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Abstract

We develop a random search model of the labor market with two-sided heterogene-
ity and match-specific productivity shocks. Our model has two main predictions: i)
there is positively assortative matching and ii) the average log wage that a worker re-
ceives is increasing in the worker’s and firm’s productivity and is submodular. Sorting
and wages are driven by selection. All workers are equally likely to meet all firms,
but low (high) productivity workers have a higher average surplus from meeting low
(high) productivity firms. The high surplus meetings result in matches more frequently,
generating positive assortative matching. Since only meetings that result in matches
are observed in administrative wage data, such data contain only a selected subset of
meetings, driving the result that average log wages are increasing and submodular. We
show that our findings are consistent with results in the empirical wage literature.
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1 Introduction

Why do high-wage workers tend to work at high-wage firms, even though low-wage workers

seem to gain at least as much from such matches? Bonhomme, Lamadon and Manresa (2019)

write that these patterns are “difficult to reconcile with models where sorting is driven by

complementaries in production, as in Becker (1973) [p. 701].” We address this puzzle by

developing a theory of frictional labor markets that highlights the crucial role of selective

job acceptance decisions for observed wages.

We develop a random search framework where workers and firms are heterogeneous in

their productivity. Output in a match depends on the worker’s productivity, the firm’s

productivity, and a match-specific shock. The decision to form a match depends on the

realization of this shock relative to the outside options of both the worker and the firm, with

wages determined by Nash bargaining. This setup allows us to analyze how selection in the

matching process affects observed wage patterns and sorting outcomes.

We prove that our model can generate outcomes that align with the empirical literature.

We find conditions which ensure that (i) there is positively assortative matching between

worker and firm productivities; (ii) average log wages increase with both worker and firm pro-

ductivity, while possibly being submodular—meaning low-productivity workers’ wages are

more sensitive to firm type than high-productivity workers’ wages; and (iii) high-productivity

workers are high-wage workers and high-productivity firms are high-wage firms.

Our theoretical results arise from a novel mechanism, the selective nature of realized

matches. While all workers are equally likely to meet all firms, the likelihood of a match

forming depends on the interplay between worker and firm types. Low-productivity workers

rarely receive acceptable offers from high-productivity firms, but when they do, these offers

are exceptionally good. Similarly, high-productivity workers seldom accept offers from low-

productivity firms unless the match-specific productivity is unusually high. This selection

process creates a subset of realized matches and wages that differs systematically from the

set of all meetings, driving both the observed sorting patterns and the behavior of average

log wages.

Our theoretical findings are consistent with a growing body of empirical research on log

wages and worker-firm sorting. Studies by Card, Heining and Kline (2013); Card, Cardoso

and Kline (2016); Card, Cardoso, Heining and Kline (2018); Bonhomme, Lamadon and Man-

resa (2019); Kline, Saggio and Sølvsten (2020); Bonhomme, Holzheu, Lamadon, Manresa,

Mogstad and Setzler (2023), among others, have found that average log wages increase with

both worker and firm type and are approximately additively separable. These papers have

also found that there is strong correlation between matched worker and firm types. Existing
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theoretical explanations of these empirical results appeal to unmeasured job attributes. For

example, Bonhomme, Lamadon and Manresa (2019) conclude that “This may indicate that

workers or firms care about other job attributes (Hwang, Mortensen and Reed, 1998), or that

workers of a similar type enjoy working together as in the peer effects literature [p. 720].”

We show that our sparsely-parameterized model is able to match the behavior of both wages

and sorting. In particular, our model can match the variance decomposition of wages into

the part attributable to worker heterogeneity, to firm heterogeneity, to worker-firm sorting,

and to a residual.

Our final contribution is to distinguish between the surplus derived from meetings and

the surplus derived from matches. The surplus from matches can readily be measured using

administrative wage data. Using a generalized version of our model, we prove that the surplus

from meetings is identified using administrative wage data and the assumption of random

search. We also derive an expression for the surplus from meetings. This analysis reveals

that the surplus from meetings is supermodular, with low-type workers actually preferring

to meet intermediate-type firms rather than high-type firms. Importantly, we show that this

identification result and estimator hinge on the random search assumption. This finding

underscores the importance of carefully considering search frictions when interpreting wage

data and highlights a novel aspect of our model’s implications for labor market dynamics.

Our paper contributes to several strands of literature. First, we build on empirical work

using matched employer-employee data to study wage determination and sorting (Abowd,

Kramarz and Margolis, 1999; Andrews, Gill, Schank and Upward, 2008; Card, Heining and

Kline, 2013; Card, Cardoso, Heining and Kline, 2018; Bonhomme, Lamadon and Manresa,

2019; Bonhomme, Holzheu, Lamadon, Manresa, Mogstad and Setzler, 2023; Kline, Saggio

and Sølvsten, 2020). While these papers document important empirical regularities, we

provide a theoretical framework that can explain these patterns through a novel mechanism.

Our theory cautions against the prevailing interpretation of these empirical regularities.

For example, Card, Heining and Kline (2013) regress wages on worker and establishment

fixed effects, with a focus on measuring “establishment-specific wage premiums” ψj. They

“interpret the establishment effect ψj as a proportional pay premium (or discount) that is

paid by establishment j to all employees (i.e., all those with J (i, t) = j). Such a premium

could represent rent-sharing, an efficiency wage premium, or strategic wage posting behavior

[p. 987].” We argue that selection may shape the establishment-specific wage premium.

Second, we contribute to the theoretical literature on conditions for assortative match-

ing in labor markets with random search (Shimer and Smith, 2000; Hagedorn, Law and

Manovskii, 2017; Lopes de Melo, 2018; Bagger and Lentz, 2019). Our model extends this lit-

erature by incorporating match-specific shocks, as in Goussé, Jacquemet and Robin (2017)’s

2



model of the marriage market, and highlighting the role of selection in job acceptance deci-

sions. Our finding that there is positively assortative matching if the production function is

strictly increasing and weakly log-supermodular recalls similar results in competitive search

models (Shi, 2001, 2005; Shimer, 2005; Eeckhout and Kircher, 2010) and models with non-

transferable utility (Smith, 2006; Bonneton and Sandmann, 2023). The details of the mech-

anisms are quite different, and in particular selection does not play a role in those papers.

Those earlier papers also do not try to fit the empirical findings on how wages depend on

worker and firm types. Our model bridges this gap by providing a framework that not only

explains sorting patterns but also aligns with observed wage patterns in administrative data

sets.

Third, the existing literature recognizes that endogenous mobility can create a selection

bias in estimates of the AKM wage equation. Following Card, Heining and Kline (2013),

much of the literature has focused on selection working through job-to-job selection transi-

tions, as in Burdett and Mortensen (1998) and Lopes de Melo (2018). To stress that our

model is not about selection from on-the-job search, we develop our main theoretical model

in an environment without job-to-job mobility. In Appendix E, we show numerically that

our results carry over to an environment with a quantitatively realistic amount of on-the-

job search. We show why existing tests for selection cannot detect the type we highlight

here. Moreover, building on an insight from Flinn and Heckman (1982), we explain why it

is impossible to construct such a test without auxiliary assumptions, such as random search.

By highlighting the role of selection in job acceptance, our model offers a new inter-

pretation of empirical wage patterns without requiring assumptions about unobserved job

amenities or worker preferences for similar peers. This perspective has important implica-

tions for understanding labor market dynamics and interpreting wage data. The rest of the

paper is structured as follows: Section 2 presents our model; Section 3 analyzes two special

cases where we can prove analytical results; Section 4 discusses the role of selection in a

quantitative version of the model, including a comparison of the surplus from meetings with

the surplus from matches; and Section 5 concludes.

2 Model

We formulate a search model with two-sided heterogeneity (Shimer and Smith, 2000) and

match-specific heterogeneity (Goussé, Jacquemet and Robin, 2017). The model is formulated

in continuous time and we focus on steady states and so drop time arguments in what follows.

3



2.1 Assumptions

There is measure M of risk-neutral workers and measure N of risk-neutral firms. Everyone

discounts the future at rate r > 0. There are X worker types indexed by x = 1, . . . , X. The

population measure of type-x workers is mx > 0, with
∑X

x=1mx = M . There are Y firm

types indexed by y = 1, . . . , Y , with population measure ny > 0 and
∑Y

y=1 ny = N . Workers

can be either unemployed or matched to one firm; likewise, firms can be either vacant or

matched to one worker. Thus, in this model, a firm and a job are treated as identical.

Search is random and only unmatched firms and workers can search.1 Let ux be the

population measure of unemployed type-x workers, so that ux
mx

is the unemployment rate

for type x. Similarly, let vy be the population measure of type-y vacancies, with vy
ny

is the

vacancy rate of y.

All unemployed workers contact vacant type-y firms according to a Poisson process with

arrival rate ρvy for y = 1, . . . , Y , where ρ > 0. Likewise, all vacant firms contact unemployed

type-x workers at rate ρux for x = 1, . . . , X. When a worker and firm meet, they draw

a match-specific productivity shock z from a distribution function with density s(z) and

survival function S(z). Draws are independent across matches for every worker and firm. By

definition, the survival function S : R+ → R+ is non-increasing. For expositional simplicity,

we also assume that S is continuous and strictly positive for all z > 0. Finally, we assume∫∞
0
zs(z)dz is finite, which is necessary for existence of an equilibrium.

After an unemployed worker of type x meets a vacant firm of type y and draws a match-

specific productivity shock z, they decide whether to match. If they match, they stop

searching and produce flow output zfx,y. A matched worker and firm split the surplus

according to Nash bargaining, with worker’s bargaining power equal to γ ∈ (0, 1). We

assume fx,y > 0 for all x and y. Matches end at rate δ > 0, leaving the worker unemployed

and the job vacant.

2.2 Value Functions

We start by formulating the value functions of workers and firms. For a type-x unemployed

worker, let the value be V u
x :

rV u
x = ρ

Y∑
y=1

vy

∫ ∞
0

max
{
V e
x,y(z,Wx,y(z))− V u

x , 0
}
s(z)dz. (1)

1In Appendix E, we extend the model to allow for search by employed workers and show numerically
that our main conclusions carry over to this more realistic environment.

4



At rate ρvy, the worker meets a vacant type y firm. They then draw match-specific produc-

tivity z from a distribution with density s(z). After that, they decide whether to match. If

they do, the worker’s value jumps to V e
x,y(z,Wx,y(z)), the value of a type x worker matched

to a type y firm in a match with productivity z and earning the equilibrium wage Wx,y(z).

Nash bargaining implies that both parties agree on whether to match, so the worker matches

whenever the value of being in the match, V e
x,y(z,Wx,y(z)), exceeds the value of being un-

matched, V u
x .

Once the worker is in the match, we have the corresponding Bellman equation

rV e
x,y(z,W ) = W + δ(V u

x − V e
x,y(z,W )). (2)

This equation describes a type x worker at a type y firm with match-specific shock z earning

an arbitrary wage W . The worker earns the wage until the match ends exogenously. This

implies that the worker will accept the match (V e
x,y(z,W ) ≥ V u

x ) if and only ifW ≥ rV u
x ≡ w̄x,

the worker’s reservation wage.

The Bellman equations for firms are symmetric:

rV v
y = ρ

X∑
x=1

∫ ∞
0

ux max
{
V f
y,x(z,Wx,y(z))− V v

y , 0
}
s(z)dz (3)

rV f
y,x(z,W ) = zfx,y −W + δ(V v

y − V f
y,x(z,W )). (4)

Notably, a type y firm earns flow profit zfx,y−W when employing a type x worker in a match

with productivity z and paying a wage W . The firm will accept the match (V f
y,x(z,W ) ≥ V v

y )

if and only if zfx,y −W ≥ rV v
y ≡ π̄y, the firm’s reservation profit.

