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Abstract

We study the tail dispersion risk in the cross-section of asset prices at high

frequencies. We show that the cross-sectional tail behavior of asset returns

depends on whether the price increment contains a systematic jump event or

not. In case of systematic jumps, the cross-sectional asset return tail behavior is

determined by the assets’ exposures to the systematic event, while if the interval

contains no systematic jump, it is determined by the tails of the idiosyncratic

jumps. We develop an estimator for the tail shape of the cross-sectional asset

return distribution with distinct asymptotic properties, depending on whether

the interval contains a systematic jump or not. We show empirically that shocks

to the tail shape parameters of the cross-sectional asset return distribution are

source of priced risk. The price of this tail dispersion risk depends on its source:

fat idiosyncratic tails are liked by investors and carry negative premiums, while

fat tails in assets’ exposures to systematic jumps are disliked and carry positive

premiums.
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1 Introduction

Tail risk in asset returns plays an important role in financial economics. In particular,
there is extensive evidence showing that investors demand compensation for bearing
tail risk. Our objective is to study a tail dispersion risk in the cross-section of asset
prices at high frequencies. The focus on high-frequency returns allows us to establish,
in a model-free (nonparametric) way, a connection between the tail risk dispersion of
the assets and the underlying features of the assets’ return dynamics. More specifi-
cally, we show that the tail behavior of the cross-sectional asset return distribution
differs depending on whether the time interval contains a systematic jump event or
not. The latter is defined as a jump that has a pervasive effect on the entire cross-
section of asset prices, i.e., it affects a nontrivial fraction of the stocks. Examples
of systematic jumps are times when the market portfolio jumps or, more generally,
when systematic risk factors affecting the returns exhibit a jump.1 When a system-
atic jump is present within a short time interval, the tails of the cross-sectional return
distribution are governed by the assets’ exposure to that jump risk. When this is not
the case, the tails of the cross-sectional return distribution are determined by the tail
properties of the idiosyncratic jump risk in asset prices. In contrast, if we were to
consider returns over coarser time intervals, the cross-sectional tail behavior will be
governed by the mixture of these two sources of tail risk as well as the properties of
the time-varying asset volatility. The use of high-frequency data, therefore, is critical
for us in disentangling the different sources of tail risk in asset prices.

We develop inference tools for assessing the cross-sectional tail dispersion risk in
asset prices at high frequencies. Specifically, assuming that the cross-sectional return
tails obey an approximate power law, we characterize the tail behavior via two param-
eters only - the scale and shape of the tails. We propose non-parametric estimators
of these tail shape parameters using a large cross-section of asset returns. The es-

1While many systematic jumps can be connected with observable factors, Jacod et al. (2024)
show that the cross-section of asset returns often is exposed to such systematic events that are not
readily connected to jumps in observable factors.
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timators have different asymptotic behavior depending on whether the time interval
contains a systematic jump or not. The reason is the very different manifestation
of idiosyncratic and systematic jumps in the high-frequency data. On the one hand,
estimating the tail behavior from exposure to systematic jumps is infeasible unless
they occur within our high-frequency intervals. On the other hand, whenever such a
jump occurs, a nontrivial fraction of the assets jump and can be used for estimating
the tails. In contrast, the likelihood of an idiosyncratic jump is proportional to the
length of the interval, which shrinks asymptotically in our setting. Nonetheless, for
this scenario, we can exploit a string of consecutive time intervals for estimation,
which is not possible for systematic jumps because they, by definition, are rare events
that materialize only at distinct instances. We establish asymptotic normality of our
tail estimators under the condition that both the number of stocks and the sampling
frequency diverge. We also propose a goodness-of-fit test for the power law in the
tails based on a Kolmogorov-Smirnov (KS) statistic.

Implementing our inference procedures, the goodness-of-fit test suggests that the
power law provides a good approximation to the tail features of the cross-sectional
asset return distributions for the S&P 500 equity index constituents at the 10-minute
frequency between 2003 and 2022. We further find nontrivial variation in the time
series of the tail shape indices over the sample period. Moreover, the time-series
variation in the tail shape indices of systematic and idiosyncratic jumps differ, and
their dynamics are distinct from that of the market volatility as well as the common
idiosyncratic volatility (i.e., the cross-sectional average of idiosyncratic volatility).

These differences in time-series behavior imply that shocks to the tail shape pa-
rameter of the cross-sectional high-frequency return distribution may constitute a
distinct source of systematic risk that is of concern to investors. We investigate this
hypothesis through formal asset pricing tests. For this analysis, we use daily returns
for the universe of all traded stocks between 2004 and 2022, except for the exclusion
of micro-cap and penny stocks, following common practice in the literature. Hence,
we enlarge the cross-section in the asset pricing test significantly relative to the one
used for constructing the tail shape indices, with the latter requiring returns that
are robust to market microstructure frictions. Our interest is whether innovations
(shocks) to the tail shape indices are priced sources of risk. Towards this end, we
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estimate the assets’ exposure towards these shocks using daily returns and our daily
time series of tail shape indices. We then implement a classic sorting exercise on the
tail shape betas and check if the generated spread of the high-minus-low portfolios
can be rationalized with exposures to existing systematic factors.

We find that stocks with high exposure to positive shocks to the systematic jump
tail shape, i.e., stocks that perform relatively well when the tails fatten, have low
future returns. The return spread between the Low and High quintile portfolios is
economically large and remains statistically significant after controlling for a number
of systematic risk factors including the Market, Fama-French three/five/six factors
(FF3/FF5/FF6, Fama and French (1993, 2015, 2018)), the tail risk factor by Kelly
and Jiang (2014), the idiosyncratic risk factor of Ang et al. (2006)), and the common
idiosyncratic volatility factor of Herskovic et al. (2016). The portfolio performance
is robust to different weighting schemes (equal/value weight) and portfolio holding
windows (one/three months). The results suggest that investors dislike fat tails in
the distribution of assets’ exposure to systematic jumps and, vice versa, favor thin
tails. Economically, it implies that periods of elevated cross-sectional dispersion at
systematic jump events are viewed as bad scenarios and hedging them requires a risk
premium in equilibrium. Of course, this is also consistent with the standard view
that investors are averse to increased return dispersion induced by systematic risk.

In contrast, our analysis reveals a striking and significant reversal in the sign of
the risk premium when we consider shocks to the tail shape index of the idiosyncratic
jumps. These tail shocks are also priced, but the price of risk is now negative. That
is, investors react favorably to a fattening of the idiosyncratic jump tails in asset re-
turns. The return spread between the High and Low quintile portfolios sorted on the
idiosyncratic tail shape betas is positive and statistically significant after controlling
for our set of common risk factors. These portfolio sorting results are robust to both
the equal/value weighting schemes and portfolio holding window (one/three months).
This finding is harder to rationalize within standard economic models in which higher
volatility and/or jump risk typically is disliked by investors. However, this type of
result has been obtained in a number of prior studies, and the usual explanation is
behavioral - investors seem to have an element of lottery-like preferences, as docu-
mented in equity and option market settings by, e.g., Boyer and Vorkink (2014); Blau
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et al. (2016) and Filippou et al. (2018). Prior theoretical research has also explored
the modeling of lottery-like preferences and their pricing implications; for example,
the optimal belief model by Brunnermeier et al. (2007) and the cumulative prospect
theory by Barberis and Huang (2008).

The finding of a significant premium for tail shape risk that changes sign - depend-
ing on whether the return dispersion stems from systematic or idiosyncratic jumps -
demonstrates the necessity of treating price increments with and without systematic
jumps differently. A natural question is whether these tail shape risks are related?
We find that there is a very weak correlation between the shocks and between the
high-versus-low portfolios sorted on the different tail-shape betas. Consequently, the
economic mechanisms explaining these pricing effects differ, as already alluded to
above. From a practical point of view, this implies that one can obtain even stronger
performance by exploiting these pricing effects jointly. Towards this end, we construct
a simple equally-weighted portfolio with the two sorted portfolios, namely, the HmL
portfolio sorted on idiosyncratic jump tail shape shock betas and the LmH portfo-
lio sorted on systematic jump tail shape shock betas. The combined portfolio has
zero-net cost and achieves additional diversification through the weighting scheme.
We show this portfolio, as hypothesized, delivers a higher Sharpe ratio than the two
individual tail-risk sorted portfolios.

Related Literature

Our study is situated within a broader literature that explores the power-law tail be-
havior of various economic and financial variables. Power-law tail patterns have been
observed in domains ranging from city sizes (Kingsley Zipf (1932); Gabaix (1999);
Eeckhout (2004)), income distributions of companies (Okuyama et al. (1999)), firm
sizes (Axtell (2001)), macroeconomic disasters (Barro and Jin (2011)), and stock
trading volume (Gopikrishnan et al. (2000)). These studies find that power-law tail
behavior is crucial for comprehending key mechanisms in economics and finance like
the source of aggregate economic fluctuations. For example, Gabaix et al. (2003,
2006) argue that heavy-tailed financial returns and the stock market crashes can be
explained by concentrated trades by large market participants. The heavy-tailedness
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in firm sizes is used to explain the aggregate economic movements in the US market
(Gabaix (2011)) and the international market (Di Giovanni and Levchenko (2012)).
Acemoglu et al. (2012, 2017) show that when there exist fat-tailed inter-sectoral input-
output linkages, micro-economic idiosyncratic shocks may lead to sizable aggregate
fluctuation and systematic macroeconomic tail risks.

Our paper is closely related to studies exploring the power-law behavior of stock
returns. Financial returns are known to conform to a heavy-tailed distribution that
can be accommodated by a Pareto distribution; see, e.g., Mandelbrot (1963); Fama
(1965); Gopikrishnan et al. (1999); Gabaix (2012). Bollerslev and Todorov (2011)
propose a non-parametric estimator of tail-shape risk, which is the tail-shape param-
eter of the power law based on high-frequency data of univariate processes. Notably,
substantial time-variation and serial dependence is found in the market tail-risk index
by Bollerslev and Todorov (2011) and Bollerslev et al. (2015), with the latter using
option data for estimation. Unlike these studies, our focus is on the cross-sectional
tail behavior in a large number of assets and its implications for asset prices.

Our focus on the tails of the cross-sectional asset return distribution is similar
to that of Kelly and Jiang (2014), who study the time-varying cross-sectional tail
risk estimated from daily data. They find empirically that the daily tail shape index
can be used in stock return prediction. Different from Kelly and Jiang (2014), we
investigate the cross-sectional tail behavior of returns at high frequencies. We find
that this behavior differs both from a statistical and economic point of view depending
on whether the time interval contains a systematic jump event or not. In that sense,
we explore the granular origin of cross-sectional tail dispersion risk in asset prices.

Finally, our work is closely connected to the general literature on tail risk and time-
varying volatility risk, as well as their effect on the cross-section of asset prices. The
literature on tail risk and asset pricing is extensive. Jump tail risk, and in particular
the left jump tail, is shown to be helpful in predicting future returns in the U.S. market
(Bollerslev et al. (2015); Andersen et al. (2015)) and internationally (Andersen et al.
(2020, 2021). Lin and Todorov (2019) find that aggregate idiosyncratic asymmetric
jump variations predict future equity returns. Several studies show that tail risks help
explain the cross-section of asset returns. Cremers et al. (2015) find that stocks with
high exposure to aggregate jump risk have contemporaneous high expected returns
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in the cross-section. Bollerslev et al. (2016) show that jump betas entail significant
risk premiums. Bollerslev et al. (2020) find stocks with high positive-minus-negative
jump volatilities have high returns. Ang et al. (2006) find that stocks with low
(idiosyncratic) volatilities have high positive returns. Bali et al. (2011) explain the
puzzling effect of idiosyncratic risk using lottery-like preferences and find that stocks
with historically high maximum returns are overpriced and have low future returns
in the cross-section. Herskovic et al. (2016) evaluate the aggregated idiosyncratic
risk and find that shocks to the common idiosyncratic volatility (CiV) are negatively
priced. We contribute to this strand of the literature by examining the distinct pricing
implications of shocks to the tail shape of the cross-sectional asset return distribution
stemming from systematic versus idiosyncratic high-frequency jumps.

Outline

The remainder of the paper is organized as follows. Section 2 introduces our model
setup and states the assumptions. Section 3 presents our theoretical inference results.
Section 4 contains a Monte Carlo study. We assess empirically the cross-sectional
asset return tail dispersion risk in Section 5. Asset pricing implications of cross-
sectional asset tail risk variation are provided in Section 6. All proofs and additional
mathematical details and empirical results are collected in Appendices A–G.

2 Setup

We denote the log-price of an asset i at time t with pit for i = 1, ..., N . It has the
following general dynamics:

pit = pi0 +

∫ t

0

αisds+

∫ t

0

β>i,sdWs +

∫ t

0

σ̃isdW̃is + Jit + J̃it, (2.1)

where Wt = (W 1
t , ...,W

k
t )>, for some positive integer k and W 1

t , ...,W
k
t , W̃1t,..., W̃Nt

are independent standard Brownian motions, Jit and J̃it are the systematic and id-
iosyncratic respectively jump components of the asset prices. The formal definition of
these processes is given in Appendix D. On an intuitive level, however, the difference
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between systematic and idiosyncratic jumps is clear: the former are pervasive in the
sense that they arrive together and impact a nontrivial fraction of the cross-section
of asset prices, while the latter arrive independently. Our setup is very general and
does not involve any assumption regarding the source of risk driving the systematic
jumps, i.e., we do no link the systematic jumps to jumps of observable systematic
risk factors. Similarly, we do not make an assumption about the source of systematic
diffusive risk. This is an important generality of our setup given the large number of
alternative systematic factors put forth in the asset pricing literature.

As we will see later, the cross-sectional tail behavior of asset prices at high fre-
quencies depends critically on whether the given interval contains a systematic jump
or not. The timing of systematic jumps can be consistently estimated using the
method of Jacod et al. (2024). We assume that this identification of systematic jump
locations has been performed, and we state this as a high-level assumption.

Towards this end, suppose we sample the asset prices over the fixed interval [0, 1]

at equidistant times 0, 1/n, 2/n, ..., 1 and denote the length of the sampling interval
by ∆n = 1/n and the log-price increment by ∆n

j pi = pi,j∆n−pi,(j−1)∆n , for j = 1, ..., n.
Let us denote with Tn the set of indices of the high-frequency increments containing
the systematic jumps and with T̂n an estimator of this set. Formal definitions of
Tn and T̂n are given in Appendix D. In our application we will use the method of
systematic jump identification given in Jacod et al. (2024). Our tail inference will be
performed separately on T̂n and its compliment set T̂ cn, i.e., on the set of increments
with and without detected systematic jumps.

We focus on the cross-sectional tail behavior of high-frequency returns which, in
turn, is linked to the tail behavior of systematic and idiosyncratic jumps in asset
prices. The tail dispersion risk can vary over time in a stochastic way and we will
assume that this variation is adapted to the σ-algebra C of “common shocks,” which
contains various aggregate level shocks. Intuitively, C captures everything that is
related to systematic risk in the economy.

