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Abstract  

We analyze the predictiveness and accuracy of evaluators’ assessments in a large sample of 

research proposals. We use a two-stage estimation that considers both the decision to fund and 

subsequent outcomes of the funded applications, measured by publications, citations, field-

citation ratios, and altmetric influence. We find that evaluators’ predictive ability is contingent 

on expertise. In particular, assessments by domain experts, defined as people with specific 

knowledge in the proposal’s domain, are predictive of post-funding success, unlike those of 

evaluators with average or minimal domain expertise; they also are more influential in funding 

decisions, suggesting that experts’ abilities are factored into the decision-making process. 

Despite this, domain experts are less accurate (i.e., make larger errors on average) in 

anticipating the level of outcome of proposals. Specifically, they are generally accurate when 

giving negative opinions but make large errors when giving positive opinions. The findings 

suggest that while domain expertise provides essential informational benefits, domain experts 

also tend to promote proposals that underperform in their area of expertise. 
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1. INTRODUCTION 

Decisions regarding whether to fund projects, be they for research or innovation, are 

challenging, but vital for scientific progress, societal wellbeing, and economic growth (Arrow 

1962; Arrow and Lind 1970; Hall and Lerner 2010; Hall, Mairesse, and Mohnen 2010; Romer 

1994; Stephan 2012). Research projects are intellectually sophisticated, highly specialized, and 

experimental in nature. Their understanding requires substantial domain-specific knowledge 

and a strong command of the technical language and methods. They also encompass some of 

the latest scientific advances, including approaches that may be novel, untested, or even 

disputed, requiring critical thinking about what is proposed (Åstebro and Elhedhli 2006; Scott, 

Shu, and Lubynsky 2020). 

Responsibility for evaluating these projects is largely entrusted to domain experts, 

defined as people with a strong intellectual understanding of research and with technical and 

scientific competencies on the specific domain knowledge of the proposal under evaluation 

(Chubin and Hackett 1990; Cole and Cole 1981; Lamont 2009). Reliance on domain expertise 

is a main tenet of all evaluation practices and is deeply rooted in the rules of peer review 

(Chubin and Hackett 1990; Polanyi 1962). It assumes that the possession of specific knowledge 

about the subject of a research project provides informational advantages in envisaging its 

possible future outcomes (Henderson and Fredrickson 1996; Li 2017; Scott et al. 2020). 

Despite the widespread reliance on expertise, we have scant empirical evidence of its 

importance in peer review evaluations. The few empirical tests on the predictive power of 

research evaluations conducted to date have been constrained by a lack of individual-level data 

linking the evaluations to the identity of the evaluators and, consequently, did not investigate 

the role of domain expertise (Danthi et al. 2014; Doyle et al. 2015; Fang, Bowen, and 

Casadevall 2016; Li 2017; Reinhart 2009). Studies conducted in other contexts, like consumers 

behavior, investment decisions, medical opinions, and the prediction of geopolitical events 

have generally not found a correlation between expertise and forecasting ability, showing 

instead that expert predictions are rarely better than those of basic algorithms and it is generally 

not possible to identify the few forecasters who systematically beat chance from characteristics 

observed ex ante (Armstrong 1991; Broomell and Budescu 2009; Camerer and Johnson 1991; 

Clemen and Winkler 1985; DellaVigna and Pope 2018; Morgan 2014; Tetlock and Gardner 

2015). These findings are based on contexts in which domain expertise is difficult to assess 

and is sometimes conflated with experience (length of exposure), decision-making authority 
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(holding top positions in organizations), or training (formal education in a subject), and so are 

not necessarily generalizable. However, they add to previous work documenting a number of 

problems with expert judgement, including the tendency for experts to be overconfident in their 

opinions (Ben-David, Graham, and Harvey 2013; Bradley 1981; Morgan 2014), to disagree 

with other experts and themselves over time (Cole, Cole, and Simon 1981; Litvinova et al. 

2022; Mumpower and Stewart 1996), and to behave strategically to move decisions in desired 

directions (Krishna and Morgan 2001; Ottaviani and Sørensen 2006).       

In this paper, we address the important and understudied topic of expert predictive 

ability in evaluations of research proposals, a context that is particularly suitable to the aim, 

because the knowledge of the experts is well-documented by publication records, allowing 

measuring domain expertise with a precision that would not be possible in other contexts. We 

use measures of domain expertise based on large language models to study empirically how 

well the opinions provided by evaluators with different degrees of domain expertise predict the 

actual outcomes of research proposals. We use a dataset comprising 16,636 unique evaluations 

of 5,769 research proposals (both accepted and rejected), submitted to the Novo Nordisk 

Foundation, the world largest private funder of scientific research, between 2012 and 2018. We 

supplement data with detailed information about the evaluators, the Principal Investigators 

(PIs) and the proposals. To be more specific, we collect individual-level information on the  

publications records of the evaluators, and compute a metric of domain expertise of each 

evaluator-proposal pair, defined as the intellectual proximity (cosine similarity) between the 

content of the proposal (based on title and summary) and the background of the evaluators at 

the time of the evaluation (based on their previous publications). We measure proposal 

outcomes for a minimum of 5 years after the date of funding (until the end of 2023), in terms 

of publications, citations, field-citation ratios, and influence metrics (altmetrics). We study the 

relationship between domain expertise and predictive ability in two ways. First, we model 

predictiveness, i.e., the degree to which scores provided by experts and non-experts prior to 

funding correlate to post-funding metrics of proposal success. Second, we model accuracy, i.e., 

the size and distribution of the prediction errors that experts and non-experts make when 

scoring proposals, by comparing the predicted (pre-funding) quantile rank to the actual (post-

funding) quantile rank of the proposals with methods borrowed from the forecasting literature 

(Broomell and Budescu 2009; Larrick and Soll 2006; Lehmann and Casella 1998; Tetlock and 

Gardner 2015).  
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Our empirical exercise poses three major methodological challenges. First, measuring 

the outcomes of research projects is inherently difficult. We tackle this problem by collecting 

four different measures of outcomes, of which three (publications, citations, field citation 

ratios) measuring academic performance, and one (almetrics) measuring influence beyond 

academe. Second, although experts provide opinions on all proposals, the actual outcomes are 

observable only for the proposals that were selected for funding, inducing a sample selection 

bias. We tackle this challenge by using a Heckman two-stage estimation approach, in which 

the first stage models the probability of being funded, and the second stage models the ability 

of reviewers’ evaluation scores to predict post-funding outcomes, or the accuracy of 

predictions, with a correction for sample selection. Reviewers are committee members, hired 

before the closure of the call and have limited control over the number of proposals assigned 

to them for evaluation. Accordingly, we use their workload (i.e., the total number of 

evaluations performed by a single person in the month of the review) as the exclusion 

restriction. We assume that reviewers’ workload is exogenous to the unobservable variables 

(e.g., the quality of the proposal) in both the first and second stage, while it affects the choice 

of funding (higher workload makes evaluations noisier) but does not fundamentally affect the 

goodness of the research that is proposed and its results, after it is funded. Third, applications 

are not randomly assigned to reviewers and expertise is one criteria of assignment, creating 

potential issues of identification regarding the effect of expertise on predictive power and 

accuracy. One source of concern is that proposals addressing more mainstream topics would 

be easier to evaluate, leading to better predictions. The same proposals may also be more likely 

to be assigned to a domain expert, because committee members are normally chosen to 

represent the major areas of a research field. Although we cannot eliminate this issue 

completely in our estimates, we try to minimize it, by using individual reviewers fixed effects 

in all estimates.  

We provide four main findings: First, evaluation scores predict, quite logically, whether 

the proposal is funded, but they are not a good predictor of post-funding outcomes, however 

measured, suggesting that, in general, peer review opinions have, at best, weak predictive 

validity. Second, when we qualify evaluators by their domain knowledge on the topic of the 

proposals, we find that the predictive power of peer review is contingent on evaluators’ domain 

expertise. Indeed, expert’s scores are a strong predictor of post-funding outcomes, while non-

expert’s scores are not. This result is stable across all measures of post-funding outcome, 

suggesting that expertise is associated with important informational advantages. Third, 
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evaluators with domain expertise are more influential towards the funding decision, suggesting 

that their expertise carries weight. Moreover, supplemental analyses show that evaluators with 

prestigious research publications (articles in Science & Nature) are also more influential than 

non-prestigious evaluators, but their opinions were not more predictive of post-funding 

outcomes. This indicates that research excellence or prestige is not a substitute of domain 

expertise in peer review predictions. Fourth, experts are accurate (make minimal errors) when 

they give negative opinions (worst scores) but make large errors when they give positive 

opinions (best scores), suggesting that they tend to overestimate proposals in their domain. In 

supplemental analyses, we show that the overestimation bias of experts does not seem to be 

explained by a preference for novel research, which could have led to more volatile outcomes 

and larger average errors. Alternative, but untested, explanations for the large overestimation 

errors are that experts perceive the impact in their domain as exaggeratedly high, or are affected 

by confirmation biases, and/or that they behave strategically to promote underperforming 

proposals in their area of expertise. 

We conclude that expertise is essential to ensure predictive evaluations in research 

funding. However, experts are prone to making large errors and their opinions, especially when 

very positive, should be taken with a grain of salt.  

The paper is organized as follows. In section 2, we discuss the literature on expertise 

and forecasting and review the few studies that have looked at the predictiveness of peer review 

opinions. In section 3, we present data and methods. In Section 4, we show the results of the 

main and supplemental analyses and of robustness checks. In Section 5 we summarize the 

findings and discuss the implications for improving the predictiveness and accuracy of expert-

based evaluations and for helping organizations to make more informed decisions regarding 

the funding of research. 

