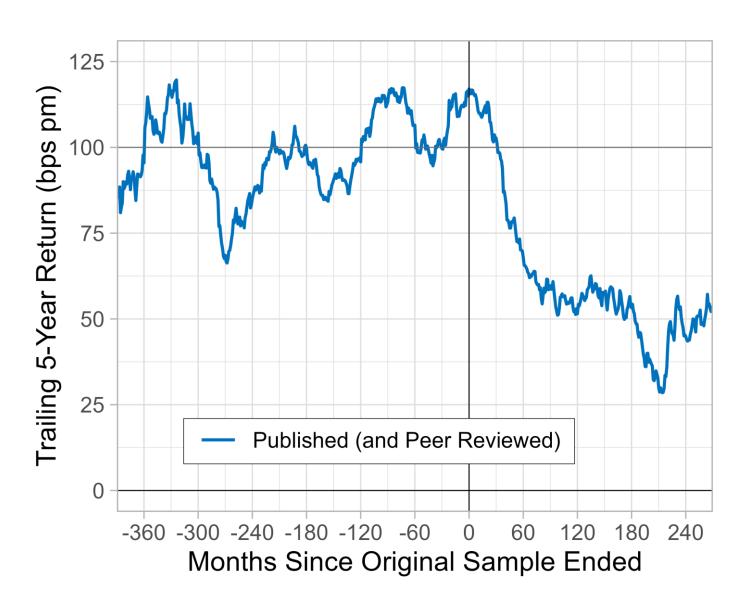
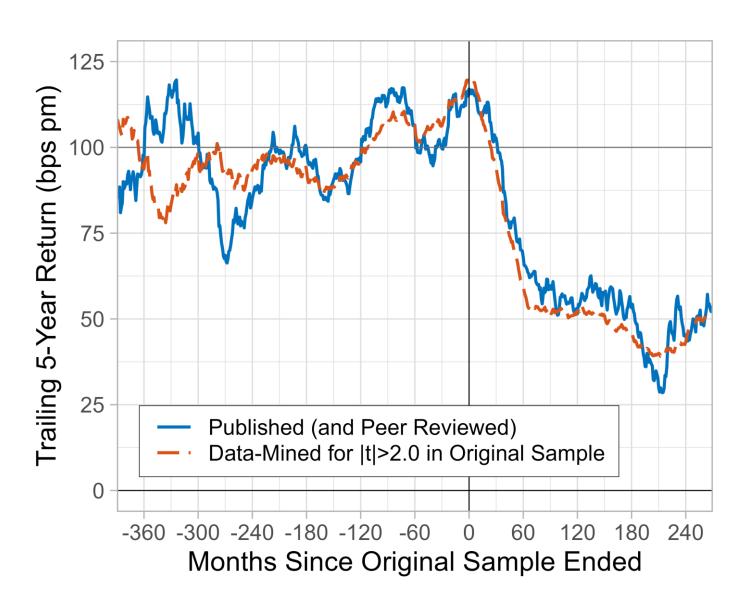
Does Peer-Reviewed Research Help Predict Stock Returns?

Andrew Y. Chen (Federal Reserve Board)
Alejandro Lopez-Lira (University of Florida)
Tom Zimmermann (University of Cologne)

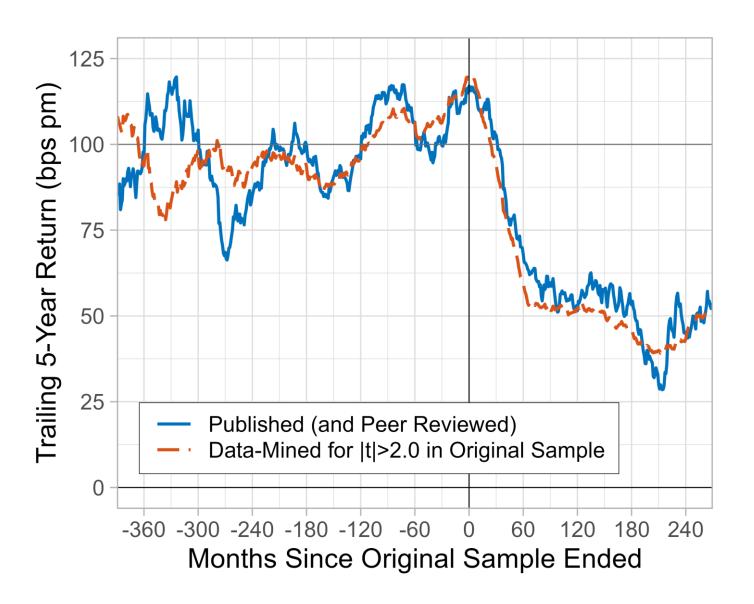
NBER SI AP - Cambridge – July 2024

Our question:

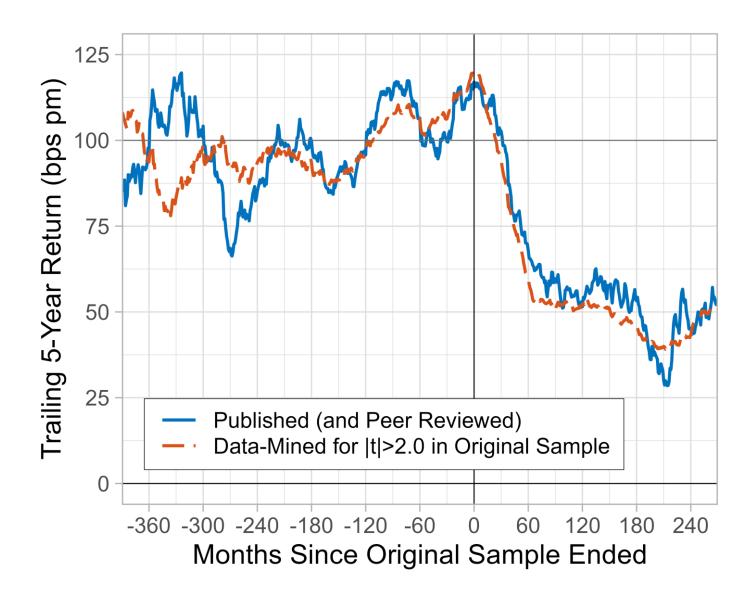

Suppose a Ph.D. student says "I found a predictor with a t-stat > 2.0 and a sample mean return of 100 bps!"

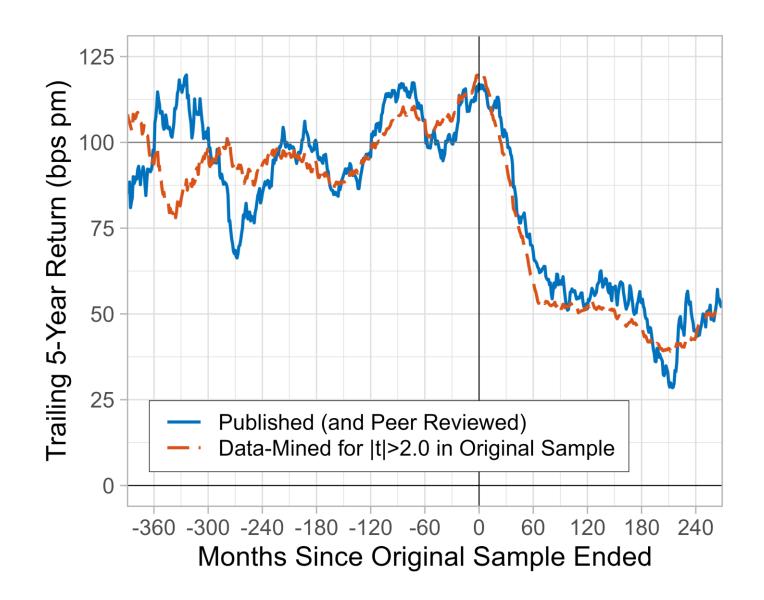

Our question:

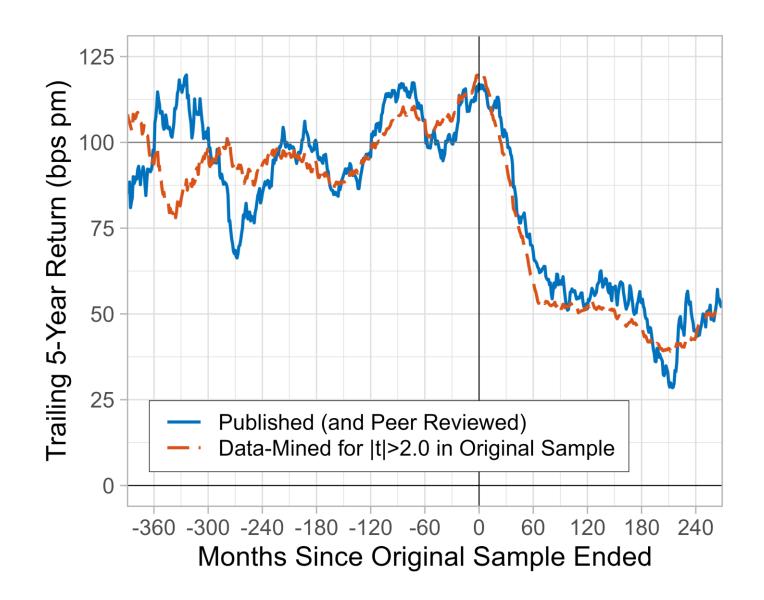
- Suppose a Ph.D. student says "I found a predictor with a t-stat > 2.0 and a sample mean return of 100 bps!"
- You ask, "where does this predictor come from?"
 - 1. Was it based on an idea that is publishable in a top finance journal?
 - 2. Or did you just mine accounting ratios for t > 2?


Our question:

- Suppose a Ph.D. student says "I found a predictor with a t-stat > 2.0 and a sample mean return of 100 bps!"
- You ask, "where does this predictor come from?"
 - 1. Was it based on an idea that is publishable in a top finance journal?
 - 2. Or did you just mine accounting ratios for t > 2?
- How should your expected out-of-sample return depend on his answer?




 Publishable ideas outperform data mining by perhaps 2 bps per month


- Publishable ideas outperform data mining by perhaps 2 bps per month
- Focusing on publishable risk-based ideas does not help

- Publishable ideas outperform data mining by perhaps 2 bps per month
- Focusing on publishable risk-based ideas does not help
- On the bright side, data mining uncovers true predictability

- Publishable ideas outperform data mining by perhaps 2 bps per month
- Focusing on publishable risk-based ideas does not help
- On the bright side, data mining uncovers true predictability
 - Reminiscent of data mining successes in language modeling (e.g. ChatGPT)

Data Mined Returns

- Two kinds of accounting ratios
 - Simple ratios: X/Y
 - Scaled first difference: ΔX/lag(Y)

- Two kinds of accounting ratios
 - Simple ratios: X/Y
 - Scaled first difference: ΔX/lag(Y)

Where

- X = one of 242 annual accounting vars (including market equity)
- Y = one of the X's that is positive for > 25% of firms in 1963

- Two kinds of accounting ratios
 - Simple ratios: X/Y
 - Scaled first difference: ΔX/lag(Y)
- Where
 - X = one of 242 annual accounting vars (including market equity)
 - Y = one of the X's that is positive for > 25% of firms in 1963
- Yields 29,315 accounting ratios
- Using each ratio, form long-short decile strategies

- Two kinds of accounting ratios
 - Simple ratios: X/Y
 - Scaled first difference: ΔX/lag(Y)
- Where
 - X = one of 242 annual accounting vars (including market equity)
 - Y = one of the X's that is positive for > 25% of firms in 1963
- Yields 29,315 accounting ratios
- Using each ratio, form long-short decile strategies
- Arguably no economics, no look-ahead bias

In-	Equal-\	Weighted 1	Long-Short De	ciles	Value-	Weighted	Long-Short De	ciles
Sample	Past 30 Yea	ars (IS)	Next Year	(OOS)	Past 30 Yea	ars (IS)	Next Year	(OOS)
Bin	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1	-59.3	-4.24	-49.4	16.7	-37.6	-2.06	-16.3	56.6
2	-29.1	-2.46	-18.9	35.1	-15.7	-1.02	-5.6	64.0
3	-13.3	-1.20	-3.2	<i>7</i> 5.9	-4.9	-0.33	-1.8	62.7
4	-0.3	-0.04	5.6		5.4	0.35	-0.0	
5	23.4	1.46	17.1	26.9	27.1	1.37	10.8	60.3

In-	Equal-\	Weighted 1	Long-Short De	ciles	Value-	Weighted	Long-Short De	ciles
Sample	Past 30 Yea	ars (IS)	Next Year	(OOS)	Past 30 Yea	ars (IS)	Next Year	(OOS)
Bin	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1	-59.3	-4.24	-49.4	16.7	-37.6	-2.06	-16.3	56.6
2	-29.1	-2.46	-18.9	35.1	-15.7	-1.02	-5.6	64.0
3	-13.3	-1.20	-3.2	<i>7</i> 5.9	-4.9	-0.33	-1.8	62.7
4	-0.3	-0.04	5.6		5.4	0.35	-0.0	
5	23.4	1.46	17.1	26.9	27.1	1.37	10.8	60.3

In-		Equal-	Weighted	Long-9	Short De	ciles	Value-	Weighted	Long-Short De	ciles
Sample	Pa	st 30 Yea	ars (IS)	N	Jext Year	(OOS)	Past 30 Yes	ars (IS)	Next Year	(OOS)
Bin		Return (bps pm) t-stat			Return ps pm)	Decay (%)	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1		-59.3	-4.24	-49.4		16.7	-37.6	-2.06	-16.3	56.6
2		-29.1	-2.46		-18.9	35.1	-15.7	-1.02	-5.6	64.0
3		-13.3	-1.20		-3.2	75.9	-4.9	-0.33	-1.8	62.7
4		-0.3	-0.04		5.6		5.4	0.35	-0.0	
5		23.4 1.46		17.1		26.9	27.1	1.37	10.8	60.3