We will assume that the tails of the large jumps have regular variation. Similar
to Bollerslev and Todorov (2011), this assumption is formulated in terms of jumps in
the asset price level (recall that pit denotes the log-price). More specifically, we define
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ψ(x) = exp(|x|)− 1, and let

ψ+(x) :=

{
ψ(x), x > 0,

0, x ≤ 0,
ψ−(x) :=

{
0, x > 0,

ψ(x), x ≤ 0.

For a generic function g : R → R, we then denote g±ψ (x) = g(± log(1+x))
1+x

, and the tail
of the measure g±ψ (x) by

g±ψ (x) :=

∫ ∞
x

g±ψ (u)du,

for some x > 0.

Conditional on C, the systematic jumps in the asset prices are assumed to be
identically and independently distributed in the cross-section at each jump time p,
with conditional jump distribution given by fp(x). We assume regular variation for
fp(x). That is,

f
±
p,ψ(x+ u)

f
±
p,ψ(x)

≈

(
1 +

u

x

)−1/ξ±S

, as x, u→ +∞ with u ≥ 0, (2.2)

for some tail shape parameters ξ±S , which are C-adapted random variables. We make
this approximation formal in Appendix D. Our assumption of an i.i.d. jump size
distributions in the cross-section, conditional on C, is natural if we think of the avail-
able stocks as being drawn randomly from a population with an infinite set of assets,
corresponding to our asymptotic scheme, where N is diverging, see, e.g., Gagliardini
et al. (2016) for a detailed discussion of this perspective.

We make a similar regular variation assumption for the idiosyncratic jumps.
Specifically, letting νt,i(x) denote the time-varying jump intensity of J̃it, we assume,

ν±t,i,ψ(x+ u)

ν±t,i,ψ(x)
≈

(
1 +

u

x

)−1/ξ±I

, as x, u→ +∞ with u ≥ 0, (2.3)

for some tail shape parameters ξ±I , which are C-adapted random variables.
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3 Inference for asset return tails at high frequencies

We proceed with developing inference tools for studying the tails of cross-sectional
return distributions at high frequencies. We do this in Section 3.1 in the case when the
intervals contain a systematic jump event and in Section 3.2 when this is not the case.
Section 3.3 introduces a goodness-of-fit test for the power law of the cross-sectional
return distribution tails.

3.1 Systematic Jump Tail Decay Index Estimation

We start with the case when the high-frequency intervals considered in the estimation
contain systematic jumps. For those increments, the leading components of the tails
of the asset returns are the systematic jumps. Idiosyncratic jumps in these intervals
can be present but they are rare (the probability of an idiosyncratic jump in a stock
over the interval is approximately proportional to the length of the interval) and hence
do not distort the inference. As a result, we can develop inference tools by simply
pretending that the other components of the asset prices are not present. We focus
only on the positive systematic jump tails without lost of generality.

We can build an estimator using the power law tail approximation in (2.2). More
specifically, using the discretized price processes, we propose the following estimator
of ξ+

S :

ξ̂+
S =

1

M̂S+
N

N∑
i=1

∑
j∈T̂n,T̂n 6=∅

log
(ψ+(∆n

j pi)

ρSN

)
1{ψ+(∆n

j pi)>ρ
S
N}
, (3.1)

where

M̂S+
N =

N∑
i=1

∑
j∈T̂n,T̂n 6=∅

1{ψ+(∆n
j pi)>ρ

S
N}
, (3.2)

and for some sequence ρSN →∞. This is simply the Peak-Over-Threshold (POT) es-
timator. Theorem 1 provides the central limit theorem (CLT) for ξ̂+

S . In its statement
and henceforth we denote C-conditional convergence in law with

L|C→.

Theorem 1 For the process {pit}i≥1 defined in (2.1), assume Assumptions 1–5 and
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Condition SJ hold. Then √
M̂S+

N (ξ̂+
S − ξ

+
S )
L|C→ N

(
0, (ξ+

S )2
)
, (3.3)

where N(0, σ2) denotes normal distribution with zero mean and variance σ2.

A feasible CLT follows immediately by replacing ξ+
S in the variance term by ξ̂+

S . We
note that the number of times of big systematic jumps over a given interval is fixed but
since systematic jumps have a pervasive effect on the entire cross-section of assets, we
can use most assets’ returns in the inference. The rate of convergence of the estimator
is determined by the number of asset returns used in the estimation. This, in turn,
depends on how accurately does the power law describe the jump distribution in the
tails. It depends also on the sampling frequency as this determines the size of the
“residual” components of the asset prices. The condition restricting the number of
observations used in the estimation is given in Condition SJ.

3.2 Idiosyncratic Jump Tail Decay Index Estimation

We turn next to the case when the high-frequency increments used in the estimation
do not contain systematic jumps. When this is the case, the tail behavior of the
cross-sectional return distribution is governed by the idiosyncratic jumps. From (2.3),
the idiosyncratic jump tails can be approximated by the power law with tail decay
parameters ξ±I . Therefore, we propose the following estimator of ξ+

I :

ξ̂+
I =

1

M̂ I+
N

N∑
i=1

∑
j∈T̂ cn

log
(ψ+(∆n

j pi)

ρIN

)
1{ψ+(∆n

j pi)>ρ
I
N}
, (3.4)

where

M̂ I+
N =

N∑
i=1

∑
j∈T̂ cn

1{ψ+(∆n
j pi)>ρ

I
N}
, (3.5)

and for some sequence ρIN →∞. The CLT for ξ̂+
I is given in the next theorem.

Theorem 2 For the process {pit}i≥1 defined in equation (2.1), invoke Assumptions
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1, 2, 4, 5 and suppose Condition IJ holds. Then√
M̂ I+

N (ξ̂+
I − ξ

+
I )

L|C→ N
(
0, (ξ+

I )2
)
. (3.6)

A feasible CLT follows readily by replacing ξ+
I in the variance term by ξ̂+

I . The above
result appears similar to that for ξ̂+

S . However, a key difference arises due to the fact
that the number of stocks exhibiting idiosyncratic jumps over a single time interval
is asymptotically small, as the sampling interval shrinks towards zero, because the
probability of an idiosyncratic jump in a given stock is approximately proportional
to the length of the short time interval. This is unlike the systematic jump scenario
as, by definition, they materialize for a nontrivial number of assets simultaneously.
Furthermore, the set of high-frequency increments not containing a systematic jump
grows asymptotically, while the number of systematic jumps remains fixed. Thus, we
can pool many more increments for estimation of the idiosyncratic tail distribution
than we can for the systematic jump tails.

As for ξ̂+
I , the rate of convergence of ξ̂+

I is governed by the number of increments
employed for inference. This, in turn, hinges on the approximation error by the power
law in the tails and the size of the discretization error, with the latter depending on
the sampling frequency. This feature is captured by Condition IJ.

3.3 Goodness-of-Fit Test for Cross-Sectional Return Tails

We now develop a goodness-of-fit test for the tail power law. We rely on the Kolmogorov-
Smirnov (KS) test statistic (see, e.g., Clauset et al. (2009)) for this purpose.

For the systematic jumps, our KS statistic is given by,

DS
N = sup

x
|F S
N,t(x)− P S

N,t(x)| , (3.7)

where F S
N(x) is the empirical tail distribution of the systematic jumps,

F S
N(x) =

1

M̂S+
N

N∑
i=1

∑
j∈T̂n,T̂n 6=∅

1{ψ+(∆n
j pi)>x}, for x ≥ ρSN , (3.8)
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and P S
N(x) is the tail probability implied by the estimated Pareto distribution,

P S
N(x) =

(
x

ρSN

)−1/ξ̂+S

, for x ≥ ρSN , (3.9)

with ξ̂+
S defined in equation (3.1).

The next theorem characterizes the key property of our proposed KS statistic.

Theorem 3 Suppose the assumptions of Theorem 1 apply with τ+
S (x) ≡ 0 for all

x ≥ ρSN . Then, √
M̂S+

N DS
N,t

L|C→ KS+,

where KS+ is defined in Appendix E.

The limit distribution KS+ is that of a KS statistic based on a sample of the same
size as the one of our estimator from an exact power-law tail distribution. We can
estimate the quantiles of this distribution via simulation.

By replacing the subindex S with I and the set Tn with T cn, we also have the
parallel results about the goodness-of-fit test for the power law characterization of
the idiosyncratic jump tails. We give the theoretical results in Appendix F.

4 Monte Carlo Study

4.1 Setup

We use the following model in our simulation study:

pjt =

∫ t

βj
√
Vt dWt +

∫ t√
Vs dW̃js +

∫ t

λis dLs +

∫ t ∫
R
xµi(ds, dx),

dVt = 8.3 (0.025− Vt) dt +
√
Vt (−0.1 dWt + 0.2

√
0.75) dBt ,

where {W̃js}j=1,...,N , Wt , and Bt are independent standard Brownian motions. The
factor exposures to diffusive systematic risk {βj}j=1,...,N are i.i.d. and drawn from
N(1, 0.5/3). The stochastic volatility (Vt) follows a square-root diffusion. The pa-
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rameters of the volatility dynamics are set so that its annualized mean is 0.025 and
the half life is one month (the unit of time is one year).

The calibration of the jumps is designed to mimic the tail behavior of stock jumps
observed in our empirical application. Specifically, (Lt) is a simple point process with
intensity νS = 1200Vt (and jumps of 1). This implies an average number of systematic
jumps per day of approximately 0.12. For the systematic jump size, we draw λis from
a Pareto distribution with P (X < −x) = P (X > x) = 0.5(x/(0.1

√
Vt))

−1/ξS . It
follows that systematic jumps of size beyond 0.015 occur approximately 30 times per
year. We set the tail decay index to ξS ∈ {0.4, 0.6}, representing the case of high/low
systematic jump tail dispersion risk. The contribution of the systematic jumps to the
quadratic variation of the stocks is about 10%–20%.

Finally, we generate the idiosyncratic jumps as follows. The jump compensators
of µi are ϕ±it = 30Vt, and

∫∞
x
ν±φ (s)ds = 1000(x/0.003)−1/ξI . The tail shape index

is set to be ξI ∈ {0.4, 0.6}, corresponding to the cases with high/low tail dispersion
risk. Under the above setting, positive/negative jumps account for 8% of the 10-
minute returns, and the jump sizes are greater than 0.003. The contribution of the
idiosyncratic jumps to the total return asset variation is about 30%–45%. These
parameters are calibrated to mimic the tail behavior of idiosyncratic jumps observed
in the real data. The combinations of ξS and ξI for different settings are collected in
Table 1.

Table 1: Parameter settings for ξS and ξI in the Monte Carlo.

Model M1 M2 M3 M4

ξS 0.6 0.6 0.4 0.4

ξI 0.6 0.4 0.4 0.6

4.2 Results

We simulate the asset prices for 1000 days/years when estimating idiosyncratic/systematic
jump tail shape indices and sample at the 10-minute frequency. The number of stocks
in the cross-section is N = 250 or 500. We identify the systematic jump times via the
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procedure described in Appendix A. Next, we estimate the tail shape indices of the
cross-sectional return distribution on the two disjoint sets including and excluding the
systematic jump times. The idiosyncratic and systematic jump tail shape indices are
estimated on a daily and yearly basis, respectively. The finite-sample performance of
the resulting tail shape index estimators is summarized in Table 2 while that of the
goodness-of-fit power law tail test is provided in Table 3.

Overall, the tail shape estimators perform well in various settings. Similarly, the
empirical size of the goodness-of-fit test approximates the corresponding nominal level
across different considered configurations fairly well. Not surprisingly, the estimation
accuracy increases as the number of assets N grows. Moreover, the truncation level
determining the number of increments used in the estimation impacts the estimation
in a predictable way. Specifically, a higher truncation level generates noisier estimates
while a lower truncation threshold leads to an increase in the bias due to the influence
of the continuous return component.

5 Empirical Evidence for Cross-Sectional Tails

5.1 Data and Systematic Jump Detection

We focus on the S&P 500 Index constituent stocks over the period 2003–2022. The
high-frequency price data are obtained from the TAQ database. We sample the prices
each 10 minutes from 09:35 EST to 15:55 EST using the previous-tick approach and
obtain 38 intraday 10-minute log returns. Following common data cleaning procedures
(e.g., Aït-Sahalia et al. (2011)), “bounce back”s are removed. Finally, we use the SPY
ETF for the S&P 500 Index as our market proxy. Holidays and half-trading days are
excluded. In total, we have about 450 stocks each day and there are 4,993 full trading
days in our sample.

We conduct our analysis on market-neutral asset returns, i.e., we use the returns
of positions that are long an individual stock and short the market index. It is
readily seen that, subject to mild local boundedness conditions on the market index,
the theoretical results in Section 3 continue to apply when the estimator is based on
market-neutral rather than raw returns. We adopt this approach because it facilitates
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Table 2: Simulation results of the jump tail index estimation. The reported values
are the median and interquarter range (IQR) from 1000 replications.

Truncation Level

ν̄φ(ρN ) = 0.07 ν̄φ(ρN ) = 0.05 ν̄φ(ρN ) = 0.03

Model: True Value Median IQR Median IQR Median IQR

N=250

M1 : ξS = 0.6 0.607 [0.5630.651] 0.609 [0.5550.666] 0.623 [0.5400.695]
M1 : ξI = 0.6 0.582 [0.5640.601] 0.577 [0.5580.600] 0.563 [0.5370.592]
M2 : ξS = 0.6 0.572 [0.5240.618] 0.559 [0.5120.619] 0.547 [0.4730.619]
M2 : ξI = 0.4 0.440 [0.4270.453] 0.415 [0.4020.429] 0.380 [0.3650.398]
M3 : ξS = 0.4 0.375 [0.3610.388] 0.368 [0.3530.383] 0.354 [0.3380.376]
M3 : ξI = 0.4 0.439 [0.4270.451] 0.414 [0.4010.426] 0.379 [0.3650.395]
M4 : ξS = 0.4 0.393 [0.3780.412] 0.394 [0.3730.416] 0.392 [0.3640.425]
M4 : ξI = 0.6 0.580 [0.5640.597] 0.575 [0.5570.595] 0.561 [0.5360.586]

N=500

M1 : ξS = 0.6 0.567 [0.4960.649] 0.565 [0.4880.666] 0.566 [0.4660.687]
M1 : ξI = 0.6 0.582 [0.5700.597] 0.577 [0.5640.597] 0.565 [0.5460.587]
M2 : ξS = 0.6 0.549 [0.4610.624] 0.541 [0.4330.630] 0.518 [0.3880.633]
M2 : ξI = 0.4 0.441 [0.4310.451] 0.416 [0.4060.428] 0.382 [0.3700.395]
M3 : ξS = 0.4 0.378 [0.3670.389] 0.373 [0.3610.387] 0.361 [0.3450.376]
M3 : ξI = 0.4 0.439 [0.4300.449] 0.414 [0.4050.426] 0.381 [0.3700.393]
M4 : ξS = 0.4 0.384 [0.3720.395] 0.378 [0.3640.391] 0.366 [0.3480.385]
M4 : ξI = 0.6 0.581 [0.5690.594] 0.576 [0.5620.591] 0.562 [0.5450.582]
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Table 3: Simulation results of the goodness-of-fit test. The reported values are the
empirical size from 1000 replications.

