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Abstract: 

After decades of disappointment, artificial intelligence (AI) has entered a new era of rapidly advancing 
capabilities that are likely to raise productivity and reshape demand for labor within and across firms 
and industries.  Accurately measuring these effects has been difficult due to a lack of detailed, firm-level 
data on AI innovation. We address that challenge by using a combination of machine learning algorithms 
to parse the text of U.S. patent grants and assess the degree to which they are AI-related.  This approach 
indicates that AI-related invention is more pervasive than many previous analyses have suggested.  We 
match our data on AI patenting to U.S. Census microdata collected on the innovating firms. We then 
perform an event study using these matched data to gauge the impact of these innovations on firm labor 
demand, labor productivity growth, and wage dispersion. We find that AI-related inventions are 
positively associated with growth in employment and increases in output per worker.  In contrast, there 
is less evidence that AI invention is expanding income inequality.  We also discuss ongoing efforts to 
measure the diffusion of AI technology to U.S. firms through the movement of workers trained at the 
technology frontier. 
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1.  Introduction 
After decades of disappointment, artificial intelligence (AI) has entered a new era of rapidly 
advancing capabilities (Agarwal et al., 2022; Baily et al., 2023).  In the popular media, a 
vigorous debate is being waged between proponents of these new technologies, who believe they 
will bring a new era of rapid productivity growth and widespread prosperity, and skeptics, who 
fear an era of mass joblessness and wage stagnation for all but a small cognitive elite 
(Brynjolfsson and McAfee, 2014; Baily et al., 2023; Suskind, 2020).   

Earlier industrial revolutions were characterized by significant and persistent increases in 
productivity growth that boosted living standards across the income distribution.  Despite 
growing hype and concern over AI applications across the economy, aggregate productivity 
growth remains stuck at slow rates (Benzell et al., 2022).  Will AI fail to live up to the 
enthusiasm of its advocates or are we merely in the early stages of an innovation and adoption 
process that will take years or decades to unfold?  This paper seeks to address this question by 
examining the vanguard of firms that are already introducing AI-related innovations into the 
marketplace.  If these early movers and innovators are already reaping significant productivity 
gains, then this augurs well for the ultimate positive impact of AI on the broader. economy.  In 
our final section, we also describe ongoing work, in which we are beginning to examine the 
potential role played by Ph.D.-level academic experts in the development of AI-related new 
goods and services  By linking these experts to the firms that employ them, we may obtain 
empirical leverage around the difficulty of measuring AI innovation that does not result in 
patents.   

Our work complements many recent streams of research.  One stream seeks to measure AI 
adoption and use through direct surveys of large, representative samples of U.S. firms (Zolas et 
al., 2019; McElheran et al., 2024).  These extremely valuable efforts have shed useful light on AI 
adiption, but they have not yet demonstrated a strong relationship between AI adoption and 
faster productivity growth, and it will take time before these survey data acquire a sufficiently 
long time series dimension such that researchers can apply the usual econometric techniques for 
discerning plausibly causal effects from nonexperimental data.  A second stream applies 
randomized controlled trials or quasi-experimental methods to measure the impact of AI on 
worker productivity in a particular work context (see Brynjolfsson, Li, and Raymond, 2023; 
Korinek, 2023; and Noy and Zhang, 2023).  Some of these papers have found convincing 
evidence of a causal impact of AI adoption on productivity, but the results may not generalize 
from the particular work contexts in which these experiments or quasi-experiments were 
conducted.  A third stream uses data on the recruitment of specialized labor to measure AI use 
and AI-related innovation (see Babina et al., 2022, 2024).  Prominent papers in this stream have 
found positive effects of this investment on output and product innovation, but have failed to find 
robust evidence that investments in AI use led to increases in productivity growth.  The 
productivity growth effects we document are potentially broader in scope than those found in the 
experimental literature and point to the optimistic possibility that AI could eventually lead to a 
significant and persistent acceleration in productivity growth across a broad range of industries. 
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Patent Data as an AI Innovation Indicator 

Firms that succeed in using artificial intelligence to create new goods and services have an 
incentive to patent at least some of their inventions.  If they fail to do so, other firms can copy 
their innovations without penalty or use patents to block the original innovator from applying 
their inventions in the marketplace.  This means that firms throughout the world are filing 
thousands of AI-related patents with the U.S. Patent and Trademark Office (Cockburn et al., 
2019; Webb et al., 2019; Giczy et al., 2021).  By law, the vast majority of patent documents 
become public 18 months after filing, even if they are still being adjudicated by the patent office.   
Each patent application is supposed to provide sufficient detail such that the invention could be 
replicated by an individual who is proficient in the technology.   

Patents are classified according to the technology they contain, and the U.S. Patent and 
Trademark Office has created a detailed taxonomy containing several hundred patent classes 
(and thousands of subclasses).  However, if we only count patents in those classes and subclasses 
specifically and primarily associated with “artificial intelligence,” we may vastly undercount the 
true scope and scale of AI-related invention.  The reason a narrow focus is insufficient is 
precisely the reason that this emerging technology is so important – the applications, current and 
potential, of artificial intelligence, machine learning, “big data,” and AI are so broad as to 
encompass virtually the entire economy.  Similar machine learning algorithms can be used in 
combines, cars, jets, banks, insurance companies, and travel agencies, and the patents that apply 
them to these different domains could show up across a vast range of classes, including classes 
associated with the domain of application of the patent, such as patent classes traditionally 
associated with tractors and combines.  A patent search procedure that examined only patents in 
the USTPO’s designated patent class for artificial intelligence or focused only on a handful of 
key words will miss far more than it captures. Our results to date show this to be the case, and we 
demonstrate that in the next section. 

Fortunately, developments in natural language processing permit a different approach.  By 
training machine learning algorithms to parse the full text of patent documents, we can, in 
principle, capture nearly all AI-related inventions, regardless of the patent class to which they 
may be assigned by patent examiners.  This gives us a broader, more complete data window 
through which to view the rise of AI-related invention.  Our research team created an ensemble 
of algorithms that can quickly sort through millions of patents, assigning each to an appropriate 
AI-related bin, or not, as the text of the patent dictates.  Our paper describes, in some detail, the 
creation and training of this algorithm, and efforts are currently underway to update our set of 
AI-related patents through patents granted by mid-2024. 

Once we have correctly identified AI-related patents, we possess a highly granular map of AI 
invention that identifies the corporate owners of the patents, the geographic location of the 
inventors who created the new technology, and the time when the invention was originally 
conceived.  We can thus trace AI-invention across time, geographic space, and industry space, 
and identify the firms that are most active in creating inventions in this new domain.  We present 
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some of the interesting findings one can infer from tabulations of the raw data in this map and 
quantify the impact of AI on American invention, labor demand, firm productivity, and other key 
variables.   

Mapping to Census Data 

In fulfillment of its institutional mission, the U.S. Census Bureau (hereafter Census) maintains 
detailed data on U.S. enterprises, including privately held enterprises that make few public 
disclosures about their business operations.  Furthermore, the data collected by Census provides 
additional details that go beyond what publicly traded firms are required to disclose.  For 
instance, Census gathers data not only on firms but also on the establishments – the individual 
business units – created by these firms, with identifiers that link them all to the parent firm; these 
data track mergers, acquisitions, and divestitures, ensuring that the mapping from parent firms to 
establishments remains current.  Among other things, Census surveys establishments on their 
output (broken down by industry), material inputs, capital investment, and employment.  Census 
has also invested in a detailed mapping that connects the patent owners (assignees) listed in 
USPTO patent data records to their own firm identification codes, adjusting for mergers and 
acquisitions  This allows us to match data on the creation of AI technology by individual firms to 
the possible impact of that technology on their productivity growth.  This, in turn, allows us to 
infer the impact of AI-invention on productivity.  Our data, linking tens of thousands of AI-
related patents to thousands of firms, are rich enough that we can explore the potential 
heterogeneity of this impact across time, industries, and firms of different types.  Some observers 
worry that AI technologies will create a kind of winner-take-all industry dynamic, in which the 
benefits of the technology accrue to a small number of firms that implement it first.  We can 
directly address this concern, establishing whether the productivity impact of AI invention is 
concentrated in a handful of leading firms or more broadly observed .  In this way, we can 
determine to what extent AI is fulfilling the promise of enhanced productivity predicted by its 
proponents. 

2.  Artificial Intelligence as a General Purpose Technology 
Leading consulting firms (McKinsey Global Institute, 2016), leading academics (Brynjolfsson 
and McAfee, 2014; Agarwal et al., 2021; Baily et al., 2023; Elandou et al., 2024), and leading 
CEOs have all claimed that industrial firms have now entered a new era, enabled by AI and 
related technologies, that can fundamentally transform business across the economy. If we 
translate the enthusiasm of these proponents into the language of economics, they are contending 
that rise of AI constitutes the emergence of a new “general purpose technology” (GPT). The 
economic literature on general purpose technologies (Bresnahan and Trajtenberg, 1995; 
Helpman, 1998) can be useful in helping us think about the impact of all this as a new 
technology of technological change. The confluence of AI-related technologies that has opened 
up these new opportunities are broadly applicable, potentially touching nearly every industry in 
the global economy.  But effective application of this suite of new technologies may often 
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require product and industry-specific knowledge.2  So, every industry and firm needs to invest in 
new technology and new capabilities (Brynjolfsson, Rock, and Syverson, forthcoming).  This 
suggests the possibility of inferring the impact of AI on the direction and pace of inventive 
activity in the U.S. by using patent data. 

Precisely because the potential impact of AI is so broad, and the need for complementary 
innovation to adapt it to the vast array of contexts in which it can be applied is so great, it may 
take time for this impact to manifest itself in aggregate statistics.  As David (1991) pointed out in 
his famous comparison of electricity and IT, the basic inventions necessary for the electrification 
of U.S. manufacturing were created decades before they were widely applied.  Eventually, this 
process resulted in a significant and persistent surge in U.S. productivity growth.  Of course, 
some firms and industries were in the vanguard of the process of electrification of manufacturing 
processes, achieving important gains years or even decades before other firms and industries. 

