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Abstract

The equilibrium in the standard New Keynesian (NK) model with Calvo-pricing becomes ex-
plosive at low levels of trend inflation (between 4 to 7 percent). Even halfway before that threshold,
optimal prices, price dispersion and costs rise fast to very large levels, and output plummets. We
show that the root of these issues is not Calvo pricing as commonly assumed, but rather the popu-
lar Dixit-Stiglitz demand structure in NK models. Considering models with general firms’ demand
functions, we provide two important results: (i) regardless of the price setting behavior, i.e. time-
or state-dependent, marginal costs rapidly increasing with trend inflation is a direct consequence
of demand functions that fast rise at low relative prices; and (ii) under Calvo pricing, the condition
for NK models to always have a stable equilibrium, independently of the level of trend inflation,
is that the demand function does not increase unboundedly as relative prices decrease. The Dixit-
Stiglitz demand structure fails to satisfy the latter condition. We then propose a model with price
wedges to augment any existing demand structure and make them in line with those conditions.
Using Dixit-Stiglitz and Kimball-demand aggregators, we show that the generalized NK model
with price wedges allows price dispersion to rise slowly with trend inflation and avoids output
plummeting to zero. In addition, the implied demand function with price wedges has relatively
superior properties, better aligned with the micro and macro evidence.
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1 Introduction

The literature on positive trend inflation has long recognized that the standard New Keynesian

(NK) model with Calvo (1983) price setting does not have a stable solution if trend inflation exceeds

some low single-digit threshold (in the 4% to 7% range).1 Even half-way before that threshold where

the steady state ceases to exist is reached, optimal prices, price dispersion and costs all rise fast to very

large levels, and output plummets. These problems mean that NK framework cannot be used readily

during periods of sustained high inflation as experienced recently in the U.S. and many advanced

countries. Most of the existing literature agrees that these properties arise from the assumption of

Calvo pricing which implies that a forward-looking firm might not receive the exogenous signal to re-

optimize its price for a long period of time, even though with low probability. At the same time, Calvo

pricing to characterize nominal rigidity remains popular for monetary policy analysis. So ad hoc

remedies like indexation or mechanically increasing price-adjustment frequency are typically adopted

to avoid the issues, both of these have little empirical support. Thus, the non-existence of the steady

state—the steady state problem—remains embedded at the core of NK models.

In this paper, we show that the steady state problem under trend inflation arises not because of

the Calvo pricing assumption but due to another modelling assumption commonly used in macroe-

conomic models, namely, the Dixit and Stiglitz (1977) constant-elasticity-of-substitution (CES) con-

sumption aggregator. This assumption leads to a tractable constant-elasticity demand function for all

goods in the economy and allows for adding monopolistic competition to macroeconomic models.

However, it is actually in its implied demand function that the root of the steady state problem lies,

as it diverges to infinite relative demand when relative prices approach zero. This property simulta-

neously creates several problems for the NK model: First, it creates a threshold (an upper bound) in

the level of trend inflation consistent with the existence of a steady state for plausible model parame-

ters; second, it causes the marginal costs of non-readjusting firms and price dispersion to rise sharply

when trend inflation approaches the upper bound; third, it makes the output level fall rapidly (almost

vertically) as trend inflation approaches this limit.

To demonstrate the role of the popular CES demand structure in generating the steady state prob-

lem, we start by considering a model with a general demand structure, in the spirit of Gagliardone,

1While the threshold is somewhat higher (7-9%) in models with strategic substitutability in pricing decisions such as King
and Wolman (1996) and Ascari (2004), when strategic complementarities are present, as recommended in Woodford (2003),
Bakhshi, Burriel-Llombart, Khan and Rudolf (2007) show that the threshold becomes quite low, about 4-5%, especially if
output growth is also taken into consideration. See the first part of Section 4 for an analytical discussion on this threshold.
Cogley and Sbordone (2008) find that in the US, the time-varying trend in inflation was never above 5% (their Figure 1)
between 1960 and 2003, and hence the condition for the existence of the steady state is satisfied for this low trend inflation
period.
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Gertler, Lenzu and Tielens (2023). With this general structure, we show that the marginal costs of

non-readjusting firms do not increase rapidly with trend inflation as relative prices decrease. Most

importantly, we show that this result is independent of the price-setting nature, i.e. time- or state-

dependent.

Next, when considering Calvo pricing, we prove that the condition for steady-state equilibrium

to always exist independently of the level of trend inflation is that general demand structures remain

finite when relative prices approach zero. The CES demand structure fails to satisfy this condition,

which is the source of the steady state problem. This is the main theoretical result of our paper.2

We then show that our result can be applied to any preference structure or demand aggregator. In

models with the Kimball (1995) aggregator, for example, Kurozumi and Van Zandweghe (2016, 2024)

note that positive trend inflation does not cause the steady state problem. We provide the underlying

reason why the Kimball aggregator avoids the steady state problem — it does so only when the cur-

vature is sufficiently large. But the empirical evidence does not support large curvature, as shown in

Klenow and Willis (2016) and Dossche, Heylen and Van Den Poel (2010). Assuming a large curvature

leads to an additional issue. It truncates the distribution support of the relative prices and, therefore,

cannot match the price distribution observed in microdata. Thus, simply replacing the Dixit-Stiglitz

demand structure with the Kimball aggregator does not offer a compelling solution to the steady state

problem.

We, therefore, propose a novel approach to augment existing demand function derivations to make

NK models consistent with any level of trend inflation. The method can be applied to any demand

structure, including commonly used ones like the Dixit and Stiglitz (1977) or the Kimball (1995). Our

premise is that agents never face infinite demand, as consuming requires extra costs that creates a

wedge between the sticker price and the effective price. Those costs can rise either from direct mone-

tary causes or from efforts, which then can be translated into a monetary price. And more importantly,

they might be resilient even if the sticker price is set at zero. For instance, apple trees can be very tall,

requiring an effort to pick apples even when they are free. And an orange tree about the same height

requires the same effort, even though being a different good. Since there is only so much fruit indi-

2Our solution strongly departs from the two usual remedies to mechanically resolve the steady state problem. First, by
assuming full price indexation to trend inflation. Empirical evidence from macro and microdata, however, suggests that
there is very small indexation on individual prices (see e.g., Bils and Klenow (2004), Cogley and Sbordone (2005), Klenow
and Kryvtsov (2008), Klenow and Malin (2010), and Levin et al. (2005)). So, this is not a satisfactory resolution. Second, by
mechanically increasing the Calvo probability of price adjustment with trend inflation, that is, by introducing some state-
dependence with respect to trend inflation. But, as Bakhshi, Burriel-Llombart, Khan and Rudolf (2007) show, the elasticity of
the Calvo probability with respect to trend inflation needs to be very high. Put differently, one has to assume essentially that
prices are near-flexible even at single-digit inflation rates, rendering the New Keynesian model not useful for any monetary
policy analysis since nominal rigidity is essential to account for the effects of monetary policy on an economy.
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viduals can carry down the trees, the extra costs should increase with consumed fruit volumes, as

consuming more fruit requires more climbing. This price wedge prevents individuals from consum-

ing infinite amounts of goods, as it keeps the effective price at a strictly positive level even if the sticker

price reduces to zero.

Applying price wedges to Kimball aggregation, the elasticities and superelasticities decrease, align-

ing more closely with micro evidence. In the simpler Dixit-Stiglitz aggregation, price wedges make

superelasticities rise to positive levels, inducing the demand function to have a smoothed-out kinked

form that does not diverge to infinity. This feature allows the augmented demand function to be used

with the Calvo model for all levels of trend inflation. Importantly, this property holds for any level of

price wedges, no matter how small. We also find that price wedges strongly attenuate welfare losses

and the increase in price dispersion as trend inflation rises, making them more in line with the find-

ings of Nakamura, Steinsson, Sun and Villar (2018) and Sheremirov (2020). We embed the augmented

demand function based on Dixit-Stiglitz with price wedges in a textbook general equilibrium NK

model as a proof of concept and study the dynamics at large rates of trend inflation. When the level of

trend inflation exceeds about 10%, we find that inflation becomes less responsive to monetary policy,

more persistent, and harder to tame, as it lingers much longer and requires a much greater output

sacrifice to bring it down. These properties are in line with recent empirical results found by Canova

and Forero (2024). The authors estimate a Markov-Switching model for the US with two states (high

and low inflation) from 1960 to 2023. They find that, after contractionary monetary policy shocks, in-

flation rates do not fall as much and become more persistent in high-inflation states when compared

to low-inflation states. These results align well with the experience of many countries whose inflation

rates that have faced high double-digit inflation rates.

Using Calvo pricing to characterize nominal rigidity remains popular not only in the academic

literature on NK models but also in models used at central banks for monetary policy analysis. Besides

the well-known theoretical elegance in modelling nominal rigidity, the Calvo model also does a decent

job of matching empirical micro evidence. In addition, the time-dependent Calvo model is also shown

to be equivalent to a large class of state-dependent pricing models. Klenow and Kryvtsov (2008) show

that the Calvo model matches six of the eight stylized facts in the microdata underlying the Consumer

Price Index, being even better than some state-dependent models. In line with this result, Costain and

Nakov (2011, 2023) build and test a model nesting both Calvo (time-dependent) and Golosov and

Lucas (2007) fixed menu costs (state-dependent) models. They find that the parameterization that

best fits microdata has low state dependence, implying a Phillips curve closer but not the same as the

one implied by the Calvo model. Similarly, Gautier and Le Bihan (2022) estimate a industry-specific
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Calvo Plus model (based on Nakamura, Steinsson, Sun and Villar (2018) hybrid model with time-and

state-dependent pricing) with French micro data on prices and find that 60% of price changes are

triggered by the Calvo mechanism. Previously, Bakhshi, Burriel-Llombart, Khan and Rudolf (2007)

showed that the Calvo model approximates the inflation dynamics generated from the Dotsey, King

and Wolman (1999) state-dependent model. More recently, Auclert, Rigato, Rognlie and Straub (2024)

show that in a broad class of menu cost models, the first-order dynamics of aggregate inflation is first-

order equivalent to a mixture of two time-dependent models (e.g. the Calvo model), reflecting the

extensive and intensive margins of price adjustment.

The remainder of the paper is organized as follows: Section 2 reviews related literature on micro

and macro evidence. In Section 3, we present the model with a general preference structure, assess

how marginal costs increase with trend inflation and discuss how Calvo (1983) price setting is affected

in this general framework. Section 4 presents the main result of our paper, in the form of a theorem

that describes the general conditions that demand functions must satisfy so that there always exists a

determinate steady-state equilibrium independently of the level of trend inflation. Section 5 discusses

demand functions compatible with the theorem, assessing models such as Kimball aggregation (Sec-

tion 5.1) and presenting another contribution of our paper, i.e., models with price wedges (Section

5.2). Section 6 presents simulations, and Section 7 concludes.

2 Micro and Macro Empirical Evidence

Before presenting the formal model, in which we consider a generic functional form for demand

functions, we present some micro evidence. This evidence gauges the features demand functions

should comprise and the macro predictions they should imply when used in NK models.

There is a vast empirical literature, based on micro data, strongly suggesting that actual demand

functions are “kinked”, in the sense that superelasticity (curvature) is positive. For context, often-

used Dixit and Stiglitz (1977) demand functions have constant positive elasticity and zero supere-

lasticity. Recent empirical literature using large scanner data generally finds relatively low, but still

positive, values for elasticities (ξ) and superelasticities (η). Micro evidence shown below suggests that

price elasticities likely range in ξmicro ∈ [1.0, 5.0], while superelasticities lie in the narrower interval of

ηmicro ∈ [1.5, 2.0].

For the US, Burya and Mishra (2022) find the representative elasticity and superelasticity to be

about ξ = 4.8 and η = 1.8.3 For Europe, Dossche, Heylen and Van Den Poel (2010) find the median

3See Figures 1 and 3 in Burya and Mishra (2022). Values were retrieved using the median Herfindahl-Hirschman Index
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elasticity and superelasticity across all products and sectors are rather small, at ξ = 1.4 and η = 0.8,4

whereas Beck and Lein (2015) find that the median (weighted mean) elasticities and superelasticities

are ξ = 3.6(2.1) and η = 1.4(1.5).5

As for relative prices in the US, Kaplan and Menzio (2015) results suggest that the empirical distri-

bution of relative prices is approximately symmetric, leptokurtic (fat-tailed), and has large dispersion,

even when controlling for exactly the same product (same UPC barcode - Universal Product Code)

or allowing for strong substitutability.6 Under both Brand Aggregation7 and Brand and Size Aggre-

gation,8 products have at least the same features and the same size, aligning with what economists

usually consider commodity goods. For them, the authors find that the empirical standard deviations

of relative prices, relative to the sample average price, are 0.25 (Brand Aggregation) and 0.36 (Brand

and Size).9 Moreover, the reported empirical quantile ratios for relative prices, i.e., r(0.90,0.50) = 1.38

(Brand) and r(0.90,0.50) = 1.55 (Brand and Size), allow us to conclude that the 90% quantile for US prices

can be 38% or even 55% larger than the average price. These statistics are important as they shed light

on the distribution support of relative prices that demand functions used in economic models should

be consistent with. We highlight that the authors’ empirical histograms show that relative prices in

both aggregation types have non-negligible masses even when prices are twice as large as the average

price.

Turning to macro cross-sectional facts, we also present evidence on the effects of trend inflation

that models should comply with. In short, we present evidence on how trend inflation affects price

dispersion. While standard trend-inflation NK models with Dixit and Stiglitz (1977) aggregation

predict that price dispersion strongly increases with trend inflation, ultimately inducing welfare to

plunge at low levels of long-run inflation, recent literature finds that this relationship is actually weak,

even though still positive. That is, price dispersion slightly rises for larger levels of trend inflation.

(HHI) level in their sample (0.14). The authors use weekly firm-level data on prices and quantities (2007 to 2015) from a
subsample of the ACNielsen Retail Scanner Database (35,000 US stores).

4The authors use bi-weekly scanner data with 15,000 items from Jan 2002 to Apr 2005.
5The authors use scanner data from Belgium (2,000 households), Germany (12,000 households), and the Netherlands

(4,000 households), provided by AiMark (Advanced International Marketing Knowledge), with about 190,000 products and
2 million individual shopping trips from 2005 through 2008.

6The dataset contains 300 million transactions by 50,000 households for 1.4 million goods in 54 US geographic markets.
7In their Brand aggregation, products share the same features and the same size, but may have different brands and

different Universal Product Code (UPC).
8In their Brand and Size aggregation, products are only required to share the same features, even though they might

have different sizes, brands, or UPCs.
9Using a different dataset, Klenow and Willis (2016) find the standard deviation of relative prices to be 0.14 (regular

prices) and 0.19 (posted prices: regular and sales). They also recognize that the standard deviation is higher if including
price changes due to product turnover, seasonal changeovers, and temporary stockouts. The dataset the authors consider
is a subset of the CPI Commodities and Services Survey (US Bureau of Labor Statistics), which includes 85,000 items per
month. Specifically, they assess 14,000 price items from the three New York, Los Angeles, and Chicago from January 1988
to December 2004.
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For instance, while Nakamura, Steinsson, Sun and Villar (2018) find that the size of price changes did

not increase in response to the Great Inflation of the late 1970s and early 1980s in the United States,

Sheremirov (2020) finds that the positive relationship between price dispersion and inflation is only

significant for regular prices. Sale prices, which are included in analyses with all prices, actually

dampen this effect.

International evidence from different countries suggests that trend inflation is negatively corre-

lated (not causal) with per capita consumption levels (e.g., Bleaney (1999)). Even though standard

trend-inflation NK models with Dixit and Stiglitz (1977) aggregation also predict a fall in consump-

tion as trend inflation rises,10 the predicted fall is implausibly strong.

In the next section, we consider a formal model based on generic demand functions and staggered

price setting, and show the conditions the former must satisfy for the general equilibrium to exist

independently of the level of trend inflation. We aim to find demand functions that simultaneously

satisfy those conditions and are consistent with the micro and macro evidence summarized in this

section.

3 The Model

Following textbook expositions as in Woodford (2003) and Walsh (2017), we describe the standard

NK model with Calvo (1983) price setting and flexible wages. The economy consists of a representa-

tive infinitely-lived household that consumes an aggregate bundle and supplies differentiated labor

to a continuum of differentiated firms indexed by z ∈ [0, 1]. Firms produce and sell goods in a mo-

nopolistic competition environment. We depart from this structure by considering a broader class of

demand functions.

3.1 Households

The representative household consumes ct (z) units of each differentiated good z ∈ (0, 1) at price

pt (z). Consumption over all differentiated goods is aggregated into a bundle Ct. Prices across all

firms are aggregated into a consumption price index Pt, which is defined as PtCt ≡
∫ 1

0 pt (z) ct (z) dz.

The household supplies ht (z) hours of labor to each firm z, at a differentiated nominal wage

Wt (z) = Ptwt (z), where wt (z) is the real wage. Disutility over hours is υt (z) ≡ χht (z)
1+ν / (1 + ν),

where ν−1 is the Frisch elasticity of labor supply. The household’s aggregate disutility function is

10See e.g., Ascari (2004), Levin, Lopez-Salido and Yun (2007), Yun (2005), Bakhshi, Burriel-Llombart, Khan and Rudolf
(2007), Ascari and Sbordone (2014), Alves (2014, 2018), and Khan, Phaneuf and Victor (2020)
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υt ≡
∫ 1

0 υt (z) dz. The aggregate consumption bundle Ct provides utility ut ≡ ϵt

(
C1−σ

t − 1
)

/ (1 − σ),

where σ−1 is the intertemporal elasticity of substitution and ϵt is a preference shock. The household’s

instantaneous utility is ut − υt.

Financial markets are complete. We consider a general budget constraint

PtCt + Etqt+1St+1 + Bt ≤ St + It−1Bt−1 + Pt

∫ 1

0
wt (z) ht (z) dz + dt (1)

where Et is the time-t expectations operator, St is the state-contingent value of the portfolio of financial

securities held at the beginning of period t, Bt is the stock of government-issued bonds held at the end

of period t, dt denotes nominal dividend income, It = (1 + it) is the gross nominal interest rate at

period t, it is the riskless one-period nominal interest rate, and qt+1 is the stochastic discount factor

from (t + 1) to t.