In-		Equal-V	Weighted	Long-	Short De	eciles	Value-	Weighted	Long-Short De	ciles
Sample	Pa	st 30 Yea	ars (IS)	N	Next Year	(OOS)	Past 30 Ye	ars (IS)	Next Year	(OOS)
Bin		eturn os pm)	t-stat	Return (bps pm)		Decay (%)	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1		-59.3 -4.24		-49.4		16.7	-37.6	-2.06	-16.3	56.6
2	- 1	-29.1	-2.46		-18.9	35.1	-15.7	-1.02	-5.6	64.0
3		-13.3	-1.20		-3.2	75.9	-4.9	-0.33	-1.8	62.7
4		-0.3	-0.04		5.6		5.4	0.35	-0.0	
5		23.4	1.46		17.1	26.9	27.1	1.37	10.8	60.3

In-	Equal-	Weighted	Long-Short De	ciles	Value-V	Weighted 1	Long-Short De	ciles
Sample	Past 30 Ye	ars (IS)	Next Year	(OOS)	Past 30 Yea	ars (IS)	Next Year	(OOS)
Bin	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1	-59.3	A		16.7	-37.6	-2.06	-16.3	56.6
2	-29.1	-2.46	-18.9	35.1	-15.7	-1.02	-5.6	64.0
3	-13.3	-1.20	-3.2	75.9	-4.9	-0.33	-1.8	62.7
4	-0.3	-0.04	5.6		5.4	0.35	-0.0	
5	23.4 1.46		17.1	26.9	27.1 1.37		10.8	60.3

In-		Equal-V	Weighted	Long-	Short De	ciles		Value-	Weighted	Long-Short De	ciles
Sample	Pas	st 30 Yea	ars (IS)	N	Vext Year	(OOS)	-	Past 30 Ye	ars (IS)	Next Year	(OOS)
Bin		eturn os pm)	t-stat	Return (bps pm)		Decay (%)	-	Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1	A	-59.3 -4.24		-49.4		16.7		-37.6	-2.06	-16.3	56.6
2	- 1	-29.1	-2.46	- 11	-18.9	35.1		-15.7	-1.02	-5.6	64.0
3		-13.3	-1.20		-3.2	75.9		-4.9	-0.33	-1.8	62.7
4		-0.3	-0.04		5.6			5.4	0.35	-0.0	
5		23.4 1.46			17.1 26.9			27.1	1.37	10.8	60.3

- Each year, sort 29,000 strategies into bins based on past 30 year returns (IS), hold bin for one year (OOS)
- Replicates + extends Yan-Zheng 2017 (underappreciated paper)

In-		Equal-V	<i>N</i> eighted	Long-S	Short De	ciles		Value-	Weighted	Long-Short De	ciles
Sample	Pa	st 30 Yea	ars (IS)	N	Jext Year	(OOS)	-	Past 30 Yea	ars (IS)	Next Year	(OOS)
Bin		eturn os pm)	t-stat	Return (bps pm)		Decay (%)		Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1		-59.3 -4.24		-49.4		16.7		-37.6	-2.06	-16.3	56.6
2		-29.1	-2.46	- 1	-18.9	35.1		-15.7	-1.02	-5.6	64.0
3		-13.3	-1.20		-3.2	75.9		-4.9	-0.33	-1.8	62.7
4		-0.3	-0.04		5.6			5.4	0.35	-0.0	
5		23.4 1.46			5 17.1 26.9			27.1	1.37	10.8	60.3

- Each year, sort 29,000 strategies into bins based on past 30 year returns (IS), hold bin for one year (OOS)
- Replicates + extends Yan-Zheng 2017 (underappreciated paper)
- Contrasts with Harvey-Liu 2020, who find FDR ≈ 100%

In-		Equal-V	<i>N</i> eighted	Long-S	Short De	ciles		Value-	Weighted	Long-Short De	ciles
Sample	Pa	st 30 Yea	ars (IS)	N	Jext Year	(OOS)	-	Past 30 Yea	ars (IS)	Next Year	(OOS)
Bin		eturn os pm)	t-stat	Return (bps pm)		Decay (%)		Return (bps pm)	t-stat	Return (bps pm)	Decay (%)
1		-59.3 -4.24		-49.4		16.7		-37.6	-2.06	-16.3	56.6
2		-29.1	-2.46	- 1	-18.9	35.1		-15.7	-1.02	-5.6	64.0
3		-13.3	-1.20		-3.2	75.9		-4.9	-0.33	-1.8	62.7
4		-0.3	-0.04		5.6			5.4	0.35	-0.0	
5		23.4 1.46			5 17.1 26.9			27.1	1.37	10.8	60.3

- Each year, sort 29,000 strategies into bins based on past 30 year returns (IS), hold bin for one year (OOS)
- Replicates + extends Yan-Zheng 2017 (underappreciated paper)
- Contrasts with Harvey-Liu 2020, who find FDR ≈ 100%
 - Consistent w/ Chen 2024: Harvey-Liu 2020 misinterprets FDR methods

Covariance structure of long-short returns

Panel (a): Pairwise correlations												
Quantiles		Q1	Q5	Q	10	Q25	Q50	Q	75	Q90	Q95	Q99
Equal-Weighted		0.42	-0.23		.15	-0.04	0.05		16	0.29	0.38	0.56
Value-Weighted		0.35	-0.20		.13	-0.05	0.04		14	0.25	0.32	0.51
			Pane	I (b):	PCA	Explair	ned Vai	riance	! (%)			
Number of PCs	1	5	10	20	30	40	50	60	70	80	90	100
Equal-Weighted	24	47	55	63	68	72	75	78	80	82	84	85
Value-Weighted 24 44 52 62 68 72 76 79 81 83 85										87		

Covariance structure of long-short returns

Panel (a): Pairwise correlations Quantiles Q1 Q5 Q10 Q25 Q50 Q75 Q90 Q95 Q99													
	Q1	Q5	Q	10	Q25	Q50	Q'	75	Q90	Q95	Q99		
		-0.23 -0.20			-0.04 -0.05				0.29 0.25	0.38 0.32	0.56 0.51		
		Pane	ıl (b):	PCA	Explair	ned Vai	riance	(%)					
1	5	10	20	30	40	50	60	70	80	90	100		
24 24	47 44	55 52	63 62	68 68	72 72	75 76	78 79	80 81	82 83	84 85	85 87		
	1 24	24 47	Q1 Q5 -0.42 -0.23 -0.35 -0.20 Pane 1 5 10 24 47 55	Q1 Q5 Q -0.42 -0.23 -0.2 -0.35 -0.20 -0.2 Panel (b): 1 5 10 20 24 47 55 63	Q1 Q5 Q10 -0.42 -0.23 -0.15 -0.35 -0.20 -0.13 Panel (b): PCA 1 5 10 20 30 24 47 55 63 68	Q1 Q5 Q10 Q25 -0.42 -0.23 -0.15 -0.04 -0.35 -0.20 -0.13 -0.05 Panel (b): PCA Explain 1 5 10 20 30 40 24 47 55 63 68 72	Q1 Q5 Q10 Q25 Q50 -0.42 -0.23 -0.15 -0.04 0.05 -0.35 -0.20 -0.13 -0.05 0.04 Panel (b): PCA Explained Var 1 5 10 20 30 40 50 24 47 55 63 68 72 75	Q1 Q5 Q10 Q25 Q50 Q -0.42 -0.23 -0.15 -0.04 0.05 00.35 -0.20 -0.13 -0.05 0.04 0. Panel (b): PCA Explained Variance 1 5 10 20 30 40 50 60 24 47 55 63 68 72 75 78	Q1 Q5 Q10 Q25 Q50 Q75 -0.42 -0.23 -0.15 -0.04 0.05 0.16 -0.35 -0.20 -0.13 -0.05 0.04 0.14 Panel (b): PCA Explained Variance (%) 1 5 10 20 30 40 50 60 70 24 47 55 63 68 72 75 78 80	Q1 Q5 Q10 Q25 Q50 Q75 Q90 -0.42 -0.23 -0.15 -0.04 0.05 0.16 0.29 -0.35 -0.20 -0.13 -0.05 0.04 0.14 0.25 Panel (b): PCA Explained Variance (%) 1 5 10 20 30 40 50 60 70 80 24 47 55 63 68 72 75 78 80 82	Q1 Q5 Q10 Q25 Q50 Q75 Q90 Q95 -0.42 -0.23 -0.15 -0.04 0.05 0.16 0.29 0.38 -0.35 -0.20 -0.13 -0.05 0.04 0.14 0.25 0.32 Panel (b): PCA Explained Variance (%) 1 5 10 20 30 40 50 60 70 80 90 24 47 55 63 68 72 75 78 80 82 84		

• More than 85% of correlations below 0.30 in absolute value

Covariance structure of long-short returns

Panel (a): Pairwise correlations															
Quantiles															
Equal-Weighted Value-Weighted		0.42 0.35	-0.23 -0.20		.15 .13	-0.04 -0.05	0.05 0.04		16 14	0.29 0.25	0.38 0.32	0.56 0.51			
			Pane	el (b):	PCA	Explair	ned Va	riance	(%)						
Number of PCs	1	5	10	20	30	40	50	60	70	80	90	100			
Equal-Weighted Value-Weighted	24 24	47 44	55 52	63 62	68 68	72 72	75 76	78 79	80 81	82 83	84 85	85 87			

- More than 85% of correlations below 0.30 in absolute value
- 70 PCs are required to capture 80% of variance

Covariance structure of long-short returns

Panel (a): Pairwise correlations													
Quantiles		Q1	Q5	Q	10	Q25	Q50	Q	75	Q90	Q95	Q99	
Equal-Weighted Value-Weighted		0.42 0.35	-0.23 -0.20		.15 .13	-0.04 -0.05	0.05 0.04		16 14	0.29 0.25	0.38 0.32	0.56 0.51	
			Pane	el (b):	PCA	Explair	ned Va	riance	(%)	_			
Number of PCs	1	5	10	20	30	40	50	60	70	80	90	100	
Equal-Weighted Value-Weighted	24 24	47 44	55 52	63 62	68 68	72 72	75 76	78 79	80 81	82 83	84 85	85 87	

- More than 85% of correlations below 0.30 in absolute value
- 70 PCs are required to capture 80% of variance
- Data mining doesn't just pick up size, B/M, profitability

20 numerators and stock weights that produce largest t-stats

20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct Short	t-stat
ΔAssets (ew)	100	4.0
Δ Intangible assets (ew)	100	4.0
Δ PPE net (ew)	98	4.0
Δ PPE gross (ew)	98	3.8
ΔInvested capital (ew)	100	3.5
ΔCapital expenditure (ew)	100	3.2
ΔCommon stock (ew)	100	5.1
Δ Liabilities (ew)	100	4.7
ΔCapital surplus (ew)	100	4.1
ΔLong-term debt (ew)	100	3.6
ΔCapital surplus (vw)	98	3.0

Numerator (Stock Weight)	Pct Short	t-stat
ΔInventories (ew)	100	4.2
Δ Notes payable st (ew)	100	3.8
Δ Receivables (ew)	100	3.7
Δ Debt in current liab (ew)	100	3.7
Δ Current liabilities (ew)	100	3.7
ΔCost of goods sold (ew)	100	3.7
Δ Operating expenses (ew)	98	3.5
ΔSG&A (ew)	100	3.3
ΔInterest expense (ew)	98	3.3

20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct	t-stat			
	Short	- Stat	Numerator (Stock Weight)	Pct Short	t-stat
ΔAssets (ew)	100	4.0		511011	
Δ Intangible assets (ew)	100	4.0	Δ Inventories (ew)	100	4.2
ΔPPE net (ew)	98	4.0	Δ Notes payable st (ew)	100	3.8
Δ PPE gross (ew)	98	3.8	ΔReceivables (ew)	100	3.7
ΔInvested capital (ew)	100	3.5	ΔDebt in current liab (ew)	100	3.7
ΔCapital expenditure (ew)	100	3.2	Δ Current liabilities (ew)	100	3.7
ΔCommon stock (ew)	100	5.1	Δ Cost of goods sold (ew)	100	3.7
Δ Liabilities (ew)	100	4.7	Δ Operating expenses (ew)	98	3.5
ΔCapital surplus (ew)	100	4.1	ΔSG&A (ew)	100	3.3
ΔLong-term debt (ew)	100	3.6	Δ Interest expense (ew)	98	3.3
ΔCapital surplus (vw)	98	3.0			

20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct Short	t-stat
Investment (Titman, Wei, X	ie 2004)	
ΔAssets (ew)	100	4.0
Δ Intangible assets (ew)	100	4.0
ΔPPE net (ew)	98	4.0
ΔPPE gross (ew)	98	3.8
ΔInvested capital (ew)	100	3.5
Δ Capital expenditure (ew)	100	3.2
ΔCommon stock (ew)	100	5.1
Δ Liabilities (ew)	100	4.7
ΔCapital surplus (ew)	100	4.1
ΔLong-term debt (ew)	100	3.6
ΔCapital surplus (vw)	98	3.0

Numerator (Stock Weight)	Pct Short	t-stat
ΔInventories (ew)	100	4.2
Δ Notes payable st (ew)	100	3.8
Δ Receivables (ew)	100	3.7
Δ Debt in current liab (ew)	100	3.7
Δ Current liabilities (ew)	100	3.7
ΔCost of goods sold (ew)	100	3.7
Δ Operating expenses (ew)	98	3.5
$\Delta SG&A (ew)$	100	3.3
ΔInterest expense (ew)	98	3.3