The publication in 2019 of The Economics of Artificial Intelligence: An Agenda represented an 
important step forward in economists’ investigation of this important technological shift.  
Several chapters in this volume take the view that AI is a general purpose technology, and 
explore that idea in a number of different ways.  Agrawal, Gans, and Goldfarb (2019, 2021) 
advance the idea that AI algorithms are “prediction machines,” enabling agents throughout the 
economy to better forecast outcomes, reducing uncertainty in a range of economic tasks.  
Agrawal, McHale, and Oettl (2019) suggest an important application of this idea, in terms of 
enabling firms to find productive new combinations of existing technologies.  Cockburn et al. 
(2019) also view AI as a new technology for invention.  However, a number of chapters in the 
volume point to the wide range of unanswered questions, and Raj and Seamans (2019), in 
particular, emphasize the importance of more firm-level data on AI invention, AI adoption, and 
its effects. Two recent nationwide surveys on technology adoption by U.S. firms from the 
Census, found that diffusion of AI and its various components (such as machine learning, 
machine vision, natural language processing, voice recognition and automated guided vehicles) 
is very low, with 3-6% of eligible firms adopting some form of AI, and with adoption skewed 
heavily towards the largest set of firms in the economy (Zolas et al. 2019; McElheran et al. 2024; 
Acemoglu et al. 2022). The limitations of the survey include the fact that the timing of adoptions 
are not identified. We seek to address this lack of firm-level data, by using patent to detect both 
evidence of AI inventions, as well as the timing of this invention and then linking data on 
patenting to the rich microdata maintained by Census on the innovating firms.   

3. Using Machine Learning Techniques to Identify AI Patents 
3.a  Identifying AI Patents 

Our goal is to construct a large dataset of AI-related and non AI-related patents in order to train a 
robust ensemble of machine learning models that can identify AI innovation across a wide range 
of invention domains. A natural approach to this task would be to leverage a schema such as the 
US Patent Classification (USPC), International Patent Classification (IPC) or Cooperative Patent 

 
2 Even the use of very general purpose technologies, like ChatGPT, requires some investment of time and thought 
on the part of the user.  See the fascinating discussionin Korinek (2023). 
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Classification (CPC) systems, which have categories for different types of AI-related 
innovations. The World Intellectual Property Organization and other patent offices employ 
machine learning models to assign patent application to IPC classifications. (WIPO 2019) Other 
researchers have taken various machine learning approaches to emulating IPC classification. 
(Benites et. Al 2018; Grawe et. Al 2017).  However, in practice this results in a few challenges. 
These classification systems use a deep, multi-label taxonomy in which a single patent can be 
assigned to multiple categories. The nebulous concept of AI is therefore captured using several 
non-overlapping classification labels. Unfortunately, this classification system is not perfect, 
with many inventions that describe intelligent technologies falling outside of the explicit AI 
categories in these systems, or assigned to categories in which there is a mix of both AI and non-
AI inventions. Likewise, some inventions that leverage AI technologies as a component in a 
larger invention may not be assigned to an AI classification at all.  

Much prior work in this area has also leveraged keyword-matching methods to identify patents 
that describe the use of particular algorithms, techniques, or areas of AI research. These methods 
achieve high precision in identifying AI patents, but suffer from low recall and may detect only a 
small fraction of the total patents leveraging AI technologies. For example, a component in an 
invention might be described as a model trained on a particular kind of data, without specifying 
the type of model in order to avoid restricting the scope of the patent. These inventions often 
clearly describe AI-related technologies, but do so without easily identifiable keywords, resulting 
in them being left out of these approaches. This is common in inventions in which the AI 
component is only a part of the greater invention, as opposed to the core of the proposed 
innovation.  

Training a model using patents labeled automatically by either of these methods could therefore 
result in a model that is highly biased towards particular phrases, or towards certain subfields of 
AI innovation. We instead adopt a manual annotation approach, identifying patents that describe 
or utilize AI technologies with a focus on covering a wide range of different applications and 
domains.  

The next several subsections of the paper provide some important details on our use of natural 
language processing (NLP) and machine learning (ML) techniques to build the patent dataset.  It 
includes terms and descriptions that may be unfamiliar to readers who have not studied the 
language processing techniques now widely used in computer science.  However, we include 
these details in the interests of providing transparency in terms of the techniques we have used 
and in the interests of facilitating comparisons with other efforts to identify AI-related invention 
using patent data.  Economists and other social scientists less interested in these details may wish 
to proceed to the final portion of this section, 3.h, found on page 10. 

3.b  Dataset Construction 
We construct our dataset using a semi-supervised iterative approach, in which we train an 
ensemble of machine learning models to identify AI patents and then apply this ensemble to the 
full USPTO patent corpus from 1990-2018. We then manually review selections at different 
decision thresholds, which can help us quickly find and validate high confidence AI and non-AI 
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patents for our dataset, as well as find and more carefully review patents that the model classified 
with lower confidence.  

We start with an initial set of 330 patents that had been manually identified as AI-related under a 
previous effort led by Dean Alderucci, a member of our research team with years of experience 
as a patent lawyer. For our initial assignment model, we augment this dataset with patents from 
class 706, the artificial intelligence category in the U.S. patent classification system to serve as 
the positive class, and select the negative class from all other categories in the system, excluding 
a few other AI-related categories. In this initial step, we train a simple decision tree model on a 
tf.idf weighted bag of words representation of the claims sections of the patent and extract the 
term features used by the model. We retrieve a ranked list of patents from a Lucene-based text 
index using these keywords and then label 50-100 documents at several points through the 
ranked list using the labeling process described in the previous section. This allows us to quickly 
find 1) AI patents that do not have these keywords and thus appear lower in the list and 2) non-
AI patents that ranked highly in the list, therefore helping us expand our AI and non-AI sets 
beyond what keyword matching might have identified. 

At the end of this first phase, we have a set of 1,200 evenly split AI and non-AI patents, which 
we now use to train a Support Vector Machine (SVM) model (Cortes and Vapnik, 1995). We 
applied the trained model to the full artificial intelligence class of the U.S. patent classification 
system and ranked them by how likely they were to be AI patents according to the model. We 
vet the highest confidence decisions, using a quicker process to verify the model’s predictions, 
and more carefully review 350 low confidence predictions generated by the model. After this 
second phase, we have a set of 2,000 patents, evenly split between AI and non-AI which we can 
use to run a broader set of experiments. 

3.c  Classification  

We then train and apply several alternative classifiers to label each patent as “AI” or “non-AI”.  
We compare the performance of these modules by measuring their F1 scores on a held-out test 
set of patents.  The classifiers implement two types of machine learning: statistical and neural.   

We split the set of 2,000 patents (1000 each AI and non-AI) into three subsets: assigning 10% for 
validation, 10% for evaluation, and 80% for training, maintaining even numbers of AI and non-
AI patents in all sets.  

3.d  Use of Statistical Models 

Using the text from each patent’s Abstract, Claims, and Description fields, we represent the 
patent as a bag-of-words vector with tf.idf weight scores. We train the following statistical 
machine learning models using the Python scikit-learn toolkit: 1) Naïve Bayes, 2) logistic 
regression, 3) random forest (Ho, 1995), and 4) linear support vector machine. We tune the 
hyperparameters for each model using three-fold cross-validation (in which 1/3 of the data is 
held out as a validation set while the model is trained on the remaining two thirds), and average 
performance scores across the three trained models to determine the best parameters. 

3.e  Use of Neural Models 
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We implement three neural classification models in addition to the above models. As before, we 
use the text of the Abstract, Claims, and Description fields only. We use the fastText toolkit built 
by Facebook (https://en.wikipedia.org/wiki/FastText) to build skipgram word embeddings 
(Mikolov et al. 2013) on the text of all patents from 1990–2018. (Doing so provides word 
embeddings tailored specifically to the language of patents.) These embeddings are the first layer 
in all our neural models that form vectors for use in later layers. In each neural model, the 
embeddings forming the input text are converted via several layers in the neural network to a 
final AI or Non-AI decision.  We apply our three neural transformation architectures separately 
to each of the three patent sections, and at the end concatenate the final representations for the 
three sections together to obtain a final representation of the document, which is then used by the 
final classifier to predict whether the document is AI or not.  

Convolutional neural network (CNN): A convolutional neural network, also called a time-delay 
neural network (Waibel et al. 1989) applies a sliding window left-to-right over the text to extract 
local patterns that may be useful for classification. After traversing the whole sequence of text, 
we pool the extracted features using a max pooling layer to obtain a single vector, which is then 
used for the final classification decision. We use multiple convolutional layers concurrently with 
different sliding window sizes, or kernel widths, in order to extract patterns of varying lengths, 
and concatenate the final representations together for each section of the patent.  

Recurrent neural network (RNN): An RNN model (Rumelhart et al. 1988) applies a function 
sequentially to a series of input word embeddings, and includes a mechanism to allow the model 
to retain information encountered early in the sequence for later application. The function 
outputs a vector after reading each input word, and after processing the whole sequence we again 
use a max pooling function to combine all the outputs into a single vector representation. We 
apply a single recurrent layer in both directions over the text using a Gated Recurrent Unit 
(GRU) (Cho et al. 2014). We concatenate the final outputs in both directions to create the final 
vector representation for the classification decision. 

Hierarchical attention network (HAN) (Yang et al. 2016): The model proceeds ‘top-down’, 
breaking the patent down into sentences, and subsequently words. For each sentence, a recurrent 
layer is passed over its word embeddings and the outputs for the words are combined using an 
attention layer. This network layer allows the model to dynamically weight each of the outputs 
from the recurrent function, essentially allowing the model to decide how important each word in 
the input is. The weighted outputs are then summed to create a single representation for the 
sentence, which is passed to the final classification decision.   

We tune the hyperparameters of our neural models using ten-fold cross-validation and generate 
predictions by taking the average of the predictions for the ten trained models. 

3.f  Model Performance and Comparison 

Table 1 Statistical and neural model performance on AI patent classification 

Model Test Micro 
F1 

Naïve Bayes .765 

https://en.wikipedia.org/wiki/FastText
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Logistic Regression .885 
Random Forest .910 
Linear SVM .890 
CNN .901 
RNN .905 
HAN .911 

 

The evaluation performance of each model is shown in Table 1, using the F1 score, which 
weights Precision (accuracy) and Recall (coverage) equally. Average model performance is 
fairly strong on the evaluation set, ranging from .81 to .91 F1 across the various different model 
architectures.  

