Disagreement About the Term Structure of Inflation Expectations

Hie Joo Ahn¹ Leland F. Farmer²

¹Federal Reserve Board

²University of Virginia

NBER Summer Institute 2024 - Monetary Economics July 2024

The views expressed in this presentation are solely our own and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any person associated with the Federal Reserve System.

¹ **New parametric model** for an **individual** forecaster's term structure of inflation expectations

- ¹ **New parametric model** for an **individual** forecaster's term structure of inflation expectations
- ² Estimate the **term structure of disagreement**
	- Disagreement as a measure of anchored expectations

- ¹ **New parametric model** for an **individual** forecaster's term structure of inflation expectations
- ² Estimate the **term structure of disagreement**
	- Disagreement as a measure of anchored expectations
- ³ Identify three sources of disagreement: **prior beliefs, private information, and heterogeneous responses to public information**
	- Heterogeneous responses to public information: reducible by monetary policy

- ¹ **New parametric model** for an **individual** forecaster's term structure of inflation expectations
- ² Estimate the **term structure of disagreement**
	- Disagreement as a measure of anchored expectations
- ³ Identify three sources of disagreement: **prior beliefs, private information, and heterogeneous responses to public information**
	- Heterogeneous responses to public information: reducible by monetary policy
- ⁴ Investigate the role of disagreement and its sources in the transmission of monetary policy

¹ **Disagreement is an additional measure of inflation anchoring**

○ Even when consensus expectations are low and stable, disagreement varies dramatically, even at a 10-year horizon.

¹ **Disagreement is an additional measure of inflation anchoring**

- Even when consensus expectations are low and stable, disagreement varies dramatically, even at a 10-year horizon.
- ² **The term structure of disagreement** is typically downward-sloping, but varies considerably over time, occasionally becoming u-shaped.

¹ **Disagreement is an additional measure of inflation anchoring**

- Even when consensus expectations are low and stable, disagreement varies dramatically, even at a 10-year horizon.
- ² **The term structure of disagreement** is typically downward-sloping, but varies considerably over time, occasionally becoming u-shaped.
- ³ **Private information** and **prior beliefs** explain **90%** of disagreement over our sample, **but** during periods of high inflation uncertainty, **heterogeneous reactions to public information** explain more than **50%** of disagreement.

¹ **Disagreement is an additional measure of inflation anchoring**

- Even when consensus expectations are low and stable, disagreement varies dramatically, even at a 10-year horizon.
- ² **The term structure of disagreement** is typically downward-sloping, but varies considerably over time, occasionally becoming u-shaped.
- ³ **Private information** and **prior beliefs** explain **90%** of disagreement over our sample, **but** during periods of high inflation uncertainty, **heterogeneous reactions to public information** explain more than **50%** of disagreement.
- ⁴ When **public information** plays a large role, 1) Fed communication is effective at reducing disagreement, and 2) traditional monetary policy **has a larger effect on real outcomes, but with a delay**, and **is not effective at stabilizing inflation.**

Outline

[Three Sources of Disagreement](#page-28-0)

[Implications for Policy](#page-36-0)

Data

Survey of Professional Forecasters

- Quarterly survey which is filled out in the middle of each quarter
- We focus on forecasts of seasonally adjusted CPI inflation **COPI Inflation**
- Sample period : 1991:Q4 2023:Q3
	- \circ Long-run expectations (10-year average expectations) are available from 1991:Q4.
- There are 38 forecasters in a given quarter on average.
- [Forecasters](#page-60-0) appear in the data set for 27 quarters on average. **Forecasters**
- Drop forecasters who appear for fewer than 12 quarters [\(Patton & Timmermann \(2010\)](#page-72-0))
- Total of 101 forecasters who report an average of 44 forecasts

Incomplete Picture of the Term Structure

● **Fixed-horizon forecasts**:

current – 4-quarter ahead

- **Fixed-event forecasts**: current, next, and the following year
- **Fixed-event forecasts**:

Averages of 5 years and 10 years including the current year

Model

Individual Term Structure of Inflation Expectations

- Infer the term-structure of annualized inflation forecasts from 10 total observations of each forecaster at each point in time
- Rich patterns in inflation expectations across different participants including downward sloping curves

Parsimonious and Flexible Characterization: Nelson-Siegel Model

- **Level** : long-end forecast
- **Slope** : difference between long-end forecast and nowcast (current quarter)
- **Curvature** : nonlinearity not fully captured with the slope