20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct Short	t-stat
Investment (Titman, Wei, X	ie 2004)	
ΔAssets (ew)	100	4.0
Δ Intangible assets (ew)	100	4.0
Δ PPE net (ew)	98	4.0
Δ PPE gross (ew)	98	3.8
ΔInvested capital (ew)	100	3.5
ΔCapital expenditure (ew)	100	3.2
Ext Financing (Spiess/Affle	ck-Grave	s 1999)
ΔCommon stock (ew)	100	5.1
Δ Liabilities (ew)	100	4.7
Δ Capital surplus (ew)	100	4.1
ΔLong-term debt (ew)	100	3.6
ΔCapital surplus (vw)	98	3.0

Numerator (Stock Weight)	Pct Short	t-stat
AT ()	100	4.2
Δ Inventories (ew)	100	4.2
Δ Notes payable st (ew)	100	3.8
Δ Receivables (ew)	100	3.7
ΔDebt in current liab (ew)	100	3.7
Δ Current liabilities (ew)	100	3.7
Δ Cost of goods sold (ew)	100	3.7
Δ Operating expenses (ew)	98	3.5
ΔSG&A (ew)	100	3.3
ΔInterest expense (ew)	98	3.3

20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct Short	t-stat	
Investment (Titman, Wei, Xie 2004)			
ΔAssets (ew)	100	4.0	
Δ Intangible assets (ew)	100	4.0	
Δ PPE net (ew)	98	4.0	
Δ PPE gross (ew)	98	3.8	
ΔInvested capital (ew)	100	3.5	
ΔCapital expenditure (ew)	100	3.2	
Ext Financing (Spiess/Affle	ck-Grave	s 1999)	
ΔCommon stock (ew)	100	5.1	
Δ Liabilities (ew)	100	4.7	
Δ Capital surplus (ew)	100	4.1	
ΔLong-term debt (ew)	100	3.6	
ΔCapital surplus (vw)	98	3.0	

Numerator (Stock Weight)	Pct Short	t-stat
Accruals (Sloan 1996; Thom	nas-Zhang	g 2002)
ΔInventories (ew)	100	4.2
Δ Notes payable st (ew)	100	3.8
ΔReceivables (ew)	100	3.7
Δ Debt in current liab (ew)	100	3.7
Δ Current liabilities (ew)	100	3.7
ΔCost of goods sold (ew)	100	3.7
Δ Operating expenses (ew)	98	3.5
$\Delta SG&A (ew)$	100	3.3
ΔInterest expense (ew)	98	3.3

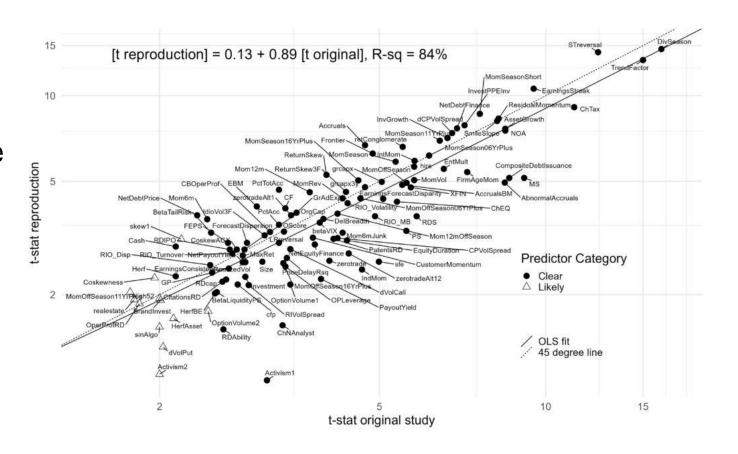
20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct Short	t-stat
Investment (Titman, Wei, X	ie 2004)	
ΔAssets (ew)	100	4.0
Δ Intangible assets (ew)	100	4.0
Δ PPE net (ew)	98	4.0
Δ PPE gross (ew)	98	3.8
ΔInvested capital (ew)	100	3.5
Δ Capital expenditure (ew)	100	3.2
Ext Financing (Spiess/Affle	ck-Grave	s 1999)
ΔCommon stock (ew)	100	5.1
Δ Liabilities (ew)	100	4.7
Δ Capital surplus (ew)	100	4.1
Δ Long-term debt (ew)	100	3.6
ΔCapital surplus (vw)	98	3.0

Numerator (Stock Weight)	Pct Short	t-stat	
Accruals (Sloan 1996; Thom	nas-Zhang	g 2002)	
ΔInventories (ew)	100	4.2	
Δ Notes payable st (ew)	100	3.8	
ΔReceivables (ew)	100	3.7	
Δ Debt in current liab (ew)	100	3.7	
Δ Current liabilities (ew)	100	3.7	
Earnings Surprise (Foster et. al 1984)			
ΔCost of goods sold (ew)	100	3.7	
Δ Operating expenses (ew)	98	3.5	
$\Delta SG&A (ew)$	100	3.3	
ΔInterest expense (ew)	98	3.3	

20 numerators and stock weights that produce largest t-stats

Numerator (Stock Weight)	Pct Short	t-stat
Investment (Titman, Wei, X	ie 2004)	
ΔAssets (ew)	100	4.0
Δ Intangible assets (ew)	100	4.0
Δ PPE net (ew)	98	4.0
Δ PPE gross (ew)	98	3.8
ΔInvested capital (ew)	100	3.5
ΔCapital expenditure (ew)	100	3.2
Ext Financing (Spiess/Affle	ck-Grave	s 1999)
ΔCommon stock (ew)	100	5.1
Δ Liabilities (ew)	100	4.7
Δ Capital surplus (ew)	100	4.1
Δ Long-term debt (ew)	100	3.6
ΔCapital surplus (vw)	98	3.0

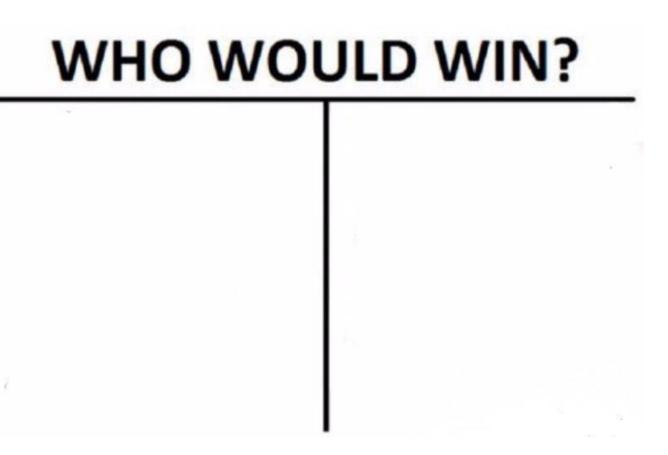

Numerator (Stock Weight)	Pct Short	t-stat
Accruals (Sloan 1996; Thomas-Zhang 2002)		
ΔInventories (ew)	100	4.2
Δ Notes payable st (ew)	100	3.8
Δ Receivables (ew)	100	3.7
Δ Debt in current liab (ew)	100	3.7
Δ Current liabilities (ew)	100	3.7
Earnings Surprise (Foster et. al 1984)		
ΔCost of goods sold (ew)	100	3.7
Δ Operating expenses (ew)	98	3.5
$\Delta SG&A (ew)$	100	3.3
Δ Interest expense (ew)	98	3.3
	_	

- All top 20 numerators fit into themes from academic publications
- But data mining can find the themes long before they are published

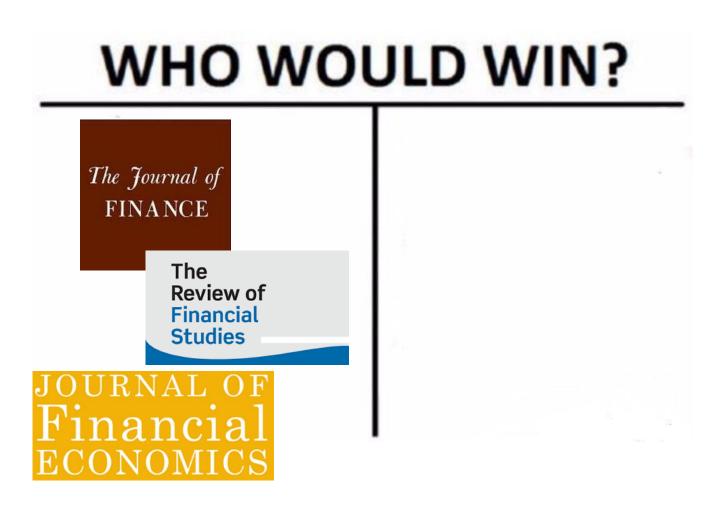
Peer Review vs Data Mining

Peer-reviewed long-short strategies

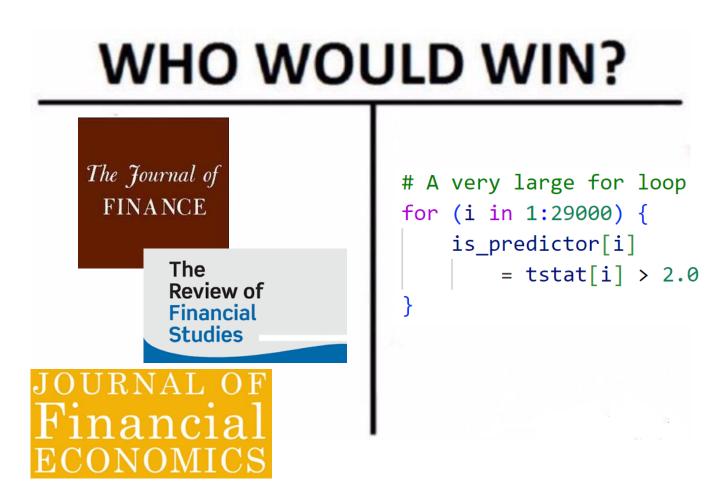
- Chen-Zimmermann (2022) dataset
 - Dataset w/ most accurate reproductions of original tables
- Filter to have postsample period ≥ 9 years
- Baseline data:199 predictors

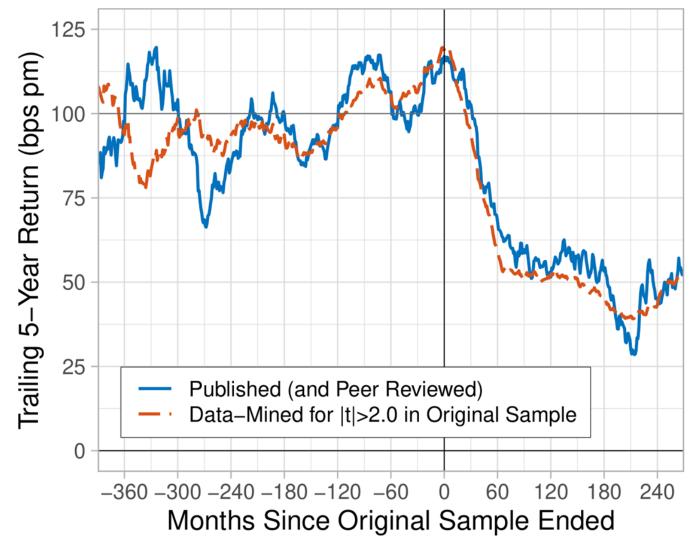


- For each published predictor,
 - Search the 29,000 accounting ratios for long-short |t| > 2.0

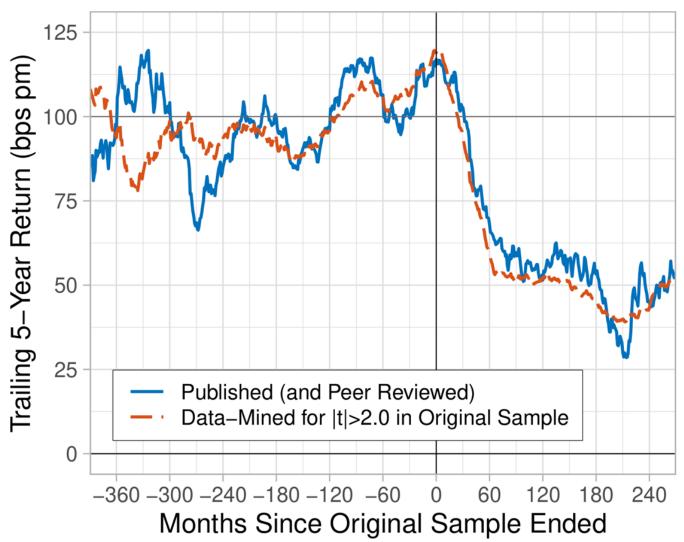

- For each published predictor,
 - Search the 29,000 accounting ratios for long-short |t| > 2.0
 - Using the original paper's
 - Sample period
 - Stock weighting (EW vs VW)

- For each published predictor,
 - Search the 29,000 accounting ratios for long-short |t| > 2.0
 - Using the original paper's
 - Sample period
 - Stock weighting (EW vs VW)
- Flip the long/short legs to have positive original-sample returns

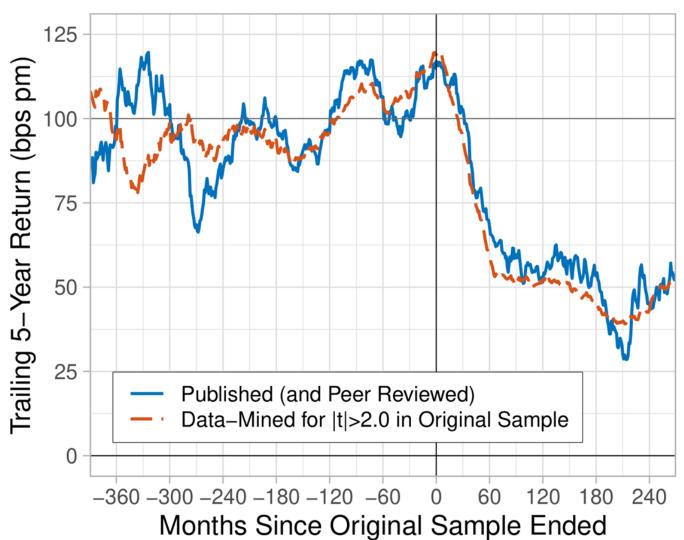

- For each published predictor,
 - Search the 29,000 accounting ratios for long-short |t| > 2.0
 - Using the original paper's
 - Sample period
 - Stock weighting (EW vs VW)
- Flip the long/short legs to have positive original-sample returns

