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A privately-run, but publicly-funded, higher education system

1. Higher education has experienced a large expansion worldwide
- Brazil: Access grew from 14% in the 2000s to 55% by 2020

2. Governments have liberalized access of educational providers
- Brazil: 75% of students enrolled in private colleges

3. Governments have catalyzed growth by facilitating access to state-guaranteed loans

→ Share of undergrads with loan from federal goverment:
- Brazil: 22%
- US: 30% (1.7 trillion USD in 2022)

4. Concerns of poor educational quality

→ Dropout rate:
- Brazil: 60%
- US: 50%

⇒ High default rates threatening the sustainability of loan programs

→ Deliquency rate:

- Brazil: 53%
- US: 40%
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The economics behind the storm

Misaligned incentives

1. Imperfect information on education quality

- No past experience/one-time decision → Opaque product
- New students and new programs
- Advertising is an important driver of demand (Armona and Cao, 2022)

2. Governments/students cannot contract with universities on quality

→ Universities are not held accountable for delivering quality

Skin-in-the-game policies

• Create contracts based on outcomes → hold them accountable for student loan defaults

- Brazil: Penalize schools for dropouts or defaults starting in 2018 (our experiment)
- US: Proposed legislation makes institutions liable for 50% of student loans in default
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This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable
for students’ outcomes?

Trade-offs:

Quality improvements: colleges improve quality to increase graduation and repayment rates

Student screening: academically-challenged students from low-income backgrounds may be
screened out

What do we do?:

1. Reduced-form evidence of policy that increased college accountability in 2017 in Brazil

2. Build equilibrium model to compute optimal penalty & conduct counterfactuals
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Data

University entrance exam

• Standardized national college entrance exam

• Period: 2009-2022

University census

• Universe of students enrolled in higher education

• Records of faculty composition, payroll, capital costs, maintenance costs, research investment

• Period: 2009-2022

Federal student loan program (FIES)

• Loans: amount, interest rate, conditions

• Repayment: loan balances, days overdue, delinquency rates [New!]

• Period: 2009-2023
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Higher education landscape in Brazil

Market structure

• In 2018: 6 million students in 2,200 institutions

• Students enroll in specific degree (major-college combination)

• Market-oriented system: private sector accounts for 75% of enrollment

• Private institutions: charge tuition, lower quality, and not selective

- 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

• Covers 100% of tuition costs

• Subsidized interest rates

• Broad coverage:

- Largest year: 28% of incoming students (80% of degrees)

7 / 27



Higher education landscape in Brazil

Market structure

• In 2018: 6 million students in 2,200 institutions

• Students enroll in specific degree (major-college combination)

• Market-oriented system: private sector accounts for 75% of enrollment

• Private institutions: charge tuition, lower quality, and not selective

- 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

• Covers 100% of tuition costs

• Subsidized interest rates

• Broad coverage:

- Largest year: 28% of incoming students (80% of degrees)

7 / 27



Higher education landscape in Brazil

Market structure

• In 2018: 6 million students in 2,200 institutions

• Students enroll in specific degree (major-college combination)

• Market-oriented system: private sector accounts for 75% of enrollment

• Private institutions: charge tuition, lower quality, and not selective

- 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

• Covers 100% of tuition costs

• Subsidized interest rates

• Broad coverage:

- Largest year: 28% of incoming students (80% of degrees)

7 / 27



Higher education landscape in Brazil

Market structure

• In 2018: 6 million students in 2,200 institutions

• Students enroll in specific degree (major-college combination)

• Market-oriented system: private sector accounts for 75% of enrollment

• Private institutions: charge tuition, lower quality, and not selective

- 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

• Covers 100% of tuition costs

• Subsidized interest rates

• Broad coverage:

- Largest year: 28% of incoming students (80% of degrees)

7 / 27



Higher education landscape in Brazil

Market structure

• In 2018: 6 million students in 2,200 institutions

• Students enroll in specific degree (major-college combination)

• Market-oriented system: private sector accounts for 75% of enrollment

• Private institutions: charge tuition, lower quality, and not selective

- 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

• Covers 100% of tuition costs

• Subsidized interest rates

• Broad coverage:

- Largest year: 28% of incoming students (80% of degrees)

7 / 27



The allocation of FIES loans (Since 2015)

• Limited number of loans per degree

• Loans distributed to students through a centralized mechanism based on test scores

• Creates degree-specific cutoffs to receive loans

- Medicine: high loan cutoff; eg. applicants above 800 points gets a loan

- Media studies: low loan cutoff; eg. applicants above 600 points gets a loan

• Admission to private colleges is not centralized

• Colleges can request fewer slots than the maximum allowed

→ Increasing their degrees’ loan cutoff
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Skin-in-the-game reform

• Passed in 2017, the program was reformed to increase school liability

• It targeted dropout and default rates

- Default and dropout positively correlated Details

• Schools are liable for 10-25% of loans (based on dropout/default of students with loans)

Revenue per loan student = (1 − penalty) · tuition

penalty(dropout,default) ∈ [0.10, 0.25]

Details
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Effects of the Skin in the Game Reform:
Descriptive Evidence
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How did the policy impact dropout rates?