Nelson-Siegel Model

[Aruoba \(2020\)](#page-72-1) for average inflation expectations between t and $t + h$.

$$
\pi_{i,t \to t+h|t} = L_{i,t} - \left(\frac{1 - e^{-\lambda_i h}}{\lambda_i h}\right) S_{i,t} + \left(\frac{1 - e^{-\lambda_i h}}{\lambda_i h} - e^{-\lambda_i h}\right) C_{i,t}
$$

• $\pi_{i,t\rightarrow t+h|t}$: forecaster i 's annualized forecast of continuously compounded inflation between t and $t + h$ given time t information

- $L_{i,t}$, $S_{i,t}$, and $C_{i,t}$ are forecaster-specific level, slope, and curvature components
- $\bullet\,$ λ_i : the peak of the curvature loading
- Curve fitting \rightarrow panel datasets of factors

● Following [Diebold](#page-72-2) *et al.* (2008), we model the individual factors as

$$
L_{i,t} = \alpha_{i,L} + \beta_{i,L} \mathbf{L_t} + \varepsilon_{i,L,t}
$$

$$
S_{i,t} = \alpha_{i,S} + \beta_{i,S} \mathbf{S_t} + \varepsilon_{i,S,t}
$$

$$
C_{i,t} = \alpha_{i,C} + \beta_{i,C} \mathbf{C_t} + \varepsilon_{i,C,t}
$$

 \bullet $\alpha_{i,L}, \alpha_{i,S}$, and $\alpha_{i,C}$ are forecaster-specific factor means

● Following [Diebold](#page-72-2) *et al.* (2008), we model the individual factors as

$$
L_{i,t} = \alpha_{i,L} + \beta_{i,L} \mathbf{L_t} + \varepsilon_{i,L,t}
$$

$$
S_{i,t} = \alpha_{i,S} + \beta_{i,S} \mathbf{S_t} + \varepsilon_{i,S,t}
$$

$$
C_{i,t} = \alpha_{i,C} + \beta_{i,C} \mathbf{C_t} + \varepsilon_{i,C,t}
$$

- \bullet $\alpha_{i,L}$, $\alpha_{i,S}$, and $\alpha_{i,C}$ are forecaster-specific factor means
- \bullet L_t , S_t , C_t are *common* level, slope, and curvature factors

● Following [Diebold](#page-72-2) *et al.* (2008), we model the individual factors as

 $L_{i,t} = \alpha_{i,L} + \beta_{i,L}L_{t} + \varepsilon_{i,L,t}$ $S_{i,t} = \alpha_{i,S} + \beta_{i,S}S_{t} + \varepsilon_{i,St}$ $C_{i,t} = \alpha_{i,C} + \beta_{i,C} C_t + \varepsilon_{i,C,t}$

- \bullet $\alpha_{i,L}$, $\alpha_{i,S}$, and $\alpha_{i,C}$ are forecaster-specific factor means
- \bullet L_t , S_t , C_t are *common* level, slope, and curvature factors
- \bullet $\beta_{i,L}, \beta_{i,S}$, and $\beta_{i,C}$ are forecaster-specific loadings on the common factors

● Following [Diebold](#page-72-2) *et al.* (2008), we model the individual factors as

 $L_{i,t} = \alpha_{i,L} + \beta_{i,L}L_{t} + \varepsilon_{i,L,t}$ $S_{i,t} = \alpha_{i,S} + \beta_{i,S} \mathbf{S}_t + \varepsilon_{i,S,t}$ $C_{i,t} = \alpha_{i,C} + \beta_{i,C} C_t + \varepsilon_{i,C,t}$

- \bullet $\alpha_{i,L}$, $\alpha_{i,S}$, and $\alpha_{i,C}$ are forecaster-specific factor means
- \bullet L_t , S_t , C_t are *common* level, slope, and curvature factors
- \bullet β_i , β_i , β_i , and β_i , are forecaster-specific loadings on the common factors
- \bullet $\varepsilon_{i,L,t}, \varepsilon_{i,S,t}, \varepsilon_{i,C,t}$ are *idiosyncratic* level, slope, and curvature components

● Following [Diebold](#page-72-2) *et al.* (2008), we model the individual factors as

 $L_{i,t} = \alpha_{i,L} + \beta_{i,L}L_{t} + \varepsilon_{i,L,t}$ $S_{i,t} = \alpha_{i,S} + \beta_{i,S}S_{t} + \varepsilon_{i,St}$ $C_{i,t} = \alpha_{i,C} + \beta_{i,C}C_t + \varepsilon_{i,C,t}$