However, the predicted likelihood that any given document is AI can widely vary across the 
different models, so we use these differences to identify areas where our models may be 
overfitting to the data due to the data size. For each pair of models, we identify the 25–30 
documents with the largest differences in model prediction scores. These indicate documents that 
may be very challenging for one of the models and therefore might most benefit from further 
manual review. We collect a set of 328 patents and manually review them, creating a small 
“challenge” set which will help indicate how well any model is generalizing to a set of 
challenging sub-areas. While in some cases we find examples that indicate strong overfitting to 
particular terms, such as “training” or “network”, many documents in the challenge set come 
from conceptually similar technology areas that would be difficult to classify as AI or Non-AI 
even for humans. These include particular algorithm formulations that resemble rule-based AI 
systems, patents that contain boilerplate language about how an invention may incorporate 
statistical modeling components, and certain image processing techniques commonly used as 
inputs to more advanced AI systems that in themselves might be considered not-AI. 

3.g  Model Ensembling 

It is fairly common to obtain better and more stable classification performance by merging 
(ensembling) the results of classifiers built on different principles. Using the above challenge set, 
we combine the various model architectures to create a more robust model ensemble. For each 
model pair from the challenge set selection step, we assign a portion of the labeled documents 
for that pair to either a new training, validation, or test set. We further supplement these new sets 
with documents from the original training and evaluation sets. For the evaluation set, we use the 
entire original evaluation set, creating a new evaluation set with 298 documents. For the 
validation set, we use 50 each of AI and non-AI labeled documents from the original training set. 
Finally we add the rest of the original training set (1700 documents) to the challenge set 
documents to construct the ensemble training set. 

As inputs to the ensemble model, we use both the tf.idf bag-of-words representation (used by the 
statistical models) and the AI likelihood scores produced by each trained model. In addition we 
use one feature for each statistical model and eleven features for each neural model (namely the 
predictions from each of the ten cross-fold models plus their average). For the ensemble models, 
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we experiment with a random forest, a support vector machine using an RBF kernel, and logistic 
regression, tuning the parameters for the models on the validation set.  

We report micro F1 statistics on the validation and test sets in Table 2. We show results on our 
challenge-augmented datasets using the model ensemble features as well as just using the tf.idf 
representation of the patents. The ensemble features produce large performance increases: 0.7–
6.0 F1 scores on the validation set and 4.3–8.0 F1 scores on the test set. The more-varied 
representations learned by the different models therefore prove to be quite valuable in discerning 
between the more challenging documents in these sets. 

Table 2: Validation and Tests of Various ML models 

Model Features Validation Micro F1 Test Micro F1 
Logistic Regression TFIDF .887 .792 
Logistic Regression TFIDF+Ensemble .908 .872 
Random Forest TFIDF .901 .839 
Random Forest TFIDF+Ensemble .908 .886 
SVM TFIDF .873 .819 
SVM TFIDF+Ensemble .937 .862 

 

Using the random forest model, we label all patents granted by the USPTO between 1990–2018 
and define two sets based on prediction score thresholds at 0.7 and 0.95.  These contain 146,952 
and 52,896 patents respectively, and are listed below. A full representation of the machine 
learning process to identify the AI patents is given in Figure 1. 

3.h  Comparison with Other Studies of AI-Related Patenting 

A rapidly growing number of other studies also use patent data to identify AI-related inventions.  
One early study that influenced our own work is Cockburn et al. (2019).  These authors select 
patents from two U.S. Patent Classes: 706, which is the designated patent class for artificial 
intelligence patents, and 901, which is the designated patent class for robotics.  In addition, the 
authors search patent titles for a small number of specific keywords, such as “neural networks,” 
and include patents containing these keywords regardless of which   Combining these two 
approaches, the authors find 13,615 unique “AI” patents granted between 1990 and 2014.  Webb 
et al. (2019) take a broadly similar approach with a focus on narrower categories of advanced 
technology patenting, identifying over 2,000 patents related to “machine learning” and over 
4,000 patents related to “neural networks.”  In contrast, our methods identify between 52,896 and 
146,952 AI-related patents granted between 1990 and 2018, depending on the stringency of our 
definition. The larger numbers we identify reflect the differences between our empirical 
approach and that taken by these other studies.  First, we examine the core text of the patent 
(including the patent claims and the patent description), not just the title and abstract.  Second, 
our ensemble of machine learning algorithms allows us to detect AI-related patents even if they 
do not explicitly include the small number of keywords used by, for instance, Cockburn et al. 
(2019).  Third, we do not limit our purview to a handful of patent classes – and one of the most 
important findings of this paper is the (very) large number of AI-related inventions that are 
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classified into patent classes associated with the domain of application of the invention rather 
thant the patent class traditionally associated with the “upstream” AI concepts.   

On the other hand, we exclude, by design, a number of the patents Cockburn et al. (2019) include 
in their designated AI patent set, and this difference is easiest to describe in the context of the 
“robotics” patents from class 901.  Patents in this category can include “hardware” patents that 
represent important advances in the arms, sensors, and other components of a robot “body,” but 
have little to do with the algorithmic advances or software innovations that have equipped recent 
generations of robots with more artificial intelligence, and it is the latter categories of invention 
on which we seek to focus.  We do not exclude all patents with a hardware component, but our 
methods are designed to exclude those that are not somehow also related to the ability of a robot 
or other AI-enabled system to learn, think, and respond intelligently to its environment. 

Our focus is therefore quite different from a number of other closely related patent studies, which 
include patent classes or keywords that give significant weight to hardware innovations in 
robotics, computing machinery, semiconductors, and related domains, including Keisner et al. 
(2015), De Prato et al. (2018), and Van Roy et al. (2019).   The latter study identifies roughly 
155,000 patents around the world that the authors link to AI, which would appear roughly the 
same as the number of AI patents we identify using our less stringent definition of AI-
relatedness.  However, a significant number of the patents identified by Van Roy et al. (2019) are 
“pure hardware” patents of the kind we seek to exclude.  These authors use an extensive set of 
keywords to indentify AI patents, but that list explicitly includes keywords related to hardware 
inventions describing robot bodies but not brains.  Van Roy et al. (2019) also look far beyond the 
USPTO, identifying “AI-related” patents with the requisite keywords anywhere in the world.  
While it is certainly useful to look at AI-patenting outside the United States, a large fraction of 
the total AI patents Van Roy et al. identify are granted by the China’s patent office to entities 
which patent their AI-related inventions in China and nowhere else.  This is problematic, because 
China’s patent system is, to put it mildly, still a work in progress, and there is strong reason to 
believe that China’s patent office grants patents to inventions whose limited novelty might not 
qualify for patent protection elsewhere (Branstetter et al., 2018).  Well-publicized efforts by the 
Chinese government to promote AI and generous subsidies for domestic patenting have opened 
the gates to a flood of domestic patenting of questionable quality.  Van Roy et al.’s list of top AI 
patenting entities includes organizations like China’s State Grid Company, which is well known 
to China energy experts for its monopolistic control over much of the nation’s power grid, but is 
not globally recognized as a leader in AI.  Van Roy et al.’s data suggests that Japan is close 
follower behind China in terms of AI patenting, but this almost surely reflects high levels of 
Japanese patenting in hardware categories of the kinds discussed above.  Many AI industry 
insiders view Japanese firms as seriously lagging behind American counterparts in AI 
capabilities. 

To the best of our knowledge, the only other papers explicitly using machine learning techniques 
to identify AI-related patenting are Mann and Puttman (2018) and Giczy et al. (2021). The 
former looks at a much broader category of invention than just AI-related patenting and seek to 
measure all innovations related to automation, and purely mechanical devices like an automatic 



 12 

taco machine and a hair dye applicator qualify as automation patents, even though they would 
not appear to qualify as AI patents. In the latter study, the USPTO authors identified eight AI 
component technologies (e.g. natural language processing, machine learning, as well as hardware 
applications) and then trained a machine learning model for each of these eight components to 
generate the Artificial Intelligence Patent Database (AIPD). We incorporate these sets of patents 
(with 95% confidence) into our analysis and explicitly compare and contrast the firm-level 
outcomes between the two patent sets. The AIPD (95% confidence) consists of approximately 
290,000 patents (compared to the 52,896 in our 95% confidence set), with approximately 46,000 
patents overlapping across both datasets. Despite the overlap, the results from our more 
narrowly-defined set of patents differ substantially from that of the USPTO, and we believe our 
approach offers significant advantages. 

4. Mapping AI Invention in Geographic Space and Time  
Our methodology yields a large number of patents originating from many different technological 
fields. We highlight some of the interesting patterns in the data before we begin our econometric 
analysis of the matched patent-census data set.3  

We start by noting the counts of AI patents over our time period, which currently spans through 
2018. Figure 2 plots the growth of AI patents found in the set of USPTO data. The blue bar 
represent the counts with 70% confidence, while the orange bar represents the counts with 95% 
confidence. For the purposes of our analysis, we will predominantly focus on the latter (95% 
confidence). The number of AI-related innovations increased dramatically between 2000 and 
2018. In 2000, there were 539 AI-related patents granted (95% confidence) and this number 
increased to more than 6,300 in 2018. 

We can utilize the geographic data for the assignees or inventors of these patents to chart the 
origination of these patents. A number of well-known experts have raised the concern that the 
U.S. is now lagging behind other countries, especially China, in terms of research investments in 
AI (Lee, 2018).  Figure 3 assigns a geographic location to each patent, based on the location of 
its inventors.  Since we are using patents granted by the USPTO, these data will have a well-
documented U.S. bias, since inventors tend to take out patents in their home market first and 
patent selectively abroad. However, even allowing for this bias, the overwhelming dominance of 
U.S. inventors in the AI space is striking.  Conversely, the tiny numbers of AI patents ascribed to 
mainland Chinese inventors is equally striking.  Our data identify more AI patents created by 
Taiwanese inventors than on the Chinese mainland.  Given the enormous size of the U.S. 
economy – still larger than China’s at market exchange rates by a conventional measure – and 
the highly developed nature of the AI economy within the U.S., if Chinese inventors have 
valuable new technology that they eventually wish to deploy abroad, they would seem to be 
running a nontrivial risk in not patenting that technology in the U.S.  These data do not support 
the notion that the U.S. is falling behind in AI invention., 

 
3 We are currently in the process of updating our data on AI-related patents through the most recent cohort of U.S. 
patent grants.   
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In addition to the country codes of the assignees, we can utilize the geographic data of the 
inventors to plot where in the U.S. the AI-related innovations are taking place.  This picture is 
rendered in Figure 4.  Perhaps unsurprisingly, we find that AI patenting activity is concentrated 
in the high-tech areas of Silicon Valley, Seattle, Austin, and New York.  

