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Abstract

Using the largest database of academics ever assembled, we analyze gender gaps in
academia over an unprecedented time span and geographic coverage. First, we find that
women were substantially less likely to be hired throughout the 20th century. Gender
gaps in hiring differed across countries and disciplines, and declined over time. Second,
women published fewer papers than men. Estimates of a Roy model show a U-shaped
relationship between gender gaps in hiring and in publications, indicating that these gaps
are inherently linked. With declining gender gaps in hiring, the relative importance of
positive selection of women was offset by increased publishing opportunities for women.
Third, women received fewer citations. We develop a novel machine learning approach
that shows that citation gaps did not arise because women worked on less-cited topics.
Fourth, women were less likely to be promoted to full professor, even accounting for gender
gaps in publications and citations.
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Until the beginning of the 20th century, high-skilled professions were almost exclusively
occupied by men. Even today, women remain under-represented in most high-skilled
professions, especially in senior positions. For example, as of 2017, women occupied merely
5.8% of CEO positions in Fortune 500 corporations (Bertrand et al. 2019) and were granted
only 9.5% of patents in OECD countries (OECD 2021). In academia, women remain
under-represented in most countries. The sustained under-representation of women is
of increasing concern for researchers, policymakers, and the general public (e.g., Beidas
et al. 2022, Romanowicz 2019). In recent years, a growing literature has analyzed gender
gaps in academia, investigating either publications or citations, and focusing on specific
disciplines, countries, and time periods.

Despite these endeavors, much remains to be understood about gender gaps in
academia. In particular, little is known about the long-run evolution of gender gaps across
countries and disciplines. It also remains unclear in which domains (hiring, publishing, ci-
tations, promotions) gender gaps are more pronounced and if gender gaps interact across
domains.

This paper makes progress in our understanding of gender gaps in academia by
tracing their evolution across multiple domains over the 20th century and at a global
scale. The analysis leverages the largest database of university academics ever assem-
bled. We hand-collect the data from historical records and modern university websites.
The database includes more than half a million observations covering academics in 7,477
universities in all disciplines in 151 countries for six cross-sections (cohorts) spanning
the years 1900, 1914, 1925, 1938, 1956, and 1969.1 We augment these data with infor-
mation on academics in five academic disciplines for the year 2000, covering prestigious
universities for which we have information throughout the 20th century.

The unique quality of our data derives from a large number of manual enhancements
that enrich the faculty rosters. Among the many enhancements, we code the gender of
academics in a multi-step procedure. Additionally, we follow academic careers by develop-
ing a cascading algorithm that links academics across the seven cohorts. For example, we
trace Margarete Bieber’s career from the University of Gießen, Germany (1925 cohort), to
Columbia University, USA (1938 and 1956 cohorts).2 Further, we manually recode more
than 100,000 specializations into 36 disciplines. We also manually harmonize academic
ranks across countries to study academic promotions. Finally, we complement the faculty
rosters with publication and citation data from Clarivate Web of Science and Microsoft
Academic Graph to study gender gaps in publications and citations.

Because the data are based on complete faculty rosters, which we combine with
data on publications and citations, we can study the entire population of academics who

1For comparison, the U.S. News ranking is based on 1,748 universities (see here, accessed on July 6,
2021). The Shanghai Ranking includes 2,417 universities (see here, accessed on July 6, 2021).

2Margarete Bieber, an archaeologist and art historian, was the second woman in Germany to become
a full professor. Because of her Jewish background, she was dismissed by the Nazi government and
emigrated to the United States (Becker et al. 2023).
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are, in principle, able to publish, be cited, and be promoted to full professor. This
helps to overcome important selection biases that affect studies that exclusively rely on
publication and citation databases.3 This enables us to draw a more accurate portrait
of the role of women in academia, which is not restricted to the sample of publishing
academics. Additionally, our data allow us to study gender gaps in four domains: hiring,
publications, citations, and promotions. Each part of the paper studies gender gaps in
one of these four domains and establishes new facts about their global evolution over the
20th century. We also investigate how gender gaps interact across domains.

In the first part of the paper, we document gender gaps in hiring. For many dis-
ciplines, countries, and universities, the data cover the first women to enter academia,
e.g., Katherine Coman, the first female full professor in economics in the United States
(Vaughn 2004). Across all universities and disciplines, our newly collected data show that
in 1900 only 227 women had been hired, a share of about 1%. In the following decades,
the share of women increased slowly: 2% in 1914, 3% in 1925, 7% in 1938, 11% in 1956,
and 11% in 1969. In the sciences (mathematics, physics, chemistry, biochemistry, and
biology), female shares across all universities increased from about 1% to about 7% be-
tween 1900 and 1969. In prestigious universities, female shares in the sciences were about
25-50% lower (than in all universities) until 1969. Between 1969 and 2000, female shares
in the sciences in prestigious universities increased substantially: from about 4.4% to
18.7%. Despite the increase over the last decades of the 20th century, women continue
to be significantly underrepresented in the sciences at prestigious universities. Our data
also indicate that throughout the 20th century, female participation in academia was
consistently lower than in the broader workforce across most countries.

We further investigate how gender gaps in hiring varied across academic ranks and
document particularly large gaps for full professors. By 1900, all universities across the
globe combined had only hired 114 women as full professors, a share of around 1%. In the
following decades, the share of female full professors increased but remained always below
the share among all academics. The slower increase in the share of women among full
professors could either reflect compositional changes over time or worse career prospects
for women. We investigate this question in the last part of the paper.

The global coverage of the data also enables us to uncover substantial heterogeneity
in female shares across countries. Before WWI, universities in the United States hired
more female academics than any other country, both in absolute and in relative terms.
Overall, among all universities and disciplines, the dominant role of the United States
persisted until 1969. Among the prestigious universities, the early lead of the United
States in the sciences did not last, and by 2000, many other countries had hired more
women in their prestigious universities. The United Kingdom also started the 20th century
with a relatively high female share, but fell behind by 2000. In contrast, Scandinavian
countries, and to a lesser extent Germany, had very low female shares until 1969 but

3A recent paper studying gender inequality in science based on publication data is Huang et al. (2020).
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increased their shares substantially in the three decades until 2000. France and Italy
had low shares before WWI, but had the highest female shares by 2000. Japan is a
clear outlier: female shares were at similar levels during the first decades of the 20th
century but, unlike the other advanced countries, did not show a marked increase until
2000. The cross-country evolution of female shares in academia was remarkably different
from the evolution of female shares in the general workforce (e.g., Olivetti and Petrongolo
2016). This suggests that women’s careers in academia, and possibly in other high-skilled
professions, were affected by different factors from those in lower-skilled professions.

We also find substantial heterogeneity in female shares across disciplines. Averaged
over the period 1900-1969, no discipline had a female share greater than 35%. Most
disciplines had female shares below 10%. Gender gaps were substantially higher in STEM
than in humanities or social sciences. Disciplines with particularly low female shares were
physics, law, veterinary medicine, architecture, and theology. Disciplines with particularly
high female shares were pedagogy, communication studies, languages, and sports sciences.

In the second part of the paper, we investigate gender gaps in output as measured
by publications. One key advantage of studying academics is the availability of output
measures that are comparable across time and space. Publications are one of the main
metrics to evaluate academics. Of course, publications do not measure the true ability of
academics as they are influenced by preferences, discrimination, and other biases. Because
our data are not limited to the sample of publishing academics, our analysis overcomes
important selection concerns when comparing publications. We measure publications over
a ±5 year interval around each cohort (e.g., 1995-2005 for scientists observed in 2000). In
all universities, during the period 1900-1969, female scientists published on average one
to two fewer papers than men (or around 0.2 standard deviations (s.d.)) over the ±5 year
interval. Gender gaps in publications are similar if we compare men and women in the
same university and cohort, e.g., Harvard in 2000, or even in the same department and
cohort, e.g., physics in Harvard in 2000. In prestigious universities, we estimate around
50% larger gender gaps in publications. We also estimate the evolution of gender gaps in
publications over the 20th century. The publication gap was about 0.2 s.d. in 1900. In
the following decades, the gender gap in publications increased and reached a maximum
of 0.45 s.d. by 1956. After that, the gap declined to about 0.2 s.d. by 2000.

This over-time pattern of gender gaps in publications and the findings in the first
part of the paper, which show an increase in the share of women over the 20th century,
suggest that changes in the representation of women in academia may be related to relative
changes in the selection and publishing opportunities of men and women. We propose
a model along the lines of Roy (1951) to study whether changing gender gaps in hiring
affect gender gaps in publishing. The model allows for (i) selection on unobservables
in the hiring market, (ii) gender bias in hiring, and (iii) gender bias in the publication
market. These features make a scientist’s publication output a function of the share of
women in the profession because of (a) indirect effects of selection and gender bias in the
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hiring market and (b) direct effects of gender bias in the publication market.
Estimates of this model reveal a U-shaped relationship between gender gaps in

publications and the share of female scientists. The U-shaped relationship appears across
different time periods and scientific disciplines and is robust to estimating the model
with different sets of fixed effects, which control for persistent differences across cohorts,
countries, disciplines, and even universities or departments. The estimated U-shaped
pattern (which we call, in short, gender U) suggests that gender gaps in hiring and gender
gaps in publishing are inherently linked: as the share of women in science increased, the
relative selection, as well as publishing opportunities, of men and women may have evolved
systematically. A plausible interpretation for the downward-sloping part of the gender U
is that the most talented women entered academia first (selection effect). With very few
women in the profession, only Marie Curie and similarly brilliant women were hired (the
“Marie Curie periods”).4 With increasing shares of women in the profession, gender gaps
in publications became more negative. The upward-sloping part of the gender U may arise
because higher shares of women in academia were accompanied by improved publishing
opportunities for women (empowerment effect).

In the third part of the paper, we explore whether papers published by women
received fewer citations. We propose a novel machine learning approach to investigate
whether potential citation gaps stemmed from gender differences in research topics. We
estimate a regularized regression using the words in paper titles to predict the expected
number of citations for each paper. We use two approaches to predict citations. For the
first approach, the training sample consists of all papers in our data. For the second
approach, the training sample solely consists of papers published by men, predicting the
actual citations of each paper as if it had been published by men. A model trained on all
papers may give a better prediction of the actual citations. In contrast, a model solely
trained on papers by men would alleviate the concern that, for any given paper title,
citations of women may be downward biased because of discrimination.

Before WWI, papers by female authors received around 0.2 s.d. fewer citations
than those by male authors. In the interwar and post-war periods, this gap reduced to
around 0.1 to 0.15 s.d. By 2000, the gender gap in citations declined to about 0.05 s.d. The
estimated gender gaps in citations are very similar if we control for the predicted citations
and other characteristics of the paper. This indicates that gender gaps in citations do not
stem from gender differences in the number of coauthors, the journals in which women
publish, and most importantly, the topics that women work on. Instead, papers by women
received fewer citations because of biases in citing behavior.

In the fourth part of the paper, we investigate how women advanced in their aca-
demic careers by studying gender gaps in promotions. We find that women were around
10-20 percentage points less likely to be promoted to full professor until the late 1960s.

4Rossiter (1982), p. 130, describes that in the early part of the 20th century, female scientists “had
to be not only better than the men [...] but, preferably, ’Madame Curies’ [to deserve a place in science].”
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By the year 2000, the gender gap in promotions in the sciences persisted but had closed
to about 7 percentage points. Notably, gender gaps in promotions are very similar if we
compare men and women who entered the data in the same university and cohort (e.g.,
Berkeley in 1900) or even the same department and cohort. This suggests that gender
gaps in promotions throughout the 20th century were not attributable to women starting
their careers in universities or departments with worse career prospects.

A potential explanation for women’s lower promotion prospects could be the gender
gaps in publishing and citations that we uncover in parts two and three of the paper.
When we control for each scientist’s publication and citation record, we estimate very
similar gender gaps in promotions. This suggests that the gender gap in promotions was
driven by other biases. Strikingly, this unexplained gender gap in promotions is larger
than the effect of a three s.d. worse publication record.

In summary, we show the existence of substantial gender gaps in hiring, publica-
tions, citations, and promotions over the 20th century. We find that all four gender
gaps have declined over the course of the 20th century, especially between 1969 and 2000.
However, gaps remain substantial in all domains. Our analysis also indicates substantial
heterogeneity in gender gaps across countries and disciplines. We also show that gender
gaps in different domains are interconnected and uncover a U-shaped relationship be-
tween the gender gaps in publishing and hiring. The documented barriers that excluded
women from participating may have resulted in “lost Marie Curies,” depriving the aca-
demic community of valuable ideas and potential breakthroughs.5 In a world where ideas
play an ever-increasing role, this may have slowed down scientific progress and ultimately
economic growth (e.g., Romer 1986; Romer 1990; Jones 1995).

The paper contributes to a growing literature on gender gaps in science and inno-
vation. In economics, female-authored papers receive more citations than male-authored
papers, suggesting that women need to overcome higher hurdles to publish (Card et al.
2022); women were less likely to be nominated as Fellows of the Econometric Society,
the National Academy of Science, and of the AAAS until the late 1970s, but more likely
to be nominated since the mid-2000s (Card et al. 2023); women receive less credit for
group work (Sarsons 2017b; Sarsons et al. 2021); references to female-authored papers in
economics are more likely to be omitted (Koffi 2021); and female-authored papers have
higher readability scores (Hengel 2020). Investigating subjects other than economics, the
literature has also documented that female research team members are less likely to be
credited with authorship (Ross et al. 2022); that women had lower productivity while hav-
ing young children during the first half of the 20th century (Moser and Kim 2021); that
women are more likely to perform tasks with low promotability (Babcock et al. 2017);
that a higher share of women in evaluation committees lowers promotion prospects of
women (Bagues et al. 2017); that physicians become more pessimistic about female sur-

5Bell et al. (2019) show that there are many “lost Einsteins” because not all children are exposed to
patenting by either parents, co-workers of parents, or neighbors.

5



geons’ ability after a patient’s death (Sarsons 2017a); and that a higher share of female
undergraduates shifts the research topics of professors (Truffa and Wong 2022). We con-
tribute to this work by providing a comprehensive analysis of gender gaps in academia,
studying four important career outcomes (hiring, publications, citations, and promotions)
over more than 100 countries and throughout the 20th century.

Because we are able to study gender gaps across various domains, we can show that
gender gaps in one domain (hiring, resulting in differential selection of men and women
into academia) have repercussions on observed gaps in another domain (publications).
This relates to recent findings showing that positive selection of women affects observed
gender gaps in wages in a large multinational firm (Ashraf et al. 2022) and in the broader
U.S. economy (e.g., Mulligan and Rubinstein (2008) and Hsieh et al. 2019).

Our work also contributes to the literature that analyzes gender gaps in certain high-
skilled professions, e.g., MBA graduates (Bertrand et al. 2010), executives (e.g., Bertrand
and Hallock 2001; Gayle et al. 2012; Albanesi et al. 2015), lawyers (Azmat and Ferrer
2017), pharmacists (Goldin and Katz 2016), and engineers (Roussille 2021); all in the
United States. Our new database enables us to trace the evolution of gender gaps for
one high-skilled profession at a global scale and over the entirety of the 20th century.
In contrast, most existing papers have analyzed one country and relatively limited time
periods due to a lack of comparable data.6

A nuanced understanding of gender gaps sheds light on the many failures and the
few success stories of promoting female careers in academia. This may ultimately allow to
improve the design of anti-discriminatory policies and help overcome barriers that deprive
academia, and society, of some of the best minds and ideas.

1 A New Database of University Academics
At the heart of this paper is the largest database of university academics ever assembled.
We hand-collect faculty rosters from the historical publication “Minerva Jahrbuch der
Gelehrten Welt” (Minerva) and modern university websites. We combine these data with
detailed publication and citation records from Clarivate Web of Science and Microsoft
Academic Graph. Throughout the paper, we present results for three samples:

• Sample 1: all universities, all disciplines, 1900-1969

• Sample 2: all universities, sciences (mathematics, physics, chemistry, biochemistry,
and biology), 1900-1969, with publication and citation data

• Sample 3: prestigious universities, sciences (mathematics, physics, chemistry, bio-
chemistry, and biology), 1900-2000, with publication and citation data

6In addition, an extensive literature has studied gender gaps in hiring and wages in the general
workforce (see Altonji and Blank 1999, Bertrand 2011, Blau and Kahn 2017, and Bertrand and Duflo
2017 for surveys). Most of this earlier work has studied individual countries and limited time periods. A
notable exception regarding the time period is Goldin’s seminal research on gender gaps in wages and
employment in the United States from the late 19th century until today (e.g., Goldin 1989; Goldin 1990.)
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Sample 1 allows us to study gender gaps in hiring and promotions in all disciplines and
universities worldwide. Sample 2 which focuses on the sciences, additionally allows us to
study gender gaps in publications and citations because, already by 1900, the sciences had
developed a culture of publishing and citing research that was consistent across countries
and similar to today’s standards. Lastly, sample 3 extends the analysis until 2000 for the
prestigious universities. Access for women to these prestigious institutions is of particular
importance because a large share of scientific discoveries are made in these institutions.

1.1 Hand-collection of Faculty Rosters 1900-2000
Historical Faculty Rosters for the Years 1900-1969
For the period 1900 to 1969, we digitize faculty rosters from Minerva. In a time before
the Internet, Minerva was the most important worldwide directory of academics. The
publishers of Minerva contacted ministries of education, university administrators, and
academics to ensure almost comprehensive coverage.7 Minerva was published in volumes
containing cross-sections of academics. We digitize six volumes that cover the years 1900,
1914, 1925, 1938, 1952/56, and 1966/1969 (see Figure 1 for a sample page).8 For the
remainder of the paper, we refer to these years as cohorts. For the digitization, we scan
all pages of the relevant volumes and process them using optical character recognition
(OCR) software. In the next step, we extract all relevant information from the largely
unstructured OCR output and hand-check each entry to remove spelling errors in names.

Minerva lists academics from all disciplines and thousands of universities in more
than 100 countries. The data include traditional universities such as Harvard or the
University of Tokyo, technical universities such as MIT or École Polytechnique, mining
universities such as Freiberg Mining Academy, and theological universities such as Pontif-
icia Università Gregoriana in Rome. Virtually all Ph.D. granting institutions are included
in the data. For example, the data contain academics in 1,540 universities in the United
States, 309 universities in the United Kingdom, 281 in Germany, and 351 in France (Ap-
pendix Table A.3 reports the number of universities for all countries).

7An article in Nature compared Minerva to the French Annuaire Général des Universités and noted that
“[i]n scope...this annual is akin to the well-known ’Minerva...’. It is, however, very much less exhaustive”
(Nature 1930). To the best of our knowledge, there are no comparable data covering academics on a
worldwide scale over many decades. We benchmark Minerva in two ways. First, we show that the
number of universities that are covered in Minerva is similar to the universities included in the World
Higher Education Database (WHED (2024), see Appendix Table A.3). As the WHED does not include
microdata on individual academics, we perform additional benchmarking exercises on smaller datasets
that cover individual academics in some universities and time periods. The benchmarking exercises
suggest that Minerva indeed covered a large fraction of the world’s academics (Appendix A.6.).

8As the number of academics increased dramatically over time, Minerva published the last two cohorts
in two installments. We refer to these cohorts using the later year, e.g., 1956 for the 1952/56 publication.
The cohorts were chosen based on data availability and to follow important historical events that affected
universities during the 20th century: 1900: start of Web of Science data, 1914: cohort before WWI,
1925: cohort at the end of the boycott against academics from Central powers (Iaria et al., 2018), 1938:
cohort before WWII, 1956: first post-WWII cohort compiled by Minerva, 1969: last cohort compiled by
Minerva, 2000: first year with wide-spread coverage of academics on department websites.
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Minerva lists the name of the university, followed by faculty rosters. For most uni-
versities, the data list assistant, associate, and full professors, but also honorary professors,
and in some cases research positions and teaching positions.9 The faculty rosters usually
report the name of each academic as well as a finely-grained specialization. Overall, the
faculty rosters from Minerva contain around half a million person-cohort observations
(Table 1, sample 1) in 7,477 universities in more than 130 countries. Appendix Figure
A.2 shows the global distribution of academics across cities.10

Modern Faculty Rosters For The Year 2000
For the year 2000, we digitize faculty rosters from archived university websites from the
Internet Archive Wayback Machine. We focus on five disciplines: mathematics, physics,
chemistry, biochemistry, and biology, and collect faculty rosters for 249 prestigious uni-
versities in 34 countries. These universities reported faculty rosters in all six historical
Minerva cohorts or are ranked in the top 100 places of the Shanghai ranking in 2020.11

Between 1900 and 1969, approximately 51% of all scientists who published 68% of papers
in the five disciplines were affiliated with these 249 institutions. Thus, these prestigious
universities represent a significant portion of worldwide scientific activity.