 

2. BACKGROUND  

2.1 The value of expertise 

Decision-making on research and innovation is largely entrusted to experts, who have 

a strong intellectual understanding of research and specialized technical and scientific 

competencies on the domain-specific knowledge of the proposal under evaluation. The reliance 

on expertise is rooted in the norms of peer review (Chubin and Hackett 1990; Polanyi 1962) 



 

 6 

and ubiquitous in funding evaluations.1  When appointing a panel or study section in charge of 

evaluating applications, a criterion for selection is that the experts cover the spectrum of 

domains and areas that the program targets (Chubin and Hackett 1990; Cole and Cole 1981; 

Lamont 2009; Li 2017).2 The practice is enabled with specialized software that screens 

individual publishing profiles to recognize suitable evaluators.3 Experts themselves place great 

reliance on specialized knowledge, respecting the sovereignity of disciplines and the areas of 

competence of their colleagues. In difficult evaluations, they often turn to the most specialized 

expert among them for the last word (Lamont and Huutoniemi 2011; Ottaviani and Sørensen 

2001).  

The seminal studies of expertise are rooted in 1970s information processing theory 

(Cyert and March 1963; Simon 1978, 1979). Since these early works, expertise has been 

understood as a superior endowment of information, stored in a structured way in the long-

term memory that experts can retrieve at need (Chase and Simon 1973; Simon 1979). The 

proficiency of experts would thus depend on both on their memory and the cognitive structure 

of their mental processes (Lord and Maher 1990; Simon 1978). Experts are seen as having the 

ability to recall knowledge in a reliable way and identify known patterns within large problems, 

without being nudged to do so (Fiske, Kinder, and Larter 1983; McKeithen et al. 1981). They 

can then “chunk” problems into smaller and more tractable subunits that can be solved with 

specific knowledge, heuristics or known solution (Chi, Feltovich, and Glaser 1981; Ericsson 

and Kintsch 1995). By contrast, non-experts are often influenced by more salient or superficial 

information that may not be fruitful for identifying effective solutions, while they overlook less 

noticeable, yet potentially more useful and valid cues (Chi et al. 1981; Fiske et al. 1983; 

McKeithen et al. 1981). A second advantage of experts relates to their metacognitive skills, 

that is to their information regarding the broader knowledge domain (Flavell 1979). 

 
1 By way of example, the Center for Scientific Review of the NIH in 2023 engaged approximately 19,000 
distinct reviewers every year to evaluate the NIH grant proposals. 
https://public.csr.nih.gov/AboutCSR/Evaluations#overview. Accessed January 16, 2023. 
2 The NIH stresses the following: “Expertise is the paramount consideration when developing/updating a roster. 
Each scientific area reviewed by the scientific review group needs expert representation.” 
https://public.csr.nih.gov/ForReviewers/BecomeAReviewer/CharteredReviewers. Accessed January 16, 2023. 
The reliance on expertise is also mirrored in the realm of innovation funding. Companies give decision power to 
internal committees of experts selected among technical leaders, senior managers, or heads of the R&D labs 
(Criscuolo et al. 2017; Lerner and Wulf 2007). Business angels and startup mentors are often executives with 
successful entrepreneurial backgrounds (Huang and Pearce 2015; Scott et al. 2020).  
3 E.g., Web of Science Reviewer Locator: (https://clarivate.com/products/scientific-and-academic-
research/research-publishing-solutions/web-of-science-reviewer-locator/),  Springer Nature Reviewer Finder 
(https://www.springernature.com/gp/editors/resources-tools/reviewer-finder). Accessed Jan 10, 2024. 
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Metacognition involves a greater aptitude to assess the trustworthiness of information 

presented as factual, and the capacity to conduct further scrutiny to ascertain reliability, based 

on direct knowledge about the source or about the context of the information (Alter and 

Oppenheimer 2007; Pintrich 2002). For example, consider research that proposes to adopt a 

certain method to solve a challenging problem, claiming this is the best possible strategy. An 

evaluator who does not know the technicalities of this research method would not be able to 

tell if this assertion is valid and should take the proposed solution at its face value. One who 

knows the technicalities of the strategy but is not acquainted with the specific field of research 

could assess the feasibility of the solution in the abstract but could not tell if the strategy is 

good in relative terms, compared to alternative strategies that others are attempting or have 

attempted, if these are not discussed in the proposal. Only an evaluator who knows both the 

technicalities and the field of research could do so. Consequently, the meta-knowledge of the 

field enables domain experts to question the significance of what is proposed or identify 

possible caveats by looking beyond the information provided (Brand-Gruwel et al. 2017; 

Lucassen and Schraagen 2011). 

2.2 The fallacy of expertise 

Around the same time that information processing studies were focusing on the 

problem-solving abilities of experts, social psychologists were focused on the cognitive biases 

of the human mind. One question that arose naturally was if expertise was an antidote to the 

defects of human cognition (Kahneman 2011). Contrary to the initial expectations, the studies 

indicated that experts are aflected by common human biases (Camerer and Johnson 1991; 

Cooke 1991; Kahneman and Klein 2009). Empirical studies have shown that expert judgments 

are influenced by extraneous factors, such as moods and emotions, especially when they are 

based on intuition, instead of slow logical thinking (Danziger, Levav, and Avnaim-Pesso 2011; 

Dushnitsky and Sarkar 2022; Hirshleifer and Shumway 2003; Kahneman and Klein 2009). 

Other studies have also shown that experts often disagree with each other or provide 

inconsistent opinions over time (Litvinova et al. 2022; Mumpower and Stewart 1996). In 

addition, experts are prone to overconfidence, understood as the tendency to maintain high 

confidence in erroneous beliefs or to provide confidence intervals that are overly narrow (Ben-

David et al. 2013; Bradley 1981).  

A separate stream of studies has focused on forecasting, i.e., the ability to make 

predictions under conditions of uncertainty (Armstrong 1991; Clemen and Winkler 1985; 

Morgan 2014; Tetlock and Gardner 2015). Here too, the results indicate that humans are 
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generally poor forecasters and that experts do not generally do better than basic forecasting 

algorithms, such as those assuming the continuation of existing trends (Armstrong 1991; 

Tetlock 2017). The small groups of people who appear to systematically predict better than 

chance, called “superforcasters”, are not easy to identify by externally observable 

characteristics, including those entailing domain-specific knowledge (Mellers et al. 2015; 

Tetlock 2017; Tetlock and Gardner 2015). A common problem with these studies is that they 

adopt variable and inconsistent definitions of expertise, conflating domain expertise with 

experience (e.g., length of exposure), training (e.g., formal education in a subject), decision-

making authority (e.g., holding specialized or top positions in organizations), proficiency (high 

levels of performance), and so on (Budescu and Chen 2015). Moreover, many of these studies 

focus on contexts such as consumer behavior, geo-political events, sports, or popular culture, 

where expertise is difficult to define and to measure. In contrast, research funding decisions 

are an area where some level of specialized domain knowledge seems inherently necessary to 

understand even the basic content of the sophisticated technical details provided in proposals. 

In this area, evaluators’ domain knowledge is also well documented in the body of publications 

that the person has done in the past. 

2.3 Predictive validity of research proposal evaluations  

To understand the degree to which reviewers are capable of scrutinizing proposals and 

identify those more likely to be productive, it is necessary to compare the scores provided 

before the research is funded to the outcomes eventually occurred after funding. Because of 

the limited availability of data, few empirical studies have done so. A summary of these is 

provided in Table 1. Two things are worth noting. First, none of the studies has individual 

reviewers’ scores. Instead, they have evaluations that express the collective opinion of a panel 

of experts, in rank format. Second, four of the five studies consider only funded proposals and 

do not model the selection into funding, which creates sample selection issues. Looking at the 

findings, three works report no or very weak correlation of panel evaluations to outcomes 

(Danthi et al. 2014; Doyle et al. 2015; Reinhart 2009). The two remaining studies are based on 

NIH data, and are connected, in the sense that they are a study and its re-analysis. Collectively, 

they indicate that panels’ ranking predicts the outcomes of top-ranked proposals, while they 

are a weak predictor of proposals ranked closer to the payline (Fang et al. 2016; Li and Agha 

2015).  

[Table 1] 
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None of the studies mentioned examines the role of expertise as a moderator of 

predictive power. Likewise, no study to our knowledge has analyzed prediction errors in 

science funding decisions. Worth mentioning is a study by Li (2017) that has information on 

the panel members involved in making the collective judgment of the review group. The study 

looks at the performance of articles whose titles were similar to those of the applications for 

both funded and unfunded proposals. It finds that panels including permanent committee 

members who were familiar with the research of PIs, measured by citations to the PI’s work, 

were generally more capable of identifying higher quality proposals, but not more capable to 

identify lower quality proposals. This, along with simulations calibrated on real data that 

highlight the importance of evaluators' expertise (Feliciani et al. 2022), underscores the need 

for comprehensive empirical studies to delve deeper into the role that evaluators’ expertise 

plays in evaluation accuracy. This is the scope of the present paper.  

