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▪ Suppose a Ph.D. student says “I found a predictor with a t-stat > 2.0 
and a sample mean return of 100 bps!”

▪ You ask, “where does this predictor come from?”
1. Was it based on an idea that is publishable in a top finance journal?

2. Or did you just mine accounting ratios for t > 2?

▪ How should your expected out-of-sample return depend on his 
answer?

2 / 26



Our answer: 

3 / 26



Our answer: 

3 / 26



Our answer: 

▪ Publishable ideas 
outperform data mining 
by perhaps 2 bps per 
month

3 / 26



Our answer: 

▪ Publishable ideas 
outperform data mining 
by perhaps 2 bps per 
month

▪ Focusing on publishable 
risk-based ideas does not 
help

3 / 26



Our answer: 

▪ Publishable ideas 
outperform data mining 
by perhaps 2 bps per 
month

▪ Focusing on publishable 
risk-based ideas does not 
help

▪ On the bright side, data 
mining uncovers true 
predictability

3 / 26



Our answer: 

▪ Publishable ideas 
outperform data mining 
by perhaps 2 bps per 
month

▪ Focusing on publishable 
risk-based ideas does not 
help

▪ On the bright side, data 
mining uncovers true 
predictability

– Reminiscent of data mining 
successes in language 
modeling (e.g. ChatGPT)
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▪ Two kinds of accounting ratios

– Simple ratios: X/Y

– Scaled first difference: ΔX/lag(Y)

▪ Where
– X = one of 242 annual accounting vars (including market equity)

– Y = one of the X’s that is positive for > 25% of firms in 1963

▪ Yields 29,315 accounting ratios

▪ Using each ratio, form long-short decile strategies

▪ Arguably no economics, no look-ahead bias
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Data mining generates large “out-of-sample” returns

▪ Each year, sort 29,000 strategies into bins based on past 30 year 
returns (IS), hold bin for one year (OOS)

▪ Replicates + extends Yan-Zheng 2017 (underappreciated paper)
▪ Contrasts with Harvey-Liu 2020, who find FDR ≈ 100%

– Consistent w/ Chen 2024: Harvey-Liu 2020 misinterprets FDR methods
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Data-mined strategies with |t|>2 are diverse

▪ More than 85% of correlations below 0.30 in absolute value

▪ 70 PCs are required to capture 80% of variance

▪ Data mining doesn’t just pick up size, B/M, profitability

Covariance structure of long-short returns
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Themes from mining the 1963-1980 sample

▪ All top 20 numerators fit into themes from academic publications

▪ But data mining can find the themes long before they are published

20 numerators and stock weights that produce largest t-stats 
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Peer Review vs Data Mining
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Peer-reviewed long-short strategies

▪ Chen-Zimmermann 
(2022) dataset

– Dataset w/ most accurate 
reproductions of original 
tables

▪ Filter to have post-
sample period ≥ 9 years

▪ Baseline data:
199 predictors
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▪ Normalize so original 

sample return = 100 bps
– For ease of interpretation

▪ 53% remains post-sample 
for published 
– (McLean-Pontiff 2016)

▪ 51% remains for data-
mined benchmarks
– (This paper)
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Does peer-reviewed research help predict the cross-
section post-sample?
▪ No, post-sample 

performance is similar to 
naïve back-testing
– Peer-reviewed motivations, 

supporting evidence, 
robustness tests, make little 
difference

▪ Result robust to
– Matching on in-sample 

returns and t-stats
– Excluding correlated 

benchmarks
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Do Risk-Based Explanations Help?
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The best hope for finding pricing factors that are 
robust out of sample… …is to try to understand the 
fundamental macroeconomic sources of risk 
          –Cochrane 2005, Chapter 7

15 / 26



▪ Many papers take a different approach
– Banz 1981: “the size effect exists but it is not at all clear why it exists”

The best hope for finding pricing factors that are 
robust out of sample… …is to try to understand the 
fundamental macroeconomic sources of risk 
          –Cochrane 2005, Chapter 7

15 / 26



▪ Many papers take a different approach
– Banz 1981: “the size effect exists but it is not at all clear why it exists”
– De Bondt and Thaler 1985: “The empirical evidence... ...is consistent with the 

overreaction hypothesis”

The best hope for finding pricing factors that are 
robust out of sample… …is to try to understand the 
fundamental macroeconomic sources of risk 
          –Cochrane 2005, Chapter 7

15 / 26



▪ Many papers take a different approach
– Banz 1981: “the size effect exists but it is not at all clear why it exists”
– De Bondt and Thaler 1985: “The empirical evidence... ...is consistent with the 

overreaction hypothesis”

▪ Do papers that follow Cochrane’s advice outperform data mining?