Enhancements of Faculty Roster Data
We make a large number of manual enhancements to the faculty rosters (see Appendix
A.1.). First, we manually recode thousands of university ranks (e.g., “professor,” “chargé
de cours,” or “incaricato”) into ten comparable categories (e.g., assistant professor, full
professor, emerita/us, or teaching position; see Appendix A.1.1.). Second, we manually
recode over 100,000 specializations (e.g., “quantum theory” or “physique des particules
élémentaires”) into 36 disciplines (e.g., physics; see Appendix A.1.2.). Third, if academics
hold multiple positions in the same city or university (e.g., a double appointment in two
departments), we combine the information into a single observation (see Appendix A.1.3.).
Fourth, we link academics across cohorts using a cascading procedure (see Appendix
A.1.4.). Fifth, for academics listed only with their surname and initials (instead of the
complete first name), we conduct a manual web search to find their complete first name
(see Appendix A.1.5.).12 Sixth, we construct consistent university identifiers by linking
universities across cohorts and tracking mergers and splits over the 20th century.

9For some lesser-known universities, especially in India, the source only reports the number of pro-
fessors without listing their names. Furthermore, for some universities, the source lists the names of
professors but only reports the number of teaching positions (e.g., “10 lecturers”) without listing names.
Across all cohorts, the source list 498,525 faculty members with names (Table 1) and 108,398 additional
faculty members (e.g., the 10 lecturers) without names.

10Compared to existing research in economics, our data contain more academics in a larger number of
universities. For example, the notable data collection effort by De la Croix et al. (2023) contains 47,897
academics in 198 universities covering the period 1000 to 1800.

11The sample contains 69 universities in the United States, 31 in Germany, 24 in the United Kingdom,
22 in Italy, 21 in France, 9 in Switzerland, 7 in Australia, Austria, and Canada, 5 in Belgium and the
Netherlands, 4 in Denmark and Sweden, 3 in Japan and Ireland, 2 in Argentina, Finland, Hungary, New
Zealand, Portugal, and Spain, and 1 in Bulgaria, Chile, Croatia, Czech Republic, Greece, India, Israel,
Norway, Pakistan, Peru, Poland, Romania, Russia, Serbia, Singapore, and Uruguay.

12All results remain unchanged without this step.
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Table 1: Summary Statistics

All
All Gender

Academics Coded Female Male

Sample 1: All Universities, all disciplines, 1900-1969
Number of academic - cohort observations 498,525 411,302 35,441 375,861
Number of universities 7,477 5,503 2,399 5,136
Number of departments 37,083 30,677 8,723 29,117

Female % 8.62 100.00 0.00

Sample 2: All Universities, sciences, 1900-1969
Number of academic - cohort observations 67,618 3,714 63,904
Number of universities 2,119 880 2,050
Number of departments 6,429 1,648 6,156

Female % 5.49 100.00 0.00
Publications 4.01 1.65 4.15

Sample 3: Prestigious Universities, sciences, 1900-2000
Number of academic - cohort observations 88,537 11,378 77,159
Number of universities 249 248 249
Number of departments 1,202 1,009 1,200

Female % 12.85 100.00 0.00
Publications 9.84 6.37 10.35

Notes: The Table shows summary statistics at the academic-cohort level. Sample 1 includes academics in all universities and disciplines from
1900 until 1969. Sample 2 includes academics in all universities in mathematics, physics, chemistry, biochemistry, and biology from 1900 until
1969. Sample 3 includes academics in prestigious universities in mathematics, physics, chemistry, biochemistry, and biology from 1900 until
2000. The data were collected by the authors from various volumes of Minerva, university websites, Clarivate Web of Science, and Microsoft
Academic Graph see section 1 for details.

Identifying the Gender of Academics
We develop a five-step procedure to identify the gender of academics on a global scale.
First, whenever available, we use the information on gender from the faculty rosters in
Minerva (e.g., names preceded by Mlle., Lady, Lord, Cardinal) or from the department
websites (pictures and personal pronouns in research descriptions). In all further steps,
we rely on first names to identify the gender of academics.

In the second step, we process more than 100,000 ‘first name’-country pairs with
gender-api.com,13 which assigns a gender probability to ‘first name’-country pairs.

In the third step, two research assistants (one male and one female) independently
classify ‘first name’-country pairs that gender-api.com classified as less than 100% male.
The research assistants are instructed to only classify cases for which they can assign
gender with certainty. If the two assistants’ classifications coincide, the procedure ends.

In the fourth step, we process the remaining cases that gender-api.com classified as
less than 100% male by searching the ‘first name’-country pairs using a Google image
search. A research assistant then classifies each ‘first name’-country pair as male or
female depending on whether the image search returns more male or female individuals.

13Gender-api.com differentiates the gender of first names at the country level (e.g., Andrea is a male
name in Italy but a female name in many other countries). At the time of writing, Gender-api.com was
the best-performing name-to-gender inference service (Santamaría and Mihaljević 2018).
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E.g., gender-api and the research assistants could not identify the gender of “Hadmar”
in Austria. We thus performed a Google search for “Hadmar Austria” and analyzed the
resulting images. In this example, the images depicting individuals showed only men (see
Appendix Figure A.1). We, therefore, code Austrian scientists called “Hadmar” as male.

In the fifth step, we hand-check individual academics who appear misclassified with
a Google search (see Appendix A.2.2.). Misclassifications mostly occur because the pre-
dominant gender of some names changed over time. E.g., the French name “Camille” can
be both male and female. In the early cohorts, most academics called “Camille” are males,
while in later cohorts some are females.14 While the manual steps significantly increase
data quality, none of the results change without steps 3-5. All results in the paper use
the sample of academics for whom we determine gender (see Table 1). Overall, we assign
gender to 83.9 percent of the academics. The vast majority of the academics that cannot
be assigned to a gender are in universities that only report academics with initials.

Examples of Academics in the Database
Figure 1 shows three exemplary academics for each cohort. The selection showcases some
of the data’s country, discipline, cohort, and gender dimensions. However, it does not
do justice to the tens of thousands of academics who have contributed to the progress
of knowledge. For 1900, the data include the economist Alfred Marshall (University of
Cambridge), the physicist and Nobel laureate Max Planck (University of Berlin), and the
sociologist Max Weber (University of Heidelberg).

Examples for 1914 are John Maynard Keynes (University of Cambridge), Albert
Einstein (ETH Zürich), and arguably the most famous woman in our data, Marie Curie
(Université de Paris). Together with her husband, she conducted pioneering research on
radioactivity and was the first woman to win the physics Nobel Prize in 1903. Despite
this, she was not awarded a professorship at the Sorbonne. Only after her husband had
tragically died, she finally became the first female full professor at the Sorbonne, five
years after winning her first Nobel Prize, and two years before she won her second for her
contributions to chemistry (McGrayne 1998).15

In 1925, the data list the physics Nobel laureate Niels Bohr (University of Copen-
hagen), the founder of psychoanalysis Siegmund Freud (University of Vienna), and Lise
Meitner (University of Berlin). Meitner was the second woman to earn a physics PhD
at the University of Vienna. During her Post-Doc at the University of Berlin, she was
unpaid and had to run her experiments in a converted carpenter’s shop in the cellar be-
cause — as a woman — she was barred from entering the main laboratory. Together with
Otto Hahn she discovered nuclear fission. The Nobel laureate Wolfgang Pauli commented

14The Google search in this step does not only use a ‘first name’-country pair but an actual academic
with surname, first name, and discipline or university.

15Strikingly, Curie is listed in Minerva as Mme P[ierre] Curie at a time when she had won two Nobel
Prizes (Figure 1). Throughout her career, she faced obstacles because of her gender. In 1911, her
nomination to the Academy of Sciences was met with resistance, epitomized by physicist Émile Amagat’s
argument “Women cannot be part of the Institute of France.” Despite the efforts of some of France’s
greatest scientists, she narrowly lost the membership election to a male competitor (Curie 1938, pp. 277).
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Figure 1: Examples of Academics in Database

1900

1914

1925

1938

1956

1969

2000

M. Weber
Heidelberg

J.M. Keynes
Cambridge

S. Freud
Vienna

J. von
Neumann
Princeton

L. Mies van
der Rohe
Illinois 

J. Rawls
Havard

M. Goeppert
Mayer
San Diego

J. D. Watson
Harvard

P. Samuelson
MIT

G. Cori
Washington

I. Joliot-Curie
Paris

K. Popper
Canterbury

N. Bohr
Copenhagen

L. Meitner
Berlin

M. Curie
Paris

A. Einstein
Zurich

A. Marshall
Cambridge

M. Planck
Berlin

J. Doudna 
Berkeley

F. H. Arnold
Caltech

T. Tao
UCLA

Notes: The Figure shows three examples of notable academics for each of the seven cohorts of academics.

that “Hahn and Meitner were great friends, but when they talked, she was superior.” In
1945, the Nobel Prize was awarded to Hahn alone, neglecting Meitner’s role, a decision
contemporaries called a “stupidity of the Swedish Academy.” (Kricheldorf 2014, p. 219).

Examples for 1938 are the mathematician John von Neumann (IAS Princeton), the
philosopher Karl Popper (University College Canterbury, NZ), and Irène Joliot-Curie.
She was only the second woman to win a Nobel Prize in chemistry, more than 20 years
after her mother. After winning the Nobel Prize, her fellow Nobel laureate and husband
Frédéric Joliot-Curie was admitted to the French Academy of Sciences, while she was
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rejected every time she applied (McGrayne 1998, p. 140).
Examples for 1956 are Ludwig Mies van der Rohe (Illinois Institute of Technol-

ogy), one of the pioneers of modernist architecture, the economist Paul Samuelson (MIT),
and Gerty Cori (Washington University). Cori was the first woman to win the physiol-
ogy/medicine Nobel Prize in 1947 (and the third woman to win a science Nobel Prize).
Despite her talent, Cornell, Toronto, and Rochester refused to hire her while offering
professorships to her husband and fellow Nobel laureate Carl Cori. In 1931, Washington
University made them a joint offer, but Gerty was hired as a research associate while Carl
was hired as a full professor (Shepley 2008, McGrayne 1998, pp. 102).

The 1969 cohort includes the philosopher John Rawls (Harvard), the biologist and
discoverer of the double helix structure of the DNA James Watson (Harvard), and the
theoretical physicist Maria Goeppert Mayer (UC San Diego), who proposed the nuclear
shell model of the atomic nucleus. “[S]he worked for thirty years … for three American
universities … as an unpaid volunteer” (McGrayne 1998, p. 175). Johns Hopkins and
Columbia refused to hire her because of nepotism restrictions (her husband was a chemist).
Only in 1960, at the age of 54, and ten years after completing her most important research,
she was appointed full professor at UC San Diego (Wigner 1972). In 1963, she became the
second woman to win the physics Nobel Prize, 60 years after Marie Curie. The 2000 cohort
includes the chemistry Nobel laureate Frances H. Arnold (Caltech) and the biochemist
Jennifer Doudna (Yale), who co-discovered a method of gene editing using CRISPR/Cas9.
Together with Emmanuelle Charpentier, she was awarded the Nobel Prize in 2020 — the
first all-female winners of the chemistry Nobel Prize. Another example from the 2000
cohort is the mathematician Terence Tao (UCLA), who won the Fields Medal in 2006.

1.2 Publication and Citation Data
To study gender gaps in publications and citations, we augment the faculty rosters with
publication and citation data from Clarivate Web of Science. For any result based on
publications and citations, we focus on five academic disciplines: mathematics, physics,
chemistry, biochemistry, and biology. There are three reasons for this. First, these disci-
plines have particularly good coverage in the Web of Science. Second, they had already
established the culture of publishing in scientific journals by 1900, and the publishing pro-
cess was similar to today’s. Third, the publishing process was international (Iaria et al.
2018). For the years of our study, the Web of Science contains papers in 14,191 journals
in these disciplines. Naturally, the coverage of the Web of Science is not uniform across
countries, disciplines, and over time. This does not affect our estimates as we control for
cohort-discipline-country (or finer) fixed effects in all regressions.

We match academics with their publications using a cascading algorithm (see Ap-
pendix A.4.). The matches are based on the academic’s surname, first name or initials
(depending on whether first names are available), country, city, and discipline.16 To har-

16For many papers, the Web of Science only reports the initials of authors. In addition, for some papers
the Web of Science does not report affiliations, even though the original paper actually lists an affiliation.
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monize affiliations across the faculty rosters and the Web of Science, we rely on Google
Maps API (see Appendix A.3.2.) to extract cities and countries for each of the hundreds
of thousands of unstructured affiliations. E.g., we extract the city “Cambridge” and the
country “UK” from the affiliation “Cavendish Lab., Cambridge University, UK.”

The matching always relies on the primary discipline of an academic (e.g., biology)
to reduce false positives. As the Web of Science assigns disciplines (e.g., biology or general
science) only at the journal level, we develop a machine learning classifier to designate
disciplines to individual papers (see Appendix A.3.3.). The classifier, an L2-regularized
multinomial logit model, predicts a discipline for each paper based on the unigrams,
bigrams, and trigrams from the titles of the 59% papers published in journals assigned to
only one discipline (e.g., Acta Mathematica which is uniquely assigned to mathematics).

We consider publications in a ± five-year window around the year of the correspond-
ing cohort. E.g., for scientists in the 2000 cohort, we match papers published between
1995 and 2005.17 In the rare cases that two or more scientists have identical names and
work in the same discipline, we assign the paper proportionally to each scientist.18

2 Gender Gaps in Hiring
Hiring of Women Over Time
In the first part of the analysis, we present the first-ever global evidence on the long-
run evolution of gender gaps in hiring of universities. We show results for the following
samples: sample 1: all universities, all disciplines, 1900-1969; sample 2: all universities,
sciences (mathematics, physics, chemistry, biochemistry, biology) 1900-1969; and sample
3: prestigious universities, sciences, 1900-2000. We report the absolute number of male
and female academics (left-hand panels of Figure 2), as well as female shares among all
academics and among full professors (right-hand panels).

Across all countries and disciplines (sample 1), our newly collected data show that
in 1900 only 227 women had been hired, a share of about 1% (Figure 2, panel a). In the
following decades, the share of women increased, in particular between 1925 and 1938,
i.e., before WWII. By 1969, a total of 17,204 women worked across all universities and
disciplines, a share of about 11% — still nowhere close to equal representation.

We also explore changes in female shares among full professors. All over the world,
full professor is the highest academic rank, which guarantees unique privileges and par-

In some of these cases, Microsoft Academic Graph (MAG) contains the relevant affiliation. We, therefore,
enrich the affiliation information with data from MAG (see Appendix A.3.2.).

17We use a ± five-year window because scientists do not necessarily publish every year. Concerns that
the matches of female academics may be affected by surname changes from marriage are mitigated by
various factors. First, the faculty rosters list academics who are at least assistant professors. Hence, most
married women were already married when appearing on the rosters. Second, marriage rates for female
academics in the early part of the 20th century were low, e.g., 18% in 1921 and 26% in 1938 for scientists
in the United States (Rossiter 1982, p. 140). Furthermore, estimated gender gaps remain unchanged if
we match publications in a ± three-year window, which reduces the probability of name changes.

18Results are robust in a sample of scientists who were unique in terms of last name, first initial, and
discipline in any university of the world (Table 3).
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Figure 2: Absolute and Relative Number of Female Academics over Time

(a) Sample 1: All universities, all disciplines, 1900-1969
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(b) Sample 2: All universities, sciences, 1900-1969
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(c) Sample 3: Prestigious universities, sciences, 1900-2000
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Notes: The Figure shows the absolute and relative number of female academics over time. Panel (a) shows the absolute number of male
and female academics (left sub-panel) and female shares (right sub-panel) in all universities and disciplines until 1969. Panel (b) shows
the absolute number of male and female scientists (left sub-panel) and female shares (right sub-panel) in all universities in the sciences
(mathematics, physics, chemistry, biochemistry, and biology) until 1969. Panel (c) shows the absolute number of male and female scientists
(left sub-panel) and female shares (right sub-panel) in prestigious universities in the sciences until 2000. The data were collected by the authors
from various volumes of Minerva and department websites, see section 1 for details.

ticularly high job security and salaries. In addition, full professor is the most comparable
academic rank across different university systems. In 1900, only 114 women worked as
full professors across all universities, representing about 1%. In the following decades, the
share of women among full professors increased, and by 1969 reached about 8%.
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The slower increase in the share of women among full professors compared to all
academics may indicate that women were less likely to be promoted, but may also reflect
compositional changes. For example, if a higher share of women was hired in later cohorts,
it could take time for these women to rise through the ranks. We systematically explore
gender gaps in promotions to full professor in section 5.

In the sciences (mathematics, physics, chemistry, biochemistry, and biology), female
shares were substantially lower than for all disciplines. Across all universities, the share
increased from about 1.1% to about 6.6% between 1900 and 1969 (Figure 2, panel b).
In prestigious universities, female shares in the sciences were even lower until 1969. This
suggests that women faced particularly large hurdles to obtain positions in prestigious uni-
versities. Between 1969 and 2000, female shares in the sciences in prestigious universities
increased substantially: from about 4.4% to about 18.7% and from 3.3% to 8.8% among
full professors (Figure 2, panel c). Despite this large increase, women were still heavily
underrepresented in prestigious universities in 2000, especially among full professors.

In general, these patterns show substantial gender gaps in hiring throughout the 20th
century. These gaps arose because women faced barriers throughout their upbringing and
their educational careers. Parents may have treated young boys differently from young
girls, and young girls may have been sent to schools with less academic-oriented curricula.
In the first half of the 20th century, women faced substantial barriers to enrolling in
universities, and even more so in PhD programs (Rossiter, 1982). Barriers may also stem
from gender differences in exposure to academic role models (Bell et al., 2019). Finally,
women may have faced discrimination when applying for faculty positions. Disentangling
the importance of each of these channels is important to address hiring gaps. However,
data on each of these channels covering 151 countries over the entire 20th century are
currently unavailable. This makes the task of disentangling these channels beyond the
scope of any one paper, but will hopefully be undertaken in future research.

Hiring Gaps Across Countries
The aggregate statistics hide significant heterogeneity between geographical regions. Until
1925, North America had much higher female shares than other regions. By 1938, the
female share in the few African universities had caught up. Asia and South America had
very low female shares until WWII, but then increased to the level of North America and
Africa. Europe and Oceania had very low female shares until 1969. The variation in female
shares at the country level was even higher, which we document by showing a selected set
of countries that employed the largest number of academics throughout the 20th century.
Before WWI, universities in the United States and, to a lesser extent, the United Kingdom,
hired more women than any other country in the world. In the sample of all universities
and disciplines (sample 1), the dominant role of the United States persisted until 1969
(Figure 3, panel a).19 In the sciences (sample 2), universities in the United States and the

19The early U.S. lead is partly explained by women’s colleges hiring more women. However, by 1938,
other U.S. universities were also hiring a higher share of women than universities in other countries
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United Kingdom hired a higher share of women than other countries until WWII. They
were then overtaken by France (Figure 3, panel b). In prestigious universities (sample 3),
only US universities had hired any woman by 1900 while in the other seven countries no
prestigious university had hired a single woman. By 1914, prestigious universities in the
United Kingdom had hired a similar share of women as the United States. The early lead
of the United States and the United Kingdom lasted until 1938, when other countries
started overtaking the Anglo-Saxon countries (Figure 3, panel c).

Sweden, and to a lesser extent Germany, had very low female shares until 1969 but
increased their shares substantially in the three decades until 2000.20 Italy and France
had low shares before WWI, were ranked in the middle until 1969, but then increased
their shares substantially in the three decades until 2000.21 Japan is a clear outlier: female
shares in prestigious universities were very low during the first decades of the 20th century
but, unlike the other advanced countries, female share only increased slightly until 2000.

There are no comparable data that document gender gaps in hiring at the global
level for the entire 20th century, neither for specific occupations nor for the entire labor
force. However, we correlate gender gaps in academic hiring to female labor force partic-
ipation for selected countries and periods (Appendix Figure B.2). We find no systematic
relationship with trends in female employment in the general population. This suggests
that the careers of women in academia evolved differently from lower-skilled professions.

Hiring Gaps Across Selected Universities
Our detailed data also allow us to explore university-level variation in hiring gaps. It goes
without saying that the presentation of a few university-level figures cannot do justice
to the many excellent universities around the world (too many to be plotted in a figure).
To select universities for this exercise, we rely on the well-known Shanghai Ranking of
universities (Shanghai Ranking 2020). We choose the highest-ranked universities in each
country and report the average female shares from 1900 to 2000.22

We report data on universities from various countries: ten universities from the
United States; five each from Germany and the United Kingdom, three each from Canada,
Japan, and Switzerland; two from France and Italy; and one from Argentina, Australia,
Austria, Belgium, Denmark, Finland, Ireland, the Netherlands, Norway, and Sweden. The
figure shows large differences in female shares across universities. Even within countries,
university-level female shares vary widely. E.g., over the 20th century, Columbia hired,
on average, around 8% of women in the sciences, while Princeton only hired around 2%.
(Appendix Figure B.1).