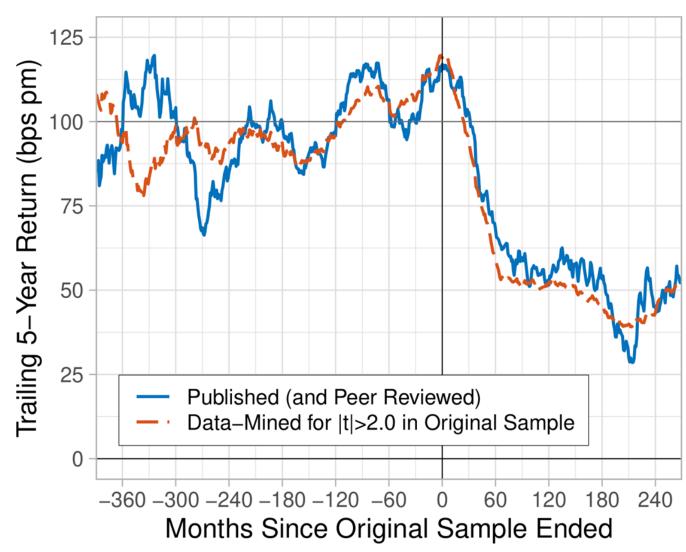


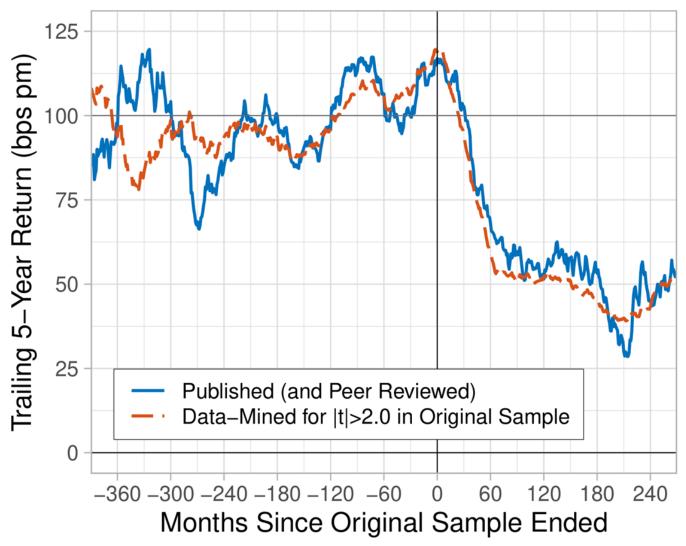
- For each published predictor,
 - Search the 29,000 accounting ratios for long-short |t| > 2.0
 - Using the original paper's
 - Sample period
 - Stock weighting (EW vs VW)
- Flip the long/short legs to have positive original-sample returns

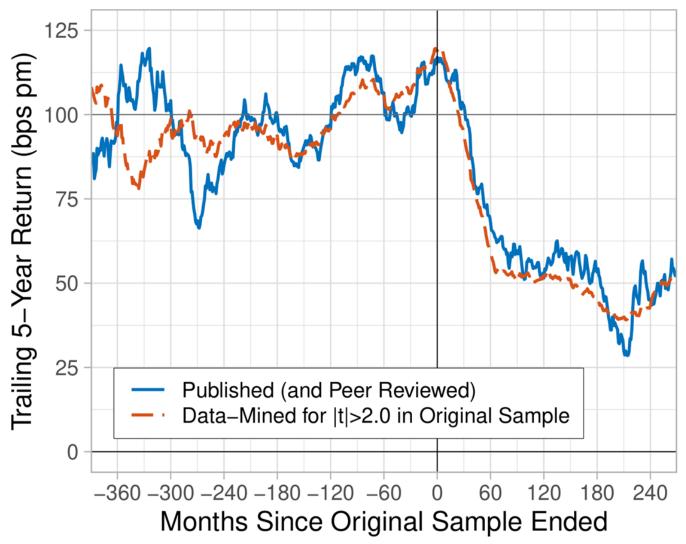


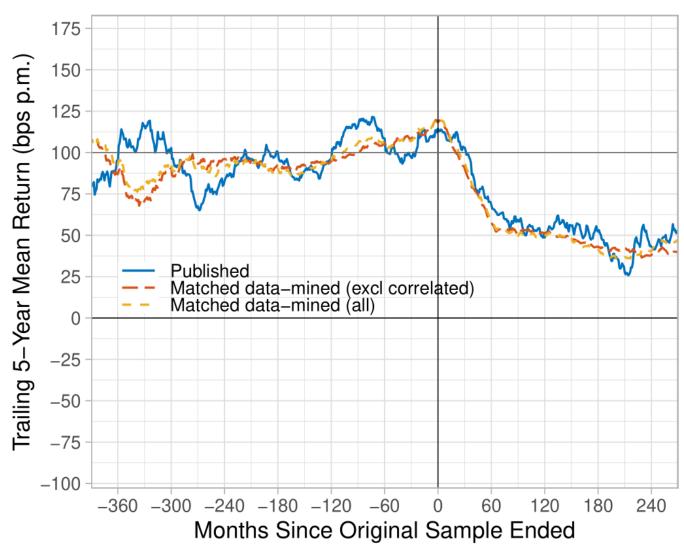
- For each published predictor,
 - Search the 29,000 accounting ratios for long-short |t| > 2.0
 - Using the original paper's
 - Sample period
 - Stock weighting (EW vs VW)
- Flip the long/short legs to have positive original-sample returns




- Normalize so original sample return = 100 bps
 - For ease of interpretation


- Normalize so original sample return = 100 bps
 - For ease of interpretation
- 53% remains post-sample for published
 - (McLean-Pontiff 2016)


- Normalize so original sample return = 100 bps
 - For ease of interpretation
- 53% remains post-sample for published
 - (McLean-Pontiff 2016)
- 51% remains for datamined benchmarks
 - (This paper)


 No, post-sample performance is similar to naïve back-testing

- No, post-sample performance is similar to naïve back-testing
 - Peer-reviewed motivations, supporting evidence, robustness tests, make little difference

- No, post-sample performance is similar to naïve back-testing
 - Peer-reviewed motivations, supporting evidence, robustness tests, make little difference
- Result robust to
 - Matching on in-sample returns and t-stats
 - Excluding correlated benchmarks

Do Risk-Based Explanations Help?

Many papers take a different approach

- Many papers take a different approach
 - Banz 1981: "the size effect exists but it is not at all clear why it exists"

- Many papers take a different approach
 - Banz 1981: "the size effect exists but it is not at all clear why it exists"
 - De Bondt and Thaler 1985: "The empirical evidence... ... is consistent with the overreaction hypothesis"

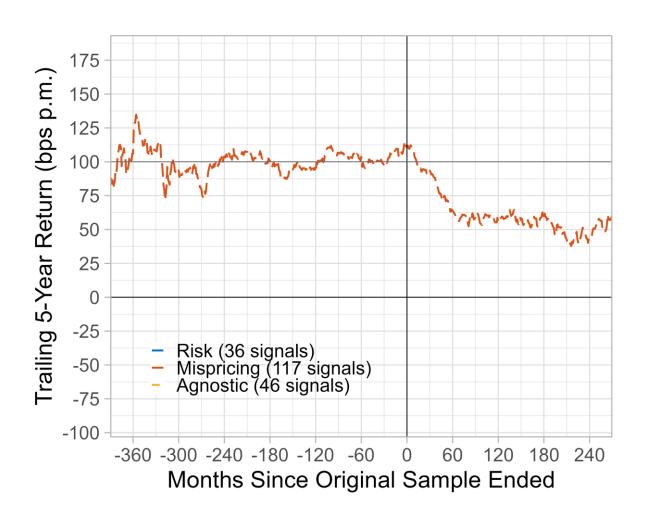
- Many papers take a different approach
 - Banz 1981: "the size effect exists but it is not at all clear why it exists"
 - De Bondt and Thaler 1985: "The empirical evidence... ... is consistent with the overreaction hypothesis"
- Do papers that follow Cochrane's advice outperform data mining?

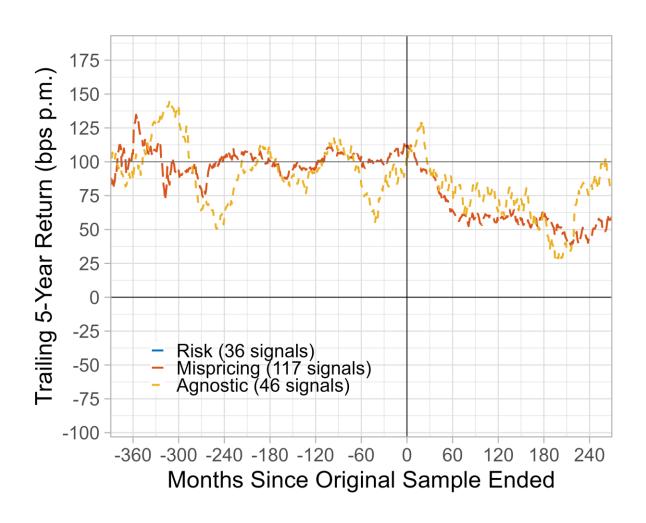
- Many papers take a different approach
 - Banz 1981: "the size effect exists but it is not at all clear why it exists"
 - De Bondt and Thaler 1985: "The empirical evidence... ... is consistent with the overreaction hypothesis"
- Do papers that follow Cochrane's advice outperform data mining?
- Method: Manually categorize explanations in original papers
 - 1. Find summary passage
 - 2. Categorize passage as "risk," "mispricing," or "agnostic"
 - 3. Post passages and categories on GitHub, ask public for objections

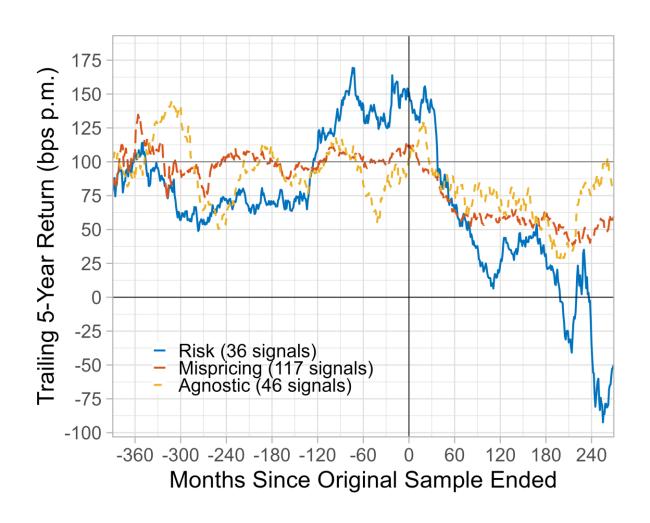
Risk or Mispricing? According to Peer Review

Num Predictors				
Category	Any Journal	JF, JFE, RFS	Example Predictor	Example Passage
Risk	36	33	Real estate holdings (Tuzel 2010)	Firms with high real estate holdings are more vulnerable to bad productivity shocks and hence are riskier and have higher expected returns.
Mispricing	117	65	Share repurchases (Ikenberry, Lakonishok, Vermaelen 1995)	The market errs in its initial response and appears to ignore much of the information conveyed through repurchase announcements
Agnostic	46	25	Size (Banz 2981)	To summarize, the size effect exists but it is not at all clear why it exists
Total	199	123		

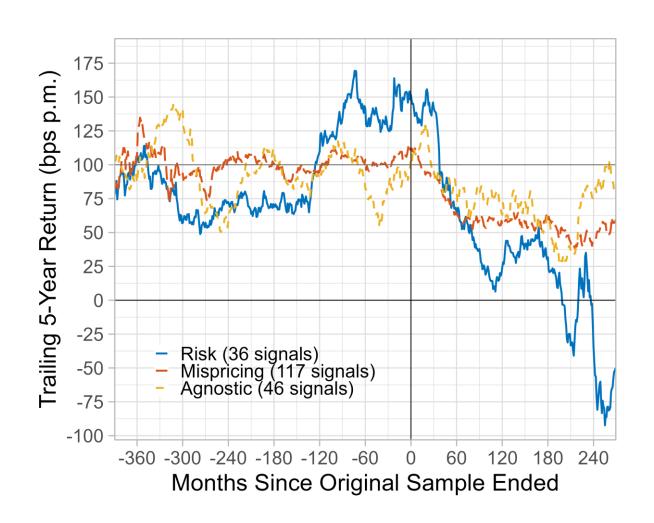
Risk or Mispricing? According to Peer Review

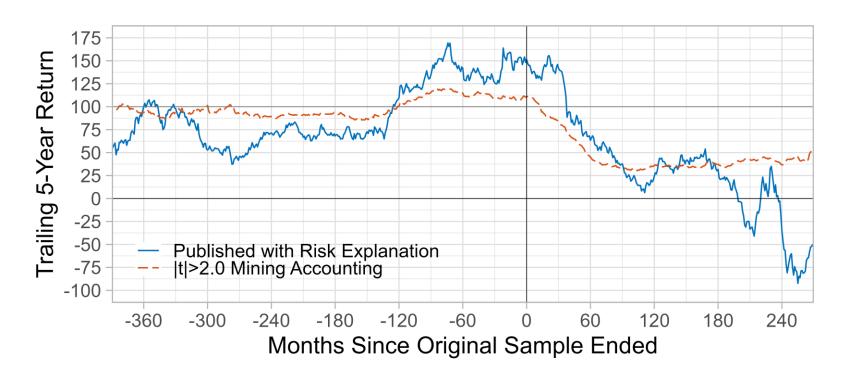

	Num Predictors			
Category	Any Journal	JF, JFE, RFS	Example Predictor	Example Passage
Risk	36	33	Real estate holdings (Tuzel 2010)	Firms with high real estate holdings are more vulnerable to bad productivity shocks and hence are riskier and have higher expected returns.
Mispricing	117	65	Share repurchases (Ikenberry, Lakonishok, Vermaelen 1995)	The market errs in its initial response and appears to ignore much of the information conveyed through repurchase announcements
Agnostic	46	25	Size (Banz 2981)	To summarize, the size effect exists but it is not at all clear why it exists
Total	199	123		