We define the match surplus as

V s
x,y(z) ≡ V e

x,y(z,W ) + V f
x,y(z,W )− V u

x − V v
y =

max{zfx,y − w̄x − π̄y, 0}
r + δ

, (5)

where the second equation follows from equations (2) and (4) and the definitions of the reser-

vation wage w̄x and reservation profit π̄y. Equivalently, define the reservation productivity

level z̄x,y:

z̄x,y ≡
w̄x + π̄y
fx,y

. (6)

Then

V s
x,y(z) =

fx,y max{z − z̄x,y, 0}
r + δ

. (7)

The match surplus is positive, so there exists a W which is acceptable both to the worker

(V e
x,y(z,W ) ≥ V u

x ) and firm (V f
y,x(z,W ) ≥ V v

y ), if and only if productivity exceeds the
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reservation level z̄x,y.

Finally, when the match surplus is positive, we use Nash bargaining to pin down the

equilibrium wage Wx,y(z):

Wx,y(z) = arg max
W

(V e
x,y(z,W )− V u

x )γ(V f
y,x(z,W )− V v

y )1−γ. (8)

Using equations (2) and (4), as well as the definition of the reservation productivity level in

equation (6), it is straightforward to show that this implies

Wx,y(z) = w̄x + γfx,y(z − z̄x,y). (9)

Putting this together with the fact that a worker and firm match whenever z ≥ z̄x,y, we get

that type x workers match with type y firms at rate ρuxvyS(z̄x,y), with matches formed when-

ever Wx,y(z) ≥ w̄x, a type-x worker’s reservation wage. Symmetrically, a type-y firm agrees

to match with a type-x worker whenever zfx,y −Wx,y(z) ≥ π̄y, a type-y firm’s reservation

profit.

We can now combine these equations to get a simpler expression for a worker’s reservation

wage and a firm’s reservation profit. Eliminate the wage from equation (2) using equation (9)

to get V e
x,y(z,Wx,y(z))− V u

x = γfx,y(z−z̄x,y)

r+δ
. Substitute that into equation (1) to get

w̄x =
γρ

r + δ

Y∑
y=1

vyfx,y

∫ ∞
z̄x,y

(z − z̄x,y)s(z)dz. (10)

Analogous steps lead to the equation for a firm’s reservation profit:

π̄y =
(1− γ)ρ

r + δ

X∑
x=1

uxfx,y

∫ ∞
z̄x,y

(z − z̄x,y)s(z)dz. (11)

2.3 State Variables and Equilibrium

To close the model, we need to find the steady state values of ux and vy. To do this, we first

define the steady state measure of (x, y) matches, φx,y. This satisfies

δφx,y = ρuxvyS(z̄x,y). (12)

The left hand side is the rate that these matches end, while the right hand side is the rate

that unmatched type x agents (measure ux) meet unmatched type y agents (ρvy) in a match

with an acceptable z (share S(z̄x,y)).
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By adding partner types, we can then recover the unemployment and vacancy measures:

ux = mx −
Y∑
y=1

φx,y (13)

vy = ny −
X∑
x=1

φx,y. (14)

A steady state equilibrium is given by (w̄, π̄, z̄, φ, u, v) satisfying equations (6), (10), (11),

(12), (13), and (14). We can prove

Proposition 1 An equilibrium exists. In any equilibrium, the reservation wage w̄x and

reservation profit π̄y are strictly positive for all x and y.

In general, a model like this may have multiple equilibria (Burdett and Coles, 1997). All of

our claims apply to any steady state equilibrium.

2.4 Monotonicity

We first prove a useful preliminary result, that the reservation wage and reservation profit

are increasing if the production function is increasing:

Lemma 1 Assume fx,y is strictly increasing in x and y. Then the reservation wage w̄x and

reservation profit π̄y are strictly increasing.

The proof is in Appendix A.

We note that since w̄x and π̄y are strictly positive, equation (6) implies z̄x,y is strictly

positive as well. And since there are a finite number of types of workers and firms,
¯
z ≡

minx,y z̄x,y is strictly positive as well. It follows from the definition of equilibrium that in

any steady state equilibrium, the behavior of S(z) at z <
¯
z does not affect the equilibrium

(w̄, π̄, z̄, u, v). We build on this observation in Section 3.1 below.

3 Special Cases

This section characterizes the equilibrium for two special cases of the match quality distri-

bution, a Pareto and an Exponential. We provide three results for each case. First, we find

conditions which ensure assortative matching, in the sense that the measure of matches of

a higher type worker is shifted towards higher type firms, and similarly for the measure of

matches of a higher firm type. And second, we prove that more productive workers earn

higher wages at any firm type and conversely more productive firms pay higher wages to any
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worker type. Finally, we show that the two conditions together imply that more productive

workers earn higher wages on average, and similarly more productive firms pay higher wages

on average.

The conditions for assortative matching extend known results for an economy without id-

iosyncratic shocks (Shimer and Smith, 2000) into a more realistic environment where match-

ing between a worker and firm is probabilistic. We note that conditions for positively assor-

tative matching and the proof of positively assortative matching are much simpler here than

in that earlier work.

3.1 Pareto-Distributed Match Quality

We first characterize sorting and wage behavior under the assumption that z has a Pareto

distribution with minimum value z0 > 0 and tail parameter θ > 1, so S(z) = (z/z0)−θ for

z ≥ z0 and S(z) = 1 otherwise. We also parameterize the contact rate as ρ = ρ̄z−θ0 , so the

rate that an unemployed worker contacts a vacant type-y firm and has productivity at least z

is ρ̄z−θvy for z > z0. Notably, this is independent of z0. We focus throughout on cases where

there is an interior solution for the threshold z̄x,y for all pairs (x, y), z0 <
¯
z = minx,y z̄x,y, as

will be the case if z0 is sufficiently small.2

We first find conditions for positively assortative matching:

Proposition 2 Assume S(z) = (z/z0)−θ with z0 > 0 and θ > 1. Also assume fx,y is

strictly increasing and weakly log-supermodular. Then the measure of matches φx,y is strictly

log-supermodular.

All the proofs in this section are in Appendix A. Weak log-supermodularity of f is equivalent

to fx1,y1fx2,y2 ≥ fx1,y2fx2,y1 for all x1 < x2 and y1 < y2, and strict log-supermodularity of

φ implies φx1,y1φx2,y2 > φx1,y2φx2,y1 . A corollary of this finding is that higher type workers

and firms have a better distribution of match partners in the sense of first order stochastic

dominance and that the correlation between the types of matched workers and firms is

strictly positive (see Shimer, 2005, pp. 1013–1014).

Next, define the average log wage in an (x, y) match:

w∗x,y ≡

∫∞
z̄x,y

log(Wx,y(z))s(z)dz

S(z̄x,y)
. (15)

In Appendix B, we discuss the relationship between the average log wage and the more

familiar log-linear wage equation proposed by Abowd, Kramarz and Margolis (1999). In

2For given ρ̄, a change in z0 does not affect the equilibrium allocation as long as z0 ≤
¯
z. Thus focusing
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short, that paper proposed that the log wage wi,t of worker i at firm j in period t can be

expressed as

wi,t = αi + ψj + εi,t,

where εi,t is a random variable with mean zero for all i, j, and t. Under these conditions,

w∗xi,yj = αi+ψj, where xi is the type of worker i and yj is the type of firm j. Our formulation

allows for non-separabilities in w∗, which the following result proves are present:

Proposition 3 Assume S(z) = (z/z0)−θ with z0 > 0 and θ > 1. Then

w∗x,y ≡
∫ ∞

0

log
(
w̄x + γ(w̄x + π̄y)q

)
θ(1 + q)−θ−1dq. (16)

Moreover,

1. for all x1 and x2 with w̄x1 < w̄x2, w∗x1,y < w∗x2,y for all y;

2. for all y1 and y2 with π̄y1 < π̄y2, w∗x,y1 < w∗x,y2 for all x;

3. for all x1, x2, y1, and y2 with w̄x1 < w̄x2 and π̄y1 < π̄y2, w∗x1,y2 +w∗x2,y1 > w∗x1,y1 +w∗x2,y2.

In particular, the average log wage is strictly increasing and strictly submodular for any

strictly increasing fx,y.

Our proof in the appendix allows for any transformation of the wage, not just the log. We

focus in the text on the average log wage because this is the focus of the empirical literature.

There are many pieces to unpack from Proposition 3. First, the average log wage depends

only on four numbers: the worker’s reservation wage w̄x, the firm’s reservation profits π̄y, the

worker’s bargaining power γ, and the Pareto tail parameter θ. The production technology

fx,y does not explicitly enter this expression. We view this as both good news and bad news

for empirical research. The bad news is that wage data are not useful for learning about

the production technology f . The good news is that the model makes strong and testable

predictions for how the average wages behaves across different types of matches. We discuss

these predictions in Section 4.

Second, workers who have a higher reservation wage earn more at any type of employer,

and similarly firms that have a higher reservation profit level pay more to any type of

worker. To understand the power of this result, it is useful to consider a non-monotonic

production function f . That is, suppose that there are worker types x1 and x2 and firm

on small values of z0 does not change the arrival rate of “good” matches. We could sidestep any discussion
of z0 by assuming that meetings with match quality at least equal to z occur at rate ρ̄z−θ times the relevant
vacancy or unemployment rate for any z, as in Oberfield (2018) and Buera and Oberfield (2020).
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types y1 and y2 such that fx1,y1 > fx1,y2 and fx2,y1 < fx2,y2 . One might conjecture that

with Nash bargaining, this non-monotonicity would imply a similar ordering of average log

wages, w∗x1,y1 > w∗x1,y2 and w∗x2,y1 < w∗x2,y2 . Proposition 3 establishes that this cannot happen:

π̄y2 R π̄y1 ⇒ w∗x,y2 R w∗x,y1 for all x.

Proposition 3 also implies that all workers have the same ranking of average log wages

across firm types y, determined by the reservation profit π̄y. This result stands in contrast to

one in Shimer and Smith (2000), a similar model except that z has a degenerate distribution.

In that case, an unproductive worker’s wage may be maximized at low-type firm, while a

more productive worker’s wage is maximized at a high-type firm. See Lopes de Melo (2018)

for an elaboration of this observation.

Finally, we prove that the average log wage is submodular in the worker’s reservation

wage w̄x and the firm’s reservation profits π̄y. That means that the average increase in the

log wage of a given worker who moves from a low π̄y firm to a high π̄y firm is decreasing in

the worker’s reservation wage w̄x. Again, this places strong and testable restrictions for how

wages vary across different types of matches.

The combination of positively assortative matching (Proposition 2) and submodular av-

erage log wages (Proposition 3) may seem surprising. After all, if low productivity workers

gain proportionately more from moving to high productivity firms, why do they work there

less frequently? According to our model, the answer is selection. We use wage data as mea-

sured in a typical administrative data set, the wage paid by a firm to its employee. Such data

sets do not have information about meetings that do not result in matches, i.e. about wage

offers that are below the worker’s reservation wage. Low wage workers rarely get acceptable

wage offers from high productivity firms, and so rarely match there; but when such wage

offers do materialize, our model predicts that the average log wage is higher than at a low

productivity firm. We return to the role of selection in Section 4.

3.2 Exponential-Distributed Match Quality

Next we characterize sorting and wage behavior under the assumption that z has an expo-

nential distribution with parameter θ, so S(z) = e−θz for all z ≥ 0.

We first find conditions for positively assortative matching.

Proposition 4 Assume S(z) = e−θz with θ > 0. Also assume fx,y is strictly increas-

ing and −1/fx,y is weakly supermodular. Then the measure of matches φx,y is strictly log-

supermodular.

For a strictly increasing function f , the assumption that −1/fx,y is weakly supermodular

implies that fx,y is strictly log supermodular. Thus the conditions for positively assortative
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matching we give here are stronger than the conditions in Proposition 2. Numerical results

in Section 4 suggest that it may be possible to relax this assumption.

Next, we give the following characterization of the average log wage:

Proposition 5 Assume S(z) = e−θz with θ > 0. Then

w∗x,y = θ

∫ ∞
0

log(w̄x + γqfx,y)e
−θqdq. (17)

Assume that for all x1 < x2 and y, fx1,y < fx2,y. Then w∗x1,y < w∗x2,y. Additionally, take any

x, y1, and y2. Then w∗x,y1 R w∗x,y2 if and only if fx,y1 R fx,y2.