20Austria and Finland show a similar development, as shown in Appendix Figure B.1.
21Other Latin countries had a similar development. Female shares in 2000 were 51% in Argentina, 37%

in Spain, and 28% in Portugal (Appendix Figure B.1).
22The Shanghai Ranking ranks universities as of 2020. In many countries, e.g., the United States, the

ranking has remained stable since 1900. In other countries, the ranking has changed substantially. To
accurately reflect the most important institutions during the 20th century, we deviate from the Shanghai
Ranking for two countries. For Germany, we show the University of Berlin (Humboldt), the premier insti-
tution until WWII, rather than the University of Bonn. In France, several reorganizations of universities
occurred during the 20th century. We thus show the Université de Paris and the Université de Grenoble.
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Figure 3: Percent of Female Academics by Country over Time

(a) Sample 1: All unis, all disciplines,
1900-1969
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(b) Sample 1: All unis, all disciplines,
1900-1969
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(c) Sample 2: All unis, sciences, 1900-
1969
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(d) Sample 3: Prestigious unis, sci-
ences, 1900-2000
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Notes: The Figure shows the percentage of female academics by continent and country and over time. Panel (a) shows female shares by
continent in all universities and disciplines until 1969. Panel (b) shows female shares by country in all universities and disciplines until 1969.
Panel (c) shows female shares by country in all universities in the sciences (mathematics, physics, chemistry, biochemistry, and biology) until
1969. Panel (d) shows female shares by country in prestigious universities in the sciences until 2000. The data were collected by the authors
from various volumes of Minerva and department websites, see section 1 for details.

Figure 4: Percent of Female Scientists by University 1900-2000
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Notes: The Figure shows the percentage of female scientists (mathematics, physics, chemistry, biochemistry, and biology) by university.
Universities were selected from sample 3 as explained in the text. We calculate percentages of female academics at the cohort and university-
level, e.g., MIT in 2000, and then average the percentages over the seven cohorts (so that each cohort receives the same weight, independently
of the number of academics in that cohort). The data were collected by the authors from various volumes of Minerva and department websites,
see section 1 for details.

Hiring Gaps Across Disciplines
Our data also enable us to document differences in hiring gaps across disciplines. At the
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aggregate level of disciplines, female shares increased from 1-2% in 1900 to around 15%
in 1969 in humanities and social sciences. In STEM disciplines, female shares were much
lower and increased from about 1% in 1900 to only 5% in 1969 (Figure 5, panel a).

At a disaggregate level of disciplines, female shares varied substantially. In the first
decades of the 20th century, most disciplines had very low (below 5%) female shares.
For most disciplines, female shares remained below 10% until 1969, with particularly
low shares in law, physics, and philosophy. However, some disciplines had higher female
shares, which increased to about 25% by 1969 in pedagogy and 20% in languages (Figure
5, panel b). Appendix Figure B.3 shows additional disciplines.

Figure 5: Percent of Female Academics by Discipline over Time

(a) Sample 1: All universities, all dis-
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(b) Sample 1: All universities, all dis-
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Notes: The Figure shows the percentage of female academics by discipline. Panel (a) shows female shares for all disciplines (aggregated at the
level of Humanities, Social Sciences, and STEM) in all universities until 1969. Panel (b) shows female shares in nine exemplary disciplines
in all universities until 1969. Appendix Figure Figure B.3 shows the remaining disciplines. Panel (c) shows female shares in the sciences
(mathematics, physics, chemistry, biochemistry, and biology) in all universities until 1969. Panel (d) shows female shares in the sciences in
prestigious universities until 2000. The data were collected by the authors from various volumes of Minerva and department websites, see
section 1 for details.

In the science sample (mathematics, physics, chemistry, biochemistry, and biology), female
shares were lower than in many other disciplines but varied substantially across disciplines
(Figure 5, panel c). In the sample of prestigious universities, female shares were even lower
until 1969. In the last three decades of the 20th century, they increased substantially and
by 2000 reached around 12% in physics, 15% in mathematics, 19% in chemistry, 26% in
biochemistry, and 27% in biology (Figure 5, panel d).

18



3 Gender Gaps in Publications
In this section, we explore gender gaps in publications. One of the unique advantages of
studying academics is that we observe individual-level output measures that are compara-
ble across time and space. In contrast, comparable measures are usually not available in
other occupations. Publications are key performance metrics that are used to evaluate po-
tential hires, allocate research funds, and rank academics. As previously discussed, we do
not interpret publications as the true ability of academics. They reflect gender differences
in output that could stem from differences in preferences, discrimination in the peer-review
process or in the workplace (e.g., because women had worse access to high-quality labs),
and other gender imbalances (e.g., differences in childcare contributions).

3.1 Individual-Level Publication Gaps
To estimate gender gaps in publications, we focus on academics working in the five sci-
entific disciplines for which we have detailed publication data. For each scientist i, we
observe the cohort t(i) (e.g., 2000), the discipline d(i) (e.g., biology), and the university
u(i) (e.g., Harvard). The university u(i) determines i’s country c(i) (e.g., the United
States), while i’s discipline and university (d(i), u(i)) determine i’s department (e.g., bi-
ology at Harvard).23 We estimate “Mincer-type” regressions for sample 2: all universities
1900-1969 and sample 3: prestigious universities 1900-2000:

Pubit = β1 + β2Femalei × 1 [t(i) = 1900/14] + β3Femalei × 1 [t(i) = 1925/38]

+ β4Femalei × 1 [t(i) = 1956/69] + β5Femalei × 1[t(i) = 2000]

+ Experienceitβ6 + FE(i, t) + εit,

(1)

where Pubit measures the number of papers that scientist i from cohort t(i), discipline d(i),
country c(i), and university u(i) published in journals covered by the Web of Science. As
described above, we count papers in a ± five-year window around scientist i’s cohort t(i).
I.e., for scientists that we observe in 2000, we consider papers published between 1995
and 2005. The main explanatory variables are the interactions of the female indicator
Femalei with indicators for four different periods: pre-WW1 (1900 and 1914 cohorts),
interwar (1925 and 1938), post-WW2 (1956 and 1969), and modern (2000). All regressions
control for discipline-specific measures of experience, computed as the number of times a
scientist is observed in the data.24 We estimate each regression three times, controlling

23A small proportion of scientists have more than one affiliation in the same city and cohort, either
in multiple departments of the same university or across universities. E.g., the Russian-Italian chemist
Maria Bakunin, who was part of a group studying the eruption of Mount Vesuvius and became the first
woman to be elected to the National Academy in the physical sciences class (Ciardi and Focaccia 2011),
held appointments at the University and the Technical University of Naples. To avoid double-counting,
we estimate the regressions using only one observation for each scientist and cohort. Results are very
similar if we keep multiple affiliations for each scientist or if we drop scientists with multiple affiliations.

24We include variables that indicate the number of times the scientist has been observed by cohort t.
E.g., a scientist observed in 1956 and in 1969 has two observations. For the first observation in 1956, the
indicator corresponding to observing the scientist for the first time equals 1. For the second observation in
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for increasingly finer fixed effects:

FE(i, t) ≡


αt(i),d(i),c(i) Cohort×Discipline×Country or
αt(i),d(i),c(i) + αt(i),u(i) Cohort×Discipline×Country + Cohort×University or
αt(i),d(i),u(i) Cohort×Discipline×University otherwise.

(2)

In the baseline specification, we control for the three-way interaction αt(i),d(i),c(i) of co-
hort, discipline, and country fixed effects (e.g., a separate fixed effect for mathematics in
the United States in 2000). These fixed effects control for differences in the number of
journals (and their coverage in publication databases) across time, disciplines, and coun-
tries. The fixed effects also account for differences in publications that can be explained
by women entering academia in different cohorts, disciplines, or countries. In additional
specifications, we control for more stringent fixed effects, as described in (2). The most
stringent set of fixed effects control for the three-way interaction αt(i),d(i),u(i) of cohort-
discipline-university fixed effects (e.g., a separate fixed effect for biology at Harvard in
2000). To account for the potential correlation of the residual ϵit, we cluster the standard
errors at the discipline-country level (e.g., biology in the United States).

The 1900 and 1914 cohorts of female scientists published, on average, 1.2 fewer
papers than men in the full sample of all universities. The 1925 and 1938 cohorts of female
scientists published 1.7 fewer papers, and the 1956 and 1969 cohorts published 2.2 fewer
papers (Table 2, sample 2, column 1, significant at the 1% level). These are substantial
gaps compared to the mean of publications, which was around 4. Even comparing women
to men within the same cohort and university (column 2), the publication gaps only shrink
slightly. Note, however, that the university may be endogenous, akin to occupations in
traditional Mincer regressions. Finally, in column 3, we control for cohort-discipline-
university fixed effects. We thus estimate publication gaps for scientists in the same
university, discipline, and cohort (e.g., Harvard biologists in 2000). Even within this
restricted comparison group, we find a similar pattern of gender gaps in publications.

The coverage of journals in the Web of Science and the propensity to publish vary
over time, across countries, and across disciplines. This affects comparisons of publication
gaps because women are not equally distributed. E.g., many women entered the data in
later periods and worked in the United States, i.e., periods and a country with higher
average publications. We therefore show alternative specifications that use standardized
publications as the dependent variable. We standardize the number of publications to have
a mean of 0 and a standard deviation of 1 within each country, cohort, and discipline
(e.g., biology in the United States in 1969). Using this dependent variable, we find a
negative gender gap in publications of around 0.21 s.d. for the 1900 and 1914 cohorts.

1969, the indicator corresponding to observing the scientist for the second time equals 1. The indicators
for observing the scientist a third, fourth, or fifth time are all zero in this example. We include separate
experience indicators for each discipline. Analyses restricted to each scientist’s first observation yield
similar results (Table 3). This suggests that gender gaps in publications do not stem from observing
women at different career stages than men.
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Table 2: Gender Gaps in Individual-Level Publications

(1) (2) (3) (4) (5) (6)

Dependent Variable: Publications Standardized Publications

Sample 2: All Universities 1900-1969
Female (1900/14) -1.169*** -0.600 -1.003** -0.213** -0.143 -0.222**

(0.435) (0.508) (0.503) (0.085) (0.103) (0.100)
Female (1925/38) -1.700*** -1.249*** -1.611*** -0.246*** -0.195*** -0.215***

(0.417) (0.334) (0.411) (0.022) (0.031) (0.040)
Female (1956/69) -2.210*** -1.263*** -1.413*** -0.254*** -0.154*** -0.162***

(0.518) (0.278) (0.284) (0.024) (0.016) (0.014)

Observations 67,618 67,618 67,618 67,618 67,618 67,618
R-squared 0.169 0.251 0.344 0.005 0.129 0.228

Sample 3: Prestigious Universities 1900-2000
Female (1900/14) -1.638*** -1.273** -1.711*** -0.276*** -0.244** -0.323***

(0.595) (0.556) (0.565) (0.105) (0.106) (0.111)
Female (1925/38) -2.635*** -2.070*** -2.448*** -0.347*** -0.266*** -0.293***

(0.627) (0.528) (0.645) (0.045) (0.047) (0.058)
Female (1956/69) -3.589*** -2.766*** -3.005*** -0.406*** -0.326*** -0.330***

(0.750) (0.582) (0.654) (0.045) (0.037) (0.029)
Female (2000) -4.290*** -3.845*** -3.561*** -0.217*** -0.201*** -0.186***

(0.782) (0.669) (0.631) (0.032) (0.029) (0.027)

Observations 88,537 88,537 88,537 88,537 88,537 88,537
R-squared 0.245 0.256 0.279 0.019 0.058 0.113

Experience×Discipline Yes Yes Yes Yes Yes Yes
Cohort×Discipline×Country FE Yes Yes Yes Yes
Cohort×University FE Yes Yes
Cohort×Discipline×University FE Yes Yes

Notes: The Table shows gender gaps in publications. Results are estimated at the scientist-level. Sample 2 includes scientists (mathematics,
physics, chemistry, biochemistry, and biology) in all universities until 1969. Sample 3 includes scientists in prestigious universities until 2000.
In columns 1-3, the dependent variable equals the number of publications in a ± five-year window around a cohort (i.e., 1995-2005 for a
scientist listed in 2000). In columns 4-6, the dependent variable equals publications, standardized at the cohort-discipline-country level. The
main explanatory variable is an indicator that equals 1 if the scientist is a woman, interacted with the relevant cohort(s). The regressions
also control for experience by discipline and different sets of fixed effects (see definition (2) for details). Standard errors are clustered at the
discipline-country level, with 418 clusters in sample 2 and 183 in sample 3. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

The gender gap increased in absolute magnitude for the 1925 and 1938 cohorts and then
slowly declined over the second half of the 20th century (Table 2, sample 2, columns 4-6).

Figure 6: Gender Gaps in Publications over Time
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Notes: The Figure shows gender gaps in standardized publications over time in prestigious universities (sample 3). Estimated
gender gaps are obtained from regression (1), controlling for experience-discipline and cohort-discipline-country fixed effects.

We also show results for the sample of prestigious universities (sample 3). This
sample has two advantages. First, it enables us to extend the analysis until the year 2000.
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Table 3: Individual-Level Publication Gaps (Robustness)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

±Three-Year Window ±Ten-Year Window Unique Matches Full Professors First Cohort
Standard. Standard. Standard. Standard. Standard.

Dependent Publi- Publi- Publi- Publi- Publi- Publi- Publi- Publi- Publi- Publi-
Variable cations cations cations cations cations cations cations cations cations cations

Sample 2: All Universities 1900-1969
Female (1900/14) -0.802** -0.204** -2.703*** -0.253*** -1.163*** -0.206** -1.257*** -0.312*** -0.978** -0.178*

(0.312) (0.081) (0.715) (0.059) (0.441) (0.086) (0.286) (0.031) (0.465) (0.095)
Female (1925/38) -1.089*** -0.225*** -2.913*** -0.251*** -1.719*** -0.247*** -2.020*** -0.295*** -1.689*** -0.253***

(0.263) (0.024) (0.692) (0.025) (0.428) (0.024) (0.583) (0.038) (0.451) (0.025)
Female (1956/69) -1.500*** -0.248*** -2.760*** -0.250*** -2.268*** -0.261*** -2.728*** -0.288*** -2.143*** -0.258***

(0.351) (0.023) (0.630) (0.022) (0.510) (0.024) (0.605) (0.041) (0.457) (0.023)

Observations 67,182 67,182 66,700 66,700 59,960 59,960 35,619 35,619 49,996 49,996
# Clusters (std. errors) 417 417 416 416 412 412 383 383 413 413
R-squared 0.162 0.005 0.176 0.005 0.169 0.008 0.203 0.017 0.171 0.010

Sample 3: Prestigious Universities 1900-2000
Female (1900/14) -1.143*** -0.265*** -3.487*** -0.316*** -1.621*** -0.271** -1.541*** -0.350*** -1.492** -0.235**

(0.398) (0.090) (1.036) (0.075) (0.590) (0.104) (0.402) (0.058) (0.625) (0.116)
Female (1925/38) -1.669*** -0.309*** -4.408*** -0.352*** -2.642*** -0.346*** -2.914*** -0.404*** -2.538*** -0.350***

(0.409) (0.048) (1.013) (0.053) (0.632) (0.047) (0.725) (0.081) (0.675) (0.046)
Female (1956/69) -2.355*** -0.387*** -4.426*** -0.407*** -3.522*** -0.403*** -4.475*** -0.451*** -3.416*** -0.411***

(0.516) (0.045) (0.874) (0.045) (0.756) (0.047) (0.956) (0.056) (0.729) (0.055)
Female (2000) -2.753*** -0.204*** -7.486*** -0.228*** -4.344*** -0.223*** -0.966 -0.103*** -4.314*** -0.217***

(0.501) (0.032) (1.371) (0.033) (0.777) (0.031) (0.771) (0.030) (0.792) (0.032)

Observations 88,280 88,280 88,077 88,077 78,464 78,464 37,139 37,139 75,390 75,390
# Clusters (std. errors) 183 183 183 183 182 182 178 178 183 183
R-squared 0.242 0.017 0.259 0.019 0.239 0.022 0.309 0.039 0.243 0.021

Experience×Discipline Yes Yes Yes Yes Yes Yes Yes Yes
Cohort×Discipline×Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The Table shows gender gaps in publications. Results are estimated at the scientist-level. Sample 2 includes scientists (mathematics,
physics, chemistry, biochemistry, and biology) in all universities until 1969. Sample 3 includes scientists in prestigious universities until 2000.
In odd columns the dependent variable equals the number of publications, while in even columns the dependent variable equals publications
standardized at the cohort-discipline-country level. In columns 1-2, a scientist’s publications are counted in a ± three-year window around a
cohort, while in columns 3-4, a scientist’s publications are counted in a ± ten-year window around a cohort. In columns 5-10, a scientist’s
publications are counted in a ± five-year window. In columns 5-6, we restrict the sample to scientists whose last name - first initial - discipline
- cohort combination is unique. In columns 7-8, we restrict the sample to full professors. In columns 9-10, we restrict the sample to the first
cohort in which a scientist is observed in the data. The main explanatory variable is an indicator that equals 1 if the scientist is a woman,
interacted with the relevant cohort(s). The regressions control for experience and cohort-discipline-country fixed effects (see definition (2) for
details). Standard errors are clustered at the discipline-country level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Second, in this sample we observe nearly all universities in each of the seven cohorts. As
a result, compositional changes in the sample of universities cannot affect the findings.

In this sample, the publication gaps are larger (in absolute terms) than in the un-
restricted sample of universities (Table 2, sample 3). As scientists in these universities
published, on average, more papers (Table 1), the publication gaps are similar in per-
centage terms. In prestigious universities, the gender gaps in publications increased from
around 0.28 s.d. for the 1900 and 1914 cohorts to around 0.41 s.d. for the 1956 and 1969
cohorts and then declined to 0.22 s.d. for the 2000 cohort (see also Figure 6).

Robustness
The estimated gender gaps in publications are robust to alternative ways of linking papers
to academics. First, results are similar if we measure publications over a ± three-year
window around i’s cohort. I.e., for scientists in the 2000 cohort, we consider papers
published between 1997 and 2003. Naturally, the point estimates are lower because the
mean number of publications is lower in a ± three-year window (Table 3, columns 1-2).
Similarly, we show that results are robust if we measure publications over a ± ten-year
window (Table 3, columns 3-4). We also show that publication gaps are very similar in a
sample of scientists with unique surname - first initial - discipline combinations in every
cohort (Table 3, columns 5-6). This suggests that gender differences in publications do
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not stem from gender differences in the frequency of certain surname - first initial pairs.
Publication gaps are also similar in the sample of full professors, the academic rank that
is most comparable across countries (Table 3, columns 7-8). Finally, results are similar
in a sample that only includes each scientist in the first cohort for which the scientist is
observed in the data (Table 3, columns 9-10). The estimated coefficients are very similar if
we control for more stringent fixed effects, as defined in equation (2) (results unreported).

3.2 Linking Gender Gaps in Hiring and Publications
Figure 6 shows a downward and then upward-sloping pattern of gender gaps in publica-
tions over time. In contrast, we show in the first part of the paper that the share of women
increased over the 20th century (Figure 2). Changes in the share of women in academia
may be related to relative changes in the selection and publishing opportunities of men
and women. To explore whether gender gaps in hiring and publishing are systematically
linked, we propose and estimate a model along the lines of Roy (1951).

3.2.1. Model
The model allows for (i) selection on unobservables in the hiring market, (ii) gender bias
in hiring, and (iii) gender bias in the publication market. These factors contribute to the
gender gap in publications through (a) indirect effects of selection and gender bias in the
hiring market, and (b) direct effects of gender bias in the publication market.25

At the hiring stage, denoted by 0, any academic position i can be filled with a
woman W or a man M . Women and men face differential barriers until they are hired
as academics. Such barriers may be institutional, e.g., certain high school tracks, many
undergraduate programs, and most PhD programs did not accept women for a large part
of the 20th century (e.g., Rossiter 1982). Barriers may also stem from gender differences
in exposure to academic role models (e.g., Bell et al. 2019). We refer to any such gender
bias in hiring as ∆0. We express selection in the hiring market in terms of sW0 , the share of
women among all hired scientists. During the expansion of the university sector, the total
number of male and female academics increased dramatically. Furthermore, the share of
women increased over time because relatively more women were hired (Figure 2).

At a later stage, denoted by 1, we observe publication outcomes for all hired sci-
entists. We refer to any gender bias in publications as ∆1. The model allows for the
possibility that selection in hiring affects observed publications, so that the gender gap in
publications may also be a function of ∆0 and not only of ∆1. We first introduce a simple
version of the model with the following assumptions:

25A more general model also incorporating gender gaps in citations (section 4) and promotions (sec-
tion 5) would have to impose too many (and controversial) assumptions to remain tractable. For example,
the effect of selection in publishing on citations is unclear from a modeling perspective. It could be pos-
itive for some women and negative for others. Our results indicate that women published fewer papers
and, hence, some women only published their highest-quality ideas. Other women, instead, may have
been impeded from carrying out high-quality research, e.g., because of a disproportional amount of house-
work, which may have resulted in fewer and lower-quality publications. A model that combines these two
countervailing forces would have to rely on unreasonable assumptions to remain tractable.
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(i) ∆0 is not a function of sW0 ,

(ii) ∆1 is not a function of sW0 .