 

3. DATA AND METHODS 

3.1 Research context: Evaluation of research proposals at NNF 

We use data from the Novo Nordisk Foundation (NNF), an independent non-profit 

funder of scientific research, based in Denmark. Between 2016 and 2023, the NNF provided 

the equivalent of over $6.8 billion in grants predominantly in the medical and health sciences 

and is currently the world largest private funder of scientific research.4 The NNF approach to 

evaluating proposals is a multi-step process, similar to the process of NIH and other funding 

institutions.5 First, applications undergo an initial check of eligibility for administrative 

requirements, conducted by the program officers of NNF. Those clearing the check are 

forwarded to a review committee, typically composed of 5-12 internationally recognized 

scholars. The review committees are officially appointed by NNF and its members, who are 

hired, normally stay in the committee between 2 and 7 years. The members of the committee 

serve as the evaluators (or reviewers) of the proposals. The evaluation process takes place in 

two steps. In the first step, each proposal is assigned by the program officer to a minimum of 

two committee members (mean=3.09; SD= 2.31), who are competent in the proposal area and 

 
4 https://novonordiskfonden.dk/en/facts-and-figures/. Accessed 2024-06-18. 
5 The one outlined is the main peer-review process followed by NNF. Some calls may include variations. See 
https://novonordiskfonden.dk/en/news/novo-nordisk-and-novozymes-prizes-awarded/. On NIH funding model 
see e.g., https://grants.nih.gov/grants/peer-review.htm#Initial. Accessed 2024-01-08. 
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have no conflicts of interest.6 Important to our methodology, is that reviewers do not have 

much control over the number of proposals assigned to them in a given round. We will return 

to this when we discuss reviewers’ workload as the exclusion restriction. Each reviewer 

initially evaluates the proposals assigned independently from the other reviewers.7 The 

individual evaluations (or reviews, or opinions) are provided in the form of a single numerical 

score, with a brief comment substantiating the score.8 Each evaluation is then independently 

submitted to the program officer, who uses all the scores received to prepare for the second 

and final evaluation step, in which the entire committee meets. In preparation for the meeting, 

the officer sets aside the proposals that received the worst scores, which will not be discussed 

again, unless a committee member explicitly asks to rescue the proposal. The panel discussion 

leads to a final collegial recommendation to fund or not, which is then upheld by the board.9  

This comprehensive review process typically spans 6 months and ends with the PIs being 

notified of decisions.  

To conduct our study, we had access to full proposals (funded and unfunded), the 

identity of the PIs and of the reviewers, the scores that the reviewers provided independently 

in the first step, prior to the committee meeting and the final decision. Until 2017 NNF adopted 

a score scale from 1 (excellent) to 5 (poor). In 2018, the scale was changed from 1 (excellent) 

to 6 (poor). Despite the change, the score of 6 was virtually never used. Scores are integer, 

although there are a few exceptions of .5 scores. To account for the change in the scale and the 

different uses of these, we first normalize the scores at the call level, by dividing each score by 

the average score of all applications in the call and then take the quintile score rank.  

3.2 Data sample 

We use all research proposals for research grants (or applications) submitted to NNF 

between 2012 and 2018, involving 759 funding calls addressing various types of research, with 

a strong focus on life sciences. We excluded all funding calls for scholarships, non-research 

actions, and startup incubation. We also exclude 561 proposals-scores pairs (56 related to 

 
6 Committee members have an obligation to report any potential conflict of interest. Program officers resolve 
conflicts by reassigning the evaluation to a committee member that is in no position of conflict. There is a strict 
rule that people who are in a potential conflict of interest must not participate in any part of the decision.  
7 Criteria are described in the guidelines but are not scored separately. These normally include quality, novelty, 
potential impact, the budget, and the qualifications of the PI. Additional criteria may be added in specific calls. 
8 Proposals are not ranked in relative terms and ties are admitted.  
9 Unlike the NIH study sections, the panelists do not review or update individual scores after the meeting and a 
final score is not published. As a result, it can be reasonably assumed that the scores provided in the first step 
are independent of each other. 
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funded proposals and 505 related to unfunded proposals) from reviewers who served in a single 

call and could not be estimated using reviewers fixed effects. The resulting dataset comprises 

6,636 evaluations of 5,769 unique applications and 72 unique reviewers.10 The data comprises 

both funded and unfunded applications. The average funding rate in our sample was 17.4%. 

3.3 Outcome variables 

In our dataset, 2,495 evaluations relate to applications that were subsequently accepted 

for funding. For these applications, we collect data on funding outcomes (until the end of 2023) 

from the API version of the database Dimensions.ai (https://www.dimensions.ai.) at the 

beginning of 2024, allowing a minimum of 5 years from the award of the grant. An advantage 

of Dimensions.ai is that it provides clean measures of outcomes deriving from a grant, based 

on the references to the grant made in the acknowledgements of publications. We collect three 

measures of academic performance: publications, citations, and cumulative Field Citation 

Ratio (FCR), and a metric of public influence, the Altmetric score. Cumulative FCR is the sum 

of citations received by all publications acknowledging the grant, divided by the average 

citations received by publications in the same field and year. Consequently, FCR is normalized 

to consider the advantage that older grants and larger fields have in accumulating citations and 

is particularly suitable to compare grants from different fields and years. The Altmetric score 

measures the attention received by research outputs in public outreach, such as social media, 

coverage in the mainstream press and in blogs, citations in policy reports, Wikipedia, and other 

documents accessible online. The four outcome measures enable us to provide a holistic view 

of an application’s success by considering both traditional academic impact and broader non-

academic influence. 

3.4 Measure of domain expertise 

We identify reviewers based on their full names, surnames, and institutional affiliations 

in the database Dimensions.ai. We retrieve the complete publication history for each reviewer, 

including titles and abstracts of their publications. We use these data to build a measure of the 

expertise of the reviewer about the specific application that she or he is scoring. As said, the 

concept of expertise is multifaceted and various operationalizations have been proposed to 

capture its different dimensions. In this paper we want to measure domain expertise. We then 

take the approach of Boudreau et al. (2014), who aligns expertise with intellectual proximity, 

 
10 Adding reviewers fixed effects in our estimates (see Section 4) implies a loss of 561 proposals-scores 
observations (56 related to funded proposals and 505 related to unfunded proposals).    
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a view echoed by earlier researchers (Libby and Frederick 1990), and measured the cosine-

similarity between the research proposal and the publications of the evaluators. While 

Boudreau and colleagues computed the cosine similarity between the MeSH terms extrapolated 

by the applications and reviewers’ publications, we instead calculate the cosine similarity 

between the complete titles and summary of the proposals and the titles and abstracts of the 

reviewer's publications. To this aim, we leverage BERT (Bidirectional Encoder 

Representations from Transformers), a state-of-the-art large language model to generate high-

dimensional vector representations that capture the semantic essence of the documents and the 

underlying concepts with considerable precision. The resulting metric is specific to each pair 

of application-reviewer at the time of the review. 

Cosine similarity can potentially range between 1 (perfect congruence) and -1 

(complete dissimilarity). In our sample, the measure ranges between 0.285 and 0.957 (mean 

0.741; SD 0.119). We use both the continuous measure of cosine similarity (expertise) and a 

binary variable (expert evaluator), in which 1 denotes high expertise, equivalent to the top 

quartile of cosine similarity (0.829 or more). The threshold was carefully chosen with 

supplemental analyses and controlled with manual reading (see robustness checks and 

Appendix). To illustrate the metric with an example, consider an evaluator who is an 

endocrinologist with extensive experience in clinical research on endocrinology and 

metabolism. This reviewer would have a cosine similarity=0.41, equivalent to the 1st percentile 

(virtually no domain expertise) in evaluating a proposal on neuroscience research regarding the 

neuronal activity of patients with brain disorders. She would have a cosine similarity=0.78, 

equivalent to the 50th percentile (low domain expertise) in evaluating a proposal on the clinical 

treatment of chemotherapy-resistant metastatic colorectal cancer (possibly due to the contiguity 

of the endocrine glands on the intestine) and a cosine similarity of 0.93, equivalent to the 99th 

percentile (very high expertise) in evaluating a proposal on the clinical treatment of pre-

diabetes in obese patients. The same person would have a cosine similarity of 0.829 (equivalent 

75th percentile) and equal to our threshold of high expertise in evaluating a proposal regarding 

the beneficial effects of gut microbiome on host physiology and metabolism.  

3.5 Variables description 

Table A1 of the Appendix provides a detailed description of all the variables of 

observation and the controls used in the analysis. Summary descriptive statistics are provided 

in Table 2 and the Pearson’s pairwise correlation matrix is provided in Table 3.  
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[Table 2 and Table 3] 

4. RESULTS 

4.1 Descriptive statistics 

Table 4 shows the distribution of the quintile scores that expert and non-expert 

evaluators have given to all applications scores (left) and to the subset of applications that 

received funding (right). Expert and non-expert evaluators demonstrate a distinct pattern in 

their evaluations, as indicated by a different distribution across all applications (c2(df=4) 

=85.780; p-value =0.000). In particular, the difference in the mean quintile score between 

experts (2.846) and non-experts (3.013) computed across the entire sample is statistically 

significant (p-value = 0.000), indicating that experts generally give more positive evaluations 

(i.e., lower quintile scores) than non-experts. A similar pattern applies to the subsample of 

funded applications, which also exhibit non-equal distributions (c2(df=4) =86.644; p-value 

=0.000). Not surprisingly, applications that were funded have a higher incidence of positive 

evaluations (quintile scores 1 and 2) from both experts and non-experts.  

Table 5 shows the mean values of the four post-funding outcomes of funded proposals, 

arrayed by the evaluations provided before funding and by experts and non-experts. We notice 

that the mean outcome of the applications evaluated by experts is consistently lower across all 

measures of post-funding outcome. Moreover, and quite interestingly, the difference in the 

mean outcomes between experts and non-experts tends to increase from excellent to poor 

scores. This indicates that the opinions of experts and non-experts tend to diverge more towards 

the bottom range of the evaluation scale, i.e., for worst scores. Although these statistics do not 

consider selection, they suggest that non-experts tend to underestimate (give more negative 

scores) applications that perform quite well after funding, hinting a correlation between 

expertise and predictive power. We will turn to this in the next sub-section. 