Finally, we can plot the technology classes that have seen the most activity in terms of AI. Figure 
5 plots the 25 most common USPC codes found on the patents of AI innovations.  The most 
common USPC codes consist of 382, Image Analysis, and Data Processing (USPC 702 – 709). 
However, it is clear from this graph that AI patents appear to be widely distributed across a very 
large number of patent classes, with patents applying AI to particular domains showing up in the 
classes associated with those domains of application.  This is, perhaps, what we would expect if 
AI truly is a general purpose technology, and these findings lend support to our methodology for 
the identification of the patents. 

In order to gain a better understanding of how AI is impacting the larger economy, it is necessary 
to link the AI patents and accompanying assignees with data on firm performance. We can do 
this through an existing mapping between U.S. patents granted to U.S. firms and detailed firm-
level data housed at the U.S. Census Bureau. The steps for creating this linkage is described 
below. 

5. AI Invention at the Firm Level 

5.a Linking Patents to Firms Using the Patent to Census Crosswalk 

Once the patents have been identified, we can link the U.S. assignees of these innovations to 
firm-level microdata using an extended USPTO Patent to Census Crosswalk found in Fort et al. 
(2020) and first generated by Graham et al. (2018). This crosswalk builds upon previous efforts 
by Kerr & Fu (2008) and Balasubramanian & Sivadasan (2011) that have linked the NBER 
patent database to Census data. In the Graham et al. (2018) approach, the authors bring in the full 
USPTO database from PatentsView and incorporate a triangulation approach that combines 
fuzzy name and address matching of the assignee with the firm name and address found in the 
Census Business Register (BR), and inventor links in the Longitudinal Employer Household 
Dynamics (LEHD) data, that match employees with their employers. The extension of this 
approach occurs in the years prior to widespread availability of the LEHD and in the most recent 
years. The resulting crosswalk improves upon previous efforts to link patent data with Census 
data that relied solely on the assignee matches. The inventor links are used to disambiguate 
many-to-one firm-level matches and thus provide a cleaner and more accurate linkage then 
previous efforts.  

The result of this crosswalk is a patent-to-Census firm identifier for all U.S. patents granted 
between 2000 and 2019. Using this crosswalk, we are able to link approximately 85% of AI-
related innovations. These firms are then linked to the available sets of Census microdata 
described below. The resulting set of firms and their AI innovations form the basis of the 
analysis. 
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In addition to the firm-level data across various Census datasets, we also incorporate worker-
level data from the LEHD to construct measures of earnings ratios for employees at the 90th, 50th, 
and 10th percentiles of their firms’ wage distributions. The LEHD provides us with quarterly 
earnings data compiled from state unemployment insurance (UI) wage records and the Quarterly 
Census of Employment and Wages (QCEW) data (see Abowd et al. (2009) for notes on data 
construction and source files)). The coverage of this data is broad (roughly 98% of private sector 
employers submit wage records), but state level participation has varied over time, ranging from 
approximately 20 states at the start of our analysis (1997) to 49 states by the later years of our 
sample.  

The firm links from the USPTO match are able to identify the set of workers and their 
corresponding earnings in each quarter. These earnings consist of traditional hourly or salary 
earnings, along with bonuses and other potentially irregular large payments (including income 
derived from the exercise of stock options by employees at high-tech AI-inventing firms). Since 
these irregular payments can have a significant impact on the measured wage distribtuion, we 
winsorize the earnings distribution at 99 percent of the state-year-quarter distribution 
(approximately $125,000 per quarter on average). We also only keep the “full-quarter” earnings 
of workers (defined as being employed in the previous quarter and the following quarter) and, to 
construct the annual measures of earnings ratio for each firm, we first construct the earnings ratio 
and then take the four quarter average.  

5.b The Characteristics of AI-Inventing Firms 

Before delving into our analysis, it will be helpful to review the types of firms that are innovating 
in AI and how they might differ from the typical manufacturing firm, or even typical innovating 
firm. We categorize each firm as follows and compare their 2018 firm characteristics. For firms 
with at least 1 patent in their portfolio, these firms are classified as patenting firms, while firms 
with at least 1 AI patent (95% confidence from our classifier) are categorized as an AI firm. 
Table 3 compares their baseline characteristics in 2018.  

Table 3: Summary Statistics by Firm Type, 2018 
Variable 

ALL US FIRMS 
PATENTING 

FIRMS 
FIRMS WITH AI 

PATENTS 
Mean Employment 16.67 154.1 657.3 
Mean Age 14.42 21.95 22.81 
Mean Payroll per Employee 40.19 67.4 103.4 
Mean Revenue per Employee 207.1 297.0 356.1 
     % Multi-unit 3.21% 21.7% 44.4% 
     % Multinational 1.24% 17.4% 32.7% 
Observations 6,000,000 90,000 2,600 

 

The first thing to notice is how much larger firms with AI patents are relative to their 
counterparts. Firms with patents are on average nearly 10x larger than the average U.S. firm, 
while firms with at least 1 AI patent areon average nearly 40x times larger. Innovating firms are 
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also significantly older on average, more capitalized (pay higher earnings per employee), and 
significantly more likely to be multi-unit and multinational.These findings correspond with 
national indicators on AI adoption found in Zolas et al. (2021) and McElheran et al. (2022), who 
find that adoption of AI is skewed towards very large and older firms.  

When we limit the sample to manufacturing firms, similar scale effects appear and are even more 
stark, as the size difference between the average manufacturing firm and manufacturing firms 
with an AI patent are 75x larger. We see similar trends with regards to multi-unit and 
multinational status, as well as capitalization and productivity per worker.  

Table 4: Summary Statistics by Manufacturing Firm Type, 20174 

Variable 
ALL US MANU 

FIRMS 
PATENTING 

MANU FIRMS 
MANU FIRMS 

WITH AI PATENT 
Mean Employment 69.8 517.8 5,253 
Mean Age 19.62 27.34 32.52 
Mean Payroll per Employee 41.79 62.48 93.72 
     % Multi-unit 8.0% 33.1% 79.1% 
     % Multinational 9.3% 40.5% 79.5% 
Manufacturing Statistics 
     Production Worker Share 71.7% 65.7% 59.8% 
     Mean Capital Stock 6,529 57,400 875,900 
     Mean VA per Employee 123.2 173.0 298.5 
     Mean Capital per Employee 35.92 72.41 87.30 
     Mean TFP 2.081 1.980 2.097 
     Mean Sales per Employee 228.6 332.6 607.8 
Observations 236,000 20,500 450 

 

Looking at the distribution of these same statistics, the differences are just as stark. Figure 6 plots 
the Kernel density for size and earnings across the 3 firm types in 2018 and then looks at the 
distribution of the different manufacturing characteristics, namely: value-added per worker, 
production worker share, total factor productivity (TFP) and capital-labor ratio. We can see that 
the distribution of employment across the firm types systematically differ as the majority of U.S. 
firms tend to be relatively small. Patenting firms have a more normalized distribution, with a 
slightly fatter tail, while firms with AI patents are primarily concentrated in large firms (firms 
with 1000+ employees). In the distribution of payroll per employee, we find that the distribution 
across all firms is normal, with lowest variability and highest means in firms with AI patents. 
This same pattern persists in one of the measures of productivity for manufacturing firms (value-
added per employee), but with more similarity across the firm types with regards to TFP. Our 
capital-labor ratios also show that firms with AI patents tend to have higher capital-labor ratios. 

 
4 We focus on 2017 for manufacturing firms as that was the most recent Economic Census year at the time the 
original analyses was undertaken, ensuring adequate coverage of the key manufacturing variables, such as capital 
stock, value-added, TFP and production worker share. Note that the data are collected at the establishment-level and 
aggregated to the firm-level. TFP is calculated as the employment-weighted average TFP of each manufacturing 
establishment within a firm. 
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Our measure of production worker share is intended to capture the labor demand across the 
different firm types, with production workers typically being classified as lower skilled. Our 
density plots reveal consistent patterns as AI patenting firms tend to have the lowest labor 
demand for production workers, relative to patenting and all manufacturing firms.  

To summarize, firms with AI patents differ across a number of important dimensions from the 
typical U.S. firm and from innovating firms (defined as firms with patents). They are on average 
much larger, older, better capitalized, more productive and significantly more likely to be 
multinational and multi-unit. They also employ fewer lower production workers on average. The 
next section describes how we estimate the impact of AI on both productivity and labor demand. 

6. Estimating the Impact of AI on Productivity and Labor 
Demand 

The next section describes our methodology for assessing the impact of AI innovations on 
productivity and labor demand. This section is descriptive as the decision to innovate in artificial 
intelligence is likely to be endogenous with other firm decisions that could potentially impact the 
outcomes that we are measuring. In the previous section, we demonstrated that the firms that 
invest in AI-related innovations are categorically different from the vast majority of firms in our 
data. These differences are unlikely to result entirely from the decision to innovate in AI, but are 
due to a combination of several factors, many of which are related.  Thus, while our language 
may, in places, suggest a causal relationship between AI invention and other variables of interest, 
we are not, at this point, making any strong claims about causality. 

We first take a standard approach, using the advent of AI as our treatment and employing simple 
linear regression models to measure the impact of this treatment on four separate outcomes: 
employment, revenue per employee, value-added per employee and production worker share. 
The sample of firms used in these regressions is the entire set of manufacturing firms in the U.S. 
between 1997 and 2018.  In these regressions, we make no effort to “match” our AI firms with 
firms that are very similar in observable characteristics, but do not create AI patents.  