The household chooses the sequence of Ct, ht (z), Bt, and St+1 to maximize its welfare measure

Wt ≡ max Et ∑∞
τ=t βτ−t (uτ − υτ), subject to the budget constraint and a standard no-Ponzi condition,

where β ∈ (0, 1) denotes the subjective discount factor. In equilibrium, the Lagrange multiplier λt on

the budget constraint and the optimal labor supply function satisfy λt = u′
t/Pt and wt (z) = υ′

t (z) /u′
t,

where u′
t ≡ ∂ut/∂Ct is the marginal utility of consumption, υ′

t (z) ≡ ∂υt (z) /∂ht (z) is the marginal

disutility of hours.11 The optimal consumption plan and the dynamics of the stochastic discount

factor, which satisfies Etqt+1 = 1/It, are described by the following Euler equations

1 = βEt

(
u′

t+1
u′

t

It
Πt+1

)
; qt = β

u′
t

u′
t−1

1
Πt

(2)

where Πt ≡ Pt
Pt−1

= 1 + πt is the gross inflation rate at period t.

3.1.1 General Demand Functions

Recall that Pt is the average price of the household’s expenditure basket. In this regard, let ℘t (z) ≡
pt(z)

Pt
denote the relative price of firm z. For demand considerations, it is also convenient to define an

additional vector of sufficient statistics Ps,t, describing the state of prices in the economy. It can be

implicitly defined as a weighted average of individual prices, with state-dependent weights:

Ps,t ≡
∫ 1

0
g (℘t (z) ,℘s,t) pt (z) dz (3)

11As usual, an equilibrium is defined as the equations describing the first-order conditions of the representative household
and firms, a transversality condition lim

T→∞
ETqt,TST = 0, where qt,T ≡ ΠT

τ=t+1qτ , and the market clearing conditions.
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where ℘s,t = Ps,t
Pt

is the relative price of Ps,t and g (℘ (z) ,℘s) are weights, satisfying g (1, 1) = 1,

g (℘ (z) ,℘s) ∈ (0, 1), and
∫ 1

0 g (℘ (z) ,℘s) dz = 1. For instance, after considering a particular case

of Kimball (1995) consumption aggregation, Dotsey and King (2005), Levin, Lopez-Salido and Yun

(2007), Harding, Linde and Trabandt (2022), and Kurozumi and Van Zandweghe (2024) find a utility-

based demand function that depends not only on the aggregate price Pt but also the simple arithmetic

average of prices Ps,t =
∫ 1

0 pt (z) dz. In this particular case, g (℘t (z) ,℘s, t) = 1 for all ℘t (z) and ℘s,t.

In the spirit of Gagliardone, Gertler, Lenzu and Tielens (2023), we consider a general class of

relative demand functions ct(z)
Ct

= f (℘t (z) ,℘s,t), where f (℘,℘s) is continuous and differentiable,

satisfying f (℘,℘s) ≥ 0, f (1, 1) = 1 and f1 (℘,℘s) ≤ 0, ∀ (℘,℘s) in its domain, where f1 (℘,℘s) ≡
∂ f (℘,℘s)

∂℘ . A particular case of Ps,t is the mean price Pm,t ≡
∫ 1

0 pt (z) dz.

Since the aggregate price satisfies Pt =
∫ 1

0 pt (z)
ct(z)

Ct
dz, we obtain a general formulation for Pt:

Pt ≡
∫ 1

0
pt (z) f (℘t (z) ,℘s,t) dz (4)

where we assume that Ps,t and Pt grow at the same rate in the steady state. Finally, firm z’s price

elasticity ξt (z) ≡ − pt(z)
ct(z)

∂ct(z)
∂pt(z)

and the superelasticity of demand ηt (z) ≡ pt(z)
ξt(z)

∂ξt(z)
∂pt(z)

are:

ξt (z) = − f1(℘t(z),℘s,t)
f (℘t(z),℘s,t)

℘t (z) ; ηt (z) = 1 + ξt (z) +
f11(℘t(z),℘s,t)
f1(℘t(z),℘s,t)

℘t (z) (5)

3.2 Price Setting

Each firm z ∈ [0, 1] produces a differentiated good using the technology yt (z) = Atht (z)
ε, where

ht (z) is its demand for labor, At is the aggregate technology shock and ε ∈ (0, 1). The market clearing

condition ct (z) = yt (z), ∀z, implies that the aggregate output across all firms satisfies Yt = Ct.

Since firm-specific hours ht (z) are the only production input, the firm’s real payroll cost is cot (z) =

wt (z) ht (z). Taking wages as given, the firm’s real marginal cost mct (z) ≡ ∂cot(z)
∂yt(z)

is:

mct (z) = wt (z)
∂ht (z)
∂yt (z)

=
χ

ε

(Yt)
(σ+ω)

ϵt (At)
(1+ω)

[ f (℘t (z) ,℘s,t)]
ω

where ω ≡ (1+ν)
ε − 1 is a composite parameter. As for the firm’s real payroll cost, it can be written as

cot (z) =
(Yt)

(1+σ+ω)

ϵt(At)
(1+ω) [ f (℘t (z) ,℘s,t)]

(1+ω).

Under flexible prices, all firms set the same price when maximizing profits pt (z) yt (z)− Ptcot (z).

Optimal pricing requires
(

1 − 1
ξn

t (z)

)
℘n

t (z) = mcn
t (z), where superscript ‘n’ denotes natural equilib-

rium and ξn
t (z) is the firm price-demand elasticity. Since all optimal prices are the same, ξn

t (z) = ξn is
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constant and we have ℘n
t (z) = 1, ℘n

s,t = 1, and f
(
℘n

t (z) ,℘n
s,t
)
= 1. Therefore, the monopolistic static

markup µ ≡ ℘n
t

mcn
t

under flexible prices is:

µ =
1(

1 − 1
ξn

) (6)

In addition, under flexible prices, all firms produce the same level in equilibrium yn
t = Yn

t , where

Yn
t is the natural output:

(Yn
t )

(σ+ω) = 1
µ

ε
χ ϵt (At)

(1+ω) ; ξn = − f1 (1, 1) > 0 (7)

This result also implies that, in general price settings, the total real cost and marginal cost, respec-

tively, are:

cot (z) =
(

1
µ

ε
χ

) (1+σ+ω)
(σ+ω)

(
ϵt (At)

(1+ω)
) 1

(σ+ω)
(Xt)

(1+σ+ω) [ f (℘t (z) ,℘s,t)]
(1+ω)

mct (z) = 1
µ (Xt)

(σ+ω) [ f (℘t (z) ,℘s,t)]
ω

(8)

where Xt ≡ Yt
Yn

t
is the gross output gap.

Now, we highlight the role of the demand function in defining how the firm’s marginal cost fast

increases in an environment with positive trend inflation. Before defining a particular price setting

structure, i.e. regardless of whether it is time- or state-dependent, consider a general case in which

firm z had last reset its price to p∗t−j (z) at period (t − j) and kept it unchanged up to period t. In

this case, the firm’s current relative price is ℘t (z) =
p∗t−j(z)

Pt
= 1

Πt−j,t
℘∗

t−j (z), where Πt−j,t ≡ Pt
Pt−j

is the

cumulated gross inflation from period (t − j) to t. It implies that its current sticky price marginal cost

is mc∗t−j,t (z) = 1
µ (Xt)

(σ+ω)
[

f
(

1
Πt−j,t

℘∗
t−j (z) ,℘s,t

)]ω
. We highlight that this result does not depend

on price-setting structure, i.e. time- or state-dependent.

For simplification, consider that the steady-state exists – see Section 4 for a general result on

steady-state existence. In this case, the marginal cost after j periods without optimal readjustments

can be written as mc∗j (z) =
1
µ (X̄)

(σ+ω)
[

f
(

1
(Π̄)

j ℘̄
∗ (z) , ℘̄s

)]ω

, where barred variables indicate steady-

state levels. Under positive trend inflation, i.e. Π̄ > 1, the firm’s optimal relative price 1
(Π̄)

j ℘̄
∗ (z)

erodes toward zero as the number of periods j without readjustments increases, and f
(

1
(Π̄)

j ℘̄
∗ (z) , ℘̄s

)
rises. Since ω ≥ 0, the marginal cost increases faster than the demand function as trend inflation rises.

Therefore, the general relative demand function f (℘,℘s) is the main driver of marginal costs in

between price readjustments. For illustration, consider the standard Dixit and Stiglitz (1977) aggrega-

10



tion. In this case, the relative demand function is yt(z)
Yt

= f (℘t (z)) = (℘t (z))
−θ , where θ > 1 is the

elasticity of substitution between goods, satisfying θ = µ
(µ−1) . Since this demand function grows fast

and unboundedly as the relative price decreases, so does the marginal cost between readjustments as

trend inflation rises. That is, given ℘̄∗ (z), mc∗j (z) =
1
µ (X̄)

(σ+ω)
(

1
(Π̄)

j ℘̄
∗ (z)

)−θω

fast shoots to infinity

as trend inflation rises. This effect is amplified for larger values of θω.

In a nutshell, the marginal cost increases fast with trend inflation when the demand function in-

creases fast as relative prices decrease. This effect is amplified in economies with large curvatures,

captured by ω ≥ 0. And this result is independent of the price-setting nature, i.e. time- or state-

dependent.

For the remainder of this paper, we consider the particular time-dependent Calvo price setting

before we formally address the steady state problem under general demand functions. With standard

Calvo (1983) pricing, with probability (1 − α), the firm optimally readjusts its price to pt (z) = p∗t .

With probability α, the firm sets the price with partial indexation according to pt (z) = pt−1 (z)Πind
t ,

where Πind
t ≡ Πγ

t−1 is the gross indexation rate, Πt ≡ Pt
Pt−1

is the gross inflation rate, and γ ∈ (0, 1).12

When optimally readjusting at period t, price pt (z) = p∗t maximizes the present value of nomi-

nal profit flows Et
∞
∑

j=0
αjqt,t+j

[
Πind

t,t+j pt (z) yt+j (z)− Pt+jcot+j (z)
]
, given the demand function and the

price setting structure, where qt,t+j is the cumulated nominal stochastic discount factor from period

(t + j) to t, recursively defined as qt,t = 1, qt,t+1 = qt+1, and qt,t+j ≡ qt+1qt+1,t+j for j ≥ 1.

If firm z has last optimally readjusted its price at period t, its marginal cost and demand functions

at (t + j) are mct,t+j (z) = 1
µ

(
Xt+j

)(σ+ω)
[

f
(

Πind
t,t+j

Πt,t+j

pt(z)
Pt

,℘s,t+j

)]ω

and yt+j(z)
Yt+j

= f
(

Πind
t,t+j

Πt,t+j

pt(z)
Pt

,℘s,t+j

)
,13

where Πt,t+j and Πind
t,t+j, for j ≥ 1, are the cumulated gross inflation and indexation rates from pe-

riod t to (t + j), recursively defined as Πt,t = Πind
t,t = 1, Πt,t+1 = Πt+1, Πind

t,t+1 = Πind
t+1, Πt,t+j ≡

Πt+1Πt+1,t+j = Πt,t+j−1Πt+j, and Πind
t,t+j ≡ Πind

t+1Πind
t+1,t+j = Πind

t,t+j−1Πind
t+j. Most importantly, note that

mct,t+j (z) is not the marginal cost mct+j (z), as the former depends on the state at period t and cumu-

lated rates from t to (t + 1).

In this context, all optimally readjusting firms have the same first order condition for pt (z) = p∗t
12We allow for price indexation even though empirical evidence from macro and micro data suggest that there is very

small indexation on individual prices. Full indexation is the particular case in which γ = 1.
13That is, considering cumulative indexation, the relative price is

Πind
t,t+j pt(z)

Pt+j
=

Πind
t,t+j

Πt,t+j

pt(z)
Pt

.
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in equilibrium. Therefore, it can be conveniently written as in the following system:

0 = Et
∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j f
(

Πind
t,t+j

Πt,t+j
℘∗

t ,℘s,t+j

)
+ Et

∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j

(
Πind

t,t+j
Πt,t+j

℘∗
t

)
f1

(
Πind

t,t+j
Πt,t+j

℘∗
t ,℘s,t+j

)
− Et

∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j f1

(
Πind

t,t+j
Πt,t+j

℘∗
t ,℘s,t+j

)
mc∗t,t+j

mc∗t,t+j =
1
µ

(
Xt+j

)(σ+ω)
[

f
(

Πind
t,t+j

Πt,t+j
℘∗

t ,℘s,t+j

)]ω

(9)

where ℘∗
t ≡ p∗t

Pt
, Gt ≡ Yt

Yt−1
denotes the gross output growth rate, and Gt,t+j is the cumulated gross

growth rate, defined as Gt,t = 1, Gt,t+1 = Gt+1, and Gt,t+j ≡ Gt+1Gt+1,t+j for j ≥ 1.

Note that infinite sums involving f
(

Πind
t,t+j

Πt,t+j
℘∗

t ,℘s,t+j

)
, f1

(
Πind

t,t+j
Πt,t+j

℘∗
t ,℘s,t+j

)
and mc∗t,t+j do not gener-

ally allow for recursive representations, and so steady state computations must be done numerically

after considering a finite sum j = {0, ..., J}, for a large J. This is true even in commonly used models

based on Kimball aggregation. Lastly, price aggregations (3) and (4) imply

℘s,t = (1 − α)
∞

∑
j=0

αjg

(
Πind

t−j,t

Πt−j,t
℘∗

t−j,℘s,t

)
Πind

t−j,t

Πt−j,t
℘∗

t−j (10)

1 = (1 − α)
∞

∑
j=0

αj f

(
Πind

t−j,t

Πt−j,t
℘∗

t−j,℘s,t

)
Πind

t−j,t

Πt−j,t
℘∗

t−j (11)

3.3 Quarterly Benchmark Calibration

We calibrate the model parameters at the quarterly frequency. As in Cooley and Prescott (1995),

we set the subject discount factor at β = 0.99 and the elasticity to hours at the production function

at ε = (1 − 0.36). We set α = 0.60 as the degree of price stickiness, which is consistent with micro

and macro evidence.14 Since empirical evidence from macro and micro data suggest that there is non-

existent or very small indexation on individual prices, we set γ = 0.15 Using central estimates (the

modes of the posterior distributions) obtained by Smets and Wouters (2007), we set the reciprocal of

the elasticity of intertemporal substitution at σ = 1.39. As for the reciprocal of the Frisch elasticity,

14Nakamura and Steinsson (2008), using microdata from 1988 to 2005, estimate the median duration between price
changes at roughly 4.5 months (including sales) and 10 months (excluding sales). Their findings are similar to those ob-
tained in Bils and Klenow (2004). The median durations τm are consistent with α = 0.63 and α = 0.81 in quarterly fequency,
using τm = − log (2) / log (α). As for the macro evidence, Cogley and Sbordone (2008), for instance, report α = 0.588 as
their median estimate, while Smets and Wouters (2007) report α = 0.65 as the mode estimate, using the full sample period
from 1966:1 to 2004:4.

15For instance, this evidence is found in Bils and Klenow (2004), Cogley and Sbordone (2005), Cogley and Sbordone
(2008), Klenow and Kryvtsov (2008), Klenow and Malin (2010), Levin et al. (2005) and Smets and Wouters (2007).
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we set it at ν = 1 for a compromise between micro estimates and macro evidence on total hours

fluctuation over the business cycle.16 Finally, based on median estimates from Cogley and Sbordone

(2008) and Ascari and Sbordone (2014), we set the monopolistic static markup of µ = 1.12.17

4 Steady State Convergence

For notation purposes, barred variables stand for steady state levels. We want to assess which

conditions ensure a determinate steady-state equilibrium with no output growth, i.e. Ḡ = 1, for

different levels of trend inflation Π̄ = (1 + π̄). We define determinate steady-state equilibria as those

in which all infinite summations in the steady-state equation implied by (9) converge.

Except for the general demand function, the model previously described is otherwise a typical

example of the standard New Keynesian framework with Calvo staggered price setting: it has mo-

nopolistic competition, standard functional forms, only one source of nominal rigidity and shocks to

preferences and technology.

Under those circumstances, the generally accepted paradigm in the literature on trend inflation is

that there is a low upper limit for trend inflation consistent with a determinate steady-state equilib-

rium (see e.g. Ascari and Sbordone (2014)). In the standard NK model, given a trend inflation level Π̄,

the steady state equilibrium with no output growth only exists if Π̄ < min
[( 1

α

) 1
(θ−1)(1−γ) ,

(
1

αβ

) 1
θ(1+ω)(1−γ)

]
.

Using the benchmark calibration, the annualized upper limit for trend inflation is 7.40%. If we had as-

sumed a calibration more compatible with micro evidence in the labor market,18 with ν = 1
0.59 = 1.69,

the annualized upper limit would be much smaller, at 5.44%.

We formally show below, this inflation upper bound in standard New Keynesian models arises be-

cause the usual Dixit and Stiglitz (1977) demand function f (℘t (z) ,℘s,t) = (℘t (z))
−θ and its deriva-

tive f1 (℘t (z) ,℘s,t) = −θ (℘t (z))
−(θ+1) have a singularity point at ℘t (z) → 0. And so, if the relative

price approaches zero, this relative demand diverges to infinite. This is exactly what happens in be-

tween optimal price readjustments in case of γ < 1. After j periods since last optimal readjustment,

with probability αj, we have ℘t+j (z) =
Πind

t,t+j
Πt,t+j

℘∗
t . If inflation is positive on average, Πt,t+j grows faster

than Πind
t,t+j as j gets larger, which in turn causes ℘t+j (z) to approach zero. As a consequence, if Π̄

16In this regard, even though Chetty et al. (2011) finds a smaller value for ν−1 (i.e. a larger value for ν) on the micro side,
recent evidence suggests that earlier estimates of micro elasticities for ν−1 might be downwardly biased, as their inference
approaches did not account for important features in households composition between: (i) male and female workers; (ii) age;
and (iii) primary and secondary earners. See, for example, Keane and Rogerson (2012), Peterman (2016), and Bredemeier,
Gravert and Juessen (2023)

17In a Dixit and Stiglitz (1977) aggregation model, with the elasticity of substitution set at θ = 9.5, the markup is µ =
θ

(θ−1) = 1.12.
18See Table 1 in Chetty et al. (2011).
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is not sufficiently small, relative demand grows faster than the probability-adjusted discounting rate,

causing all infinite summation terms to diverge.