[Table 4 and Table 5] 

4.2 Predictiveness of evaluations 

To understand the predictive power of evaluation scores provided by reviewers with 

various degrees of expertise, we want to model the relationship between the evaluation scores 

and post-funding outcomes and study if the evaluator’s expertise moderates this relationship. 

The approach poses important methodological challenges. A first problem is that, although we 

observe the scores for all funded and unfunded proposals, actual outcomes are observable only 
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for funded proposals. Consequently, estimates are exposed to sample-induced endogeneity that 

occurs when an omitted variable influences both the probability of entering the sample (i.e., 

being funded) and the dependent variable (i.e., the post-funding outcome), causing a correlation 

of the error terms of the selection and outcome equations. In our case, it can be argued that 

application quality, which is unobservable, is positively correlated with the error term of the 

selection for funding (i.e., better applications are more likely to be funded), and with the error 

term of the outcome equation (i.e., better applications have better post-funding outcomes). To 

address this issue, we use a two-stage estimation approach (Heckman 1979) where the first 

stage (selection equation) models the influence of the scores on the selection for funding with 

a probit model, and the second stage (outcome equation) models the capacity of the scores to 

predict the post-funding outcomes with an OLS. The Inverse Mills Ratio obtained from the 

selection equation is included in the outcome equation (lambda), to correct for sample selection 

bias. The Heckman model should include in the first stage a strictly exogenous variable (i.e., 

uncorrelated to the omitted variable generating the sample selection bias), known as exclusion 

restriction, which should affect the probability of entering the sample, but not the dependent 

variable in the outcome equation (Certo et al. 2016). We use as the exclusion restriction the 

workload of the evaluator, measured by the total number of applications (from all calls) scored 

by the reviewer in the same month. The rationale of this choice is that a higher workload 

influences the selection decision, by reducing the amount of time the evaluator can spend 

reviewing each application, making the selection noisier, but it does not affect the research or 

the outcomes that this will produce when funded. Essential to our argument is that reviewer 

workload is a source of exogenous variation affecting selection and it is not correlated to the 

unobserved quality of proposals. Based on our interviews with NNF program officers, 

reviewers, who are all hired as committee members, do not have much control on the number 

of proposals they are asked to score in each round. Their workload varies primarily based on 

the total number of submissions received for that call, and the number of calls in which the 

committee is involved at the same time. Workload varies considerably by call and over time. 

Moreover, the calendar of calls has varied from one year to the other and some committees 

were involved in multiple overlapping calls. Consequently, workload has a high absolute 

variation, ranging from a low of 1 to a high of 189 applications to review (mean 72.7; SD 41.8). 

We provide additional information and discussion on workload in Section A1 of the Appendix. 

A second methodological challenge concerns the possibility that one of our main 

variables of interest, domain expertise, is directly or indirectly correlated to heterogeneity in 
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prediction difficulty, causing identification problems. A specific concern is that some research 

outcomes may be easier to predict than others and an unobserved mechanism causes easier 

prediction tasks to be assigned more often to experts then to non-experts. For example, 

mainstream proposals may be easier to predict because reviewers have more background 

material and information at their disposal. Mainstream proposals may also be more likely to be 

assigned to a domain expert, compared to proposals that are not mainstream, because 

committees are composed to represent all major research areas. It is also possible that reviewers 

with better forecasting skills are themselves more involved in research areas that are easier to 

predict. Our estimation approach is correlational, and we cannot address this identification 

issue entirely. However, we mitigate the problem by controlling for reviewer fixed effects in 

all estimates. The rationale is that reviewers fixed effects should capture the heterogeneity that 

relates to research domains, as well as individual forecasting skills.  

[Table 6] 

Table 6 reports the results of the estimates of the Heckman two-stage models with 

reviewers fixed effects. Panel A reports the baseline models correlating evaluation quintile 

scores to outcomes, prior to adding our measure of evaluator’s expertise. Column 5 of Panel A 

shows the estimates of the first-stage equation, modelling the probability of being funded as 

depending on the exclusion restriction, the score, and a large set of controls. The coefficient of 

the workload variable is negative and significant (p<0.01), indicating that the funding rate is 

higher for lower values of the exclusion restriction. We note that, net of control variables, the 

evaluation scores predict funding. Recalling that the score scale is reverted (top scores are low 

numbers), more negative evaluations (i.e., higher scores) are associated with a lower 

probability of being funded (p<0.01). Columns 1 to 4 of Panel A report the baseline estimates 

of the outcome equation. We note that the evaluation scores in the baseline model (prior to 

adding expertise) have no or weak predictive power. In particular, reviewers’ opinions are 

weakly associated with citations (p<0.10), while they do not significantly predict other post-

funding outcome measures.  

Panel B of Table 6 reports our main analysis, where we add a continuous variable of 

evaluators’ expertise, standardized to ease interpretation (mean zero, unit SD), plus its 

interaction term to the quantile score. Prior to commenting on the results, we note that the 

lambda coefficient in the outcome equations (Columns 1-4) is always positive and significant. 

This, together with the statistical significance of the evaluation score in the selection equation 
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(Column 5), confirms the existence of a sample selection bias and the need for the Heckman 

correction.11   

Column 5 of Panel B reports the estimated coefficients of the selection equation. As in 

the prior model, quintile scores predict funding. Moreover, the interaction term between the 

score and the evaluator’s expertise is negative and statistically significant (p<0.05), indicating 

that better (i.e., lower) scores provided by experts are increasing the probability of funding. 

This is consistent with the view that experts’ evaluations carry more weight than non-experts’ 

evaluations in deciding funding. In columns 1 to 4 of Panel B, i.e. for all outcome measures, 

both the quintile scores and the interaction terms between these and expertise are significant 

(p<0.01), indicating that expertise moderates the evaluator’s capacity to predict outcomes. 

Specifically, a one-unit worst quintile score given by an evaluator with average expertise (i.e., 

cosine similarity = 0.74) is associated with 11% fewer publications, 31% fewer citations, 21% 

lower FCR and 20% lower public influence. A one-unit worst quintile score given by an expert 

evaluator (i.e., with a level of expertise that is 1 standard deviation above the mean (cosine 

similarity = 0.86), is associated with 21% fewer publications, 52% fewer citations, 38% lower 

FCR and 33% lower public influence.  

In Panel C of Table 6, we provide an alternative estimation in which we replace our 

continuous measure of expertise with the binary variable expert evaluator, taking a value of 1 

for the 75^ percentile of domain expertise (cosine similarity ≥ 0.83). As before, the estimates 

confirm the need for the Heckman correction. The coefficient of the interaction term quintile 

score X expert evaluator in the selection equation (column 5, Panel C) is negative (p<0.01), 

confirming the previous evidence that experts’ scores are more influential in the decision to 

fund the proposal. Quite interestingly, the coefficient of expert evaluator is positive (p<0.01). 

This suggests that applications evaluated by experts have a greater chance of being funded, 

reflecting the evidence of higher average scores by expert reviewers observed in the descriptive 

statistics. The estimates of the outcome equations (columns 1-4) indicate that the interaction 

term scores x expert evaluator is negative (p<0.01), confirming that experts’ scores predict 

post-funding outcomes better than non-experts’, net of selection into funding. The magnitude 

of the estimated effects is sizable. A one-unit worst quintile score given by an expert is 

associated with 20% fewer publications, 63% fewer citations, 44% lower FCR and 44% lower 

 
11 The existence of a sample selection bias requires both a significant coefficient for the main variable of interest 
(in our case, the evaluation score) in the selection equation and a significant lambda in the outcome equation 
(Certo et al., 2016).   
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public influence. The quintile score is not statistically significant at conventional levels, 

indicating that the evaluations of non-experts do not predict post-funding outcomes.  

[Table 6] 

In supplemental analyses included in section A2 of the Appendix (Table A2), we 

explore alternative variable specifications that capture alternative/more granular levels of 

expertise. The results confirm the effects found in the main analyses.   

4.2 Accuracy of evaluations 

The estimates just seen modelled the predictiveness of evaluations and indicated that 

the predictive power of evaluations is contingent on domain expertise. We next want to 

understand more about the prediction errors (accuracy) made by experts and non-experts and 

how these vary along the score scale. Following the approach of the forecasting literature 

(Broomell and Budescu 2009; Larrick and Soll 2006; Lehmann and Casella 1998; Tetlock and 

Gardner 2015), we measure the prediction error as the difference between the actual and 

predicted value of proposals,  considering the quintile scores provided before funding as the 

evaluator’s prediction regarding the potential value that the proposal would generate for 

science and society if funded and the quintile rank of post-funding outcomes (on various 

indicators) as the actual value of the proposal observed after funding. The legitimacy of these 

assumptions is corroborated by a positive rank correlation of distributions observed before and 

after funding.12  We then calculate the prediction error of the evaluator i as the absolute 

difference between the actual quintile rank of proposal j based on its actual post-funding 

outcome k and the quintile score rank of proposal j predicted by evaluator i before funding, as 

in the following formula: 

Prediction Errorij = |Actual Rankjk – Pre-funding Rankji| 

An evaluation is fully correct (or accurate) when the quintile score predicted matches 

the actual quintile rank of real-world outcomes so that the prediction error is zero. It is incorrect 

as the two values diverge. For instance, if an evaluator assigns a score placing an application 

 
12 Spearman rank correlation (r=0.22, p-value=0.00) significant at conventional statistical levels. 
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in the fourth quintile (score=4), but its cumulative FCR positions it in the third quintile, the 

resulting prediction error would be calculated as |3 - 4| = 1.13  

Table 7 shows the mean values of the prediction errors of the four post-funding 

outcomes, divided by the quintile scores of experts and non-experts. We notice that the mean 

prediction error of experts is consistently higher across all post-funding outcome measures, 

suggesting that domain experts are less accurate than non-experts. Quite interestingly, the 

differences in the mean prediction errors between experts and non-experts are positive for 

lower quintile scores and negative for higher scores, suggesting that non-experts are more 

accurate than experts when they give positive scores, while experts are more accurate than non-

experts when they give negative scores.  