Again, our proof in the appendix allows for any transformation of the wage, not just the log.

Some of these results parallel the results for a Pareto distribution. In particular, if f is

strictly increasing in both x and y, then so is the average log wage. Thus the model predicts

that more productive workers are paid higher wages at any firm, and that more productive

firms pay higher wages to any worker.

On the other hand, other results suggest more flexibility with the exponential distribution.

For example, the average log wage depends on the entire production function f , not just

on the reservation wage and profit. Additionally, monotonicity of the average log wage in

y depends on monotonicity of the production function. If the production function is not

monotonic, different workers may find that different firms pay them the highest wage. Still,

the basic point remains with an exponential distribution of match quality: even when there

is positively assortative matching, the average log wage may be increasing in both worker

and firm type.

A natural question is whether monotonicity of the production function f generally guar-

antees monotonicity of the average log wage for other distributions of the idiosyncratic shock

z. In general, the answer is no. First, if the distribution of idiosyncratic productivity shocks

is degenerate, wages are generally a hump-shaped function of a firm’s type for a given worker

(Shimer and Smith, 2000; Lopes de Melo, 2018). Second, we find that if z has a normal dis-

tribution, possibly truncated at zero, then the average log wage for some workers may be

decreasing in firm type even if the production function is strictly increasing. Still, it is easy

to construct other examples where both the production function and wage are monotone

in both the worker and firm types, and for this reason we believe that the special cases we

highlight here are useful for understanding more general properties of the model.
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3.3 Productivity and Wages

Define the average log wage paid to a type x worker and the average log wage paid by a type

y firm:

λx ≡
∑Y

y=1w
∗
x,yφx,y∑Y

y=1 φx,y
, (18)

µy ≡
∑X

x=1w
∗
x,yφx,y∑X

x=1 φx,y
(19)

The earlier results in this section give conditions for λx and µy to be strictly increasing:

Corollary 1 1. Assume S(z) = (z/z0)−θ with z0 > 0 and θ > 1. Also assume fx,y is

strictly increasing and weakly log-supermodular. Then λx and µy are strictly increasing.

2. Assume S(z) = e−θz with θ > 0. Also assume fx,y is strictly increasing and −1/fx,y is

weakly supermodular. Then λx and µy are strictly increasing.

The proof follows immediately from monotonicity of w∗x,y in both arguments (Propositions 3

and 5) and first order stochastic dominance of the match density φ (Propositions 2 and 4).3

This result implies that if f is strictly increasing and satisfies the appropriate supermod-

ularity condition, there is a one-to-one mapping between a worker’s type x their average

log wage λx, and a one-to-one mapping between a firm’s productivity πy and its average

log wage µy. Using the monotonicity of λ and µ, Propositions 2 and 4 then imply that the

correlation between λx and µy among matched workers and firms is strictly positive when f

is strictly increasing and satisifies the relevant supermodularity condition.

In Borovičková and Shimer (2020), we develop unbiased estimates of λ for each worker

and µ for each firm. We also show how to obtain consistent estimates of the variance of λx

across employed workers, the variance of µy across filled jobs, and the covariance between λx

and µy across matched workers and firms using a short panel with many workers and firms.

Using administrative data from Austria, we verify that in fact the correlation between λ and

µ is strictly positive.

3A natural question is whether the same reduced-form assumptions, monotonicity of w∗
x,y and log-

supermodularity of φx,y, imply monotonicity of the Abowd, Kramarz and Margolis (1999) fixed effects ᾱx
and ψ̄y, defined in Appendix B and equations (35) and (36). It turns out that if X ≥ 2 and Y ≥ 3, we can
construct counterexamples where ψ̄y is not monotonic, and similarly for ᾱx if X ≥ 3 and Y ≥ 2.
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4 The Role of Selection

4.1 Numerical Example

We start this section by comparing the numerical predictions of our model with data from

Bonhomme, Lamadon and Manresa (2019). Using administrative data from Sweden, Bon-

homme, Lamadon and Manresa (2019) estimate the average log wage w∗x,y in an (x, y) match,

as well as the share of such matches φx,y. Their main findings are depicted in Figure 2 of

their paper, which we summarize here. First, there is strong sorting between workers and

firms, with low-type firms mostly employing low-type workers and high-type firms mostly

employing high-type workers. Second, average log earnings are increasing in the worker

type and firm type. Finally, the average log earnings of the lowest worker type is the most

responsive to the firm type, consistent with submodular average log wages.4

We put numbers into our model to compare it to these findings. We focus here on Pareto-

distributed match quality. We present results with an exponentially-distributed match qual-

ity in Appendix D, and also show results from an extension of the model to allow for on-

the-job search in Appendix E.4. We set the number of types at X = Y = 10 and assume

equal numbers of each type, so mx = 1
X

and ny = 1
Y

. The production function is CES with

elasticity of substitution ξ,

fx,y =

(
1
2
p
ξ−1
ξ

x + 1
2
q
ξ−1
ξ

y

) ξ
ξ−1

,

where p1 = q1 = 1, px = (1 + ∆p)px−1 for x = 2, . . . X, and qy = (1 + ∆q)qy−1 for y =

2, . . . Y . We let S(z) = (z/z0)−θ and set the meeting rate to ρ = z−θ0 .5 We choose γ = 2
3
,

r = 0.05, and δ = 0.5, which implies expected duration of a match of 2 years. We choose the

remaining parameters, ∆p, ∆q, θ, and ξ to match the variance decomposition in Bonhomme,

Lamadon and Manresa (2019). Specifically we target the variance of worker type, firm types,

the covariance and the variance of the residual, so we have four parameters to match four

4Other papers present evidence consistent with submodular average log wages. Card, Heining and Kline
(2013) regress log wages on worker and establishment (firm) fixed effects, as we discuss in Section B. They
then sort workers and firms into deciles based on their estimated person and establishment effects and
compute the average residual for each of the one hundred combinations of deciles. Figure VI in their paper
shows that these residuals are on average positive when high types match with low types and negative when
low types match with low types or high types match wit high types. This is consistent with submodular
average log wages, so low worker-types increase their average log wage by more than the typical worker when
they increase the firm type. On the other hand, Card, Cardoso and Kline (2016) show analogous calculations
using Portuguese data in Figures B5 and B6 of their online appendix. They find that log wage residuals are
positive for low-type workers working low-type firms and negative for low-type workers in high-type firms,
which is consistent with average log wages being supermodular.

5We show in Appendix C that changing ρ does not affect equilibrium allocations and has only a level
effect on mean log wages.
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Figure 1: Average log wages and distribution of worker types conditional on firm type. The
left panel shows the average log wage w∗x,y paid by different firms for different worker types.
Each line represents one worker type. The right panel shows the distribution of worker types
x in firms with different firm types y.

moments.6 In these calculations, we assume we have infinitely much data, so we know each

worker’s type x and each firm’s type y and so all distributions are deterministic functions of

model parameters. Thus we abstract from important econometric considerations that arise

in real-world data sets where we observe each worker only for a few years. The parameter

values which allow us to match the target moments are ∆p = 0.077, ∆q = 0.854, ξ = 0.713

and θ = 7.146. This implies that the most productive worker is on average 62 percent more

productive than the least productive worker, and the most productive firm is on average 402

percent more productive than the least productive one 7. The unemployment rate, which is

primarily dictated by parameter θ, is 16.6 percent.

Our Figure 1 is a direct analogue of Figure 2 in Bonhomme, Lamadon and Manresa

(2019). The results are qualitatively very similar, though naturally results from our model

are smoother than those from real-world data. The left panel of Figure 1 shows the average

log wage as a function of firm type y. Each line corresponds to a different worker type x. As

we proved in Proposition 3, the average log wage is increasing in x and y and submodular.

6Since these targets are a non-linear function of the model parameters, there is no guarantee that we can
match these moments. If we reduced workers’ bargaining power to γ = 1

2 , we would not be able to do so.
7This parametrization implies that worker heterogeneity, as measured by fX,y/f1,y−1, lies between 0.37

and 0.82, depending on the value of y. Firm heterogeneity, as measured by fx,Y /fx,1 − 1, lies between 3.35
and 4.78, depending on value of x.
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Still, the lines are nearly parallel, which implies that the average log wage is almost additively

separable in worker and firm types.8

The right panel of Figure 1 shows the distribution of worker types in the different firm

types, φx,y/
∑X

x′=1 φx′,y. It is clear from the figure that high-type firms employ relatively

more high-type workers than do low-type firms, as we proved in Proposition 2. That is,

there is positive assortative matching.

4.2 The Value of Meetings and the Value of Matches

Bonhomme, Lamadon and Manresa (2019) view the combination of positive assortative

matching and submodular average low wages as puzzling, writing “the results in this section

are difficult to reconcile with models based on revealed preferences for wages only [p. 720].”

Low-type workers have the most to gain from working in high-type firms yet they are pre-

dominantly employed by low-type firms. They propose several factors besides the average

log wage that may drive sorting behavior. For example, they recognize that workers may

care about other job attributes which differ across employers, such as amenities. For these

to drive sorting patterns, they propose that high-wage workers value relatively more the

amenities offered by high-wage firms, so these unobserved amenities drive sorting patterns.

Alternatively, the propose that workers like to work with similar peers, and again this drives

the empirical sorting patterns. Thus in their view, wage data give a misleading picture of

the value that workers get from matching with different types of employers.

Positive assortative matching and submodular average low wages arise in our model as

well. According to the numbers behind Figure 1, 32 percent of the lowest firm decile’s

workers are drawn from the lowest worker decile, compared to less than 2 percent for the

highest firm decile. For the highest worker decile, these numbers are nearly flipped. They

represent 21 percent of employment at the highest firm decile and less than 1 percent at

the lowest firm decile. This is positively assortative matching. At the same time, the lowest

worker decile has an average log wage of −0.63 in the lowest firm decile and −0.39 in the

highest firm decile. The corresponding gain for the highest worker decile is slightly smaller,

going from 0.28 to 0.39, so the increase in the average log wage is smaller, consistent with

submodular average log wages.

Why is there positively assortative matching when average log wages are submodular?

According to our model, wages describe the value that workers derive from matching with

8Another prominent feature of Figure 1 is that the average log wage is convex in the firm type y. This
feature depends on the units used to measure the firm type. For example, if we measure the average log
wage in an (x, y) match as a function of the firm’s reservation profit, π̄y, or as a function of the average log
wage that the firm pays, µy, the resulting curves would be concave.
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Figure 2: Average surplus in meetings when z0 =
¯
z, and average surplus in matches, condi-

tional on firm type. Each line represents one worker type. Vertical scales are logarithmic.

different types of employers. However, they do not capture the value that workers obtain

from merely meeting different types of employers. The value of a meeting is captured by the

match surplus V s
x,y(z) in equation (5). For illustrative purposes, we set the lower bound on

the idiosyncratic shock distribution, z0, equal to the minimum acceptance threshold across

(x, y) pairs: z0 =
¯
z ≡ minx,y z̄x,y. We then define the average surplus in meetings as

V̄ s,m
x,y ≡

∫ ∞
z0

V s
x,y(z)s(z)dz. (20)

We also define the average surplus conditional on matching,

V̄ s
x,y ≡

1

S(z̄x,y)

∫ ∞
z̄x,y

V s
x,y(z)s(z)dz. (21)

In Figure 2, we plot the average surplus in an (x, y) match, V̄ s
x,y, in the left panel, and the

average surplus in an (x, y) meeting, V̄ s,m
x,y , in the right panel.

The left panel reflects the results in Figure 1. The average surplus in matches is increasing

in firm type for each worker type and is log submodular. Looking at this panel, one might be

tempted to conclude that low-type workers benefit relatively more from meeting a high-type

firm than do high-type workers. The right panel of the same figure, where we show average

surplus in meetings, contradicts this conclusion. We observe that low-type workers have only
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small gains from meeting a higher-type firm, while high-type workers gain a lot more from

meeting a high-type firm. Indeed, the lowest worker type has the highest average surplus in

a meeting with a type-5 firm and gets 30 percent less surplus from meeting a type-10 firm.