Only small minority 36/199= 18% are attributed to risk

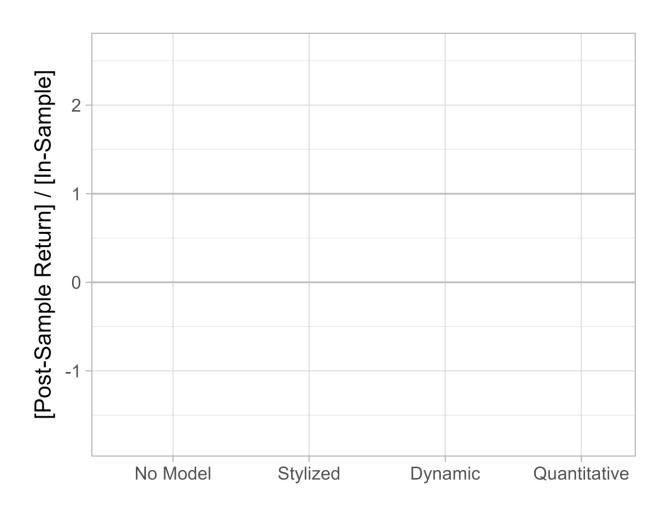

Risk or Mispricing? According to Peer Review

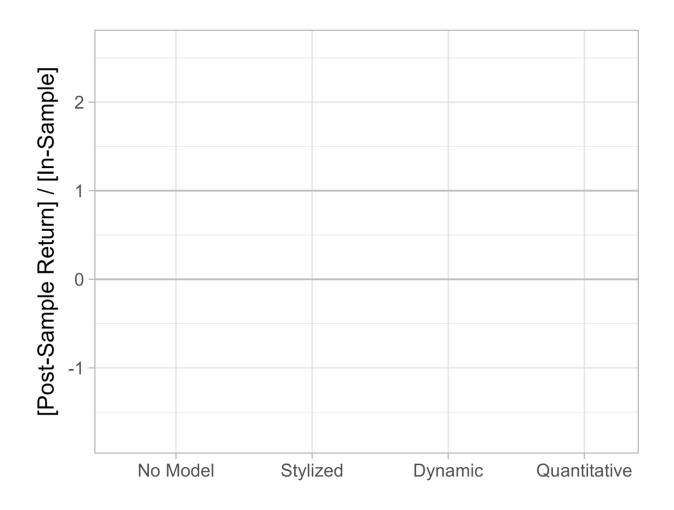
Num Predictors				
Category	Any Journal	JF, JFE, RFS	Example Predictor	Example Passage
Risk	36	33	Real estate holdings (Tuzel 2010)	Firms with high real estate holdings are more vulnerable to bad productivity shocks and hence are riskier and have higher expected returns.
Mispricing	117	65	Share repurchases (Ikenberry, Lakonishok, Vermaelen 1995)	The market errs in its initial response and appears to ignore much of the information conveyed through repurchase announcements
Agnostic	46	25	Size (Banz 2981)	To summarize, the size effect exists but it is not at all clear why it exists
Total	199	123		


- Only small minority 36/199= 18% are attributed to risk
 - Top 3 Finance journals: 27% are risk

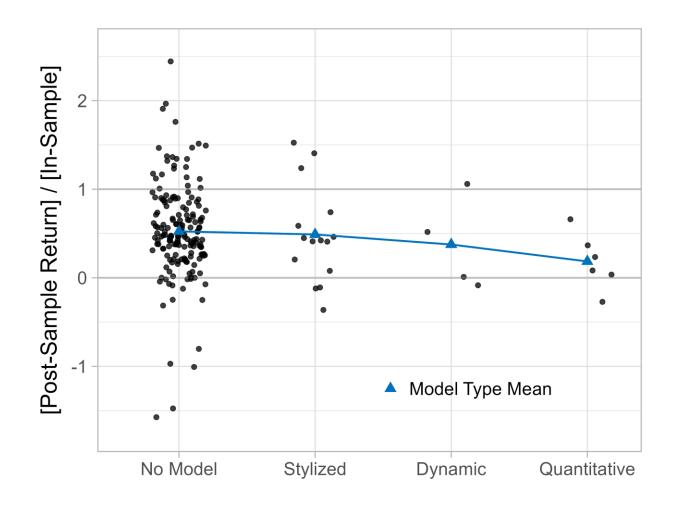


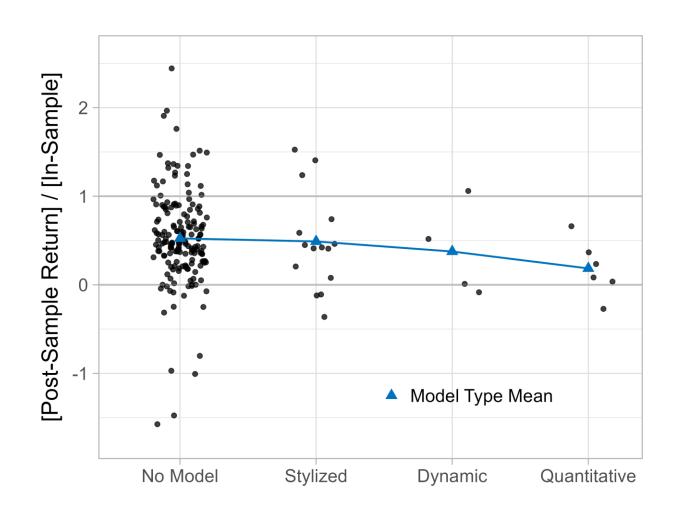
- No, publishable risk-based explanations do not help
 - If anything, they lead to underperformance


Risk vs data mining

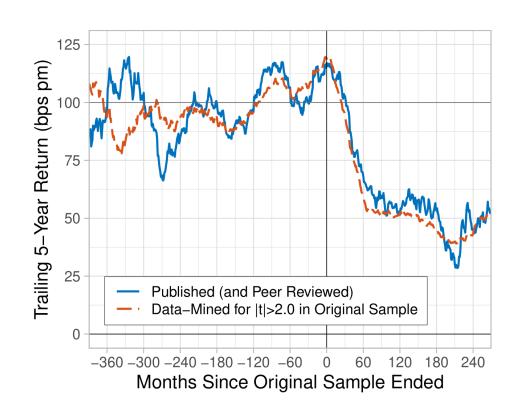

Risk-based predictors fail to outperform data-mined benchmarks

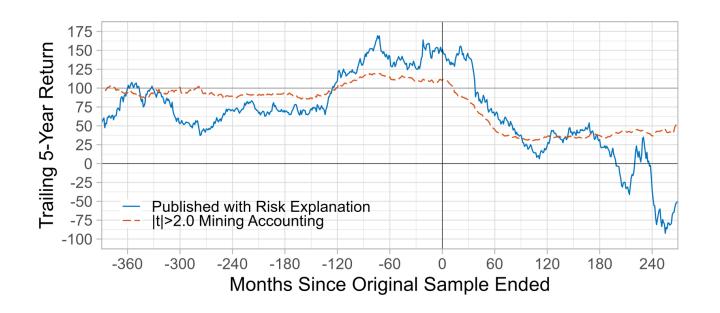
- Data-mined benchmarks are exposed to the same market conditions

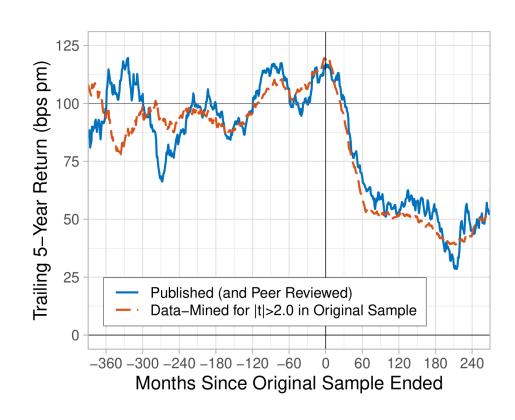

 Theory should help by disciplining the statistics (e.g. Fama French 2018)

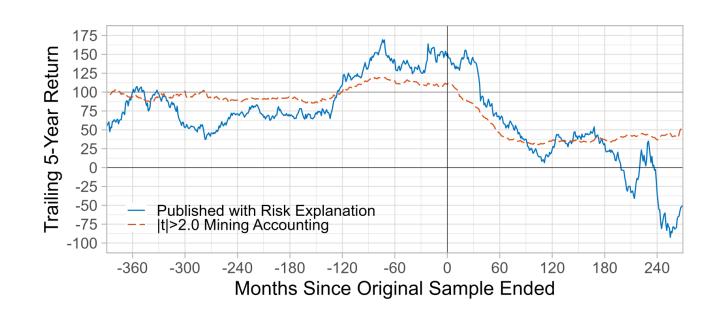

- Theory should help by disciplining the statistics (e.g. Fama French 2018)
- More rigorous theory ⇒ more discipline

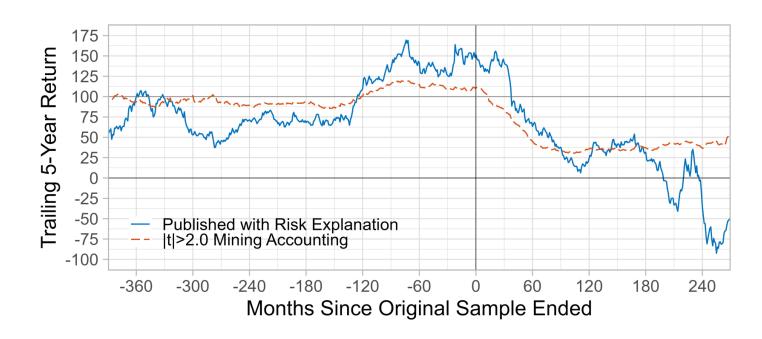
- Theory should help by disciplining the statistics (e.g. Fama French 2018)
- More rigorous theory ⇒ more discipline

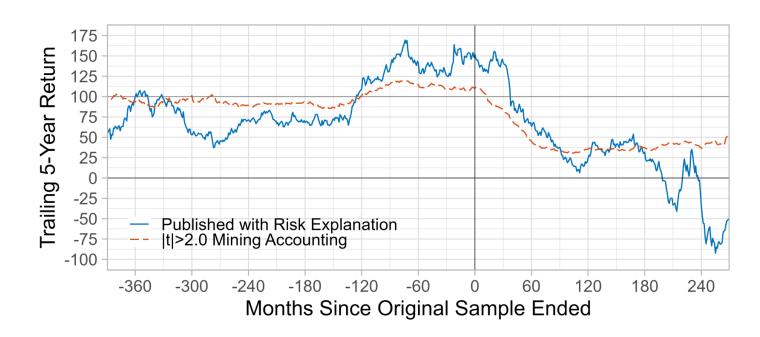



- Theory should help by disciplining the statistics (e.g. Fama French 2018)
- More rigorous theory ⇒ more discipline
- Empirically: more discipline ⇒
 less post-sample robustness

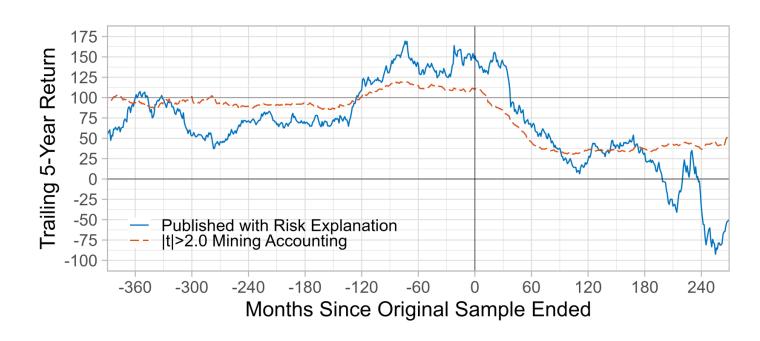

What do we make of this?


Peer reviewed predictability is similar to data mining---risk-based predictability is worse

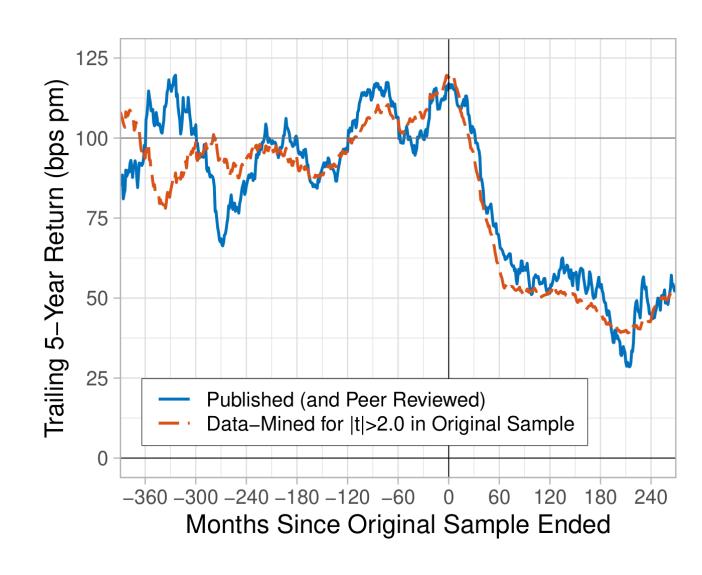

Peer reviewed predictability is similar to data mining---risk-based predictability is worse


Two choices...