Truncation Level

ν̄φ(ρN ) = 0.07 ν̄φ(ρN ) = 0.05 ν̄φ(ρN ) = 0.03

Significance Level 0.05 0.01 0.05 0.01 0.05 0.01

N=250

M1 : ξS = 0.6 0.081 0.023 0.079 0.008 0.016 0.004
M1 : ξI = 0.6 0.089 0.023 0.048 0.009 0.035 0.008
M2 : ξS = 0.6 0.032 0.007 0.023 0.002 0.005 0.000
M2 : ξI = 0.4 0.083 0.032 0.040 0.009 0.039 0.009
M3 : ξS = 0.4 0.071 0.017 0.061 0.010 0.052 0.004
M3 : ξI = 0.4 0.069 0.034 0.037 0.009 0.039 0.009
M4 : ξS = 0.4 0.192 0.058 0.231 0.095 0.251 0.108
M4 : ξI = 0.6 0.081 0.020 0.042 0.008 0.032 0.008

N=500

M1 : ξS = 0.6 0.039 0.011 0.025 0.005 0.004 0.000
M1 : ξI = 0.6 0.102 0.035 0.04 0.007 0.025 0.005
M2 : ξS = 0.6 0.029 0.002 0.017 0.002 0.004 0.000
M2 : ξI = 0.4 0.134 0.077 0.04 0.017 0.021 0.006
M3 : ξS = 0.4 0.092 0.019 0.093 0.024 0.089 0.013
M3 : ξI = 0.4 0.086 0.049 0.037 0.016 0.024 0.006
M4 : ξS = 0.4 0.098 0.025 0.127 0.033 0.115 0.048
M4 : ξI = 0.6 0.078 0.022 0.043 0.008 0.027 0.007
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identification of the non-market systematic jump risk, see Jacod et al. (2024).

We start with detection of the systematic jump times, i.e., determining the set T̂n.
The systematic jumps can be split into those that trigger jumps in the market index
and those that do not. For the former, we use the high-frequency observations on
the SPY index and a standard truncation procedure. For the non-market systematic
jumps, we use the method proposed by Jacod et al. (2024), see equations (15)–(17)
in that paper. Further details on the systematic jump detection are provided in
Appendix A. Upon applying these jump detection procedures, we find that 7% of
the days in our sample contain market jumps and 9% involve non-market systematic
jumps. In total, the daily systematic jump rate (market and non-market) is 12%.
That is, there is one systematic jump about every 8 trading days.

5.2 The Tails of the Cross-Sectional Return Distributions

5.2.1 In the Presence of Systematic Jumps

We first focus on the high-frequency intervals containing systematic jumps. In order
to obtain a reasonable large sample size, we aggregate the systematic jumps for a
year. For illustration, we pick two years, 2008 and 2016, representing a case with a
high and a case with a moderate level of volatility. We display the distribution of
the 10-minute S&P 500 stock market-neutral returns when there are systematic jumps
during each of these two years in Figure 1. For ease of comparison, we standardize
the returns to have a unit standard deviation within each cross-section. The plot
reveals that the cross-sectional distributions of the systematic jumps in both years
are heavy-tailed. We also note that the year 2016 features a somewhat higher number
of detected systematic jumps than 2008.

We next fit a power law to the right and left return tails, respectively, using the
procedures developed in Section 3. We first transform the log returns to arithmetic
returns using ψ(x) = exp(|x|) − 1. We then use all the 10-minute return intervals
within the year that contain a systematic jump to estimate the Pareto distribution

P (X > x|X > xm) =
( x

xm

)−1/ξt
, for x ≥ xm,
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where xm equals the (1 − τ)-return quantile. We use the threshold level τ = 0.05.
In Figure 2, we plot the logarithm of the empirical tail probabilities along with the
fitted values implied by the estimated Pareto distributions. We observe that the
cross-sectional return tails appear well approximated by power laws. Our estimates
for ξt in 2016 are 0.43 for the left and 0.48 for the right tail. Those for 2008 are 0.65
for the left and 0.64 for the right tail. These estimates imply near symmetric tails in
both years. We also note that the tails are somewhat fatter in 2008 than in 2016.
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Figure 1: Distribution of S&P 500 Index stocks’ 10-minute market-neutral returns
when there are systematic jumps for the year 2008 and year 2016. The returns are
normalized to have a standard deviation of one.
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Figure 2: Empirical tail distribution and the fitted Pareto tail of S&P 500 Index
stocks’ 10-minute returns when there are systematic jumps during the year 2008 and
the year 2016.

5.2.2 Absent Systematic Jumps

We now continue with the increments that do not contain systematic jumps. Since
these constitute the vast majority of the increments in the sample, we can perform
this analysis at the daily level. We pick two representative days for illustration,
October-10-2008 and March-4-2016, from the two years used above for analysis of
the systematic jumps. On October 10, 2008, the market features elevated volatility
while on March 4, 2016, market volatility is about average. We plot the distribution
of the 10-minute S&P 500 stock market-neutral returns on these two days in Fig-
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ure 3. There are no detected systematic jumps on either of the two days. Once more,
we standardize the returns to have a cross-sectional unit standard deviation. The
plot corroborates the hypothesis of fat-tailed cross-sectional return distributions. Al-
though the levels of volatility on the two days are very different, the heavy-tailedness
of the two cross-sectional return distributions appear similar.
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Figure 3: Distribution of S&P 500 stock 10-minute market-neutral returns on two
representative days, 20081010 and 20160304. Systematic jumps are not detected on
either of the two days. The returns are standardized to have a standard deviation of
one.

Next, we go on to fit power laws to the tails of the cross-sectional return distribu-
tions using the approach developed in Section 3.2. In Figure 4, we plot the logarithm
of the empirical tail probabilities, together with the fitted values by the estimated
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Pareto distributions. Similar to the case of systematic jumps, we see that the power
law provides a good fit for the tails of the cross-sectional return distributions in the
absence of systematic jumps. The slope of the Pareto tail is given by −αt = −1/ξt.
A flatter fitted tail probability line thus indicates a fatter tail distribution. Our esti-
mates of the tail shape index, ξt, on March-4-2016 are 0.524 for left tail and 0.495 for
right tail. Those for October-10-2008 are 0.415 and 0.440 for the left and right tails,
respectively. This implies that the tails of the cross-sectional return distribution on
March-4-2016 are slightly fatter than those on October-10-2008 despite the fact the
volatility on October-10-2008 was much higher.
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Figure 4: Empirical tail distribution and the fitted Pareto tail of S&P 500 Index
stocks’ 10-minute returns of the date 2008-10-10 and the date 2016-03-04. Systematic
jumps are not detected on either of the two days.
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Table 4: Goodness-of-fit test results for the power law of the jump tails. We report
the proportions of rejections between 2003 and 2022. We test the power-law for the
systematic jump tails using data in a moving one-year window and the idiosyncratic
jump tail based on daily samples. The significant level is set to 5% and 1%.

Significant level Power Law Tail Rejection Rate
Systematic jump Idiosyncratic jump

Goodness-of-Fit Test Rejection Rate
left tail right tail left tail right tail

significance level= 5%
ν̄φ(ρN) = 0.07 0.039 0.123 0.171 0.164
ν̄φ(ρN) = 0.05 0.039 0.075 0.114 0.099
ν̄φ(ρN) = 0.03 0.013 0.052 0.073 0.064

significance level= 1%
ν̄φ(ρN) = 0.07 0.013 0.044 0.056 0.053
ν̄φ(ρN) = 0.05 0.004 0.018 0.027 0.027
ν̄φ(ρN) = 0.03 0.000 0.000 0.016 0.014

5.3 Goodness-of-Fit Test for Tails

We now test formally whether the tails of the cross-sectional return distributions are
approximated well by the Pareto distribution. We perform the goodness-of-fit test
for the tails of returns with and without systematic jumps separately. We use three
different cutoffs for the tails corresponding to 7%, 5%, and 3% return quantiles. The
test for the systematic jumps is based on a 252-day moving window, while the test for
the idiosyncratic jumps is performed on a daily basis. Table 4 summarizes the per-
centage of days when the power law distribution is rejected over our sample. Overall,
the reported results show that the tails of the cross-sectional return distribution are
well described by a power law. Indeed, the rejection rates of the test are low and
roughly match the nominal significance levels of the test.
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5.4 Time Series of Cross-Sectional Tail Shape Indices

This section explores the time-series variation in the cross-sectional tail shape index.
The systematic jump tail shape index is estimated every day based on the 10-minute
returns for the past 252 days when systematic jumps occur.2 The idiosyncratic jump
tail shape index is estimated on a daily basis.

The time series of the cross-sectional tail shape indices are depicted in Figure 5.
For comparison, we plot the market volatilities and the common idiosyncratic volatil-
ities in the bottom panel of the figure. The daily market volatility estimate is the
square-root of the daily realized variance of the SPY index. The daily common id-
iosyncratic volatility estimate is the square-root of the cross-sectional average of daily
idiosyncratic realized variances. The latter are defined as the realized variances of the
assets’ returns minus their market beta estimates times the market return. To bet-
ter assess the low-frequency pattern in the various series, Figure 6 provides 6-month
(132-day) moving averages of the series plotted in Figure 5.

We can draw several conclusions from these two plots. First, there is considerable
variation in the tail shape of the cross-sectional return distributions over time. The
range of the shape indices is between 0.3 and 0.6 for systematic jumps and between
0.35 and 0.5 for idiosyncratic jumps. The associated shape parameter α = 1/ξ is
about 2–3.5, which is comparable to the shape parameter estimated in typical finan-
cial time series. Second, the left and right tail shapes appear similar. This is easier to
see for the returns that do not contain systematic jumps. For the ones that contain
jumps, there are some differences in the left and right tail estimates but some of these
differences are likely due to noise.3 Third, there appears to be little relation between
the variation of the tail shapes of returns with and without systematic jumps. For
example, the cross-sectional return distribution appears fat-tailed during the crisis of
2008, regardless of whether the returns included systematic jumps or not. However,
the opposite conclusion applies after the onset of the pandemic-related market tur-
bulence in 2020. Finally, the dynamics of the tail shapes of the cross-sectional return

2We have also checked the index estimated using moving window of 22 days. The results are
noisier and hence less informative due to the small sample size.

3We also check the systematic jumps separately based on SPY jumps, and the latent systematic
jumps. For both type of systematic jumps, the right and left tails appear similar, while there is
slightly larger variation in SPY jumps, but these difference may be also likely due to noise.
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Figure 5: Above: Time series of estimated systematic jump tail shape index using
the data in the past 252 days. Middle: Daily idiosyncratic jump tail shape index.
Below: Daily market volatilities and common idiosyncratic volatilities.
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distribution seems distinct from that of market and common idiosyncratic volatility.

6 Asset Pricing Implications

Given the significant and distinct time-series variation in the tail shape of the cross-
sectional return distribution, we now ask whether it is a source of priced risk. We
explore this using the entire pool of stocks traded on NYSE/AMEX/NASDAQ be-
tween 2003 and 2022. The daily stock return data is obtained from CRSP, excluding
only micro-cap stocks with size below the 20% quantile of the NYSE breakpoints and
stocks with a share price under $5.

6.1 Pricing of Shocks to the Systematic Jump Tails

We start by assessing whether shocks to ξS are priced. Because the empirical evidence
in the previous section revealed no substantive differences between the left and right
tails, we combine the two estimates to improve the efficiency of the inference. That
is, we use ξ̄S;t = 2/(αLS;t + αRS;t), where αLS;t = 1/ξ−S;t, and αRS;t = 1/ξ+

S;t. We then
compute the change between adjacent non-overlapping periods of h days,

∆ξS;t,h =
1

h

t∑
j=t−h+1

ξ̄S;j −
1

h

t−h∑
j=t−2h+1

ξ̄S;j. (6.1)

We focus on monthly tail dispersion risk innovations and correspondingly set h =

22 (with the unit of time now being one trading day) in the analysis henceforth.
Given our definitions, a positive (negative) tail shape shock represents an increase
(decrease) in the fat-tailedness of the cross-sectional return distribution during times
of systematic jumps. We estimate the exposure of the returns to such systematic
jump tail shocks using the following standard time-series regression with h = 22,

Ri,t,h = ai + bi ∆ξS;t,h + εi,t , (6.2)

where Ri,t,h is the h-day cumulative returns from day t− h+ 1 to t.

For each day t, we run the regression in equation (6.2) using the data from the
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past 1260 days and get the estimated loadings (b̂i)i≥1. We then sort the stocks into 5
groups based on (b̂i)i≥1. We form equal- and value-weighted portfolios for each quintile
group and track the out-of-sample portfolio returns. Beyond an out-of-sample holding
window of one month (H = 22), we also explored H = 66. We summarize the
portfolio performance in Table 5 for the one-month holding window. Results for the
three-month holding window are qualitatively similar and deferred to Appendix B.

Panel A of Table 5 reports the out-of-sample annualized average returns for the 5
quintile portfolios and the low-minus-high portfolio (LmHSysJ) that goes long/short
the quintile portfolio with the lowest/highest exposure to systematic jump tail disper-
sion risk shocks. We also report the t-statistics of the returns based on Newey-West
standard errors using 22 lags. We observe a monotonic decline in the average returns
from the high beta portfolio to the low beta portfolio, based on both equal- and value-
weighting schemes. The high (low) beta portfolio has an average positive (negative)
exposures to the systematic jump shocks. The equal-weighted LmHSysJ portfolio has
an annualized return of 5.13% with a t-statistic of 2.67, that is, equivalent to an an-
nualized Sharpe ratio (SR) of 0.62, while the value-weighted LmHSysJ portfolio has
an annualized return of 5.23% with a t-statistic of 2.11, or a SR of 0.49.

