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and a sample mean return of 100 bps!”

" You ask, “where does this predictor come from?”
1. Was it based on an idea that is publishable in a top finance journal?
2. Ordid you just mine accounting ratios fort > 27

* How should your expected out-of-sample return depend on his
answer?



Our answer:

125

—
o
o

9] ~
o (@)

Trailing 5-Year Return (bps pm)
N
(&)

<

— Published (and Peer Reviewed)

-360 -300 -240 -180 -120 60 O 60 120 180 240

Months Since Original Sample Ended



Our answer:

125

—
o
o
=,
-

~J
()

9]
o

N
(6))

— Published (and Peer Reviewed)
— + Data-Mined for [t[>2.0 in Original Sample

Trailing 5-Year Return (bps pm)

-360 -300 -240 -180 -120 -60 0 60 120 180 240
Months Since Original Sample Ended



Our answer:

125

= Publishable ideas
outperform data mining
by perhaps 2 bps per
month

—
o
o
=,
-

~J
()

9]
o

N
(6))

— Published (and Peer Reviewed)
— + Data-Mined for [t[>2.0 in Original Sample

Trailing 5-Year Return (bps pm)

-360 -300 -240 -180 -120 -60 0 60 120 180 240
Months Since Original Sample Ended



Our answer:

125
= Publishable ideas

outperform data mining
by perhaps 2 bps per
month

=,
-

—
o
o

~J
()

" Focusing on publishable
risk-based ideas does not
help

9]
o

N
(6))

— Published (and Peer Reviewed)
— + Data-Mined for [t[>2.0 in Original Sample

Trailing 5-Year Return (bps pm)

-360 -300 -240 -180 -120 -60 0 60 120 180 240
Months Since Original Sample Ended



Our answer:

= Publishable ideas
outperform data mining
by perhaps 2 bps per
month

" Focusing on publishable

risk-based ideas does not
help

* On the bright side, data
mining uncovers true
predictability

Trailing 5-Year Return (bps pm)

25

— Published (and Peer Reviewed)
— + Data-Mined for |t|>2.0 in Original Sample

-360 -300 -240 -180 -120 -60 0 60 120 180 240
Months Since Original Sample Ended



Our answer:
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" Focusing on publishable
risk-based ideas does not
help

* On the bright side, data
mining uncovers true
predictability

- Reminiscent of data mining

successes in language
modeling (e.g. ChatGPT)
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Data-mined long-short strategies

* Two kinds of accounting ratios
- Simple ratios: X/Y
- Scaled first difference: AX/lag(Y)

"= Where
- X = one of 242 annual accounting vars (including market equity)
- Y = one of the X’s that is positive for > 25% of firms in 1963

" Yields 29,315 accounting ratios
= Using each ratio, form long-short decile strategies

= Arguably no economics, no look-ahead bias
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» Replicates + extends Yan-Zheng 2017 (underappreciated paper)

* Contrasts with Harvey-Liu 2020, who find FDR =~ 100%
- Consistent w/ Chen 2024: Harvey-Liu 2020 misinterprets FDR methods
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Covariance structure of long-short returns

Panel (a): Pairwise correlations

Quantiles Q1 Q5 Q10 Q25 Q50 Q75 Q9 | Q95 Q99
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= More than 85% of correlations below 0.30 in absolute value
= 70 PCs are required to capture 80% of variance

» Data mining doesn’t just pick up size, B/M, profitability
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Peer-reviewed long-short strategies

" Chen-Zimmermann
(2022) dataset

- Dataset w/ most accurate
reproductions of original
tables

" Filter to have post-
sample period = 9 years

* Baseline data:
199 predictors

t-stat reproduction

10

[t reproduction] = 0.13 + 0.89 [t original], R-sq = 84%
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Data-mined return benchmarks
* For each published predictor, WHO WOULD WIN?

- Search the 29,000 accounting

ratios for long-short [t > 2.0 The Journal of # A very large for loop
FINANCE for (i in 1:29000) {
is predictor[i]

- Using the original paper’s

- Sample period Egsiewof = tstat[i] > 2.0
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S
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have positive original-sample
returns
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Does peer-reviewed research help predict the cross-
section post-sample?

* No, post-sample
performance is similar to
naive back-testing

- Peer-reviewed motivations,
supporting evidence,
robustness tests, make little
difference
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Do Risk-Based Explanations Help?
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The best hope for finding pricing factors that are

robust out of sample... ...1s to try to understand the

fundamental macroeconomic sources of risk
-Cochrane 2005, Chapter 7

= Many papers take a different approach
- Banz 1981: “the size effect exists but it is not at all clear why it exists”

- De Bondt and Thaler 1985: “The empirical evidence... ..is consistent with the
overreaction hypothesis”

= Do papers that follow Cochrane’s advice outperform data mining?