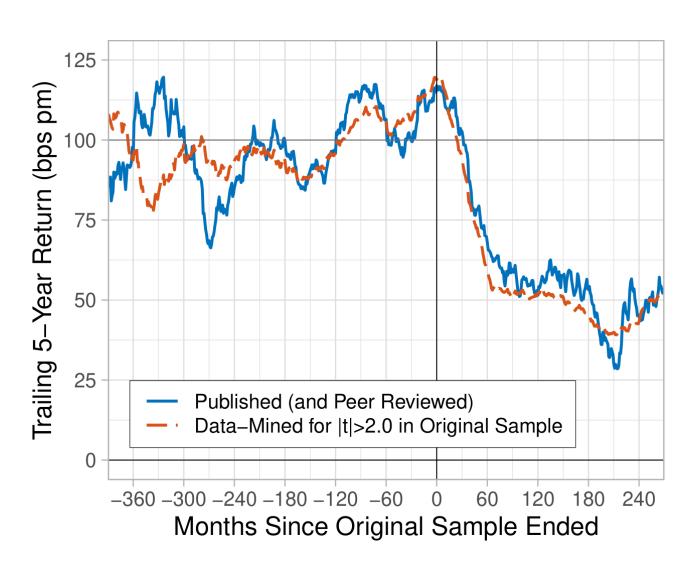
Choice 1: Cross-sectional stock predictability is not risk

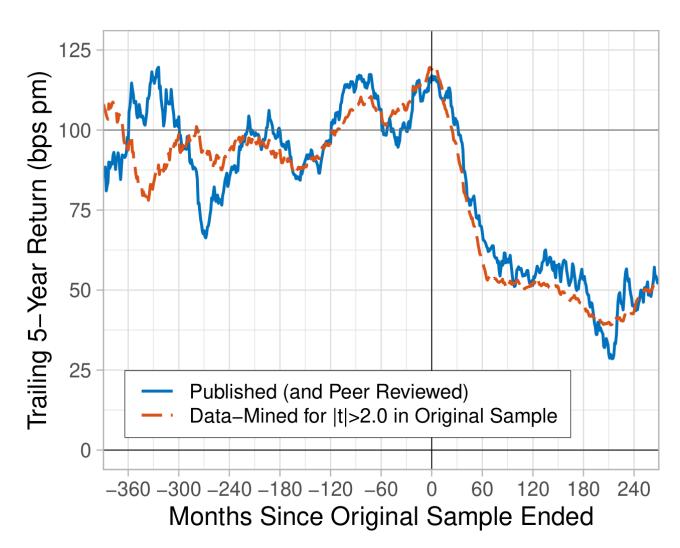

Classical tests can only reject special cases of the class of risk theories

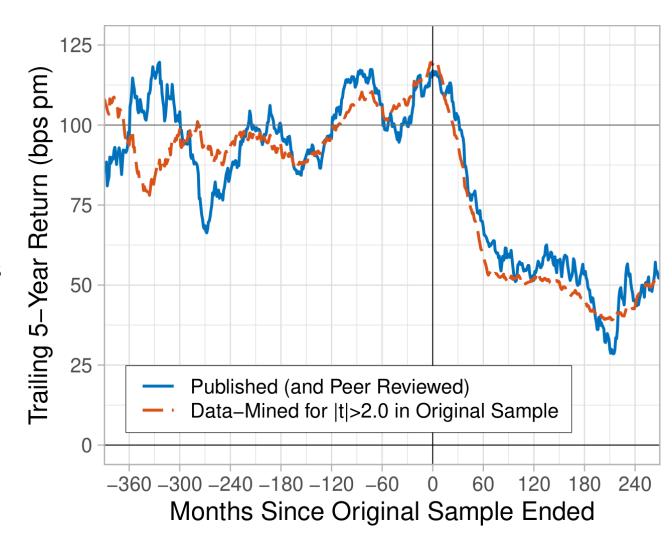
Choice 1: Cross-sectional stock predictability is not risk

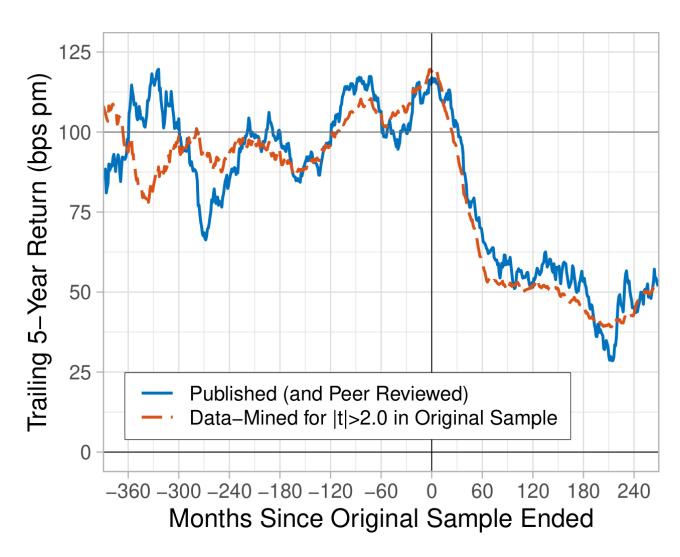


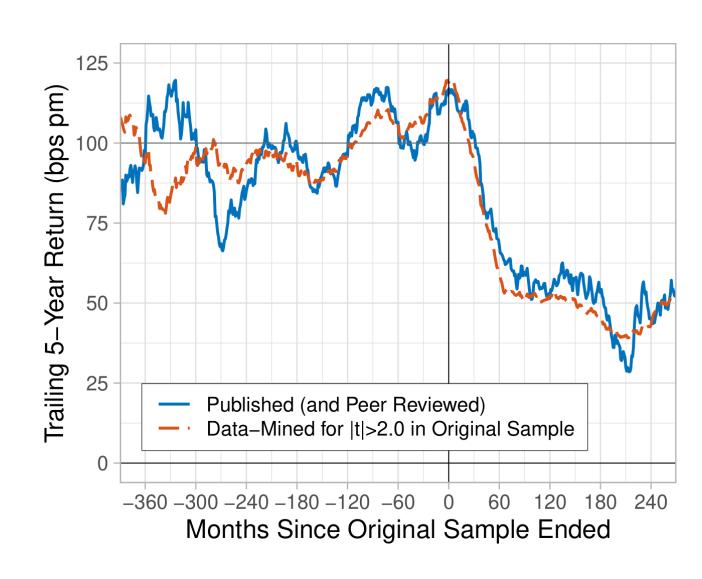
- Classical tests can only reject special cases of the class of risk theories
- But peer-review is a massive computer, designed to explore the full class


Choice 1: Cross-sectional stock predictability is not risk

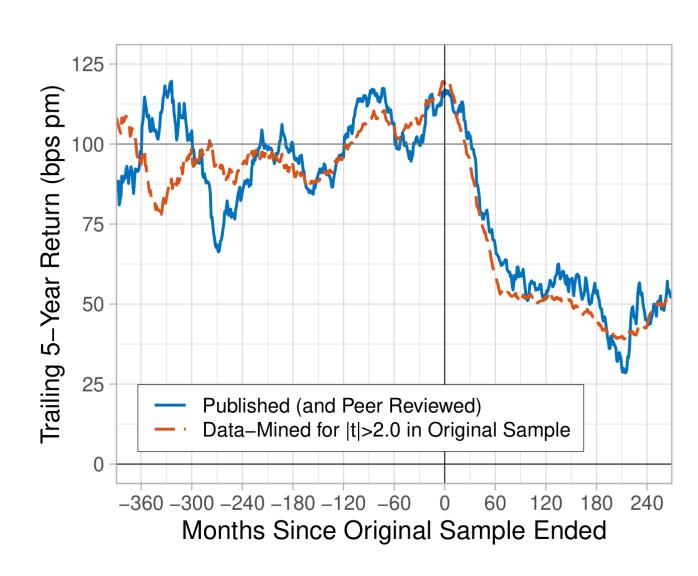

- Classical tests can only reject special cases of the class of risk theories
- But peer-review is a massive computer, designed to explore the full class
- Over the past 40 years, this massive computer
 - Finds little risk
 - The "risk" it finds, decays out-of-sample, like data-mined predictability


- Suppose passing peer review amounts to
 - 1. A long-short t-stat > 2
 - 2. An economic parable unrelated to the real-world economy

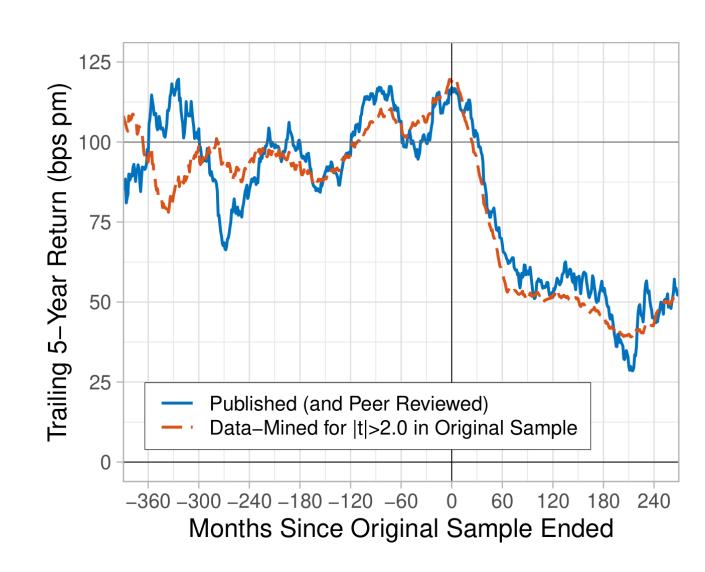

- Suppose passing peer review amounts to
 - 1. A long-short t-stat > 2
 - 2. An economic parable unrelated to the real-world economy
 - Perhaps, the parable confirms a referee's economic priors (Harvey 2017)

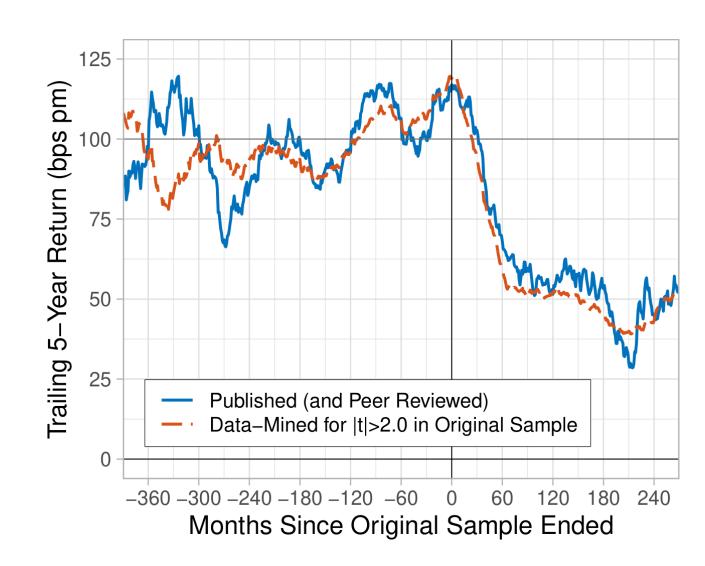


- Suppose passing peer review amounts to
 - 1. A long-short t-stat > 2
 - 2. An economic parable unrelated to the real-world economy
 - Perhaps, the parable confirms a referee's economic priors (Harvey 2017)
 - Or, it is written to boost strategic citations (Rubin-Rubin 2021 JPE)

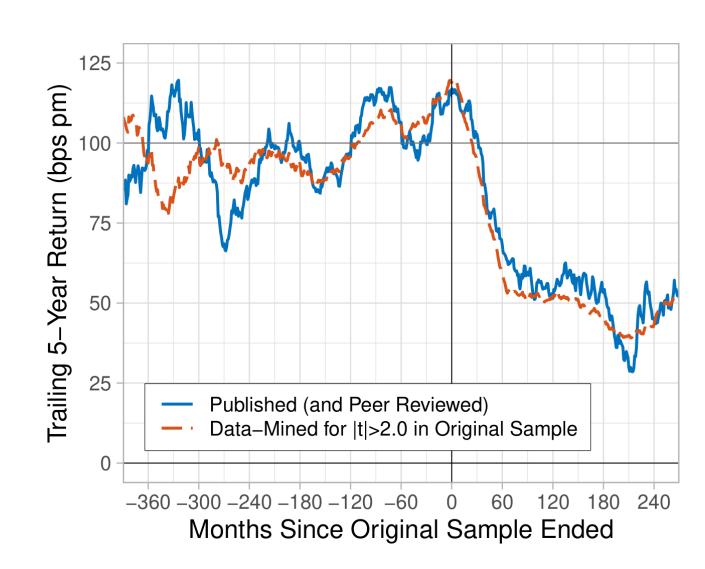


- Suppose passing peer review amounts to
 - 1. A long-short t-stat > 2
 - 2. An economic parable unrelated to the real-world economy
 - Perhaps, the parable confirms a referee's economic priors (Harvey 2017)
 - Or, it is written to boost strategic citations (Rubin-Rubin 2021 JPE)
- We cannot reject this model