We further evaluate the significance of the LmHSysJ portfolio’s returns after con-
trolling for a variety of systematic risk factors used in previous research. We consider
the following factors: the Market, Fama-French three/five/six factors (FF3/FF5/FF6,
Fama and French (1993, 2015, 2018)). In addition, we include the tail risk factor by
Kelly and Jiang (2014), the idiosyncratic risk factor (idiorisk) of Ang et al. (2006))4,
and the CiV factor of Herskovic et al. (2016).5 Furthermore, we include the HmL
portfolio sorted using idiosyncratic jump tail shape shock betas, introduced in Sec-
tion 6.2 below, as a control factor. The results are summarized in Panel B of Table 5.
We see that the LmHSysJ portfolio has a significant alpha controlling for most of the
factors. For example, under FF6, the alpha of the equal-weighted LmHSysJ portfo-
lio is 5.11% (t = 2.66), the alpha of the value-weighted LmHSysJ portfolio is 5.82%
(t = 2.29). After controlling for the tail-risk factor of Kelly and Jiang (2014), the

4Replicated tail-risk beta LS sorted portfolio of Kelly and Jiang (2014) and the idiosyncratic risk
factor portfolio are obtained from Chen and Zimmermann (2021).

5The CiV-beta LS portfolio monthly returns are obtained from https://bernardherskovic.
com/data/

28

https://bernardherskovic.com/data/
https://bernardherskovic.com/data/


Table 5: Returns of systematic jump tail shock beta-sorted portfolios. The table
reports out-of-sample annualized average returns (in percentage) and t-statistics for
portfolios sorted on the cross-sectional jump tail beta. We sort stocks daily into quin-
tile portfolios using jump tail betas that are estimated using daily returns over the past
five years. The holding window of the portfolio is one month. We use all stocks traded
on NYSE/AMEX/NASDAQ exchange with price above $5 and stock capitalization
beyond the 20% NYSE size breakpoint. We consider both equal- and value-weighted
portfolios. The out-of-sample period is between the years 2004 and 2022. Panel A
reports the portfolios’ average betas to the jump tail shocks and annualized returns,
all in percentage, and Panel B reports the alphas under CAPM, FF3/FF5/FF6 mod-
els, while controlling for the tail-risk factor (Kelly and Jiang (2014)), the CiV factor
(Herskovic et al. (2016)), the idiosyncratic risk factor (Ang et al. (2006)), and the
HmLIdioJ portfolio sorted using idiosyncratic jump shock exposures. The t-statistics
are computed based on Newey-West (Newey and West (1987)) standard errors with
lag length equal to the holding window.

Equal-weight Value-weight

Panel A: Mean Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat

H 1.77 10.74 2.59 10.91 3.02
Q4 -0.05 13.00 3.47 10.23 3.34
Q3 -0.93 13.66 3.59 13.50 4.58
Q2 -1.83 14.44 3.71 15.82 5.10
L -3.81 15.87 3.53 16.14 4.24

LmHSysJ 5.13 2.67 5.23 2.11

Panel B: Abnormal Return of LmHSysJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 3.66 1.92 3.91 1.55
FF3 alpha 3.90 2.08 4.35 1.74
FF5 alpha 4.46 2.31 5.13 2.00
FF6 alpha 5.11 2.66 5.82 2.29
CAPM+tailrisk alpha 4.07 2.02 4.82 1.86
FF6+tailrisk alpha 5.02 2.54 5.92 2.28
CAPM+CiV alpha 4.32 1.83 5.90 1.79
FF6+CiV alpha 5.25 2.19 6.59 1.98
CAPM+idiorisk alpha 4.84 2.19 5.57 2.02
FF6+idiorisk alpha 5.02 2.54 6.23 2.42
CAPM+HmLIdioJ alpha 4.02 2.13 4.98 1.93
FF6+HmLIdioJ alpha 5.43 2.89 6.94 2.64
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CiV factor of Herskovic et al. (2016), the idiosyncratic risk factor of Ang et al. (2006),
and the effect of idiosyncratic jump tail risks (HmLIdioJ), to be introduced below, the
alphas of our LmHSysJ portfolio remain significant.

We next compute the pairwise correlation between the tail dispersion risk inno-
vations used for our portfolio sorting and the control factors explored in Panel B of
Table 5. We summarize the results in Table 6. It shows that the systematic jump
tail-shape shocks have little correlation with the common systematic risk factors, cor-
roborating the hypothesis that systematic jump tail shape shocks represent risks not
captured by prior advocated asset pricing factors.

Table 6: Correlations between the innovation in jump tail dispersion risks and
the return factors. Reported values are pairwise correlation between the innova-
tions of systematic jump risks, InnoξS, idiosyncratic jump risks InnoξS, obtained
from equation (6.1), and return factors that include the Market (Mkt), FF factors
(FF.SMB, FF.HML, FF.RMW, FF.CMA, FF.MOM), the tail-risk factor (Kelly and
Jiang (2014)) denoted by tailrisk, the CiV factor (Herskovic et al. (2016)) denoted by
CIV.LS, and the idiosyncratic risk factor (Ang et al. (2006)) denoted by idiorisk. In
addition, we include the signals used to construct the CiV factor, that is the common
idiosyncratic shocks (CiV. shock). The evaluation period is between 2004 and 2022.

InnoξS InnoξI

Mkt 0.003 -0.084
FF.SMB -0.003 -0.006
FF.HML 0.007 0.011
FF.RMW -0.005 -0.011
FF.CMA 0.030 -0.009
FF.MOM 0.004 -0.026
tailrisk -0.030 0.007
CIV.LS 0.086 -0.022
CIV.shock 0.042 0.134
idiorisk 0.007 -0.011
InnoξS – 0.008

Finally, as a robustness check, in Appendix C, we report portfolio sorting results
using different truncation levels in the systematic jump detection procedure. The
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findings are qualitatively similar to those reported here.

Overall, our finding of a negative price response to positive ξS shocks implies that
investors view periods, in which systematic jumps generate more extreme returns, as
unfavorable states of the world. Stocks that do well during such times serve as hedges
and require a lower risk premium. This is intuitive from a standard portfolio perspec-
tive, as systematic jumps constitute a major source of risk for strategies exposed to
systematic risk factors. Enhanced and time-varying return dispersion induced by sys-
tematic jumps exacerbates the possibility of poor portfolio performance and renders
efficient diversification more difficult. Increasing dispersion risk during times of large
systematic return jump events is therefore disliked by investors. We further note that
this phenomenon is similar to the beta risk documented in Boloorforoosh et al. (2020)
who find that low market-betas tend to increase along with market risk and hence
require an additional risk premium. The finding about the relation between beta
dynamics and volatility is broadly consistent with the well documented observations
that the returns will become more synchronized during volatile period (Solnik et al.
(1996); Andersen et al. (2001).

6.2 Pricing of Shocks to the Idiosyncratic Jump Tails

We next study whether shocks to the tail shape parameter of idiosyncratic jump
risk requires compensation. Note that, just like the strength of average idiosyncratic
volatility, shocks to the tail shape parameter of the idiosyncratic jump risk is a form
of aggregate risk. As for the systematic jump tails, we measure the idiosyncratic
jump tail shape shocks using the innovations in the jump tail index ξI;t. Specifically,
we use ξ̄I;t = 2/(αLI;t + αRI;t), where αLI;t = 1/ξ−I;t, and αRI;t = 1/ξ+

I;t represent the
parameters estimated from the left and right idiosyncratic jump tails, respectively.
We have performed the same analysis using separate left and right tail shape indices,
generating similar results to those based on the average of the two reported here.

Following the portfolio formation approach of Section 6.1, we sort stocks on the
basis of their exposures to ξ̄I;t. We summarize the results in Table 7. The out-
of-sample evaluation period is between 2004 and 2022, and the holding-window for
the portfolio is one month. Table 7 reveals that, unlike the portfolios sorted on
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exposure to systematic jump tail shape risk, there is a decreasing pattern in the
average returns from the high to the low beta portfolio, both for equal-weighting
and value-weighting schemes. The high (low) beta portfolio has positive (negative)
exposures to the idiosyncratic jump shocks. The equal-weighted HmLIdioJ portfolio,
that is, the portfolio that goes long/short the quintile portfolio with the highest/lowest
exposure to idiosyncratic tail shape shocks, has annualized returns of 3.19% with a t-
statistic of 1.98 (annualized SR of 0.46). The returns for the value-weighted portfolio
is 3.98% with a t-statistic of 1.92 (annualized SR of 0.45). Furthermore, the HmLIdioJ
portfolio’s alphas are significant after controlling for a variety of common systematic
risk factors. Sorting results for a three-month holding period are similar to those for
one month and are provided in the Appendix B.

Consistent with the significance of the alphas of the HmLIdioJ portfolios, the
shocks to the idiosyncratic jump tail shape index appear weakly and insignificantly
correlated with the common systematic risk factors, as seen from Table 6.

We check the robustness of the portfolio sorting results for systematic jump de-
tection for alternative thresholds in Appendix C. We find the results for idiosyncratic
jump sorted portfolios consistent across the different tuning parameter settings.

Overall, our results suggest that positive shocks to ξI (a fattening of the idiosyn-
cratic jump tail) are viewed favorably by investors, i.e., times featuring thicker id-
iosyncratic jump tails are good states of the world. Therefore, stocks that do well
when ξI is high and positive earn a positive premium. How do we rationalize this
pricing result which is the exact opposite to our finding from portfolio sorts based on
ξS? We first reiterate that, although ξI is linked to idiosyncratic jumps, shocks to
ξI still represent aggregate risk, as they impact the extent to which the cross-section
experiences more or less extreme idiosyncratic jumps. However, this fact does not
help us rationalize the sign of the pricing from a risk-based perspective. Instead, we
note that these results are consistent with lottery-type preferences which imply that
investors like stocks that can generate huge positive returns (winning the lottery).
The lottery-like preferences has been evidenced in both equity and option market
contexts, as documented in studies such as Boyer and Vorkink (2014); Blau et al.
(2016) and Filippou et al. (2018). For such investors, episodes in which idiosyncratic
jump tails grow fatter provide better upside potential and hence are preferred by
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Table 7: Returns of idiosyncratic jump tail shock beta-sorted portfolios. The table
reports out-of-sample annualized average returns (in percentage) and t-statistics for
portfolios sorted based on cross-sectional jump tail beta. We sort stocks each day into
quintile portfolios using jump tail betas. The jump tail betas are estimated using daily
returns of the past five years. The holding window of the portfolio is one month. We
use all stocks traded on NYSE/AMEX/NASDAQ exchange with price above $5 and
stock capitalization beyond the 20% NYSE size breakpoint. Stocks are formed into
equal- and value-weighted portfolios. The out-of-sample period is between 2004 and
2022. Panel A reports the portfolios’ average betas to the idiosyncratic jump tail
shocks and annualized returns, all in percentages, and Panel B reports the alphas
under CAPM, FF3/FF5/FF6 models, controlling for the tail-risk factor (Kelly and
Jiang (2014)), the CiV factor (Herskovic et al. (2016)), the idiosyncratic risk factor
(Ang et al. (2006)), and the low-minus-high portfolio sorted using systematic jump
tail exposures (LmHSysJ). The t-statistics are based on Newey-West (Newey and
West (1987)) standard errors using a lag length equals to the holding window.

Equal-weight Value-weight

Panel A: Average Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat

H 6.19 15.31 3.73 15.43 4.61
Q4 2.73 13.98 3.70 13.30 4.57
Q3 0.76 13.47 3.55 10.69 3.72
Q2 -1.19 13.19 3.41 11.11 3.66
L -5.26 12.12 2.73 11.46 3.14

HmLIdioJ 3.19 1.98 3.98 1.92

Panel B: Abnormal Return of HmLIdioJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 4.17 2.26 4.90 1.98
FF3 alpha 4.06 2.17 4.37 1.72
FF5 alpha 4.10 2.20 4.86 1.87
FF6 alpha 5.11 2.66 4.72 1.82
CAPM+tailrisk alpha 4.45 2.37 5.91 2.31
FF6+tailrisk alpha 4.44 2.37 5.92 2.28
CAPM+CiV alpha 3.82 1.86 5.52 2.33
FF6+CiV alpha 4.11 2.02 5.76 2.35
CAPM+idiorisk alpha 3.94 2.20 5.09 2.01
FF6+idiorisk alpha 4.22 2.32 5.65 2.16
CAPM+LmHSysJ alpha 4.46 2.58 5.25 2.23
FF6+LmHSysJ alpha 4.42 2.63 4.99 2.07
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them.

6.3 Portfolio Combination

The results in Sections 6.1 and 6.2 demonstrate that the LmHSysJ and HmLIdioJ port-
folios sorted based on the exposure to systematic and idiosyncratic jump tail shape
shocks earn positive expected returns in the future. In addition, Table 6 shows that
shocks to ξS and ξI appear nearly uncorrelated. Hence, not surprisingly, the HmLIdioJ
and LmHSysJ portfolio returns are weakly related, with sample correlation coefficients
equalling -0.11 and -0.07 for the equal- and value-weighted portfolios. Consequently,
combining them should improve performance, as it does for Asness et al. (2013), who
document substantial gains (in terms of Sharpe ratios) from combining value and
momentum portfolios. Towards this end, we evaluate a simple equal-weighted combi-
nation of the HmLIdioJ and LmHSysJ portfolios. Denoting the return of the HmLIdioJ
(LmHSysJ) portfolio of idiosyncratic (systematic) jump tail exposure by rIdioJt (rSysJt ),
the return of the combined portfolio (Comb) is given by,

rCombt = 0.5 rIdioJt + 0.5 rSysJt .

We report the performance of this combined portfolio in Table 8.
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Table 8: Return performance of the combined portfolio. The table reports average
returns and abnormal returns under alternative linear factor models over our 2004-
2022 sample. The portfolio holding period is one month. We also report t-statistics
based on Newey-West (Newey and West (1987)) standard errors using a lag length
equals to the holding period.

Equal-weight Value-weight

Measure Ret t-stat Ret t-stat

MEAN 3.57 3.58 3.91 2.97
CAPM alpha 3.04 2.88 3.47 2.43
FF3 alpha 3.16 3.05 3.67 2.56
FF5 alpha 3.37 3.12 4.15 2.81
FF6 alpha 3.67 3.43 4.50 3.09
CAPM+tailrisk alpha 3.22 2.93 4.15 2.80
FF6+tailrisk alpha 3.64 3.30 4.72 3.12
CAPM+CiV alpha 3.82 1.86 5.52 2.33
FF6+CiV alpha 4.12 2.02 5.76 2.35
CAPM+idiorisk alpha 3.63 3.11 4.50 2.96
FF6+idiorisk alpha 3.51 1.80 4.85 3.24

Table 8 confirms that the performance of the combined portfolio improves over
the two portfolios individually in terms of generating a higher return significance
(and hence Sharpe ratio). For example, the t-statistic of the mean return is 3.58
(annualized SR is 0.83) for the combined one-month holding period portfolio under the
equal-weighted scheme and 2.97 (annualized SR is 0.70) for value-weighted scheme.
These numbers are significantly higher than their counterparts for the HmLIdioJ and
LmHSysJ portfolios considered in isolation.