* Method: Manually categorize explanations in original papers
1.  Find summary passage
2. Categorize passage as “risk,” “mispricing,” or “agnostic”
3. Post passages and categories on GitHub, ask public for objections



Risk or Mispricing? According to Peer Review

Num Predictors

Category Any Example Predictor Example Passage
Journal JE JFE, RES
Risk 36 33 Real estate holdings Firms with high real estate holdings are
(Tuzel 2010) more vulnerable to bad productivity shocks
and hence are riskier and have higher ex-
pected returns.
Mispricing 117 65 Share repurchases The market errs in its initial response and
(Ikenberry, Lakonishok, appears to ignore much of the information
Vermaelen 1995) conveyed through repurchase announce-
ments
Agnostic 46 25 Size To summarize, the size effect exists but it
(Banz 2981) is not at all clear why it exists
Total 199 123




Risk or Mispricing? According to Peer Review

Num Predictors

Category Any

Example Predictor

Example Passage

Journal JF JFE, RFS
Risk 36 33 Real estate holdings Firms with high real estate holdings are
(Tuzel 2010) more vulnerable to bad productivity shocks
and hence are riskier and have higher ex-
pected returns.
Mispricing 117 65 Share repurchases The market errs in its initial response and
(Ikenberry, Lakonishok, appears to ignore much of the information
Vermaelen 1995) conveyed through repurchase announce-
ments
Agnostic 46 25 Size To summarize, the size effect exists but it
(Banz 2981) is not at all clear why it exists
Total 199 123

= Only small minority 36/199= 18% are attributed to risk



Risk or Mispricing? According to Peer Review

Num Predictors

Category Any

Example Predictor

Example Passage

Journal JF JFE, RFS
Risk 36 33 Real estate holdings Firms with high real estate holdings are
(Tuzel 2010) more vulnerable to bad productivity shocks
and hence are riskier and have higher ex-
pected returns.
Mispricing 117 65 Share repurchases The market errs in its initial response and
(Ikenberry, Lakonishok, appears to ignore much of the information
Vermaelen 1995) conveyed through repurchase announce-
ments
Agnostic 46 25 Size To summarize, the size effect exists but it
(Banz 2981) is not at all clear why it exists
Total 199 123

= Only small minority 36/199= 18% are attributed to risk
- Top 3 Finance journals: 27% are risk
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Post-sample decay: risk vs mispricing
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Risk vs data mining
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* Risk-based predictors fail to outperform data-mined benchmarks

- Data-mined benchmarks are exposed to the same market conditions
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Fama French 2018)
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Robustness: Modeling Rigor

* Theory should help by
disciplining the statistics (e.g.
Fama French 2018)

2 &

5
| R ‘
= More rigorous theory = more 3?& N\
discipline ol e . . :.

= Empirically: more discipline =
less post-sample robustness

[Post-Sample Return] / [In-Sample]

A Model Type Mean

No Model Stylized Dynamic Quantitative



What do we make of this?



Peer reviewed predictability is similar to data
mining---risk-based predictability is worse
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= Classical tests can only reject special cases of the class of risk theories
= But peer-review is a massive computer, designed to explore the full class

= Over the past 40 years, this massive computer

- Finds little risk
- The “risk” it finds, decays out-of-sample, like data-mined predictability
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Or Choice 2: Peer review is hot working properly

" Suppose passing peer review
amounts to
1. Along-short t-stat>?2

2. An economic parable unrelated
to the real-world economy

- Perhaps, the parable confirms
a referee’s economic priors
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(Harvey 2017) o
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strategic citations 0
(Rubin-Rubin 2021 JPE) -360 -300 -240 -180-120 -60 0 60 120 180 240

Months Since Original Sample Ended
= We cannot reject this model
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Regardless, data mining is clearly undervalued

" |t uncovers true, out-of-sample
predictability

" [t uncovers
- the investment anomaly
- earnings surprise
- accruals, inventory growth
- stock issuance, debt issuance
- long before they are published

= Multiple testing methods remove
data-mining bias (Chen-Dim ‘24)

= Other fields have turned to data-
centric methods (e.g. ChatGPT)
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Regardless, data mining is clearly undervalued

= Sutton’s (2019) “Bitter
Lesson” from 70 years of Al
research

- Beloved, hand-crafted solutions
end up “irrelevant, or worse”

- Vast searches through huge
datasets outperform

* The real world is
“tremendously, irredeemably
complex”
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Regardless, data mining is clearly undervalued

= Economics is about beloved,
hand-crafted parables

= But perhaps if we fully explore
the data...