- \bullet $\alpha_{i,L}$, $\alpha_{i,S}$, and $\alpha_{i,C}$ are forecaster-specific factor means
- \bullet L_t , S_t , C_t are *common* level, slope, and curvature factors
- \bullet $\beta_{i,L}$, $\beta_{i,S}$, and $\beta_{i,C}$ are forecaster-specific loadings on the common factors
- \bullet $\varepsilon_{i,L,t}, \varepsilon_{i,S,t}, \varepsilon_{i,C,t}$ are *idiosyncratic* level, slope, and curvature components
- The *common* and *idiosyncratic* factors are allowed to follow general VAR dynamics.
- We estimate the state space model with standard Bayesian methods (Gibbs sampling)

Simplifying Assumptions in Baseline Model

- We omit the curvature factor given the large number of forecasters we are estimating parameters for.
- Common and idiosyncratic factors are assumed to follow independent $AR(1)$ processes.
- \bullet Parameters same across i
	- **1** Shape parameter $\lambda_i = \lambda$ [\(Diebold](#page-72-2) *et al.* (2008))
	- ² The dynamics of the idiosyncratic components: auto-correlation and variance parameters
	- ³ The variance of measurement errors
- Still 431 parameters to estimate
- Results are robust to a model which includes curvature factors and allows for AR(3) dynamics in the factors.

Estimation Results

$\mathsf{Factor\; Estimates} \: (\hat{L}_{t|T} \text{ and } \hat{S}_{t|T})$

 \bullet Common level ($\hat{L}_{t|T}$) : inflation trend, stable during the pandemic

 \bullet Common slope ($\hat{S}_{t|T}$) : transitory changes, positive (upward), negative (downward)

Mean Forecast Estimates

Disagreement Paints a More Nuanced Picture

The Term Structure Across Forecasters and Over Time

Three Sources of Disagreement

Three Sources of Disagreement: Factors

• We decompose an individual factor, e.g. $L_{i,t}$, into three components (same for $S_{i,t}$):

$$
L_{i,t} = \underbrace{\alpha_{i,L}}_{\text{prior beliefs}} + \underbrace{\beta_{i,L}}_{\text{common}} \underbrace{L_{i,L,t}}_{\text{idiosyncratic}} = L_i^{\text{pb}} + L_{i,t}^{\text{c}} + L_{i,t}^{\text{id}}
$$

Three Sources of Disagreement: Factors

• We decompose an individual factor, e.g. $L_{i,t}$, into three components (same for $S_{i,t}$):

$$
L_{i,t} = \underbrace{\alpha_{i,L}}_{\text{prior beliefs}} + \underbrace{\beta_{i,L}}_{\text{common}} \underbrace{L_{i,L,t}}_{\text{idiosyncratic}} = L_i^{\text{pb}} + L_{i,t}^{\text{c}} + L_{i,t}^{\text{id}}
$$

• Plug the three components back into the Nelson-Siegel model \rightarrow Decompose the forecasts themselves into the three components

$$
\pi_{i,t\to t+h|t} = L_{i,t} - \left(\frac{1 - e^{-\lambda h}}{\lambda h}\right) S_{i,t}
$$
\n
$$
= L_i^{pb} - \left(\frac{1 - e^{-\lambda h}}{\lambda h}\right) S_i^{pb} + L_{i,t}^c - \left(\frac{1 - e^{-\lambda h}}{\lambda h}\right) S_{i,t}^c + L_{i,t}^{id} - \left(\frac{1 - e^{-\lambda h}}{\lambda h}\right) S_{i,t}^{id}
$$
\n
$$
= \pi_{i,t\to t+h|t}^{pb} + \pi_{i,t\to t+h|t}^c + \pi_{i,t\to t+h|t}^{id}
$$
\n
$$
= \pi_{i,t\to t+h|t}^{pb} + \pi_{i,t\to t+h|t}^{ci}
$$

Three Sources of Disagreement – Dynamic Factor Decomposition

● Sung (2023): An individual's memory (cognitive noise) makes the interpretation of public information different across forecasters \rightarrow This dynamic factor structure creates over- or under- reactions to public information across forecasting horizons