As discussed below, the convergence at any level of trend inflation requires a weak restriction in

the relative demand function. Intuitively, if the relative demand function is never infinite (in absolute

value), including at zero relative prices ℘t (z) → 0, then the infinite sums in the price setting system

converge in the steady state for virtually all levels of trend inflation. This idea is formalized in the

Theorem 1 presented below.

Assumptions: Under the Calvo staggered price setting (α > 0) with partial indexation (γ < 1), as

previously described, consider the generic relative demand function y
Y = f (℘,℘s) described in Sec-

tion 3.1.1, where ℘s ≡ Ps
P , where Ps and P grow at the same rate in any steady state, such that f (℘,℘s)

is a non-negative, continuous and differentiable function in (℘,℘s) ∈ (R∗
+ × R∗

+) and non-increasing

in ℘ ∈ R∗
+. Let f1 (℘,℘s) ≡ ∂ f (℘,℘s)

∂℘ denote the partial derivative of f with respect to ℘.

Theorem 1 If f (℘,℘s) and ℘ · f1 (℘,℘s) are finite and defined at all their domain, including at ℘ → 0

and ℘ → ∞,19 there always exists a steady state equilibrium (with no output growth) for any level of trend

inflation (Π̄ = 1 + π̄), provided that it is not extremely negative, i.e. Π̄ > (α)
1

(1−γ) . For any other level of

trend inflation, including all positive values, both the optimal relative price and the output-gap converge to

finite steady state levels.

The proof is shown in Appendix A.

Note that the requirement that the threshold level of inflation be greater than a certain negative

value, π̄ >
[
(α)

1
(1−γ) − 1

]
, is easily satisfied. We do not observe extremely negative levels of trend

inflation in the data. For instance, if α = 0.60, β = 0.99, and γ = 0, steady state levels cease to

exist if π̄ < (αβ − 1) = −40% in quarterly frequency (−87% annually). Therefore, the feasibility

inequality in Theorem 1 does not pose a practical restriction. Of course, the existence of a steady-state

equilibrium does not preclude it to be inconsistent with economic reasoning in terms of sign and scale

of equilibrium levels of all endogenous variables. For instance, we must still impose usual restrictions

on parametrization to ensure positive levels of output.

Hahn (2022) adopts an alternative approach to cope with the fact that the Dixit and Stiglitz (1977)

demand function diverges to infinity when relative prices approaches zero. His approach, however,

is to keep the standard demand function while allowing firms not to satisfy demand all the times. In

19Formally, 0 ≤ lim
℘→0

f (℘,℘s) < ∞, 0 ≤ lim
℘→∞

f (℘,℘s) < ∞, −∞ < lim
℘→0

℘ · f1 (℘,℘s) ≤ 0, and −∞ < lim
℘→∞

℘ · f1 (℘,℘s) ≤
0.
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a continuous time model with sticky prices, the author introduces an optimal rationing mechanism,

by curtailing supply to its optimal level.

By contrast, our approach is to investigate the root of the steady state problem, and propose condi-

tions for demand functions in the standard approach used in the literature of supply meeting demand

at any price level in equilibrium.20

At this point, once ensuring that a meaningful economic steady state exists, we can also assess

what the general demand function yt(z)
Yt

= f (℘t (z) ,℘s,t) implies for real rigidity in price setting. In

the natural equilibrium, i.e. flexible prices (α = 0), system (9) simplifies into

f
(
℘n

t ,℘n
s,t
)
+ (℘n

t ) f1
(
℘n

t ,℘n
s,t
)
=

(
1 − 1

ξn

)
f1
(
℘n

t ,℘n
s,t
) [

f
(
℘n

t ,℘n
s,t
)]ω

(Xt)
(σ+ω)

Using the fact that f (1, 1) = 1, the last relation is easily log-linearized about the economy steady-

state with flexible prices, in which ℘n = ℘n
s = 1:

℘̂n
t = −

[
f2(1,1)+ f12(1,1)

1+ f1(1,1) − f12(1,1)
f1(1,1) −ω f2(1,1)

]
[

2 f1(1,1)+ f11(1,1)
1+ f1(1,1) − f11(1,1)

f1(1,1) −ω f1(1,1)
] ℘̂s,t +

(σ+ω)[
2 f1(1,1)+ f11(1,1)

1+ f1(1,1) − f11(1,1)
f1(1,1) −ω f1(1,1)

] x̂t

where ℘̂n
t , ℘̂s,t and x̂t are log-deviations from steady state levels.

Following Ball and Romer (1990) approach, we compute the content ψreal ≡ 1
κreal

of real rigidities

in this model, where κreal ≡ ∂℘̂n
t

∂x̂t
is the pass-through from output gap to prices. If prices are rigid

(α > 0), κreal is part of the output-gap coefficient in the Phillips curve. Evaluating equations (5) in the

steady-state equilibrium with flexible prices, we obtain a simple result to general demand-driven real

rigidities21 as a function of the natural elasticity ξn and superelasticity ηn:22

κreal =
(σ+ω)

1+ ηn
(ξn−1)+ωξn

; ψreal =
1

κreal
(12)

Therefore, the demand structure is a relevant source of real rigidities. As for the role of changes

in ξn and ηn, notice that ∂(ψreal)
∂ηn = 1

(σ+ω)
1

(ξn−1) and ∂(ψreal)
∂ξn = − 1

(σ+ω)

(
ηn

(ξn−1)2 − ω
)

. We conclude

20However, if we were to consider the more general case in which demand is not necessarily met all the time, the proof of
a theorem for steady state existence would follow the same lines as the proof of Theorem 1, and so we will not assess this
case in this paper. Basically, it is enough to consider instead that firms have production schedules f̄ (℘,℘s) ≤ f (℘,℘s) that
can be smaller than demand. And so, optimal pricing will be a composite function of f̄ (℘,℘s) instead of f (℘,℘s). In this
case, Hahn (2022) approach could be seen as a particular case of using production schedules, as the author consider that
production matches the minimum between optimal supply and demand.

21For that, we easily compute κreal ≡
∂℘̂n

t
∂X̂t

= (σ+ω)
2 f1(1,1)+ f11(1,1)

1+ f1(1,1) − f11(1,1)
f1(1,1) −ω f1(1,1)

, and apply the definitions in (5).

22In Burya and Mishra (2022), the authors derive a similar but simpler result in a model with linear production function,
log utility to consumption and no disutility to work, which implies ω = 0. The authors show the pass-through κp ≡ κreal

(σ+ω)

from marginal costs to prices. When ω = 0, their inverse real rigidity metrics is then κpt =
(ξn−1)

(ξn−1)+ηn .
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that, no matter the form of the demand function, there must be the case that: (i) increases in natural

superelasticity ηn leads to larger (smaller) real rigidity ψreal if natural elasticity ξn is larger (smaller)

than unity; and (ii) increases in natural elasticity ξn leads to larger (smaller) real rigidity ψreal if natural

superelasticity ηn is smaller (larger) than ω (ξn − 1)2.

Given its importance for both steady-state determinacy under trend inflation and as a source of

real rigidity, the question is whether there are utility-based demand functions that simultaneously sat-

isfy: (i) micro and macro empirical support for demand functions, relative prices, and macroeconomic

relations; and (ii) Theorem 1 conditions for steady-state existence under trend inflation.

5 Demand Functions Consistent With Theorem 1

Now the question is whether there are utility-based demand functions that simultaneously satisfy:

(i) Theorem 1 conditions, especially those related to finite demand and slope at zero relative price; and

(ii) micro and macro empirical support, as described in Section 2.

Under monopolistic competition models with a continuum of firms, as we consider in this paper,

the class of Kimball (1995) demand functions, especially the one proposed by Dotsey and King (2005),

has been often used in recent literature.23 Using Theorem 1, we show that having a sufficiently large

curvature parameter is the necessary condition for Kimball demand functions to be consistent with

all levels of trend inflation. However, under large curvature, Kimball demand functions have three

features that are at odds with what micro and macro evidence suggests (see Section 2): (i) supere-

lasticities become much larger than the micro evidence range; (ii) they fail to accommodate a sizable

mass of relative prices found in the US empirical distribution; and (iii) if used in NK macroeconomic

models with Calvo pricing in lieu of Dixit and Stiglitz (1977) demand functions, Kimball-based NK

models predict that the distorted output (due to nominal rigidities) becomes much larger than the

flexible-prices output as trend inflation rises. These facts are in line with the recent critiques and find-

ings on Kimball-based NK models found in the literature (see e.g., Dossche, Heylen and Van Den Poel

(2010), Beck and Lein (2015), Klenow and Willis (2016), and Kurozumi and Van Zandweghe (2016,

2024)).

23If we were to extend our modelling approach to also consider oligopoly models with a finite number of firms, instead
of only monopolistic competition models with an infinite number of firms in the continuum z ∈ (0, 1), we have a broad set
of demand functions satisfying Theorem 1 conditions, as oligopoly demand functions are typically bounded. In this regard,
the Atkeson and Burstein (2008) and Wang and Werning (2022) oligopoly models with N firms are strong candidates to be
applied to NK models with trend inflation in future extensions.

16



5.1 Issues with the Kimball Aggregator

Within the broad class of Kimball (1995) consumption aggregation, Dotsey and King (2005) pro-

pose a particular functional form that has been frequently used in the literature (e.g. Levin et al.

(2007), Harding et al. (2022) and Kurozumi and Van Zandweghe (2016, 2024)). As we better detail in

Appendix B, the implied demand function is:

ct (z)
Ct

= f (℘t (z) ,℘s,t) =


1

(1+φ)

(
℘t(z)
℘k,t

)ϖ
+ φ

(1+φ)
; if
(
℘t(z)
℘k,t

)
≤ (−φ)

1
ϖ

0 ; if
(
℘t(z)
℘k,t

)
> (−φ)

1
ϖ

where ℘k,t ≡ (1 + φ) − φ℘s,t, ℘k,t ≡ Pk,t
Pt

is an auxiliary composite relative price, Ps,t ≡
∫ 1

0 pt (z) dz

is the average price, and Pt is the aggregate price, implicitly defined by 1 =
∫ 1

0

(
℘t(z)
℘k,t

)(1+ϖ)
dz. The

composite parameters are ϖ ≡ µk(1+φ)
(1−µk)

and m ≡ µk(1+φ)
(1+µk φ)

, where µk ≥ 1 is the elasticity parameter,

which matches the implicit markup rate µ under flexible prices, and φ ≤ 0 sets the aggregation

curvature. If φ = 0, the demand curve simplifies into the standard Dixit and Stiglitz (1977) form.

As for Theorem 1 conditions, note first that f (℘,℘s) and ℘ f1 (℘,℘s) are zero when
(

℘
℘k

)
> (−φ)

1
ϖ .

Therefore, this function trivially converges to a finite and defined level when ℘ → ∞. It remains to

verify the conditions for convergence when ℘ → 0. Notice that its power ϖ flips into a positive

value only when φ < −1. Only in this case, i.e. when its curvature is sufficiently large, the relative

demand f (℘,℘s) and ℘ f1 (℘,℘s) converge to finite and defined levels at ℘ → 0, i.e. lim℘→0 f (℘,℘s) =

f (0, 1) = φ
(1+φ)

and lim℘→0 ℘ f1 (℘,℘s) =
ϖ

(1+φ)

(
0
℘k

)ϖ
= 0.

When φ < 0, Kimball demand function has positive superelasticities (see Appendix B), which

makes it qualitatively in line with micro evidence, as described in Section 2. However, quantitatively,

Kimball elasticities and superelasticities in estimated/calibrated macroeconomic models tend to be

much larger than their empirical microdata counterparts, i.e. ξmicro ∈ [1.0 , 5.0] and ηmicro ∈ [1.5 , 2.0].

To illustrate this property, consider those levels under flexible prices, i.e. ξn = µk
(µk−1) and ηn =

(−φ)
µk

(µk−1) . Since φ < −1 for the existence of the steady state, and µk matches the static markup

µ = 1.12 under flexible prices, we obtain ξn = 9.3 and ηn > 9.3.

In macroeconomic models, extremely negative values for φ have been estimated/calibrated the

literature. For the US, the parameters is usually estimated/calibrated in the range φ ∈ [−16,−2].24 If

the static markup is set at the usual low levels of µk = µ = 1.12, even at the smallest curvature in the

24Some typical values for the US are the following: (i) φ = −12.2 in Harding et al. (2022); (ii) φ = −2.6 in Kurozumi and
Van Zandweghe (2024); (iii) φ = −8 in Levin et al. (2007); and (iv) φ = −3.79 in Smets and Wouters (2007). In addition,
obtaining a better marginal likelihood statistics for model comparison, Harding et al. (2022) re-estimate Smets and Wouters
(2007) model with a different prior distribution and obtain φ = −16.37.
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range, the implied superelasticity ηn = 18.6 is much larger than what microevidence suggests.

In addition, the large macro curvatures imply that the upper limit for relative prices (−φ)
1
ϖ is

just slightly larger than unity. In this case, there is no demand for prices that are set slightly above the

average price, and the distribution of relative prices is strongly asymmetric to the left. For illustration,

Klenow and Willis (2016) show that about 15% of goods end up with zero relative demand when

the demand function is Kimball-based with large curvature. Relative to actual economies, to have a

mass of price setting firms with zero demand is an odd implication. The Kimball aggregator implied

distribution of relative prices is, therefore, not in line with empirical evidence when the curvature is

large. See a detailed discussion in Appendix B.3, in which we propose an alternative approach to test

the plausibility of Kimball’s upper limit on relative prices.

In light of those results, we propose in the next section a remedy to attenuate the issues induced

by Kimball demand functions.

5.2 Sticker and Effective Prices

Between purchasing a good and consuming it within a specific period, it is not uncommon for

individuals to face extra costs that creates a wedge between the sticker price and the effective price.

Those costs can rise either from direct monetary causes or from efforts, which then can be translated

into a monetary price. And more importantly, they might be resilient even if the sticker price is set at

zero. For instance, apple trees can be very tall, requiring an effort to pick apples even when they are

free. And an orange tree about the same height requires the same effort, even though being a different

good. Since there is only so much fruit individuals can carry down the trees, the extra costs should

increase with consumed fruit volumes, as consuming more fruit requires more climbing.

We can indirectly compute the extra price added to the sticker price by quantifying the effort

(energy, abilities, etc.) needed to climb the tree in every period we want to consume a fruit. And we

highlight that acquiring them has a complementary nature with consuming the fruit, as individuals

would not “buy” more effort goods and less fruit unities if effort becomes relatively cheaper than

fruits.

Sometimes, the costs can be directly measured in monetary units, for consuming the good might

require post-purchase accompanying extra cost from handling, shipping and storing the goods within

the period. Again, even if the good’s sticker price is set at zero, those extra costly activities still re-

main. And their cost in many cases depend on good volumes and weights, rather than good types.

Those properties again characterize a complementarity rather than a substitutability between con-

sumed goods and the extra cost sources.
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Of course, features such as rarity, fragility and perishability also matters. The extra costs might also

vary across different individuals and across time. In this paper, for simplicity, we abstract from those

possibilities and do not specify any particular source of the realistic nature of extra costs. In all cases,

extra costs prevent individuals from consuming infinite amounts of goods, even though that is what

they would like to if sticker prices were to approach zero in the absence of extra costs.25 For short,

we use the term ”price wedges” to characterize this class of extra-cost models. Here, we consider a

simple structure to make the case that this class of models can be used to assess the economy at all

levels of trend inflation.

And lastly, the extra costs might be simply wasted (deadweight loss) or might be recovered some-

how into the economy. Notice that the first type of extra costs generates more distortions than the

second type, as there are no firms or individuals able to accrue the losses individuals bear.

Notice that extra costs can be also be generated if, for consuming goods, individuals are required

to buy extra services or goods that do not reflect extra utility-bearing consumption, in the spirit of

Michaillat and Saez (2015) when they model a case in which consuming one service unit requires

buying buy a total of (1 + τ) service units. For instance, household storage rooms and refrigerators

can generate this effect, as their associated costs are related to volumes and not to the specific goods

they store. As our alternative case, we could assume that δct (z) represents the storage volume re-

quired to keep ct (z) units of utility-bearing goods, and there is no price wedge. And so, paralleling

Michaillat and Saez (2015) results, consuming ct (z) units would require buying a total of (1 + δ) ct (z)

units. Even though this alternative approach also embeds the complementary nature between utility-

bearing and non-utility bearing consumption, it requires changing the market clearing condition to

account for both types of produced goods. In this paper, for simplicity, we will follow the price wedge

approach and let the extra costs to be recovered by firms in order to minimize implied distortions.

As will be clear from the steps shown in the next section, applying price wedges for any general

preference framework is straightforward. In this paper, for simplicity, we derive the implied price

wedges demand function under the general Kimball (1995) framework and show that, for a given

curvature parameter φ, increasing price wedges pushes down the implied elasticities and superelas-

ticities, making them more in line with what microdata suggest. Larger price wedges also push the

relative prices threshold further away, giving more room to accommodate empirical distributions. In

addition, even when considering the extreme case of φ = 0 (standard Dixit and Stiglitz (1977) aggre-

gation), the resulting demand function satisfies Theorem 1 conditions for convergence under any level

25Since firms are assumed to satisfy any demand level, and all individuals face the same price, there is no incentive for
over purchasing goods intended for reselling.
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of trend inflation and any level of price wedge, no matter how small the latter is. We also highlight

that, when applied to Dixit and Stiglitz (1977) aggregation, price wedges push up the elasticities and

superelasticities, towards microdata estimates.

5.2.1 Price Wedges

Building upon the general framework described in Section 3.1, we assume that consuming ct (z)

units of good z at sticker price pt (z) requires paying a extra price wedge δPs,t to an intermediate

representative firm for processing, handling and storing, where δ ≥ 0 is the wedge rate and Ps,t

is the normalized price wedge. As the surcharge only depends on volumes, independently of the

good type, each unit has the same price wedge δPs,t. Therefore, the household’s total expenditure is∫ 1
0 (pt (z) + δPs,t) ct (z) dz.26

In this context, let us initially define the aggregate price Pt and consumption Ct as in (1 + δ) PtCt ≡∫ 1
0 (pt (z) + δPs,t) ct (z) dz. As we show below, in equilibrium the aggregate price also satisfies PtCt ≡∫ 1
0 pt (z) ct (z) dz, which is in line with the typical definition we mention in Section 3.1.