The difference between the two figures is selection: while the left panel shows the average

surplus in meetings that result in matches, the right panel shows the average surplus in all

meetings, keeping the support of the z distribution the same for every pair. In other words,

the right panel is not affected by selection of worker types into firms based on the realized

value of z. Based on the right hand panel of Figure 2, it should no longer be surprising that

low-type workers rarely take high-type jobs, as illustrated in the right panel of Figure 1.

Average surplus in meetings, not in observed matches, drive sorting.

4.3 Identification of Meeting Surplus with Random Search

In this section, we prove that it is possible to identify the extent of log-supermodularity of the

average surplus in meetings using the structure of our model and the type of information in

standard administrative data sets. More precisely, we extend our model in several directions,

relaxing the assumption that wages are determined by Nash bargaining and allowing for a

more general matching technology. Importantly, we maintain the assumption that search is

random.

In our more general model, an unemployed type x worker meets a type y firm at rate

ρuxρ
v
y, a multiplicatively separable function of the worker and firm types. This allows for the

possibility that some workers and firms are better at searching, but maintains the assumption

that search is random rather than directed. Upon meeting, the worker samples from a wage

distribution with survival function S̃x,y(w) and density s̃x,y(w), and chooses whether to accept

or reject the job. This may be the reduced form coming from the Nash wage equation (9),

the production technology f , and the distribution of match-specific shocks, but we do not

need this interpretation for our results in this section. Finally, the job ends at rate δx and

the worker discounts the future at rate r.

Under these assumptions, we have the value functions for type x workers both when they

are unemployed and when they are employed at a wage w:

rV u
x = ρux

∑
y

ρvy

∫
max{V e

x (w)− V u
x , 0}s̃x,y(w)dw, (22)

rV e
x (w) = w + δx(V

u
x − V e

x (w)). (23)

Note that the value of an employed worker depends on the wage but not the firm type.

Moreover, from equation (23), we get that the worker accepts any job with w > w̄x = rV u
x ,
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the worker’s reservation wage. Additionally, we use the fact that in steady state, the measure

of (x, y) matches solves

δxφx,y = ρuxρ
v
yuxS̃x,y(w̄x), (24)

with ux = mx −
∑

y φx,y. Finally, define the average wage (not log wage) in an (x, y) match

as

W ∗
x,y ≡

∫∞
w̄x
ws̃x,y(w)dw

S̃x,y(w̄x)
. (25)

Combining equations (22)–(25), we obtain

w̄x =
δx

rux + δxmx

∑
y

W ∗
x,yφx,y. (26)

Note that if r = 0, this is simply the average wage multiplied by the employment rate, while

with discounting it is a bit lower.9 Using the methodology in Bonhomme, Lamadon and

Manresa (2019), the average wage W ∗
x,y and the share of type-x workers matched to type-y

firms, φx,y/mx, are identified. Moreover, a slight extension to the methodology allows us to

recover how many type-x workers separate each period, δxmx, as well as the type-specific

unemployment rate ux. Thus the reservation wage is identified if we use other information

to recover the discount rate r

The average surplus from an (x, y) meeting, defined in equation (20), is

V̄ s,m
x,y =

∫
max{V e

x (w)− V u
x , 0}s̃x,y(w)dw. (27)

We simplify this using equations (23), (24), and (25) to obtain

V̄ s,m
x,y =

(W ∗
x,y − w̄x)δxφx,y

(r + δx)ρuxρ
v
yux

. (28)

Note that the average surplus from meetings, V̄ s,m
x,y , is log-supermodular if and only if

(W ∗
x,y − w̄x)φx,y is log-supermodular. Each element of this expression is identified using

the methodology in Bonhomme, Lamadon and Manresa (2019), and so we can identify the

extent of log-supermodularity in the gains meetings without observing meetings that do not

result in matches.

9In practice, the distinction is small because r and ux are each an order of magnitude smaller than δx
and mx, respective.
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4.4 Testing for Selection with a General Search Technology

We just showed that the average surplus from meetings is identified using the structure of

our model and standard administrative data. Here we ask whether we can distinguish the

average surplus from meetings from the average surplus from matches without using the

structure of our model. The answer is no.

We show here that if we relax the random search assumption, it is no longer possible

to test for selection. The insight follows from Flinn and Heckman (1982). Return to our

main (and more restrictive) model, where wages vary within an (x, y) match due to the

idiosyncratic productivity shock z. By comparison, consider an alternative model which

generates the same administrative data on wages in accepted matches. In the alternative

model, a type-x worker meets a type-y firm at rate ρS(z̄x,y)vy (rather than ρvy). In that

event, they draw a match-specific productivity shock with survival function S(z)/S(z̄x,y)

for z ≥ z̄x,y (rather than S(z) for z ≥ z0), and the wage is given by Wx,y(z) defined in

equation (9). We call this the “exogenous sorting model.”

By construction, all meetings result in matches in the exogenous sorting model and so

there is no selection and no distinction between the average surplus from an (x, y) meeting

and the average surplus from an (x, y) match. Nevertheless, all observable outcomes in

standard administrative data sets—the joint distribution of wages and match partners—are

identical to our model of selection and endogenous sorting. We conclude that it is impossible

to test whether there is selection once we relax the random search assumption. This limit

to identification naturally carries over to the more general model in Section 4.3.

Testing for selection is closely related to testing for exogenous mobility in the literature

that follows Abowd, Kramarz and Margolis (1999). That literature proposes regressing the

log wage Wi,t of worker i at time t on fixed effects for the worker, the employer Ji,t, and an

error term:

logWi,t = αi + ψJi,t + εi,t. (29)

This literature interprets αi to be the average effect that worker i would have on their wage

at any firm, not just the firms that employ them. It seems natural to interpret this as the

value of the worker’s human capital. Similarly, ψj is the average effect that firm j would

have on the wage of any worker, not just the workers that it employs. Card, Heining and

Kline (2013) state that “such a premium could represent rent-sharing, an efficiency wage

premium, or strategic wage posting behavior [p. 987].” In our model, firms matter for wages

because of rent-sharing.

To estimate equation (29), one makes the usual assumption that the mean of the error

term εi,t is independent of the regressors αi and ψJi,t . Card, Heining and Kline (2013),
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Abowd, McKinney and Schmutte (2019), and others call this assumption “exogenous mo-

bility.” As is well-known, the exogenous mobility assumption cannot be tested in the data.

Instead, the literature evaluates the plausibility of the exogenous mobility assumption by

considering data generating processes (models) that would violate exogenous mobility and

then testing auxiliary implications of those models.

We believe our model’s data generating process is useful for evaluating the exogenous

mobility assumption. First we ask whether the exogenous mobility assumption is satisfied.

According to our model, the wage satisfies equation (9) when the match-specific productivity

shock exceeds the threshold z̄x,y. While our model does not make predictions about the wage

in less productive meetings, a reasonable bound is that the (latent) wage is less than the

worker’s reservation wage w̄x when the match is not formed; for example, it might still

satisfy equation (9) in unacceptable matches. This means that, if our model were the data

generating process and one estimated the AKM wage equation using an administrative data

set, one would be dropping all of the lowest wage observations for each worker-firm pair. The

mean error term εi,t among matched worker-firm pairs thus varies in a way that depends

on how likely the worker and firm are to match when they meet, violating the exogenous

mobility assumption.

We now turn to practical tests of the exogenous mobility assumption, i.e. of other aspects

of models that violate exogenous mobility. Card, Heining and Kline (2013) propose two such

tests. In the first, they look at whether the wage gains of workers who move from one

establishment to another are equal in magnitude and opposite in sign to the wage gains of

workers who move in the opposite direction. This would not be the case in many models of

on-the-job search, such as Burdett and Mortensen (1998), where workers always experience

wage increases when switching jobs. Card, Heining and Kline (2013) and subsequent research

by these authors find remarkable support for the “equal in magnitude and opposite in sign”

prediction. We show the same pattern for Austrian data in Appendix F.

This finding is consistent with both our model of endogenous sorting and the alternative

model of exogenous sorting, and so cannot distinguish between them. Take a cross-section

of workers and select those working at a type-y1 firm. The share of type-x workers in this

pool is φx,y1/
∑X

x′=1 φx′,y1 . Some of those workers will have their next job at a type-y2 firm.

The probability of this event for a type x worker is φx,y2/
∑Y

y′=1 φx,y′ . We weight the original

pool with this probability to find the share of type-x workers among those who move from

y1 to y2:

φx,y1
φx,y2∑Y
y′=1 φx,y′∑X

x′=1 φx′,y1
φx′,y2∑Y
y′=1 φx′,y′

=

uxS(z̄x,y1 )S(z̄x,y2 )∑Y
y′=1 vy′S(z̄x,y′ )∑X

x′=1

ux′S(z̄x′,y1
)S(z̄x′,y2

)∑Y
y′=1 vy′S(z̄x′,y′ )

,
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where the equation eliminates φ using equation (12) and simplifies. This means that average

increase in the log wage of a worker whom we observe moving from y1 to y2 is

w∗y1→y2 =

∑X
x=1(w∗x,y2 − w

∗
x,y1

)
uxS(z̄x,y1 )S(z̄x,y2 )∑Y

y′=1 vy′S(z̄x,y′ )∑X
x=1

uxS(z̄x,y1 )S(z̄x,y2 )∑Y
y′=1 vy′S(z̄x,y′ )

= −w∗y2→y1

That is, the gains of a worker observed moving going from a type-y1 to a type-y2 estab-

lishment are the same as the wage losses for a worker going in the other direction. This is

because the distribution of wages depends only on the worker’s type and the firm’s type,

and that any worker is as likely to go from y1 to y2 as to go from y2 to y1.

In their second test, Card, Heining and Kline (2013) look at the variance of the wage

residual in equation (29). They write that a large “idiosyncratic match component of wages

changes the interpretation of the estimated establishment effects, since different workers have

different wage premiums at any given establishment, depending on the value of their match

component (Card, Heining and Kline, 2013, p. 989).” In their empirical work, they find that

the variance of the match-specific wage residual is between 0.060 and 0.075, and argue that

this is small enough to constitute evidence against endogenous mobility. According to our

model, the wage residual in equation (29) depends on the variance of the idiosyncratic shock

z as well as any nonlinearities in the average log wage. Importantly, it is the same in both

our model with selection and the alternative model with exogenous sorting, and so this test

cannot distinguish between the two models. Moreover, we calibrated our model to match

this wage residal. In Table 1 in Appendix B, we show that our model can simultaneously

generate a realistic relationship between the average log wage and worker and firm types, a

realistic amount of sorting between workers and firms, and a realistically wage residual.

Finally, Abowd, McKinney and Schmutte (2019) look at whether the wage residual ε̂i,t in

a worker’s current match forecasts a future employer’s fixed effect ψ̂Ji,t′ for t′ > t, conditional

on the worker’s and current employer’s fixed effects α̂i and ψ̂Ji,t . In both our model of

selection and the alternative model with exogenous mobility, the worker’s type x determines

the distribution over future employers’ fixed effects ψ̄y, and so the current wage residual does

not help to predict future employers. When T → ∞, the estimated worker fixed effects α̂i

converge to ᾱxi and the estimated firm fixed effects ψ̂Ji,t converge to ψ̄yJi,t , which means that

the Abowd, McKinney and Schmutte (2019) test would not reject exogenous mobility. The

same paper also looks at the question from the employer’s perspective, forecasting future

employee fixed effects. Again, under either model, the estimated firm fixed effects predict

future employees and so this test would not reject exogenous mobility when T →∞.10

10If T is finite, then OLS gives noisy measures of worker and firm fixed effects. These noisy measures are
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5 Conclusion

We have developed a random search model of the labor market with ex ante heterogeneous

workers and firms and ex post match-specific productivity shocks. When the distribution

of match-specific shocks is Pareto or Exponential, we obtain simple proofs of three results.