6.4 The Pricing of Shocks to Cross-Sectional Volatility

Our analysis has focused exclusively on the tail index of the cross-sectional return
distribution. It is natural to ask whether other measures of the cross-sectional return
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dispersion would generate a similar pricing performance? The obvious benchmark is
a measure of the overall cross-sectional return volatility. To investigate this issue,
we follow the same approach adopted in Sections 6.1 and 6.2 for analysis of the risk
pricing exercise for shocks to the tail shape index. That is, we perform the identical
portfolio sorting procedure, but replace the tail index ξ with cross-sectional volatility,
estimated as the cross-sectional average of all squared returns for a given time incre-
ment. Furthermore, like in Sections 6.1 and 6.2, we consider separately the case with
and without systematic jumps. We denote these cross-sectional volatility measures by
CSV olSysJ , and CSV olIdioJ for the cross-sectional volatilities when systematic jumps
are present or absent, respectively. Table 10 reports the performance of the portfolios
sorted on betas to shocks in CSV olSysJ , while Table 11 reports the performance of
the portfolios sorted on betas to shocks in CSV olIdioJ .

First, we note that the mean returns and alphas for both cross-sectional volatil-
ity shock beta-sorted LmH portfolios are economically weaker and less statistically
significant than that of jump tail-risk sorted portfolios. Second, importantly, for the
cross-sectional volatilities, both pricing effects are negative. That is, as the volatility
shock beta increases, we observe a market drop in the mean returns of the beta sorted
portfolios, regardless of whether systematic jump are included in the cross-sectional
volatility measure or not. This is, of course, to be expected. The high beta stocks
are good performers when the market is subject to shocks that elevate volatility, and
they therefore serve as relatives hedge against volatility shocks, all else equal, lower-
ing their required risk compensation in equilibrium. But how do we reconcile these
findings with our results for the pricing of tail risk dispersion?

The key distinction is that the diffusive volatility now will have a strong impact
on our cross-sectional CSV ol return variation measures while, in the absence of sys-
tematic jumps, the tail shape distribution is governed by the idiosyncratic jumps.
At the same time, we expect the systematic diffusive volatility to generate qualita-
tively identical pricing effects to the systematic jump variation. Consequently, even
for return increments without systematic jumps, the diffusive volatility will tend to
offset the effect of the idiosyncratic jump variation. Thus, we should anticipate some
cancellation of the two pricing effects, which evidently suffices to reverse the prior re-
sults for idiosyncratic jump risk, when sorting on betas for shocks to CSV olIdioJ . In
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other words, inspection of the tail distribution is critical to identify the cross-sectional
pricing implications of idiosyncratic jump risk. Moreover, this identification can only
be achieved using returns observed over short intraday intervals, as the distribution
of lower-frequency returns will reflect a complex time-varying mixture of components
stemming from diffusive volatility and both idiosyncratic and systematic jumps.

6.5 Pricing of Shocks to Tails in Daily Returns

The above analysis are based on return tail measures obtained from the high-frequency
data. A natural question is whether these results are preserved at a lower frequency.
To investigate this problem, we use daily data to replicate the portfolio sorting exercise
above. Specifically, we use close-to-close daily returns of S&P500 Index stocks and
compute the cross-sectional tail index each day based on data in the past 22 days6.
We then compute the tail innovations and do the portfolio sorting same as before.
Table 9 reports the performance of the portfolios sorted on betas to shocks in daily
return tails, DailyJ .

In summary, we see that portfolio sorting result based on daily data share the
same trend as the one sorted using shocks to systematic jumps innovations obtained
from high-frequency data, that is, there is a decreasing trend in the quintile portfo-
lios. Specifically, the equal-weighted LmHDailyJ portfolio has an annualized return
of 6.59% with a t-statistic of 2.3 (annualized SR is 0.54), while the value-weighted
LmHDailyJ portfolio has an annualized return of 5.63% with a t-statistic of 3.04, or a
SR of 0.71. When test against various factor models, the abnormal returns are most
statistically significant, except the models with CiV factors.

6We have also tried the estimation using 44/66 days, and perform portfolio sorting based on left
or right tails. The results are qualitatively the same.
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Table 9: Returns of daily jump tail shock beta-sorted portfolios. Daily jump tails
are estimated using a rolling window of 22 days.

Equal-weight Value-weight

Panel A: Mean Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat
H 0.13 9.01 4.48 9.23 3.60
Q4 -0.07 12.18 4.19 12.59 3.46
Q3 -0.18 13.80 4.30 14.22 3.52
Q2 -0.28 15.41 4.61 15.17 3.78
L -0.51 16.51 5.35 14.85 4.77
LmHDailyJ 6.59 2.30 5.63 3.04

Panel B: Abnormal Return of LmHDailyJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 4.55 2.23 2.53 0.92
FF3 alpha 5.82 3.03 4.51 1.89
FF5 alpha 5.62 3.13 5.65 2.42
FF6 alpha 6.29 3.55 6.41 2.83
CAPM+tailrisk alpha 5.93 2.82 4.82 1.81
FF6+tailrisk alpha 6.52 3.62 6.56 2.85
CAPM+CiV alpha 2.46 1.11 0.72 0.25
FF6+CiV alpha 3.31 1.51 2.69 0.98
CAPM+idiorisk alpha 6.11 2.98 5.08 1.89
FF6+idiorisk alpha 6.43 3.55 6.23 2.69

7 Conclusion

We develop a framework to estimate cross-sectional tail dispersion risks, which are
captured by the power-law shape index for the jump tails. The estimators are con-
structed using high-frequency data from a large cross-section of assets. We prove
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asymptotic normality for the tail shape index estimators and propose a goodness-of-
fit test for the adequacy of the power law for capturing the systematic and idiosyn-
cratic jump tails, respectively. Empirically, we find that both of these tail dispersion
risk factors evolve differently from the concurrent return volatilities. Furthermore,
the systematic and idiosyncratic jump tails exhibit distinct time-series dynamics and
both carry significant risk premiums, but with opposite signs. The pricing effect of
these jump tail dispersion risks cannot be rationalized through their interaction and
they remain significant when we control for a number of popular cross-sectional factor
pricing models.
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Table 10: Returns of shock beta-sorted portfolios for cross-sectional volatility at the
presence of systematic jumps.

Equal-weight Value-weight

Panel A: Mean Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat

H 1.73 11.24 2.89 10.02 2.99
Q4 0.55 12.32 3.36 10.62 3.65
Q3 0.04 13.07 3.47 13.89 4.76
Q2 -0.48 15.42 3.80 16.89 4.99
L -1.63 15.81 3.32 16.89 4.00

LmHCSV olSysJ 4.57 2.05 6.88 2.51

Panel B: Abnormal Return of LmHCSV olSysJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 1.68 0.88 3.44 1.45
FF3 alpha 2.22 1.17 4.06 1.71
FF5 alpha 2.40 1.24 3.93 1.64
FF6 alpha 3.53 2.02 5.16 2.34
CAPM+tailrisk alpha 2.27 1.15 5.08 2.14
FF6+tailrisk alpha 3.62 2.05 5.60 2.57
CAPM+CiV alpha 2.57 1.18 5.58 2.09
FF6+CiV alpha 4.04 1.85 6.30 2.34
CAPM+idiorisk alpha 3.42 1.52 6.18 2.44
FF6+idiorisk alpha 4.02 2.28 6.01 2.83
CAPM+LmHCSV olIdioJ alpha 2.42 1.23 4.15 1.84
FF6+LmHCSV olIdioJ alpha 3.71 2.13 5.60 2.57
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Table 11: Returns of shock beta-sorted portfolios for cross-sectional volatility when
systematic jumps are absent.

Equal-weight Value-weight

Panel A: Mean Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat

H -0.13 12.54 3.98 11.29 4.63
Q4 -0.26 13.62 3.97 13.27 4.68
Q3 -0.43 13.36 3.48 13.29 4.19
Q2 -0.62 13.97 3.24 15.11 4.18
L -1.06 14.67 2.72 17.09 3.43

LmHCSV olIdioJ 2.13 0.73 5.80 1.62

Panel B: Abnormal Return of LmHCSV olIdioJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 4.45 2.09 1.88 0.68
FF3 alpha 3.42 1.59 0.79 0.29
FF5 alpha 2.36 1.12 1.26 0.47
FF6 alpha 1.72 0.83 1.79 0.66
CAPM+tailrisk alpha 1.90 1.00 1.16 0.49
FF6+tailrisk alpha 1.46 0.79 1.53 0.64
CAPM+CiV alpha 3.95 1.54 2.60 0.83
FF6+CiV alpha 4.11 1.81 2.83 0.99
CAPM+idiorisk alpha 3.21 1.59 2.75 1.17
FF6+idiorisk alpha 1.46 0.79 2.16 0.91
CAPM+LmHCSV olSysJ alpha 4.68 2.23 2.14 0.75
FF6+LmHCSV olSysJ alpha 2.22 1.11 1.31 0.46
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Appendix A Systematic Jump Detection

TRUNC I set daily threshold level to be τt = 4 × ∆0.49
n

√
min(RVt, BVt), where

RVt is daily realized variance RV =
∑n

j=1 R
2
t,j, and BVt = πn/(2(n −

1))
∑n−1

j=1 |Rt,jRt,j+1|, and Rt,j is the jth high-frequency return on day t.

TRUNC II set the jump time as τ i = {(t− 1)n+ j : |Rt,j| > τt, j = 1, ..., 1/∆n}.

For type (b) systematic jump, we first get cross-sectional average of returns ∆n
i P ,

we then apply the same truncation method above by replacing the Rt,j with ∆n
i P .

Denote the systematic jump time of type (b) as τ (b).

The type (c) systematic jumps are obtained by the following steps:

step I get continuous cross-sectional average returns ∆n
i P

τ
= ∆n

i P Ii/∈τ (b) .

step II remove component in step I from returns: rji = Rji − ∆n
i P

τ , where Rji is
the ith high-frequency return of stock j

step III Apply truncation (TRUNC I-II) to rji and get truncated returns rτji.

step IV Compute an unbiased cross-sectional average of g, that is ǎτ (g)i = âτ (g)i −
0.5âτ (g)i−1 − 0.5âτ (g)i+1, where âτ (g)i = g(rτji) =

∑N
j=1 g(rτji)/N , and we

set function g(x) = x2. We compute the un-truncated averages ǎ(g)i =

â(g)i − 0.5âτ (g)i−1 − 0.5â(g)i+1, where â(g)i = g(rji) =
∑N

j=1 g(rji)/N .

step V Compute V̂ J t =
∑

i∆n∈(t,t+1] |ǎτ (g)i|

step VI Set threshold as τ vt = δ ×∆0.98
n V̂ J t, δ = 12.

step VII Systematic jump time τ (c)′ = {(n − 1)t + j : |âτ (g)(n−1)t+j| ≥ τ vt , j =

1, ..., 1/∆n, t = 1, ..., }.

step VIII compute cross-sectional average of g2: â(g2)i = g(rji)2 =
∑N

j=1(g(rji))
2/N .

step IX Set threshold as τ v′i = δ ×∆0.98
n

√
â(g2)i.

step X Systematic jump time τ (c)′′ = {i : |â(g)i| ≥ τ v
′

i }.

step XI Finally, the systematic jump time of type (c) is set to be τ (c) = τ (c)′′ ∩ τ (c)′ .
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Appendix B Portfolio sorting results with a three-

month holding window

In this section, we report the portfolio sorting results for a holding window of three
months. In Tables 12, 13 and 14, we summarize the performance of the portfolios
sorted using systematic jump risk, idiosyncratic jump risk, and the combined port-
folio, respectively. We see that overall the conclusions are qualitatively the same as
the portfolio sorting with a one-month holding window.

Table 12: Returns of systematic jump tail innovation beta-sorted portfolios. The
holding window of the portfolio is three months (66 days).

Three-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 11.36 2.89 11.31 3.19
Q4 13.13 3.72 10.73 3.80
Q3 13.80 3.94 13.35 5.04
Q2 14.55 4.09 16.20 5.73
L 15.87 3.81 16.25 4.66
LmHSysJ 4.50 2.37 4.93 1.94

Panel B: Abnormal Return of LmHSysJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 3.68 1.92 4.39 1.58
FF3 alpha 3.77 1.91 4.60 1.60
FF5 alpha 4.79 2.32 6.16 2.26
FF6 alpha 6.10 3.11 7.78 3.02
CAPM+tailrisk alpha 4.83 2.32 7.01 2.61
FF6+tailrisk alpha 6.52 3.23 9.00 3.53
CAPM+CiV alpha 8.92 2.42 8.56 1.87
FF6+CiV alpha 9.30 1.47 8.86 1.17
CAPM+idiorisk alpha 5.87 2.35 7.92 2.56
FF6+idiorisk alpha 6.92 3.40 9.19 3.50
CAPM+HmLIdioJ alpha 3.90 2.18 6.18 2.28
FF6+HmLIdioJ alpha 6.17 3.22 9.35 3.57
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Table 13: Returns of idiosyncratic jump tail innovation beta-sorted portfolios. The
holding window of the portfolio is three months (66 days).

Three-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 15.29 3.93 15.84 5.00
Q4 14.21 4.10 13.60 5.27
Q3 13.60 3.82 10.92 4.17
Q2 13.27 3.69 11.21 4.04
L 12.54 3.05 12.09 3.54
HmLIdioJ 2.75 1.55 3.76 1.74

Panel B: Abnormal Return of HmLIdioJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 3.67 1.69 4.40 1.53
FF3 alpha 3.73 1.67 4.11 1.32
FF5 alpha 3.07 1.43 3.80 1.24
FF6 alpha 3.12 1.47 3.67 1.17
CAPM+tailrisk alpha 4.14 1.86 5.26 1.74
FF6+tailrisk alpha 3.80 1.48 4.69 1.52
CAPM+CiV alpha 1.16 0.45 1.80 0.56
FF6+CiV alpha -0.63 0.20 -1.42 0.39
CAPM+idiorisk alpha 3.61 1.77 4.21 1.66
FF6+idiorisk alpha 3.56 1.81 4.11 1.54
CAPM+LmHSysJ alpha 3.91 1.95 5.01 1.87
FF6+LmHSysJ alpha 3.45 1.87 4.63 1.69
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Table 14: Performance of combined portfolio. The holding window is 3 months.

Three-month holding window
Equal-weight Value-weight
Panel A: Correlation between SysJ and IdioJ

Cor(SysJ,IdioJ) -0.11 -0.07

Panel B: Performance of the combined Portfolio
Measure Ret T-stat Ret T-stat
MEAN 3.76 3.06 4.24 2.58
CAPM alpha 4.20 2.68 5.04 2.21
FF3 alpha 4.15 2.53 4.92 2.00
FF5 alpha 4.29 2.59 5.58 2.39
FF6 alpha 4.96 3.21 6.35 2.82
CAPM+tailrisk alpha 4.88 2.96 6.77 3.09
FF6+tailrisk alpha 5.48 3.5 7.51 3.42
CAPM+CiV alpha 1.16 0.45 1.80 0.56
FF6+CiV alpha -0.63 -0.2 -1.42 -0.39
CAPM+idiorisk alpha 5.32 3.05 6.87 3.11
FF6+idiorisk alpha 5.74 3.69 7.46 3.46

Appendix C Portfolio sorting for systematic jump

detection with various thresholds

As a robustness check, we evaluate the portfolio sorting results based on systematic
jump detection with various threshold parameters. We set the tuning parameter for
latent systematic jump detection in steps V and IX to be δ = 10, or 8. The detected
systematic jumps are then around 1 for every 5 days and 3.5 days, respectively.