The intermediate firm’s nominal revenue is Rs,t =
∫ 1

0 (δPs,t) ct (z) dz = δPs,tCs,t, where Cs,t ≡∫ 1
0 ct (z) dz is the average consumption (arithmetic mean). For processing, handling and storing,

we assume that the intermediate firm pays δpt (z) per unit to each firm z ∈ (0, 1), so its nominal

cost is Costs,t =
∫ 1

0 (δpt (z)) ct (z) dz = δ
∫ 1

0 pt (z) ct (z) dz. This firm sets its price at a zero-profit

condition Rs,t = Costs,t. Coupling this condition with the aggregate price definition (1 + δ) PtCt ≡∫ 1
0 (pt (z) + δPs,t) ct (z) dz allows us to obtain two important results (see Appendix C):

PtCt =
∫ 1

0 pt (z) ct (z) dz ; Ps,t = Pt
Ct
Cs,t

(13)

where Cs,t ≡
∫ 1

0 ct (z) dz. Note that those results do not depend on any particular preference structure

or consumption aggregation.

We need small changes to adapt the general results shown in Section 3. On the household side,

after substituting the total expenditure (1 + δ) PtCt for PtCt in the budget constraint, the optimal labor

supply curve becomes wt (z) = (1 + δ) υ′
t (z) /u′

t. Firms results also change a little bit, as we show

further on in Section 5.2.3. We first assess the consequences of having price wedges under Kimball

and Dixit-Stiglitz aggregation. In this context, Section 5.2.2 below derives the resulting demand curves

and studies their properties.

26Here, Ps,t does not have the same meaning as in Kimball’s approach, detailed in Section 5.1. In Kimball demand, Ps,t is
the average price.
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5.2.2 Demand function under price wedges

If the representative household is subject to price wedges and has Kimball-type preferences, as

described in Section B, total expenditure minimization gives us the implied demand function and

price aggregation:

ct (z)
Ct

=


1

(1+φ)

(
℘t(z)+δ℘s,t
℘k,t+δ℘ss,t

)ϖ
+ φ

(1+φ)
; if
(
℘t(z)+δ℘s,t
℘k,t+δ℘ss,t

)
≤ (−φ)

1
ϖ

0 ; if
(
℘t(z)+δ℘s,t
℘k,t+δ℘ss,t

)
> (−φ)

1
ϖ

(14)

where ℘k,t ≡ (1 + φ)− φ℘sk,t, ℘ss,t ≡ (1 + φ)− φ℘s,t, Psk,t ≡
∫ 1

0 pt (z) dz is the average price, and Pt

is the aggregate price, implicitly defined by 1 =
∫ 1

0

(
℘t(z)+δ℘s,t
℘k,t+δ℘ss,t

)(1+ϖ)
dz. The composite parameters

are again ϖ ≡ µk(1+φ)
(1−µk)

and m ≡ µk(1+φ)
(1+µk φ)

, where µk ≥ 1 is the elasticity parameter, and φ ≤ 0 sets the

aggregation curvature. Paralleling the notation used in Section 3.1.1, we define ℘t (z) ≡ pt(z)
Pt

as the

relative price of firm z, and ℘s,t = Ps,t
Pt

as the a relative price of price wedges. In addition, we also

define ℘sk,t ≡
Psk,t
Pt

.

Note that ℘s,t, ℘sk,t, ℘ss,t, and ℘k,t are not affected by individual prices pt (z). Therefore, in case of

non-zero price wedges (δ ̸= 0), the term (℘t (z) + δ℘s,t) is always finite and defined for any relative

price ℘t (z). In addition, note that lim
℘t(z)→0

(℘t (z) + δ℘s,t) = δ℘s,t and lim
℘t(z)→∞

(℘t (z) + δ℘s,t) = ∞ .

Therefore, f (℘,℘s,℘sk) and ℘ f1 (℘,℘s,℘sk) always satisfy the Theorem 1 conditions. It implies that

now we can use any curvature to assess the NK model at all levels of trend inflation, as long as δ is

not zero.

When φ = 0, we have the standard Dixit and Stiglitz (1977) aggregation Ct =
(∫ 1

0 ct (z)
θ−1

θ dz
) θ

θ−1
,

where θ = µk
(µk−1) > 1 is the elasticity of substitution between goods. In this case, the demand function

with price wedges is ct(z)
Ct

= (1 + δ)θ (℘t (z) + δ℘s,t)
−θ , where (1 + δ)1−θ =

1∫
0
(℘t (z) + δ℘s,t)

1−θ dz.27

Even though assuming price wedges seems to pose only small changes into the demand function

and price aggregation, when compared to those obtained under standard Dixit-Stiglitz aggregation,

it allows the demand function ct(z)
Ct

= (1 + δ)θ (℘t (z) + δ℘s,t)
−θ to be quasi-kinked and more in line

with empirical micro-evidence, as presented in Section 2. In addition, this demand function is always

positive for all levels of relative prices, and has no relative-price threshold beyond which the demand

is zero.

As better detailed further on, Figure 1 depicts the demand function (log-log), price elasticities and

price superelasticities for different levels of price wedge rates δ ∈ [0, 0.50] and curvature parameters

27In line with general definition (3), we can also rewrite Ps,t as a weighted average Ps,t =
∫ 1

0 g (℘t (z) ,℘s,t) pt (z) dz of

individual prices pt (z), where g (℘t (z) ,℘s,t) =
(℘t(z)+δ℘s,t)

−θ∫ 1
0 (℘t(z)+δ℘s,t)

−θ dz
. The proof is in Appendix C.1.
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φ ∈ {0,−2.0}, keeping the static markup fixed at µ = 1.12.
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Figure 1: Demand, Elasticities and Superelasticities - Price Wedges

Notes: In top panels, the demand function is plotted using log(y (z) /Y).and log(p (z) /P). For simulations,
we fix ℘s= ℘k = 1 and recompute µk for each value of δ in order to keep the static markup at µ = 1.12.

For each relative price ℘t (z), the firm z’s price elasticity and superelasticity are: (i) ξt (z) =

−
ϖ

(
℘t(z)

(1+δ)℘k,t

)(
℘t(z)+δ℘s,t
(1+δ)℘k,t

)(ϖ−1)

[(
℘t(z)+δ℘s,t
(1+δ)℘k,t

)ϖ

+φ

] and ηt (z) = 1
(℘t(z)+δ℘s,t)

 φϖ℘t(z)[(
℘t(z)+δ℘s,t
(1+δ)℘k,t

)ϖ

+φ

] + δ℘s,t

, if
(
℘t(z)+δ℘s,t
(1+δ)℘k,t

)
≤ (−φ)

1
ϖ ;

or (ii) ξt (z) = 0 and ηt (z) = 0, if
(
℘t(z)+δ℘s,t
(1+δ)℘k,t

)
> (−φ)

1
ϖ . In Figure 1, we recompute µk for each pair

(δ, φ), in order to keep the static markup fixed at µ = 1.12. For that, we use µ = µk
(1+δ)[1−δ(µk−1)] ,
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obtained from equation (6), applied to the model’s elasticity under flexible prices ξn = − 1
(1+δ)

µk
(1−µk)

.

With the standard Dixit and Stiglitz (1977) aggregation, i.e. when φ = 0 and θ = µk
(µk−1) , we obtain

ξt (z) = θ
℘t(z)

(℘t(z)+δ℘s,t)
≥ 0 and ηt (z) = δ ℘s,t

(℘t(z)+δ℘s,t)
≥ 0. Note that, if δ ̸= 0, the demand elasticity

ξt (z) and superelasticity ηt (z) are price-dependent even if φ = 0. As Figure 1 shows, accounting

for price wedges allows demand functions derived from Dixit and Stiglitz (1977) aggregation to be

quasi-kinked.

In the remainder of the paper, we assess the dynamic properties of price wedge models when firms

have sticky prices. For that, we consider the simpler Dixit-Stiglitz aggregation with price wedges as a

proof of concept to study the implied NK model for small and large levels of trend inflation.

5.2.3 Firms

As a proof of concept, consider the case with Dixit-Stiglitz aggregation and price wedges. Us-

ing the market clearing condition yt (z) = ct (z), ∀z, the aggregate and average levels of output

satisfy Yt = Ct and Ys,t = Cs,t. Therefore, firm z’s demand function is yt(z)
Yt

= f (℘t (z) ,℘s,t) =

(1 + δ)θ (℘t (z) + δ℘s,t)
−θ .

The firm’s revenue is now (1 + δ) pt (z) ct (z). As we mentioned before, optimal labor supply

curve under price wedges is wt (z) = (1 + δ) χ
ϵt

ht (z)
ν (Yt)

σ. Adapting the results shown in Sec-

tion 3.2, optimal pricing under flexible prices now requires (1+δ)[θ−(1+δ)]
θ ℘n

t = mcn
t , where mcn

t =

(1+δ)(1+θω)[θ−(1+δ)]
θ

(
℘n

t + δ℘n
s,t
)−θω is the marginal cost under flexible prices. Therefore, we conclude

that the natural output evolves according to:

(Yn
t )

(σ+ω) =
1

(1 + δ) µ

ε

χ
ϵt (At)

(1+ω) (15)

where µ ≡ ℘n
t

mcn
t

is the static markup under flexible prices and price wedges:

µ =
µδ

(1 + δ)
; µδ ≡

θ

θ − (1 + δ)
(16)

This last result allows us to design a strategy to calibrate θ as a function of markup µ and price

wedge rate δ: θ = µ(1+δ)2

[µ(1+δ)−1] . Note that, for a given a steady state markup µ, the elasticity of substitu-

tion θ decreases with δ, when it is not unreasonably large. In particular, at the benchmark low markup

level µ = 1.12, the elasticity of substitution can be as low as θ = 5 even for a small price wedge rate

of δ = 0.10. For larger price wedge rates, θ falls to about θ = 3.6 when δ ∈ [0.5, 1.0]. Those low lev-

els for the elasticity of substitution θ are consistent with microdata estimates in Broda and Weinstein
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(2006). The authors find that consumers have low elasticities of substitution across similar goods in

most categories, with the median elasticity being estimated at about θ = 3.

With Calvo price setting under price wedges, we can simplify firm z’s optimal pricing equation

(9) into the following system:

1 = µθ
N∗

t
D∗

t

N∗
t = Et

∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j

(
z∗t,t+j

)−(1+θ) (mc∗t,t+j
(1+δ)

+ δ℘s,t+j

)
D∗

t = Et
∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j

(
z∗t,t+j

)−θ

mc∗t,t+j =
(1+δ)θω

µ

(
Xt+j

)(σ+ω)
(

z∗t,t+j

)−θω

z∗t,t+j =
Πind

t,t+j
Πt,t+j

℘∗
t + δ℘s,t+j

(17)

where again ℘∗
t ≡ p∗t

Pt
and Xt =

Yt
Yn

t
. Here, µθ ≡ θ

(θ−1) is the markup without price wedges. Note that

we also use three additional auxiliary variables, i.e. N∗
t , D∗

t and z∗t,t+j.

In this framework, price aggregation (1 + δ)1−θ =
1∫

0

(
pt(z)

Pt
+ δ Ps,t

Pt

)1−θ
dz, average output and

wedge pricing evolve according to:

(1 + δ)1−θ = (1 − α)∑∞
j=0 αj

(
z∗t−j,t

)1−θ

Ys,t = (1 + δ)θ Yt (℘δ,t)
−θ

(℘δ,t)
−θ = (1 − α)∑∞

j=0 αj
(

z∗t−j,t

)−θ

℘s,t =
Yt
Ys,t

(18)

Now, the infinite sum is on z∗t−j,t =

(
Πind

t−j,t
Πt−j,t

℘∗
t−j + δ℘s,t

)
instead of z∗t,t+j =

(
Πind

t,t+j
Πt,t+j

℘∗
t + δ℘s,t+j

)
.

Most importantly, z∗t,t+j and z∗t−j,t enter systems (17) and (18) raised to non-positive integer powers.

This fact prevents the equations to have recursive forms. In order to cope with that, we present a pre-

cise approximation in next section, allowing those terms to have recursive forms in log-linearizations.

5.2.4 Aggregates and Welfare

Let ht ≡
∫ 1

0 ht (z) dz denote the aggregate working hours. Given the production function yt (z) =

Atht (z)
ε and demand function yt(z)

Yt
= (1 + δ)θ (℘t (z) + δ℘s,t)

−θ , we conclude that aggregate hours

evolve according to ht = (1 + δ)
θ
ε

(
Yt
At

) 1
ε

Λy,t, where Λy,t ≡
∫ 1

0 (℘t (z) + δ℘s,t)
− θ

ε dz. Therefore, fol-

lowing the vast literature of price dispersion, we can write the aggregate output as Yt =
1
dy,t

At (ht)
ε,

where dy,t ≡ (1 + δ)θ (Λy,t
)ε is the production-relevant metric of price dispersion. Using Calvo price
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setting, note that Λy,t = (1 − α)∑∞
j=0 αj

(
z∗t−j,t

)− θ
ε
.

As for welfare considerations, recall that Wt ≡ (ut − υt) is the relevant instantaneous welfare met-

ric, where ut ≡ ϵt
(Yt)

(1−σ)−1
(1−σ)

is the consumption utility and υt ≡
∫ 1

0 υt (z) dz is the aggregate disutility

of working hours, in which υt (z) ≡ χ
(1+ν)

ht (z)
(1+ν). Given the production and demand functions,

we can write the aggregate disutility as υt = dυ,t
χ

(1+ν) (ht)
(1+ν), where dυ,t =

Λt

(Λy,t)
(1+ν) is the welfare-

relevant metric of price dispersion, Λt ≡
∫ 1

0 (℘t (z) + δ℘s,t)
−θ1 dz, and θ1 = θ (1 + ω) is a composite

parameter. Under Calvo price setting, note that Λt = (1 − α)∑∞
j=0 αj

(
z∗t−j,t

)−θ1
.

In the equilibrium with flexible prices (α = 0), we obtain Λn
y,t = (1 + δ)−

θ
ε , Λn

t = (1 + δ)−θ1 , and

dn
y,t = dn

υ,t = 1. In this equilibrium, the instantaneous welfare evolves according to Wn
t ≡ (un

t − υn
t ) =

ϵt
(Yn

t )
(1−σ)−1

(1−σ)
− χ

(1+ν)

(
Yn

t
At

)(1+ω)
, where un

t = ϵt
(Yn

t )
(1−σ)−1

(1−σ)
, υn

t = χ
(1+ν) (h

n
t )

(1+ν), and hn
t =

(
Yn

t
At

) 1
ε
.

Therefore, following Schmitt-Grohe and Uribe (2007), we can compute the consumption-equivalent

welfare metric as a distorted output level Yeq
t that would prevail in a equilibrium with flexible prices

in order to keep the welfare level as the one obtained with sticky prices (Wt). That is, Yeq
t satisfies:

ϵt

(
Yeq

t
)(1−σ) − 1
(1 − σ)

− χ

(1 + ν)

(
Yeq

t
At

)(1+ω)

= Wt = ϵt
(Yt)

(1−σ) − 1
(1 − σ)

− dυ,t
χ

(1 + ν)

(
dy,t

Yt

At

)(1+ω)

In this regard, we define Xeq
t ≡ Yeq

t
Yn

t
as the consumption-equivalent output gap.

5.2.5 Steady State Properties

Using the steady state relations shown in Appendix C.3, Figure 2 shows how relevant steady state

levels vary with different levels of trend inflation π̄ and different price wedge rates δ. For this, we use

the benchmark calibration defined in Section 3.3, and use (16) recompute θ for each value of δ to keep

the static markup at µ = 1.12.
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Figure 2: Steady State Levels - Price Wedges
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As predicted, steady state levels now exist for all levels of trend inflation as long as δ > 0. In

the left panel, note that the gross output gap falls as trend inflation rises. It is interesting to note that

using larger values for δ makes output smoothly decline with respect to the natural output, avoiding

the sharp fall observed under δ = 0 (Dixit-Stiglitz). If δ is very small, the model is able to present

a seamless continuation of what standard NK models (Dixit-Stiglitz) predict for the steady state, but

now without the upper limit on trend inflation, which is 7.40% using the benchmark calibration. In the

middle panel, the consumption-equivalent output gap behaves similarly to the output gap shown in

the left panel. However, due to the effect of disutility of hours, X̄eq is always smaller than X̄. Finally, in

the right panel, note that the presence of price wedges strongly attenuates the price dispersion caused

by trend inflation. We highlight these results as recent micro evidence on price dispersion suggests

that it only weakly increases as inflation rises (e.g., Nakamura, Steinsson, Sun and Villar (2018) and

Sheremirov (2020)).

6 Simulations

In this section, we assess impulse responses using the log-linearized model presented at Appendix

C.4. Using the benchmark calibration, recall that the annualized upper limit for trend inflation is 7.40%

under standard Dixit and Stiglitz (1977) preferences and zero price wedges (δ = 0).28 However, as we

show in Section 5.2.2, the demand function function under price wedges satisfies Theorem 1, and so

setting δ > 0 is a sufficient condition for the existence of steady state equilibrium at any level of trend

inflation. Therefore, we set δ = 0.03 and consider impulse responses for a range of different levels of

annual trend inflation, from 0% to 20%.29 Setting a low value for δ, as we do, implies that the dynamics

are very similar to those obtained under standard NK models when trend inflation are smaller than

the upper limit. However, as δ > 0, it allows us to explore the dynamics at larger long-run inflation

rates, past the usual upper limit.

For dynamic simulations, we assume that the central bank has a mandated gross inflation target

Π̄ ≥ 1 (or π̄ ≥ 0) and follows a flexible Taylor-type rule to achieve it. We consider the specification(
It
Ī

)
= ϵi,t

(
It−1

Ī

)ϕi
[(

Πt
Π̄

)ϕπ
(

Πt
Πt−1

)ϕ∆π
(

Xt
X̄

)ϕx
(

Xt
Xt−1

)ϕgx
(

Yt
Ȳ

)ϕy
(

Yt
Yt−1

)ϕgy
]1−ϕi

, where ϵi,t is the mone-

tary policy shock, ϕi ∈ (0, 1) is the policy smoothing parameter, and the response parameters ϕπ, ϕx,

ϕgx, ϕy and ϕgy are consistent with stability and determinacy in equilibria with rational expectations.