Disagreement Decomposition by Information Source

$$
\pi_{i,t\rightarrow t+h|t} = \pi_{i,t\rightarrow t+h|t}^{pb} + \pi_{i,t\rightarrow t+h|t}^{c} + \pi_{i,t\rightarrow t+h|t}^{id}
$$

$$
Var_i(\pi_{i,t\rightarrow t+h|t}) \approx Var_i(\pi_{i,t\rightarrow t+h|t}^{pb}) + Var_i(\pi_{i,t\rightarrow t+h|t}^{c}) + Var_i(\pi_{i,t\rightarrow t+h|t}^{id})
$$

Taking the covariance of both sides with $\pi_{i,t\rightarrow t+h|t}$ and dividing through by the variance of $\pi_{i, t \rightarrow t+h|t}$, we obtain the following expression:

$$
1 = \beta_{h,t}^{pb} + \beta_{h,t}^{c} + \beta_{h,t}^{id},
$$
\n
$$
\beta_{h,t}^{pb} = \frac{\text{Cov}_i \left(\pi_{i,t \to t+h|t}, \pi_{i,t \to t+h|t}^{pb} \right)}{\text{Var}_i(\pi_{i,t \to t+h|t})} \qquad \beta_{h,t}^{c} = \frac{\text{Cov}_i \left(\pi_{i,t \to t+h|t}, \pi_{i,t \to t+h|t}^{c} \right)}{\text{Var}_i(\pi_{i,t \to t+h|t})}
$$
\n
$$
\beta_{h,t}^{id} = \frac{\text{Cov}_i \left(\pi_{i,t \to t+h|t}, \pi_{i,t \to t+h|t}^{id} \right)}{\text{Var}_i(\pi_{i,t \to t+h|t})}.
$$

Disagreement shares: The sensitivity of disagreement to three information sources

Prior Beliefs (Long-Run) and Private Information (Short-Run)

Disagreement Share of Public Information

Disagreement Share of Public Information: 2009 and 2022

Implications for Monetary Policy

Fed's Response to News Reduces Disagreement About Public Info.

- LP with external shock with Fed's response to news [\(Bauer &](#page-72-0) [Swanson, 2022\)](#page-72-0) ([Shocks](#page-66-0)) [Model](#page-0-0)
- The news component reduces the disagreement about inflation 8 quarters ahead attributable to public information
- but **not** the portion attributatle to private information and prior beliefs
- Robust with [SVAR-IV](#page-69-0) (* SVAR-IV)

Larger Effects When Attention to Public Information is High

- State dependence: interaction of Fed's response to news with the fraction of public information out of the sum of dispersions driven by the three sources $(h = 8)$
- Larger effects (red) when the contribution of public information to disagreement increases \rightarrow High attention to public information.

▶ [SVAR-IV](#page-70-0)

High Attention to Public Information Affects Transmission

- Impulse response (LP with controls) **LP with orthogonalized MP shocks** [\(Bauer & Swanson, 2022\)](#page-72-0) ← [Shocks](#page-66-0) **[Model](#page-0-0)**
	- $\bullet \,$ Interaction of shocks with $\hat{\beta}_{8,t}^{c}$ (1- $\hat{\beta}^c_{8,t}$) to capture the MP effects when the sensitivity of disagreement to public (private) information is dominant.
	- \bullet The real effects are larger with higher $\hat{\beta}_{8,t}^{c}$, but with a delay. $\overline{(\cdot\text{ level})}$
	- \bullet No stabilization of inflation

Conclusion

- ¹ We develop a new parametric model of the individual term structure of inflation expectations and recover the term structure of disagreement over time.
- ² We decompose disagreement into three sources: prior beliefs, heterogeneous responses to public information, and private information.
- ³ Prior beliefs and private information explain the bulk of disagreement since the early 1990s, but in periods of high inflation uncertainty, heterogeneous responses to public information are the primary driver of disagreement.
- ⁴ Fed communication can reduce the portion of disagreement driven by public information.
- ⁵ Traditional monetary policy has large real effects, with a delay, in times when public information is the primary driver of disagreement, but is not effective at stabilizing inflation.

Appendix

Robustness

- ¹ **Time-varying loadings** : The common component (loading × factor) is identified [\(Dempster](#page-72-1) *et al.*, 1977).
	- Time-varying loadings are not ruled out.
	- \circ Loadings on the common factors ($\beta_{i,L}, \beta_{i,S}$, and $\beta_{i,C}$) are estimated for each individual i.
- ² **Covid-19 pandemic** : The Covid shock could potentially distort model estimates.
	- \circ The estimates prior to the pandemic are stable even after the Covid observations are folded in.
- **3 Non-parametric model : Pletail**
	- Model the individual term structure with polynomials.
	- \circ Estimate the common factor with a dynamic factor model [\(Banbura & Modugno, 2014\)](#page-72-2)

Estimation : State space model + Bayesian method

State Space Model

Goal: Estimate the common factors and the idiosyncratic component that are dynamic unobserved (latent) variables along with time-invariant parameters.