In Appendix C, we present a more general version of the model that relaxes assumption
(ii) and other parametric assumptions (assumptions (iii)-(iv) below).

Selection in the Hiring Market
Suppose that academic position i can be filled either by a woman W or by a man M . The
latent value of hiring a woman is:

Y W
0i = XW

i β0 + ϵW0i , (3)

while that of hiring a man is:

Y M
0i = XM

i β0 +∆0 + ϵM0i , (4)

where Xg
i , g ∈ {W,M}, are observable characteristics, ∆0 a possible gender bias in hiring,

and ϵg0i the unobserved component of these latent valuations. As a result, academic
position i is filled by a woman if (3) is greater than (4):

Y0i =
(
XW

i −XM
i

)
β0 −∆0 +

(
ϵW0i − ϵM0i

)
= Xiβ0 −∆0 + ϵ0i > 0

(5)

so that, keeping everything else fixed, when ∆0 > 0 women need to overcome the addi-
tional hurdle or gender bias ∆0 to be hired. Assuming that ϵ0i ≡ ϵW0i −ϵM0i is i.i.d. standard
normal (assumption (iv) below), the probability that a woman is hired is:

sW0 (Xi) = Pr[Y0i > 0|Xi] = Pr[ϵ0i > −Xiβ0 +∆0]

= Φ (Xiβ0 −∆0) ,
(6)

where Φ(·) is the c.d.f. of the standard normal. It then follows that:

Φ−1
(
sW0 (Xi)

)
= Xiβ0 −∆0. (7)

The differences in observable characteristics Xi could be SAT scores, college GPA, the
specialization of the undergraduate degree, or differential treatment of boys and girls
while growing up. Such data are not available at a worldwide scale over the 20th century
and, if available, they would be affected by various sources of selectivity and measurement
error. Therefore, we assume Xi = 0, i.e., men and women are a priori equally qualified
for the academic position, so that equation (7) reduces to Φ−1

(
sW0
)
= −∆0, where sW0 is

the share of women among all scientists. In this case, as we can directly measure sW0 in
the data, we compute ∆0 without needing to perform any estimation.26

Publication Market
Conditional on academic position i being filled by either a woman or a man, we observe

26In settings with less comprehensive coverage but with more data on other observables Xi, one could
estimate (β0,∆0) by MLE using observations (Y0i, Xi) and the probit model in equation (6).
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the following outcome equations at the publication stage:

Y W
1i = ZW

i β1 + ϵW1i if Y0i > 0

Y M
1i = ZM

i β1 +∆1 + ϵM1i if Y0i ≤ 0,
(8)

where Zg
i , g ∈ {W,M}, are observable characteristics and ϵg1i is the unobserved component

of the publication outcome Y g
1i. I.e., if academic position i is filled by a woman, we

observe the publication outcome of a woman, otherwise a man’s outcome. Since for
any i we cannot observe the counterfactual publication outcome (i.e., the publications if
position i had been filled by the other gender), equation (8) will be subject to selection
on unobservables if the error terms in (5) and (8) are correlated. ∆1 is the gender bias
in publications, which may reflect gender imbalances in working conditions, preferences,
or other constraints that differentially affected publications, such as discrimination in the
peer-review process, in the workplace, or other gender imbalances (e.g., differences in
childcare responsibilities). In the simpler version of the model, we further make the two
standard parametric assumptions (Heckman 1979; Amemiya 1984) of:

(iii) Linearity: ϵg1i = ρgϵ0i + ξgi , g ∈ {W,M} , with ξgi independent of everything else in
the model and with zero mean.

(iv) Normality: ϵ0i is i.i.d. standard normal.

These assumptions are not necessary for identification but simplify estimation.27 Param-
eter ρg measures the covariance between the unobserved component of selection in hiring,
ϵ0i, and the unobserved component of the publication outcome, ϵg1i. ρW > 0 represents
positive selection of women. Similarly, because ϵ0i ≡ ϵW0i − ϵM0i , ρM < 0 represents positive
selection of men.

Publication Outcome Conditional on Gender
The expectation of Y W

1i conditional on Y0i > 0 is:

E
[
Y W
1i

∣∣ZW
i , Y0i > 0

]
= ZW

i β1 + E
[
ρW ϵ0i + ξWi

∣∣ ϵ0i > ∆0

]
= ZW

i β1 + ρW λ (−∆0) ,
(9)

where λ(·) ≡ ϕ(·)/Φ(·) is the inverse Mills ratio.28 Analogously, the expectation of Y M
1i

conditional on Y0i ≤ 0 is:

E
[
Y M
1i

∣∣ZM
i , Y0i ≤ 0

]
= ZM

i β1 +∆1 − ρM λ (∆0) . (10)

For men, when the gender bias in publications ∆1 is large, the conditional expectation of
publications Y M

1i is large. Moreover, equation (10) indicates that when the gender bias in
hiring ∆0 is large (Figure 2), as λ (∆0) is close to zero, the conditional expectation of Y M

1i

may be unaffected, even if ρM ̸= 0. For women, when the gender bias in hiring ∆0 is large,
27As mentioned above, in Appendix C we present a more general version of the model that relaxes

these assumptions as well as assumption (ii).
28If data on Xi were available, the inverse Mills ratios would instead be λ (Xiβ0 −∆0) in (9) and

λ (∆0 −Xiβ0) in (10).
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the inverse Mills ratio λ (−∆0) is high, and the conditional expectation of publications
Y W
1i is large if ρW > 0. This holds independently of any gender bias ∆1 in publications.

We combine equations (9) and (10) and assume that we observe the same character-
istics (e.g., cohort, university, discipline) whether position i is filled by a woman or a man
ZW

i = ZM
i = Zi, to obtain an expression for the gender gap function in publications:29

E
[
Y M
1i

∣∣Zi, Y0i ≤ 0
]
+ Femalei ×

[
E
[
Y W
1i

∣∣Zi, Y0i > 0
]
− E

[
Y M
1i

∣∣Zi, Y0i ≤ 0
] ]

= Ziβ1 +∆1 − ρM λ (∆0) + Femalei ×
[
ρW λ (−∆0)−∆1 + ρM λ (∆0)

]
= Ziβ1 +∆1 − ρM λ

(
−Φ−1

(
sW0
))

+ Femalei × g
(
sW0
)
,

(11)

where the Femalei indicator denotes whether scientist i is a woman and g
(
sW0
)
≡ ρW λ

(
Φ−1

(
sW0
))

− ∆1 + ρM λ
(
−Φ−1

(
sW0
))

is the gender gap function in publications which depends on
the share of women in the profession s0.30 Equation (11) highlights how, in addition to
any direct gender bias in publications (∆1), observed gender gaps in publications can be
indirectly affected by gender biases in hiring (∆0).

3.2.2. Estimation Results: “Gender U”
We estimate equation (11) allowing the gender gap function to vary by period p = 1, 2, 3:

Pubit = δ + Femalei × 1 [t(i) = 1900− 38]×

[
ρW1 λ

(
Φ−1

(
sW0ℓ(i)

))
−∆11 + ρM1 λ

(
−Φ−1

(
sW0ℓ(i)

))
︸ ︷︷ ︸

]
g1

(
sW
0ℓ(i)

)
≡ gender gap function in 1900-38

+ Femalei × 1 [t(i) = 1956/69]×

[
ρW2 λ

(
Φ−1

(
sW0ℓ(i)

))
−∆12 + ρM2 λ

(
−Φ−1

(
sW0ℓ(i)

))
︸ ︷︷ ︸

]
g2

(
sW
0ℓ(i)

)
≡ gender gap function in 1956/69

+ Femalei × 1 [t(i) = 2000]×

[
ρW3 λ

(
Φ−1

(
sW0ℓ(i)

))
−∆13 + ρM3 λ

(
−Φ−1

(
sW0ℓ(i)

))
︸ ︷︷ ︸

]
g3

(
sW
0ℓ(i)

)
≡ gender gap function in 2000

+ Experienceitδexp + FE(i, t) + εit,

(12)

where Pubit measures the standardized number of papers published by scientist i in co-
hort t(i), sW0ℓ(i) is the share of female scientists in i’s cohort-country ℓ(i) (e.g., the United
States in 2000).31,32 We control for the term Ziβ1 +∆1 − ρM λ

(
−Φ−1

(
sW0
))

in equation
29We assume ZW

i = ZM
i = Zi to control for these characteristics by fixed effects. If more granular

data on (ZW
i , ZM

i ) were available, Ziβ1 in equation (11) would be replaced by (1 − Femalei)ZM
i β1 +

FemaleiZW
i β1.

30The second equality in (11) follows from equation (7) when Xi = 0, Φ−1
(
sW0
)
= −∆0.

31For cohort-country pairs with sW0ℓ equal to zero, ∆0 = −Φ−1
(
sW0ℓ
)

is not defined. Hence, the regression
excludes observations from cohort-country pairs that do not contain women. In contrast, the model in
Appendix C is defined for cohort-country pairs with sW0ℓ equal to zero. To ensure comparability, we use
the same sample for all columns of Table 4. However, the estimation results of regression (C.8) are robust
to including observations from cohort-country pairs that do not include any woman.

32To reduce measurement error in the regressors λ
(
Φ−1

(
sW0ℓ
))

and λ
(
−Φ−1

(
sW0ℓ
))

due to very low
shares of female scientists in some cohorts, disciplines, and countries, we compute the share of female
scientists sW0ℓ at the level of the cohort-country ℓ, rather than at a finer level the cohort-discipline-country.
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(11) with cohort-discipline-country (or finer) fixed effects (see definition (2) for details)
and experience indicators.33 While the fixed effects in regression (12) capture the aver-
age number of publications among male scientists, the gender gap functions capture any
systematic difference in the publications of women versus men.

The gender gap function gp
(
sW0ℓ
)
includes the difference between two gender-specific

inverse Mills ratios. While each individual inverse Mills ratio is strictly decreasing in its
argument, their difference does not need to be decreasing. Importantly, the model does
not “force” any specific shape for gp

(
sW0ℓ
)
on the data, in that a lack of gender gaps, an

increasing or decreasing relationship, a straight line, a U, or an inverted U could all be
estimated. The estimated parameters

(
−̂∆1p, ρ̂

W
p , ρ̂Mp , p = 1, 2, 3

)
determine the shape of

the gender gap as a function of the share of female scientists.

Table 4: Individual-Level Publication Gaps and the Share of Females

(1) (2) (3) (4) (5) (6)
Standard. Standard. Standard. Standard. Standard. Standard.

Dependent Publi- Publi- Publi- Publi- Publi- Publi-
Variable cations cations cations cations cations cations

Inverse Mills Ratios, regression (12) Polynomials, regression (C.8)
Female (1900/38)
−∆11 -5.117** -4.526** -5.379** γ01 0.010 -0.012 0.002

(1.970) (2.033) (2.142) (0.159) (0.182) (0.213)
ρW1 1.833** 1.620** 1.926** γ11 -12.645** -9.415 -11.329

(0.718) (0.744) (0.784) (5.373) (6.059) (6.991)
ρM1 8.540* 7.835* 9.398* γ21 90.494* 67.697 81.963

(4.510) (4.660) (4.911) (50.049) (51.859) (56.222)
Female (1956/69)
−∆12 -5.504*** -3.747** -2.577 γ02 -0.031 -0.017 -0.145

(1.854) (1.820) (1.832) (0.178) (0.174) (0.173)
ρW2 2.063*** 1.404* 0.923 γ12 -11.203** -8.824* -5.193

(0.745) (0.735) (0.742) (4.898) (4.862) (4.785)
ρM2 7.327*** 4.527* 2.971 γ22 63.204** 45.212 25.827

(2.770) (2.714) (2.747) (28.500) (27.636) (27.204)
Female (2000)
−∆13 -2.173** -1.670* -1.293 γ03 0.220 0.192 0.175

(0.977) (0.912) (0.875) (0.133) (0.121) (0.109)
ρW3 1.053** 0.813* 0.634 γ13 -3.342*** -2.931*** -2.636***

(0.491) (0.457) (0.437) (0.957) (0.880) (0.808)
ρM3 1.320 0.908 0.597 γ23 5.158*** 4.344*** 3.736***

(0.809) (0.761) (0.737) (1.600) (1.504) (1.411)

Observations 82,674 82,674 82,674 82,674 82,674 82,674
R-squared 0.018 0.055 0.107 0.018 0.055 0.107

Experience×Discipline Yes Yes Yes Yes Yes Yes
Cohort×Discipline×Country FE Yes Yes Yes Yes
Cohort×University FE Yes Yes
Cohort×Discipline×University FE Yes Yes

Notes: The Table shows estimation results for equation (12) in columns 1-3, and for its more general version, equation (C.8), in columns 4-6.
The sample includes scientists (mathematics, physics, chemistry, biochemistry and biology) in prestigious universities until 2000 (sample 3).
The dependent variable equals the standardized number of publications in a ± five-year window around a cohort (i.e., 1995-2005 for a scientist
listed in 2000). In columns 1-3, the main explanatory variables are indicators that equal 1 if the scientist is a woman, interacted with inverse
Mills ratios evaluated at ±Φ−1

(
sW0ℓ

)
, where sW0ℓ is the share of women in the cohort-country of the scientist computed within sample 3. In

columns 4-6, the main explanatory variables are indicators that equal 1 if the scientist is a woman, interacted with second-degree polynomials
of sW0ℓ . All regressions exclude observations from cohort-country combinations that do not include any woman. The regressions also control for
experience by discipline and different sets of fixed effects (see definition (2) for details). Standard errors are clustered at the discipline-country
level, with 174 clusters. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

33This assumes that Zi varies at most at the level of the fixed effects included in regression (12). In
addition, because we measure sW0 at the cohort-country level, the fixed effects in regression (12) always
fully control for the occurrence of ρM λ

(
−Φ−1

(
sW0
))

not interacted with Femalei in equation (11).
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We report estimates of regression (12) for sample 3 in Table 4, columns (1)-(3). We
estimate a negative constant component of the gender bias in publications (−̂∆1p, for
each period p = 1, 2, 3). This suggests that women faced hurdles in publishing that were
independent of the share of female scientists in any country and cohort. Such hurdles
could, for example, be due to higher levels of childcare responsibilities of academic mothers
relative to fathers (e.g., Moser and Kim 2021). The constant gender bias in publications
is smaller in 2000 than in the past (−2.17 versus around −5 in Table 4, column (1)). This
is consistent with, for example, the increased availability of professional childcare that
enabled academic mothers to devote more time to publishing while having small children.

Using the estimated −̂∆1p, as well as ρ̂Wp and ρ̂Mp , we compute the predicted gender
gap function ĝp

(
sW0ℓ
)
= ρ̂Wp λ

(
Φ−1

(
sW0ℓ
))

−̂∆1p + ρ̂Mp λ
(
−Φ−1

(
sW0ℓ
))

and plot it against
the share of female scientists in each cohort-country, separately for each period p (Figure
7, panel a). Each dot in the figure represents the predicted gender gap in publications
for period p as a function of the share of women scientists in each cohort-country pair
(e.g., the United States in 2000). The figure suggests a U-shaped relationship between the
gender gap in publications and the share of female scientists. We refer to this relationship,
in short, as the “gender U.” The gender U arises because the estimates ρ̂Wp and ρ̂Mp are
both positive. Hence, with a rising share of women sW0ℓ , ρ̂Wp λ

(
Φ−1

(
sW0ℓ
))

moves from
being large toward zero, while ρ̂Mp λ

(
−Φ−1

(
sW0ℓ
))

moves in the opposite direction. This
leads to small or even positive publication gaps in cohort-countries with very low shares
of female scientists, the “Marie-Curie” cohort-countries. However, with increasing shares
of women, gender gaps in publications become more negative. When the share of women
increases beyond very low levels, the negative gender gap in publications decreases.

For the interpretation of the gender U, it is important to note that the number of
publications only partly reflects the ability of academics but also reflects discrimination in
the peer-review process, uneven allocation of resources (e.g., access to labs and research
grants), and asymmetries in coauthorship networks. As a result, ρ̂Wp and ρ̂Mp partly capture
selection in terms of “true” ability but also changes in discrimination and in essential
publication inputs. Hence, the gender U can arise from different economic channels.
For example, the downward-sloping part of the gender U can arise either because of
positive selection of women or, probably less plausibly, because a higher female share
was associated with more discrimination against women in the publication market. Both
of these channels would increase the publication gap as a function of the female share.
Similarly, the upward-sloping part of the gender U can arise, for example, due to negative
selection of men, increasing opportunities for women to coauthor with other women, or
rising empowerment of women, which could have led to reduced discrimination in the
publication market and in the allocation of resources. These channels would all contribute
to a closing publication gap as a function of the female share.

A plausible interpretation for the gender U is that the most talented women entered
academia first (selection effect) and that a higher representation of women in academia
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Figure 7: Gender Gaps in Publications and the Share of Women: Sample 3

(a) All: Inverse Mill Ratios (IMRs)
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(b) All: Polynomials
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(c) Biology: IMRs
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(d) Physics: IMRs
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(e) Biochem. and Chemistry: IMRs
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(f) Mathematics: IMRs
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Notes: The Figure plots the estimated gender gap functions in standardized publications as a function of the percentage of female scientists
by country and cohort, in all science disciplines (panels a-b) and separately by discipline (panels c-f), using the data from sample 3. Panel (a)
plots estimated gender gap functions from regression (12), while panel (b) plots gender gaps from regression (C.8). Each dot in panels (a)-(b)
represents the estimated gender gap in publications for a cohort-country as a function of the share of women scientists in that cohort-country,
e.g., 2000 in the United States. Each of the panels (c)-(f) reports estimated gender gaps for a specific discipline. The discipline-specific gender
gap functions in panels (c)-(f) are obtained by including discipline-specific interactions in regression (12). Each dot in panels (c)-(f) represents
the gender gap in publications for a specific discipline in a cohort-country as a function of the share of women scientists in that country-cohort.
All regressions control for experience-discipline and cohort-discipline-country fixed effects.

was accompanied by more publishing opportunities for women (which we refer to as em-
powerment effect).34

34The alternative explanation that the gender gap in publications widens at first due to an increase in
discrimination against women in the publication market and then closes again due to negative selection of
men strikes us as less plausible for two reasons. First, with rising female shares, increasing discrimination
against women in the publication market is inconsistent with the evidence by Card et al. (2022) and Card
et al. (2023), who find increasing recognition of female academics over time as measured by elections to
prestigious scientific societies. Second, negative selection of men would imply that the best male scientists
left academia as a result of female entry.
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For low female shares, the selection effect dominates as the inverse Mills ratio
ρ̂Wp λ

(
Φ−1

(
sW0ℓ
))

is large and positive for female shares close to zero.35 Additionally, for
low female shares, the empowerment effect is weak as ρ̂Mp λ

(
−Φ−1

(
sW0ℓ
))

is close to zero.
This could happen because, with low female shares, it is harder for women to find female
coauthors36 and because only very few women had become editors or referees at presti-
gious journals. Once the female share rises beyond very low levels, the empowerment
effect becomes more important as ρ̂Mp λ

(
−Φ−1

(
sW0ℓ
))

increases. At the same time, the
strength of the selection effect decreases as ρ̂Wp λ

(
Φ−1

(
sW0ℓ
))

shrinks. Hence, the gender
gap in publications shrinks.

It is beyond the scope of one paper to provide a comprehensive analysis of the
mechanisms behind the selection and empowerment effects at a global scale throughout
the 20th century. However, the estimated gender U succinctly captures which of the
opposing effects dominated in different periods and countries during the 20th century.

Robustness
The finding of a U-shaped relationship between the gender gap in publications and the
share of female scientists is robust to estimating a more general version of the model,
to using different samples of scientists, and also to estimating the gender gap function
separately for each discipline.

First, we show estimates of the more general model outlined in Appendix C. This
model relaxes the functional form restrictions embedded in the inverse Mills ratios by
approximating the gender gap function in publications by second-degree polynomials of
sW0ℓ , i.e., estimating gp

(
sW0ℓ
)
= γ0p+γ1ps

W
0ℓ +γ2p

(
sW0ℓ
)2. The results are reported in columns

(4)-(6) of Table 4 and panel (b) of Figure 7.37 The more general model confirms that the
gender U is not an artifact of the functional forms embedded in regression (12).

Second, we also confirm the gender U for most periods and disciplines by estimating
discipline-specific gender gap functions in regression (12) (Figure 7, panels c-f).38 Third,
we explore whether the gender U is a phenomenon restricted to prestigious universities
or whether it also holds for the sample of all universities in all countries. We estimate

35This is also in line with the findings of Ashraf et al. (2022), who document positive selection of women
into working for a large multinational firm for the period 2015-2019 and with Mulligan and Rubinstein
(2008) who document positive selection of women in terms of ability in the general labor market.