Our second approach attempts to partially control for endogeneity and confounding factors that 
we cannot measure in the data by matching each firm in our set of AI-inventing firms with a 
closely-related counterpart that has not generated AI patents. We then measure the before and 
after effects of the AI patent. In both approaches, we find that AI innovations are positively and 
significantly associated with higher employment, more revenue per employee, greater value-
added per employee and fewer production workers (lower-skilled labor). We also find that the 
strength of this treatment grows in the years following the initial innovation, with employment 
being approximately 25% higher and revenue being 40% higher five years after treatment. 

6.a  Revenue per Worker and Value Added 

If AI is raising firm productivity, than it should lead not only to more patents but also higher 
levels of revenue, by increasing product quality, and thus product demand, or it should lead to 
lower production costs.  Our approach to the measurement of these effects can be motivated by a 
standard Cobb-Douglas production function, in which counts of AI patents or a dummy variable 
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equal to 1 when AI patenting begins are introduced as a separate regressor.  Thus, suppressing 
time subscripts, output can be described as: 

 

𝑄! =	𝐾!"𝐿!
#𝐴!

$𝑒%! 

taking the logs of both sides and normalizing output by employment gives us  

𝑞! − 𝑙! = 	𝛼𝑘! 	+ 	𝜑𝑎! +	𝜀! 

Here q is output, k is capital, l is labor input, and a is the firm-level measure of AI innovation.    
We allow for the existence of individual effects which are potentially correlated with right hand 
side regressors, such that 

      

The traditional procedure is to use a “within” panel estimator to eliminate the individual effect, 
which is what we do.  The coefficient of interest, , picks up the effect of changes in firm i’s 
own AI intensity on its productivity or outcome variable. Our  primary outcome measures will be 
revenue per employee and value-added per employee. Our firm controls include the firm’s 
capital stock, multinational status, age, as well as individual and yearly fixed effects.  

Our primary variable of interest is an indicator variable (1/0) showing whether the firm has 
obtained at least one AI patent or not.  When incorporating firm fixed effects, our identification 
hinges on firms which transition into AI innovation over our time period, 1997-2018. The results 
from our initial specification applied to manufacturing firms can be found in Table 5 below 

Table 5: Impact of AI Innovations on Firm Productivity, 1997-2018 (manufacturing only) 

 (1) (2) (3) (4) (5) (6) 

 

Ln Total Value of 
Shipments  per 

Employee 
Ln Value Added Per 

Employee 
Ln Total Factor 

Productivity (TFP) 
AI Treatment 
(1/0) 

 0.272***      0.225***      0.0830***     
 (0.0322)      (0.0337)      (0.0225)     

IHS AI Patents     0.148***      0.104***      0.0565***  
    (0.0161)      (0.0166)      (0.0119)  

Ln Capital Stock  0.310***   0.310***   0.301***   0.301***   -0.0633***   -0.0633***  
 (0.00195)   (0.00195)   (0.00203)   (0.00203)   (0.000888)   (0.000888)  

Age Bins  Yes   Yes   Yes   Yes   Yes   Yes  
Industry-Year FE  Yes   Yes   Yes   Yes   Yes   Yes  
Firm FE  Yes   Yes   Yes   Yes   Yes   Yes  

Observations         
1,124,000  

        
1,124,000  

        
1,124,000  

        
1,124,000  

        
1,124,000  

        
1,124,000  

R-squared  0.674   0.674   0.921   0.921   0.706   0.706  
Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance 
at the 5%, 1% and 0.1% respectively. Each regression includes a constant, age bins, multi-unit and multi-

e lit it iu= +

j
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national indicator controls, which are not displayed here. Note that our Multi-Unit regressor drops out 
from the within-firm specification as the firm-identifier for multi-unit status does not change.  

Taking our standard linear approach, we find that the presence of AI patents among 
manufacturing firms has a positive and significant effect on both revenue per employee and 
value-added per employee. According to the coefficient values from our fixed effects regression, 
an AI patent is associated with a 27.2% increase in total value of sales (revenue) per employee, a 
22.5% increase in value-added per employee, and an 8% increase in TFP. When we convert our 
treatment into a continuous measure using the inverse hyperbolic sine transformation of the 
cumulative total number of AI patents held by the firm (i.e., the AI patent “stock”), the measured 
impact of AI patents on productivity remains positive and significant.  

It is also worth comparing the treatment coefficients across the different types of AI assignments. 
In the next exercise, we analyze the treatment effect for firms that have AI patents with 75% 
confidence, firms with AI patents at 50% confidence, firms with the USPTO’s AIPD patent 
designation (95% confidence), firms with AI patents that were identified by both our algorithm 
and USPTO’s algorithm and firms with AI patents identified by USPTO’s algorithm only.  

Table 6: Impact of different classifiersfor AI innovations on labor productivity and TFP, 
1997-2018 (manufacturing only) 

 (1) (2) (3) 
 Ln Total Value of 

Shipments  per 
Employee 

Ln Value Added Per 
Employee 

Ln Total Factor 
Productivity (TFP) 

Baseline AI 
Treatment (1/0) 

0.272*** 0.225*** 0.0830*** 
(0.0322) (0.0337) (0.0225) 

AI Treatment (75% 
Confidence) 

0.255*** 0.199*** 0.0589*** 
(0.0253) (0.0267) (0.0166) 

AI Treatment (50% 
Confidence) 

0.232*** 0.178*** 0.0421** 
(0.0219) (0.0234) (0.0147) 

AIPD Treatment 
(95% Confidence) 

0.221*** 0.179*** 0.0291* 
(0.0186) (0.0204) (0.0123) 

Baseline & AIPD 
Treatment 

0.271*** 0.222*** 0.0802*** 
(0.0328) (0.0344) (0.0228) 

AIPD Only 
Treatment 

0.117*** 0.0933*** 0.000596 
(0.0186) (0.0201) (0.0117) 

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance 
at the 5%, 1% and 0.1% respectively. Each regression is identical to the specification in Table 5, but with 
a different binary treatment effect.  AIPD denotes patents indentified as AI-related by the USPTO as 
described in Giczy et al., 2021. 

Across all of the various outcome measures, our baseline AI classifier has the strongest measured 
association with manufacturing firm productivity. As the classifier broadens to include patents 
where we are less confident in their connection to AI, we see a declining measured association 
with sales per employee, value-added per employee, and total factor productivity. We see a 
similar decline in the magnitude when using patents in the USPTO’s AI patent database that are 
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not also included in our own. 

The next section describes our method for estimating the changes to labor demand.  

6.b Labor Demand 

Matching firm-level data on AI patenting to firm-level data on employment allows us to make 
potentially significant contributions to the current understanding of the impact of AI on the labor 
market.  Due to the limited availability of firm-level data, some prior research has used textual 
descriptions of the task content of various occupations and information on the emerging 
capabilities of AI algorithms to “predict” the possible impact of AI on employment (e.g., 
Brynjolfsson, Mitchell, and Rock, 2018).  We find this line of research useful, but because it is 
not based on actual observations of real firms altering their labor demand as they create and 
deploy AI technology within the firm, this line of research is necessarily speculative.  In contrast, 
our data match allows us explore how leading firms adjust their employment as they create AI 
technology.5   

A large literature in labor economics documents the impact of earlier generations of information 
technology on the relative demand for skilled labor (Autor et al., 1998; Autor et al., 2003).  As 
earlier waves of automation and computerization advanced, much evidence suggests that demand 
for the most skilled workers increased but demand for the less skilled workers decreased, 
accounting for a significant degree of the rise in income inequality that has characterized U.S. 
labor markets since the 1970s.6  Many observers worry that AI will continue, and perhaps even 
exacerbate these longstanding trends.   

As we noted in our introduction, the richness of our data enables us to probe for the existence of 
these effects at the level of the firm in a number of different ways.  One empirically feasible 
approach is to estimate an equation along the lines of Berman, Bound, and Griliches (1994), who 
derived an equation explaining the nonproduction worker share of total employment in 
manufacturing industries as a function of relative wages, capital intensity, and a series of 
additional variables proxying for skill-biased technological change, including industry-level 
measures of R&D and computer investment.  Following their basic logic, though not their exact 
specfication, we can use firm-level data from Census to estimate the following equation: 

𝑑𝑙𝑛(𝑆!) = 	𝛽& +	𝛽'𝑑𝑙𝑛(𝐾!) + 𝛽(𝑑𝑙𝑛(𝐴!) +	𝜀!	 

where S measures changes in the nonproduction worker share of total firm i employment over 
some period of time, modeled as a function of changes in the log of the capital stock of firm i, 𝐾! 

 
55 The work of McElheran et al. (2024) and Babina et al. (2022, 2024) are examples of studies that use firm-level 
data on AI adoption or use to measure their impact on firm-level outcomes, including employment.  Our work 
complements this recent research. 
6  The evolution has been complicated by employment “polarization,” with American job creation in recent decades 
concentrated in high-skill intensive jobs and low-skill intensive jobs.  A hollowing out of middle-skill, middle-
income jobs has led to wage declines for workers in these categories – unable to compete for high-skill intensive 
jobs they have fallen down the skill ladder.  See Autor and Dorn (2013) for a recent explanation. 
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and a measure of changes in the AI-intensity of firm innovation, Ait, over the same time period.7 
In our case, we will use both the dummy variable indicating the inception of AI-related patenting 
in firm i and the inverse hyberbolic sine transformation of the firm’s AI patent stock, rather than 
a log transformation, as a way of contending with the well known “zero problem.”  Our current 
specification lacks the relevant wage data to control directly for changes in production worker 
and nonproduction worker wages, so we incorporate individual effects into our model in attempt 
to control for these within-firm changes.  In all cases we take natural logs of the key variables. 