Reacting to output gap growth or output growth is in line with the findings of Coibion and Gorod-

28See Section 4.
29Recall that equation (16) allows us to calibrate θ as a function of markup µ and price wedge rate δ.
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nichenko (2011) and Khan, Phaneuf and Victor (2020) as it generates more stabilizing properties when

the trend inflation is not zero. In addition, reacting to output growth is in line with Walsh (2003),

Orphanides and Williams (2007), and Coibion and Gorodnichenko (2011), and is empirically relevant.

In addition, reacting to inflation variation helps reducing short-run inflation accelerations.

In order to minimize any inertial dynamics coming from shocks and policy, we consider all shocks

as being pure white noise, without any AR component, and set ϕi = 0 in the Taylor rule. This rule

is completed by setting ϕπ = 2.05, ϕ∆π = 0.50 and ϕgx = 1.65. The remaining policy parameters are

set at zero. Since ϕi = 0, the calibrated values for ϕπ, ϕ∆π and ϕgx are set so responses to monetary

policy shocks (annualized nominal interest rates) at zero trend inflation are roughly in line with em-

pirical evidence for the US: a less than one-to-one response in annualized inflation, and a more than

one-to-one response in aggregate output. Impulse responses to utility ϵ̂t and technology Ât are not

too different from those obtained in the trend inflation literature. But we do find that responses to

monetary policy shocks ϵ̂i,t give us important insights as trend inflation is not low.

Figure 3 shows the impulse responses for different levels of trend inflation. The top two rows

show the responses under low annual trend inflation, from 0 to 11%. And the bottom two rows

assesses responses under high trend inflation, from 11 to 20%. Since we are considering a range of

different trend inflation levels, we normalize the shocks amplitude in order to make comparisons

easier. That is, in each level of trend inflation, the amplitude of monetary policy shocks ϵ̂i,t is such that

the annualized nominal interest rate ı̂t has unit response at period 1, when the one-off shock hit.
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Figure 3: Impulse responses to monetary policy shocks

Notes: Impulse responses to Monetary Policy shock ϵ̂i,t with δ = 0.03, in the Dixit-Stiglitz model with Price

Wedges. In the top row, we consider low levels of trend inflation (0 ≤ π̄ ≤ 11). In the bottom row, we

consider ”not low” levels of trend inflation (11 ≤ π̄ ≤ 20). Shocks are normalized so that nominal interest

rate ı̂t has unit response at period 1 for all levels of trend inflation.

When trend inflation rise up to about the 11%, responses behave similarly to what we observe in

standard NK models with trend inflation, in the sense that the amplitude of inflation rate responses

increase with trend inflation, whereas output has its response amplitudes decreased. However, we

see that there is a reversal in this pattern at high levels of trend inflation. From this point on, am-

plitudes of inflation responses decrease, while that of output increase, as trend inflation gets higher.

It means that it becomes harder for central banks to curb inflation hikes and bring it down, when

the average inflation sits above the 11% level. We highlight that these properties are in line with re-

cent empirical results found by Canova and Forero (2024). The authors estimate a Markov-Switching

model for the US with two states (high and low inflation) from 1960 to 2023. They find that, after con-

tractionary monetary policy shocks, inflation rates do not fall as much and become more persistent in

high-inflation states when compared to low-inflation states.
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7 Conclusion

We provide a resolution to a well-known issue: the steady state of the widely-studied New Key-

nesian (NK) models based on Calvo-pricing does not exist beyond a low single-digit trend inflation

threshold, rendering them not useful for monetary policy analysis when trend inflation is not low.

This ‘steady state problem’, where the relative price and price dispersion shoot to infinity and out-

put goes to zero, can be mechanically resolved by assuming price indexation or increasing the price-

adjustment frequency with trend inflation. These resolutions are, however, unsatisfactory and not

supported by evidence. The main contribution of the paper is to establish that the root of the steady

state problem is not Calvo pricing, as commonly assumed, but rather the popular Dixit-Stiglitz de-

mand structure in NK models. We consider a general demand structure with the feature that demand

remains finite when relative prices increase and show that the steady state always exists with Calvo

pricing for any trend inflation level. Using this framework, we assess the properties of the Kimball-

demand aggregator, which avoids the steady state problem but creates new ones. We then present a

model with price wedges to augment the Dixit-Stiglitz and Kimball-demand aggregators and show

that it resolves the steady state problem. Our findings show that modification of the demand struc-

ture can ensure that NK models are useful in evaluating alternative monetary policies for reducing

inflation when trend inflation is not low.
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A Proof of Theorem 1

Assumptions: Under the Calvo staggered price setting (α > 0) with partial indexation (γ < 1), as

previously described, consider the generic relative demand function y
Y = f (℘,℘s) described in Sec-

tion 3.1.1, where ℘s ≡ Ps
P , where Ps and P grow at the same rate in any steady state, such that f (℘,℘s)

is a non-negative, continuous and differentiable function in (℘,℘s) ∈ (R∗
+ × R∗

+) and non-increasing

in ℘ ∈ R∗
+. Let f1 (℘,℘s) ≡ ∂ f (℘,℘s)

∂℘ denote the partial derivative of f with respect to ℘.

Theorem 1 If f (℘,℘s) and ℘ · f1 (℘,℘s) are finite and defined at all their domain, including at ℘ → 0

and ℘ → ∞,30 there always exists a steady state equilibrium (with no output growth) for any level of trend

inflation (Π̄ = 1 + π̄), provided that it is not extremely negative, i.e. Π̄ > (α)
1

(1−γ) . For any other level of

trend inflation, including all positive values, both the optimal relative price and the output-gap converge to

finite steady state levels.

Proof. Consider that all shocks are kept at their means, i.e. ϵt = ϵ̄ and At = A , at all periods, so

that there are no stochastic uncertainties. Also consider that gross trend inflation is kept constant at

Π̄ = 1 + π̄. Since we assume that Ps and P grow at the same rate in any steady state, it must be the

case that ℘̄s is independent of j.

For simplicity sake, let us define the function f̃ (℘,℘s) ≡ ℘ · f1 (℘,℘s), where f1 (℘,℘s) ≡ ∂ f (℘,℘s)
∂℘ .

Now, since we assume in Section 3.1.1 that the weight function is bounded, i.e. g (℘,℘s) ∈

(0, 1), we must have that g (0,℘s) and lim
℘→∞

g (℘,℘s) exist and are both finite. Given the theorem

assumptions, for a fixed value ℘̄s, let f0 ≡ lim
℘→0

f (℘, ℘̄s), f∞ ≡ lim
℘→∞

f (℘, ℘̄s), f̃0 ≡ lim
℘→0

f̃ (℘, ℘̄s),

f̃∞ ≡ lim
℘→∞

f̃ (℘, ℘̄s), g0 ≡ lim
℘→0

g (℘, ℘̄s), and g∞ ≡ lim
℘→∞

g (℘, ℘̄s) denote the implied finite limits, i.e.

0 ≤ f0 < ∞, 0 ≤ f∞ < ∞, −∞ < f̃0 ≤ 0, −∞ < f̃∞ ≤ 0, 0 < g0 < 1 and 0 < g∞ < 1.

In addition, q̄t,t+j =
(

β
Π̄

)j
, Π̄ind

t,t+j = (Π̄γ)
j, and Ḡt,t+j = 1. Therefore, if existent, the pricing steady

state relations implied by the system in equations (9), (10) and (11) are:

0 =
∞
∑

j=0

(
αβ

Π̄(1−γ)

)j
f
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
−

∞
∑

j=0

(
αβ

Π̄(1−γ)

)j [
− f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)]
+

∞
∑

j=0
(αβ)j

(
1 + 1

ξn

)
(X̄)

(σ+ω)

℘̄∗

[
− f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)] [
f
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)]ω

℘s = (1 − α)
∞
∑

j=0

(
α

Π̄(1−γ)

)j
(℘̄∗) g

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
1 = (1 − α)

∞
∑

j=0

(
α

Π̄(1−γ)

)j
(℘̄∗) f

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
30Formally, 0 ≤ lim

℘→0
f (℘,℘s) < ∞, 0 ≤ lim

℘→∞
f (℘,℘s) < ∞, −∞ < lim

℘→0
℘ · f1 (℘,℘s) ≤ 0, and −∞ < lim

℘→∞
℘ · f1 (℘,℘s) ≤

0.
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where

f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
=

(
℘̄∗

Π̄(1−γ)j

)
f1

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
It is not hard to recognize this result as a system involving five different non-negative power series,

whose format is gb

(
ρb| ℘̄∗

Π̄(1−γ)j , ℘̄s

)
≡

∞
∑

j=0
(ρb)

j bb

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
, where ρb ≥ 0 and bb

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
≥ 0.

Of course, each one of those power series has specific parameter ρb and function bb (·, ·), i.e. ρb ∈{
αβ

Π̄(1−γ) , αβ, α
Π̄(1−γ)

}
and bb (·, ·) depends on different combinations of f

(
1

Π̄(1−γ)j ℘̄
∗, ℘̄s

)
, f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
and g

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
. Note that, fixing the values of ℘̄∗ and ℘s, bb

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
is a well-defined, finite

and non-negative sequence in j.

All we have to do is to show that all those five non-negative power series converge. If Π̄(1−γ) = 1,

we have the trivial case in which all power series in the system are actually geometric series. In

this case, given the assumption that f (℘,℘s), f (℘,℘s) and g (℘,℘s) are finite and defined at all their

domain, convergence is always ensured, for 0 ≤ α < 1 and 0 ≤ β < 1 in the model.

When Π̄(1−γ) > 1 (positive trend inflation), or Π̄(1−γ) < 1 (negative trend inflation), we will use

the Ratio test. But before, some considerations are necessary. Since the relative demand and weight

functions are general, there is nothing precluding bb

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
to be zero at some points. Therefore,

we resort to an auxiliary power series gζ (ρb) ≡
∞
∑

j=0
(ρb)

j ζ, defined for an arbitrary fixed and strictly

positive value ζ > 0. Obviously, gζ (ρb) converges as long as |ρb| < 1, which is the case whenever

αβ < 1, αβ < Π̄(1−γ) and α < Π̄(1−γ). Since 0 ≤ α < 1 and 0 ≤ β < 1, the restriction is simplified to

α < Π̄(1−γ).

Let us consider an augmented power series ğb

(
ρb| ℘̄∗

Π̄(1−γ)j , ℘̄s

)
≡ gζ (ρb) + gb

(
ρb| ℘̄∗

Π̄(1−γ)j , ℘̄s

)
. By

construction, all terms in this power series are strictly positive. It implies that convergence can

be verified using the sufficient Ratio test, which states that the power series ğb

(
ρb| ℘̄∗

Π̄(1−γ)j , ℘̄s

)
=

∞
∑

j=0
(ρb)

j
[
ζ + bb

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)]
converges if the limiting ratio Tratio ≡ lim

j→∞

∣∣∣∣∣ (ρb)
(j+1)

[
ζ+bb

(
℘̄∗

Π̄(1−γ)(j+1) ,℘̄s

)]
(ρb)

j
[
ζ+bb

(
℘̄∗

Π̄(1−γ)j ,℘̄s

)]
∣∣∣∣∣

is smaller than unity, i.e. if Tratio < 1, and diverges if Tratio > 1. At the boundary Tratio = 1, the test is

mute, as the power series can either converge or diverge, depending on its functional form.

Note that lim
j→∞

f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
= f̃0 when Π̄(1−γ) > 1, whereas lim

j→∞
f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
= f̃∞ when

Π̄(1−γ) < 1. Since f0, f∞, f̃0, f̃∞, g0 and g∞ are all finite and defined, it is easy to verify that the

limiting ratio is Tratio = |ρb| for all five augmented power series, regardless of whether Π̄(1−γ) > 1 or

Π̄(1−γ) < 1. And so, the ratio test predicts that all of them converge if |ρb| < 1. Since the auxiliary

power series gζ (ρb) converges, it implies that all five original power series also converge under the

same conditions.
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Therefore, we conclude that the system implies a convergent relation and provides an implicit

solution for the steady state levels ℘̄∗, ℘̄s and X̄, as long as α < Π̄(1−γ).

Since Π̄ = 1 + π̄, the condition is always satisfied for non-negative trend inflation (Π̄ ≥ 1). Only

for some negative trend inflation, the condition can be violated. That is, convergence is only achieved

if trend inflation π̄ is not extremely negative, i.e. when π̄ > (α)
1

(1−γ) − 1.

B Kimball Aggregator

In Kimball (1995), consumption over all differentiated goods ct (z) are aggregated into a bundle Ct,

according to 1 =
∫ 1

0 G
(

ct(z)
Ct

)
dz, where function G (κ) satisfies G (1) = 1, G′ (κ) > 0, and G′′ (κ) <

0, for all κ ≥ 0. In this context, Dotsey and King (2005) propose the particular functional form

G
(

ct(z)
Ct

)
= m

1+φ

[
(1 + φ) ct(z)

Ct
− φ

] 1
m
+ 1 − m

1+φ , where m ≡ µk(1+φ)
(1+µk φ)

is a composite parameter, µk ≥ 1

is the elasticity parameter, which matches the implicit markup rate µ under flexible prices, and φ ≤ 0

sets the aggregation curvature. If φ = 0, G (·) simplifies into the standard Dixit and Stiglitz (1977)

aggregation form. Allowing for smooth-kinked demand function, it has also been used by Levin et al.

(2007), Harding et al. (2022) and Kurozumi and Van Zandweghe (2024).

According the notation used in Section 3.1, this model sets δ = 0. The literature typically derives

the utility-based demand function by choosing ct (z) to minimize expenditure PtCt ≡
∫ 1

0 pt (z) ct (z) dz,

subject to only one restriction, the Kimball aggregation 1 =
∫ 1

0 G
(

ct(z)
Ct

)
dz. The implied demand func-

tion and implied price aggregation are:

ct(z)
Ct

= f (℘t (z) ,℘s,t) =


1

(1+φ)

(
℘t(z)
℘k,t

)ϖ
+ φ

(1+φ)
; if
(
℘t(z)
℘k,t

)
≤ (−φ)

1
ϖ

0 ; if
(
℘t(z)
℘k,t

)
> (−φ)

1
ϖ

℘k,t ≡ (1 + φ)− φ℘s,t ; Ps,t ≡
∫ 1

0 pt (z) dz ; 1 =
∫ 1

0

(
℘t(z)
℘k,t

)(1+ϖ)
dz

(19)

where ϖ ≡ µk(1+φ)
(1−µk)

= − m
(m−1) , Pk,t is an auxiliary composite price aggregate, Ps,t is the average price.

Paralleling the notation used in Section 3.1.1, we define ℘t (z) ≡ pt(z)
Pt

as the relative price of firm z, and

℘s,t =
Ps,t
Pt

as the average relative price. We also set ℘k,t ≡
Pk,t
Pt

as the auxiliary composite relative price.

In addition, it is straightforward to verify that the price aggregation 1 =
∫ 1

0

(
℘t(z)

(1+φ)−φ℘s,t

)(1+ϖ)
dz is

equivalent to Pt =
∫ 1

0 pt (z) f (℘t (z) ,℘s,t) dz.

Under this type of Kimball aggregation, the firm z’s price pt (z) elasticity and superelasticity are:

(i) ξt (z) = −ϖ
(
℘t(z)
℘k,t

)ϖ
[(

℘t(z)
℘k,t

)ϖ
+ φ

]−1

and ηt (z) = ϖφ

[(
℘t(z)
℘k,t

)ϖ
+ φ

]−1

, if
(
℘t(z)
℘k,t

)
≤ (−φ)

1
ϖ ; or

(ii) ξt (z) = 0 and ηt (z) = 0, if
(
℘t(z)
℘k,t

)
> (−φ)

1
ϖ .
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In macroeconomic models, the way to generate empirically observed persistent non-neutrality in

aggregate output is to combine real and nominal rigidities. However, empirical evidence suggest

that price stickiness is not so large.31 Therefore, macroeconomists tend to use theoretical models with

large real rigidities (see e.g. Ball and Romer (1990), Basu (1995), Blanchard and Gali (2007)). In this

regard, Kimball’s implied real rigidity can be easily computed using (12), evaluated in the steady

state equilibrium with flexible prices:32

κKimball
real = (σ+ω)

1−µφ+ µ
(µ−1) ω

; ψKimball
real = 1

κreal

Therefore, for a given preferences/production structure represented by σ and ω, a large degree

of large real rigidity ψKimball
real can be achieved with a convenient balance between a large demand

curvature (φ << 0) and a appropriate markup µ > 1.

B.1 Kimball NK Model

In general equilibrium, based on the generic model shown in Section 3, we have:

1 = βEt

(
ϵt+1

ϵt

(
Yt

Yt+1

)σ It
Πt+1

)
qt = β ϵt

ϵt−1

(
Yt−1

Yt

)σ
1

Πt(
It
Ī

)
= ϵi,t

(
It−1

Ī

)ϕi
[(

Πt
Π̄

)ϕπ
(

Xt
X̄

)ϕx
(

Yt
Yt−1

)ϕgy
(

Yt
Ȳ

)ϕy
](1−ϕi)

(Yn
t )

(σ+ω) = 1
µ

ε
χ ϵt (At)

(1+ω)

Xt =
Yt
Yn

t
; qt,t+j = qt+1qt+1,t+j for j ≥ 1 and qt,t = 1

Gt =
Yt

Yt−1
; Πt,t+j = Πt+1Πt+1,t+j for j ≥ 1 and Πt,t = 1

Πind
t = Πγ

t−1 ; Πind
t,t+j = Πind

t+1Πind
t+1,t+j for j ≥ 1 and Πind

t,t = 1

; Gt,t+j = Gt+1Gt+1,t+j for j ≥ 1 and Gt,t = 1

31As in e.g. Bils and Klenow (2004) and Nakamura and Steinsson (2008), estimated median duration between price
changes ranges from about 4.5 months, when sales are included, to 10 months, when they are excluded.

