting hollow circles), and a variety of other
prediction models. MAPE by age is calculated for only testing counties, separately by size (small, medium, and large). It represents
the median error as a percentage of “ground truth”. The rightmost panel pools across all testing counties (N = 385). This corresponds
to 61,600 county-age-years. Panel (b) shows MAPE by single calendar year. For each panel, only years between decadal end-caps
are used (so those ending with one or eight). This can be seen visually in Panel (b), where the series are missing for 1970, 1979,
1980, and 1989. Because we do not observe “ground truth” population counts in the 1960s, we cannot directly assess the accuracy
of predictions over this period.
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Appendix Figure 3: Level differences in predictions by choice of model: testing counties

Notes: Panel (a) shows the absolute percentage difference (APD) between a series of prediction models and linear interpolation by
single year of age (1-20) for the 1960s. APD is calculated separately by county size (small, medium, and large), and the rightmost
panel pools across all testing counties (N = 385). This corresponds to 61,600 county-age-years. Panel (b) illustrates APD by
calendar year. Like before, only prediction data from 1961-1968 is used since these are the years for which there exists a gap in
“ground truth” population counts.
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Prediction Model County Size Mean 1st ptile 10th ptile 50th ptile 90th ptile 99th ptile

Neural Net Small 3.21 0.04 0.40 2.23 7.02 16.35
Medium 2.07 0.02 0.26 1.44 4.39 10.38

Large 1.41 0.02 0.18 1.03 3.08 6.54
All 1.60 0.02 0.20 1.12 3.45 8.07

LI Small 5.40 0.08 0.80 4.27 11.34 21.28
Medium 4.70 0.07 0.74 3.86 9.59 17.95

Large 4.47 0.08 0.70 3.63 9.23 16.96
All 4.55 0.08 0.71 3.69 9.40 17.30

Appendix Table 1: Distribution of absolute percentage errors weighted by population size: testing counties

Notes: This table shows summary statistics on the distribution of absolute percentage errors generated by predictions from linear
interpolation and from our neural network model. These absolute percentage errors are weighted by population. This weighted
distribution is summarized by county size, along several percentiles. The 50th percentile corresponds to the median absolute
percentage error (MAPE), which is disaggregated in Figure 7. Values shown are computed using only testing counties (N = 385),
ages 1-20. This corresponds to 61,600 county-age-years.

Prediction Model County Size Mean 1st ptile 10th ptile 50th ptile 90th ptile 99th ptile

Neural Net vs. LI Small 4.46 0.06 0.63 3.45 9.41 18.40
Medium 4.00 0.05 0.56 3.11 8.49 15.16

Large 4.61 0.06 0.65 3.52 9.42 17.32
All 4.30 0.06 0.60 3.32 9.04 16.79

Appendix Table 2: Distribution of absolute percentage differences: all counties

Notes: This table shows summary statistics on the distribution of absolute percentage differences in population counts generated
from predictions from linear interpolation and from our neural network model. This distribution is summarized by county size, along
several percentiles. The 50th percentile corresponds to the median absolute percentage difference (MAPD), which is disaggregated
in Figure 8. Values shown are computed using all (training + testing) 2,697 U.S. counties, ages 1-20. This corresponds to 863,040
county-age-years.

Prediction Model County Size Mean 1st ptile 10th ptile 50th ptile 90th ptile 99th ptile

Neural Net vs. LI Small 4.24 0.06 0.61 3.39 8.96 16.28
Medium 4.04 0.06 0.55 3.17 8.75 15.61

Large 5.87 0.10 0.87 4.49 12.18 22.52
All 5.45 0.09 0.77 4.09 11.40 21.78

Appendix Table 3: Weighted distribution of absolute percentage differences: all counties

Notes: This table shows summary statistics on the distribution of absolute percentage differences in population counts generated
from predictions from linear interpolation and from our neural network model. These absolute percentage differences are weighted
by an estimate of population. Because population counts are unobserved in the 1960s, an average of predictions from the neural
network and linear interpolation are used. This weighted distribution is summarized by county size, along several percentiles. The
50th percentile corresponds to the median absolute percentage difference (MAPD), which is disaggregated in Figure 8. Values
shown are computed using all (training + testing) 2,697 U.S. counties, ages 1-20. This corresponds to 863,040 county-age-years.
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