Table 7: Impact of AI Innovations on Labor Demand, 1997-2018 (manufacturing only) 
 (1) (2) (3) (4) 
 Ln Production Worker Share 

AI Treatment (1/0)  -0.114***   0.00796        
 (0.0164)   (0.0174)        

IHS AI Patents        -0.0445***   0.00313  
       (0.00744)   (0.00960)  

Ln Capital Stock  0.00643***   0.00990***   0.00641***   0.00990***  
 (0.000415)   (0.000620)   (0.000414)   (0.000620)  

Age Bins  Yes   Yes   Yes   Yes  
Industry-Year FE  Yes   Yes   Yes   Yes  
Firm FE  No   Yes   No   Yes  

Observations 
             

1,124,000  
             

1,124,000  
             

1,124,000  
             

1,124,000  
R-squared  0.833   0.949   0.833   0.949  

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance at the 5%, 
1% and 0.1% respectively. Each regression includes a constant, multi-unit status and multinational status, which are 
not displayed here 

Our results using this approach suggest that transition into AI invention has little to no impact on 
the firm’s own production worker share when controlling for firm fixed effects.  Likewise, 
inclusion of the firm’s (transformed) patent stock has no measured impact on production worker 
share once firm effects are taken into account. 

6.c Earnings  

Although within-firm changes in the share of production workers resulting from transition into 
AI invention or expansion of the AI patent stock appear to be negligible, there may changes in 
the earnings distributions of workers within these firms.  Three decades of research in labor 
economics document the dispiriting reality that less educated Americans have faced relatively 
weak demand for their services, stagnant or declining wages, and an increasingly polarized job 
market (Autor, Katz, and Kearney, 2006; Autor and Dorn, 2013). While a number of other 
economic forces, including globalization, declining union density, and falling minimum wages, 

 
7 Berman, Bound, and Griliches (1994) use a measure of capital intensity (K/Y) where we use a measure of capital 
stock.  However, we do not find robust effects of AI invention on production worker share and do not expect that 
substiting capital intensity for capital stock would change these results.  In the Census data, capital stock is only 
computed accurately for manufacturing firms, so inclusion of capital-stock relates variables effectively limits 
purview of the study to the manufacturing sector. 
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have also contributed to rising income inequality over the past four decades, economists 
generally agree that skill-biased technological change may be the single most important cause 
(Autor, 2014).  If AI invention really does transform the economy to the degree that proponents 
expect, then it may significantly accelerate and exacerbate the kind of skill-biased technological 
change already documented by labor economists.  We examine whether this is the case by 
linking our firms – both the AI-inventing firms and their same-industry peer firms – to the 
Longitudinal Employer Household Dynamics (LEHD) database widely used by labor 
economists.  We are able to conduct this match for firms and establishments in 49 out of 50 
states.  In principle, this allows to probe the impact of transition into AI invention on the 
distribution of employee earnings within firms over time. 

Our analysis on the changes to the earnings distribution follows the general methodology in 
Autor, Katz and Kearny (2008), who look at changes to the 90-10, 90-50 and 50-10 earnings 
ratios. We do something similar for our set of firms and estimate an equation along the lines of: 

𝑑𝐸𝑅! =	𝛽& +	𝛽'𝑑𝑙𝑛(𝐿!) +	𝛽'𝑑𝑙𝑛(𝐾!) + 𝛽(𝑑𝑙𝑛(𝐴!) +	𝜀!	 

where ER reflects either the 90-10, 90-50 or 50-10 earnings ratios of firm i over some period of 
time, modeled as a function of changes in the employment L, the log of the capital stock of firm 
i,  Kit, and a measure of changes in the AI-intensity of firm innovation, Ait, over the same time 
period.  Again, we use both the dummy variable indicating inception of AI-related patenting and, 
alternatively, the IHS-transformed stock of AI-related patents as alternative measures of AI 
invention.  We incorporate individual firm fixed effects into our model. In all cases, we take 
natural logs of the key variables. 

Table 8: Impact of AI Innovations on 90-10, 90-50 and 50-10 Earnings Ratio, 1997-2018 
(manufacturing only) 

 (1) (2) (3) (4) (5) (6) 
 90-10 Earnings Ratio 90-50 Earnings Ratio 50-10 Earnings Ratio 
AI Treatment 
(1/0) 

0.0420*  0.0189*  0.0244  
(0.0200)  (0.00846)  (0.0150)  

IHS AI Patents  0.0265***  0.00758  0.0188*** 
 (0.00759)  (0.00394)  (0.00566) 

Ln Employment -0.110*** -0.110*** -0.0670*** -0.0670*** -0.0420*** -0.0420*** 
 (0.00264) (0.00264) (0.00163) (0.00163) (0.00161) (0.00161) 

Ln Capital Stock -0.0175*** -0.0175*** -0.00656*** -0.00656*** -0.0108*** -0.0108*** 
(0.00118) (0.00118) (0.000701) (0.000701) (0.000843) (0.000843) 

Age Bins Yes Yes Yes Yes Yes Yes 
Industry-Year FE Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Observations 1,012,000 1,012,000 1,012,000 1,012,000 1,012,000 1,012,000 
R-squared 0.713 0.713 0.729 0.729 0.624 0.624 

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance 
at the 5%, 1% and 0.1% respectively. Each regression includes a constant, which is not displayed here. 

As Table 8 highlights, the within-firm effect of taking out an AI patent leads to a positive and 
significant rise in the top earnings decile. An AI patent is associated  with a 4.2% change in the 
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90-10 earnings ratio and a 1.9% rise in the 90-50 ratio and 2.4% rise in the 50-10 ratio (albeit 
insignificant). These effects remain positive and significant when we include a continuous 
measure of AI patents. This is suggestive that the adoption of AI technology is leading to further 
earnings inequality, but the considerable differences between AI-inventing firms and the rest of 
the manufacturing sample suggest caution in drawing this inference.   

Continuing with our comparison of different AI-related patent classifiers, Table 9 provides the 
AI Treatment effect for a broader set of classifiers, including the one provided by USPTO.  

Table 9: Impact of different classifiersfor AI innovations on Earnings Ratios, 1997-2018 
(manufacturing only) 

 (1) (2) (3) 
 90-10 Earnings Ratio 90-50 Earnings Ratio 50-10 Earnings Ratio 
Baseline AI 
Treatment (1/0) 

0.0420* 0.0189* 0.0244 
(0.0200) (0.00846) (0.0150) 

AI Treatment (75% 
Confidence) 

0.0521*** 0.0202** 0.0330** 
(0.0156) (0.00730) (0.0115) 

AI Treatment (50% 
Confidence) 

0.0393** 0.0200** 0.0213* 
(0.0136) (0.00642) (0.0100) 

AIPD Treatment 
(95% Confidence) 

0.0515*** 0.0205*** 0.0320*** 
(0.0118) (0.00583) (0.00872) 

Baseline & AIPD 
Treatment 

0.0445* 0.0198* 0.0262 
(0.0200) (0.00850) (0.0147) 

AIPD Only 
Treatment 

0.0329** 0.0124* 0.0210** 
(0.0102) (0.00528) (0.00763) 

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance 
at the 5%, 1% and 0.1% respectively. Each regression is identical to the specification in Table 8, but with 
a different binary treatment effect. 

Table 9 shows that using a different classifier has a mostly similar effect on measured earnings 
inequality across all firms. In many of these cases, the magnitudes are a bit higher than the 
baseline classifier, but not significantly different when we account for the standard errors.  

To summarize, our preliminary results using standard linear approaches to measuring the impact 
of AI show that innovating in AI is positively and significantly associated with higher sales per 
employee, increased value added per worker and TFP after controlling for firm fixed effects. On 
the other hand, we do not see a within-firm change in the production worker share for firms who 
innovate in AI within the time horizon, but do see a slight rise in income for the 90th percentile 
workers relative to the median and bottom decile worker. This rise is highest among the 90th 
percentile workers, suggesting increased demand for the highest-skilled workers.  

While this section attempts to control for these across-firm differences by limiting our analysis to 
within-firm changes, in the next section, we attempt to do a better job by performing an event 
study that pairs our AI-inventing firms with a comparable set of similar control firms.  

7. Estimating the Impact of AI on Productivity and Labor 
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Demand with an Event Study Approach 

Our first pass of the data found positive and significant within-firm changes to sales and value-
added resulting from innovations in AI. This section attempts to better control for some of the 
endogeneity described earlier, as well as look at firm behavior and outcomes before and after the 
AI innovation. We do this by conducting an event study analysis (e.g. a difference-in-differences 
specification with a group-specific time trend) centered around the timing of the first AI-related 
patent. Our identification relies on matching each firm with at least one AI-related patent as 
closely as possible with a similar same-industry counterpart which does not obtain an AI-related 
patent. We can accomplish this using the full richness of the Census data.  

7.a Exact Matching of Firms with AI patents              
Our event study begins by attempting to identify an exact match of the firm with an AI-related 
patent. Our matching criteria are based on firm size, firm industry, multi-unit status, and firm age 
and are centered around the timing of the first AI patent application (e.g. if a firm took out its 
first AI patent in 2001, we would attempt to identify a matching non-AI patenting firm in 2001).  
We group the AI firms into 10 employment bins based on the decile within a 4-digit NAICS-
year. We then attempt to match AI firms with their precise non-AI counterpart by age, multi-unit 
status, primary industry (largest 4-digit NAICS employment within a firm), primary state (largest 
headquarter by employment, or largest state by employment if no headquarter), and employment 
decile. For unmatched and matched firms with multiple controls, we look at the closest 
employment counterpart by measuring the Euclidean distance of employment differences in the 
current and 3 years prior. Once this is complete, we are able to identify unique matches for 87% 
of the firms with an AI patent. Unmatched firms have no clear counterpart by industry-age-state 
and multi-unit status.  

7.b Event Study Plots             
Before looking at the regression results, it will help to look at the event study plots centered 
around the time of the first AI innovation. Our figures below are centered 2 years prior to the 
first AI innovation and track firm performance in the 5 years following the AI innovation. We 
start with employment. Figure 7 looks at the relative employment growth in the pre and post AI 
patent application date for the AI firms and their matched counterpart. We set our relative 
employment to 1 at the time of the AI patent application.  

Our exact match of the firm types should show that the pre-period trends follow relatively 
closely, which is confirmed in the plot depicted in Figure 7. In the years following the AI patent 
application however, employment growth for AI patenting firms deviates relative to the 
employment growth of non-AI patenting firms. In fact, we find that employment growth is 
almost 50% higher in the five years following the first AI patent application. 