32Considering that µ here is the gross markup rate, the component (1 − µφ) is the same found in Levin, Lopez-Salido and
Yun (2007) and Harding, Linde and Trabandt (2022), as their models implies ω = 0.
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℘s,t = (1 − α)℘∗
t + α

Πind
t

Πt
℘s,t−1

(1 + φ) = ℘k,t + φ℘s,t

(℘k,t)
− 1

(m−1) = (1 − α) (℘∗
t )

− 1
(m−1) + α

(
Πind

t
Πt

)− 1
(m−1)

(℘k,t−1)
− 1

(m−1)

℘∗
t = φ (m− 1) (℘∗

t )

(
1+ m

(m−1)

)
N1,t
Dt

+ m
µ

N2,t
Dt

Dt = (℘k,t)
m

(m−1) + αEtqt+1Gt+1Πt+1

(
Πt+1
Πind

t+1

) 1
(m−1)

Dt+1

N1,t = 1 + αEtqt+1Gt+1Πind
t+1N1,t+1

N2,t = µEt ∑∞
j=0 qt,t+jα

jGt,t+jΠt,t+j

(
Πt,t+j

Πind
t,t+j

) m
(m−1) (

℘k,t+j
) m

(m−1) mc∗t,t+j

mc∗t,t+j =
1
µ

(
Xt+j

)(σ+ω)

[
1

(1+φ)

(
Πind

t,t+j
Πt,t+j

℘∗
t

℘k,t+j

)− m
(m−1)

+ φ
(1+φ)

]ω

Since power ω in the equation for mc∗t,t+j is not a positive integer, we cannot write N2,t in a finite

recursive way. Therefore, simulations are to be carried out using the same approximation we use for

the price wedge model.

B.2 Steady state

Given an exogenous level of trend inflation Π̄, the steady state levels can be numerically obtained

as follows. First, we compute Ī, q̄, and Ȳn:

Ī = Π̄
β ; q̄ = β

Π̄ ; (Ȳn)
(σ+ω)

= 1
µ

ε
χ ϵ̄
(
A
)(1+ω)

Next, we use a numerical code to solve the following non-linear system for relative prices ℘̄∗, ℘̄s,

and ℘̄k:

℘̄∗ = (1+φ)[(
1−α

1−ᾱk1

)−(m−1)
+φ

(1−α)

(1−ᾱk3)

] ; ℘̄s =
(1−α)
(1−ᾱk3)

℘̄∗ ; ℘̄k = (1 + φ)− φ℘̄s

where

ᾱk1 = α (Π̄)
(1−γ)
(m−1) ; ᾱk2 = αΠ̄

m(1−γ)
(m−1) ; ᾱk3 = αΠ̄−(1−γ)

The following step is to find the gross output gap X̄:

S̄d ≡
∞
∑

j=0
(ᾱk2β)j

[
1

(1+φ)

( ᾱk2
α

)j
(
℘̄∗

℘̄k

)− m
(m−1)

+ φ
(1+φ)

]ω

; D̄ = (℘̄k)
m

(m−1)

(1−ᾱk1β)
; N̄1 = 1

(1−ᾱk3β)

N̄2 = µ
m (℘̄∗)

(
D̄ − φ (m− 1) (℘̄∗)

m
(m−1) N̄1

)
; (X̄)

(σ+ω)
= N̄2

(℘̄k)
m

(m−1)

1
S̄d

; Ȳ = X̄Ȳn

If ᾱk2
α ≤ 1 the infinite sum S̄d converges when (ᾱk2β) < 1. If ᾱk2

α > 1, it converges when (ᾱk2β)
( ᾱk2

α

)ω
<
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1.

The infinite sum S̄d is generally numerically retrieved by using a finite sum in j = {0, 1, ..., J} for a

large J. In this paper, we use J = 10000. For numerical stability when ᾱk2
α > 1, S̄d is better computed

using S̄d =
∞
∑

j=0

(
ᾱk2β

( ᾱk2
α

)ω
)j
[

1
(1+φ)

(
℘̄∗

℘̄k

)− m
(m−1)

+ φ

(1+φ)
(

ᾱk2
α

)j

]ω

.

Alternatively, if ω is a positive integer, it is feasible to derive an exact closed form solution for S̄d.

For that, we only need to expand the term in brackets and obtain a couple of infinite sums that allow

for closed form solutions. For instance, if ω = 2, (ᾱk2)
2

α2 β < 1 and ᾱk2β < 1, we obtain:

S ≡
∞
∑

j=0
(ᾱk2β)j

[
1

(1+φ)

( ᾱk2
α

)j
(
℘̄∗

℘̄k

)− m
(m−1)

+ φ
(1+φ)

]2

=
∞
∑

j=0
(ᾱk2β)j

[
1

(1+φ)2

(
℘̄∗

℘̄k

)− 2m
(m−1)

(( ᾱk2
α

)2
)j

+ 2 1
(1+φ)

(
℘̄∗

℘̄k

)− m
(m−1) ( ᾱk2

α

)j
+ φ2

(1+φ)2

]
= (℘̄∗/℘̄k)

− 2m
(m−1)

(1+φ)2

∞
∑

j=0

(
(ᾱk2)

2

α2 β
)j

+ 2(℘̄∗/℘̄k)
− m
(m−1)

(1+φ)

∞
∑

j=0

(
(ᾱk2)

2

α β
)j

+ φ2

(1+φ)2

∞
∑

j=0
(ᾱk2β)j

= 1
(1+φ)2

(℘̄∗/℘̄k)
− 2m
(m−1)(

1− (ᾱk2)
2

α2 β

) + 2
(1+φ)

(℘̄∗/℘̄k)
− m
(m−1)(

1− (ᾱk2)
2

α β

) + φ2

(1+φ)2
1

(1−ᾱk2β)

B.3 Constrained Demand

Given the extra demand kink at
(

pt(z)
Pk,t

)
= (−φ)

1
ϖ , this particular case of Kimball’s aggregation

implies firms will typically not set any price pt (z) larger than (−φ)
1
ϖ [(1 + φ) Pt − φPs,t], as would

lead to zero demand. If φ = 0, in particular, the threshold (−φ)
1
ϖ is infinity. And so the restriction

ct(z)
Ct

≥ 0 is never biding under Dixit and Stiglitz (1977) aggregation. If φ < 0, however, we argue that

the condition for non-zero demand
(

pt(z)
Pk,t

)
< (−φ)

1
ϖ might not always hold with real data. That is,

an empirical test for this type of aggregation is to verify whether empirical values of relative prices
pt(z)
Pk,t

are smaller than (−φ)
1
ϖ .

Here, as it is not the main scope of this paper, we do not propose a sophisticated formal econo-

metric test. Rather, we propose a simple approach. So, the question is whether we can find a way

to compute Pt and Ps,t using typical moments from price samples, which would provide us with an

estimate for Pk,t ≡ [(1 + φ) Pt − φPs,t]. And here lies a slight caveat. While Ps,t ≡
∫ 1

0 pt (z) dz is the

simple average price, which can be easily estimated using sample price means, Pt has no obvious

empirical counterpart. Therefore, Pt is not easily empirically retrievable without relying on a general

equilibrium model.

In order to tackle this issue, we propose a second-order approximation approach. Consider the

typical price aggregation into Pt, abstracting from the relative price threshold. It can be written as
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(Pk,t)
− 1

(m−1) =
∫ 1

0 (pt (z))
− 1

(m−1) dz. Note that a second-order approximation of (pt (z))
− 1

(m−1) , about the

average price Ps,t ≡
∫ 1

0 pt (z) dz, is:

(pt (z))
− 1

(m−1) ≈ (Ps,t)
− 1

(m−1) − (Ps,t)
− m
(m−1)

(m−1) (pt (z)− Ps,t) +
1
2
m(Ps,t)

− 2m−1
(m−1)

(m−1)2 (pt (z)− Ps,t)
2

It implies that

(Pk,t)
− 1

(m−1) =
∫ 1

0 (pt (z))
− 1

(m−1) dz ≈ (Ps,t)
− 1

(m−1)

[
1 + 1

2
m

(m−1)2

∫ 1
0

[
pt(z)
Ps,t

− Ps,t

]2
dz
]

Therefore, we obtain the following relation between Pk,t and Ps,t:

Pk,t ≈
[
1 + 1

2
m

(m−1)2 s2
s,t

]−(m−1)
Ps,t

s2
s,t ≡

∫ 1
0

[
pt(z)
Ps,t

− 1
]2

dz
(20)

where Pk,t ≡ [(1 + φ) Pt − φPs,t]. Since Ps,t ≡
∫ 1

0 pt (z) dz and
∫ 1

0
pt(z)
Ps,t

dz = 1, ss,t is the cross-section

standard deviation of relative prices pt(z)
Ps,t

, which is a measure of relative price dispersion.

Recalling that m ≡ µk(1+φ)
(1+µk φ)

, it is not hard to verify that: (i) pt(z)
Ps,t

< pt(z)
Pk,t

< pt(z)
Pt

, if φ ∈ (−1, 0]; and

(ii) pt(z)
Pk,t

≤ pt(z)
Ps,t

< pt(z)
Pt

, if φ ≤ −1. In both cases, all three relative prices are very close to each other

whenever price dispersion is ss,t small.

Since the cross section average relative price is unity, i.e.
∫ 1

0
pt(z)
Ps,t

dz = 1, we can reasonable

conclude that
∫ 1

0
pt(z)
Pk,t

dz is also close to unity. And there lies a potential empirical issue with this

type Kimball’s demand function. Recall that its relative price constraint for non-zero demand is(
pt(z)
Pk,t

)
≤ (−φ)

1
ϖ , for ϖ ≡ µk(1+φ)

(1−µk)
.

In the literature, the upper limit (−φ)
1
ϖ for relative prices is generally very close to unity when

φ is set, or implied, using common values estimated or calibrated for the US. In order to verify this

property, consider first that µk matches the implicit markup rate µ under flexible prices. In this case,

some typical calibrations for the US are the following ones: (i) µ = 1.10, φ = −12.2 and (−φ)
1
ϖ =

1.021 in Harding, Linde and Trabandt (2022); (ii) µ = 1.17, φ = −8 and (−φ)
1
ϖ = 1.043 in Levin,

Lopez-Salido and Yun (2007);33 and (iii) µ = 1.61 (estimated), φ = −3.79 and (−φ)
1
ϖ = 1.198 in

Smets and Wouters (2007).34 In addition, obtaining a better marginal likelihood statistics for model

33In Levin, Lopez-Salido and Yun (2007), the elasticity of substitution between goods ϵ can be mapped into our notation
as µ = ϵ

(ϵ−1) . The authors calibrated ϵ = 7, and so µ = 7
6 .

34In Smets and Wouters (2007), the demand’s curvature parameter ϵp can be mapped into our notation as ϵp = − µφ
(µ−1) .

The authors calibrated ϵp = 10 and estimated the gross markup rate at µ = 1.61.
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comparison,35 Harding, Linde and Trabandt (2022) re-estimate Smets and Wouters (2007) model with

a different prior distribution. Their new posterior modes imply µ = 1.34 (estimated), φ = −16.37 and

(−φ)
1
ϖ = 1.047.

As for the empirical dispersion of relative prices, we consider the Kaplan and Menzio (2015) results

described in Section 2. In particular, we make a conservative choice by considering the authors’ Brand

Aggregation, in which products have at least the same features and the same size, and so are in line

with what economists usually think about commodity goods. Under this aggregation, the authors

find that the empirical standard-deviation of relative prices, relatively to the sample average price

Pa,t, is 0.25.36 Notice that, under this type of Kimball aggregation, Ps = Pa. As depicted in Section 2,

the authors’ findings imply that a 80% confidence interval for empirical relative prices in the US are

at least ranging from
(

p(z)
Ps

)
0.10

= 0.68 to
(

p(z)
Ps

)
0.90

= 1.38.

Using approximation (20), with standard deviation ss = 0.25, and considering the authors’ differ-

ent calibration options for µ and φ, we are able to compute the implied 80% confidence intervals for(
p(z)
Pk

)
as follows:

(
p(z)
Pk

)
0.10

=
(

Ps
Pk

) (
p(z)
Ps

)
0.10

;
(

p(z)
Pk

)
0.90

=
(

Ps
Pk

) (
p(z)
Ps

)
0.90

Therefore, considering different calibration options for µ and φ, Table 1 verifies whether the im-

plied 80% confidence intervals for
(

p(z)
Pk

)
are at least totally included in the feasibility region

(
p(z)
Pk

)
≤

(−φ)
1
ϖ . Of course, this back-of-the-envelope analysis is by no means meant to be a formal hypothesis

test, but the fact that all 90% quantiles surpass the theoretical Kimball’s upper limit (−φ)
1
ϖ strongly

suggests that an important fraction of relative prices are larger than the implied Kimball’s upper limit

for relative prices (−φ)
1
ϖ . This conclusion is specially so for cases in which (−φ)

1
ϖ is very close to

unity. This result is in line with simulations carried out by Klenow and Willis (2016), who find that

about 15% of goods end up with zero relative demand when the demand function is Kimball-based

with large curvature.

Table 1: Kimball’s Relative Prices - Empirical confidence intervals and Kimball’s upper limit

Authors µ φ
(

Ps
Pk

)
(−φ)

1
ϖ

(
p(z)
Pk

)
0.90

Harding, Linde and Trabandt (2022)a 1.10 −12.2 0.95 1.02 1.31
Harding, Linde and Trabandt (2022)b 1.34 −16.4 0.93 1.05 1.28
Levin, Lopez-Salido and Yun (2007) 1.17 −8.0 0.92 1.04 1.27
Smets and Wouters (2007) 1.61 −3.8 0.88 1.20 1.21

35The authors obtain a marginal likelihood gain of 5 log points.
36Here, we are abstracting from frequency considerations the authors dealt with when using empirical data.
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Notes: The empirical relative price 90% quantile is computed using Equation (20) and Kaplan and Menzio (2015) estimates.

Kimball’s relative price upper bound is (−φ)
1
ϖ . Harding, Linde and Trabandt (2022) first (a) calibrates µ = 1.10 and

φ = −12.2; and then (b) estimates µ = 1.34 and φ = −16.4 using Smets and Wouters (2007) model with a different

prior distribution. Again, ϖ is defined as ϖ ≡ µk(1+φ)
(1−µk)

, and µk= µ.

C Price Wedge Model

The intermediate firm’s nominal revenue is Rs,t =
∫ 1

0 Ps,tcs,t (z) dz = δPs,tCs,t, where Cs,t ≡
∫ 1

0 ct (z) dz
is the average consumption (arithmetic mean), while its nominal cost is Costs,t =

∫ 1
0 pt (z) cs,t (z) dz =

δ
∫ 1

0 pt (z) ct (z) dz. As shown further on, the average consumption Cs,t will only be the same as
the aggregate consumption Ct when all goods z are perfect substitutes. This firm sets its price at
a zero-profit condition Rs,t = Costs,t. Coupling this condition with the aggregate price definition
(1 + δ) PtCt ≡

∫ 1
0 (pt (z) + δPs,t) ct (z) dz allows us to obtain two important results:

(1 + δ) PtCt =
∫ 1

0 (pt (z) + δPs,t) ct (z) dz =
∫ 1

0 pt (z) ct (z) dz + δPs,t
∫ 1

0 ct (z) dz
=

∫ 1
0 pt (z) ct (z) dz + δPs,tCs,t =

∫ 1
0 pt (z) ct (z) dz + Rs,t

=
∫ 1

0 pt (z) ct (z) dz + Costs,t =
∫ 1

0 pt (z) ct (z) dz + δ
∫ 1

0 pt (z) ct (z) dz
= (1 + δ)

∫ 1
0 pt (z) ct (z) dz

∴ PtCt =
∫ 1

0 pt (z) ct (z) dz

Since Rs,t = Costs,t, it implies that Ps,tCs,t =
∫ 1

0 pt (z) ct (z) dz = PtCt. Therefore, we obtain two
important results:

PtCt =
∫ 1

0 pt (z) ct (z) dz ; Ps,t = Pt
Ct
Cs,t

where Cs,t ≡
∫ 1

0 ct (z) dz.