First, we show that there is positively assortative matching when the production function is

sufficiently complementary. Second, we show that on average, more productive workers earn

higher wages at any type of firm and more productive firms pay higher wages to any type of

worker. And finally, we show that more productive workers earn more on average and more

productive firms pay more on average, so high productivity workers and firms are high wage

workers and firms.

We also argue that our model is consistent with a variety of facts in the empirical labor

economics literature built around the Abowd, Kramarz and Margolis (1999) wage equation

and the non-additive specification in Bonhomme, Lamadon and Manresa (2019). In partic-

ular, we are able to replicate the decomposition of the cross-sectional variance in log wages

into the component due to ex ante worker heterogeneity, the component due to ex ante firm

heterogeneity, the component due to the sorting of workers and firms, and a residual due to

the match-specific productivity shocks.

Additionally, our model predicts that average log wages may be submodular—low-wage

workers gain proportionately more than high-wage workers when they move from low-wage

to high-wage firms—while simultaneously low-wage workers may be disproportionately em-

ployed at low-wage firms. This is an empirically plausible pattern. In our model, this reflects

a selection mechanism. Low-wage workers rarely accept high-wage jobs, but when they do,

productivity is so high that their wage is also very high.

Our model has implications for whether the empirical literature stemming from the

Abowd, Kramarz and Margolis (1999) wage equation can tell us something about how wages

are determined. To continue the previous paragraph, take the empirical finding that average

log wages are submodular. This result, viewed through the lens of some models where admin-

istrative wage data are not a selected sub-sample of all wage offers, implies that low-wage

workers would particularly benefit from meeting high-wage firms. That they don’t often

match with such firms is then a puzzle, one that Bonhomme, Lamadon and Manresa (2019)

resolve through an assumption that low-wage workers enjoy substantially higher amenities

when employed by low-wage firms. Our model offers an alternative mechanism, that observed

minimum variance among linear unbiased estimators, but the error term ε̂i,t may still contain information,
e.g. higher moments, that is useful for predicting types. As a result, with finite T , data generated from our
model or from the alternative model may fail the Abowd, McKinney and Schmutte (2019) test for exogenous
mobility.
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wages are a selected subset of all (latent) wage offers, and that selection shapes the average

log wage. A corollary of this is that a regression of log wages on worker and firm fixed effects

need not shed light on firms’ role in wage determination because of sample selection issues.

In a similar vein, recent papers by Engbom, Moser and Sauermann (2023) and Lachowska,

Mas, Saggio and Woodbury (2023) estimate the AKM regression with time-varying firm

types, ψj,t, and interpret changes in ψj,t as changes in firm pay policies. Our model implies

that time variation in firm fixed effects can capture other things, such as changes in selection

due to time-varying variation in the distribution of match-specific shocks. Hence time-

variation in estimated firm fixed effects again may not have a structural interpretation as a

change in how firms set wages.

Our analysis also cautions against attempts to learn about the production function using

only administrative data on average log wages. Bonhomme, Lamadon and Manresa (2019)

write “As a first way to quantify the economic magnitude of complementarities, we next

assess the explanatory power of worker types and firm classes when those enter the regression

interactively as opposed to additively. The R2 coefficient in the linear regression is 74.8%,

while in the regression that includes all interactions between worker type indicators and firm

class indicators, the R2 is 75.8%. Hence, while the left panel of Figure 2 suggests the presence

of some complementarity between firms and lower-type workers, those complementarities

explain only a small part of the variance of log-earnings [pp. 718–719].” Proposition 3 shows

that when the distribution of idiosyncratic shocks is Pareto, the production function does

not directly enter the expression for the average log wage w∗x,y, and thus this conclusion may

be unwarranted in our model.

We close by mentioning one assumption that is important for our selection results: firms

have an opportunity costs of filling a vacancy. In our model, this is extreme because a firm

can only hire one worker. At the opposite extreme, if firms had a constant returns to scale

production technology using only labor, as is the case in Card, Cardoso, Heining and Kline

(2018), then the opportunity cost of hiring would be zero. This is effectively equivalent to an

environment where firms have no bargaining power, γ = 1, and so firms’ reservation profit

is driven to zero. In this case, it is easy to verify that when the idiosyncratic shock has a

Pareto distribution, workers have the same wage distribution at every type of firm, so the

model does not generate a firm premium. We believe that, because of diminishing returns to

scale and because a firm cannot costlessly fire an old worker if a better match comes along,

hiring a worker incurs an opportunity cost. To the extent that the opportunity cost of hiring

differs systematically across firms, the results we present in this paper are relevant.

One other assumption is unimportant. We assume that the matching technology is

quadratic (Diamond and Maskin, 1979), so the total number of matches is a homogeneous
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of degree two in unemployment {ux}Xx=1 and vacancies {vY }Yy=1. It is straightforward to

extend most of our results to a linear matching technology (homogeneous of degree one) by

assuming that the contact rate ρ is a homogeneous of degree minus-one function of aggregate

unemployment
∑X

x=1 ux and aggregate vacancies
∑Y

y=1 vy. In particular, all characterizations

of equilibrium, including Propositions 2–5, as well as our discussions of the gains from

meetings and matches and of selection, carry over to this environment. Only the proof of

existence of equilibrium (Proposition 1) would need to be extended to allow for a more

general random matching technology.
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Borovičková, Kataŕına and Robert Shimer, “High Wage Workers Work for High Wage

Firms,” 2020. Mimeo.

Buera, Francisco J and Ezra Oberfield, “The Global Diffusion of Ideas,” Econometrica,

2020, 88 (1), 83–114.

Burdett, Ken and Melvyn G Coles, “Marriage and Class,” Quarterly Journal of Eco-

nomics, 1997, 112 (1), 141–168.

Burdett, Kenneth and Dale Mortensen, “Wage Differentials, Employer Size, and Un-

employment,” International Economic Review, 1998, 39 (2), 257–73.

Card, David, Ana Rute Cardoso, and Patrick Kline, “Bargaining, sorting, and the

gender wage gap: Quantifying the impact of firms on the relative pay of women,” Quarterly

Journal of Economics, 2016, 131 (2), 633–686.

, , Joerg Heining, and Patrick Kline, “Firms and Labor Market Inequality: Evi-

dence and Some Theory,” Journal of Labor Economics, 2018, 36 (S1), S13–S70.

, Jörg Heining, and Patrick Kline, “Workplace Heterogeneity and the Rise of West

German Wage Inequality,” Quarterly Journal of Economics, 2013, 128 (3), 967–1015.

Diamond, Peter A. and Eric Maskin, “An Eequilibrium Analysis of Search and Breach

of Contract, I: Steady States,” Bell Journal of Economics, 1979, 10 (1), 282–316.

Eeckhout, Jan and Philipp Kircher, “Sorting and Decentralized Price Competition,”

Econometrica, 2010, 78 (2), 539–574.

Engbom, Niklas, Christian Moser, and Jan Sauermann, “Firm pay dynamics,” Jour-

nal of Econometrics, 2023, 233 (2), 396–423.

Flinn, Christopher and James Heckman, “New Methods for Analyzing Structural Mod-

els of Labor Force Dynamics,” Journal of Econometrics, 1982, 18 (1), 115–168.
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Appendix

A Proofs

Proof of Proposition 1. Consider the following 2(X + Y ) functions of (w̄x, ux)
X
x=1 and

(π̄y, vy)
Y
y=1:

T1,x(w̄, π̄, u, v) =
γρ

r + δ

Y∑
y=1

vyfx,y

∫ ∞
z̄x,y

(z − z̄x,y)s(z)dz,

T2,y(w̄, π̄, u, v) =
(1− γρ)

r + δ

X∑
x=1

uxfx,y

∫ ∞
z̄x,y

(z − z̄x,y)s(z)dz,

T3,x(w̄, π̄, u, v) = mx −
Y∑
y=1

ρuxvyS(z̄x,y)

δ
,

T4,y(w̄, π̄, u, v) = ny −
X∑
x=1

ρuxvyS(z̄x,y)

δ
,

where z̄x,y = (w̄x + v̄y)/fx,y, as in equation (6). We refer to this mapping collectively as

T = (T1, T2, T3, T4). It is immediate that any vector (w̄, π̄, u, v), together with z̄ solving

equation (6) and φ solving equation (12), is an equilibrium if and only if it is a fixed point

of T , i.e. T (w̄, π̄, u, v) = (w̄, π̄, u, v).

Now define the mapping T̃ :

T̃1,x(w̄, π̄, u, v) = min {T1,x(w̄, π̄, u, v), ¯̄wx} ,

T̃2,y(w̄, π̄, u, v) = min {T2,y(w̄, π̄, u, v), ¯̄πy} ,

T̃3,x(w̄, π̄, u, v) = max {T3,x(w̄, π̄, u, v), 0} ,

T̃4,y(w̄, π̄, u, v) = max {T4,y(w̄, π̄, u, v), 0} ,

where

¯̄wx =
γρ

r + δ

Y∑
y=1

nyfx,y

∫ ∞
¯̄wx/fx,y

(z − ¯̄wx/fx,y)s(z)dz,

¯̄πy =
(1− γ)ρ

r + δ

X∑
x=1

mxfx,y

∫ ∞
¯̄πy/fx,y

(z − ¯̄πy/fx,y)s(z)dz.

The mapping T̃ is continuous. Moreover, it maps points satisfying w̄x ∈ [0, ¯̄wx], π̄y ∈ [0, ¯̄πy],
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ux ∈ [0,mx], and vy ∈ [0, ny] for all x ∈ {1, . . . , X} and y ∈ {1, . . . , Y } into itself. Therefore

T̃ has a fixed point by Brouwer’s fixed point theorem.

We prove that at any (w̄, π̄, u, v) which is a fixed point of T̃ , T (w̄, π̄, u, v) = T̃ (w̄, π̄, u, v),

and thus (w̄, π̄, u, v) is also a fixed point of T . In the first step we prove that ux > 0 for all

x. This is because if ux = 0, T̃3,x(w̄, π̄, u, v) = mx, contradicting (w̄, π̄, u, v) being a fixed

point. This implies T̃3,x(w̄, π̄, u, v) = T3,x(w̄, π̄, u, v) for all x at any fixed point. Similarly

vy > 0 at any fixed point of T̃ and so T̃4,y(w̄, π̄, u, v) = T4,y(w̄, π̄, u, v) for all y at any fixed

point.

Next, any fixed point has w̄x > 0 for all x: T̃1,x(w̄, π̄, u, v) is continuous and decreasing

in w̄x and is strictly positive at w̄x = 0 since vy > 0 for all y. Similarly any fixed point has

π̄y > 0 for all y.

Finally, in any fixed point of T̃ , any solution to T̃1,x(w̄, π̄, u, v) = w̄x has w̄x < ¯̄wx because

π̄y > 0. This implies that the fixed point of T̃ also solves T̃1,x(w̄, π̄, u, v) = T1,x(w̄, π̄, u, v) for

all x. The same logic implies T̃2,y(w̄, π̄, u, v) = T2,y(w̄, π̄, u, v) for all y in any fixed point.

In summary, we have proved that there exists a vector (w̄, π̄, u, v) with T̃ (w̄, π̄, u, v) =

(w̄, π̄, u, v), that at any such vector T (w̄, π̄, u, v) = T̃ (w̄, π̄, u, v) and so (w̄, π̄, u, v) is a fixed

point of T , and that any fixed point of T is an equilibrium. This proves an equilibrium

exists.

Along the way we also proved that w̄x > 0 for all x and π̄y > 0 for all y at any fixed

point of T̃ , and hence in any equilibrium.

Proof of Lemma 1. We prove that w̄x is strictly increasing. The proof that π̄y is strictly

increasing is analogous.

To find a contradiction, suppose there exists an x1 < x2 with w̄x1 ≥ w̄x2 . Since f is

monotonic, fx2,y > fx1,y for all y. Then using equation (6), we have z̄x1,y > z̄x2,y for all y.