[Table 7] 

Table 8 reports the results of the multivariate analysis of prediction errors associated 

with the four post-funding outcomes (Columns 1 to 4). The selection-equation of the Heckman 

model is identical to the one reported in Column 5 of Table 6-Panel C. The coefficients of the 

expert evaluator’s variable are positive (p<0.01) and confirm that, on average, domain experts 

exhibit larger average errors (i.e., are less accurate) than non-experts.  

However, the negative coefficients of the interaction terms (p<0.01) between expert 

evaluator and the quintile score are indicative of important differences across the spectrum of 

the scores. To shed further light on this, we show in Figure 1 the estimated difference in 

prediction errors (vertical axes) made by domain experts V non-experts, at the five values of 

the score (horizontal axes) with 95% confidence bars. We note that the experts are more correct 

than non-experts when they assign the worst scores (i.e., 4 and 5). The difference in the 

prediction errors (experts – non-experts) is indeed negative and significant (p<0.05) for all 

funding outcome measures when the quintile score is higher than 2. Experts are instead less 

correct (make larger prediction errors) than non-experts when they assign top scores (i.e., 1). 

The latter difference is positive and significant (p<0.05) for all outcome measures.  

We conclude that, while only domain experts’ scores have predictive power, experts 

are not always equally accurate. Specifically, they demonstrate higher accuracy (make smaller 

 
13 Other approaches use quadratic, instead of absolute error. Results in our case do not change (see robustness 
checks). 
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prediction errors) than non-experts when giving negative evaluations. However, they 

demonstrate lower accuracy (make larger prediction errors) compared to non-experts, when 

they give positive evaluations.  

[Table 8 and Figure 1] 

4.3 Supplemental analyses 

 

We run a supplemental analysis to understand whether the ability of expert evaluators 

to predict the post-funding outcome is also exhibited by evaluators with a strong reputation of 

scientific excellence in research. To do so, we construct a binary variable (prestige) that equals 

1 if the evaluator has published articles in Science or Nature prior to the time of the 

evaluation.14  In Table 9 we include both the binary variable expert evaluator (75^ percentile 

of cosine similarity) and the binary variable prestige, and their interaction terms in the same 

econometric model. The coefficient of expert evaluator and its interaction remain stable and 

consistent with the previous estimates. The variable denoting evaluators with prestigious 

publications (prestige) is weakly significant (p<0.1) in the selection equation (column 5), 

indicating that prestigious reviewers too are influential in funding decisions. However, the 

interaction terms of the outcome equations (columns 1-4) indicate that their scores are not more 

predictive than those of average reviewers. Indeed, the coefficients of quintile score X prestige 

are either not statistically significant or weakly significant (p<0.10), but with signs opposite to 

those expected (Panel A and B of Table 9). In conclusion, the results indicate that, although 

evaluations from scholars with prestigious publications are also more influential in deciding 

funding, they do not carry more value than those of evaluators with average or low expertise, 

suggesting that the reviewer’s prestige is not a substitute for domain expertise in evaluations 

of research proposals.  

 

[Table 9] 

 

4.4 Robustness checks 

In unreported estimates, we run five additional robustness checks, available from the 

authors upon request. First, we replicate our main analyses by using OLS instead of the 

 
14 The variable is not correlated to expertise (Pearson’s pairwise correlation coefficient is 0.037). 
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Heckman two-stage models. Results from OLS confirm that experts’ scores predict post-

funding outcomes better than non-experts’ scores. Results on prediction errors models also 

confirm that the prediction errors of experts increase (decrease) when they assign more positive 

(negative) scores. Second, results are robust when employing Poisson or Negative Binomial to 

model outcome variables that are counts (publications and citations), rather than continuous 

variables. Third, we tested different thresholds of cosine similarity to codify expert evaluators. 

All results are robust to using threshold at the 70th, 80th and 90th percentiles of cosine similarity. 

Fourth, results remain stable when introducing supplementary control variables, such as the 

number of evaluators per application, or evaluators’ research productivity, measured by their 

publication counts before the application date. Fifth, the models of accuracy give comparable 

results if we use the quadratic error (Davis-Stober et al. 2014), instead of the absolute error, in 

the related estimates. 

 

5. DISCUSSION AND CONCLUSION 

Funding decisions for research and innovation rely on evaluations from reviewers who 

have domain expertise on what is evaluated. The predictive power and accuracy of these 

evaluations are critical to organizational success and societal advancement. However, 

empirical studies are constrained by data availability and important methodological challenges, 

such as sample selection and measurement of research outcomes. Domain expertise is also 

difficult to conceptualize and measure outside of academia, casting doubts about the 

generalizability of results obtained by studies of forecasting conducted in different domains. 

Understanding the link between expertise and predictive ability is also of paramount 

importance in view of the growing availability of AI-based applications that can, support, 

integrate or even replace human judgment.   

We analyzed a new dataset containing 16,636 independent evaluations of research 

proposals that sought funding from NNF, the world largest private funding institution. The 

findings indicate that the predictive power of peer review opinions is contingent on domain 

expertise. Experts provide opinions that are on average predictive of the actual research 

performance, as measured by publications, citations, field-citation ratios, and influence 

(altmetrics) of funded applications. In supplemental analysis, we find that the research prestige 

of the evaluators, as measured by having publications in Science & Nature, is not a substitute 

for domain-specific expertise. Indeed, while of both domain experts and excellent/prestigious 

scholars have stronger influence on funding decisions, only the opinions of domain experts and 
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not those of excellent scholars, are predictive of subsequent research outcomes. This suggests 

that, although both excellence and expertise carry weight in the decision process, it is expertise 

that makes a real difference. 

We further examine the accuracy of the evaluators, measured as the granular prediction 

error, or difference between the proposal rank predicted and the actual rank observed post-

funding. We notice that, although experts have predictive power, they make larger errors than 

non-experts on average. Specifically, experts are more correct than non-experts when giving 

negative evaluations, but they make larger errors than non-experts when giving positive 

evaluations. In simple words, experts are accurate when they say “no”, but are prone to large 

overestimations when they say “yes”.  

Overall, our findings indicate that domain-specific expertise is critical to making good 

funding decisions, but experts are also likely to promote several proposals in their areas of 

expertise that will later underperform.  

Multiple mechanisms could explain and be compatible with our findings. We can only 

speculate on some of these, ruling-off some possible interpretations. In particular, the evidence 

provided does not seem to be compatible with bias arising from affect or emotional attachment 

to one’s own area of expertise, since this would likely inflate both positive and negative 

evaluations equally. A high incidence of error for positive evaluations could also be caused by 

a preference of experts for more volatile or risky proposals, which they would score as very 

good, but would subsequently lead to high incidence of failures. To explore this possibility, we 

computed a metric of combinatorial novelty (Shibayama, Yin, and Matsumoto 2021) for a 

subsample of research proposals in our data submitted after 2015, of which we have references 

that were cited in the text. However, the post-hoc analysis of proposal novelty (available upon 

request to the authors) indicates that experts do not generally favor novel proposals. This is 

also in line by previous evidence (Boudreau et al. 2016), suggesting that this is probably not 

the mechanism behind our results. Additional explanations are possible. The evidence of higher 

average errors in positive opinions may be caused by experts overestimating the importance of 

the research outcomes produced in their domain, relative to other domains. Experts may also 

be more exposed to confirmation biases, inflating the scores of those proposals that resonate 

with their expectations, some of which turnout to be incorrect (Nickerson 1998). Finally, 

experts may behave strategically and try to favor several underperforming proposals in their 
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areas of expertise (Krishna and Morgan 2001; Ottaviani and Sørensen 2006). Future research 

may investigate these and other possible mechanisms further. 

Our results have limitations. Research output is inherently difficult to conceptualize 

and measure. Although we have collected four different measures, each measure is prone to its 

own biases. It is possible, for instance, that experts and non-experts weigh the perspective value 

of research differently. Future work with alternative measures may shed more light on this 

important caveat. A second limitation relates to sample selection bias, which we tackled with 

two-stage estimates. Future research may use alternative approaches. Finally, researchers fixed 

effect may not entirely capture potential factors that may confound the relationship of expertise 

and the predictive validity or accuracy of the scores. Furthermore, our data are based on only 

one funding agency. It would be interesting to see if the results are generalizable to other sets 

of data.  

Despite the limitations, our results are based on original data with unprecedented level 

of detail and look not only at the predictiveness but also at the accuracy of evaluations. 

Moreover, the results obtained are very robust to alternative models, specifications, and 

outcome variables. In terms of the implications, our findings suggest that the availability of 

expert reviewers is critical to have good evaluations and that good reviewers are those with 

technical and scientific competences that align closely to the content of the proposal, not 

necessarily those with high academic prestige. Many funding agencies use panelists as 

individual evaluators, rather than appointing ad-hoc reviewers. As a result, unusual or off-the-

beaten-path evaluations may fall outside the area of expertise of panel members; these 

evaluations would not only be more problematic but also less favored, as non-expert reviewers 

tend to undervalue several worthy proposals. The additional use of ad-hoc reviewers for 

proposals outside the panel members’ area of expertise may be a potential solution to this 

problem. Finally, our analyses focus on individual predictions. However, each proposal is 

normally evaluated by multiple experts, so greater accuracy of evaluations can be achieved not 

only by more accurate individual evaluations but also by averaging. Averaging eliminates 

random errors, but not necessarily biases (Broomell and Budescu 2009; Larrick and Soll 2006). 