In Tables 15–18, we summarize the portfolio sorting results. We see that the con-
clusions are qualitatively the same for various thresholding parameters. The quantile
portfolios with higher exposure to systematic/idiosyncratic jump innovations have
lower/higher returns. In addition, the alphas of the LmHSysJ/HmLIdio portfolios
sorted by systematic/idiosyncratic jumps exposures are statistically significant after
controlling for various factors.
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C.1 Portfolio sorting: threshold δ = 10

C.1.1 portfolio sorting based on exposure to systematic jump tail index

shocks

Table 15: Returns of systematic jump tail shock beta-sorted portfolios. The holding
window of the portfolio is one month. Tuning parameter for systematic jump detection
δ = 10.

One-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 11.10 2.68 11.43 3.11
Q4 13.38 3.53 11.85 3.73
Q3 12.87 3.44 12.82 4.43
Q2 14.81 3.75 15.45 4.87
L 15.48 3.49 15.30 4.20
LmHSysJ 4.38 2.36 3.87 1.49

Panel B: Abnormal Return of LmHSysJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 3.07 1.62 3.1 1.18
FF3 alpha 3.29 1.77 3.76 1.45
FF5 alpha 3.34 1.76 3.46 1.31
FF6 alpha 3.84 2.01 3.99 1.50
CAPM+tailrisk alpha 3.37 1.70 4.12 1.54
FF6+tailrisk alpha 3.81 1.94 4.45 1.65
CAPM+CiV alpha 3.61 1.50 5.43 1.74
FF6+CiV alpha 4.24 1.72 5.63 1.73
CAPM+idiorisk alpha 3.66 1.69 3.91 1.36
FF6+idiorisk alpha 3.99 2.03 4.35 1.60
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Table 16: Returns of systematic jump tail shock beta-sorted portfolios. The holding
window of the portfolio is three months (66 days). Tuning parameter for systematic
jump detection δ = 10.

Three-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 11.74 2.94 12.35 3.36
Q4 13.71 3.88 11.88 4.08
Q3 12.95 3.72 13.32 5.08
Q2 14.81 4.14 15.33 5.27
L 15.41 3.78 15.11 4.52
LmHSysJ 3.68 2.02 2.76 1.01

Panel B: Abnormal Return of LmHSysJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 3.14 1.61 2.59 0.87
FF3 alpha 3.01 1.46 2.47 0.77
FF5 alpha 3.31 1.62 3.25 1.07
FF6 alpha 4.48 2.24 4.75 1.6
CAPM+tailrisk alpha 3.86 1.84 4.59 1.56
FF6+tailrisk alpha 4.98 2.42 6.16 2.09
CAPM+CiV alpha 7.24 2.25 8.03 1.56
FF6+CiV alpha 6.94 1.29 9.41 1.17
CAPM+idiorisk alpha 4.45 1.8 5.19 1.56
FF6+idiorisk alpha 5.24 2.53 6.47 2.23
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C.1.2 portfolio sorting based on exposure to idiosyncratic jump tail index

shocks

Table 17: Returns of idiosyncratic jump tail shock beta-sorted portfolios. The
holding window of the portfolio is one month. Tuning parameter for systematic jump
detection δ = 10.

One-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 15.34 3.81 15.56 4.73
Q4 13.78 3.67 12.85 4.51
Q3 13.46 3.57 10.44 3.59
Q2 13.17 3.37 11.25 3.69
L 12.40 2.74 11.74 3.13
HmLIdioJ 2.94 1.78 3.82 1.79

Panel B: Abnormal Return of HmLIdioJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 4.33 2.27 5.28 2.12
FF3 alpha 4.05 2.07 4.53 1.77
FF5 alpha 4.26 2.16 4.84 1.84
FF6 alpha 4.18 2.13 4.71 1.80
CAPM+tailrisk alpha 4.73 2.45 6.21 2.48
FF6+tailrisk alpha 4.73 2.40 5.69 2.17
CAPM+CiV alpha 4.07 1.98 5.86 2.5
FF6+CiV alpha 4.32 2.09 6.13 2.51
CAPM+idiorisk alpha 4.09 2.22 4.95 2.14
FF6+idiorisk alpha 4.43 2.32 5.03 2.07
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Table 18: Returns of idiosyncratic jump tail innovation beta-sorted portfolios. The
holding window of the portfolio is three months (66 days). Tuning parameter for
systematic jump detection δ = 10.

Three-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 15.15 3.99 15.85 5.11
Q4 14.10 4.1 13.12 5.18
Q3 13.61 3.89 10.82 4.07
Q2 13.39 3.62 11.49 4.10
L 12.69 3.04 11.91 3.36
HmLIdioJ 2.46 1.36 3.95 1.76

Panel B: Abnormal Return of HmLIdioJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 3.79 1.67 5.26 1.78
FF3 alpha 3.77 1.58 4.91 1.51
FF5 alpha 3.35 1.46 4.78 1.49
FF6 alpha 3.37 1.47 4.64 1.42
CAPM+tailrisk alpha 4.45 1.93 6.13 2.01
FF6+tailrisk alpha 4.19 1.90 5.57 1.73
CAPM+CiV alpha 0.73 0.27 2.01 0.65
FF6+CiV alpha -1.53 0.46 -1.57 0.40
CAPM+idiorisk alpha 3.89 1.87 5.11 1.98
FF6+idiorisk alpha 3.88 1.89 4.93 1.80

C.2 Portfolio sorting: threshold δ = 8
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C.2.1 Portfolio sorting based on exposure to systematic jump tail index

shocks

Table 19: Returns of systematic jump tail shock beta-sorted portfolios. The holding
window of the portfolio is one month. Tuning parameter for systematic jump detection
δ = 8.

One-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 9.95 2.43 10.80 2.96
Q4 12.55 3.29 11.13 3.40
Q3 13.47 3.57 12.94 4.44
Q2 15.24 3.90 14.64 4.60
L 16.60 3.70 16.38 4.43
LmHSysJ 6.65 3.25 5.58 2.08

Panel B: Abnormal Return of LmHSysJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 5.27 2.57 5.07 1.84
FF3 alpha 5.69 2.84 5.85 2.14
FF5 alpha 5.55 2.69 5.51 1.91
FF6 alpha 6.17 3.01 6.24 2.17
CAPM+tailrisk alpha 5.77 2.67 5.79 2.03
FF6+tailrisk alpha 6.24 2.98 6.45 2.21
CAPM+CiV alpha 5.73 2.22 7.29 2.00
FF6+CiV alpha 5.52 2.09 6.15 1.64
CAPM+idiorisk alpha 6.35 2.75 6.40 2.12
FF6+idiorisk alpha 6.54 3.12 6.70 2.29
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Table 20: Returns of systematic jump tail innovation beta-sorted portfolios. The
holding window of the portfolio is three months (66 days). Tuning parameter for
systematic jump detection δ = 8.

Three-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 10.88 2.82 11.74 3.31
Q4 12.69 3.55 11.20 3.79
Q3 13.79 3.99 13.5 5.17
Q2 15.11 4.18 14.46 4.82
L 16.37 3.96 16.25 4.83
LmHSysJ 5.49 2.88 4.51 1.76

Panel B: Abnormal Return of LmHSysJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 4.45 1.95 4.18 1.42
FF3 alpha 4.47 1.91 4.27 1.40
FF5 alpha 4.61 1.93 5.2 1.75
FF6 alpha 5.89 2.59 6.78 2.38
CAPM+tailrisk alpha 5.36 2.22 5.88 2.05
FF6+tailrisk alpha 6.58 2.81 7.83 2.77
CAPM+CiV alpha 9.31 2.52 8.01 1.59
FF6+CiV alpha 7.64 1.29 6.27 0.74
CAPM+idiorisk alpha 6.35 2.42 7.47 2.43
FF6+idiorisk alpha 7.01 3.08 8.51 3.11

56



C.2.2 Portfolio sorting based on exposure to idiosyncratic jump tail index

shocks

Table 21: Returns of idiosyncratic jump tail shock beta-sorted portfolios. The
holding window of the portfolio is one month. Tuning parameter for systematic jump
detection δ = 8.

One-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 15.52 3.85 15.55 4.59
Q4 12.73 3.34 10.3 3.64
Q3 14.13 3.77 13.64 4.83
Q2 13.34 3.42 10.97 3.59
L 12.25 2.73 11.11 2.95
HmLIdioJ 3.27 1.96 4.44 2.02

Panel B: Abnormal Return of HmLIdioJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 4.55 2.36 5.73 2.15
FF3 alpha 4.29 2.15 4.96 1.80
FF5 alpha 4.44 2.21 5.27 1.85
FF6 alpha 4.28 2.15 5 1.77
CAPM+tailrisk alpha 4.76 2.41 6.62 2.42
FF6+tailrisk alpha 4.69 2.34 5.94 2.10
CAPM+CiV alpha 4.96 2.37 6.28 2.57
FF6+CiV alpha 4.81 2.29 5.65 2.18
CAPM+idiorisk alpha 4.46 2.38 5.94 2.40
FF6+idiorisk alpha 4.6 2.37 5.73 2.17
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Table 22: Returns of idiosyncratic jump tail innovation beta-sorted portfolios. The
holding window of the portfolio is three months (66 days). Tuning parameter for
systematic jump detection δ = 8.

Three-month holding window
Equal-weight Value-weight

Panel A: Average Return of Portfolios
Portfolio Ret T-stat Ret T-stat
H 15.44 4.04 16.15 2.26
Q4 13.04 3.67 10.76 1.86
Q3 14.28 4.18 13.5 1.83
Q2 13.57 3.73 11.07 1.92
L 12.58 3.00 11.75 2.37
HmLIdioJ 2.86 1.57 4.4 1.54

Panel B: Abnormal Return of HmLIdioJ Portfolio
Measure Ret T-stat Ret T-stat
CAPM alpha 4.17 1.85 5.50 1.80
FF3 alpha 4.16 1.76 5.10 1.53
FF5 alpha 3.63 1.62 4.69 1.45
FF6 alpha 3.62 1.61 4.49 1.34
CAPM+tailrisk alpha 4.70 2.06 6.49 2.07
FF6+tailrisk alpha 4.24 1.96 5.44 1.66
CAPM+CiV alpha 0.84 0.30 2.13 0.65
FF6+CiV alpha -2.03 0.54 -2.45 0.52
CAPM+idiorisk alpha 4.33 2.07 5.58 2.08
FF6+idiorisk alpha 4.02 1.97 4.96 1.75

Appendix D Assumptions

In this section, we state the assumptions needed for our theoretical results. First, the
systematic jump process {Jit} is given by

Jit =
∑
q≥1

λiq1{ρq≤t}, (D.1)
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where (ρp)p≥1 is a strictly increasing sequence of positive stopping times going to ∞,
capturing the timing of the systematic jumps in asset prices, and λiq capture the size
of the systematic jumps.

The idiosyncratic jumps in the asset prices have the following representation

J̃it =

∫ t

0

∫
R+

∫
R

(
1{u<ϕ−it , z<0} + 1{u>ϕ+

it, z>0}
)
zµi(ds, du, dz), (D.2)

where (µi)i≥1 is a sequence of independent Poisson measures on R+ × R+ × R with
compensator ds⊗ du⊗ ν(z)dz, for some nonnegative measure ν; {ϕ±it} are some pre-
dictable processes. The second dimension of the Poisson measure is used for thinning
and generates time-varying intensity of jumps, which can differ depending on their
sign. Indeed, an alternative (and equivalent) representation for {J̃it} is as a jump
process with jump compensator on R+ × R (the first dimension capturing time and
the second one the jump size) being (ϕ−it1{z<0}) + ϕ+

it1{z>0}))dt⊗ dν(z).

We next define formally the set of indices of the high-frequency increments con-
taining the systematic jumps that is denoted by Tn. It is given by

Tn = {i : ((i− 1)∆n, i∆n] contains a ρp, i = 1, .., n}.

We let T̂n denote an estimator of this set. The following assumption formalizes the
sense in which T̂n is consistent for Tn,

Assumption 1 (Systematic Jump Time Estimation) The set Tn is finite al-
most surely. In addition, as N →∞ and n→∞,

P(T̂n = Tn)→ 1.

As we already mentioned, this assumption is satisfied by the method of systematic
jump identification used in Jacod et al. (2024), which we also use for our application.

Our next assumption concerns the cross-sectional dependence of various quantities
that appear in the definitions of the jumps. We are interested in the cross-sectional
dependence conditional on the common shocks σ-algebra C that contains various
aggregate level shocks. In particular, the stopping times (ρp)p≥1, the vector of sys-
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tematic Brownian motions Wt, the measure ν, and more generally any economy-wide
(systematic) shocks are all adapted to C. Our assumption is then as follows,

Assumption 2 (C-conditional Independence) Conditional on C:

(a) λip is independent from λi′p′ if (i, p) 6= (i′, p′),

(b) the processes (ϕ±it) are independent for different values of i,

(c) the sequence (λip){p≥1} is independent from the processes (ϕ±i′t) if i 6= i′.

We note that the cross-sectional independence needs to apply only after condi-
tioning on C. Therefore, we can allow for common factors to drive the systematic
jumps or the idiosyncratic jump intensities.

We turn next to the assumptions concerning the regular variation of the jump
tails. For a unction g : R → R, our generic assumption for regular variation in the
tails of g±ψ (x) is given by,

Assumption RegV For a function g : R → R, g±ψ (x) are regularly varying with
index 1/ξ± > 0, that is,

lim
x→∞

g±ψ (δx)

g±ψ (x)
= δ−1/ξ± , for all δ > 0.

Moreover,

lim
x→∞

δ1/ξ±g±ψ (δx)

g±ψ (x)
= 1 +O(τ±(x)), for all δ > 0,

where τ±(x) > 0, τ±(x)→ 0 as x ↑ ∞, and τ±(x) are non-increasing.

This assumption means that the tails of g±ψ (x) can be approximated by a power
function. The parameters ξ± capture the rate of tail decay and play a key role in
describing the tail behavior. We impose regular variation for the tails of systematic
and idiosyncratic jumps in the following two assumptions,

Assumption 3 (Systematic Jump Tails) Conditional on C, (λip)1≤i≤N is an i.i.d.
sequence of random variables with probability density function fp(x), for p = 1, 2, ....
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Each fp(x) satisfies Assumption RegV with the same ξ± = ξ±S and τ± = τ±S , for ξ
±
S

being some C-adapted random variables and τ±S being some C-adapted functions.