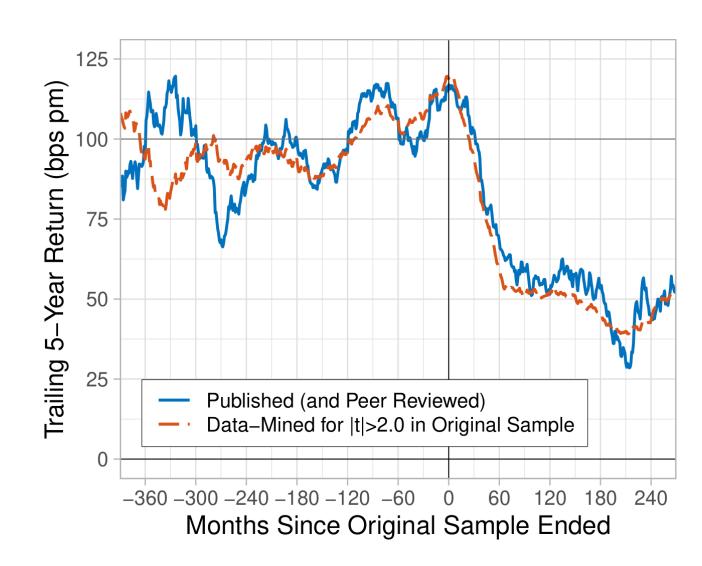



It uncovers true, out-of-sample predictability

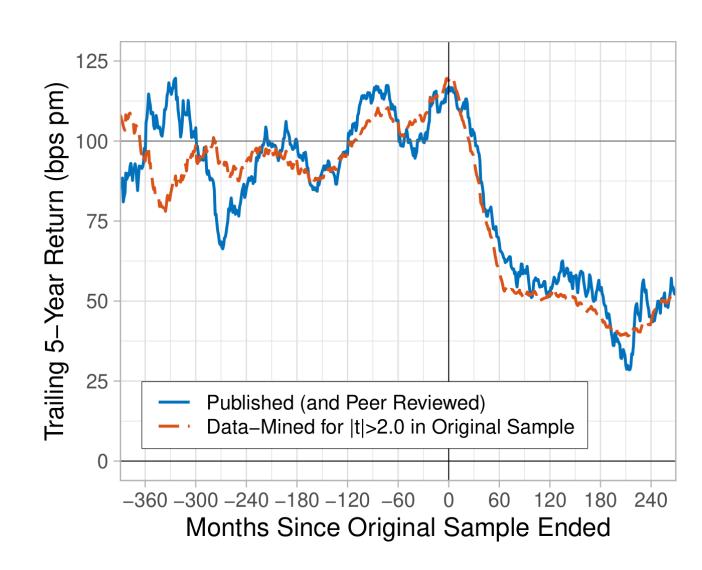
- It uncovers true, out-of-sample predictability
- It uncovers
 - the investment anomaly



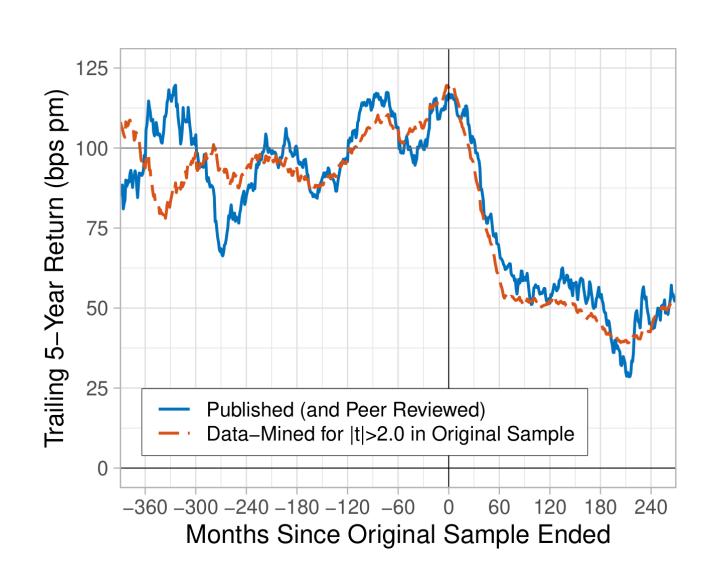
- It uncovers true, out-of-sample predictability
- It uncovers
 - the investment anomaly
 - earnings surprise


It uncovers true, out-of-sample predictability

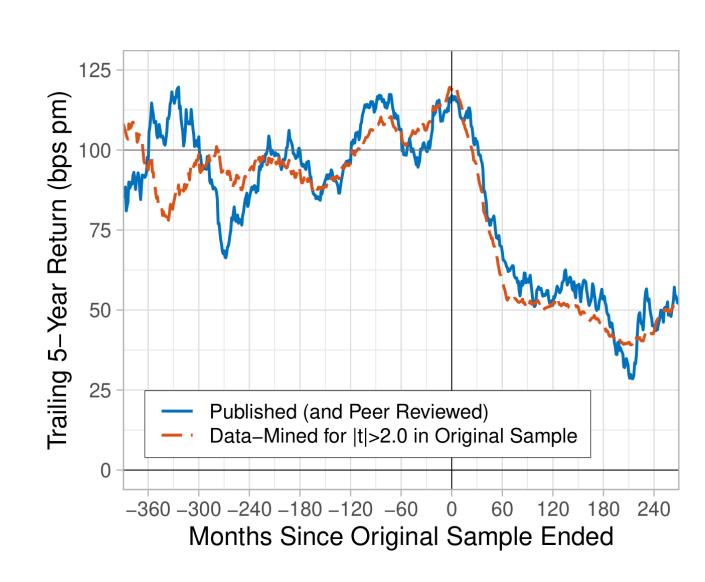
- the investment anomaly
- earnings surprise
- accruals, inventory growth


It uncovers true, out-of-sample predictability

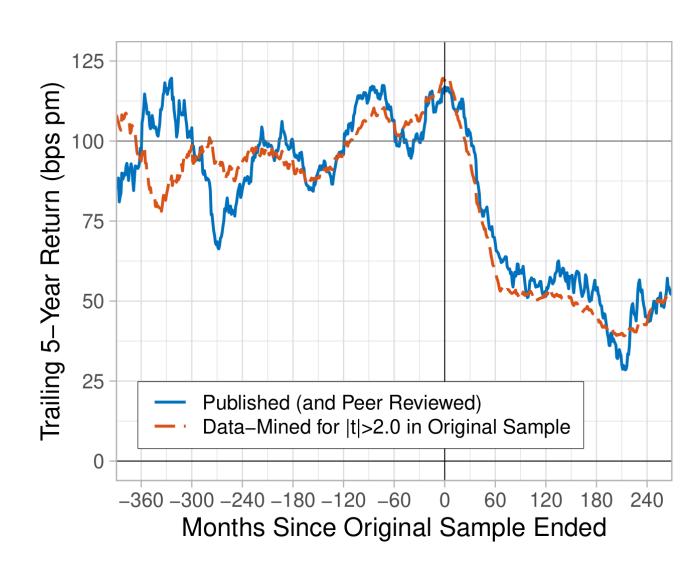
- the investment anomaly
- earnings surprise
- accruals, inventory growth
- stock issuance, debt issuance


It uncovers true, out-of-sample predictability

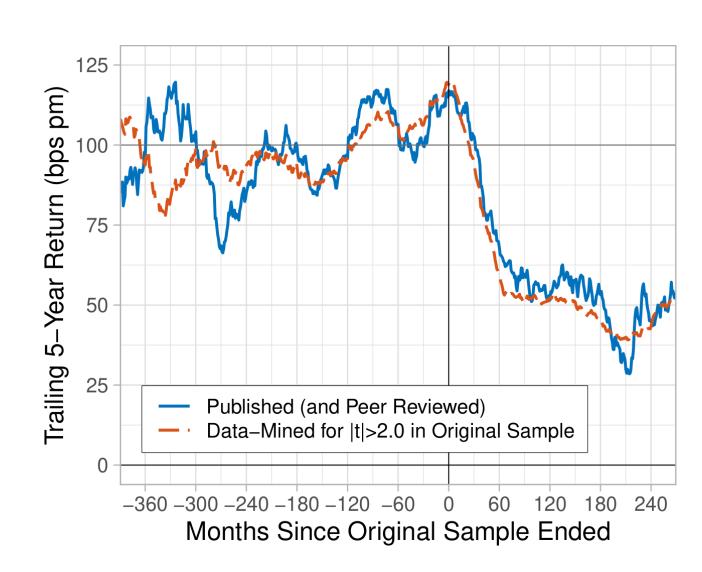
- the investment anomaly
- earnings surprise
- accruals, inventory growth
- stock issuance, debt issuance
- long before they are published

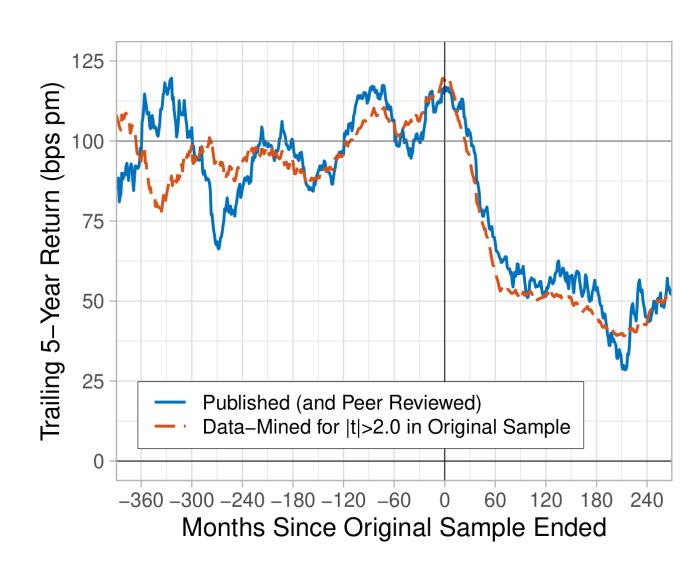

It uncovers true, out-of-sample predictability

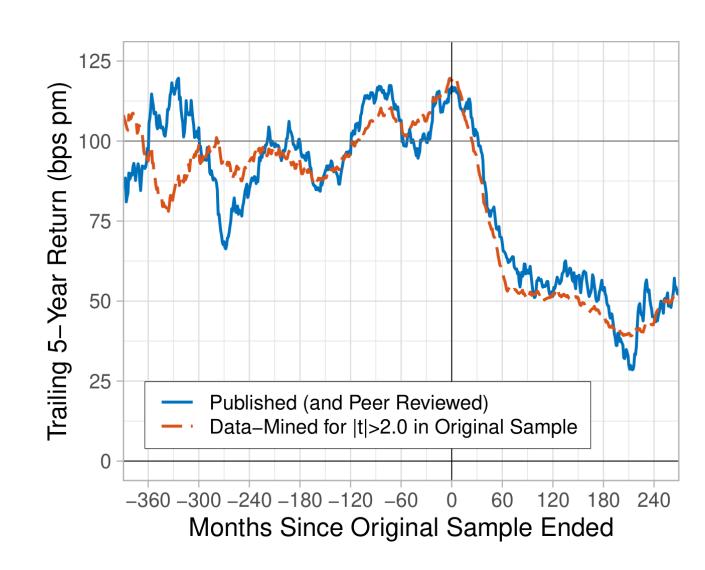
- the investment anomaly
- earnings surprise
- accruals, inventory growth
- stock issuance, debt issuance
- long before they are published
- Multiple testing methods remove data-mining bias (Chen-Dim '24)

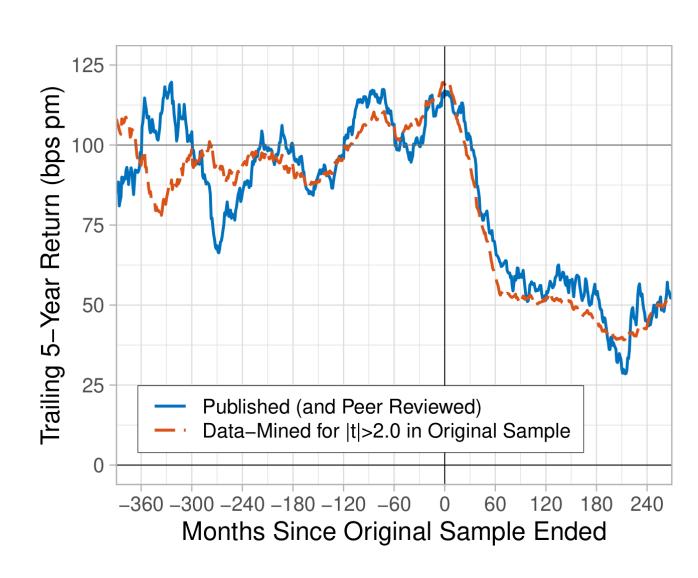


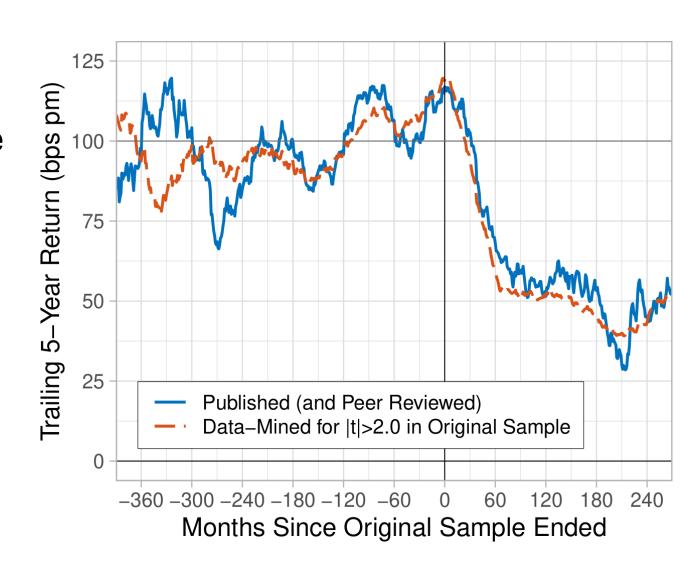
It uncovers true, out-of-sample predictability