Our results show that experts have a positive bias when giving top scores, indicating that 

grouping more experts may not solve this problem, and may even exacerbate it. Future research 

should examine the average accuracy that can be achieved by pooling evaluations of reviewers 

with heterogeneous biases.  
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TABLES AND APPENDIX 

Table 1. Summary of articles on the predictive validity of peer-review 

 Reinhart 
2009 

Danthi et al.  
2014 

Li and Agha  
2015 

Fang et al.  
2016 Doyle et al. 2015 

Sample of 
applications 

Funded and 
unfunded 

Only  
funded 

Only  
funded 

Only  
funded 

Only  
funded 

Data source ESRC NHLBI NIH NIH NIMH 

Period 1998 2001-2008 1980-2008 1980-2008 2000-2009 

Country Switzerland US US US US 

Field Biology and 
Medicine Medicine Medicine Medicine Medicine 

Observations 4,000 1,492 137,215 102,740 1,755 

Dependent variable 
(evaluation) 

Mean  
Score 

(panel level) 

Percentile 
ranking 

(panel level) 

Percentile 
Score 

(panel level) 

Percentile  
score  

(panel level) 

Percentile 
ranking 

(panel level) 

Outcome variables Publications 
Citations 

Publications  
Citations 
H-index 

Publications 
Citations 
Patents 

Publications 
Citations 

Publications 
Citations 

Correlation Yes No Yes Yes, but weak No 

 

 

  



 31 

Table 2. Summary statistics of the main variables  
Variable   Obs  Mean SD Min  Max  
Publications (log) 2,495 1.535 1.184 0 5.220 
Citations (log) 2,495 3.642 2.642 0 9.770 
FCR (log) 2,495 2.598 2.070 0 8.146 
Altmetric (log) 2,495 3.038 2.441 0 9.644 
Quintile score 16,636 2.971 1.386 1 5 
Expertise 16,636 0.741 0.119 0.285 0.957 
Expert evaluator 16,636 0.253 0.435 0 1 
Female PI 16,636 0.334 0.472 0 1 
Young PI 16,636 0.237 0.425 0 1 
Prior grant 16,636 0.252 0.434 0 1 
Size (log) 16,636 14.971 1.200 5.485 17.910 
Competition 16,636 0.822 0.181 0 1 
Funded 16,636 0.150 0.357 0 1 
Workload 16,636 72.686 41.757 1 189 

  
Table 3. Pairwise correlations  

 Variable  (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10)  (11)  (12)  (13) 

(1) Publications (log)  1.00             

(2) Citations (log)  0.92 1.00            

(3) FCR (log)  0.93 0.97 1.00           

(4) Altmetric (log)  0.88 0.89 0.90 1.00          

(5) Quintile score  0.09 0.01 0.04 0.04 1.00         

(6) Expertise  -0.23 -0.16 -0.19 -0.15 -0.07 1.00        

(7) Expert evaluator  -0.14 -0.13 -0.14 -0.11 -0.05 0.61 1.00       

(8) Female PI  -0.12 -0.13 -0.12 -0.16 0.06 0.05 0.05 1.00      

(9) Young PI  0.05 0.06 0.06 0.06 0.07 -0.02 -0.01 0.05 1.00     

(10) Prior grant 0.16 0.17 0.16 0.17 -0.17 0.03 0.02 -0.08 -0.15 1.00    

(11) Size (log)  0.33 0.22 0.27 0.31 0.07 -0.13 -0.16 -0.14 0.00 0.12 1.00   

(12) Competition  -0.20 -0.07 -0.14 -0.16 0.05 0.25 0.06 -0.04 0.04 -0.07 0.12 1.00  

(13) Funded  . . . . -0.35 -0.05 0.02 -0.01 -0.06 0.21 -0.07 -0.49 1.00 
(14) Workload   0.00 0.09 0.06 0.02 0.07 0.03 -0.06 -0.05 0.04 0.07 0.23 0.38 -0.20 

Pearson’s pairwise correlations. Correlations with post-funding outcomes are calculated on the scores of the 2,495 
applications that were subsequently accepted for funding.   
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Table 4. Distribution of scores by experts and non-experts   
 All applications Funded applications 
 Expert Non-expert Expert Non-expert 

Quintile score N % N % N % N % 
1 928 22.0 2,073 16.7 413 60.6 823 45.4 
2 946 22.5 3,082 24.8 195 28.6 639 35.3 
3 874 20.7 2,376 19.1 60 8.8 132 7.3 
4 778 18.5 2,391 19.3 8 1.2 97 5.4 
5 688 16.3 2,500 20.1 6 0.9 122 6.7 

Total 4,214 100.0 12,422 100.0 682 100.0 1,813 100.0 
Person’s c2 statistic (df =4), comparing the distribution of scores between experts and non-experts across all applications is 
85.780 (p-value =0.000). Person’s c2 (df =4) comparing the distribution of scores between experts and non-experts across 
funded applications is 84.644 (p-value =0.000). 
 
 
 
Table 5. Mean post-funding outcomes by score distribution for experts and non-experts  

 

 

 

 

 

 

 

 

 

 

 

 

Standard errors are in parentheses. Column 3 reports T-tests. H0: [1]-[2]=0. *	p<0.10; ** p<0.05; *** p<0.01. 

  

 Publications (log) - Mean Citations (log) - Mean 

Quintile 
score 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 
1 1.358 1.537 -0.179 (0.073)** 3.372 3.760 -0.388 (0.165)** 
2 1.075 1.639 -0.565 (0.088)*** 2.694 3.938 -1.244 (0.203)*** 
3 1.301 1.872 -0.571 (0.172)*** 2.897 4.022 -1.125 (0.368)*** 
4 0.657 1.812 -1.155 (0.458)** 1.957 3.551 -1.594 (0.924)* 
5 1.079 1.923 -0.844 (0.556) 1.409 3.969 -2.560 (1.150)** 
 1.261 1.638 -0.377 (0.053)*** 3.103 3.845 -0.742 (0.118)*** 
 FCR (log) - Mean Altmetric (log) - Mean 

Quantile 
score  

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 
1 2.353 2.650 -0.298 (0.127)** 2.891 3.052 -0.161 (0.150) 
2 1.772 2.836 -1.064 (0.160)*** 2.142 3.239 -1.097 (0.190)*** 
3 2.107 2.922 -0.815 (0.283)*** 2.350 3.381 -1.031 (0.340)*** 
4 1.252 2.746 -1.494 (0.804)* 1.933 3.497 -1.564 (0.959) 
5 1.009 3.090 -2.081 (0.948)** 1.421 3.569 -2.149 (1.034)** 
 2.140 2.770 -0.630 (0.092)*** 2.605 3.200 -0.595 (0.109)*** 



 33 

Table 6. Post-funding outcome    
Panel A – Baseline 

 
(1) 

Outcome 
Publications (log) 

(2) 
Outcome 

Citations (log) 

(3) 
Outcome 
FCR (log) 

(4) 
Outcome 

Altmetric (log) 

(5) 
Selection 
Funded 

Quintile score -0.029 -0.116* -0.063 -0.083 -0.609*** 
 (0.030) (0.068) (0.054) (0.064) (0.017) 
Female PI -0.095** -0.263** -0.189** -0.410*** -0.011 
 (0.046) (0.104) (0.082) (0.099) (0.037) 
Young PI 0.115** 0.379*** 0.301*** 0.354*** 0.013 
 (0.057) (0.128) (0.101) (0.122) (0.045) 
Prior grant 0.187*** 0.441*** 0.310*** 0.383*** 0.548*** 
 (0.049) (0.110) (0.087) (0.105) (0.037) 
Size (log) 1.528*** 3.183*** 2.521*** 2.506*** 0.045 
 (0.278) (0.621) (0.492) (0.592) (0.209) 
Size (log)2 -0.048*** -0.098*** -0.077*** -0.073*** 0.001 
 (0.010) (0.022) (0.017) (0.021) (0.008) 
Competition -0.819*** -1.790*** -1.183*** -1.299*** -6.115*** 
 (0.206) (0.461) (0.365) (0.440) (0.247) 
Workload     -0.009*** 
     (0.001) 
Constant -10.582*** -22.716*** -18.074*** -18.845*** -0.079 
 (2.122) (4.749) (3.761) (4.528) (117.148) 
Year FE Y Y Y Y Y 
Grant type FE Y Y Y Y Y 
Reviewer FE Y Y Y Y Y 
N 2,495 2,495 2,495 2,495 16,636 
Lambda 0.131* 0.262 0.125 0.205  
 (0.077) (0.172) (0.136) (0.164)  
Note. Heckman two-stage estimation models on post-funding outcome (columns 1-4). Selection equation in column 5. 
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Panel B – Expertise predictiveness 

 
(1) 

Outcome 
Publications (log) 

(2) 
Outcome 

Citations (log) 

(3) 
Outcome 
FCR (log) 

(4) 
Outcome 

Altmetric (log) 