Additionally, observe that
∫∞
z̄

(z − z̄)s(z)dz is strictly positive for all z̄, since S(z) > 0 for

all z. Additionally, the integral is decreasing in z̄, as can be confirmed directly. This means

that
∫∞
z̄x2,y

(z − z̄x2,y)s(z)dz >
∫∞
z̄x1,y

(z − z̄x1,y)s(z)dz > 0.

Putting this together, if there exists an x1 < x2 with w̄x1 ≥ w̄x2 ,

w̄x2 =
γρ

r + δ

Y∑
y=1

vyfx2,y

∫ ∞
z̄x2,y

(z − z̄x2,y)s(z)dz

>
γρ

r + δ

Y∑
y=1

vyfx1,y

∫ ∞
z̄x1,y

(z − z̄x1,y)s(z)dz = w̄x1 ,

where the two equations use the value function (10) and the inequality uses fx2,y > fx1,y
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and
∫∞
z̄x2,y

(z − z̄x2,y)s(z)dz >
∫∞
z̄x1,y

(z − z̄x1,y)s(z)dz > 0, together with strict positivity of the

remaining terms. But this is a contradiction, proving w̄x1 < w̄x2 .

Proof of Proposition 2. We first prove that z̄x,y is strictly log-submodular. Substituting

equation (6) for z̄, we must prove that for x1 < x2 and y1 < y2,(
w̄x1 + π̄y1
fx1,y1

)(
w̄x2 + π̄y2
fx2,y2

)
<

(
w̄x1 + π̄y2
fx1,y2

)(
w̄x2 + π̄y1
fx2,y1

)
.

Weak log supermodularity of f implies fx1,y1fx2,y2 ≥ fx1,y2fx2,y1 . And we see that the product

of the numerators on the left hand side is smaller than the product of the numerators on the

right hand side if and only if

w̄x1 π̄y2 + w̄x2 π̄y1 < w̄x1 π̄y1 + w̄x2 π̄y2 ⇔ (w̄x2 − w̄x1)(π̄y2 − π̄y1) > 0.

This is immediate because w̄ and π̄ are strictly increasing (Lemma 1).

We now use the assumption that S(z) = (z/z0)−θ. Then since log z̄x,y is strictly submod-

ular, logS(z̄x,y) = θ log z0− θ log z̄x,y is strictly supermodular. Finally, equation (12) implies

that log φx,y inherits the strict supermodularity of logS(z̄x,y).

Proof of Proposition 3. We prove a more general version of this proposition. For any

strictly increasing function G : R+ → R, define

wGx,y =

∫∞
z̄x,y

G(Wx,y(z))s(z)dz

S(z̄x,y)
. (30)

From equations (6) and (9), we have

Wx,y(z) = w̄x + γ(w̄x + π̄y)

(
z

z̄x,y
− 1

)
.

Using equation (30) and the functional form of the Pareto distribution, we obtain

wGx,y =

∫∞
z̄x,y

G
(
w̄x + γ(w̄x + π̄y)

(
z/z̄x,y − 1

))
θz−θ−1dz

z̄−θx,y
.

Now let q = z/z̄x,y − 1 and perform a change in the variable of integration to obtain

wGx,y ≡
∫ ∞

0

G
(
w̄x + γ(w̄x + π̄y)q

)
θ(1 + q)−θ−1dq.
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Setting G(W ) = log(W ) for all W gives us equation (16). This equation implies that wGx,y

is simply a weighted average of G
(
w̄x + γ(w̄x + π̄y)q

)
, with the same weights for all (x, y).

This means that x and y only affect wGx,y through w̄x and π̄y.

Now since G is strictly increasing, it is straightforward to verify that increasing either

w̄x or π̄y raises the integrand in equation (16) at all q > 0, and hence raises wGx,y. This

establishes the first two enumerated points.

We next prove the third point if G is strictly concave. If G is strictly convex, we prove

wGx1,y2 + wGx2,y1 < wGx1,y1 + wGx2,y2 . If G is linear, this is an equality. Take x1 and x2 with

w̄x1 < w̄x2 ; and y1 and y2 with π̄y1 < π̄y2 . Let

λ ≡ (1 + γq)(w̄x2 − w̄x1)
(1 + γq)(w̄x2 − w̄x1) + γq(π̄y2 − π̄y1)

.

The assumptions on x1, x2, y1, and y2 ensure that λ ∈ (0, 1) for all q > 0. Then verify

algebraically that

w̄x1 + γ(w̄x1 + π̄y2)q = λ(w̄x1 + γ(w̄x1 + π̄y1)q) + (1− λ)(w̄x2 + γ(w̄x2 + π̄y2)q), and

w̄x2 + γ(w̄x2 + π̄y1)q = (1− λ)(w̄x1 + γ(w̄x1 + π̄y1)q) + λ(w̄x2 + γ(w̄x2 + π̄y2)q).

Thus G concave (convex) implies

G(w̄x1 + γ(w̄x1 + π̄y2)q) > (<)λG(w̄x1 + γ(w̄x1 + π̄y1)q) + (1− λ)G(w̄x2 + γ(w̄x2 + π̄y2)q), and

G(w̄x2 + γ(w̄x2 + π̄y1)q) > (<)(1− λ)G(w̄x1 + γ(w̄x1 + π̄y1)q) + λG(w̄x2 + γ(w̄x2 + π̄y2)q).

Summing these gives

G
(
w̄x1 + γ(w̄x1 + π̄y2)q

)
+G

(
w̄x2 + γ(w̄x2 + π̄y1)q

)
> (<)G

(
w̄x1 + γ(w̄x1 + π̄y1)q

)
+G

(
w̄x2 + γ(w̄x2 + π̄y2)q

)
when G is concave (convex). Integrating over the density θ(1 + q)−θ−1 for q > 0 delivers the

third bullet point.

Finally, we note that if fx,y is strictly increasing in x and y, Lemma 1 implies w̄x and

π̄y are strictly increasing. Then the three numbered conditions in the statement of the

proposition imply that wGx,y is strictly increasing and strictly submodular (supermodular) in
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x and y when G is strictly concave (convex).

Proof of Proposition 4. Take any x1 < x2 and y1 < y2. Then(
1

fx2,y2
− 1

fx2,y1

)
(w̄x2 − 2̄x1) < 0,(

1

fx2,y2
− 1

fx1,y2

)
(π̄y2 − π̄y1) < 0,

since in both cases the first term is negative (since f is positive and strictly increasing) and

the second term is positive by Lemma 1. Additionally, 1/f submodular implies

1

fx1,y1
+

1

fx2,y2
≤ 1

fx1,y2
+

1

fx2,y1
.

Multiply each term in the last inequality by w̄x1 + π̄y1 and add to the preceding inequalities

to get
w̄x1 + π̄y1
fx1,y1

+
w̄x2 + π̄y2
fx2,y2

<
w̄x1 + π̄y2
fx1,y2

+
w̄x2 + π̄y1
fx2,y1

,

From equation (6), this implies that z̄x,y is strictly submodular.

Next, in steady state with an exponential distribution, we have from equation (12) that

log φx,y = log(ρ/δ) + log ux + log vy − θz̄x,y.

Since z̄x,y is strictly submodular and the other terms are amodular, this proves that log φx,y

is strictly supermodular, i.e. that φ is strictly log-supermodular.

Proof of Proposition 5. We again work with the more general version of the proposition,

using wG defined in equation (30) for an arbitrary increasing function G. From the wage

equation (9), and the exponential distribution, we have

wGx,y = θ

∫ ∞
z̄x,y

G(w̄x + γ(zfx,y − w̄x − π̄y))e−θ(z−z̄x,y)dz.

Let q = z − z̄x,y to get

wGx,y = θ

∫ ∞
0

G(w̄x + γ((q + z̄x,y)fx,y − w̄x − π̄y))e−θqdq.
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From equation (6), we can reduce this to

wGx,y = θ

∫ ∞
0

G(w̄x + γqfx,y)e
−θqdq,

which is equivalent to equation (17) when G(W ) = logW for all W . If f is strictly increasing,

so is w̄x (Lemma 1). And since G is strictly increasing, then the integrand in equation (17)

is strictly increasing in both x and y for all q. Thus wG is strictly increasing.

B Log-Linear Wage Equation

Most of the empirical literature does not aim to estimate the average log wage, w∗x,y. Instead,

following Abowd, Kramarz and Margolis (1999), authors impose a log-linear wage structure

to estimate worker and firm fixed effects. In this section we analyze what that procedure

recovers if our model is data-generating process, and in particular the relationship between

a log-linear wage equation and the average log wage w∗x,y.

B.1 Econometric Framework

Consider a panel data set containing the wage Wi,t of worker i ∈ {1, . . . , I} at time t ∈
{1, 2, . . . , T} as well as the employer identifier Ji,t ∈ {1, . . . , J}. Since the worker may not

always be employed, we let Ti ⊆ {1, 2, . . . , T} denote the periods when the worker earns a

wage. We assume, in line with the literature, that we observe neither a wage nor a wage offer

for i when they are not employed, at t ∈ T ci ≡ {1, 2, . . . , T}\Ti. For notational simplicity and

following the literature, we impose that each worker only works for one firm at each point

in time, for example by focusing on their main job in each period that they are employed.

Following Abowd, Kramarz and Margolis (1999), we could regress the log wage on a full

set of worker and firm fixed effects and an error term: For all i ∈ {1, . . . , I} and t ∈ Ti,

logWi,t = αi + ψJi,t + εi,t. (31)

We are interested in the coefficient estimates α̂i and ψ̂j when estimating equation (31) using

ordinary least squares (OLS). Regardless of the economic model and the data set, OLS is a

statistical procedure which minimizes the sum of squared errors:

{α̂i, ψ̂j} = arg min
{αi,ψj}

I∑
i=1

∑
t∈Ti

(logWi,t − αi − ψJi,t)2. (32)
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The first order condition for αi from equation (32) is∑
t∈Ti

(logWi,t − α̂i − ψ̂Ji,t) = 0. (33)

Symmetrically, define Ij,t as the set of workers whom j employs at t, so j = Ji,t if and only

if i ∈ Ij,t.11 Then the first order condition for ψj is

T∑
t=1

∑
i∈Ij,t

(logWi,t − α̂i − ψ̂j) = 0. (34)

Under the assumption that all workers and firms are connected though the matching graph,12

Abowd, Creecy and Kramarz (2002) establish that equations (33) and (34) pin down α̂ and

ψ̂ up to an additive constant. That is, we can increase all the worker fixed effects by k and

decrease all the firm fixed effects by k without changing the fit of equation (32).

B.2 Estimates in Model-Generated Data

Next consider estimating equation (31) using an ideal data set generated by our model. We

assume that there is a large number of workers I and a large number of firms J . Each worker

i has an unobserved type xi, and similarly each firm j has an unobserved type yj. We assume

i and j behave according to the decision rules in our model. That is, when i is unemployed,

they meet a type-y vacant job in a match with productivity at least z at rate S(z)vy, and

they accept the job and earn a wage Wxi,y(z) if and only if z ≥ z̄xi,y. Symmetrically, when

j has a vacant job, it meets a type-x unemployed worker in a match with productivity at

least z at rate S(z)ux, and it hires the worker and earns profits zfx,yj −Wx,yj(z) if and only

if z ≥ z̄x,yj .

We are interested in an environment where there is a large but finite number of workers

and jobs and where we observe each worker and job for a very long time, T → ∞.13 In

this case, worker i with type xi will spend a fraction uxi/mxi of their time unemployed and

fraction φxi,y/mxi of their time matched to a type-y firm. In such matches, the density of

match productivity will be s(z)/S(z̄xi,y) for z ≥ z̄xi,y and the wage will be Wxi,y(z). Similarly,

11In our model, Ij,t has either zero or one element, depending on whether the job is filled or vacant. In
real world data, firms can employ multiple workers and so Ij,t typically has multiple elements.

12Formally, we require that any worker i0 can be linked to any firm j through a finite sequence of steps
t0, t1, . . . , tn: jt = Jit−1,t for t odd and it ∈ Ijt−1,t for t even, with j = Jtn .