We construct a similar event study plot, charting the revenue per employee for AI patenting 
firms and non-AI patenting firms. Figure 8 shows the results.  While the pre-trends show some 
differences prior to the AI patent, these differences show that the non-AI patent holders had 
slightly larger revenue prior to the AI patent, with similar patterns as found in Figure 7 once the 
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AI patent is applied for. AI firms have 15-20% higher revenues per employee than their closely 
matched counterparts.  

7.c Event Study Specification                
We now move to a more formal specification that includes firm controls and assesses whether 
the deviation in employment and revenue growth persists after controls are introduced. Our event 
study looks at the difference-in-differences of the firm outcomes and includes a group specific 
time trend. Our specification is as follows: 

𝑦!" = 	𝛼 +	𝛽#𝐴𝐼!"(1|0) + 𝛽$𝑇𝐼𝑀𝐸 + 	𝛽%𝐴𝐼!" × 𝑇𝐼𝑀𝐸 + 𝑋!" + 	𝜀 

with firm controls for earnings, age, multi-unit status and multinational status. The β1 coefficient 
indicates the aggregate effects of having an AI patent on the outcome variable, while β2 measures 
aggregate time trends. The β3 coefficient indicates whether the impact of AI patents is changing 
over time on the outcome variable.  

In our empirical analyses, we split our sample between the full matched dataset and a 
manufacturing-only dataset with different outcome variables for each. The full matched dataset 
will include employment and revenue per employee as the primary outcome variables, while the 
manufacturing-only sample will examine value-added per employee and production worker 
share.8 Table 10 provides the first set of results. 

Table 10: Impact of AI Innovations on Employment and Revenue, 1997-2018 (matched 
only) 
 (1) (2) (3) (4) 
 Ln Employment Ln Revenue per Employee 
AI Treatment (1/0) Dropped Dropped Dropped Dropped 

Post AI Year 0.0206  -0.124***  
(0.0144)  (0.0192)  

AI Treatment x Post AI Year 0.138***  0.164***  
(0.0194)  (0.0263)  

AI Treatment x Year = -2  0.0229  -0.162*** 
 (0.0224)  (0.0346) 

AI Treatment x Year = -1  0.0320  -0.128*** 
 (0.0167)  (0.0291) 

AI Treatment x Year = 0 Dropped Dropped Dropped Dropped 

AI Treatment x Year = +1  0.157***  -0.0146 
 (0.0149)  (0.0259) 

AI Treatment x Year = +2  0.224***  0.0249 
 (0.0189)  (0.0300) 

AI Treatment x Year = +3  0.233***  0.0701* 
 (0.0217)  (0.0335) 

AI Treatment x Year = +4  0.245***  0.0307 
 (0.0256)  (0.0373) 

AI Treatment x Year = +5  0.274***  0.0439 
 (0.0275)  (0.0375) 

 
8 Value-added and production worker numbers are not available for the full sample. 
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Age Bins Yes Yes Yes Yes 
Industry-Year Fixed Effects Yes Yes Yes Yes 
Firm Fixed Effects Yes Yes Yes Yes 
Observations 36,000 36,000 36,000 36,000 
R-squared 0.975 0.976 0.787 0.787 

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance at the 5%, 
1% and 0.1% respectively. Each regression includes a constant, which is not displayed here. 

Relative to the untreated and pre-AI patenting time period, we find that the impact of AI patents 
is positive on both employment and revenue per employee in the post-AI period. Having an AI 
patent is associated with 13.8% higher employment and 16.4% higher revenue per employee, 
with the impact for each growing over time, at least for employment. After 5 years from the AI 
patent application, the treated firms have 27.4% higher employment. 

We can similarly compare the impact of each different classifier, performing a similar matching 
exercise for each type of treated firm. The effects can be found in Table 11.  

Table 11: Impact of different AI classifiers on Employment and Revenue, 1997 – 2018 
(Event Study) 

 (1) (2) 
 Ln Employment Ln Revenue per Employee 

Baseline AI Treatment (1/0) 0.138*** 0.164*** 
(0.0194) (0.0263) 

AI Treatment (75% 
Confidence) 

0.122*** 0.132*** 
(0.0141) (0.0185) 

AI Treatment (50% 
Confidence) 

0.128*** 0.120*** 
(0.0121) (0.0163) 

AIPD Treatment (95% 
Confidence) 

0.129*** 0.131*** 
(0.00966) (0.0131) 

Baseline & AIPD Treatment 0.118*** 0.162*** 
(0.0243) (0.0346) 

AIPD Only Treatment 0.0972** 0.104* 
(0.0357) (0.0458) 

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance 
at the 5%, 1% and 0.1% respectively. Each regression is identical to the specification in Table 10, but with 
a different binary treatment effect. 

The effects are strongest for our baseline classifier on both employment and revenue per 
employee. 

7.d Earnings Ratios (Event Study) 

We perform a similar estimation as in Table 8 looking at the earnings ratio for the matched set of 
firms. To frame our analysis, we start by plotting the change in the earnings ratio centered 
around the time of the first AI patent, as in the previous event study plots in Figures 7 and 8. This 
can be found in Figure 10. As Figure 10 shows, we see almost no difference between the treated 
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and untreated set of firms in terms of widening wage gaps. While the 90-10 and 90-50 both rise 
slightly in the post-AI period, there is little separation across the firm types.  

We formally control for other firm characteristics and estimate the potential impact of the 
treatment, as in Tables 8 and 10 and include firm fixed effects. Table 12 provides the set of 
results. 

Table 12: Impact of AI Innovations on 90-10, 90-50 and 50-10 Earnings Ratio, 1997-2019 
(full matched set of firms) 

 (1) (2) (3) (4) (5) (6) 
 90-10 Earnings Ratio 90-50 Earnings Ratio 50-10 Earnings Ratio 
AI Firm (1/0) Dropped Dropped Dropped Dropped Dropped Dropped 

 Post AI (1/0) -0.0170  -0.00563  -0.0101  
(0.0159)  (0.00825)  (0.0117)  

 AI x Post (1/0) -0.00464  -0.0135  0.00920  
(0.0211)  (0.0109)  (0.0149)  

 AI x Year = -2  -0.00633  -0.00442  0.00107 
 (0.0274)  (0.0149)  (0.0193) 

 AI x Year = -1  0.00795  0.00647  -0.00394 
 (0.0216)  (0.0114)  (0.0160) 

 AI x Year = 0 Dropped Dropped Dropped Dropped Dropped Dropped 

 AI x Year = +1  -0.000185  0.00146  -0.00348 
 (0.0181)  (0.00978)  (0.0134) 

 AI x Year = +2  0.00475  -0.0143  0.0161 
 (0.0223)  (0.0123)  (0.0161) 

 AI x Year = +3  -0.0249  -0.0236  -0.00268 
 (0.0242)  (0.0137)  (0.0171) 

 AI x Year = +4  -0.00885  -0.0306*  0.0177 
 (0.0267)  (0.0148)  (0.0187) 

 AI x Year = +5  0.000276  -0.0217  0.0249 
 (0.0290)  (0.0160)  (0.0201) 

 ln (Emp) 0.104*** 0.105*** 0.0422*** 0.0432*** 0.0646*** 0.0646*** 
(0.0130) (0.0131) (0.00743) (0.00746) (0.00784) (0.00787) 

Age Bins Yes Yes Yes Yes Yes Yes 
Industry-Year FE Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Observations 33,500 33,500 33,500 33,500 33,500 33,500 
R-squared 0.727 0.727 0.728 0.729 0.679 0.679 

Robust Standard Errors clustered at the 4-digit NAICS industry level. *, ** and *** denotes significance at the 5%, 
1% and 0.1% respectively. Each regression includes a constant, which is not displayed here. 

The post-treatment effect shows an insignificant effect for each of the earnings ratio, indicating 
that once we include a proper control sample, the widening wage inequality seen in Table 8 
mostly disappears. This seems to be indicative that the attributes of the firm that are similarly 
associated with AI patents, such as being in active in certain sectors and being of a certain size, 
are the main contributors to widening earnings inequality and that the earnings gap for firms with 
AI patents does not change much relative to similar firms who may not possess those AI patents.   
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To conclude, the event-study matched firm analyses did not yield the same results as the full 
sample panel regressions.  In general, the strong positive and significant conditional correlations 
between the inception of AI patenting and labor productivity detected in the full sample panel 
regressions remain robust and relatively large in magnitude when we shift to our event study 
analysis.  However, the evidence that AI is conditionally correlated with rising wage dispersion 
within the firm which we detected in the full sample regressions appears to dissipate into 
insignificance when undertake event study analyses.  If we regard the event study approach as 
more robust to omitted variable bias and other inference challenges, then we might conclude that 
AI invention appears to be raising firm labor productivity but, so far, at least, not expanding 
income inequality within the AI-inventing firms. 

While the propensity-score matched firms do a reasonable job of identifying a set of control 
firms, there are still flaws with this approach as we were unable to include innovation 
characteristics in generating our matches. Likewise, our event-study specification is intended to 
identify treatment impacts that may occur several years after the initial treatment, but we neglect 
to include an intensity measure for the treated, and have a limited post-period at our disposal due 
to the recentness of the patent data. Therefore, while these statistical associations are suggestive, 
it would be premature to view them as providing strong evidence of a causal relationship 
between AI innovation and productivity.  Stronger conclusions about causality will require 
additional data and further analyses.   

8. Next Steps: Tracking AI-related Innovation through the 
Movement of “Frontier” AI Talent 

As we have noted in this paper, we are currently engaged in an effort to update our database of 
AI-related patents, which will then allow us to update our empirical analysis of their impact on 
labor productivity and income inequality.  However, not all innovations are patented, and some 
industries investing heavily in AI to generate new products and services hardly patent at all.  
How can we move beyond the limitations of patent data to examine AI-related innovation in 
these contexts?  Here, we describe ongoing research efforts to address this issue. 