36For example, the economics Nobel laureate Claudia Goldin explained that “there is one [challenge as
a female academic] that wasn’t my fault, and having more women in the discipline now has allowed me
to coauthor papers with the people I would like to work with, close friends. Not having female colleagues
was an obstacle in terms of coauthorship [...].” See here, accessed on November 23, 2023.

37The estimates γ̂0p, p = 1, 2, 3, in columns (4)-(6) of Table 4, do not represent estimates of the
parameters −∆1p, p = 1, 2, 3. The more general specification of the model in regression (C.8) relaxes
assumption (ii) above, so that the gender bias in publications ∆1 is allowed to be a function of the
share of female scientists sW0 . As a consequence, the gender bias in publications cannot be separately
identified from the rest of the gender gap function in regression (C.8). In particular, for any given value
of the gender gap function gp

(
sW0ℓ
)
, the parameter −∆1p can be equal to γ0p only in the very special

circumstance that ρWp λ
(
Φ−1

(
sW0ℓ
))

+ ρMp λ
(
−Φ−1

(
sW0ℓ
))

= γ1ps
W
0ℓ + γ2p

(
sW0ℓ
)2. Similarly, the estimates

(γ̂1p, γ̂2p) do not represent estimates of the parameters
(
ρWp , ρMp

)
, p = 1, 2, 3.

38As biochemistry is a small discipline with few women in the early periods, we combine chemistry and
biochemistry in these regressions.
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Figure 8: Gender Gaps in Publications and the Share of Women: Sample 2

(a) All: Inverse Mill Ratios (IMRs)

−.5

−.4

−.3

−.2

−.1

0

.1

.2

.3

.4

.5

E
s
ti
m

a
te

d
 P

u
b

lic
a

ti
o

n
 G

a
p

0 5 10 15 20 25 30 35 40 45

Percentage Female Scientists

1900−38

1956−69

(b) All: Polynomials
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(c) Biology: IMRs
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(d) Physics: IMRs
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(e) Biochem. and Chemistry: IMRs
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(f) Mathematics: IMRs
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Notes: The Figure plots the estimated gender gap functions in standardized publications as a function of the percentage of female scientists
by country and cohort, in all science disciplines (panels a-b) and separately by discipline (panels c-f), using the data from sample 2. Panel (a)
plots estimated gender gap functions from regression (12), while panel (b) plots gender gaps from regression (C.8). Each dot in panels (a)-(b)
represents the estimated gender gap in publications for a cohort-country as a function of the share of women scientists in that cohort-country,
e.g., 2000 in the United States. Each of the panels (c)-(f) reports gender gaps for a specific discipline. The discipline-specific gender gap
functions in panels (c)-(f) are obtained by including discipline-specific interactions in regression (12). Each dot in panels (c)-(f) represents the
gender gap in publications for a specific discipline in a cohort-country as a function of the share of women scientists in that country-cohort.
All regressions control for experience-discipline and cohort-discipline-country fixed effects.

regressions (12) and (C.8) for sample 2 and confirm a U-shaped relationship for both
periods 1900-1938 and 1956-1969. We also confirm the gender U in all disciplines and
periods for sample 2, with the exception of biology (Figure 8).

Overall, these results corroborate the robustness of the gender U, which is a general
pattern that we observe across samples, disciplines, and over time.
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4 Gender Gaps in Citations
In this section, we explore whether papers written by women received fewer citations.
Gender gaps in citations shed light on differences in peer recognition of female-authored
papers. We conduct this analysis at the paper level to abstract from the gender differences
in publishing documented in the previous section.

4.1 A Novel Procedure to Predict Citations
A key challenge when estimating gender gaps in citations is that men and women may
work on different topics with different citation potentials. We control for differences in
citation potential using a newly developed machine learning approach that uses paper
titles to predict each paper’s expected number of citations (see Appendix D for details).39

A similar approach can be used to study performance or pay gaps between different
groups with data on, e.g., occupational task descriptions, full text of job advertisements,
or performance reviews.

We first filter all non-alphanumerical characters from papers’ titles, remove common
words (stopwords, e.g., “the”), and stem the words. Next, we extract all unigrams (i.e.,
words) and bigrams (i.e., two-word combinations) from the title of each of the N papers to
obtain a paper-1,2-gram matrix X with entries xpj, where p denotes papers and j denotes
unigrams and bigrams.40 As is common in text-based machine learning, we then reweight
the matrix using term-frequency inverse-document frequency (tf-idf) reweighting. This
decreases the relative importance of n-grams that carry little information but appear in
many papers, for example, “study” or “method.” The unigrams and bigrams then form
the input for an L2-regularized regression model (ridge regression), which minimizes:

min
(ωj)Wj=1


N∑
p=1

(
yp −

W∑
j=1

ωj · xpj

)2

+ λ
W∑
j=1

ω2
j

 , (13)

where yp are the total citations of paper p (standardized by country, discipline, and cohort).
To reduce the importance of outliers, we winsorize citations at the 99th percentile (by
discipline and cohort).41 The main explanatory variables are the W indicators of the
unigrams and bigrams that correspond to the respective entries of the paper-1,2-gram
matrix X. We additionally include indicators for the number of words in paper p’s title.
To allow for differences in citation patterns over time and across disciplines, we train
separate models for each of the five scientific disciplines in each of the seven cohorts. For
each discipline and cohort, we choose the optimal normalization strength λ using 10-fold
cross-validation. The algorithm predicts standardized citations ŷp for each paper p.

39A pre-trained model of predicted citations is available here. The model predicts the log number of
citations from the titles of papers. We also provide a Python and Stata wrapper, see Schwarz (2023).

40Importantly, the Web of Science translates almost all titles into English.
41The results are very similar if we do not winsorize citations (Appendix Table D.1)
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We use two approaches to estimate equation (13). For the first approach, the training
sample consists of the universe of papers published by all scientists in our data. For
the second approach, the training sample solely consists of papers published by men,
predicting the actual citations of each paper as if it had been published by men. A model
trained on all papers may give a better prediction of the actual citations. In contrast,
a model solely trained on papers by men would address the concern that, for any given
paper title, citations of women may be downward biased because of discrimination (see
Barocas and Selbst (2016) for an overview of machine learning biases).

Figure 9: Words that Predict High Citations in Chemistry over Time

(a) 1900-1914 (b) 1925-1938

(c) 1965-1969 (d) 2000

Notes: The Figure shows the unigrams and bigrams that predict the highest citations in chemistry for the indicated cohorts. The n-grams are
identified with an L2-regularized regression model (ridge regression) that uses unigrams and bigrams of the title as inputs, see section 4.1 for
details. A very small fraction of words in the titles are not translated to English. To improve the legibility of the word clouds we translate
them for these figures.

The model identifies intuitive relationships between words and citations. Figure 9 sum-
marizes the unigrams and bigrams that predict high citations for chemistry and how they
evolved over time.42 For example, for the 1900 and 1914 cohorts, the classifier detects
the names of sugar molecules (“glucos”, “glucosid”) whose chemical structures were de-
scribed in the 1890s by the chemistry Nobel laureate Emil Fischer. Another highly cited
n-grams in the same cohort is “triketohydrindane” (an alternative name for Ninhydrin),
a compound discovered by Siegfried Ruhemann in 1910. For the 1925 and 1938 cohorts,
the classifier detects the words “elastic” and “thread,” which refer to the discoveries of
the first polymers, Nylon by the DuPont chemist Wallace Carothers in 1935 and Perlon

42To save space, we show word clouds for the model trained on papers by male scientists and combine
up to two cohorts in Figure 9. However, for the regression results reported below, we implement the
prediction at the cohort-discipline level.
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by the I.G. Farben chemist Paul Schlack in 1938. For the 1956 and 1969 cohorts, the
classifier detects “dicyclohexylcarbodiimid”, which is a frequently used coupling agent for
peptide synthesis based on the work by John Sheehan and George Hess in 1955. Another
notable n-gram is “CNDO method,” an abbreviation for “Complete Neglect of Differential
Overlap.” CNDO is one of the first methods in quantum chemistry and was developed in
the 1960s by the Nobel laureate John Pople. Finally, for the 2000 cohort, the classifier
detects “LiFePo4,” the chemical formula for lithium iron phosphate — a cathode material
that is used for batteries which was discovered in 1996. Another stem for the 2000 cohort
is “organocatalyt,” showing the importance of organocatalysis for which Benjamin List
and David Macmillan shared the Nobel Prize in 2021.

Figure 10: Predicted and Actual Citations
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Notes: The Figure shows the relationship between actual and predicted citations for the model trained on papers by male scientists. Actual
citations is the count of citations of each paper, which we standardize at the cohort-discipline-country level. Predicted citations are estimated
with an L2-regularized regression model (ridge regression) that uses unigrams and bigrams of the title as inputs, see section 4.1 for details.
The line shows a quadratic fit based on the unbinned data.

In addition to identifying intuitive relationships between words and citations, the
model performs well in predicting a paper’s actual citations. Figure 10 visualizes the
strong positive relationship between predicted and actual citations (R2 = 0.31).43 As the
figure suggests, the R2 increases further when we include a second-order polynomial of the
predicted citations. In contrast, higher-order polynomials do not lead to further increases
in the R2. We, therefore, control for the first and second-degree polynomials of predicted
citations, which we interact with discipline indicators in our baseline regressions.44

4.2 Paper-Level Citation Gaps
We estimate citation gaps at the paper level, depending on whether papers were published
by men or women. Importantly, we add our novel measures of predicted citations as a
regressor to control for the fact that women may work on topics with less citation potential

43Note that this is the within-sample R2. The method also performs well if we use an “out of sample”
approach (see section 4.2).

44Results are very similar if we control for predicted citations either linearly or non-parametrically
(Appendix Table D.1).
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than men. We estimate the following paper-level regression:

Citationspt = γ1 + γ2Femalep × 1[t(p) = 1900/14] + γ3Femalep × 1[t(p) = 1925/38]

+ γ4Femalep × 1[t(p) = 1956/69] + γ5Femalep × 1[t(p) = 2000]

+ ̂Citationsptγ6 + FE(p, t) + ξpt,

(14)

where p denotes a paper and t(p) the cohort in which the paper was published. The
dependent variable is the number of standardized citations of paper p. In many scientific
disciplines, authors are not ordered alphabetically. Instead, the first author is the one who
conducts most of the research, while the last author is usually the most senior scientist
who supervises the project. We, therefore, define an indicator (Femalep) that equals one
if either the first or the last author of paper p is female.45 The main explanatory variables
are the interactions of Femalep with indicators for four time periods: pre-WW1 (1900 and
1914 cohorts), interwar (1925 and 1938), post-WW2 (1956 and 1969), and modern (2000).

Importantly, we control for the first and second-degree polynomials of predicted
citations of paper p, ̂Citationsp, interacted with discipline indicators.46 We also control for
various sets of fixed effects defined at the paper-level, adapting definition (2) accordingly.47

Note that universities, disciplines, titles, and hence predicted citations are potentially
endogenous. Therefore, the estimates should be interpreted as a decomposition of citation
gaps into a part that can be explained by these factors and into an unexplained part due
to other biases. We cluster standard errors at the discipline-country level.

Papers published by female scientists from the 1900-1914 cohorts received 0.12 s.d.
fewer citations than papers published by male scientists in the sample of all universities
(sample 2). Citation gaps were 0.15 s.d. for the 1925 and 1938 cohorts and 0.13 s.d. for
the 1956 and 1969 cohorts (Table 5, sample 2, column 1).

45In mathematics, authors are mostly ordered alphabetically. As many mathematics papers are written
by only one or two authors, this definition correctly captures the authors’ gender for these papers. We
show that results are very similar for alternative definitions of female-authored papers (Table D.2).

46In a recent paper, Koffi (2021) proposes a different method to estimate whether papers by female
authors are under-cited. The method uses text similarity to identify papers that should have been cited.
Our method, in contrast, controls for differences in the citation potential of papers. Our method estimates
overall citation gaps, not just omissions of citations among the most similar papers. Furthermore, our
method can be used when female shares are low and, hence, papers by women are unlikely to be among
the most similar papers. Lastly, our methodology can also be used if the number of papers is large, due
to its larger computational efficiency. Koffi’s approach requires the calculation of pairwise similarities
between all papers. Hence, the necessary calculations grow quadratically in the number of papers.

47In rare cases, coauthors can be based in different universities and countries. We thus include separate
fixed effects for any combination of cohort and university or alternatively cohort, discipline, and university.
For example, a paper coauthored by chemists from Harvard (USA) and Cambridge (UK) has a separate
fixed effect from papers coauthored by chemists only from Harvard or only from Cambridge. Accordingly,
the clustering of standard errors is based on discipline and country-combinations, e.g., chemistry-USA-UK
in the example above.
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Table 5: Gender Gaps in Citations: Controlling for Predicted Citations

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable Standardized Citations

Sample 2: All Universities, Sciences, 1900-1969
Female-First/Last Author (1900/14) -0.118 -0.143* -0.077* -0.159** -0.075** -0.188*** -0.117***

(0.105) (0.082) (0.042) (0.070) (0.033) (0.068) (0.034)
[0.132] [0.055] [0.122] [0.062] [0.126] [0.071]

Female-First/Last Author (1925/38) -0.153*** -0.130*** -0.077*** -0.100** -0.084** -0.095** -0.091**
(0.045) (0.035) (0.027) (0.040) (0.036) (0.038) (0.040)

[0.051] [0.034] [0.062] [0.042] [0.062] [0.044]
Female-First/Last Author (1956/69) -0.131*** -0.124*** -0.098*** -0.128*** -0.098*** -0.129*** -0.102***

(0.019) (0.017) (0.015) (0.017) (0.018) (0.016) (0.017)
[0.025] [0.019] [0.023] [0.022] [0.024] [0.022]

Observations 255,768 255,768 255,768 255,768 255,768 255,768 255,768
R2 0.009 0.470 0.469 0.499 0.498 0.513 0.511

Sample 3: Prestigious Universities, Sciences, 1900-2000
Female-First/Last Author (1900/14) -0.172 -0.160 -0.087 -0.158** -0.064* -0.245*** -0.142***

(0.137) (0.117) (0.073) (0.074) (0.035) (0.056) (0.020)
[0.123] [0.07] [0.101] [0.055] [0.093] [0.05]

Female-First/Last Author (1925/38) -0.110** -0.104** -0.093*** -0.064 -0.062* -0.075 -0.074**
(0.055) (0.044) (0.027) (0.050) (0.035) (0.047) (0.031)

[0.06] [0.031] [0.065] [0.036] [0.061] [0.034]
Female-First/Last Author (1956/69) -0.162*** -0.151*** -0.136*** -0.143*** -0.126*** -0.144*** -0.126***

(0.029) (0.026) (0.022) (0.026) (0.024) (0.027) (0.025)
[0.033] [0.024] [0.03] [0.023] [0.03] [0.024]

Female-First/Last Author (2000) -0.079*** -0.051*** -0.046*** -0.053*** -0.047*** -0.055*** -0.047***
(0.010) (0.007) (0.006) (0.008) (0.006) (0.008) (0.006)

[0.009] [0.005] [0.009] [0.005] [0.009] [0.005]
Observations 611,513 611,513 611,513 611,513 611,513 611,513 611,513
R2 0.016 0.375 0.391 0.402 0.416 0.411 0.425
Predicted Citation Control Yes Yes Yes
Predicted Citation Control (All) Yes Yes Yes
Cohort×Discipline×Country FE Yes Yes Yes Yes Yes
Cohort×University FE Yes Yes
Cohort×Discipline×University FE Yes Yes

Notes: The Table shows gender gaps in citations per paper. Results are estimated at the paper-level. The dependent variable is the citation count, which we standardize
at the cohort-discipline-country level. The main explanatory variable is an indicator that equals 1 if the paper’s first or last author is a woman, interacted with the
relevant cohort(s). All regressions control for different sets of fixed effects (see definition (2) for details). Additionally, the regressions in columns 2-7 control for the
first and second-degree polynomials of predicted citations. Citations are predicted based on either papers written by male scientists (columns 2, 4, and 6) or papers
by all scientists (columns 3, 5, and 7). Predicted citations are based on unigrams and bigrams of papers and estimated with a L2-regularized regression model (ridge
regression), see section 4.1 for details. Standard errors are clustered at the discipline-country level with 781 clusters in sample 2 and 1,816 in sample 3. We additionally
report boostrapped standard errors in square brackets. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Importantly, papers by female scientists were not under-cited because women worked on
topics with less citation potential but rather because of other biases in the citation market.
Estimated citation gaps hardly change if we control for our novel measure of predicted
citations. This holds whether we predict citations using papers by male scientists (column
2), or by all scientists (column 3).

Citations gaps are comparable for papers published by female scientists from pres-
tigious universities (sample 3, see also Appendix Figure D.1). For the 2000 cohort, the
estimated citation gaps are around 0.05 s.d., indicating that citation gaps still persisted
at the end of the 20th century, but had significantly shrunk. Moreover, citation gaps are
similar if we compare papers published by scientists in the same cohort and university or
even the same cohort, university, and discipline (e.g., Harvard biology in 2000).
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Robustness
The results are similar if we use out-of-sample predictions of citations using a cross-fitting
procedure (Appendix Table D.1, columns 2-3). For this procedure, we divide the data into
k slices. We then train the model using k−1 slices. Once the model is trained, we predict
citations for the left-out slice. We repeat the procedure until we obtain predictions for all
k slices. The results are also robust to using alternative functional forms for the predicted
citation control, i.e. controlling linearly for predicted citations (column 4) or with 1,000
indicators for the permilles of the predicted citation distribution (column 5). The results
also remain unchanged if we do not winsorize citations (column 6). Further, we show that
results are robust when using citation counts, instead of standardized citations, as the
dependent variable (column 7). Lastly, we show that our findings also remain unchanged
if we use a double machine learning approach (Chernozhukov et al. 2018), which directly
controls for the words from the titles in a version of regression (14) (column 8).48

In additional checks, we investigate alternative definitions of female-authored pa-
pers (Table D.2). We show results for an indicator for any female-author (column 2),
female first-author (column 3), and the share of women among all authors (column 4).
Throughout, the estimated citation gaps remain similar. One interesting finding is that
for the 2000 cohort, the estimates become insignificant for having any female author while
remaining negative for our baseline and having a female first author. This suggests that
the gender gap is larger for papers for which the author’s gender is more salient.

Alternative Explanations
Apart from the fact that women may have worked on topics with different citation po-
tential, there are at least two additional reasons that may explain why papers by female
scientists received fewer citations. First, women may have fewer opportunities to write
papers with coauthors (production effect). This may translate into fewer citations because
coauthored papers, on average, receive more citations (e.g., Wuchty et al. 2007). Second,
women may publish their papers in lower-ranked journals because of biased editors or
referees (publication effect). Such an effect has been shown for economics papers (Card
et al. 2022). We explore the first possible explanation by controlling for the number of
authors of each paper (i.e., a fixed effect if the paper has one author, another fixed effect
if the paper has two authors, and so on). Controlling for the number of authors does not
affect gender gaps in citations (Table 6, columns 1-3). Next, we explore the publication
effect by including a full set of journal fixed effects (columns 4-6). The inclusion of these
has little impact on the magnitude of the estimates. Similar to universities, disciplines,
or titles, the number of coauthors and the journal are potentially endogenous. Therefore,
these results should be interpreted as a decomposition of the citation gaps.