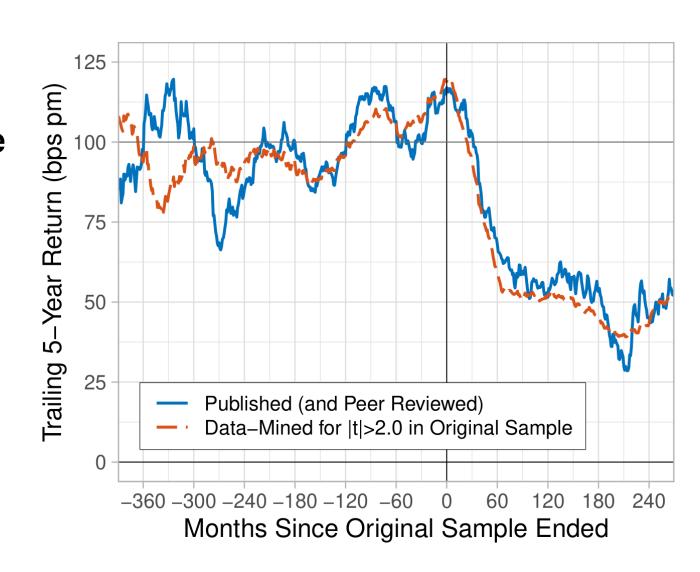

- the investment anomaly
- earnings surprise
- accruals, inventory growth
- stock issuance, debt issuance
- long before they are published
- Multiple testing methods remove data-mining bias (Chen-Dim '24)
- Other fields have turned to datacentric methods (e.g. ChatGPT)


Sutton's (2019) "Bitter Lesson" from 70 years of Al research


- Sutton's (2019) "Bitter Lesson" from 70 years of Al research
 - Beloved, hand-crafted solutions end up "irrelevant, or worse"


- Sutton's (2019) "Bitter Lesson" from 70 years of Al research
 - Beloved, hand-crafted solutions end up "irrelevant, or worse"
 - Vast searches through huge datasets outperform


- Sutton's (2019) "Bitter Lesson" from 70 years of Al research
 - Beloved, hand-crafted solutions end up "irrelevant, or worse"
 - Vast searches through huge datasets outperform
- The real world is "tremendously, irredeemably complex"


 Economics is about beloved, hand-crafted parables

- Economics is about beloved, hand-crafted parables
- But perhaps if we fully explore the data...
 - (embrace data mining)

- Economics is about beloved, hand-crafted parables
- But perhaps if we fully explore the data...
 - (embrace data mining)
-we can produce parables that are closer to the tremendously, irredeemably complex real world

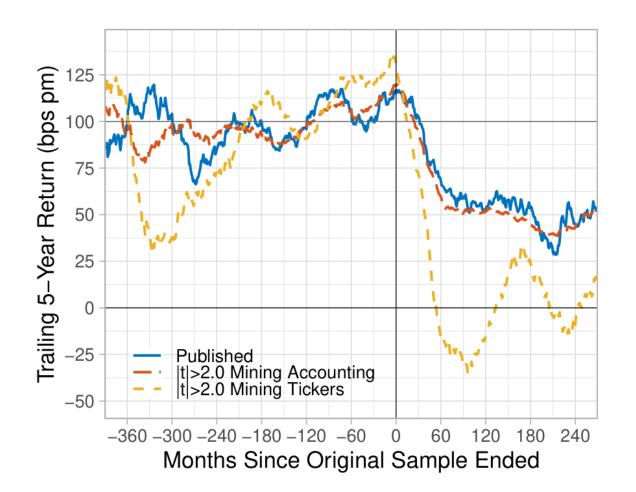
Extra Slides

 Post-sample, returns decay 42% (McLean-Pontiff 2016)

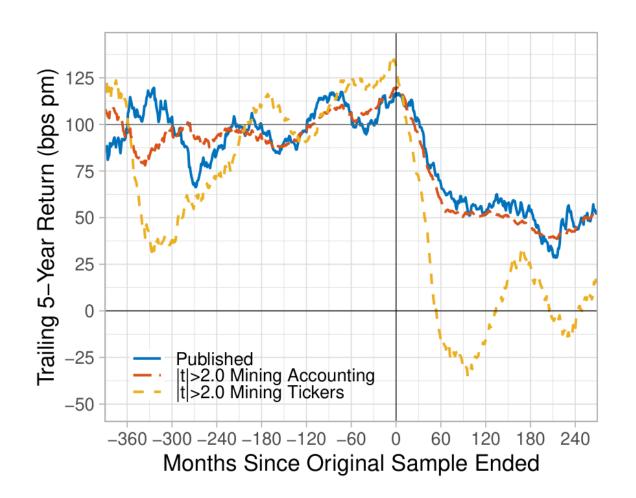
RHS Variables	LHS: Long-Short Strategy Return (bps pm, scaled)					
	(1)	(2)	(3)	(4)	(5)	
Intercept	100	100	100	100	102.3	
-	(6.4)	(6.4)	(6.4)	(6.4)	(6.8)	
Post-Sample	-42.2	-25.1	-36.5	-24.4	0.7	
-	(8.7)	(11.7)	(10.3)	(15.3)	(14.6)	
Post-Pub		-21.3		-14.9		
		(12.1)		(17.5)		
Post-Sample x Risk	-28.8	-18.8	-34.4	-19.5	-23.4	
	(15.5)	(20.2)	(17.1)	(22.8)	(15.2)	
Post-Pub x Risk		-14		-20.3		
		(27.2)		(30.2)		
Post-Sample x Mispricing		, ,	-8	-1		
			(7.8)	(15.5)		
Post-Pub x Mispricing			` '	-9		
				(17.5)		
Post-2004				` ′	-59.6	
					(16.7)	
Null: Risk No Decay	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	

- Post-sample, returns decay 42% (McLean-Pontiff 2016)
- Predictors with risk explanations decay more

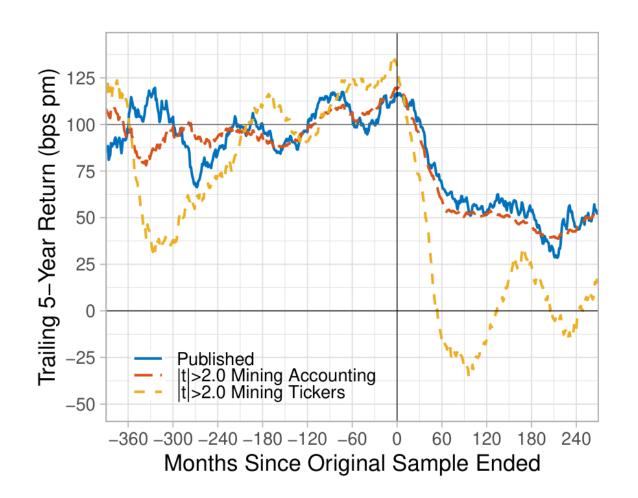
	LHS: Long-Short Strategy Return (bps pm, scaled)					
RHS Variables	(1)	(2)	(3)	(4)	(5)	
Intercept	100	100	100	100	102.3	
	(6.4)	(6.4)	(6.4)	(6.4)	(6.8)	
Post-Sample	-42.2	-25.1	-36.5	-24.4	0.7	
	(8.7)	(11.7)	(10.3)	(15.3)	(14.6)	
Post-Pub		-21.3		-14.9		
		(12.1)		(17.5)		
Post-Sample x Risk	-28.8	-18.8	-34.4	-19.5	-23.4	
•	(15.5)	(20.2)	(17.1)	(22.8)	(15.2)	
Post-Pub x Risk		-14		-20.3		
		(27.2)		(30.2)		
Post-Sample x Mispricing			-8	-1		
			(7.8)	(15.5)		
Post-Pub x Mispricing			, ,	-9		
1 0				(17.5)		
Post-2004				` '	-59.6	
					(16.7)	
Null: Risk No Decay	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	

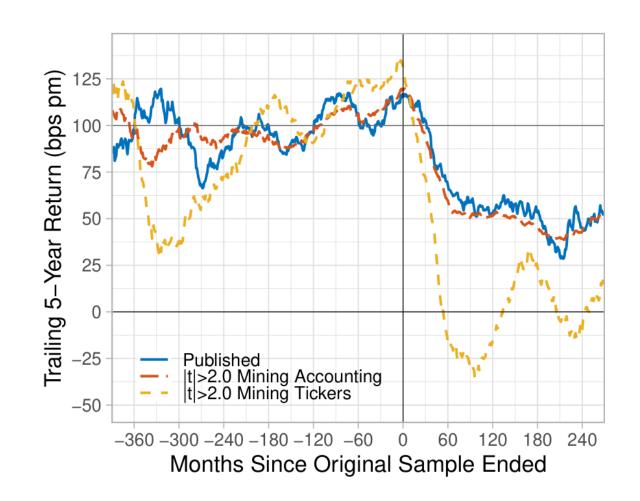

- Post-sample, returns decay 42% (McLean-Pontiff 2016)
- Predictors with risk explanations decay more
 - Even controlling for more recent publication dates

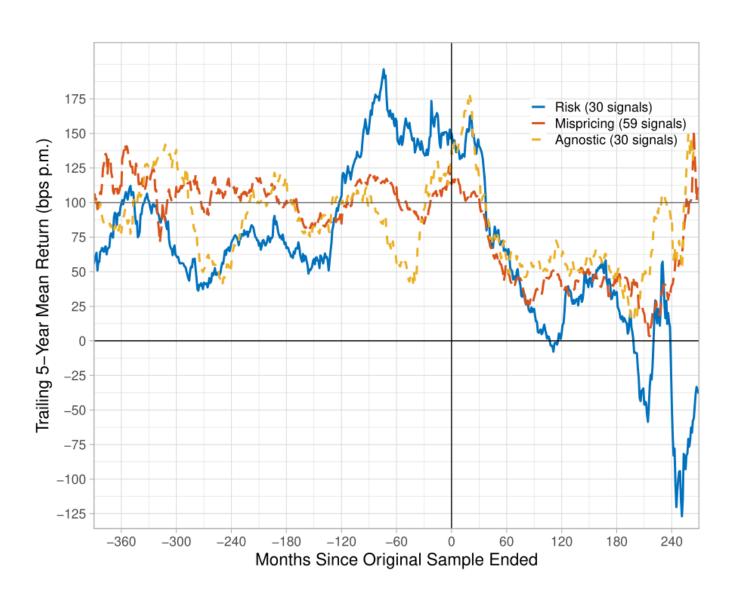
	LHS: Long-Short Strategy Return (bps pm, scaled)					
RHS Variables	(1)	(2)	(3)	(4)	(5)	
Intercept	100	100	100	100	102.3	
	(6.4)	(6.4)	(6.4)	(6.4)	(6.8)	
Post-Sample	-42.2	-25.1	-36.5	-24.4	0.7	
	(8.7)	(11.7)	(10.3)	(15.3)	(14.6)	
Post-Pub		-21.3		-14.9		
		(12.1)		(17.5)		
Post-Sample x Risk	-28.8	-18.8	-34.4	-19.5	-23.4	
	(15.5)	(20.2)	(17.1)	(22.8)	(15.2)	
Post-Pub x Risk		-14		-20.3		
		(27.2)		(30.2)		
Post-Sample x Mispricing			-8	-1		
			(7.8)	(15.5)		
Post-Pub x Mispricing				-9		
				(17.5)		
Post-2004					-59.6	
					(16.7)	
Null: Risk No Decay	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	


- Post-sample, returns decay 42% (McLean-Pontiff 2016)
- Predictors with risk explanations decay more
 - Even controlling for more recent publication dates
- Does risk-based theory prevent out-of-sample decay?
 - No, strongly reject

		T 01 0			1 1	
	LHS: Long-Short Strategy Return (bps pm, scaled)					
RHS Variables	(1)	(2)	(3)	(4)	(5)	
Intercept	100	100	100	100	102.3	
-	(6.4)	(6.4)	(6.4)	(6.4)	(6.8)	
Post-Sample	-42.2	-25.1	-36.5	-24.4	0.7	
•	(8.7)	(11.7)	(10.3)	(15.3)	(14.6)	
Post-Pub		-21.3		-14.9		
		(12.1)		(17.5)		
Post-Sample x Risk	-28.8	-18.8	-34.4	-19.5	-23.4	
•	(15.5)	(20.2)	(17.1)	(22.8)	(15.2)	
Post-Pub x Risk	``	-14	, ,	-20.3	, , , , , ,	
		(27.2)		(30.2)		
Post-Sample x Mispricing		, ,	-8	-1		
1 1 0			(7.8)	(15.5)		
Post-Pub x Mispricing			, ,	`-9 ´		
1 0				(17.5)		
Post-2004				,	-59.6	
					(16.7)	
Null: Risk No Decay	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	


- Construct 3,000 long-short portfolios based on letters of stock tickers
 - Suggested in Harvey (2017)
 - Far fewer than the 29,000 datamined portfolios


- Construct 3,000 long-short portfolios based on letters of stock tickers
 - Suggested in Harvey (2017)
 - Far fewer than the 29,000 datamined portfolios
- Mining tickers leads to mean zero returns post-sample (yellow)


- Construct 3,000 long-short portfolios based on letters of stock tickers
 - Suggested in Harvey (2017)
 - Far fewer than the 29,000 datamined portfolios
- Mining tickers leads to mean zero returns post-sample (yellow)
- 2 Lessons
 - The type of data being mined is important

- Construct 3,000 long-short portfolios based on letters of stock tickers
 - Suggested in Harvey (2017)
 - Far fewer than the 29,000 datamined portfolios
- Mining tickers leads to mean zero returns post-sample (yellow)
- 2 Lessons
 - The type of data being mined is important
 - 2. The amount of data mining is not

Post-2004 pubs only