(5) 
Selection 
Funded 

Quintile score -0.113*** -0.309*** -0.214*** -0.202** -0.606*** 
 (0.037) (0.083) (0.066) (0.079) (0.017) 
Expertise (std) -0.011 0.056 0.044 -0.025 0.030 
 (0.056) (0.125) (0.099) (0.120) (0.047) 
Score x Expertise (std) -0.090*** -0.208*** -0.162*** -0.131*** -0.032** 
 (0.021) (0.047) (0.037) (0.045) (0.016) 
Female PI -0.111** -0.295*** -0.213*** -0.432*** -0.013 
 (0.046) (0.103) (0.082) (0.099) (0.037) 
Young PI 0.098* 0.347*** 0.276*** 0.328*** 0.011 
 (0.057) (0.127) (0.101) (0.121) (0.045) 
Prior grant 0.210*** 0.500*** 0.357*** 0.415*** 0.548*** 
 (0.050) (0.112) (0.089) (0.107) (0.037) 
Size (log) 1.472*** 3.098*** 2.456*** 2.417*** 0.017 
 (0.276) (0.619) (0.490) (0.592) (0.209) 
Size (log)2 -0.046*** -0.095*** -0.075*** -0.070*** 0.002 
 (0.010) (0.022) (0.017) (0.021) (0.008) 
Competition -0.890*** -2.062*** -1.407*** -1.375*** -6.031*** 
 (0.231) (0.517) (0.410) (0.495) (0.255) 
Workload     -0.009*** 
     (0.001) 
Constant -10.079*** -21.828*** -17.389*** -18.080*** 0.068 
 (2.108) (4.723) (3.741) (4.519) (191.050) 
Year FE Y Y Y Y Y 
Grant type FE Y Y Y Y Y 
Reviewer FE Y Y Y Y Y 
N 2,495 2,495 2,495 2,495 16,636 
Lambda 0.292*** 0.637*** 0.422*** 0.432**  
 (0.089) (0.200) (0.159) (0.192)  
Note. Heckman two-stage estimation models on post-funding outcome (columns 1-4). Selection equation in column 5. 
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Panel C – Expert evaluators’ predictiveness 

 
(1) 

Outcome 
Publications (log) 

(2) 
Outcome 

Citations (log) 

(3) 
Outcome 
FCR (log) 

(4) 
Outcome 

Altmetric (log) 

(5) 
Selection 
Funded 

Quintile score -0.019 -0.083 -0.039 -0.061 -0.574*** 
 (0.030) (0.067) (0.053) (0.064) (0.019) 
Expert evaluator 0.191* 0.456* 0.317 0.333 0.238*** 
 (0.114) (0.256) (0.202) (0.244) (0.086) 
Score x Expert -0.183*** -0.542*** -0.396*** -0.374*** -0.128*** 
 (0.061) (0.136) (0.108) (0.130) (0.037) 
Female PI -0.099** -0.276*** -0.198** -0.418*** -0.013 
 (0.046) (0.103) (0.082) (0.099) (0.037) 
Young PI 0.115** 0.381*** 0.302*** 0.354*** 0.012 
 (0.057) (0.127) (0.101) (0.121) (0.045) 
Prior grant 0.205*** 0.487*** 0.344*** 0.417*** 0.546*** 
 (0.050) (0.111) (0.088) (0.106) (0.037) 
Size (log) 1.531*** 3.180*** 2.518*** 2.506*** 0.046 
 (0.277) (0.618) (0.490) (0.591) (0.209) 
Size (log)2 -0.048*** -0.098*** -0.078*** -0.074*** 0.001 
 (0.010) (0.022) (0.017) (0.021) (0.008) 
Competition -0.935*** -2.070*** -1.392*** -1.507*** -6.051*** 
 (0.215) (0.480) (0.380) (0.458) (0.250) 
Workload     -0.009*** 
     (0.001) 
Constant -10.545*** -22.516*** -17.919*** -18.724*** -0.104 
 (2.119) (4.729) (3.747) (4.520) (114.407) 
Year FE Y Y Y Y Y 
Grant type FE Y Y Y Y Y 
Reviewer FE Y Y Y Y Y 
N 2,495 2,495 2,495 2,495 16,636 
Lambda 0.197** 0.437** 0.256* 0.331*  
 (0.083) (0.184) (0.146) (0.176)  
Note. Heckman two-stage estimation models on post-funding outcome (columns 1-4). Selection equation in column 5. 
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Table 7. Mean accuracy (prediction errors) by score and by expertise  
 Publications (log) - Mean Citations (log) - Mean 

Quintile 
score 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 
1 2.293 2.077 0.216 (0.088)** 2.196 1.971 0.225 (0.090)** 
2 1.631 1.319 0.312 (0.086)*** 1.626 1.327 0.299 (0.086)*** 
3 1.167 1.197 -0.030 (0.119) 1.217 1.061 0.156 (0.120) 
4 0.875 1.649  -0.774 (0.430)* 1.125 1.268 -0.143 (0.387) 
5 1.333 2.369  -1.036 (0.632) 0.833 2.098  -1.265 (0.618)** 
 1.979 1.742 0.237 (0.060)*** 1.922 1.649 0.274 (0.060)*** 
 FCR (log) - Mean Altmetric (log) - Mean 
Quantile 
score 
 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 

[1] 
 

Expert 

[2] 
 

Non-expert 

[3] 
 

Diff (SE) 
1 2.211 2.039 0.172 (0.090)* 2.097 2.063 0.034 (0.090) 
2 1.687 1.366 0.321 (0.086)*** 1.605 1.380 0.225 (0.087)** 
3 1.267 1.045 0.221 (0.120)* 1.183 1.114 0.070 (0.120) 
4 0.875 1.526 -0.651 (0.392) 1.250 1.505 -0.255 (0.403) 
5 0.667 2.221 -1.555 (0.610)** 1.333 2.230  -0.896 (0.609) 
 1.949 1.714 0.234 (0.061)*** 1.859 1.735 0.125 (0.060)** 

Note. Standard errors are in parentheses. Column 3 reports t-test on the mean differences. H0: [1]-[2]=0. *	p<0.10; ** 
p<0.05; *** p<0.01. 
 
  



 37 

Table 8. Expert evaluators’ accuracy (prediction errors) 

 
(1) 

Error 
Publications (log) 

(2) 
Error 

Citations (log) 

(3) 
Error 

FCR (log) 

(4) 
Error 

Altmetric (log) 
Quintile score 0.146*** -0.029 0.022 0.029 
 (0.038) (0.037) (0.038) (0.038) 
Expert evaluator 0.490*** 0.532*** 0.478*** 0.401*** 
 (0.143) (0.141) (0.144) (0.145) 
Score x Expert -0.270*** -0.264*** -0.236*** -0.242*** 
 (0.076) (0.075) (0.077) (0.077) 
Female PI 0.045 0.071 0.059 0.163*** 
 (0.058) (0.057) (0.058) (0.059) 
Young PI -0.001 -0.023 -0.057 -0.097 
 (0.071) (0.070) (0.072) (0.072) 
Prior grant -0.150** -0.071 -0.091 -0.125** 
 (0.062) (0.062) (0.063) (0.063) 
Size (log) -1.457*** -1.190*** -1.262*** -1.112*** 
 (0.347) (0.342) (0.348) (0.351) 
Size (log)2 0.047*** 0.037*** 0.040*** 0.034*** 
 (0.012) (0.012) (0.012) (0.012) 
Competition 1.785*** 1.182*** 1.308*** 1.219*** 
 (0.269) (0.265) (0.270) (0.272) 
Constant 11.412*** 10.446*** 10.865*** 10.097*** 
 (2.654) (2.614) (2.663) (2.684) 
Year FE Y Y Y Y 
Grant type FE Y Y Y Y 
Reviewer FE Y Y Y Y 
N 2,495 2,495 2,495 2,495 
Lambda -0.680*** -0.277*** -0.423*** -0.399*** 
 (0.103) (0.102) (0.104) (0.105) 
Note. Heckman two-stage estimation models on prediction errors (columns 1-4). Selection equation in column 5 of Table 6. 
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Table 9. Evaluator’s scientific prestige  
Panel A – Predictiveness  

 
(1) 

Outcome 
Publications (log) 

(2) 
Outcome 

Citations (log) 

(3) 
Outcome 
FCR (log) 

(4) 
Outcome 

Altmetric (log) 

(5) 
Selection 
Funded 

Quintile score -0.044 -0.137* -0.086 -0.103 -0.550*** 
 (0.032) (0.072) (0.057) (0.069) (0.021) 
Expert evaluator 0.186 0.444* 0.307 0.321 0.237*** 
 (0.114) (0.255) (0.202) (0.244) (0.086) 
Score x Expert -0.182*** -0.536*** -0.394*** -0.369*** -0.128*** 
 (0.061) (0.136) (0.108) (0.130) (0.037) 
Prestige  0.030 -0.072 0.054 -0.023 0.255* 
 (0.185) (0.412) (0.327) (0.394) (0.149) 
Score x Prestige 0.081* 0.182* 0.155* 0.144 -0.098** 
 (0.045) (0.100) (0.079) (0.095) (0.038) 
Workload     -0.009*** 
     (0.001) 
Constant -10.710*** -22.745*** -18.221*** -18.933*** -0.491 
 (2.125) (4.743) (3.757) (4.535) (111.851) 
Controls Y Y Y Y Y 
Year FE Y Y Y Y Y 
Grant type FE Y Y Y Y Y 
Reviewer FE Y Y Y Y Y 
N 2,495 2,495 2,495 2,495 16,636 
Lambda 0.202** 0.448** 0.266* 0.334*  
 (0.082) (0.184) (0.146) (0.176)  
Note. Heckman two-stage estimation models on post-funding outcome (columns 1-4). Selection equation in column 5.  
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Panel B – Accuracy (prediction errors) 