48Due to the large memory requirement of the double-machine-learning approach, we restrict the vo-
cabulary to the 25,000 most frequent unigrams and bigrams (words) and do not allow the effect of words
to differ by cohort and discipline.
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Table 6: Gender Gaps in Citations: Accounting for Number of Authors and
Journals

Author Nr. FE Journal FE
(1) (2) (3) (4) (5) (6)

Dependent Variable Standardized Citations

Sample 2: All Universities, Sciences, 1900-1969
Female-First/Last Author (1900/14) -0.142* -0.156** -0.186*** -0.179** -0.206*** -0.246***

(0.080) (0.071) (0.067) (0.070) (0.058) (0.058)
[0.131] [0.123] [0.126] [0.129] [0.117] [0.118]

Female-First/Last Author (1925/38) -0.128*** -0.098** -0.093** -0.131*** -0.095** -0.100**
(0.035) (0.041) (0.039) (0.038) (0.042) (0.039)
[0.051] [0.063] [0.063] [0.052] [0.06] [0.06]

Female-First/Last Author (1956/69) -0.118*** -0.122*** -0.121*** -0.103*** -0.122*** -0.121***
(0.017) (0.017) (0.016) (0.019) (0.016) (0.015)
[0.025] [0.023] [0.024] [0.026] [0.022] [0.023]

Observations 255,768 255,768 255,768 255,768 255,768 255,768
R2 0.471 0.500 0.514 0.493 0.521 0.533

Sample 3: Prestigious Universities, Sciences, 1900-2000
Female-First/Last Author (1900/14) -0.158 -0.150** -0.237*** -0.171 -0.184*** -0.312***

(0.111) (0.074) (0.054) (0.127) (0.063) (0.032)
[0.119] [0.101] [0.093] [0.13] [0.093] [0.081]

Female-First/Last Author (1925/38) -0.105** -0.064 -0.075 -0.093** -0.053 -0.073
(0.044) (0.053) (0.050) (0.043) (0.050) (0.047)
[0.061] [0.066] [0.063] [0.06] [0.063] [0.06]

Female-First/Last Author (1956/69) -0.145*** -0.136*** -0.137*** -0.134*** -0.142*** -0.146***
(0.026) (0.027) (0.027) (0.028) (0.026) (0.025)
[0.033] [0.03] [0.03] [0.034] [0.028] [0.027]

Female-First/Last Author (2000) -0.037*** -0.039*** -0.040*** -0.039*** -0.042*** -0.044***
(0.007) (0.008) (0.008) (0.006) (0.006) (0.006)
[0.009] [0.009] [0.009] [0.008] [0.008] [0.008]

Observations 611,513 611,513 611,513 611,513 611,513 611,513
R2 0.379 0.405 0.414 0.436 0.461 0.469
Predicted Citations Control Yes Yes Yes Yes Yes Yes
Cohort×Discipline×Country FE Yes Yes Yes Yes
Cohort×University FE Yes Yes
Cohort×Discipline×University FE Yes Yes
Nr. Authors FE Yes Yes Yes
Journal FE Yes Yes Yes

Notes: The Table shows gender gaps in citations. Results are estimated at the paper level. The dependent variable is the citation count, which we stan-
dardize at the cohort-discipline-country level. The main explanatory variable is an indicator that equals 1 if the paper’s first or last author is a woman,
interacted with the relevant cohort(s). All regressions control for different sets of fixed effects (see definition (2) for details). Additionally, the regressions
control for the first and second-degree polynomial of predicted citations. Predicted citations are based on unigrams and bigrams of papers and estimated
with a L2-regularized regression model. Standard errors are clustered at the discipline-country level with 781 clusters in sample 2 and 1,816 in sample 3. We
additionally report boostrapped standard errors in square brackets. In columns 1-3, we also control for fixed effects for the number of authors. In columns
4-6, we also control for journal fixed effects for the journal of paper p. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Overall, the results indicate that gender gaps in citations do not stem from gender
differences in the number of coauthors, the journals in which women publish, and most
importantly, the topics that women are working on. This suggests that papers by women
received fewer citations because of biases in citing behavior. Such biases could arise be-
cause women have fewer opportunities to present their work or because of discrimination.
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5 Gender Gaps in Promotions
In this last section, we investigate gender gaps in promotions. We focus on the sample
of academics who were not already full professors when they entered the data in cohort
t − 1.49 We then analyze whether they get promoted to full professor by cohort t (see
Appendix A.1.1. for details on the coding of promotions). Promotions to full professor
are particularly important because, in all countries, full professors have unique privileges
and high job security and salaries. We estimate the following regression:

Promotion Full Profit = π1 + π2Femalei × 1[t(i) = 1914] + π3Femalei × 1[t(i) = 1925/38]

+ π4Femalei × 1[t(i) = 1956/69] + π5Femalei × 1[t(i) = 2000]

+ FE(i, t− 1) + υit.

(15)
The dependent variable Promotion Full Profit is an indicator that equals 1 if academic i,
who entered the data in cohort t − 1, was promoted to full professor by cohort t.50 The
main explanatory variables are the interactions of the indicator Femalei with indicators
for the four different time periods. The regressions include fixed effects as defined in (2),
evaluated in t− 1. The fixed effects control, for example, for the fact that in certain time
periods, disciplines, and universities, there may have been more full professor openings.

In all universities and disciplines (sample 1), women who started their careers in the
1900 cohort were, on average, 13 percentage points less likely than men to be promoted
to full professor by 1914 (Table 7, sample 1, column 1).51 Because the probability of
promotion to full professor was around 16% in 1914, women were about 79% less likely
to be promoted. Women in the 1925 and 1938 cohorts and those in the 1956 and 1969
cohorts were around 14 and 12 percentage points (or between 87% and 76%) less likely
than men to be promoted to full professor by the next cohort. The large gender gap in
promotions to full professor is robust to the inclusion of more stringent fixed effects. We
estimate similar gender gaps in promotions if we compare women and men who started
their careers in the same cohort and university or even in the same cohort, university, and
discipline (Table 7, sample 1, column 3).

In the scientist sample (mathematics, physics, chemistry, biochemistry, and biology)
of all universities (sample 2), women who started their careers in 1900 were around 14
percentage points less likely to be promoted by 1914. Women in the 1925-1938 cohorts
and in the 1956-1969 cohorts were 11 and 18 percentage points less likely than men

49This restriction results in a smaller sample because academics who enter the data as full professors
are not included in the analysis. Furthermore, all academics who enter the data in the last cohort
(independently of their rank) are also not included in the analysis.

50We also set the indicator to 1 for academics who are listed as emeriti/emeritae in t. The indicator
equals 0 if the academic was not promoted to full professor by cohort t. We also set the indicator to 0 for
academics who left the sample by cohort t. In unreported results, we analyze promotions in a restricted
sample that conditions on observing academic i in both cohorts t − 1 and t. These results also indicate
that women were significantly less likely to be promoted to full professor.

51Gender gaps in promotions are driven by two factors: first, women are less likely to apply for
promotion and, second, conditional on applying they are less likely to be promoted.
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Table 7: Gender Gaps in Promotions

(1) (2) (3) (4)

Dependent Variable: Indicator of Promotion to Full Professor

Sample 1: All Universities, all disciplines, 1900-1969
Female (1914) -0.127*** -0.126** -0.088*

(0.037) (0.049) (0.046)
Female (1925/38) -0.138*** -0.149*** -0.142***

(0.015) (0.016) (0.017)
Female (1956/69) -0.122*** -0.103*** -0.103***

(0.014) (0.010) (0.011)

Observations 102,611 102,611 102,611
R-squared 0.114 0.223 0.388

Sample 2: All Universities, sciences, 1900-1969
Female (1914) -0.135 0.342** 0.266 0.268

(0.128) (0.171) (0.169) (0.171)
Female (1925/38) -0.114*** -0.168*** -0.151*** -0.147***

(0.038) (0.044) (0.042) (0.042)
Female (1956/69) -0.184*** -0.153*** -0.160*** -0.153***

(0.015) (0.021) (0.020) (0.020)
Std. Publications 0.046***

(0.006)
Std. Citations 0.010

(0.006)

Observations 16,573 16,573 16,573 16,573
R-squared 0.103 0.300 0.457 0.465

Sample 3: Prestigious Universities, sciences, 1900-2000
Female (1914) -0.193 0.810*** 0.600*** 0.604***

(0.175) (0.230) (0.227) (0.229)
Female (1925/38) -0.169*** -0.218*** -0.186*** -0.176***

(0.042) (0.054) (0.059) (0.059)
Female (1956/69) -0.215*** -0.234*** -0.233*** -0.223***

(0.021) (0.030) (0.021) (0.023)
Female (2000) -0.095*** -0.071*** -0.067*** -0.058***

(0.028) (0.017) (0.016) (0.015)
Std. Publications 0.030***

(0.007)
Std. Citations 0.018***

(0.005)

Observations 12,580 12,580 12,580 12,580
R-squared 0.154 0.290 0.419 0.425

Cohort×Discipline×Country FE Yes Yes
Cohort×University FE Yes
Cohort×Discipline×University FE Yes Yes

Notes: The Table shows gender gaps in the probability of promotion to full professor. Results are estimated at the academic-level. Sample 1
includes academics in all disciplines and all universities until 1969. Sample 2 includes scientists (mathematics, physics, chemistry, biochemistry,
and biology) in all universities until 1969. Sample 3 includes scientists in prestigious universities until 2000. The dependent variable is an
indicator that equals 1 if an academic who entered the dataset in cohort t−1 at a lower rank than full professor was promoted to full professor
by cohort t, or 0 otherwise. The main explanatory variable is an indicator that equals 1 if the academic is a woman, interacted with the
relevant cohort(s). The regressions also control for different sets of fixed effects (see definition (2) for details) evaluated in t − 1. Standard
errors are clustered at the discipline-country level, with 1,606 clusters in sample 1, 285 in sample 2, and 161 in sample 3. Significance levels:
∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

to be promoted to full professor (Table 7, sample 2, column 1). For the cohorts after
1925, the promotion gaps are similar if we condition on more stringent fixed effects. For
the 1900 cohort (i.e., those who could have been promoted by 1914), the effects turn
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positive if we include more stringent fixed effects. However, given the extremely low
female representation in the sciences in 1900, only 16 women in all universities of the
world combined could have been promoted to full professor. Comparisons in promotions
within the same cohort and university or cohort, university, and discipline are thus based
on only a handful of women.

Results are also similar if we estimate promotion gaps for scientists in prestigious
universities (sample 3). In this sample, we can extend the time horizon and find that
promotion gaps have declined to about 6 to 10 percentage points by 2000.

In the second and third parts of the paper, we have shown that women published
fewer papers and received fewer citations throughout the 20th century. To explore whether
gender gaps in publications and citations affect gender gaps in promotions, we add con-
trols for scientists’ publication and citation records.52 A one standard deviation better
publication record increased the probability of promotion to full professor by 4.6 (sample
2) or 3 (sample 3) percentage points. A one standard deviation better citation record did
not significantly increase the probability of promotion in sample 2, but it increased it by
1.8 percentage points in sample 3. The small effect of citations on promotions in sample 2
is likely driven by the fact that only since the 1960s it has been possible to systematically
measure citations (Hager et al., 2023).

Strikingly, controlling for the publication and citation records hardly affects the
estimated gender gaps in the promotion to full professor.53 The unexplained part of the
promotion gap is larger than the effect of a three to seven s.d. worse publication record.
This is remarkable because the true quality of women, conditional on the number of
publications and citations should be, if anything, higher in the presence of discrimination
and other biases in the publication market.

Finally, we show that women were not only less likely to be promoted in the same
department but also in worse or better departments (Appendix Table E.1). This suggests
that women could not even achieve promotion to full professor by moving to lower-ranked
departments.

6 Conclusion
Leveraging new hand-collected worldwide data, this paper sheds light on the evolution of
gender gaps in academia over the 20th century. From our analysis, four results stand out.

First, the share of women in academia very low throughout the 20th century. It
was around 1% in 1900 and increased by about 1.5% per decade until the 1960s. Female
shares were especially low in STEM disciplines and in prestigious universities. From the
1970s until the year 2000, female shares increased substantially. However, in the year

52As noted above, for the first part of the 20th century, publication and citation databases do not cover
the humanities and social sciences. Thus, we cannot control for publications and citations in sample 1.

53In unreported results, we control more flexibly for publications and citations by including indicators
for various percentiles of the distributions of publications and citations or by including polynomials of the
standardized numbers of publications and citations. The results are similar to those reported in Table 7.
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2000, women remained underrepresented. Second, women published fewer papers than
men. We outline a model that links gender gaps in hiring and gender gaps in publishing.
We estimate the model using cross-country and over-time variation in the shares of women
in academia. We find a U-shaped relationship between gender gaps in hiring and gender
gaps in publications (the “gender U”), demonstrating that these gaps are inherently linked.
With rising female shares, the relative importance of positive selection of women was
offset by increased publishing opportunities for women. Third, papers by female authors
received fewer citations. We develop a novel machine learning approach that shows that
citation gaps do not arise because women work on topics that are generally less cited.
Fourth, female academics were less likely to be promoted to full professor. Strikingly, the
promotion gap does not stem from gender gaps in publications and citations.

This article provides the first comprehensive analysis of gender gaps in a high-skilled
profession at a global scale and covering the entire 20th century. Overall, the results
document pervasive unequal opportunities for women in academia throughout the 20th
century. The broad perspective taken in this article provides the foundation for a more
systematic understanding of gender gaps in academia and highlights fruitful directions for
future research and science policy.
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Online Appendix
The Appendix presents further details on the data collection, additional results, and
robustness checks:

• Appendix A provides details on the data collection.

• Appendix B shows additional results on hiring gaps.

• Appendix C presents a generalization of the Roy model.

• Appendix D provides additional details and results on citation gaps.

• Appendix E shows additional results on promotion gaps.

A Further Details on Data
A.1. Enhancements of Faculty Roster Data
A.1.1. Additional Information on the Coding of Academic Ranks
Minerva and the university websites report academic ranks for most academics. The ranks
are reported either in the original language (e.g., maître de conférence) or are translated
into English or German. Overall, the sources report almost 4,000 different combinations
of countries and ranks. We recode them at the country level, because certain labels of
ranks do not necessarily describe the same academic rank across countries. E.g., a lecturer
in the British system has a higher academic rank than a lecturer in the U.S. system. We
classify all positions into the following categories: professorial admin position (e.g., dean
or head of department), full professor, associate professor, assistant professor, honorary
professor, clinical faculty, visiting professor, teaching position, Emerita/us, Emerita/us
associate professor, Emerita/us assistant professor. In a few cases, the sources list a aca-
demics who hold different academic ranks under only one heading (e.g., a joint heading of
”associate and assistant professors” instead of listing ”associate professors” and ”assistant
professors” under separate headings). In these cases, we assign the highest listed rank to
each academic.

In many academic systems, e.g., in Germany and Switzerland, young researchers
climb the academic ladder by substituting for full professors for some years and obtaining
a professorship after that. For these countries, we code substitute professors as assistant
professors.

For the analysis of promotions, we recode different positions into four academic
ranks:

1. professors (comprising the categories: professorial admin position, full professor,
and Emerita/us)
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2. associate professors (comprising the categories: associate professor and Emerita/us
associate professors)

3. assistant professors (comprising the categories: assistant professors, Emerita/us
assistant professor, and clinical faculty)

4. lower-ranked positions (comprising the categories: teaching position and research
position).

Promotion to Full Professor
We classify academics who enter the data in cohort t − 1 at ranks 2, 3, or 4 and are
promoted by cohort t to rank 1 as promoted to full professor. As the exact rank of
honorary and visiting professors is not clearly defined, and their number is very low, we
do not consider them for the results on gender gaps in promotions (section 5).

A.1.2. Additional Information on the Coding of Disciplines
As described in the main text, we manually recode over 100,000 different specializations
(e.g., “Advanced Reactor Theory and Quantum Theory” or “Physique des particules élé-
mentaires”) into 36 disciplines (e.g., physics, economics, law, theology, or history). The
definition of disciplines follows the classification of academic disciplines according to the
German Statistical Agency (see here for details).

Some academics report multiple disciplines. When we match these academics to
publications, we use the discipline that they report as their first discipline. For academics
observed across multiple cohorts who report different disciplines across cohorts, we assign
the discipline that is most frequently reported.

A few academics are reported without specializations, but some of them are re-
ported as members of certain departments: e.g., “department of architecture” or “medical
school.” If the department coincides exactly with one of the disciplines (e.g., architecture
or medicine), we assign the discipline on the basis of the department.

A.1.3. Identifying Academics with Multiple Appointments within a City
We identify academics with multiple appointments within a city by hand-checking all
academics with duplicate surnames within a city. We then determine whether two entries
refer to the same academic based on the first name, specialization, academic rank, and
title. If an academic holds two appointments, we harmonize the first name and collapse
the two entries into a single observation. The resulting observation then contains the
information on all appointments and specializations of an academic within a city.54

54In very rare cases, academics with the same surname, first name, and discipline are observed in the
same cohort but in different cities. It is often impossible to determine whether this is the same academic
holding multiple appointments. We, therefore, treat such observations as two separate observations. We
show that all results are very similar in a sample of academics with unique combinations of surname, first
initial, and discipline.
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A.1.4. Linking Academics Across Cohorts
As described in the main text, we link academics across cohorts. Linking academics over
time is crucial to analyzing promotions.

The link allows for the possibility that academics report slightly different first names
in two adjacent cohorts. Such variation in first names occurs because of five main reasons:

1. Universities sometimes report first names with slight variations across cohorts. E.g.,
the University of Leipzig reported the geographer Joseph Partsch as Joseph Partsch
in the 1914 cohort but as Josef Partsch in the 1925 cohort.

2. In certain cohorts, some universities only report their professors using an abbrevi-
ated first name plus the surname. In other cohorts, they report professors with
their full first name. E.g., the University of Berlin theologian Johannes Witte was
reported as Johs. Witte in the 1925 cohort but as Johannes Witte in the 1938
cohort.

3. In certain cohorts, some universities only report their professors using initials plus
the surname. In other cohorts, they report professors with their full first name. E.g.,
the University of Chicago botanist Henry Chandler Cowles was reported as Henry
C. Cowles in 1914 but as H. C. Cowles in 1925.

4. Some original names are Germanized or Englishized for some individuals in some
cohorts. E.g., the Hungarian mathematician Gusztáv Rados was listed as Gusztáv
Rados in 1925 but as Gustav Rados in 1938.

5. Name variations in the first name in rare cases may also occur because of typos
either introduced by the publishers of Minerva, by typing mistakes of the research
assistants, or by OCR errors that were not spotted by the research assistants.

Linking Academics within Departments
We first link academics who remain in the same department between cohorts t and t+ 1.
In a first step, we obtain potential links by merging academics from discipline d, country
c, and university u, in cohort t to academics from the same discipline d, same country
c, and same university u in cohort t + 1 based on the academic’s surname and the first
initial. In a second step, we process these potential links as follows (note: all potential
links have identical surnames, initials, disciplines, and universities and, hence, cities and
countries):

1. If the entire information on the first name is identical in both cohorts, we classify
these academics as linked (in some cases, the information on the first name that is
reported for that particular academic may be one or more initials in both cohorts).
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2. If the information on the first name differs across the two cohorts, research assistants
examine each potential link and decide whether the academics are the same. E.g.,
the data contain the following academics in 1925 and 1938:

Table A.1: Examples within Department Merge

Cohort Surname First Name University Country Field
1 1925 Randall Harrison Mc Allister University of Michigan USA Physics
2 1938 Randall Harrison McAllister University of Michigan USA Physics
3 1925 Cerban Albert University of Bukarest Romania Law
4 1938 Cerban Alexandru University of Bukarest Romania Law

The research assistants would classify lines 1 and 2 as linked (note the small difference in
the first name, otherwise this academic would already be linked in step 1). In contrast,
the research assistants would not classify lines 3 and 4 as linked (even though they have
the same first initial). To decide whether two lines are linked, the research assistants only
allow for minor differences in the spelling of the first name, such as Harrison Mc Allister
and Harrison McAllister (lines 1 and 2).

Linking Academics across Departments in the same Country
Second, we link academics who remain in the same country but change departments
between two cohorts. In the first step, we obtain potential links by merging academics
from discipline d, country c, cohort t to academics from the same discipline d, same country
c but cohort t+ 1 based on the academic’s surname, the first initial. Hence, all potential
links that we consider have identical surnames, initials, disciplines, and countries, but
they are listed in different universities (in cohort t and cohort t+ 1) in the same country,
and the first name is not necessarily identical.55 We then process the potential links as
follows:

1. If the entire information on the first name is identical in both cohorts, we classify
these academics as linked (in some cases, the information on the first name that is
reported for that particular academic may be one or more initials in both cohorts).

2. If the information on the first name differs across the two cohorts, research assistants
examine each potential link and decide whether the academics are the same. To
decide whether a potential link is correct, the research assistants use the following
rules:

55A small number of universities change country over the time period we consider in our analysis. E.g.,
the University of Strasbourg is listed as a German university in 1900 and 1914, but as a French university
from 1925 onward. Hence, the within-country link for the University of Strasbourg considers academics
who moved from or to other German universities between 1900 and 1914, as well as between 1914 and
1925. It also considers academics who moved from or to other French universities between 1914 and 1925
and all following cohorts. The moves from Germany to Strasbourg or from Strasbourg to France between
1914 and 1925 (when the university changed country) are considered in the cross-country link that we
describe below.
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(a) If there are only minor spelling differences in the first name, the research
assistant classifies the potential link as correct (see lines 1 and 2 in Table A.2)

(b) If all initials of the first name are identical and if the first name contains more
than one initial (even if the first name differs e.g., because the academic is listed
with the full first name in one cohort and with initials in the other cohort) the
potential link is classified as correct (see lines 3 and 4 in Table A.2)

(c) If only one initial is reported for one cohort, but a full first name in the other
cohort, the research assistants google the relevant academic. If the research
assistants find online biographical information that confirms that the academic
was indeed employed at university u in the year corresponding to cohort t and
then moved to university u′ before the year corresponding to cohort t+ 1, the
potential link is classified as correct. E.g., K(arl) Röder (see lines 5 and 6 in
Table A.2) could be found online and his Wikipedia entry states that:

“In 1924, Röder went to the Technical University of Stuttgart as a full
professor of machine parts, gear mechanics and machine science. In
1926 he moved to the TH Hanover on the chair of steam engines...”
(translated with Google Translate).

In contrast, if the research assistants cannot find enough biographical infor-
mation, such as for T(ito) Tosi (lines 7 and 8 in Table A.2), they classify the
potential link as incorrect.