State equation: Describes the dynamics of latent variables

$$
\mathbf{x}_t = \mathbf{F} \mathbf{x}_{t-1} + \mathbf{e}_t \qquad \mathbf{e}_t \sim N(0, \mathbf{Q})
$$

Measurement equation: Maps the unobserved variables to observables

$$
\mathbf{Y}_t = \mathbf{Hx}_t + \mathbf{r}_t \qquad \mathbf{r}_t \sim N(0, \mathbf{R})
$$

Inference on the unobserved variables via Kalman filter, maximum likelihood estimation.

[▶] [Factor Decomposition](#page-0-0)

State Equation (1)

We assume that the common factors follow a VAR(1) process:

$$
\left[\begin{array}{c} L_t \\ S_t \end{array}\right] = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} L_{t-1} \\ S_{t-1} \end{array}\right] + \left[\begin{array}{c} u_{L,t} \\ u_{S,t} \end{array}\right].\tag{1}
$$

Since the levels of the common factors and the factor loadings are not separately identified, we normalize the shocks to the common factors $u_{L,t}$ and $u_{S,t}$, to have unit variance. We assume the shocks are uncorrelated:

$$
\left[\begin{array}{c}u_{L,t} \\ u_{S,t}\end{array}\right] \sim N\left(\left[\begin{array}{c}0 \\ 0\end{array}\right], \left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]\right) \tag{2}
$$

We assume that the idiosyncratic factors follow VAR(1) processes so that

$$
\left[\begin{array}{c}\varepsilon_{i,L,t} \\
\varepsilon_{i,S,t}\n\end{array}\right] = \left[\begin{array}{cc}\nb_{i,11} & 0 \\
0 & b_{i,22}\n\end{array}\right] \left[\begin{array}{c}\varepsilon_{i,L,t-1} \\
\varepsilon_{i,S,t-1}\n\end{array}\right] + \left[\begin{array}{c}\nu_{i,L,t} \\
u_{i,S,t}\n\end{array}\right]
$$

(3)

State Equation (2)

In our baseline specification we assume that all of the VAR coefficients and covariance matrices are the same across forecasters, and that the covariance matrix is diagonal:

$$
\left[\begin{array}{c}u_{i,L,t} \\ u_{i,S,t}\end{array}\right] \sim N\left(\left[\begin{array}{c}0 \\ 0\end{array}\right], \left[\begin{array}{cc}\sigma_L^2 & 0 \\ 0 & \sigma_S^2\end{array}\right]\right) \tag{4}
$$

Let the state vector x_t be defined as

$$
x_t = \left[L_t, S_t, \varepsilon_{1,L,t}, \varepsilon_{1,S,t}, \cdots, \varepsilon_{n,L,t}, \varepsilon_{n,S,t} \right]
$$

Define the transition matrix F to be

$$
F = \left[\begin{array}{ccccc} a_{11} & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & a_{22} & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & b_{11} & 0 & 0 \dots & 0 & 0 \\ 0 & 0 & 0 & b_{22} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & b_{11} & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & b_{22} \end{array}\right]
$$

State Equation (3): Full Representation

Define the state equation shocks to be

$$
u_t = \left[\begin{array}{c} u_{L,t}, u_{S,t}, u_{1,L,t}, u_{1,S,t}, \cdots, u_{n,L,t}, u_{n,S,t} \end{array} \right]
$$

The covariance matrix of the shocks is given by:

$$
Q = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \sigma_L^2 & 0 & 0 \dots & 0 & 0 \\ 0 & 0 & 0 & \sigma_S^2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \sigma_L^2 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & \sigma_S^2 \end{array} \right]
$$

State Equation:

$$
x_t = F x_{t-1} + u_t, \quad u_t \sim N(0, Q)
$$

Measurement Equation (1)

The observation vector in any period, y_t is given by

$$
y_t^{fh} = \begin{bmatrix} \pi_{1,t \to t+1|t}, \pi_{1,t+1 \to t+2|t}, \pi_{1,t+2 \to t+3|t}, \pi_{1,t+3 \to t+4|t} \end{bmatrix}
$$