Assumption 4 (Idiosyncratic Jump Tails) The jump density measure ν(x) is C-
adapted and satisfies Assumption RegV with ξ± = ξ±I and τ = τ±I , for ξ

±
I being some

C-adapted random variables and τ±I being some C-adapted functions.

We note that in the above assumptions, ξ±S and ξ±I are random variables (adapted
to C). This is important because the tail decay parameters vary significantly over
time empirically.

Finally, for deriving the behavior of our tail estimators, we need some relatively
mild assumptions related to existence of moments of certain variables appearing in the
asset price dynamics as well as some smoothness in expectations. They are collected
in the following assumption,

Assumption 5 (C-conditional Moments) There is a sequence T1, T2, ... of stop-
ping times increasing to ∞ such that for all i ≥ 1, 0 ≤ s ≤ t < Tm and p ≥ 2:

E

((
sup
t′∈[s,t]

|ϕ±it − ϕ±it′ |
)p∣∣∣∣C

)
< Kp|t− s|, (D.3)

and

E

((
ϕ±it + |αit|+ σ̃2

it + ‖βi,t‖2
)p∣∣∣∣C

)
< Kp, (D.4)

for some C-adapted random variable Kp > 0.

Condition (D.3) is satisfied if ϕ±it follows an Ito semimartingale, which is the stan-
dard approach to modeling the continuous-time dynamics in economics. Conditions
(D.4) all concern the existence of conditional moments. They are much weaker than
requiring the existence of unconditional moments.

Finally, for the estimators of ξ±S and ξ±I , we need rate conditions involving N , ∆n

and the residual functions τ±. These are given in the following two conditions:

Conditions SJ Suppose p ≥ 1, and as N → ∞, ∆n → 0, and ρSN → ∞, assume
that infp≥1Nf̄

+
p,ψ(ρSN)→∞, supp≥1

√
Nf̄+

p,ψ(ρSN)τ+(ρSN)→ 0,
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supp≥1 ∆nν
+
ψ (ρSN)

√
N/fp,ψ+(ρSN)→ 0, and

√
N
(

sup
p≥1

f̄+
p,ψ(ρSN)

)
∆3−ε
n

(
1
∨ √

∆n

infp≥1 f̄
+
p,ψ(ρSN)

)
→ 0, for some ε > 0. (D.5)

Conditions IJ As N → ∞, ∆n → 0, and ρIN → ∞, assume N ν+
ψ (ρIN) → ∞,√

N ν+
ψ (ρIN) τ+(ρIN)→ 0, and for some ε > 0,

√
N ν+

ψ (ρIN) ∆1−ε
n

(
1
∨ √

∆n

ν+
ψ (ρIN)

)
→ 0. (D.6)

Appendix E Goodness-of-Fit Test Definitions

We define the limiting variables KS+ and KI+ formally in this section. We start
with the former. We let XS

N denote an infeasible KS statistic computed using a
sample of random variables of size Nf+

ψ (ρSN), that follow the power law with tail
decay parameter ξ+

S and location ρSN , along with the power law distribution with a
tail decay parameter obtained via maximum likelihood estimation (MLE). Specifically,
suppose that (xi)i=1,...,[Nf

+
ψ (ρSN )]

are i.i.d. drawn from the Pareto distribution with tail

probability (x/ρSN)−1/ξ+S for x ≥ ρSN . Then,

XS
N ∼ sup

x

∣∣∣∣∣
[Nf

+
ψ (ρSN )]∑
i=1

1

Nf
+

ψ (ρSN)
1{xi>x} −

( x

ρSN

)−1/ξ̃+S

∣∣∣∣∣, for x ≥ ρSN ,

where ξ̃+
S =

∑[Nf
+
ψ (ρSN )]

i=1 log(xi/ρ
S
N)/[Nf

+

ψ (ρSN)] is the MLE based on (xi)i=1,...,[Nf
+
ψ (ρSN )]

.

Further, we let the limiting distribution of
√
Nf

+

ψ (ρSN)XS
N be denoted KS+, i.e.,

√
Nf

+

ψ (ρSN)XS
N

L|C→ KS+, as Nf
+

ψ (ρSN) → ∞ .

When using the fitted Pareto distribution in the KS statistic, KS+ does not have a
closed-form expression. Simulation can be used, instead, for estimating its quantiles,
as done by Clauset et al. (2009).
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We continue next with KI+. We let XI
N denote an infeasible KS statistic com-

puted using a sample of size
∑N

i=1 ν
+
ψ (ρIN)E

( ∫ 1

0
ϕ+
itdt
)

that follows the power law
with tail decay parameter ξ+

I and location ρIN . Write KI+ as the limiting distribution

of
√∑N

i=1 ν
+
ψ (ρIN)E

( ∫ 1

0
ϕ+
itdt
)
XI
N , i.e.,

√√√√ N∑
i=1

ν+
ψ (ρIN)E

( ∫ 1

0

ϕ+
itdt

)
XI
N

L|C→ KI+, as N ν+
ψ (ρIN) → ∞ .

Appendix F Goodness-of-Fit for Cross-Sectional Id-

iosyncratic Return Tails

We next proceed to the goodness-of-fit test for the power law characterization of the
idiosyncratic jump tails. The corresponding KS statistic is given by,

DI
N = sup

x
|F I

N(x)− P I
N(x) | , (F.1)

where F I
N(x) is the empirical tail distribution for the idiosyncratic jumps,

F I
N(x) =

1

M̂ I+
N

N∑
i=1

∑
j∈T̂ cn

1{ψ+(∆n
j pi)>x}, for x ≥ ρIN , (F.2)

and P I
N(x) is the tail probability of the estimated Pareto distribution,

P I
N(x) =

(
x

M̂ I+
N

)−1/ξ̂+I

, for x ≥ ρIN , (F.3)

and ξ̂+
I and M̂ I+

N are defined in equations (3.4) and (3.5), respectively.

We have the following result about the KS statistic.

Theorem 4 Suppose the assumptions of Theorem 2 apply with τ+
I (x) ≡ 0 for all

x ≥ ρIN . Then, √
M̂ I+

N DI
N,t

L|C→ KI+,
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where KI+ is defined in Appendix E.

Theorem 4 suggests that the asymptotic distribution of the proposed KS statistic
is identical to that of the KS statistic based on data generate by the exact power
law. As in the case of the systematic jump tails, the quantiles of KI+ can be easily
estimated via simulation.

Appendix G Proofs

Denote the score associated with the log-likelihood of the power law distribution by

φ+(u, ξ+) = log(ξ+) +
(

1 +
1

ξ+

)
log
(

1 +
u

x

)
.

We can define an infeasible estimator of ξ+
I based on direct observation of the idiosyn-

cratic jumps. More specifically, we define

gIN(ξ+, ρIN) =
1

M I+
N

(
N∑
i=1

∫ 1

0

∫
R
φ+(ψ+(x)− ρIN , ξ+)1{ψ+(x)>ρIN}

µi(ds, dx)

)
,

where M I+
N denotes the total number of positive idiosyncratic jumps for all stocks

over the time interval [0, 1] that exceed ρIN upon transformation by ψ+(·). That is,

M I+
N =

N∑
i=1

∫ 1

0

∫
R
1{ψ+(x)>ρIN}

µi(ds, dx). (G.1)

By setting gIN(ξ+, ρN) = 0, we get the MLE, or Hill’s estimator of idiosyncratic jump
tail parameter,

ξ̃I
+

=
1

M I+
N

(
N∑
i=1

∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)

)
. (G.2)

Similarly, for systematic jumps, we have the infeasible MLE based on direct ob-
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servations of the systematic jumps,

ξ̃S
+

=
1

MS+
N

(
N∑
i=1

∑
p≥1

log
(ψ+(λip)

ρSN

))
, (G.3)

where MS+
N denotes the total number of positive systematic jumps for all stocks over

the interval [0, 1] that exceed ρSN upon transformation by ψ(·). That is

MS+
N =

N∑
i=1

∑
p≥1

∫
R
1{ψ+(λip)>ρSN}

. (G.4)

The following results are about the estimators above using the infeasible stock
jumps. We have the following lemmas.

Lemma 1 For the process {pit} defined in (2.1), assume Assumptions 2 and 4, for
all i ≥ 1, there exists K > 0, ι < 1, 0 < E(ϕ+

it)
2(1+ι) < K, in addition, N → ∞,

ρIN →∞, Nν+
ψ (ρIN)→∞, and

√
Nν+

ψ (ρIN)τ+
I (ρIN)→ 0 as N →∞. Then

√
M I+

N (ξ̃I
+
− ξ+

I )
L|C→ N

(
0, (ξ+

I )2
)
. (G.5)

Proof:

First, for an integer k, by a change of variable of integration,

∫
R

(
log
(ψ+(x)

ρIN

))k

1{ψ+(x)>ρIN}
ν(x)dx

=ν+
ψ (ρIN)

∫ ∞
0

(
log
(

1 +
u

ρIN

))k(
1−

ν+
ψ (u+ ρIN)

ν+
ψ (ρIN)

)′
du.

By Proposition 3.1 of Smith (1987), under Assumptions 2, 4, and the assumption
that ρIN →∞, we get, conditional on C,

1

ν+
ψ (ρIN)

∫
R

(
log
(ψ+(x)

ρIN

))k
1{ψ+(x)>ρIN}

ν(x)dx = (ξ+
I )kΓ(k+ 1) +O

(
τ+
I (ρIN)

)
, (G.6)

where Γ(·) is the gamma function.
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Next, we show the consistency of ξ̃I
+
. By Assumptions 2 and 4, for the M I+

N

defined in (G.1),
E(M I+

N |C)
Nν+

ψ (ρIN)
=

1

N

N∑
i=1

E
(∫ 1

0

ϕ+
itdt

∣∣∣∣C), (G.7)

V ar(M I+
N |C)

Nν+
ψ (ρIN)

=
1

N

N∑
i=1

E
(∫ 1

0

ϕ+
itdt

∣∣∣∣C) = O(1). (G.8)

By (G.7) and (G.8), and the assumption that Nν+
ψ (ρIN)→∞ as N →∞, we have

M I+
N

Nν+
ψ (ρIN)

− 1

N

N∑
i=1

E
(∫ 1

0

ϕ+
itdt

∣∣∣∣C) = Op

(√
1

Nν+
ψ (ρIN)

)
= op(1). (G.9)

Similarly, using (G.6) with k = 1, we get

1

Nν+
ψ (ρIN)

E

(
N∑
i=1

∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)

)

=
(

(ξ+
I ) +O

(
τ+
I (ρIN)

))( 1

N

N∑
i=1

E
(∫ 1

0

ϕ+
itdt

∣∣∣∣C)
)
,

(G.10)

and by setting k = 2,

1

Nν+
ψ (ρIN)

V ar

(
N∑
i=1

∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)

∣∣∣∣C
)

=
1

Nν+
ψ (ρIN)

N∑
i=1

V ar

(∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)

∣∣∣∣C
)

=
(

(ξ+
I )2 +O

(
τ+
I (ρIN)

))( 1

N

N∑
i=1

E
(∫ 1

0

ϕ+
itdt

∣∣∣∣C)
)

=O(1).

(G.11)
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By (G.10) and (G.11), Nν+
ψ (ρIN)→∞, and τ+

I (ρIN) = o(1), as N →∞, we have

1

Nν+
ψ (ρIN)

(
N∑
i=1

∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)

)

− ξ+
I

(
1

N

N∑
i=1

∫ 1

0

E(ϕ+
it |C)dt

)

=Op

(√
1

Nν+
ψ (ρIN)

+ τ+
I (ρIN)

)
= op(1).

(G.12)

Combining (G.9) and (G.12) yields

ξ̃+
I − ξ

+
I = op(1). (G.13)

Finally, about the CLT, we have the following. For some 0 < ι < 1, there exists
C-adapted positive random variable C such that

E

((∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)
)2(1+ι)

∣∣∣∣C
)

≤CE

((∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µ̃i(ds, dx)
)2(1+ι)

∣∣∣∣C
)

+ CE

((∫ 1

0

ϕ+
is

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

νs(x)dsdx
)2(1+ι)

∣∣∣∣C
)

≤CE

((∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µ̃i(ds, dx)
)2(1+ι)

∣∣∣∣C
)

+ CE
(∫ 1

0

(
ϕ+
is

)2(1+ι)
ds

∣∣∣∣C)(ν+
ψ (ρIN)

(
ξ+
I +O(τ+

I (ρIN))
))2(1+ι)

,

(G.14)

where µ̃i(dt, dx) = µi(dt, dx) − νit(dx)dt, and the last inequality holds due to the
assumption that E((ϕ+

it)
2(1+ι)|C) is bounded by a C-adapted random variable, Jensen’s
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inequality, (G.6) with k = 1. By the Burkholder-Davis-Gundy inequality,

E

((∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µ̃i(ds, dx)
)2(1+ι)

∣∣∣∣C
)

≤E

((∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2

1{ψ+(x)>ρIN}
µi(ds, dx)

)(1+ι)
∣∣∣∣C
)

≤CE

((∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2

1{ψ+(x)>ρIN}
µ̃i(ds, dx)

)(1+ι)
∣∣∣∣C
)

+ CE

((∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2

1{ψ+(x)>ρIN}
ϕ+
isνs(x)dsdx

)(1+ι)
∣∣∣∣C
)
.

(G.15)

For the first term on the right hand side of the last inequality of (G.15), by ι < 1,
the inequality that (

∑
i ai)

p ≤
∑

i a
p
i for p ≤ 1, and the Burkholder-Davis-Gundy

inequality again, we have

E

((∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2

1{ψ+(x)>ρIN}
µ̃i(ds, dx)

)(1+ι)
∣∣∣∣C
)

≤E

((∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))4

1{ψ+(x)>ρIN}
µi(ds, dx)

)(1+ι)/2
∣∣∣∣C
)

≤E

(∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2(1+ι)

1{ψ+(x)>ρIN}
µi(ds, dx)

∣∣∣∣C
)

=E
(∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2(1+ι)

1{ψ+(x)>ρIN}
ϕ+
isνs(x)dxds

∣∣∣∣C)
=
(

6(ξ+
I )4ν+

ψ (ρIN) +O(τ+
I (ρIN))

)
E
(∫ 1

0

ϕ+
isds

∣∣∣∣C),

(G.16)

where the last equality holds by (G.6) with k = 4.