The best hope for finding pricing factors that are 
robust out of sample… …is to try to understand the 
fundamental macroeconomic sources of risk 
          –Cochrane 2005, Chapter 7

15 / 26



▪ Many papers take a different approach
– Banz 1981: “the size effect exists but it is not at all clear why it exists”
– De Bondt and Thaler 1985: “The empirical evidence... ...is consistent with the 

overreaction hypothesis”

▪ Do papers that follow Cochrane’s advice outperform data mining?

▪ Method: Manually categorize explanations in original papers
1. Find summary passage
2. Categorize passage as “risk,” “mispricing,” or “agnostic”
3. Post passages and categories on GitHub, ask public for objections

The best hope for finding pricing factors that are 
robust out of sample… …is to try to understand the 
fundamental macroeconomic sources of risk 
          –Cochrane 2005, Chapter 7
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Risk or Mispricing? According to Peer Review

▪ Only small minority 36/199= 18% are attributed to risk
– Top 3 Finance journals: 27% are risk 
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Post-sample decay: risk vs mispricing

▪ No, publishable risk-based 
explanations do not help

– If anything, they lead to 
underperformance
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Risk vs data mining

▪ Risk-based predictors fail to outperform data-mined benchmarks
– Data-mined benchmarks are exposed to the same market conditions
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Robustness: Modeling Rigor

▪ Theory should help by 
disciplining the statistics (e.g. 
Fama French 2018)

▪ More rigorous theory ⇒ more 
discipline

▪ Empirically: more discipline ⇒ 
less post-sample robustness
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What do we make of this?
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Peer reviewed predictability is similar to data 
mining---risk-based predictability is worse
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Peer reviewed predictability is similar to data 
mining---risk-based predictability is worse

Two choices…
21 / 26



Choice 1: Cross-sectional stock predictability is not risk

▪ Classical tests can only reject special cases of the class of risk theories

22 / 26



Choice 1: Cross-sectional stock predictability is not risk

▪ Classical tests can only reject special cases of the class of risk theories

▪ But peer-review is a massive computer, designed to explore the full class

22 / 26



Choice 1: Cross-sectional stock predictability is not risk

▪ Classical tests can only reject special cases of the class of risk theories

▪ But peer-review is a massive computer, designed to explore the full class

▪ Over the past 40 years, this massive computer 
– Finds little risk

– The “risk” it finds, decays out-of-sample, like data-mined predictability 22 / 26
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Or Choice 2: Peer review is not working properly

▪ Suppose passing peer review 
amounts to

1. A long-short t-stat > 2

2. An economic parable unrelated 
to the real-world economy

– Perhaps, the parable confirms 
a referee’s economic priors 
(Harvey 2017)

– Or, it is written to boost 
strategic citations 
(Rubin-Rubin 2021 JPE)

▪ We cannot reject this model
23 / 26
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▪ It uncovers true, out-of-sample 
predictability

▪ It uncovers 
– the investment anomaly 

– earnings surprise 

– accruals, inventory growth

– stock issuance, debt issuance 

– long before they are published

▪ Multiple testing methods remove 
data-mining bias (Chen-Dim ‘24)

▪ Other fields have turned to data-
centric methods (e.g. ChatGPT)
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Regardless, data mining is clearly undervalued

▪ Economics is about beloved, 
hand-crafted parables

▪ But perhaps if we fully explore 
the data…

– (embrace data mining)

▪ ….we can produce parables 
that are closer to the 
tremendously, irredeemably 
complex real world
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Regression of monthly returns on indicators

▪ Post-sample, returns 
decay 42% 
(McLean-Pontiff 2016)

▪ Predictors with risk 
explanations decay 
more

– Even controlling for more 
recent publication dates

▪ Does risk-based theory 
prevent out-of-sample 
decay?

– No, strongly reject

28 / 26
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stock tickers

– Suggested in Harvey (2017)
– Far fewer than the 29,000 data-

mined portfolios

▪ Mining tickers leads to mean zero 
returns post-sample (yellow)

▪ 2 Lessons
1. The type of data being mined is 

important
2. The amount of data mining is not
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