\n
$$
y_t^{fe(short)} = \begin{bmatrix} \pi_{1,t+3 \to t+7|t}, \pi_{1,t+2 \to t+6|t}, \pi_{1,t+1 \to t+5|t}, \pi_{1,t \to t+4|t}, \\ \pi_{1,t \to t+7|t+11}, \pi_{1,t+6 \to t+10|t}, \pi_{1,t+5 \to t+9|t}, \pi_{1,t+4 \to t+8|t} \end{bmatrix}
$$

\n
$$
y_t^{fe(long)} = \begin{bmatrix} \pi_{1,t \to t+19|t}, \pi_{1,t \to t+18|t}, \pi_{1,t \to t+17|t}, \pi_{1,t \to t+16|t}, \\ \pi_{1,t \to t+39|t}, \pi_{1,t \to t+38|t}, \pi_{1,t \to t+37|t}, \pi_{1,t \to t+36|t} \end{bmatrix}
$$

\n
$$
y_t = \begin{bmatrix} y_t^{fh}, y_t^{fe(short)}, y_t^{fh(long)}, \\ \end{bmatrix}
$$

Only four of the final sixteen elements of y_t are observed in any given quarter. These final sixteen elements correspond to fixed event forecasts, where each group of four corresponds, in order, one calendar year-ahead average inflation, two calendar yea-ahead average inflation, five-year average inflation and ten-year average inflation including the current calendar year. $\sqrt{\text{Return}}$ $\sqrt{\text{Return}}$ $\sqrt{\text{Return}}$

Measurement Equation (2)

For the final eight elements, which correspond to forecasts of average inflation over five and ten year periods including the current calendar year, we must adjust them to directly match our model's output. Specifically

Q1
$$
\pi_{i,t\to t+19|t} = \frac{4}{19} \left(5\pi_{i,t-1\to t+19|t} - \frac{1}{4}\pi_{i,t-1\to t|t} \right)
$$

\n
$$
\pi_{i,t\to t+39|t} = \frac{4}{39} \left(10\pi_{i,t-1\to t+19|t} - \frac{1}{4}\pi_{i,t-1\to t|t} \right)
$$

\nQ2
$$
\pi_{i,t\to t+18|t} = \frac{4}{18} \left(5\pi_{i,t-2\to t+18|t} - \frac{1}{4}\pi_{i,t-1\to t|t} - \frac{1}{4}\pi_{i,t-2\to t-1|t} \right)
$$

\n
$$
\pi_{i,t\to t+38|t} = \frac{4}{38} \left(10\pi_{i,t-2\to t+38|t} - \frac{1}{4}\pi_{i,t-1\to t|t} - \frac{1}{4}\pi_{i,t-2\to t-1|t} \right)
$$

\nQ3
$$
\pi_{i,t\to t+17|t} = \frac{4}{17} \left(5\pi_{i,t-3\to t+17|t} - \frac{1}{4}\pi_{i,t-1\to t|t} - \frac{1}{4}\pi_{i,t-2\to t-1|t} - \frac{1}{4}\pi_{i,t-3\to t-2|t} \right)
$$

\n
$$
\pi_{i,t\to t+37|t} = \frac{4}{37} \left(10\pi_{i,t-3\to t+17|t} - \frac{1}{4}\pi_{i,t-1\to t|t} - \frac{1}{4}\pi_{i,t-2\to t-1|t} - \frac{1}{4}\pi_{i,t-3\to t-2|t} \right)
$$

\nQ4
$$
\pi_{i,t\to t+16|t} = \frac{4}{16} \left(5\pi_{i,t-4\to t+16|t} - \frac{1}{4}\pi_{i,t-1\to t|t} - \frac{1}{4}\pi_{i,t-2\to t-1|t} - \frac{1}{4}\pi_{i,t-3\to t-2|t} - \frac{1}{4}\pi_{i,t-4\to t-3|t} \right)
$$

\n
$$
\pi_{i,t\to t+36|
$$

Measurement Equation (3)

The loading function on the slope factor for forecasts of inflation between $t + h_1$ and $t + h_2$ as

$$
f_S(h_1, h_2) = \frac{e^{-\lambda h_1} - e^{-\lambda h_2}}{\lambda (h_2 - h_1)}
$$

Final state space system

$$
y_t = \mu_y + Hx_t + v_t, \quad v_t \sim N(0, R)
$$

Measurement Equation (4)