Table A.2: Within Country Merge

Cohort Surname First Name University Country Field
1 1925 vilinskij sergej g. Masarykova Universita Czechoslovakia Languages
2 1938 vilinskij sergij g. Masarykova Universita Czechoslovakia Languages
3 1925 jones o. t. University of Manchester UK Geology
4 1938 jones owen thomas University of Cambridge UK Geology
5 1925 roder k. Technische Hochschule Stattgart Germany Engineering
6 1938 roder karl Technische Hochschule Hannover Germany Engineering
7 1925 tosi t. Universita degli Studi Messina Italy Languages
8 1938 tosi tito Universita degli Studi di Firenze Italy Languages

Linking Academics across Countries
Third, we link academics who move across countries. In the first step, we obtain potential
links by merging academics with the same surname, first initial, and discipline d in cohort
t to academics with the same surname, first initial, and discipline d, in cohort t+ 1 who
are listed in two different countries. To rule out false positives, all potential links are
confirmed by extensive manual online searches. All potential links that we consider have
identical surnames and disciplines, but are listed in different countries and the first name
is not necessarily identical. If the research assistants find online biographical information
that confirms that the academic was employed by university u in country c in the year
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corresponding to cohort t and then moved to university u′ in country c′ before the year
corresponding to cohort t+ 1, the potential link is classified as correct.

A.1.5. Increasing the Share of Academics with Full First Names
For most academics, we infer their gender on the basis of their first name and their
country.56 The raw data report full first names for about 77% of academics. We increase
the share of academics with full first names in two ways. First, we use the information
on the same academic from a different cohort (see Appendix section A.1.4. on how we
link academics across cohorts). E.g., the University of Chicago botanist Henry Chandler
Cowles was reported as Henry C. Cowles in 1914 but as H. C. Cowles in 1925. After
linking the observations, we adjust the first name in 1925 to Henry C and can therefore
code the gender of Cowles in 1925.

Second, we hand-check around 60,000 academics who are reported with initials in
all cohorts. For this step, research assistants google the initial(s), surname, discipline,
and university to find online records for the respective academics. If they find a record,
they adjust the first name to include as much information as possible.

These enhancements increase the share of academics with full first names from
around 77% to around 81%. Note, however, that none of the results in this paper de-
pend on these enhancements.

A.2. Additional Information on Coding Gender
A.2.1. Example Google Picture Search
As described in the main text, one of the steps to identify the gender of academics relies
on a Google image search for some first name - country combinations. Figure A.1 shows
an example of the output of the Google image search for “Hadmar Austria.”

A.2.2. Hand-Checking Gender Coding
As described in the main text, in the last step of assigning gender, we hand-check indi-
vidual academics who appear misclassified. Such misclassifications occur mostly because
the predominant gender of a first name - country combination changes over time.57 For
example, French academics with the first name Camille were predominately male in the
early part of the 20th century. In contrast, during the latter half of the century many
French academics with the first name Camille were female. We hand-check such cases as
follows: first, we identify first name - country combinations with the potential of misclas-
sification (e.g., Camille in France); second, research assistants google the actual academic
and try to establish their gender. E.g., for the French biologist Camille Sauvageau, they
find an entry in the Proceedings of the Linnean Society of London (from 1937) which says:
“Camille Savageau (1861-1936), Foreign Member of the Society, was born in Angers on 12

56For some academics, we can use the information on gender from the way that academics are listed
in Minerva (e.g., as Miss or Mlle.) or from their website (e.g., from pictures or personal pronouns).

57Gender-api.com (or any other professional solution that allows to identify the gender of first names by
country) does not have enough underlying data to allow the gender prediction to differ by time periods.
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Figure A.1: Example Google Picture Search for Assignment of Gender

Notes: The Figure shows an example of the Google image search. We apply this search to increase the share of first name by country
combinations that can be assigned as male or female. The Google image search is used if gender-api.com and the hand-coding of research
assistants cannot assign gender to a first name by country. For example, could be positive if the most talented women were both more likely
to get academic positions and to publish well once hired.ombination (see section A.3. for details).

May 1861. He studied at Montpellier...” (see here for details). This allows us to identify
him as male.

A.3. Details on Merging Web of Science with Faculty Rosters
A.3.1. Homogenizing Author Names
The Web of Science lists a string variable corresponding to the name of each author of
the paper. For simplicity, we refer to this variable as “full scientist name.”58 For papers
published during and after the 1970s, the full scientist name reports the scientist’s name
as printed on the original article, e.g., “Whish, William J. D.” For papers published before
the 1970s, however, the full scientist name abbreviates the first name(s) of a scientist by
its initial(s), e.g., “Whish, W. J. D.” To improve the quality of the merge between the Web
of Science and the faculty rosters, we homogenize names by processing them as follows:

1. We remove titles such as “Jr.” or “Dr.” or “Prof.” from the name.

2. We separate the full scientist name into two variables, the scientist’s surname and
the scientist’s first name(s) or initials. The standard format of the full scientist
name is “surname, first name(s)” and we rely on the position of the comma “,” to
separate the surname and the first name(s).

3. We remove noble titles, e.g., “Della” or “Op Den” or “Von Der” or “Viscount.”

4. We extract initial(s) from the scientist’s first name(s).
58In very rare cases, the Web of Science lists multiple coauthors with identical surnames and initials.

Manual checks confirm that most of these are mistakes that occurred in the data entry by the Web of
Science. We, therefore, keep only one of such observationally equivalent coauthors.
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5. We further extract the first of the initials from the list of initials obtained in the
previous step.

A.3.2. Preparing Addresses in Web of Science
Enriching the Address Data from Web of Science with Address Data from
Microsoft Academic Graph
Sometimes, the Web of Science does not report scientists’ addresses, even though the origi-
nal paper actually lists an address. In some of these instances, an alternative database, Mi-
crosoft Academic Graph (MAG), contains the relevant address information. We therefore
enrich the affiliations as reported by the Web of Science with information from MAG.59

We match the information from MAG to the Web of Science as follows:

1. We match the scientist-paper observations that are unique in i) the journal name,
ii) the year of publication, iii) the last word of the scientist’s surname, and iv) the
first page of the paper.

2. We then match the scientist-paper observations that are unique in i) the journal
name, ii) the year of publication, iii) the initial of the scientist’s surname, and iv)
the first page of the paper.

3. We finally match the remaining scientist-paper observations that are unique in i)
the journal name, ii) the year of publication, iii) the last word of the scientist’s
surname, and iv) the first and last words of the paper title.

Expanding Addresses within Journals and Years
We also increase the share of papers with addresses by using information from papers
published by the same author in the same year and journal. For example, Ball JM,
published a paper in 1900, vol. 34, January-June issue of the Journal of the American
Medical Association for which we observe the affiliation “St. Louis, USA.” Ball JM then
published another paper in 1900, vol. 35, July-December issue of the Journal of the
American Medical Association, for which we do not observe an affiliation. We then assign
the affiliation, “St. Louis, USA”, from the first paper to the second paper.

Processing Addresses with Google Maps
Over the very long time period that we study in this paper, some cities changed their
name (e.g., St. Petersburg became Leningrad), and a number of cities changed countries
(e.g., Strasbourg was German in 1900 and 1914, and then became French). Furthermore,
cities may be spelled in different languages in the faculty rosters and on a paper in the
Web of Science. E.g. Rome is spelled using the German spelling “Rom” in Minerva or on
the websites, but it is spelled with either Italian (“Roma”), English (“Rome”), or German

59MAG is a publicly available database of academics, their papers, and citations (see Sinha et al. 2015
for details). While MAG is freely available, the coverage until 1950 is much less comprehensive than the
Web of Science. We, therefore, use the Web of Science as the main source for publications and citations.
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(“Rom”) spelling in the Web of Science, depending on the country of the journal. To
improve the match of papers to the faculty rosters, we therefore harmonize the address
(in particular, the country and city) in the Web of Science with the address in the faculty
rosters using Google Maps. The first step relies on the Google Maps API.

Step 1, part (i). We submit all city-country pairs (e.g., “London, United Kingdom”)
that appear in the Web of Science to the API.60 Google Maps API returns a JSON file
that contains names of the city and the country, the centroid coordinates for the city, and
a location-type flag that indicates the type of address that has been found (e.g. “CITY” if
the Google API found a city). Similarly, we geocode the faculty rosters data with Google
Maps API. This also returns updated names of cities and countries. Crucially, as we
process both addresses from the Web of Science and from the faculty rosters with Google
Maps API, we obtain harmonized addresses without spelling inconsistencies.

Step 1, part (ii). In some cases, the Google Maps API does not find the correct city
and country. This usually occurs either because the name of a city or a country has
changed over time (e.g., the name of Preßburg changed into Bratislava) or because of
typos in the Web of Science. We can identify such cases because the location type flag is
“APPROXIMATE” instead of “CITY”. We improve the geocoding for these cases using
the following 3-step procedure:

1. We structure the address before re-submitting it to the API, (e.g., “’city’ : Preßburg,
’country’ : Hungary”).61

2. For the cases without a result in step one, we re-format the address-city string (e.g.,
“Preßburg,+Hungary”) and then re-submit it to the API.

3. For the cases that do not return a result in steps one and two, we re-submit the
complete address (not just the city and country) from the Web of Science (e.g.,
“Loyola Univ Clinics, Mercy Hosp, Chicago, IL USA”) to the API.

Step 2. In some cases, the procedure above does not guarantee that the correct city and
country has been found. We therefore rely on the Google Maps web interface, as opposed
to the API, for the second step to improve the address data for addresses that appear
misclassified. The advantage of the web interface, compared to the API, is that Google
applies additional processing steps that improve the quality of the result.

To identify addresses that are misclassified, we calculate the Levenshtein distance
between the city name in the Web of Science and the city name that Google returned.

60The Web of Science already contains separate information on the city and country in addition to the
full address.

61This option is not used as a baseline, since it reduces the match rate. Note: while today Bratislava
is in Slovakia, it was part of the Austrian-Hungarian empire before WWI. Scientists from Bratislava
therefore listed Preßburg, Hungary as their affiliation before WWI.
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If the Levenshtein distance is larger than three (i.e., more than 3 letters differ), we copy
the full address from the Web of Science into the Google Maps web interface. If the web
interface finds the address, we extract the city and country from the website and use them
as inputs for the Google Maps API (i.e. Step 1, part i). We further process the output
from the Google Maps web interface with Google Maps API because the web interface
returns somewhat different city and country names than the API.

The processing of addresses ensures that addresses from the faculty rosters and the
Web of Science are harmonized and can then be matched as described in subsection A.4.
below.

A.3.3. Predicting Academic Disciplines of Papers Using Paper Titles
To match papers from the Web of Science to the faculty rosters we also match on the
discipline (subsection A.4. below). The Web of Science assigns papers to academic fields
(e.g., physics or general science) based on the journal they are published in, as opposed
to assigning fields at the paper level. For 59% of the papers, this establishes a unique
assignment to one of the disciplines in the faculty rosters (e.g., the journal Acta Mathe-
matica is uniquely assigned to mathematics). The remaining 41% of papers are published
in journals that the Web of Science either assigns to multiple disciplines (e.g., the jour-
nal Biometrika is assigned to mathematics as well as biology) or to general science (e.g.,
Nature).62 Matching the general science papers to academics would involve considerable
measurement error.

To uniquely assign disciplines at the paper level, independently of where the paper
was published, we train a multinomial logit classifier. This classifier, for example, assigns
the more mathematical papers in Biometrika to mathematics while it assigns the papers
with a biology focus to biology. We train the classifier using the words (unigrams), word
pairs (bigrams), and word triplets (trigrams) from the titles of the 15,078,761 papers
that the Web of Science assigns to unique disciplines (e.g., the papers published in Acta
Mathematica). In preparation for the training of the classifier, we remove very common
words (stopwords) from the titles, as these contain little information. Next, we reduce
words to their morphological roots using a stemmer. Afterwards, we transform the titles
of each paper into a document 1,2,3-gram matrix X of dimension D× V , where D is the
number of papers in our data and V is the total number of unique unigrams, bigrams,
and trigrams in all titles:

X ≡ document 1,2,3–gram matrix =


w1,1 w1,2 · · · w1,V

w2,1
. . . w2,V

... . . . ...
wD,1 wD,2 · · · wD,V

 .

62In the Web of Science (and in the faculty rosters) statistics is a sub-discipline of mathematics.
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The individual entries wd,v represent the number of times n-gram v appears in document d.
The individual entries in the matrix are then reweighted by their term-frequency-inverse-
document-frequency (tf-idf) such that tf-idf(wd,v) = (1 + log(wd,v)) ×

(
log
(

1+D
1+dv

)
+ 1
)
,

where dv is the number of documents n-gram v appears in at least once. This reweighting
reduces the weights of n-grams that appear in many titles of papers (e.g., method).

The multinomial logit classifier then learns to predict disciplines based on the 1,2,3–
gram matrix X, where the dependent variable yd is the discipline of the paper. To
avoid overfitting, we include L2 regularization in the classifier. As is standard in the
machine learning literature, we choose the optimal regularization strength using 10-fold
cross-validation, evaluated on the basis of the F1-score.63 The final classifier achieves a
within-sample F1-score of 0.99 and an out-of-sample F1-score of 0.81. As some biochem-
istry papers are published in chemistry journals, we would expect an F1 score of less than
one. Using our classifier, we predict a unique discipline for the 10,508,299 papers which
the Web of Science originally assigns to multiple disciplines (on the basis of the journal).

A.4. Merging Academics to Web of Science
We match papers from the Web of Science to the faculty rosters using a nine-step proce-
dure. As mentioned in the main text, we match papers from the Web of Science within
a ± five-year window around the year of the corresponding cohort of academics. E.g.,
for scientists listed in the 1914 cohort, we only match papers published between 1909
and 1919. Within these windows, we match the Web of Science data to each cohort of
academics using the following sequential procedure:

1. Merge using: i) full surname, ii) full first name, iii) subject, iv) country, v) city.

2. Merge using: i) full surname, ii) all initials, iii) subject, iv) country, v) city.

3. Merge using: i) full surname, ii) first initial, iii) subject, iv) country, v) city. Sci-
entists and journals do not publish a consistent number of initials. We therefore
exclude matches in which the initials indicate that the paper in the Web of Science
was not published by the scientist listed in the faculty rosters. We use the following
rule to exclude incorrect matches: Denote the string of initials of a scientist in the
faculty rosters by s and the string of initials of the scientist in the Web of Science
by p:

(a) If the number of initials in s and p is identical (|s| = |p|), but the initials differ
(s ̸= p) we exclude the match. For example, a match of a scientist listed in the
faculty rosters with initials “A.A.” will not be merged to a paper published by

63The F1-score is defined as F1= TP
TP+0.5(FP+FN) , where TP is the number of true positives, FP the

number of false positives, and FN the number of false negatives. To speed up the training process, the
10-fold cross validation is run on a 20% random subset of the data before training the final classifier on
the full data.
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someone with initials “A.B.” (Note: as described in step 3, we only consider
matches where the full surname, subject, country, and city match.)

(b) If the number of initials in s and p is not identical (|s| ̸= |p|), we exclude
matches in which not all letters from the shorter set of initials appear in the
other in the same order. To implement this rule, we compute the Levenshtein
distance between the two strings of initials s and p (lev(s, p)). If lev(s, p) is
larger than the difference in the length of the strings, i.e., lev(s, p) > ||s| − |p||
the match is excluded. For example, a scientist listed in the faculty rosters
with initials “A.B.” will not be merged to a paper published by someone with
initials “A.C.D.” or “A.C.B.” but it will be merged to someone with initials
“A.B.C.”

4. We then repeat steps 1-3, but remove the city from the merge conditions.

5. We repeat steps 1-3, but additionally remove the country from the merge conditions.

If one of the authors of a paper is matched to a scientist in an earlier (and thus more
restrictive) step, this particular author will no longer be considered in any following step.
We account for the fact that some papers are merged to multiple scientists by weighting
the papers by the total number of matches. For the time period covered by our paper, the
Web of Science rarely provides a unique assignment of the addresses reported on a paper
to its coauthors: e.g., if a paper has two coauthors, and they are affiliated with different
institutions, usually the Web of Science does not specify which coauthor is affiliated with
which institution. We, therefore, assign each address reported in a paper to all coauthors
of the paper. If more than one address is associated with a paper, we perform a many-to-
many merge of addresses to coauthors. As we show in Table 3, the results are robust to
only considering scientists who have a unique surname, first initial, and discipline in all
universities of the world.
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A.5. Descriptive Information: Minerva Data
Table A.3: Universities in Minerva and WHED

Number of Universities Number of Universities
Country Minerva WHDB Country Minerva WHDB
Afghanistan 2 3 Libya 8 2
Albania 4 5 Lithuania 9 9
Algeria 11 5 Luxembourg 3 1
Angola 4 0 Madagascar 3 1
Argentina 49 23 Malawi 1 1
Armenia 0 13 Malaysia 7 5
Australia 35 29 Mali 1 1
Austria 40 22 Malta 1 1
Azerbaijan 1 16 Martinique 2 1
Bangladesh 101 8 Mauritius 2 0
Barbados 2 0 Mexico 69 101
Belarus 1 25 Moldova 3 7
Belgium 58 25 Mongolia 1 8
Benin 1 0 Montenegro 1 0
Bolivia 9 9 Morocco 10 6
Bosnia and Herzegovina 1 1 Mozambique 1 0
Brazil 150 104 Myanmar (Burma) 10 12
Brunei 1 0 Nepal 21 1
Bulgaria 22 24 Netherlands 58 19
Burundi 2 0 New Zealand 12 6
Cambodia 1 4 Nicaragua 5 4
Cameroon 4 0 Nigeria 16 4
Canada 133 57 North Korea 1 33
Chad 2 0 North Macedonia 1 1
Chile 23 15 Norway 16 12
China 27 561 Pakistan 150 24
Colombia 35 49 Palestine 0 3
Costa Rica 2 3 Panama 2 2
Croatia 14 1 Papua New Guinea 1 0
Cuba 9 6 Paraguay 7 2
Czechia 47 20 Peru 32 18
Ivory Coast 3 3 Philippines 46 436
Democratic Republic of the Congo 7 7 Poland 80 77
Denmark 13 12 Portugal 33 9
Dominican Republic 3 3 Puerto Rico 4 10
Ecuador 11 11 Republic of the Congo 2 0
Egypt 27 7 Romania 70 35
El Salvador 3 2 Russia 90 340
Estonia 3 5 Rwanda 1 0
Ethiopia 2 4 Samoa 4 0
Fiji 1 1 Saudi Arabia 4 2
Finland 16 8 Senegal 2 1
France 351 145 Serbia 14 2
French Guyana 0 1 Sierra Leone 6 0
Gabon 0 1 Singapore 6 3
Georgia 1 12 Slovakia 12 13
Germany 281 133 Slovenia 7 1
Ghana 6 10 Solomon Islands 1 0
Greece 14 12 Somalia 1 1
Guam 1 1 South Africa 28 12
Guatemala 3 1 South Korea 43 96
Guinea 1 0 Spain 137 39
Guyana 3 0 Sri Lanka 87 5
Haiti 3 3 Sudan 7 6
Honduras 2 3 Sweden 27 15
Hong Kong 3 4 Switzerland 33 14
Hungary 64 24 Syria 6 2
Iceland 6 3 Taiwan 24 42
India 1971 103 Tajikistan 0 8
Indonesia 46 62 Tanzania 6 2
Iran 17 23 Thailand 17 43
Iraq 19 1 Trinidad and Tobago 2 2
Ireland 22 8 Tunisia 13 2
Israel 25 21 Turkey 20 16
Italy and Vatican City 229 61 Turkmenistan 0 4
Jamaica 2 4 USA 1540 1554
Japan 291 311 Uganda 3 3
Jordan 7 0 Ukraine 23 147
Kazakhstan 0 26 United Kingdom 309 111
Kenya 4 10 Uruguay 3 7
Kuwait 1 1 Uzbekistan 0 24
Kyrgyzstan 0 10 Venezuela 20 11
Latvia 3 11 Vietnam 11 28
Lebanon 11 10 Zambia 3 1
Lesotho 2 1 Zimbabwe 6 2
Liberia 3 2 Total 7477 5520

Notes: The Table shows the number of universities contained in Minerva in all cohorts from 1900 until 1969. It compares Minerva to the
World Higher Education Database (WHED), available at https://www.whed.net/home.php. Minerva starts listing universities around 5-15
years after they are founded. The last Minerva cohort was published between 1966 and 1969. We therefore report universities contained in
the WHED if they were founded before 1961. The WHED does not include micro-data on individual academics.
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Figure A.2: Academics in Minerva 1900-1969

Notes: The map shows the total number of person-cohort observations in all Minerva cohorts 1900-1969 by city. All academics are represented by blue dots, female academics are represented by orange dots. The data were
collected by the authors from various volumes of Minerva, see section 1 for details.
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A.6. Benchmarking the Minerva Data
To the best of our knowledge, there are no comparable data covering academics on a
worldwide scale over many decades. To provide evidence of its coverage, we benchmark
the Minerva data in two ways. First, we show that the number of universities covered in
Minerva is similar to the number of universities included in the World Higher Education
Database (WHED (2024), see Appendix Table A.3). The comparison indicates that Min-
erva captures a very large fraction of worldwide universities. For most countries, Minerva
covers more universities than are listed in the World Higher Education Database. Because
the Soviet Union stopped reporting academics for Minerva from the 1938 cohort onwards,
the coverage is worse for Russia and other countries that were part of the Soviet Union.
The coverage is also lower in China, which only established a modern university sector
during the course of the 20th century.