For the second term on the right hand side of the last inequality of (G.15), by
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(G.6) with k = 2, we have, for some C-adapted positive random variable C,

E

((∫ 1

0

∫
R

(
log
(ψ+(x)

ρIN

))2

1{ψ+(x)>ρIN}
ϕ+
isνs(x)dxds

)(1+ι)
∣∣∣∣C
)

=E

((∫ 1

0

ϕ+
isds
(
ν+
ψ (ρIN)2(ξ+

I )2 +O(τ+
I (ρIN))

))(1+ι)
∣∣∣∣C
)

≤CE
(∫ 1

0

(ϕ+
is)

1+ιds

∣∣∣∣C)(ν+
ψ (ρIN)2(ξ+

I )2 +O(τ+
I (ρIN))

)1+ι

,

(G.17)

where the last inequality holds by E
(
(ϕ+

it)
(1+ι)|C

)
being bounded by C-adapted random

variable and Jensen’s inequality. Combining (G.14)–(G.17), the assumption that
ρIN →∞ hence ν+

ψ (ρIN)→ 0, and Nν+
ψ (ρIN)→∞ yields

N∑
i=1

1

N1+ι
(
ν+
ψ (ρIN)

)1+ιE

((∫ 1

0

∫
R

log
(ψ(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)
)2(1+ι)

∣∣∣∣C
)

=O

(
1

N ι
(
ν+
ψ (ρIN)

)ι
)
→ 0 as N →∞.

(G.18)
The desired result follows from (G.9), (G.10), (G.11), (G.18), the assumptions that√
Nν+

ψ (ρIN)
(
τ+
I (ρIN)

)
= o(1), and Lyapunov’s CLT. 2

Next, for the infeasible estimator of the tail index of the systematic jumps, we
have the following lemma.

Lemma 2 For the process {pit} defined in (2.1), assume Assumptions 1–3, in addi-
tion, N → ∞, ρSN → ∞, infp≥1Nf

+

p,ψ(ρSN) → ∞, and supp≥1

√
Nf

+

p,ψ(ρSN)τ+
S (ρSN) →

0 as N →∞. Then √
MS+

N (ξ̃+
S − ξ

+
S )
L|C→ N

(
0, (ξ+

S )2
)
. (G.19)

Proof: By Proposition 3.1 of Smith (1987), under Assumptions 2, 3, and that ρSN →
∞, we get, for all p ≥ 1,

1

f
+

p,ψ(ρSN)
E

((
log
(ψ(λip)

ρSN

))k

1{ψ(λip)>ρSN}

∣∣∣∣C
)

= (ξ+
S )kΓ(k+1)+O

(
τ+
S (ρSN)

)
, (G.20)

where Γ(·) is the gamma function. By Assumptions 1–3, for the MS+
N defined in
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(G.4),

E(MS+
N |C) =

N

|Tn|

Tn∑
p=1

f
+

p,ψ(ρSN), (G.21)

V ar(MS+
N |C) =

N

|Tn|

Tn∑
p=1

f
+

p,ψ(ρSN). (G.22)

Denote by f+

ψ (ρSN) =
∑Tn

p=1 f
+

p,ψ(ρSN)/|Tn|. By (G.21) and (G.22), and the assumption
that infp≥1Nf

+

ψ (ρSN)→∞ as N →∞, we have Nf+

ψ (ρSN)→∞, and

MS+
N

Nf
+

ψ (ρSN)
− 1 = Op

(√
1

Nf
+

ψ (ρSN)

)
= op(1). (G.23)

Using (G.20) with k = 1, we get

1

Nf
+

ψ (ρSN)
E

(
N∑
i=1

∑
p≥1

λip1{ψ+(λip)>ρSN}

∣∣∣∣C
)

= ξ+
S +O

(
τ+
S (ρSN)

)
, (G.24)

and by setting k = 2,

1

Nf
+

ψ (ρSN)
V ar

(
N∑
i=1

∑
p≥1

log
(ψ+(λip)

ρSN

)
1{ψ+(λip)>ρSN}

∣∣∣∣C
)

=
1

Nf
+

ψ (ρSN)

N∑
i=1

V ar

(∑
p≥1

log
(ψ+(λip)

ρSN

)
1{ψ+(λip)>ρSN}

∣∣∣∣C
)

=(ξ+
S )2 +O

(
τ+
S (ρSN)

)
=Op(1).

(G.25)

By (G.24) and (G.25), Nf+

ψ (ρSN)→∞, and τ+
S (ρSN) = o(1) as N →∞, we have

1

Nf
+

ψ (ρSN)

(
N∑
i=1

∑
p≥1

log
(ψ+(λip)

ρSN

)
1{ψ+(λip)>ρSN}

)
− ξ+

S

=Op

(√
1

Nf
+

ψ (ρSN)
+ τ+

S (ρSN)

)
= op(1).

(G.26)
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By (G.23) and (G.26), we get

ξ̃+
S − ξS = op(1). (G.27)

Finally, to show the CLT, by (G.20) with k = 4, we have

1

N2
(
f

+

ψ (ρSN)
)2

N∑
i=1

∑
p≥1

E

(
log
(ψ+(λip)

ρSN

)
1{ψ+(λip)>ρSN}

)4
∣∣∣∣C
)

=
|Tn|

N
(
f

+

ψ (ρSN)
)2

(
6(ξ+

S )4f
+

ψ (ρSN) +Op(τ
+
S (ρSN))

)
=Op

(
1

Nf
+

ψ (ρSN)

)
→ 0 as N →∞,

(G.28)

where the last line holds by the assumptions that infp≥1Nf
+

p,ψ(ρSN)→∞, and

supp≥1

√
Nf

+

p,ψ(ρSN)
(
τ+
S (ρSN)

)
= o(1), which implies that

√
Nf

+

ψ (ρSN)
(
τ+
S (ρSN)

)
=

o(1), and Nf
+

ψ (ρSN) → ∞. The desired result then follows from (G.23), (G.24),

(G.25), (G.28),
√
Nf

+

ψ (ρSN)
(
τ+
S (ρSN)

)
= o(1), Nf+

ψ (ρSN) → ∞, and Lyapunov’s CLT.
2

The following two lemmas are about comparing the feasible with infeasible esti-
mators of the jump tail indices.

Lemma 3 Assume that Assumptions 1, 2, 4 and 5 hold, ν(x) is nonincreasing for x
sufficiently large. Let ρN > 1 be a deterministic sequence as a function of the dimen-
sion N , such that ρN ↑ ∞ as N ↑ ∞. In addition, Nν+(log(ρN))→∞,

√
Nν+(log(ρN))∆1−ε

n

(
1
∨ √

∆n

ν+(log(ρN))

)
→ 0 as N ↑ ∞,∆n ↓ 0,

where ν+(x) =
∫∞
x
ν(z)dz. We consider the following class of functions G = {gN(·)}

that satisfies for gN(x) ∈ G:

(a) gN(x) = 0 for x < log(ρN),

(b) |gN(x)| ≤ C(x− log(ρN)) and |g′N(x)| ≤ C for x ≥ log(ρN), where g′N(ρN) is the
right derivative.
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Then, as N ↑ ∞,∆n ↓ 0,

sup
g∈G

1√
Nν+(log(ρN))

(
N∑
i=1

∑
j∈T cn

gN(∆n
j pi)−

N∑
i=1

∑
0≤s≤1,s/∈{ρp}p≥1

gN(∆pis)

)
P→ 0,

(G.29)
where ∆pis = pis − pis− for i = 1, ..., N .

Proof: Under Assumption 5, we have for all i ≥ 1, q ≥ 2 and ε > 0,

P ( sup
u∈[0,1]

ϕ+
iu ≥ ∆−εn |C)

≤P ( sup
u∈[0,1]

|ϕ+
iu − ϕ+

i0| ≥ ∆−εn /2|C) + P (ϕ+
i0 ≥ ∆−εn /2|C)

≤Kq∆
qε
n .

(G.30)

The rest of the proof is identical to steps 2–11 in the proof of Lemma 3 of Bollerslev
and Todorov (2011) by replacing T therein by N . Details are hence omitted. 2

Lemma 4 Assume that Assumptions 1–5 hold, ν(x) is nonincreasing for x suffi-
ciently large. Let ρN > 1 be a deterministic sequence as a function of the dimen-
sion N , such that ρN ↑ ∞ as N ↑ ∞. In addition, infp≥1Nfp,ψ+(ρN) → ∞,

supp≥1 ∆nν
+
ψ (ρN)

√
N/fp,ψ+(ρN)→ 0, and for some ε ∈ (0, 1), as N ↑ ∞,∆n ↓ 0,

sup
p≥1

√
Nf

+

p (log(ρN))∆3−ε
n

(
1
∨ √

∆n

infp≥1 f
+

p (log(ρN))

)
→ 0, (G.31)

where ν+(x) =
∫∞
x
ν(z)dz, and f

+
(x) =

∫∞
x
f(z)dz. Then we have, for the function

class G defined in Lemma 3, as N ↑ ∞,∆n ↓ 0,

sup
g∈G

1√
Nf

+
(log(ρN))

(
N∑
i=1

∑
j∈Tn

gN(∆n
j pi)−

N∑
i=1

∑
p≥1

gN(∆piρp)

)
P→ 0, (G.32)

where f
+

(log(ρN)) =
∑|Tn|

p=1 f
+

p (log(ρN))/|Tn|.

Proof: By (G.30), Assumption 1, and replacing T in steps 2–11 in the proof of
Lemma 3 of Bollerslev and Todorov (2011) by N∆n, one can show that under the
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condition (G.31),

sup
g∈G

1√
Nf

+
(log(ρN))

(
N∑
i=1

∑
j∈Tn

gN(∆n
j pi)−

N∑
i=1

∑
b(s∆n)c∈Tn,s/∈{ρp}p≥1

gN(∆pis)

−
N∑
i=1

∑
p≥1

gN(∆piρp)

)
P→ 0.

Under the assumption that supp≥1 ∆nν
+
ψ (ρN)

√
N/fp,ψ+(ρN) → 0, by Lemma 1, we

have

sup
g∈G

N∑
i=1

∑
b(s∆n)c∈Tn,s/∈{ρp}p≥1

gN(∆pis)

=Op

(
Nν+(log(ρN))∆n +

√
Nν+(log(ρN))∆n

)
=op

(√
Nf

+
(log(ρN))

)
.

From here, the desired conclusion follows. 2

Proof of Theorem 1:

By Lemma 3 with g(x) = 1{ψ(x)≥ρN}, and g(x) = (log(ψ(x))−log(ρN))1{ψ(x)≥(ρN )},
under Assumption 1, we get that

M̂S+
N −MS+

N = op(

√
Nf

+

ψ (ρSN)), (G.33)

and
N∑
i=1

T̂n∑
j=1

log
(ψ+(∆n

j pi)

ρSN

)
1{ψ+(∆n

j pi)>ρ
S
N}

−
N∑
i=1

∑
p≥1

log
(ψ+(λip)

ρSN

)
1{ψ+(λip)>ρSN}

=op

(√
Nf

+
(log(ρSN))

)
.

(G.34)

The desired result then follows from (G.23), (G.33), (G.34), Assumption 1 and
Lemma 2. 2

Proof of Theorem 2:

By Lemma 3 with g(x) = 1{ψ(x)≥ρN}, and g(x) = (log(ψ(x))−log(ρN))1{ψ(x)≥(ρN )},
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we get that
M̂ I+

N −M
I+
N = op

(√
Nν+

ψ (ρIN)
)
, (G.35)

and
N∑
i=1

n∑
j=1

log
(ψ+(∆n

j pi)

ρIN

)
1{ψ+(∆n

j pi)>ρ
I
N}

−
N∑
i=1

∫ 1

0

∫
R

log
(ψ+(x)

ρIN

)
1{ψ+(x)>ρIN}

µi(ds, dx)

=op

(√
Nν+(log(ρIN))

)
.

(G.36)

The desired result then follows from (G.9), (G.35), (G.36), Assumption 1 and Lemma 1.2

Next, we present the proof of Theorem 4 with Theorem 3 being shown in a similar
way.

Proof of Theorem 4: By the triangle inequality,

|DI+
N − D̃

I+
N | ≤ sup

x
|F I+
N (x)− F̃ I+

N (x)|+ sup
x
|P I+
N (x)− P̃ I+

N (x)|, (G.37)

where F̃ I+
N (x) is the empirical tail distribution of the idiosyncratic jumps, P̃ I+

N (x) is
the corresponding Pareto tail probability with estimated tail index ξ̃+

I , and D̃
I
N is the

KS statistic computed using the infeasible idiosyncratic jumps, that is,

F̃ I+
N (x) =

1

M I+
N

N∑
i=1

∑
s∈[0,1],s/∈{ρp}p≥1

1{ψ(∆pis)>x} for x ≥ ρIN ,

P̃ I+
N (x) =

(
x

M I+
N

)−1/ξ̃+I

for x ≥ ρIN ,

and
D̃I+
N = sup

x
|F̃ I+
N (x)− P̃ I+

N (x)|.

By (G.35) and (G.36), we have√
M I+

N (sup
x
|P I+
N (x)− P̃ I+

N (x)|) = op(1). (G.38)
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By Assumption 4, τ+
I (x) ≡ 0 for all x ≥ ρIN , and (G.9),√

M I+
N D̃I+

N

L→ KI+. (G.39)

We will show that

sup
x
|F I+
N (x)− F̃ I+

N (x)| = op

(√
1

M I+
N

)
. (G.40)

The desired result in Theorem 4 will then follow from (G.35), (G.37), (G.38), (G.39),
and (G.40).

It remains to show (G.40). We choose a grids of x’s, 0 = x0 ≤ x1 ≤ x2, ...,≤ xK .
Let x1 = ρIN , F

I+
N (xK) = o(

√
Nν+

ψ (ρIN)), K �
√
Nν+

ψ (ρIN), and we set the xi’s satisfy

sup
1≤i≤K

F I+
N (xi)− F I+

N (xi−1) = o

(√
1

Nν+
ψ (ρIN)

)
. (G.41)

By Lemma 3,

sup
x∈{x0,x1,...,xK}

|F I+
N,t(x)− F̃ I+

N,t(x)| = op

(√
1

M I+
N

)
. (G.42)

In addition, for any x ≥ ρIN , there exists xi ≤ x ≤ xi+1 for some integer i ≥ 0. We
have

F I+
N,t(x)− F̃ I+

N,t(x) ≤ F I+
N,t(xi+1)− F̃ I+

N,t(xi)

≤F I+
N,t(xi+1)− F I+

N,t(xi) + |F I+
N,t(xi)− F̃

I+
N,t(xi)|,

and
F I+
N,t(x)− F̃ I+

N,t(x) ≥ F I+
N,t(xi)− F̃

I+
N,t(xi+1)

≥− (|F I+
N,t(xi+1)− F I+

N,t(xi)|+ |F
I+
N,t(xi)− F̃

I+
N,t(xi)|).

Therefore

sup
x
|F I+
N,t(x)− F̃ I+

N,t(x)| ≤ sup
0≤i≤K

|F I+
N,t(xi+1)− F I+

N,t(xi)|+ sup
0≤i≤K

|F I+
N,t(xi)− F̃

I+
N,t(xi)|.

The desired bound (G.40) then follows from (G.41) and (G.42). 2
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