● Map the individual term structure characterization to the individual-level data

- Map the individual term structure characterization to the individual-level data
- \bullet For estimation we use 1Q-4Q ahead fixed horizon forecasts, and next year, following year, 5-year average, and 10-year average fixed event forecasts

- Map the individual term structure characterization to the individual-level data
- \bullet For estimation we use 1Q-4Q ahead fixed horizon forecasts, and next year, following year, 5-year average, and 10-year average fixed event forecasts
- For the 5-year and 10-year average forecasts, we use observed nowcasts and 1Q backcasts when available, and realized inflation of the most recent CPI vintage for 2Q and 3Q prior inflation \rightarrow The fixed event forecasts are treated separately in each quarter throughout the calendar year.

- Map the individual term structure characterization to the individual-level data
- \bullet For estimation we use 1Q-4Q ahead fixed horizon forecasts, and next year, following year, 5-year average, and 10-year average fixed event forecasts
- For the 5-year and 10-year average forecasts, we use observed nowcasts and 1Q backcasts when available, and realized inflation of the most recent CPI vintage for 2Q and 3Q prior inflation \rightarrow The fixed event forecasts are treated separately in each quarter throughout the calendar year.
- Each reported forecast is assumed to be observed with a measurement error, but the variances of measurement errors are same for all i .

Parameters: Estimated with a Bayesian method (Gibbs sampling)

- Our baseline model has a total of 431 parameters consisting of
	- $\circ~$ Forecaster-specific means $\{\alpha_{i,L},\alpha_{i,S}\}_{i=1}^n$ $i=1$
	- $\circ~$ Forecaster-specific factor loadings $\left\{\beta_{i,L},\beta_{i,S}\right\}_{i=1}^n$ $i=1$
	- Factor autocorrelation parameters a_{11}, a_{22}, b_{11} , and b_{22}
	- \circ Idiosyncratic factor conditional variances σ_L^2 and σ_S^2
	- Shape parameter λ
	- $\,\circ\,$ Measurement error variances $\sigma_{v,1},\ldots,\sigma_{v,20}^2$
- The parameter vector is denoted as

$$
\theta = [\alpha_{1,L}, \ldots, \alpha_{n,S}, \beta_{1,L}, \ldots, \beta_{n,S}, a_{11}, a_{22}, b_{11}, b_{22}, \sigma_L^2, \sigma_S^2, \lambda, \sigma_{v,1}^2, \ldots, \sigma_{v,20}^2]^T
$$

${\sf Substantial \ Disagreement \ About \ Level \ and \ Slope \ } (\hat{C}_{it|T}$ and $\hat{S}_{it|T})$

$\bm{\mathsf{Disagreement~About~Level~and~Slope}~(std_i(\hat{C}_{it|T})$ and $std_i(\hat{S}_{it|T}))$

Headline CPI inflation (year-over-year % change)

Survey of Professional Forecasters

Average 10-year-ahead CPI Inflation (Fisher *et al.***[, 2022\)](#page-72-3)**

Figure 1: Time series summary of 10-year CPI inflation expectations

Notes: Top left chart shows mean and median together with the interquartile range, top right chart shows higher moments. The two bottom charts show the time series of 4 individual forecasters.

Evolution of Term Structure of Disagreement : Covid-19 Pandemic

- **Public** information explains the bulk of increased disagreement.
	- Disagreement about inflation persistence and inflation trend
	- Disagreement about the likelihood of recessions (soft landing vs. hard landing)

Variance Decomposition

For the variance decomposition, we compute the partial $R^2.$

- Compute total R^2 by regressing the forecasts on a constant, the idiosyncratic component, and the common component.
- To obtain the variance attributable to the common component, regress the forecasts on a constant and the idiosyncratic component, then I subtract the R^2 of this regression from the R^2 in the previous regression.

SVAR-IV with external shocks (Stock and Watson, 2018)

A reduced-form VAR:

 $Y_t = \alpha + B(L)Y_{t-1} + u_t$

estimate the model for 1991:Q4-2019:Q4 via OLS with 4 lags, where

 $u_t = S \epsilon_t.$

The first element of ϵ_t is ϵ_t^{mp} $\frac{mp}{t}.$ The first column of $S\left(s_1 \right)$ captures the impact of ϵ^{mp}_t t^{mp} on Y_t .