 
(1) 

Outcome 
Publications (log) 

(2) 
Outcome 

Citations (log) 

(3) 
Outcome 
FCR (log) 

(4) 
Outcome 

Altmetric (log) 
Quintile score 0.154*** -0.032 0.024 0.024 
 (0.041) (0.040) (0.041) (0.041) 
Expert evaluator 0.488*** 0.527*** 0.476*** 0.397*** 
 (0.143) (0.141) (0.144) (0.145) 
Score x Expert -0.270*** -0.263*** -0.236*** -0.241*** 
 (0.077) (0.075) (0.077) (0.077) 
Prestige  0.037 0.020 0.021 0.021 
 (0.231) (0.228) (0.232) (0.234) 
Score x Prestige -0.017 0.020 0.001 0.022 
 (0.056) (0.055) (0.056) (0.057) 
Constant 11.457*** 10.423*** 10.877*** 10.078*** 
 (2.662) (2.623) (2.672) (2.693) 
Controls Y Y Y Y 
Year FE Y Y Y Y 
Grant type FE Y Y Y Y 
Reviewer FE Y Y Y Y 
N 2,495 2,495 2,495 2,495 
Lambda -0.692*** -0.286*** -0.429*** -0.406*** 
 (0.103) (0.102) (0.104) (0.104) 
Note. Heckman two-stage estimation models on post-funding outcome (columns 1-4). Selection equation in column 5 of 
Panel A. Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Figure 1. Estimated differences in prediction between experts and non-experts for different score 
quintiles    
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Appendix 

Table A1. Variable construction  

Variable   Description  

Publications (log)  Log-transformed sum of the number of publications (until the end of 2023) that 
acknowledge funding from a given NNF grant.  

Citations (log)  Log-transformed sum of the number of citations (until the end of 2023) to publications that 
acknowledge funding from a given NNF grant.  

FCR (log)  Log-transformed sum of the FCR, i.e., the citations (until the end of 2023) to publications 
that acknowledge funding, divided by the average number of citations received by 
documents published in the same field and year.  

Altmetric (log)  Log-transformed sum of Altmetric scores (until the end of 2023) of publications that 
acknowledge funding from a given NNF grant.  

Quintile score  Quintile of the evaluator’s assessment score. Scores have been normalized at the call level, 
by dividing each score by the average score given by all evaluators in a funding call.   

Expertise  Cosine similarity between the evaluator’s publications and the application content, 
represented as vectors, ranging from -1 to 1.  

Expert evaluator Dummy set to 1 if the cosine similarity falls within the top quartile.  

Female PI  Dummy set to 1 if the PI is female, 0 otherwise.  

Young PI  Dummy set to 1 if the PI is under 35 years old at the time of applications, 0 otherwise.  

Prior grant Dummy set to 1 if the PI has been awarded a NNF grant before the application date, 0 
otherwise. 

Size (log)  Log-transformed requested funding amount of the applications.  

Competition  Number of unfunded applications divided by the total number of applications submitted 
within a single funding call.  

Funded  Dummy set to 1 for funded applications, 0 otherwise.  

Workload   Number of applications reviewed by the evaluator during the month of the application date.   
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A1. Workload 
 

We compute workload as the total number of proposals that a panel member has to review in the 

same month of the application.  

Proposals are assigned by the program officers shortly after the closure of the submission 

deadline. In assigning the proposals, the program officers primarily assign proposals to competent 

members. Our interviews with panel officers suggested that, while they try to give some load to all panel 

members, they also try to avoid excess overloading of any given member. Once the proposals are 

assigned, there is no or minimal reassignment, due almost entirely to conflicts of interest, signaled 

immediately after the first assignment. Consequently, there is no reason to believe that reviewers may 

accept or reject workload depending on the quality of the proposals that they are assigned (our 

unobserved omitted variable). 

The level of workload varies primarily in dependence of the number of proposals received, which 

varies considerably from one call to another. Moreover, some committees are involved in multiple calls 

that occasionally overlap, creating additional workload variation. As a consequence, workload has a high 

absolute variation, ranging from a low of 1 to a high of 189 applications to review (mean 72.7; SD 41.8). 

Looking at the distribution of workload by month, we also notice that the patterns vary considerably from 

year to year, picking in three periods of the year, approximately coordinated with the Danish holiday 

calendar: in the spring (March to May), late summer (August -September) and late fall (November - 

December). While 58% of reviewers are based in Denmark, a share of reviewers is based abroad (17 

countries). Variations of holidays and working days across countries create an additional source of 

exogenous variation. 

 

A2. Alternative levels of expertise  

In Table A2 we report further evidence regarding the predictiveness of evaluations at the different 

levels of expertise. In particular we run a model similar to the one reported in Table 6, with 4 levels of 

expertise, using the first quartile (i.e., cosine similarity < 0.29) as the baseline. In Panel A of Table A2, 

the coefficients of the quintile scores (columns 1-4) are not statistically significant at conventional levels, 

suggesting that the scores of the less expert evaluators are not predictive of post-funding outcomes, net 

of the selection into funding. Conversely, the negative and significant coefficients of the interaction terms 

of the scores with the quartile 4 of expertise confirm the findings reported in the Panel C of Table 6. 
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When looking at the prediction error (Panel B of Table A2), the positive and statistically significant 

coefficients (p<0.01) of the expert evaluators’ variables (quartiles 2, 3 and 4) indicate that the average 

error is lower for evaluators in the quartile 1. However, the negative and significant coefficients (p<0.01) 

of the interaction terms of the scores associated to the highest quartiles of expertise are in line with the 

findings that experts are more correct when they assign worst scores. 
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Table A2. Expertise quartiles   
Panel A – Predictiveness  

 
(1) 

Outcome 
Publications (log) 

(2) 
Outcome 

Citations (log) 

(3) 
Outcome 
FCR (log) 

(4) 
Outcome 

Altmetric (log) 

(5) 
Selection 
Funded 

Quintile score 0.026 0.006 0.030 0.017 -0.608*** 
 (0.033) (0.074) (0.059) (0.071) (0.036) 
Expertise (2^ qtl) 0.053 0.132 0.135 0.123 -0.193* 
 (0.123) (0.274) (0.217) (0.262) (0.113) 
Expertise (3^ qtl) -0.238 -0.205 -0.183 -0.570* -0.080 
 (0.152) (0.340) (0.269) (0.324) (0.126) 
Expertise (4^ qtl) -0.023 0.216 0.121 -0.132 0.129 
 (0.159) (0.356) (0.282) (0.340) (0.127) 
Score x Exp (2^ qtl) -0.163*** -0.311*** -0.239*** -0.280** 0.077 
 (0.052) (0.117) (0.092) (0.111) (0.047) 
Score x Exp (3^ qtl) -0.098 -0.233* -0.182 -0.146 0.019 
 (0.063) (0.141) (0.112) (0.135) (0.047) 
Score x Exp (4^ qtl) -0.266*** -0.719*** -0.533*** -0.505*** -0.094* 
 (0.069) (0.154) (0.122) (0.147) (0.048) 
Workload     -0.009*** 
     (0.001) 
Constant -9.510*** -20.843*** -16.680*** -16.865*** -0.390 
 (2.121) (4.746) (3.761) (4.532) (187.745) 
Controls Y Y Y Y Y 
Year FE Y Y Y Y Y 
Grant type FE Y Y Y Y Y 
Reviewer FE Y Y Y Y Y 
N 2,495 2,495 2,495 2,495 16,636 
Lambda 0.270*** 0.612*** 0.389** 0.435**  
 (0.091) (0.204) (0.162) (0.195)  

Note. Heckman two-stage estimation models on post-funding outcome (columns 1-4). Selection equation in column 5.  
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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Panel B – Accuracy (prediction errors) 

 

(1) 
Error 

Publications 
(log) 

(2) 
Error 

Citations (log) 

(3) 
Error 

FCR (log) 

(4) 
Error 

Altmetric (log) 

Quintile score 0.259*** 0.038 0.097** 0.104** 
 (0.041) (0.041) (0.042) (0.042) 
Expertise (2^ qtl) 0.919*** 0.676*** 0.720*** 0.697*** 
 (0.153) (0.151) (0.154) (0.155) 
Expertise (3^ qtl) 1.315*** 0.827*** 0.859*** 0.885*** 
 (0.189) (0.187) (0.191) (0.192) 
Expertise (4^ qtl) 1.485*** 1.221*** 1.190*** 1.124*** 
 (0.198) (0.197) (0.200) (0.202) 
Score x Exp (2^ qtl) -0.372*** -0.245*** -0.272*** -0.274*** 
 (0.065) (0.064) (0.066) (0.066) 
Score x Exp (3^ qtl) -0.466*** -0.240*** -0.263*** -0.266*** 
 (0.078) (0.078) (0.079) (0.080) 
Score x Exp (4^ qtl) -0.571*** -0.441*** -0.430*** -0.438*** 
 (0.086) (0.085) (0.087) (0.087) 
Constant 10.240*** 9.531*** 9.975*** 9.244*** 
 (2.642) (2.620) (2.668) (2.688) 
Controls Y Y Y Y 
Year FE Y Y Y Y 
Grant type FE Y Y Y Y 
Reviewer FE Y Y Y Y 
N 2,495 2,495 2,495 2,495 
Lambda -0.300*** -0.057 -0.184 -0.157 
 (0.114) (0.113) (0.115) (0.116) 

Note. Heckman two-stage estimation models on prediction errors (columns 1-4). Selection equation in column 5 of Panel A. 
Standard errors are in parentheses. *	p<0.10; ** p<0.05; *** p<0.01. 
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