13In the real world, T is finite, so the OLS estimates α̂i and ψ̂j are unbiased but noisy estimates of ᾱxi

and ψ̄yj , respectively. This creates econometric issues which we sidestep in this paper through our idealized
“large T” assumption.
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the relative likelihood of firm j with type yj matching with a type-x worker is proportional

to φx,yj . Again, in such matches, the density of match productivity will be s(z)/S(z̄x,yj) for

z ≥ z̄x,yj and the wage will be Wx,yj(z). Since there is no uncertainty about these long-run

distributions, α̂i and ψ̂j have well-behaved limits in the limit as T → ∞. These limits

depend only on the worker’s and firm’s type, since the distribution of partners and wages

only depend on types. We let ᾱxi denote the limiting value of α̂i and ψ̄yj denote the limiting

value of ψ̂j when T → ∞.14 We are interested in characterizing and interpreting those

values.

Using equations (33) and (34) and the model structure, we obtain

ᾱx =

∑Y
y=1(w∗x,y − ψ̄y)φx,y∑Y

y=1 φx,y
= λx −

∑Y
y=1 ψ̄yφx,y∑Y
y=1 φx,y

, (35)

ψ̄y =

∑X
x=1(w∗x,y − ᾱx)φx,y∑X

x=1 φx,y
= µy −

∑X
x=1 ᾱxφx,y∑X
x=1 φx,y

, (36)

where w∗x,y is the average log wage in an (x, y) match, defined in equation (15), φx,y is the mea-

sure of (x, y) matches, defined in equation (12), and λx and µy are defined in equations (18)

and (19). Our model ensures that all workers and firms are connected when T → ∞, since

S(z̄x,y) > 0 for all (x, y). That means that we can solve equations (35) and (36) for (ᾱx, ψ̄y)

up to the additive constant k mentioned before.

If the average log wage were an additively separable function of the worker’s type and

the firm’s type, w∗x,y = ax + by, then equations (35) and (36) would imply ᾱx = ax + k

and ψ̄y = by − k, where k is the irrelevant additive constant discussed before. In this case,

ψ̄y2 − ψ̄y1 is the average difference in the log wage that any worker earns at a type-y2 firm

compared to a type-y1 firm when following the equilibrium decision rules. Our model implies

that w∗x,y is increasing in x and y but is submodular rather than linear.

Finally, we follow Abowd, Kramarz and Margolis (1999), Andrews, Gill, Schank and

Upward (2008), Card, Heining and Kline (2013), and others in focusing on the cross-sectional

variance of ᾱ and ψ̄ as well as the covariance between α and ψ in matched pairs. Define

E(gx,y) ≡
∑X

x=1

∑Y
y=1 gx,yφx,y∑X

x=1

∑Y
y=1 φx,y

14In practice, the literature estimating equation (31) looks only at one job per worker per year. In
Abowd, Kramarz and Margolis (1999), this is the job where the individual works the most days. In Card,
Cardoso and Kline (2016), this is the job where the worker has the most hours during a reference week. In
Bonhomme, Lamadon and Manresa (2019), a worker is only included in the sample if they are employed by
a single firm in all twelve months. Since the duration distribution of all jobs is the same in our model, none
of these selection criterion affect the asymptotic values ᾱx and ψ̄y.
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V ar(w) V ar(α) V ar(β) 2Cov(α, β) V ar(ε) Corr(α, β)
BLM 0.124 0.074 0.003 0.015 0.031 0.491
model 0.124 0.074 0.003 0.015 0.031 0.491

V ar(α)
V ar(w)

V ar(β)
V ar(w)

2Cov(α,β)
V ar(w)

V ar(ε)
V ar(w)

model 0.603 0.026 0.122 0.252

Table 1: Decomposition of the variance of log wages into four components: variance of worker
types, firm types, twice its covariance and the variance of the error term. The first row shows
the decomposition reported in Bonhomme, Lamadon and Manresa (2019), the second row is
our model.

for any g. We let σ2
ᾱ ≡ E

(
(ᾱx − E(ᾱx))

2
)

and σ2
ψ̄
≡ E

(
(ψ̄y − E(ψ̄y)))

2
)

denote the variance

of αxi and ψyj across employed workers i and filled jobs j. Also let covᾱ,ψ̄ ≡ E
(
(ᾱx −

E(ᾱx))(ψ̄y − E(ψ̄y))
)

denote the covariance between ᾱxi and ψ̄yj across matched pairs (i, j)

with j = Ji,t. The unidentified additive constant k does not affect any of these moments.

If we estimate α̂i and ψ̂j using OLS, the well-known issue of limited mobility (Andrews,

Gill, Schank and Upward, 2008) biases estimates of the variances and covariances when T

is finite. Throughout this paper, we assume an idealized environment, either one where

T →∞, or alternatively a statistical procedure that gives unbiased estimates of the variance

and covariance, as proposed by Andrews, Gill, Schank and Upward (2008), Bonhomme,

Lamadon and Manresa (2019), or Kline, Saggio and Sølvsten (2020).

Using the parametrization described in Section 4, we conduct the variance decomposition

and report the results in Table 1. By construction, we exactly match the empirical moments.
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C Normalizations for Pareto and Exponential Case

Equilibrium is described by equations (6) (10), (11), (12), (13), (14), which we repeat here

for convenience.

z̄x,y =
w̄x + π̄y
fx,y

w̄x =
γρ

r + δ

Y∑
y=1

vyfx,y

∫ ∞
z̄x,y

(z − z̄x,y)s(z)dz

π̄y =
(1− γ)ρ

r + δ

X∑
x=1

uxfx,y

∫ ∞
z̄x,y

(z − z̄x,y)s(z)dz

δφx,y = ρuxvyS(z̄x,y)

ux = mx −
Y∑
y=1

φx,y

vy = ny −
X∑
x=1

φx,y.

In the Pareto case, S(z) =
(
z
z0

)θ
and s(z) = −θ

(
z−θ−1

z−θ0

)
. Guess and verify that changing

ρ to λρ changes thresholds to λ1/θz̄x,y and reservation wages and profits to λ1/θw̄x, λ
1/θπ̄y but

does not affect φx,y, ux, vy. It is immediate to verify this guess for the last three equations.

To verify the equation for the reservation values w̄x and π̄y, use that

∫ ∞
a

(z − a)s(z)dz =

(
b

a

)1−θ ∫ ∞
b

(z − b)s(z)dz.

Finally, equation (16) implies that changing ρ has a level effect on mean log wages which

increase by 1
θ

log(λ) for all x, y. We therefore normalize ρ = 1 in our numerical evaluation.

In the exponential case, S(z) = e−θz, changing θ to λθ changes thresholds to z̄x,y
λ

and

reservation wages and profits to w̄x
λ

, π̄y
λ

but does not change φx,y, ux, vy. Using that s(z) =

θe−θz, it can be easily verified that the equilibrium equations hold. Finally, equation (17)

implies that change in θ has a level effect on mean log wage which increase by − log(λ).

Hence in the exponential case, we can normalize θ = 1.
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V ar(w) V ar(α) V ar(β) 2Cov(α, β) V ar(ε) Corr(α, β)
BLM 0.124 0.074 0.003 0.015 0.031 0.491
model 0.124 0.078 0.003 0.014 0.029 0.442

Table 2: Decomposition of variance of log wages in the model with exponentially distributed
match quality shocks.

D Exponentially-Distributed Match Quality

We present results for the model with exponentially distributed match quality. We proceed

as in the case of Pareto distribution. We set the number of types at X = Y = 10 and

assume a uniform type distribution, mx = 1
X

and ny = 1
Y

. The production function is

CES with elasticity of substitution ξ, fx,y = (0.5p
ξ−1
ξ

x + 0.5q
ξ−1
ξ

y )
ξ
ξ−1 where p1 = q1 = 1,

px = (1 + ∆p)px−1 for x = 2, . . . X, and qy = (1 + ∆q)qy−1 for y = 2, . . . Y . We let S(z) = e−z

because we normalize θ = 1. We choose γ = 2
3
, and r = 0.05, δ = 0.5, which implies expected

duration of a match of 2 years. We choose the remaining parameters, ∆p,∆q, ρ, ξ to match the

variance decomposition in Bonhomme, Lamadon and Manresa (2019). As before, we target

the variance of worker type, firm types, the covariance and the variance of the residual, and

we assume that we have infinitely much data, so we know each worker’s type x and each

firm’s type y and so all distributions are deterministic functions of model parameters. The

parameter values which allow us to match the target moments are ∆p = 0.065, ∆q = 1.962,

ξ = 0.694 and ρ = 2.9× 105. Moments are summarized in Table 2.

This parametrization implies that the most productive worker is on average 59% more

productive than the least productive worker, and the most productive firm is on average

443% more productive than the least productive one. In particular, f10y/f1y−1 lies between

0.30 and 0.75, depending on the value of y. For firms, fxy10/fxy1 − 1 lies between 3.68 and

5.27, depending on value of x. The unemployment rate is 14.0%.

Figure 3 shows the results. In the first row we show the average log wage in matches and

the distribution of worker types conditional on firm type. The log wage is monotone in firm

type for each worker type, so again, one is tempted to conclude that low-type workers gain

a lot from meeting a very productive firms. The top right panel shows that there is strong

sorting, so low productive workers are only rarely employed by firms with high productivity.

The bottom row shows that the reason behind this pattern is selection. While the bottom

left figure shows a large increase in the mean surplus in matches as one moves from low to

high productivity firm, the right panel of the bottom row shows that this is not the case for

the average surplus in meetings.
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Figure 3: Results for model with exponentially distributed match quality shocks.
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E On-the-Job Search

We extend the model to introduce on-the-job search. The goal is to illustrate that it does

not change our message regarding selection.

We introduce on-the-job search to our baseline model. We assume that unemployed

workers meet a vacancy at the rate ρ0, employed workers at the rate ρ1. Search is random.

Once a workers and a firm meet, they draw a productivity shock z from a distribution

with density s(z) and survival function S(z). We assume that the wage in an (x, y, z)

match is Wx,y(z), does not depend on whether a worker has been hired from employment or

unemployment, and is such that the worker’s fraction γ of the joint match surplus.

E.1 Bellman equations

We start by formulating the value functions of a worker with type x. The Bellman equation

for the value of being unemployed is

rV u
x = ρ0

Y∑
y=1

vy

∫ ∞
0

max
{
V e
x,y(z)− V u

x , 0
}
s(z)dz. (37)

For an employed worker, the Bellman equation is

rV e
x,y(z) = Wx,y(z) + δ(V u

x − V e
x,y(z))

+ ρ1

Y∑
y′=1

vy′

∫ ∞
0

max
{
V e
x,y′(z

′)− V e
x,y(z), 0

}
s(z′)dz′. (38)

We next formulate Bellman equations for a firm. A vacant job can meet employed or

unemployed worker, and the corresponding Bellman equation is

rV v
y = ρ0

X∑
x=1

∫ ∞
0

ux max
{
V f
y,x(z))− V v

y , 0
}
s(z)dz

+ ρ1

X∑
x=1

Y∑
y′=1

∫ ∞
0

φx,y′(z
′)

(∫ ∞
0

max
{
V f
y,x(z)− V v

y , 0
}
1(x,y,z)�(x,y′,z′)s(z)dz

)
dz′, (39)

where φx,y(z) is the measure of (x, y, z) matches, and 1(x,y,z)�(x,y′,z′) = 1 if a worker prefers

match (x, y, z) to (x, y′, z′), and zero otherwise.
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The value of a match to the firm is

rV f
y,x(z) = zfx,y −Wx,y(z)

+

(
δ + ρ1

Y∑
y′=1

vy′

∫ ∞
0

1(x,y′,z′)�(x,y,z)s(z
′)dz′

)(
V v
y − V f

y,x(z))
)
. (40)

As in our benchmark model, we define reservation wages and reservation profits as w̄x =

rV u
x and π̄y = rV v

y .