As the WHED does not include microdata on individual academics, we perform
additional benchmarking exercises on smaller datasets that list individual academics in
some universities and time periods.

A.6.1. Benchmarking Against Rossiter (1982)/American Men of Science (1938)
Rossiter (1982), pp. 182 reports female scientists in twenty major U.S. universities for the
year 1938. The data are based on women listed in the historical publication American
Men of Science (AMS), 6th edition, 1938. The data contain all female scientists who are
listed in the AMS for twenty leading U.S. institutions.

For the benchmarking exercise, we extract all female scientists who are at least as-
sistant professors that are listed in these twenty universities in Minerva 1938. We then
cross-check all names and identify women listed in both sources. Both sources combined
list a total of 427 different female academics, which we take as the best available informa-
tion for the total number of women in these twenty universities in 1938 (first bar, Figure
A.3. Of these, 399 (93%) are listed in Minerva (second bar).64 In contrast, Rossiter, on
the basis of the American Men of Science, only lists 112 (26%) of them (third bar). This
indicates that Minerva 1938 has a much more comprehensive coverage of academics in
the top twenty U.S. universities for 1938 than the American Men of Science.

A.6.2. Benchmarking Against German University Catalog Data
We also benchmark the Minerva data against data from semi-official German univer-
sity calendars listing all academics who were lecturing in any German university dur-
ing the winter semester 1937/38. The university calendar was published by J.A. Barth.
He collected official university calendars from all 32 German universities and compiled
them into one volume called Kalender der reichsdeutschen Universitäten und Hochschulen.

64The 7% missing female academics in Minerva are due to the following reasons: 1) in 1938 Minnesota
(one of the 20 universities) only reported full professors in Minerva but Rossiter reports 9 female assistant
or associate professors for Minnesota. 2) even though both sources were published in 1938 they may
report faculty based on slightly different cutoff dates.
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Figure A.3: Benchmarking Minerva Against Rossiter (1982) / American Men
of Science (1938)
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Notes: The Figure shows the number of female scientists in twenty major U.S. universities for the year 1938 and how they are covered by
different sources.

We extract all physicists, chemists, and mathematicians in the same way as Waldinger
(2012). Overall, these data contain 866 scientists in the three fields for the winter semester
1937/38. We then match these scientists to Minerva, matching on the surname, first name,
discipline, and university. Of the 866 scientists, we can match 853 scientists in Minerva,
a match rate of 98.5%, suggesting that the coverage of Minerva was very comprehensive.
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B Further Results: Hiring Gaps

Figure B.1: Percent of Female Academics by Country over Time, Additional
Evidence
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0

5

10

15

20

25

30

35

40

45

50

55

P
e

rc
e

n
t 

F
e

m
a

le
 A

c
a

d
e

m
ic

s

1900 1920 1940 1960 1980 2000

Greece

Belgium

Finland

Switzerland

Hungary

Denmark
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Notes: The Figure shows the percentage of female academics by country over time. Panel (a) plots the percentage of female academics across
all universities and disciplines until 1969 (sample 1), excluding women’s colleges. Panels (b)-(d) plot the percentage of female scientists in
prestigious universities (sample 3). The data were collected by the authors from various volumes of Minerva and department websites, see
section 1 for details.
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Figure B.2: Correlation of Percent Female Academics with General Labor
Force Participation of Women

Notes: The Figure shows the percentage of female academics (vertical axis) and the percentage of females (among all females) who work in the
labor market. Each dot represents a country-cohort pair (e.g., USA in 1969). The data were collected by the authors from various volumes of
Minerva and department websites, see section 1 for details. The data on general labor force participation come from International Historical
Statistics Africa and Asia, the Americas and Australasia, and Europe (Mitchell (1982, 1983, 1993). The female share is calculated as the
number of women working in all sectors amongst all women aged 15 and above. The data for the United States come from Killingsworth and
Heckman (1986), Table 2.1.

Figure B.3: Percent of Female Academics, Additional Disciplines
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Notes: The Figure shows the percentage of female academics by discipline for additional disciplines not reported in the main paper for the
period 1900-1969 (sample 1). Note that the figure combines Business and Home Economics into one line. The data were collected by the
authors from various volumes of Minerva and department websites, see section 1 for details.
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C A More General Roy Model
In the more general version of the model that we estimate, we relax assumptions (ii)-(iv)
(see main text). In particular, the latent value of hiring a woman is specified as:

Y W
0i = rW

(
XW

i

)
+ ϵW0i , (C.1)

while that of hiring a man is:

Y M
0i = rM

(
XM

i

)
+∆0 + ϵM0i , (C.2)

where rg(·) is an unknown function of observable characteristics Xg
i , g ∈ {W,M}, ∆0

is a possible gender bias in hiring, and ϵg0i is the unobserved component of these latent
valuations. As a result, academic position i is filled with a woman if:

Y0i =
(
ϵW0i − ϵM0i

)
+ rW

(
XW

i

)
− rM

(
XM

i

)
−∆0

= ϵ0i − r0 (Xi) > 0,

(C.3)

with ϵ0i ≡ ϵW0i −ϵM0i ,Xi ≡
(
XW

i , XM
i

)
, and r0 (Xi) ≡ rM

(
XM

i

)
−rW

(
XW

i

)
+∆0. We assume

that, while non-parametric with respect to Xi,65 r0(·) however satisfies the exclusion
restriction that it does not depend on sW0 , so that the gender bias in hiring is not itself a
function of the share of women among all hired scientists. The error term ϵ0i is distributed
according to F , an unknown c.d.f. assumed to be invertible. Given these, the share of
female scientists, conditional on observable characteristics Xi, can be expressed as:

sW0 (Xi) = Pr[Y0i > 0] = Pr [ϵ0i > r0 (Xi)] = 1− Pr [ϵ0i ≤ r0 (Xi)]

= 1− F (r0 (Xi)) .

(C.4)

Because observable characteristics Xi are unavailable on a worldwide scale over the 20th
century, we assume Xi = X0 for all i’s, with X0 some constant value such that rM

(
XM

0

)
=

rW
(
XW

0

)
.66 It then follows that equation (C.4) simplifies to sW0 = 1−F (∆0), representing

the share of women among all hired scientists.67 This and the invertibility of F imply
that ∆0 = F−1

(
1− sW0

)
, a fact we use below in equations (C.6) and (C.7).

Publication Market
In this more general version of the model, we allow the gender bias in publications ∆1 to

65For example, r0(·) trivially fits the linear specification r0 (Xi) = Xiβ0 +∆0 assumed in equation (5),
but can also take the more general form r0 (Xi) = h (Xi, β0)+∆0, with h (Xi, β0) any function of Xi and
the parameter β0 (of any dimension).

66For example, if rM (·) = rW (·), this would hold for any X0 such that XM
0 = XW

0 .
67This clarifies the practical implication of the assumed exclusion restriction embedded in assumption

(i) (see main text): if r0
(
Xi, s

W
0

)
, even when Xi = X0 for all i’s, with X0 some constant value such that

r0
(
X0, s

W
0

)
= r0

(
sW0
)
, equation (C.4) would still take the rather inconvenient form sW0 = 1−F

(
r0
(
sW0
))

.
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be a function of the share of female scientists, ∆1

(
sW0
)
. Conditional on academic position

i being filled by either a woman or a man at the hiring stage, we observe the following
outcome equations at the publication stage:

Y W
1i = ZW

i β1 + ϵW1i if Y0i > 0

Y M
1i = ZM

i β1 +∆1

(
sW0
)
+ ϵM1i if Y0i ≤ 0,

(C.5)

where Zg
i , g ∈ {W,M}, are observable characteristics and ϵg1i is the unobserved component

of the publication outcome Y g
1i.

Publications Conditional on Gender
The expectation of Y W

1i conditional on Y0i > 0 from equation (C.5) is:

E
[
Y W
1i

∣∣Xi, Z
W
i , Y0i > 0

]
= ZW

i β1 + E
[
ϵW1i
∣∣ ϵ0i > ∆0

]
= ZW

i β1 + g̃W (∆0) = ZW
i β1 + g̃W

(
F−1

(
1− sW0

))
= ZW

i β1 + gW
(
sW0
)
.

(C.6)

Analogously, the expectation of Y M
1i conditional on Y0i ≤ 0 from equation (C.5) is:

E
[
Y M
1i

∣∣Xi, Z
M
i , Y0i ≤ 0

]
= ZM

i β1 +∆1

(
sW0
)
+ E

[
ϵM1i
∣∣ ϵ0i ≤ ∆0

]
= ZM

i β1 +∆1

(
sW0
)
+ g̃M

(
F−1

(
1− sW0

))
= ZM

i β1 +∆1

(
sW0
)
+ gM

(
sW0
)

= ZM
i β1 +GM

(
sW0
)
.

(C.7)

Without further assumptions, it is not possible to separately identify the various compo-
nents of gW (·) and GM (·).68 To avoid unnecessarily strong functional form restrictions,
we directly approximate these functions by polynomial expansions of the share of female
scientists: gW

(
sW0
)
=
∑2

κ=0 θ
W
κ ×

(
sW0
)κ and GM

(
sW0
)
=
∑2

κ=0 θ
M
κ ×

(
sW0
)κ, respectively.

Following the same steps used to obtain regression (12), by assuming that ZW
i = ZM

i = Zi,
we estimate equations (C.6) and (C.7) on the basis of a the following regression:

Pubit = γ +
2∑

κ=0

(
sW0ℓ(i)

)κ
×
(
γκ1 Femalei × 1 [t(i) = 1900/38]

+ γκ2 Femalei × 1 [t(i) = 1956/69] + γκ3 Femalei × 1[t(i) = 2000]
)

+ Experienceitγexp + FE(i, t) + εit,

(C.8)

68Assumptions (ii)-(iv) in the parametric version of the model overcome this lack of identification (see
main text).
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where Pubit measures the standardized number of papers published by scientist i in cohort
t(i), sW0ℓ(i) is the share of female scientists in i’s cohort-country ℓ(i) (e.g., the USA in 2000),
and each γκp corresponds to the portion of gender gap θWκp − θMκp, κ = 0, 1, 2, which we
estimate separately for each period p = 1, 2, 3.

The estimation results of this version of the model are reported in the main text in
Table 4, columns (4)-(6), and the corresponding predicted gender gap functions plotted in
Figure 7, panel (b). The figure summarizes the estimation results by plotting, separately
for each period p, the predicted gender gap function ĝp

(
sW0ℓ
)
= ĝW,p

(
sW0ℓ
)
− ĜM,p

(
sW0ℓ
)
=

2∑
κ=0

γ̂κ,p ×
(
sW0ℓ
)κ against observed values of sW0ℓ .

D Further Details and Results: Citation Gaps
D.1. Further Details: Predicted Citations
As outlined in the main text, we aim to account flexibly for the topic of each paper which
could influence citations. We estimate a ridge regression that uses the words (unigrams)
and word pairs (bigrams) that appear in the title of the 749,291 scientific papers, that
we match to at least one scientist in our data. The model learns how many citations, on
average, papers in finely-grained research fields typically receive.69

In preparation for the ridge regression, we remove stopwords from the titles and
reduce all words to their morphological roots using a stemmer. We then transform the
titles of each paper into a document 1,2-gram matrix X of dimension P × V , where D is
the number of papers and V is the total number of unique unigrams and bigrams plus 30
indicators for the length of titles.70

The model minimizes equation (13) to identify the n-grams that have the highest
predictive power for citations. The regularization term λ reduces overfitting of the model
to the training sample by picking up individual n-grams that appear in some extremely
successful papers. We choose the optimal normalization strength using 10-fold cross-
validation.71 To incorporate differences in citations for papers published in different time
periods and disciplines, we fit the model separately for each of our cohorts and disciplines.
The model can thus account for the changing importance of topics over time and across
disciplines.
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Figure D.1: Gender Gaps in Citations over Time
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Notes: The Figure shows gender gaps in citations over time for the sample of prestigious universities (sample 3). The gender gaps are estimated
with equation (14). The regression controls for cohort-discipline-country fixed effects and the predicted citation controls.

D.2. Further Results: Citation Gaps

Table D.1: Citations Gaps: Controlling for Predicted Citations (Robustness)

Out of Out of Linear Non-Parametric Without Citation Double
Baseline Sample Sample Control Control Winsorization Count ML

(1) (2) (3) (4) (5) (6) (7) (8)

Sample 2: All Universities, Sciences, 1900-1969
Female-First/Last Author (1900/14) -0.143* -0.116 -0.093 -0.160* -0.142* -0.139*** -2.975** -0.103*

(0.082) (0.100) (0.090) (0.086) (0.079) (0.032) (1.377) (0.054)
[0.132] [0.134] [0.116] [0.142] [0.143] [0.093] [3.278]

Female-First/Last Author (1925/38) -0.130*** -0.134*** -0.131*** -0.159*** -0.132*** -0.075*** -3.310* -0.122***
(0.035) (0.038) (0.038) (0.033) (0.034) (0.028) (1.902) (0.033)
[0.051] [0.044] [0.048] [0.05] [0.049] [0.035] [2.711]

Female-First/Last Author (1956/69) -0.124*** -0.118*** -0.114*** -0.132*** -0.118*** -0.081*** -7.318*** -0.124***
(0.017) (0.015) (0.013) (0.018) (0.017) (0.013) (1.033) (0.013)
[0.025] [0.019] [0.021] [0.025] [0.028] [0.019] [1.5]

Observations 255,768 255,768 255,768 255,768 255,768 255,768 255,768 255,768
R2 0.470 0.097 0.098 0.433 0.504 0.547 0.678

Sample 3: Prestigious Universities, Sciences, 1900-2000
Female-First/Last Author (1900/14) -0.160 -0.143 -0.122 -0.161 -0.171 -0.102 -3.879* -0.116

(0.117) (0.130) (0.110) (0.118) (0.114) (0.063) (2.020) (0.084)
[0.123] [0.143] [0.145] [0.123] [0.125] [0.082] [3.779]

Female-First/Last Author (1925/38) -0.104** -0.101** -0.101** -0.125*** -0.106** -0.054 -1.807 -0.095**
(0.044) (0.044) (0.044) (0.040) (0.043) (0.043) (2.951) (0.045)
[0.06] [0.053] [0.06] [0.058] [0.06] [0.048] [3.6]

Female-First/Last Author (1956/69) -0.151*** -0.144*** -0.142*** -0.152*** -0.149*** -0.100*** -8.949*** -0.144***
(0.026) (0.024) (0.023) (0.026) (0.026) (0.018) (1.728) (0.019)
[0.033] [0.03] [0.034] [0.033] [0.033] [0.025] [2.134]

Female-First/Last Author (2000) -0.051*** -0.063*** -0.064*** -0.056*** -0.053*** -0.043*** -2.824*** -0.068***
(0.007) (0.008) (0.007) (0.007) (0.007) (0.006) (0.426) (0.005)
[0.009] [0.009] [0.011] [0.009] [0.009] [0.007] [0.449]

Observations 611,513 611,513 611,513 611,513 611,513 611,513 611,513 611,513
R2 0.375 0.133 0.137 0.356 0.395 0.394 0.641
Cohort×Discipline×Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Predicted Citations Control Yes Yes Yes Yes
Predicted Citations Control (Out-of-Sample) Yes
Predicted Citations Control (All, Out-of-Sample) Yes
Predicted Citations (1000 bins) FE Yes

Notes: The Table shows gender gaps in citations. Results are estimated at the paper level. The dependent variable is the winsorized citation
count, which we standardize at the cohort-country-discipline level. T The main explanatory variable is an indicator that equals 1 if the paper’s
first or last author is a woman, interacted with the relevant cohort(s). The regressions control for various fixed effects, as indicated in the
table. Additionally, the regressions control for the first and second-degree polynomial of the predicted citation variable or for 1000 indicators
for the permilles of the predicted citation distribution interacted with discipline indicators. Predicted citations are based on unigrams and
bigrams of papers and estimated with a L2-regularized regression model. Standard errors are clustered at the discipline-country level with 781
clusters in sample 2 and 1,816 in sample 3. We additionally report boostrapped standard errors in square brackets. Significance levels: ∗∗∗
p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

69Hill and Stein (2021) use a similar approach based on information from the Protein Data Bank to
train a machine learning model to predict citations of academic research.

70The last indicator equals one for all titles with 30 words or more.
71We consider values of λ in a range of 1 to 10.
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Table D.2: Citations Gaps: Definition of Female Paper (Robustness)

Female Female Female
Baseline Indicator First-Author Share

(1) (2) (3) (4)

Sample 2: All Universities, Sciences, 1900-1969
Female Paper (1900/14) -0.143* -0.145* -0.138* -0.136

(0.082) (0.080) (0.080) (0.090)
[0.132] [0.134] [0.116] [0.142]

Female Paper (1925/38) -0.130*** -0.104** -0.136*** -0.107***
(0.035) (0.044) (0.046) (0.041)
[0.051] [0.044] [0.048] [0.05]

Female Paper (1956/69) -0.124*** -0.115*** -0.133*** -0.130***
(0.017) (0.017) (0.023) (0.018)
[0.025] [0.019] [0.021] [0.025]

Observations 255,768 255,768 255,768 255,768
R2 0.470 0.469 0.469 0.470

Sample 3: Prestigious Universities, Sciences, 1900-2000
Female Paper (1900/14) -0.160 -0.161 -0.153* -0.161

(0.117) (0.115) (0.085) (0.116)
[0.123] [0.143] [0.145] [0.123]

Female Paper (1925/38) -0.104** -0.066 -0.115** -0.068
(0.044) (0.057) (0.055) (0.058)
[0.06] [0.053] [0.06] [0.058]

Female Paper (1956/69) -0.151*** -0.150*** -0.165*** -0.170***
(0.026) (0.024) (0.028) (0.028)
[0.033] [0.03] [0.034] [0.033]

Female Paper (2000) -0.051*** -0.008 -0.058*** -0.028***
(0.007) (0.007) (0.010) (0.009)
[0.009] [0.009] [0.011] [0.009]

Observations 611,513 611,513 611,513 611,513
R2 0.375 0.375 0.375 0.375
Predicted Citations Control Yes Yes Yes Yes
Cohort×Discipline×Country FE Yes Yes Yes Yes

Notes: The Table shows gender gaps in citations. Results are estimated at the paper level. The dependent variable is the winsorized
citation count, which we standardize at the cohort-country-discipline level. The main explanatory variables are different definitions of
female-authored papers, interacted with the relevant cohort(s). Column 1 uses an indicator that equals 1 if the paper’s first or last au-
thor is a woman. In column 2, the indicator variable is equal to 1 if the paper has at least 1 female author. In column 3, the indicator
variable is equal to 1 if the first author of the paper is a woman. Column 4 uses the share of female authors on a paper. The regres-
sions also control for various fixed effects, as indicated in the table. Additionally, the regressions control for the first and second-degree
polynomial of the predicted citation variable. Predicted citations are based on unigrams and bigrams of papers and estimated with a
L2-regularized regression model. Standard errors are clustered at the discipline-country level with 781 clusters in sample 2 and 1,816 in
sample 3. We additionally report bootstrap standard errors in square brackets. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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E Further Results: Promotion Gaps

Table E.1: Promotions to Full Professor by Department Quality

Promotion to Full Professor Sample 2 Sample 3

Men Women Total Men Women Total
No Promotion 72.01% 88.04% 73.13% 70.18% 85.38% 70.95%
Promotion in Worse Department 4.73% 1.03% 4.47% 5.40% 1.73% 5.21%
Promotion in Same Department 19.87% 10.07% 19.18% 20.32% 12.11% 19.90%
Promotion in Better Department 3.39% 0.86% 3.22% 4.10% 0.79% 3.93%

Observations 15,411 1,162 16,573 11,944 636 12,580
Notes: The Table shows the probability of promotion to full professor by department quality and gender. Sample 2 includes scientists
(mathematics, physics, chemistry, biochemistry, and biology) in all universities until 1969. Sample 3 includes scientists in prestigious universities
until 2000. The quality of departments is determined from the ranking of the average (over scientists and across cohorts) standardized citations
of departments as observed in Sample 2. The probabilities of promotion to full professor in a worse, same, or better department are computed
as averages of indicators that equal 1 if a scientist who entered the dataset in cohort t − 1 at a lower rank than full professor was promoted
to full professor by cohort t in a department of a worse, same, or better quality than the quality of the scientist’s department in cohort t − 1.
The columns “Men” and “Women” report the probabilities of promotion to full professor by department quality only among men and women
scientists, respectively.
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