- (embrace data mining)

= ..we can produce parables
that are closer to the
tremendously, irredeemably
complex real world 0
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Extra Slides



Regression of monthly returns on indicators

" Post-sample, returns
p LHS: Long-Short Strategy Return (bps pm, scaled)

dec ay 42% RHS Variables 0] ) 3) (@) ®)
. Intercept 100 100 100 100 102.3
(MCLea n-Pontiff 2016) P (6.4) (6.4) (6.4) (6.4) 6.8)
Post-Sample -42.2 -25.1 -36.5 -24.4 0.7
(8.7) (11.7) (10.3) (15.3) (14.6)
Post-Pub -21.3 -14.9
(12.1) (17.5)
Post-Sample x Risk -28.8 -18.8 -34.4 -19.5 -23.4
(15.5) (20.2) (17.1) (22.8) (15.2)
Post-Pub x Risk -14 -20.3
(27.2) (30.2)
Post-Sample x Mispricing -8 -1
(7.8) (15.5)
Post-Pub x Mispricing -9
(17.5)
Post-2004 -59.6

(16.7)

Null: Risk No Decay < 0.1% < 0.1% < 0.1% < 0.1% < 0.1%
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p LHS: Long-Short Strategy Return (bps pm, scaled)

dec ay 42% RHS Variables 0] ) 3) (@) ®)
. Intercept 100 100 100 100 102.3
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Regression of monthly returns on indicators

" Post-sample, returns
p LHS: Long-Short Strategy Return (bps pm, scaled)

dec ay 42% RHS Variables 0] ) 3) (@) ®)
i Intercept 100 100 100 100 102.3
(MCLea n-Pontiff 2016) (6.4) (6.4) (6.4) (6.4) 6.8)
. . . Post-Sample 42.2 -25.1 -36.5 244 0.7
= Predictors with risk (8.7) (11.7) (10.3) (15.3) (14.6)
_ Post-Pub 213 -14.9
explanations decay (12.1) (17.5)
Post-Sample x Risk -28.8 -18.8 -34.4 -19.5 -23.4
more (15.5) (20.2) (17.1) (22.8) (15.2)
. Post-Pub x Risk -14 -20.3
- Even controlling for more (27.2) (30.2)
recent publication dates Post-Sample x Mispricing %) 155
Post-Pub x Mispricing -9
(17.5)
Post-2004 -59.6

(16.7)

Null: Risk No Decay < 0.1% < 0.1% < 0.1% < 0.1% < 0.1%




Regression of monthly returns on indicators

" Post-sample, returns
p LHS: Long-Short Strategy Return (bps pm, scaled)

decay 42% RHS Variables ) ) 3) @ ®)
. Intercept 100 100 100 100 102.3
(MCLea n-Pontiff 2016) (6.4) (6.4) (6.4) (6.4) 6.8)
. . . Post-Sample 42.2 -25.1 -36.5 -24.4 0.7
= Predictors with risk (8.7) (11.7) (10.3) (15.3) (14.6)
. Post-Pub 21.3 -14.9
explanations decay (12.1) (17.5)
Post-Sample x Risk -28.8 -18.8 -34.4 -19.5 -23.4
more (15.5) (20.2) (17.1) (22.8) (15.2)
. Post-Pub x Risk -14 -20.3
- Even controlling for more (27.2) (30.2)
recent publication dates Post-Sample x Mispricing %) 155
. Post-Pub x Mispricing -9
* Does risk-based theory (17.5)
Post-2004 -59.6
prevent out-of-sample 16.7)
Null: Risk No Decay <01% < 0.1% <0.1% <0.1% <0.1%

decay?
- No, strongly reject
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Robustness: Data mining procedure

= Construct 3,000 long-short
portfolios based on letters of
stock tickers
- Suggested in Harvey (2017)

- Far fewer than the 29,000 data-
mined portfolios

= Mining tickers leads to mean zero
returns post-sample (yellow)

= 2 Lessons

1. The type of data being mined is
important
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Robustness: Data mining procedure

= Construct 3,000 long-short
portfolios based on letters of
stock tickers
- Suggested in Harvey (2017)

- Far fewer than the 29,000 data-
mined portfolios

= Mining tickers leads to mean zero
returns post-sample (yellow)

= 2 Lessons

1. The type of data being mined is
important

2. The amount of data mining is not
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Post-2004 pubs only
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