The match surplus is defined as rV s
x,y(z) = rV e

x,y(z) + rV f
y,x(z)− (w̄x + π̄y). Then we have

(r + δ)V s
x,y(z) = zfx,y+

+ ρ1

Y∑
y′=1

vy′

∫ ∞
0

1(x,y′,z′)�(x,y,z)

(
V e
x,y′(z

′)− V u
x − V s

x,y(z))
)
s(z′)dz′

− (w̄x + π̄y) . (41)

We assume that the wage is such that the worker receives fraction γ of the joint surplus,

V e
x,y(z) − V u

x = γV s
x,y(z). An unemployed worker accepts the offer when rV e

x,y(z) − w̄x =

γrV s
x,y(x) ≥ 0. Similarly, a vacant job wants to match with an unemployed worker if

rV f
y,x(z)− π̄y = (1− γ)rV s

x,y(z) ≥ 0. Therefore, a match is created if and only if V s
x,y(z) ≥ 0,

which defines a threshold rule z̄x,y : V s
x,y(z̄x,y) = 0.

An employed worker (x, y, z) accepts a new job (x, y′, z′) when V e
x,y′(z

′) ≥ V e
x,y(z). Us-

ing the surplus sharing rule this is equivalent to V s
x,y′(z

′) ≥ V s
x,y(z). It thus follows that

1(x,y′,z′)�(x,y,z) = 1 if and only if 1V s
x,y′ (z

′)≥V sx,y(z) = 1. This defines a threshold rule (assuming

that V s is increasing in z) z̄ex,y,z,y′ such that V s
x,y(z) = V s

x,y′(z̄
e
x,y,z,y′) and V s

x,y′(z
′) ≥ V s

x,y(z)

for any z′ ≥ z̄ex,y,z,y′ .

Using these results, we derive an equation for the surplus

(r + δ)V s
x,y(z) = zfx,y − (w̄x + π̄y)

+ ρ1

Y∑
y′=1

vy′

∫ ∞
0

1V s
x,y′ (z

′)≥V sx,y(z)

(
γV s

x,y′(z
′)− V s

x,y(z))
)
s(z′)dz′. (42)
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E.2 Distributions

The steady-state measure of (x, y, z) matches with V s
x,y(z) ≥ 0 satisfies

φx,y(z)

(
δ + ρ1

∑
y′

vy′

∫ ∞
0

1V s
x,y′ (z

′)≥V sx,y(z)s(z
′)dz′

)

= vys(z)

(
ρ0ux1V sx,y(z)≥0 + ρ1

Y∑
y′=1

∫ ∞
0

1V sx,y(z)≥V s
x,y′ (z

′)φx,y′(z
′)dz′

)
. (43)

The left hand side is the measure of matches that are destroyed through exogenous separation

and through endogenous on-the-job search. The right hand side counts matches which are

created through a vacancy meeting an unemployed worker (first term) or an employed worker

who accepts this new offer.

Finally, the measure of unemployed and vacant jobs satisfy

ux = mx −
Y∑
y=1

∫ ∞
0

φx,y(z)dz (44)

vy = ny −
X∑
x=1

∫ ∞
0

φx,y(z)dz. (45)

E.3 Wage

Consider the value of being employed, equation (38), subtract V u
x from both sides, and

replace worker’s surplus with the surplus sharing rule. We obtain

(r+δ)(V e
x,y(z)−V u

x ) = Wx,y(z)− w̄x+ρ1γ
Y∑

y′=1

vy′

∫ ∞
0

max
{
V s
x,y′(z

′)−V s
x,y(z), 0

}
s(z′)dz′.

Rearrange the terms to find an expression for wage in terms of V s and V u:

Wx,y(z) = w̄x + γ(r + δ)V s
x,y(z)− ρ1γ

Y∑
y′=1

vy′

∫ ∞
0

max
{
V s
x,y′(z

′)− V s
x,y(z), 0

}
s(z′)dz′. (46)

E.4 Results

We use the same parameter values as in the model without on-the-job search and a Pareto

distribution of match-specific productivity shocks (Section 4.1). We set the efficiency of on-

the-job search to 30 percent of unemployed search, ρ1 = 0.3ρ0. This is in line with relative
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intensities reported in the literature. Using French administrative data, Postel-Vinay and

Robin (2002) estimate this ratio to be between 0.31 and 0.48, depending on worker occupation

and skill category. Jolivet, Postel-Vinay and Robin (2006) estimate this ratio to be 0.03 and

0.19 for different European countries. We deliberately choose the value closer to the upper

bound of this range to show how on-the-job search affects our findingsP. Figure 4 shows the

results. They are very similar to the results in Figure 1.

F Empirical Investigation

We analyze matched employer-employee data from Austria. We have two goals. First is to

see whether the patterns, that the literature interprets as tests of exogenous mobility, hold

in our data as well. The second is to understand the importance of on-the-job search.

F.1 Data Description

We use panel data set from the Austrian social security registry, the Arbeitsmarktdatenbank

(AMDB, Labor Market Database), described in Zweimuller, Winter-Ebmer, Lalive, Kuhn,

Wuellrich, Ruf and Buchi (2009). The AMDB covers the period from 1986 to 2018. For

each worker, the data set contains information about every job they hold. More precisely,

in every calendar year and for every worker-firm pair,15 we observe annual earnings and

days worked during the year. We see two sources of earnings, regular wage payments and

bonus payments, which we combine together to compute annual earnings. Earnings are

top-coded at the maximum social security contribution level, which rises over time.16 We

further observe registered unemployment, maternity and retirement spells. There is limited

demographic information on firms and workers, including workers’ birth year and sex, and

region and industry for firms.

Following Card, Heining and Kline (2013), we focus on workers age 20–60. We do not

observe an indicator for part-time jobs which might be a problem for studying women’s

wages since part-time jobs are prevalent among them. Between 1994 and 2007, on average

4.7 percent of employed men and 34.0 of employed women worked part-time.17 We therefore

focus on men. We drop marginal jobs (less than 10 hours per week) and data that include

an apprenticeship.

15A firm is identified by its employer identification number (EIN). Some firms may have multiple EINs.
16For example, in 2018, the cap for monthly wage earnings is Eur 5,130 and the cap for annual bonus

payment is Eur 10,260. The fraction of male worker-firm observations affected by top-coding fell from a peak
of 15.2 percent in 1990 to 10.3 percent in 2018. Top-coding affects far fewer female worker-firm observations,
varying from 1.7 to 4.8 percent during our sample period.

17These statistics come from the Statistical office of Austria, https://www.statistik.at.

42



1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

firm type y

Average log wage w∗x,y

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

firm type y

Share of worker types

1 2 3 4 5 6 7 8 9 10

10−3

10−2

firm type y

Average surplus in matches

x = 1 x = 2 x = 3 x = 4 x = 5
x = 6 x = 7 x = 8 x = 9 x = 10

1 2 3 4 5 6 7 8 9 10
10−5

10−4

10−3

firm type y

Average surplus in meetings

Figure 4: Results for the model with Pareto distributed match quality shocks and on-the-job
search. We use the benchmark parametrization and the ratio of search intensity between
employed and unemployed ρ1

ρ0
= 0.3.
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For each worker-firm-year, we construct a measure of the log real daily wage by taking

the difference between log real annual earnings, which is the sum of wages and bonus, and

log days worked. We define worker’s main job in a calendar year as the one with the highest

number of days worked and keep only this job. We then regress this on a full set of dummies

for the calendar year and age. The first set of dummies captures the effects of aggregate

nominal wage growth, while the second removes a standard age-earnings profile. Our analysis

focuses on these wage residuals.

F.2 Patterns in the Data

We start by replicating Figure V in Card, Heining and Kline (2013) which shows average

wage gains and loses of workers who move between different employers. We select workers

who change their main employer between two calendar years. We further require that the

origin and destination firm is the worker’s main employer the year before and the year after

the move, respectively. We classify firms into quartiles based on co-workers’ average wages

using the full sample of workers (that is, not only movers). We then study average wage

among movers conditional on the quartile of the origin and destination firm.

Figure 5 shows the results which are qualitatively very similar to Card, Heining and Kline

(2013). That is, moves from a firm in the lower quartile to a firm in the higher quartile are

associated with a wage gain, moves in the opposite direction with a wage loss. Conditional

on the quartile of the origin firm, the average wage before the move is increasing with the

quartile of the destination firm. There is no pre-trend in wages of job movers in the sense

that we do not see wages of workers who ended up doing a downward move going down

before the move itself. The literature has interpreted this figure as evidence for exogenous

mobility in the sense that there does not seem to be much movements across jobs associated

with direct job-to-job movements as those should typically lead to a wage gain.

The wage gains and losses from the movement across quartiles appear to be symmetric.

The left panel of Figure 6 shows the wage change associated with a downward move against

the wage change associated with the symmetric upward move. That is, for every pair of

quartiles (i, j) with i < j, we compute the average wage gain when moving from i to j, and

the average wage loss associated with a move from j to i. Every mark in Figure 6 represents

one such pair (i, j). If the gains and losses are symmetric, these marks would be aligned

along the negative 45-degree line, which is the black dashed line in the figure.

The black squares represent all movers. We observe that they are close to the minus

45-degree line, with several squares below the line. This means that the magnitude of the

wage loss from a downward move is higher than a wage gain from an upward move. This
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finding is similar to Figure 5 in Card, Cardoso, Heining and Kline (2018) for Portuguese

data.

We next analyze this symmetry for four different age groups defined based on worker’s

age at the time of the move. We observe that the youngest workers, 20–29 years old, have

mostly symmetric wage changes, and if anything, the wage gains from an upward move is

higher than the magnitude of a wage loss from a downward move. Workers aged 30–39 are

very similar to the full population. The older cohorts, however, lie further below the negative

45-degree line, implying that their wage gains from an upward move are much lower than

wage losses from a downward move.

The right panel of Figure 6 shows the number of workers by age group making the upward

and downward move for any (i, j) pair of quartiles. The black square represent all movers.

They lie a little below the 45-degree line implying that there are more workers moving upward

than downward. There are again differences across age groups. Youngest workers are more

likely to move up than down, but as age increases, this tends to flip, and workers in the

oldest age group make many more downward than upward moves.

To summarize, we observe that there is a life-cycle component in how workers move

across different employers. Young workers make more upward than downward moves, and

the average wage gains from an upward move are higher than the magnitude of the wage

losses from a downward move. For older workers, the wage gain from upward move is lower

than the magnitude of wage losses from a downward move, and upward moves are less

frequent. This figure suggests that on-the-job search might be important for young workers,

but becomes less important in later ages where we observe many moves associated with a

wage loss.

We further investigate this hypothesis by analyzing the relationship between the non-

employment duration and the wage gain. We regress the wage change after a move on the

full set of dummy variables capturing the non-employment gap in months. We find that wage

gain is hump-shaped in duration of employment gap, peaking at the duration of 3 months

and becoming negative at duration of 6 months. This pattern suggests that we can think

of movers with employment gap shorter than 3 months as representing job-to-job moves.

About half of all movers have employment gap shorter than 3 months, and 25% of movers

have duration between 4 and 6 months.

The relationship between wage change and duration of employment gap changes with

age. For each age category and each non-employment duration, we compute the mean wage

gain associated with the employer switching. These are depicted in Figure 7. We observe

that the wage gains are decreasing in employment gap for every age category, but the decline

depends on age. Workers younger than 29 experience large positive wage gains when the
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Figure 5: Mean log residual wages of job changers classified by quartile of mean log residual
wage of co-workers at origin and destination firm. Log wage residuals are constructed by
removing calendar year and age fixed effects.

employment gap is shorter than 6 months, and a small negative loss when the duration is

longer than 7 months. As workers age, the gains at short employment gap become smaller

and losses at longer employment gap become larger.

The data hence suggest that job-to-job transitions are an important source of wage growth

for youngest workers, but not so much for workers older than 30. This provides empirical

justification for abstracting from them in the theoretical part.
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mean wage growth associated with move from i to j, and the vertical axis the mean wage
growth of movers from j to i. The dashed line represents symmetric changes for upward and
downward moves. Different colors represent movers of different age group. The right panel
is analogous, only showing the number of movers in each (i, j) pair of quartiles.
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