C.1 Aggregate price as a weighted average of individual prices

Since Cs,t ≡
∫ 1

0 ct (z) dz and Ps,t = Pt
Ct
Cs,t

, we obtain:

Pt

Ps,t
=
∫ 1

0

ct (z)
Ct

dz =
∫ 1

0
(1 + δ)θ

(
pt (z)

Pt
+ δ

Ps,t

Pt

)−θ

dz

Moreover, since Pt =
∫ 1

0 pt (z) f (℘t (z) ,℘s,t) dz, we obtain:

Pt =
∫ 1

0
pt (z) (1 + δ)θ

(
pt (z)

Pt
+ δ

Ps,t

Pt

)−θ

dz

Therefore, the normalized wedge price can be written as follows:

Ps,t =

∫ 1
0

(
pt(z)

Pt
+ δ Ps,t

Pt

)−θ
pt (z) dz∫ 1

0

(
pt(z)

Pt
+ δ Ps,t

Pt

)−θ
dz

=
∫ 1

0
g (℘t (z) ,℘s,t) pt (z) dz

where g (℘t (z) ,℘s,t) =
(℘t(z)+δ℘s,t)

−θ∫ 1
0 (℘t(z)+δ℘s,t)

−θdz
.
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C.2 General Equilibrium

The composite parameters are:

ω ≡ (1+ν)
ε − 1 ; θ1 ≡ θ (1 + ω) ; µθ ≡ θ

(θ−1) ; µδ ≡ θ
θ−(1+δ)

; µ = µδ

(1+δ)

The dynamic equations are:

1 = βEt

(
ϵt+1

ϵt

(
Yt

Yt+1

)σ It
Πt+1

)
qt = β ϵt

ϵt−1

(
Yt−1

Yt

)σ
1

Πt(
It
Ī

)
= ϵi,t

(
It−1

Ī

)ϕi
[(

Πt
Π̄

)ϕπ
(

Xt
X̄

)ϕx
(

Yt
Yt−1

)ϕgy
(

Yt
Ȳ

)ϕy
](1−ϕi)

(Yn
t )

(σ+ω) = 1
(1+δ)µ

ε
χ ϵt (At)

(1+ω)

Ys,t = (1 + δ)θ Yt (℘δ,t)
−θ

Xt =
Yt
Yn

t
; qt,t+j = qt+1qt+1,t+j for j ≥ 1 and qt,t = 1

Gt =
Yt

Yt−1
; Πt,t+j = Πt+1Πt+1,t+j for j ≥ 1 and Πt,t = 1

℘s,t =
Yt
Ys,t

; Πind
t,t+j = Πind

t+1Πind
t+1,t+j for j ≥ 1 and Πind

t,t = 1

Πind
t = Πγ

t−1 ; Gt,t+j = Gt+1Gt+1,t+j for j ≥ 1 and Gt,t = 1

(1 + δ)1−θ = (1 − α)∑∞
j=0 αj

(
Πind

t−j,t
Πt−j,t

℘∗
t−j + δ℘s,t

)1−θ

(℘δ,t)
−θ = (1 − α)∑∞

j=0 αj
(

Πind
t−j,t

Πt−j,t
℘∗

t−j + δ℘s,t

)−θ

1 = µθ
N∗

t
D∗

t

N∗
t = Et

∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j

(
z∗t,t+j

)−(1+θ) (mc∗t,t+j
(1+δ)

+ δ℘s,t+j

)
D∗

t = Et
∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j

(
z∗t,t+j

)−θ

mc∗t,t+j =
(1+δ)θω

µ

(
Xt+j

)(σ+ω)
(

z∗t,t+j

)−θω

z∗t,t+j =
Πind

t,t+j
Πt,t+j

℘∗
t + δ℘s,t+j
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As for the remaining aggregates and welfare measures, they are:

Wt = ut − υt ; ut = ϵt
(Yt)

(1−σ)−1
(1−σ)

ht =
(
dy,t

Yt
At

) 1
ε

; υt =
χ

(1+ν)
dυ,t (ht)

(1+ν)

dy,t = (1 + δ)θ (Λy,t
)ε ; dυ,t =

Λt

(Λy,t)
(1+ν)

Λy,t = (1 − α)
∞
∑

j=0
αj
(

z∗t−j,t

)− θ
ε

; Λt = (1 − α)
∞
∑

j=0
αj
(

z∗t−j,t

)−θ1

Wn
t = un

t − υn
t ; un

t = ϵt
(Yn

t )
(1−σ)−1

(1−σ)

hn
t =

(
Yn

t
At

) 1
ε

; υn
t = χ

(1+ν) (h
n
t )

(1+ν)

ϵt
(Yeq

t )
(1−σ)−1

(1−σ)
− χ

(1+ν)

(
Yeq

t
At

)(1+ω)
= Wt ; Xeq

t ≡ Yeq
t

Yn
t

C.3 Steady State

For any variable χt, its steady state level is defined as χ̄. The steady state equilibrium can be
numerically obtained as follows. First, we compute Ī, q̄, and Ȳn:

Ī = Π̄
β ; q̄ = β

Π̄ ; (Ȳn)
(σ+ω)

= 1
(1+δ)µ

ε
χ ϵ̄
(
A
)(1+ω)

Next, we use a numerical code to solve the following non-linear system for relative prices ℘̄∗, ℘̄s,
and ℘̄δ, in which the infinite sums are retrieved by using finite sums in j = {0, 1, ..., J} for a large J. In
particular, we consider J = 10000:

(1 + δ)1−θ = (1 − α)∑∞
j=0 αj

(
℘̄∗

(Π̄)
(1−γ)j + δ℘̄s

)−(θ−1)

(℘̄δ)
−θ = (1 − α)∑∞

j=0 αj
(

℘̄∗

(Π̄)
(1−γ)j + δ℘̄s

)−θ

℘̄s = (1 + δ)−θ (℘̄δ)
θ

After computing the relative prices, we pin down the following composite parameters:

ΣN1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ1)

ΣN2 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ)

ΣD1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−θ

where z̄∗j =

(
℘̄∗

(Π̄)
(1−γ)j + δ℘̄s

)
, ᾱ1 ≡ α

Π̄(1−γ) and ᾱ2 ≡ α
Π̄2(1−γ) .

Since the price wedge demand function satisfies the conditions of Theorem 1, we know that the
infinite sums converge. Therefore, we can retrieve them numerically, by considering finite sums up
to a very large horizon J, i.e. j ∈ {0, 1, ..., J}. Again, we use J = 10000. For avoiding numerical
issues arising from dealing with very large numbers when δ > 0, we proceed as follows. First, for

each infinite sum of the form Σφ ≡
∞
∑

j=0
(ß)j

(
z̄∗j
)−φ

, where ß<1, we define its normalized peer Σ̃φ ≡
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∞
∑

j=0
(ß)j

(
z̃∗j
)−φ

, where z̃∗j ≡ z̄∗j
δ℘̄s

=

(
1 + 1

(Π̄)
(1−γ)j

℘̄∗

δ℘̄s

)
. Therefore, whenever δ > 0, we can accurately

approximate Σ̃φ using
J

∑
j=0

(ß)j
(

z̃∗j
)−φ

. After retrieving Σ̃φ, we compute Σφ = (δ℘̄s)
−φ Σ̃φ.

After pinning down the gross output gap X̄ =
(

µδ

µθ
(1 + δ)−θω [ΣD1−µθ(δ℘̄s)ΣN2]

ΣN1

) 1
(σ+ω) , we compute

the aggregate Ȳ = X̄Ȳn and average Ȳs = Ȳ
℘̄s

output levels. As for the remaining aggregates and
welfare measures, they are:

W̄n = ūn − ῡn W̄ = ū − ῡ ; Λ̄ = (1 − α)ΣΛ

h̄n =
(

Ȳn

A

) 1
ε h̄ =

(
d̄y

Ȳ
A

) 1
ε

; Λ̄y = (1 − α)Σy

ūn = ϵ̄ (Ȳn)
(1−σ)−1

(1−σ)
; ū = ϵ̄ (Ȳ)(1−σ)−1

(1−σ)
; d̄y = (1 + δ)θ (Λ̄y

)ε

ῡn = χ
(1+ν)

(
h̄n)(1+ν) ; ῡ = χ

(1+ν)
d̄υ

(
h̄
)(1+ν) ; d̄υ = Λ̄

(Λ̄y)
(1+ν)

As for the consumption-equivalent welfare metrics, we use numerical methods to solve the fol-
lowing non-linear equation:

ϵ̄
(Ȳeq)

(1−σ) − 1
(1 − σ)

− χ

(1 + ν)

(
Ȳeq

A

)(1+ω)

= Wt

After that, we compute X̄eq = Ȳeq

Ȳn as the consumption-equivalent output gap.

In the particular case of (Π̄)
(1−γ)

= 1, it is possible to obtain a closed form solution:

ᾱ1 = ᾱ2 = α ; ℘̄∗ = ℘̄s = X̄ = 1 ; ℘̄δ = z̄∗j = (1 + δ)

The remaining steady state levels, when (Π̄)
(1−γ)

= 1, are then easily retrieved using the same
relations previously shown.
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C.4 Log-Linearized Model

Given an exogenous level of trend inflation Π̄, we start by defining z̄∗j ≡
(

℘̄∗

(Π̄)
(1−γ)j + δ℘̄s

)
and the

following composite parameters:

ΣN1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ1)

; ΣN2 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ)

; ΣN3 ≡
∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(2+θ1)

ΣN4 ≡
∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(2+θ)

; ΣN5 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(2+θ1)

; ΣN6 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(2+θ)

ΣD1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−θ

; ΣD2 ≡
∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(1+θ)

; ΣD3 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ)

Σs1 ≡
∞
∑

j=0
(ᾱ1)

j
(

z̄∗j
)−θ

; Σs2 ≡
∞
∑

j=0
αj
(

z̄∗j
)−θ

; Σδ1 ≡
∞
∑

j=0
(ᾱ1)

j
(

z̄∗j
)−(1+θ)

Σδ2 ≡
∞
∑

j=0
αj
(

z̄∗j
)−(1+θ)

; Σα ≡
∞
∑

j=0
αj
(

z̄∗j
)−(θ−1)

; ΣΛ ≡
∞
∑

j=0
αj
(

z̄∗j
)−θ1

Σy ≡
∞
∑

j=0
αj
(

z̄∗j
)− θ

ε

(21)
Since the price wedge demand function satisfies the conditions of Theorem 1, we know that the

infinite sums converge. When δ > 0, we proceed as in Appendix C.3 and accurately approximate Σ̃φ

using
J

∑
j=0

(ß)j
(

z̃∗j
)−φ

, where J = 10000. After retrieving Σ̃φ, we compute Σφ = (δ℘̄s)
−φ Σ̃φ.

For computing the model loglinearized equilibrium, we also need the augment the set of compos-
ite parameters:

ω ≡ (1+ν)
ε − 1 ; θ̄1 ≡ θ (1 + ω) ; µθ ≡ θ

(θ−1) ; µδ ≡ θ
θ−(1+δ)

; µ = µδ

(1+δ)

κδ ≡ (1 + δ)(θω−1) (X̄)
(σ+ω) ; θ̄2 ≡ (δ℘̄s) θ Σδ2

Σs2
; ᾱ1 ≡ α

Π̄(1−γ) ; ᾱ2 ≡ α
Π̄2(1−γ) ; µ2 ≡ θ2

(θ2−1)

For k ∈ {0, 1, 2, ...} and for each composite parameter of the form Σφ ≡
∞
∑

j=0
(ß)j

(
z̄∗j
)−φ

, as defined

in (21), we consider the following k-based composite parameters:

Θk,φ ≡
(
z̄∗k
)−φ ; Σk,φ ≡

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−φ

For instance, Σk,N1 and Θk,N1 are then defined as Σk,N1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j+k

)−(1+θ1)
andΘk,N1 ≡(

z̄∗k
)−(1+θ1) . Note also that Σ0,φ = Σφ.
Finally, the following composite parameters are necessary for deriving the aggregate supply sys-
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tem under price wedges and trend inflation:

Ω1 ≡ (1−θ̄2)
θ Θ0,s1 + (δ℘̄s)Θ0,δ1 ; Ω2 ≡ Θ0,s1

Σ1,δ1
Σ1,s1

− Θ0,δ1 ; Ω3 ≡ (1−θ̄2)
θ Σ1,s1 + (δ℘̄s)Σ1,δ1

ΦΣ1,k,1 ≡ 1 + ΦΣ,k,1
ΦΣ,k,1 ≡ µθ

µ κδΣk,N1 − Σk,D1 + (δ℘̄s) µθΣk,N2

ΦΘ,k,1 ≡ µθ

µ κδΘk,N1 − Θk,D1 + (δ℘̄s) µθΘk,N2

ΦΣ,k,2 ≡ µθ

µ κδ

(
1 + θ̄1

)
Σk,N5 − θΣk,D3 + (δ℘̄s) µθ (1 + θ)Σk,N6

ΦΘ,k,2 ≡ µθ

µ κδ

(
1 + θ̄1

)
Θk,N5 − θΘk,D3 + (δ℘̄s) µθ (1 + θ)Θk,N6

ΦΣ,k,3 ≡ µθ

µ κδ

(
1 + θ̄1

)
Σk,N3 − θΣk,D2 + (δ℘̄s) µθ (1 + θ)Σk,N4

ΦΘ,k,3 ≡ µθ

µ κδ

(
1 + θ̄1

)
Θk,N3 − θΘk,D2 + (δ℘̄s) µθ (1 + θ)Θk,N4

ΦΘ,k,4 ≡ ΦΘ,k,2 − µθΘk,N2

In general, for any variable χt, its loglinearized version is defined as χ̂t ≡ log
(

χt
χ̄

)
, keeping the

same case as in the original variable, e.g. Ŷt = log
(

Yt
Ȳ

)
. For gross rates, though, we represent its

loglinearized version in lower cases, e.g. π̂t = log
(

Πt
Π̄

)
. Usual loglinearizations from the general

part of the model, i.e. comprising equations independent of pricing structure, leads to the following
system:

Ŷt = EtŶt+1 − 1
σ Et [(ı̂t − π̂t+1) + (ϵ̂t+1 − ϵ̂t)]

q̂t = σ
(
Ŷt−1 − Ŷt

)
− π̂t + (ϵ̂t − ϵ̂t−1)

ı̂t = ϕi ı̂t−1 + (1 − ϕi)
[
ϕππ̂t + ϕx x̂t + ϕgy

(
Ŷt − Ŷt−1

)
+ ϕyŶt

]
+ ϵ̂i,t

(σ + ω) Ŷn
t = ϵ̂t + (1 + ω) Ât

π̂ind
t = γπ̂t−1 ; x̂t = Ŷt − Ŷn

tt−1 ; ĝt = Ŷt − Ŷt−1

Note that Etq̂t+1 = −ı̂t. Lastly, as we show in Appendix C.4.1, the price setting equations presented
in systems (17) and (18) imply the following loglinearized equations under price wedges and trend
inflation:

Aggregate Supply:
ℓ̂t = −Et

(
π̂t+1 − π̂ind

t+1

)
+ (1 − σ) Et (x̂t+1 − x̂t) + ξ̂t

℘̂∗
t = ᾱ2βΨ0,α2Et

(
π̂t+1 − π̂ind

t+1

)
+ 1

(℘̄∗)

[
Ψ0,x x̂t + ᾱ1βΨ0,ℓ ℓ̂t − (δ℘̄s)Ψ0,℘℘̂s,t

]
+ 1

(℘̄∗) ᾱ1βΨ0,α2Ψ1,x1EtŜ1,α1,t+1 − ᾱ2βΨ0,α2Ψ1,α2EtŜ1,α2,t+1

Price Wedge and Price Stickiness:

℘̂∗
t = ᾱ1ψ4

(
π̂t − π̂ind

t
)
+ ᾱ1ψ5

[
(1−θ̄2)

θ Ŝ1,s,t−1 + (δ℘̄s)ψ6Ŝ1,δ,t−1

]
℘̂s,t = −ᾱ1ψ1

(
π̂t − π̂ind

t
)
+ ᾱ1ψ2

[
Ŝ1,s,t−1 − ψ3Ŝ1,δ,t−1

]
℘̂δ,t =

1
θ ℘̂s,t

Ŷs,t = Ŷt − ℘̂s,t
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Ancillary Variables for k = {0, 1, 2, ...}
Ŝk,α1,t =

Ψk,x
Ψk,x1

x̂t + ᾱ1β
Ψk,ℓ
Ψk,x1

ℓ̂t − (δ℘̄s)
Ψk,℘
Ψk,x1

℘̂s,t + ᾱ1βΨ(k+1),α1EtŜ(k+1),α1,t+1

Ŝk,α2,t = −ᾱ2βEt
(
π̂t+1 − π̂ind

t+1

)
+ ᾱ2βΨ(k+1),α2EtŜ(k+1),α2,t+1

Ŝk,s,t = ᾱ1
(
π̂t − π̂ind

t
)
− Ψk,℘s℘̂

∗
t + ᾱ1Ψ(k+1),sŜ(k+1),s,t−1

Ŝk,δ,t = ᾱ1
(
π̂t − π̂ind

t
)
− Ψk,℘δ℘̂

∗
t + ᾱ1Ψ(k+1),δŜ(k+1),δ,t−1

Aggregate Shock:
ξ̂t =

(1+ω)
(σ+ω)

Et

[
(ϵ̂t+1 − ϵ̂t) + (1 − σ)

(
Ât+1 − Ât

)]
where

ψ1 ≡ (℘̄∗)
Σ1,s1Ω2
Σs2Ω1

; ψ2 ≡ (℘̄∗)
Θ0,δ1Σ2,s1

Σs2Ω1
; ψ3 ≡ Θ0,s1Σ2,δ1

Θ0,δ1Σ2,s1
ψ4 ≡ Ω3

Ω1

ψ5 ≡ Σ2,s1
Ω1

; ψ6 ≡ Σ2,δ1
Σ2,s1

; Ψk,℘s ≡
Θk,s1

Σ(k+1),s1
; Ψk,℘δ ≡

Θk,δ1
Σ(k+1),δ1

Ψk,x ≡ µθ

µ κδ (σ + ω)
Θk,N1
ΦΣ,k,3

; Ψk,x1 ≡ ΦΣ1,(k+1),1
ΦΣ,k,3

; Ψk,ℓ ≡
ΦΣ,(k+1),1

ΦΣ,k,3
; Ψk,℘ ≡ ΦΘ,k,4

ΦΣ,k,3

Ψk,α1 ≡ ΦΣ1,(k+1),1
ΦΣ1,k,1

; Ψk,α2 ≡ ΦΣ,(k+1),3
ΦΣ,k,3

; Ψk,s ≡
Σ(k+1),s1

Σk,s1
; Ψk,δ ≡

Σ(k+1),δ1
Σk,δ1

As in Alves (2014), ξ̂t is an aggregate shock term that collects the effects of the technology shock
Ât and the utility shock ϵ̂t. For our simulations, we truncate the infinite recursive system of ancillary
variables at k̄ = 40. With this approximation, we substitute EtŜ40,α1,t+1 for EtŜ41,α1,t+1, EtŜ40,α2,t+1 for
EtŜ41,α2,t+1, Ŝ40,s,t−1 for Ŝ41,s,t−1, and Ŝ40,δ,t−1 for Ŝ41,δ,t−1.

C.4.1 Deriving the Log-Linearized Supply System

Since z̄∗j =
(

℘̄∗

Π̄j(1−γ) + δ℘̄s

)
, and given the steady state relations (1+δ)−(θ−1)

(1−α)
= Σα, (℘̄δ)

−θ

(1−α)
= Σs2 and

℘̄s =
(1+δ)−θ

(1−α)Σs2
, direct loglinearization of the pricing systems (17) and (18) initially gives the following

equations.