To do so, we are currently using publication data from Elsevier to identify the top academic 
scientists working in domains related to AI and the graduate students whom they supervise and 
with whom they coauthor.  We are using a combination of publication data, website data, and 
data from professional career profile services and online resumes to track the movement of these 
students of scientific thought leaders across geographic space, organizational boundaries, and 
time.  We can also use publication data to track the direct interaction between top academic 
scientists and the companies they work with when that interaction results in a publication.  Once 
we can link the star scientists (which the research team refers to in their internal dialog as the 
“immortals”) and their students to the firms with which (and for whom) they have worked, and 
trace these linkages over time, we can leverage our access to U.S. Census microdata, obtained 
through our ongoing collaboration with Census microeconomists, to ask whether these linkages 
have provided the receiving firms with a statistically discernable advantage over their same 
industry peers who lack them in terms of output, employment, or, most importantly, productivity.  
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Table 13, reproduced below, provides an illustrative breakdown of the identified star scientists 
(“immortals”), students, direct collaborations, and papers. 

Table 13:  Counts of star scientists, student advisees, and direct collaborations between 
corporate labs and star scientists (April 2024) by AI subdomain 

 

This line of inquiry is related to the work of Babina et al. (2022, 2024), but focuses on the role 
played by elite scientists, who may be disproportionately important in the defining the 
technology frontier, and their doctoral students, who may be disproportionately important in 
bringing this frontier technology into industrial practice (Agarwal and Henderson, 2000; Zucker 
and Darby, 1998).  We can imagine that any firm seeking to apply frontier AI to the substantive 
reengineering of its current products and services or the creation of new products and services 
needs to create within itself a “pyramid” of AI talent graphically depicted in the left portion of 
Figure 9 (Arora et al., 2013; Branstetter et al., 2018).  At the lower ranks of the pyramid, the firm 
could productively employ programmers with “self-taught” AI skills who use standard AI tools 
and techniques.  At the middle levels of the talent pyramid, the firm might need professionals 
with bachelors or masters degrees that include specialized AI training, but these professionals 
need not have trained at elite universities.  However, at the very apex of the pyramid, a firm 
seeking to out-engineer its rivals may seek to acquire “software architects” who have been 
trained up to the technology frontier by elite academic scientists based at the top universities.9  
The data and approach taken by Babina et al. (2022, 2024) use data on the entire pyramid; our 
approach focuses on the star scientists and their students who could constitute the 
disproportionately important part of the apex of that pyramid.  The role played by these 
individuals is related to that of the “architects” described in the theoretical work of Benzell et al. 
(2022).  As in that paper, we consider the idea that the limited supply of these software architects 
could constitute an important constraint on the ability of firms to fully leverage frontier AI 
technologies. 

 
9 We acknowledge that some frontier work is done by elite AI scientists at leading tech companies, rather than 
universities, but these companies do not play the same teaching/training role as universities.  Hence, they do not 
exert the same influence through their trainees. 
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To fix ideas further, imagine that our data sources identify CMU doctoral recipient “Dr. Who” as 
one of the Ph.D. advisees of an elite academic scientist.  Dr. Who’s subsequent movement to 
Google DeepMind could further augment the intellectual resources of this impressive corporate 
research operation.  It is possible that Dr. Who begins to specialize at Google DeepMind in the 
application of advanced AI algorithms to medical imaging.  Then, he carries this skill to Siemens 
Healthineers and from there to diagnostic imaging start-up Arterys.  By following star scientists’ 
students like Dr. Who from firm to firm, we could trace out their differential impact, if any, on 
the enhancement of host firms’ output, employment, and productivity.  The hypothesis that these 
movements predict success can be tested using access to Census data on the hiring firms and 
their same industry peers who have hired fewer or no advanced AI experts.   

Table 14  The Impact of Collaboration with Elite AI Scientists 

 Employment Payroll per 
Employee 

Revenue Revenue per 
Employee 

AI Patents 

Coauthored 
Publications 

+*** +*** +*** +*** +*** 

Industry-Year 
FE 

Y Y Y Y Y 

Firm FE N N N N N 
Publication>0 
Firms 

N N N N N 

Cumulative  
Coauthored 
Publications 

+*** +*** +*** - +*** 

Industry-Year 
FE 

N N N N N 

Firm FE Y Y Y Y Y 
Publication>0 
Firms 

N N N N N 

Cumulative  
Coauthored 
Publications 

- +*** + - +*** 

Industry-Year 
FE 

N N N N N 

Firm FE N N N N N 
Publication>0 
Firms 

Y Y Y Y Y 

DRB disclosure code associated with these results is CBDRB-FY24-CES022-005.  This table illustrates the sign and 
significance of regression coefficients obtained from a panel data regression of the designated dependent variable on 
various measures of direct collaboration between elite AI scientists and U.S. companies, as evidenced by the 
appearance of coauthored scientific publications or conference presentations in journals or venues tracked by the 
authors which feature the elite scientist and co-authors affiliated with the firm as named authors.  The magnitudes of 
the coefficients are suppressed pending additional disclosure review. 
 

Results in Table 14 present preliminary evidence on the conditional correlations between one of 
our measures of interaction between elite AI scientists and firms and firm-level outcomes, 
including employment, revenue, pay per employee, revenue per employee, and the number of AI 
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patents.  We consider both a “flow” measure of the number of co-authored publications that 
appear in a particular year and a cumulative “stock” of the number of co-authored publications 
that exists at a point of time.  We also use a range of fixed effects (industry-year, firm, etc.) to 
mitigate (but not eliminate) some of the more obvious examples of potential omitted variable 
bias.  While we are not yet permitted to disclose the regression coefficients associated with these 
variables, we have been permitted to share the signs and significance levels of those coefficients 
in Table 14. 

Prior to any effot to match these data to Census data, we could already see that direct scientific 
collaborations with elite AI scientists were quite narrowly concentrated in a small group of firms.  
This implies that the cross-sectional dimension of the matched data set is limited, and this, in 
turn, limits the strength of statistical correlations we might expect to find.  With these caveats in 
mind, results in Table 14 show some robust relationships between our measures of direct 
collaboration and other firm-level outcome variables of interest.  The statistical correlations that 
appear to be the most robust are those associated with pay per employee (i.e., average worker 
income) and AI patents.  There do not appear to be strong and robust direct impacts on labor 
productivity, but other results in this paper suggest an impact of AI patents on labor productivity, 
and AI patents appear to be positively associated with directl collaboration.  Ongoing work will 
seek to further clarify to the nature of these relationshps and also probe the impact of the 
movement of the advisees of these scientists into firms. 

9. (Preliminary) Conclusions 
Significant breakthroughs in AI and related technologies have led some economists to predict 
dramatic effects on firm productivity and labor demand.  However, empirical assessment of the 
actual impact has been limited by the scarcity of firm-level data on AI innovation and its 
economic effects.  This paper advances our understanding of the economic impact of AI by using 
patent data to capture AI-related innovation.  Previous analyses by economists have generally 
sought to measure AI-related innovation by focusing on a small number of keywords and patent 
classes (Giczy et al., 2021, is an important exception).  Instead, we use a suite of machine 
learning algorithms to parse the entire text of patent documents; our more comprehensive search 
yields a much larger count of AI-related patents than have been identified in some earlier studies.  
The sharp rise in patenting and its wide distribution across patent classes and firms through 2018 
are consistent with the characterization in the literature of AI as a general purpose technology.   

Because we know the identity of patent assignees, we can match the patent data to extensive 
confidential microdata on these firms collected by the U.S. Census Bureau.  These rich data are 
available for publicly traded and privately held firms, and they allow us to take a first look at the 
impact of AI innovation on the productivity and labor demand of the innovating firms.  The 
results of such analyses may be useful for researchers and policymakers, because the impact 
observed on the limited number of leading firms in this space could be indicative of the larger 
impact we will see as this technology spreads across firms and industries. Such analyses also 
provide a useful counterpoint to recent scholarship that seeks to predict labor market impacts 
based on textual analysis of occupations, tasks, and emerging AI capabilities. 
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We have  expanded our analyses of the impact of growing AI invention on labor demand by 
matching our firm-level data to the Longitudinal Employer-Household Dynamics (LEHD) data 
set.  This enables us to quantify the impact of AI innovation on the income distribution of AI-
inventing firms.   

Our current explorations are preliminary, and it would be premature to interpret our statistical 
results as strong evidence of causal impacts.  Nevertheless, our results suggest that the inception 
of AI innovation is associated with economically and statistically significant increases in revenue 
per employee, suggesting strong productivity effects.  While there is some limited evidence of a 
coincident increase in income inequality within AI-inventing firms, these results are not robust to 
the use of our most demanding empirical approaches.   

Efforts to refine our estimates of the impact of AI led us to conduct event-study style analyses on 
matched samples of AI firms and similar firms in the same industries that did not transition into 
AI patenting over our sample period.  Our regression results on this matched sample continue to 
suggest substantial labor productivity effects that may strengthen over time.  There is no 
indication, in these more demanding specifications, of a similar increase in within-firm wage 
dispersion.  Despite the limitations of our current analyses, preliminary results suggest that this is 
promising line of research, which we will continue to explore.   

Not all AI innovations are patented, but significant efforts to develop new AI-enabled goods and 
services or to re-engineer existing goods and services to leverage AI may require the 
employment of experts trained up to the technological frontier.  This paper describes our effort to 
identify elite AI scientists and track their direct collaboration with firms, as evidenced by co-
authored publications.  It also describes our ongoing efforts to track the movement of the 
students of these elite scientist into firms, and the methods we hope to use trace out the impact of 
these hires on the output, employment, and productivity of the hiring firms.  These efforts may 
also yield interesting and useful results. 
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Figure 1. AI Patent Identification Algorithm 
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Figure 2. AI Patents by Grant Year 
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Figure 3. AI Patents by Country 
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Figure 4  Inventor Heat Map of AI Patents in U.S 
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Figure 5. AI Patents by USPC Class 
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Figure 6: Kernel Density Plots of Firm Characteristics by Patenting Type 
 

  
a. Employment (KDE) b. Revenue per Employee (KDE) 

  

c. Value-Added per Employee (KDE) d. Production Worker Share (KDE) 

  
e. Total Factor Productivity (KDE) f. Capital/Labor Ratio (KDE) 
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Figure 7: Event Study Plot on Relative Employment between AI Patenting and non-AI Patenting 
Firms 
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Figure 8: Event Study Plot on Relative Revenue per Employee between AI Patenting and non-AI 
Patenting Firms   
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Figure 9.  Tracing the Impact of AI Software “Architects”:  A Suggestive Illustration 