Order the two-year Treasury yield first in Y_t and denote it by Y_t^{2y} $\frac{f}{t}$.

$$
Y_t = \tilde{\alpha} + \tilde{B}(L)Y_{t-1} + s_1 Y_t^{2y} + \tilde{u}_t.
$$

Estimated with 2SLS with z_t as the instrument for Y_t^{2y} $\mathcal{I}^{2y}_{t}.$ The first element in s_{1} is 1 for normalization. With the estimated s_1 and $B(L)$, we calculate the impulse responses. **[Return](#page-37-0)**

SVAR-IV with external shocks (Stock and Watson, 2018)

Six variables

- ¹ the log of industrial production
- ² the log of the consumer price index
- ³ the excess bond premium from [Gilchrist & Zakrajšek \(2012\)](#page-72-4)
- the two-year treasury yield
- ⁵ two disagreement estimates driven by public and private information.

External shocks capturing news component in MP

¹ Fed's reactions to economic news from [Bauer & Swanson \(2022\)](#page-72-0)

Table 1 from [Bauer & Swanson \(2022\)](#page-72-0)

Table 1: Predictive Regressions Using Macroeconomic and Financial Data

Coefficient estimates β from predictive regressions $mps_t = \alpha + \beta'X_{t-} + \varepsilon_t$, where t indexes FOMC announcements. Columns (1) – (3) use our baseline monetary policy surprise measure mps described in the text, while column (4) uses the change in FF4 (also used in Gertler and Karadi, 2015). Predictors X are observed prior to the FOMC announcement: the surprise component of the most recent nonfarm payrolls release, employment growth over the last year, the log change in the $S\&P500$ from 3 months before to the day before the FOMC announcement, the change in the yield curve slope over the same period, the log change in a commodity price index over the same period, and the option-implied skewness of the 10-year Treasury yield from Bauer and Chernov (2021) . Heteroskedasticity-consistent t-statistics in parentheses. See text for details.

Bauer and Swanson's Orthogonalized Monetary Policy Shocks

● Unorthogonalized: High-frequency monetary policy surprises (FOMC announcements)

Computed as the first principal component of the changes in euro-dollar future contracts (current to three-quarter ahead), scaled so that the impact on the three-quarter ahead contract is unity.

● Orthogonalized: *Orthogonalized* with respect to the news variables (regressing the monthly surprises on the news variables, see the next page) $\left(\cdot \right)$ [Return](#page-37-0)

Disagreement Level Itself Does Not Create the Difference

- Impulse response (LP with controls) Interacted the MP shocks with the high/low regime of total disagreement (h=8) to capture the MP effects in times of high (low) diagreement.
	- The sensitivity of disagreement to public information is the driver, not the level of disagreement. $\sqrt{R_{\text{return}}}$

Effects of Fed's Response to News: LP-IV vs. SVAR-IV

g

6

Nonlinear Effects of Fed's Response to News: LP-IV vs. SVAR-IV

 \triangleright [Return](#page-38-0)

Implications for Theory

Table: Disagreement in the models of expectation formation

References I

Aruoba, S. Boragan. 2020. Term structures of inflation expectations and real interest rates. *Journal of business & economic statistics*, **38**(3), 542–553.

- Banbura, Marta, & Modugno, Michele. 2014. Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. *Journal of applied econometrics*, **29**(1), 133–160.
- Bauer, Michael D., & Swanson, Eric T. 2022. A Reassessment of Monetary Policy Surprises and High-Frequency Identification. *Pages 87–155 of: NBER Macroeconomics Annual 2022, volume 37*. NBER Chapters. National Bureau of Economic Research, Inc.
- Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977. Maximum likelihood from incomplete data via the em algorithm. *Journal of the royal statistical society. series b (methodological)*, **39**(1), 1–38.
- Diebold, Francis X, Li, Canlin, & Yue, Vivian Z. 2008. Global yield curve dynamics and interactions: a dynamic nelson–siegel approach. *Journal of econometrics*, **146**(2), 351–363.
- Fisher, Jonas, Melosi, Leonardo, & Rast, Sebastian. 2022. *Anchoring long-run inflation expectations in a panel of professional forecasters*. Working paper.

Gilchrist, Simon, & Zakrajšek, Egon. 2012. Credit spreads and business cycle fluctuations. *American economic review*, **102**(4), 1692–1720.

Patton, Andrew J., & Timmermann, Allan. 2010. Why do forecasters disagree? lessons from the term structure of cross-sectional dispersion. *Journal of monetary economics*, **57**(7), 803–820.