Ŷs,t = Ŷt − θ℘̂δ,t
℘̂s,t = θ℘̂δ,t

0 = − (℘̄∗) Ŝs1,t + (δ℘̄s)Σs2℘̂s,t

Ŝs1,t ≡
∞
∑

j=0
(ᾱ1)

j
(

z̄∗j
)−θ ((

π̂t−j,t − π̂ind
t−j,t

)
− ℘̂∗

t−j

)
Σs2℘̂δ,t = − (℘̄∗) Ŝδ1,t + (δ℘̄s)Σδ2℘̂s,t

Ŝδ1,t ≡
∞
∑

j=0
(ᾱ1)

j
(

z̄∗j
)−(1+θ) ((

π̂t−j,t − π̂ind
t−j,t

)
− ℘̂∗

t−j

)
D̄D̂∗

t = µθ N̄N̂∗
t
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N̄N̂t =
κδ
µ ŜN1,t + (δ℘̄s) ŜN2,t −

(℘̄∗)(1+θ̄1)κδ

µ

(
ŜN3,t + ΣN3℘̂

∗
t
)

− (1 + θ) (δ℘̄s) (℘̄∗)
(
ŜN4,t + ΣN4℘̂

∗
t
)
− (δ℘̄s)(1+θ̄1)κδ

µ ŜN5,t − (1 + θ) (δ℘̄s)
2 ŜN6,t

ŜN1,t ≡ Et
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ̄1) [(

q̂t,t+j + ĝt,t+j + π̂ind
t,t+j

)
+ (σ + ω) x̂t+j

]
ŜN2,t ≡ Et

∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ) [(

q̂t,t+j + ĝt,t+j + π̂ind
t,t+j

)
+ ℘̂s,t+j

]
ŜN3,t ≡ −Et

∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(2+θ̄1) (

π̂t,t+j − π̂ind
t,t+j

)
ŜN4,t ≡ −Et

∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(2+θ) (

π̂t,t+j − π̂ind
t,t+j

)
ŜN5,t ≡ Et

∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(2+θ̄1)

℘̂s,t+j

ŜN6,t ≡ Et
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(2+θ)

℘̂s,t+j

D̄D̂∗
t = ŜD1,t − θ (℘̄∗)

(
ŜD2,t + ΣD2℘̂

∗
t
)
− θ (δ℘̄s) ŜD3,t

ŜD1,t ≡ Et
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−θ (

q̂t,t+j + ĝt,t+j + π̂ind
t,t+j

)
ŜD2,t ≡ −Et

∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(1+θ) (

π̂t,t+j − π̂ind
t,t+j

)
ŜD3,t ≡ Et

∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ)

℘̂s,t+j

Since the discounted sums do not allow for finite recursive representations, we use the following
Lemmas to help us obtain simpler expressions.

Lemma 1 Consider generic forward and backward equations Ŝ f
t ≡ Et

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕ (

κ̂a
t,t+j + κ̂b

t+j

)
and

Ŝl
t ≡

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕ (

κ̂a
t−j,t + κ̂b

t−j

)
, where ß∈ (0, 1) is a discounting parameter, κ̂a

τ1,τ2
is a cumulative

variable from τ1 to τ2, while κ̂b
τ is a spot variable at period τ. Since κ̂a

t,t+j = κ̂a
t+1 + κ̂a

t+1,t+j, κ̂a
t−j,t = κ̂a

t +

κ̂a
t−j,t−1, and κ̂a

t,t = 0, the infinite sums lead to the following infinite recursive systems, for k = {0, 1, 2, ..., ∞}:

Ŝ f
t = Ŝ f

0,t

Ŝ f
k,t =

(
Σk,ϕ − Θk,ϕ

)
Etκ̂a

t+1 + Θk,ϕκ̂b
t + ßEtŜ

f
(k+1),t+1

Ŝl
t = Ŝl

0,t
Ŝl

k,t =
(
Σk,ϕ − Θk,ϕ

)
κ̂a

t + Θk,ϕκ̂b
t + ßŜl

(k+1),t−1
where

Ŝ f
k,t ≡ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j + κ̂b
t+j

)
Ŝl

k,t ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t + κ̂b
t−j

)
Θk,ϕ ≡

(
z̄∗k
)−ϕ , Σ0,ϕ = Σϕ ≡

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕ

Σk,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ
= 1

ß

[
Σ(k−1),ϕ − Θ(k−1),ϕ

]
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Proof. As for Σk,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ
, note that:

Σk,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ
=

∞
∑

j=−1
(ß)j

(
z̄∗j+k

)−ϕ
− (ß)−1 (z̄∗k−1

)−ϕ

=
∞
∑

j=0
(ß)j−1

(
z̄∗j−1+k

)−ϕ
− (ß)−1 (z̄∗k−1

)−ϕ
= 1

ß

[
∞
∑

j=0
(ß)j

(
z̄∗j+k−1

)−ϕ
−
(
z̄∗k−1

)−ϕ

]

For the forward infinite sum, we obtain:

Ŝ f
k,t ≡ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j + κ̂b
t+j

)
= Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j

)
+ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t+j

)
= Et

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j

)
+ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t+j

)
= Et

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t+1 + κ̂a
t+1,t+j

)
+
(
z̄∗k
)−ϕ κ̂b

t + Et
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t+j

)
=

(
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ
)

Etκ̂a
t+1 +

(
z̄∗k
)−ϕ κ̂b

t + Et
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t+1,t+j + κ̂b
t+j

)
=

(
Σk,ϕ −

(
z̄∗k
)−ϕ

)
Etκ̂a

t+1 +
(
z̄∗k
)−ϕ κ̂b

t + ßEt
∞
∑

j=0
(ß)j

(
z̄∗j+k+1

)−ϕ (
κ̂a

t+1,t+1+j + κ̂b
t+1+j

)
=

(
Σk,ϕ − Θk,ϕ

)
Etκ̂a

t+1 + Θk,ϕκ̂b
t + ßEtŜ

f
(k+1),t+1

And lastly, for the backward sum, we obtain:

Ŝl
k,t ≡

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t + κ̂b
t−j

)
=

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t

)
+

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t−j

)
=

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t

)
+

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t−j

)
=

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t + κ̂a
t−j,t−1

)
+
(
z̄∗k
)−ϕ κ̂b

t +
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t−j

)
=

(
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ
)
κ̂a

t +
(
z̄∗k
)−ϕ κ̂b

t +
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t−1 + κ̂b
t−j

)
=

(
Σk,ϕ −

(
z̄∗k
)−ϕ

)
κ̂a

t +
(
z̄∗k
)−ϕ κ̂b

t + ß
∞
∑

j=0
(ß)j

(
z̄∗j+k+1

)−ϕ (
κ̂a

t−1−j,t−1 + κ̂b
t−1−j

)
=

(
Σk,ϕ − Θk,ϕ

)
κ̂a

t + Θk,ϕκ̂b
t + ßŜl

(k+1),t−1

The recursive systems are infinite, for Ŝl
k,t

(
Ŝ f

k,t

)
depends on Ŝl

(k+1),t−1

(
EtŜ

f
(k+1),t+1

)
, instead of

Ŝl
k,t−1

(
EtŜ

f
k,t+1

)
, for k = {0, 1, 2, ..., ∞}. However, since coefficients

(
Σk,ϕ − Θk,ϕ

)
and Θk,ϕ converges

asymptotically as k rises, the equations at a conveniently chosen large level k̄ can be approximated
by finite recursions, using Ŝl

k,t−1

(
EtŜ

f
k,t+1

)
, instead of Ŝl

(k+1),t−1

(
EtŜ

f
(k+1),t+1

)
. In this paper, we set

k̄ = 40.
From Lemma 1, note that the dicounting parameter on EtŜ

f
(k+1),t+1 and Ŝl

(k+1),t−1 is always ß.

Therefore, Corollary 2 derives similar results for linear combinations of the form Ŝ f
a,t ≡

N
∑

n=1
nŜ f

n,t and

50



Ŝl
a,t ≡

N
∑

n=1
nŜl

n,t, where Ŝ f
n,t and Ŝl

n,t are generic forward and backward ancillary variables.

Corollary 2 Consider linear combinations of forward and backward ancillary variables of the form Ŝ f
k,a,t ≡

N
∑

n=1
wknŜ f

k,n,t and Ŝl
k,a,t ≡

N
∑

n=1
wknŜl

k,n,t, where n is a n-specific real-valued parameter, wk is a k-specific real-

valued parameter, and Ŝ f
k,n,t and Ŝl

k,n,t are generic forward and backward ancillary variables, as defined in Lemma
1, with the same discounting parameter ß∈ (0, 1), but with specific powers ϕn, specific cumulative variables

κ̂a
n,τ1,τ2

and specific spot variables κ̂b
n,τ. That is, Ŝ f

k,n,t ≡ Et
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕn
(
κ̂a

n,t,t+j + κ̂b
n,t+j

)
and Ŝl

k,n,t ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕn
(
κ̂a

n,t−j,t + κ̂b
n,t−j

)
. The following infinite recursive systems describe the dynamics for Ŝ f

k,a,t

and Ŝl
k,a,t, for k = {0, 1, 2, ..., ∞}:

Ŝ f
a,t = Ŝ f

0,a,t

Ŝ f
k,a,t =

N
∑

n=1
wkn

(
Σk,n,ϕ − Θk,n,ϕ

)
Etκ̂a

n,t+1 +
N
∑

n=1
wknΘk,n,ϕκ̂b

n,t +
wk

w(k+1)
ßEtŜ

f
(k+1),a,t+1

Ŝl
a,t = Ŝl

0,a,t

Ŝl
k,a,t =

N
∑

n=1
wkn

(
Σk,n,ϕ − Θk,n,ϕ

)
κ̂a

n,t +
N
∑

n=1
wknΘk,n,ϕκ̂b

n,t +
wk

w(k+1)
ßŜl

(k+1),a,t−1

where

Ŝ f
k,a,t ≡

N
∑

n=1
wknŜ f

k,n,t

Ŝl
k,a,t ≡

N
∑

n=1
wknŜl

k,n,t

Θk,n,ϕ ≡
(
z̄∗k
)−ϕn , Σ0,n,ϕ = Σn,ϕ ≡

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕn

Σk,n,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕn
= 1

ß

[
Σ(k−1),n,ϕ − Θ(k−1),n,ϕ

]
Proof. From Lemma 1, note that the discounting parameter on EtŜ

f
(k+1),t+1 and Ŝl

(k+1),t−1 is always ß.

Therefore, we can find similar results for Ŝ f
a,t and Ŝl

a,t:

Ŝ f
k,a,t ≡

N
∑

n=1
wknŜ f

k,n,t =
N
∑

n=1
wkn

[(
Σk,n,ϕ − Θk,n,ϕ

)
Etκ̂a

n,t+1 + Θk,n,ϕκ̂b
n,t + ßEtŜ

f
(k+1),n,t+1

]
=

N
∑

n=1
wkn

(
Σk,n,ϕ − Θk,n,ϕ

)
Etκ̂a

n,t+1 +
N
∑

n=1
wknΘk,n,ϕκ̂b

n,t +
wkß

w(k+1)
Et

N
∑

n=1
w(k+1)nŜ f

(k+1),n,t+1

=
N
∑

n=1
wkn

(
Σk,n,ϕ − Θk,n,ϕ

)
Etκ̂a

n,t+1 +
N
∑

n=1
wknΘk,n,ϕκ̂b

n,t +
wkß

w(k+1)
EtŜ

f
(k+1),a,t+1

Ŝl
k,a,t ≡

N
∑

n=1
wknŜl

k,n,t =
N
∑

n=1
wkn

[(
Σk,n,ϕ − Θk,n,ϕ

)
κ̂a

n,t + Θk,n,ϕκ̂b
n,t + ßŜl

(k+1),n,t−1

]
=

N
∑

n=1
wkn

(
Σk,n,ϕ − Θk,n,ϕ

)
κ̂a

n,t +
N
∑

n=1
wknΘk,n,ϕκ̂b

n,t +
wkß

w(k+1)

N
∑

n=1
w(k+1)nŜl

(k+1),n,t−1

=
N
∑

n=1
wkn

(
Σk,n,ϕ − Θk,n,ϕ

)
κ̂a

n,t +
N
∑

n=1
wknΘk,n,ϕκ̂b

n,t +
wkß

w(k+1)
Ŝl
(k+1),a,t−1
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Therefore, using Lemma 1, and using the fact that µ2 = (δ℘̄s)
θ

(θ2−1)
Σδ2
Σs2

, we simplify the first six
equations of our system into:

Ŷs,t = Ŷt − ℘̂s,t
℘̂δ,t =

1
θ ℘̂s,t

℘̂s,t = −ᾱ1 (℘̄
∗)

Σ1,s1Ω2
Σs2Ω1

(
π̂t − π̂ind

t
)
+ ᾱ1 (℘̄

∗) 1
Σs2Ω1

[
Θ0,δ1Ŝ1,s1,t−1 − Θ0,s1Ŝ1,δ1,t−1

]
℘̂∗

t = ᾱ1
Ω3
Ω1

(
π̂t − π̂ind

t
)
+ ᾱ1

1
Ω1

[
(1−θ̄2)

θ Ŝ1,s1,t−1 + (δ℘̄s) Ŝ1,δ1,t−1

]
Ŝk,s1,t = ᾱ1Σ(k+1),s1

(
π̂t − π̂ind

t
)
− Θk,s1℘̂

∗
t + ᾱ1Ŝ(k+1),s1,t−1

Ŝk,δ1,t = ᾱ1Σ(k+1),δ1
(
π̂t − π̂ind

t
)
− Θk,δ1℘̂

∗
t + ᾱ1Ŝ(k+1),δ1,t−1

for k = {0, 1, 2, ..., ∞}.

We make a scale transformation in the ancillary variables: Ŝk,s,t ≡
Ŝk,s1,t

Σ(k+1),s1
and Ŝk,δ,t ≡

Ŝk,δ1,t
Σ(k+1),δ1

.And
so, we obtain:

Ŷs,t = Ŷt − ℘̂s,t
℘̂δ,t =

1
θ ℘̂s,t

℘̂s,t = −ᾱ1 (℘̄
∗)

Σ1,s1Ω2
Σs2Ω1

(
π̂t − π̂ind

t
)
+ ᾱ1 (℘̄

∗)
Θ0,δ1Σ2,s1

Σs2Ω1

[
Ŝ1,s,t−1 − Θ0,s1Σ2,δ1

Θ0,δ1Σ2,s1
Ŝ1,δ,t−1

]
℘̂∗

t = ᾱ1
Ω3
Ω1

(
π̂t − π̂ind

t
)
+ ᾱ1

Σ2,s1
Ω1

[
(1−θ̄2)

θ Ŝ1,s,t−1 + (δ℘̄s)
Σ2,δ1
Σ2,s1

Ŝ1,δ,t−1

]
Ŝk,s,t = ᾱ1

(
π̂t − π̂ind

t
)
− Θk,s1

Σ(k+1),s1
℘̂∗

t + ᾱ1
Σ(k+2),s1
Σ(k+1),s1

Ŝ(k+1),s,t−1

Ŝk,δ,t = ᾱ1
(
π̂t − π̂ind

t
)
− Θk,δ1

Σ(k+1),δ1
℘̂∗

t + ᾱ1
Σ(k+2),δ1
Σ(k+1),δ1

Ŝ(k+1),δ,t−1

(22)

As for remaining 12 equations of the optimal pricing system, after using Lemma 1 applied to
discounted sums, we aggregate ancillary variables with discounting ᾱ1β or ᾱ2β into two synthetic
ancillary variables, Ŝk,α1,t and Ŝk,α2,t, defined as follows:

Ŝk,α1,t ≡
[

µθ
µ κδ Ŝk,N1,t−Ŝk,D1,t+δ℘̄s

(
µθ Ŝk,N2,t−

µθ
µ (1+θ̄1)κδ Ŝk,N5,t−δ℘̄sµθ(1+θ)Ŝk,N6,t+θŜk,D3,t

)]
ΦΣ1,(k+1),1

Ŝk,α2,t ≡
[

µθ
µ κδ(1+θ̄1)Ŝk,N3,t−θŜk,D2,t+δ℘̄sµθ(1+θ)Ŝk,N4,t

]
ΦΣ,(k+1),3

Therefore, using Corollary 2, we obtain the following simplified system for k = {0, 1, 2, ..., ∞}:

℘̂∗
t = ᾱ2β

ΦΣ,1,3
ΦΣ,0,3

Et
(
π̂t+1 − π̂ind

t+1

)
+ 1

(℘̄∗)

[
µθ

µ κδ (σ + ω)
Θ0,N1
ΦΣ,0,3

x̂t + ᾱ1β
ΦΣ,1,1
ΦΣ,0,3

ℓ̂t − (δ℘̄s)
ΦΘ,0,4
ΦΣ,0,3

℘̂s,t

]
+ 1

(℘̄∗) ᾱ1β
ΦΣ1,2,1
ΦΣ,0,3

EtŜ1,α1,t+1 − ᾱ2β
ΦΣ,2,3
ΦΣ,0,3

EtŜ1,α2,t+1

Ŝk,α1,t =
µθκδ(σ+ω)

µ
Θk,N1

ΦΣ1,(k+1),1
x̂t + ᾱ1β

ΦΣ,(k+1),1
ΦΣ1,(k+1),1

ℓ̂t − (δ℘̄s)
ΦΘ,k,4

ΦΣ1,(k+1),1
℘̂s,t + ᾱ1β

ΦΣ1,(k+2),1
ΦΣ1,(k+1),1

EtŜ(k+1),α1,t+1

Ŝk,α2,t = −ᾱ2βEt
(
π̂t+1 − π̂ind

t+1

)
+ ᾱ2β

ΦΣ,(k+2),3
ΦΣ,(k+1),3

EtŜ(k+1),α2,t+1

where ℓ̂t ≡ Et
(
q̂t+1 + ĝt+1 + π̂ind

t+1

)
and ξ̂t is the aggregate shock:

ℓ̂t = −Et
(
π̂t+1 − π̂ind

t+1

)
+ (1 − σ) Et (x̂t+1 − x̂t) + ξ̂t

ξ̂t =
(1+ω)
(σ+ω)

Et

[
(ϵ̂t+1 − ϵ̂t) + (1 − σ)

(
Ât+1 − Ât

)]

52


	Introduction
	Micro and Macro Empirical Evidence
	The Model
	Households
	General Demand Functions

	Price Setting
	Quarterly Benchmark Calibration

	Steady State Convergence
	Demand Functions Consistent With Theorem 1
	Issues with the Kimball Aggregator
	Sticker and Effective Prices
	Price Wedges
	Demand function under price wedges
	Firms
	Aggregates and Welfare
	Steady State Properties


	Simulations
	Conclusion
	Proof of Theorem 1
	Kimball Aggregator
	Kimball NK Model
	Steady state
	Constrained Demand

	Price Wedge Model
	Aggregate price as a weighted average of individual prices
	General Equilibrium
	Steady State
	Log-Linearized Model
	Deriving the Log-Linearized Supply System