FIES Students
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How did the policy impact dropout rates?

• Define treatment and control groups based on policy exposure:

- FIES reliance: E
[
share students w/ loans

∣∣major,college,region
]

▶ Timing:

- Regression sample: 2016, 2017 (pre-policy); 2018, 2019 (post-policy)
- FIES reliance: Calculated in 2015
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Event study

LoanDropoutjt = αj + αt + βt · FiesReliancej + ϵjt
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▶ FIES reliance ↑ 1 sd ⇒ Dropout rate ↓ 1.3 pp (14%)
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FIES dropout decreased for schools with higher FIES reliance

LoanDropoutjt = αj + αt + βt · FiesReliancej + ϵjt
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Decomposing dropout into degree and composition effects

• Change in dropout driven by:

- Changes in degree quality
- Changes in student body composition

• Let dijt indicate 1-year dropout for student i

dijt = αjt + Xijtβ + ϵijt

- αjt : degree-year fixed effects
- Xijt : student characteristics (demographics, hh income, parental educ, test scores, etc)

• We can decompose
Dropout rate︷ ︸︸ ︷
E [dijt | j] =

Degree︷︸︸︷
α̂jt +

Composition︷ ︸︸ ︷
E
[
Xijt β̂ | j

]

→ Same event study, with degree and composition effects as outcomes
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No effect on composition

Compositionjt = αj + αt + βt · FiesReliancej + ϵjt
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Degree effect fully explains dropout changes

DegreeEffectjt = αj + αt + βt · FiesReliancej + ϵjt
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Mechanisms?
• Faculty-student ratios are a standard measure of quality (Eaton et al., 2020, Angrist & Lavy, 1999;

Angrist, et al., 2019; Hoffmann & Oreopoulos, 2009)

log(Faculty/Studentjt) = αj + αt + βt · FiesReliancej + ϵjt
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▶ FIES reliance ↑ 1 sd ⇒ Faculty-student ratio ↑ 8%
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Faculty-student ratio went up for degrees with higher FIES reliance
• Faculty-student ratios are a standard measure of quality (Eaton et al., 2020, Angrist & Lavy, 1999;

Angrist, et al., 2019; Hoffmann & Oreopoulos, 2009)
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Which degrees have incentive to increase screening?

▶ Expected profits from each loan student:

πi = tuition − marginal cost − expected penalty

▶ College keeps student if πi ≥ 0

→ Higher expected penalty, more screening

Measuring exposure

▶ Dropout risk: E
[
drop rate

∣∣major,college,region
]

▶ Timing:

- Regression sample: 2016, 2017 (pre-policy); 2018, 2019 (post-policy)
- Dropout risk: Calculated in 2015

▶ Outcome: FIES Cutoff

→ Negative correlation between scores and dropout/default
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Event study

FiesCutoffjt = αj + αt + βt · DropoutRiskj + ϵjt
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FIES cutoff increased in high-dropout degrees
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High-dropout degrees less likely to stay in FIES

HasAnyLoanjt = αj + αt + βt · DropoutRiskj + ϵjt
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Takeaways
Descriptive evidence

1. Degrees more reliant on FIES:

- Decreased dropout rate
- Change in dropout rate not explained by student composition
- Increased faculty-student ratio

2. Degrees with high dropout risk:

- Increased sorting (FIES cutoff)
- More likely to opt-out of the loan program

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure

(b) Predict equilibrium outcomes of counterfactual policies

(a)+(b): Study optimal policy design and compare with alternative policy instruments
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- Change in dropout rate not explained by student composition
- Increased faculty-student ratio

2. Degrees with high dropout risk:

- Increased sorting (FIES cutoff)
- More likely to opt-out of the loan program

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure [In Progress]

(b) Predict equilibrium outcomes of counterfactual policies

(a)+(b): Study optimal policy design and compare with alternative policy instruments
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Structural Model
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The model in a nutshell

1. Supply: Colleges choose price, loan cutoff, quality to maximize profits

2. Demand: Students choose a degree to maximize utility
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Demand: Degree choice

▶ Market: All students who took ENEM (centralized exam) in each year t

▶ Choice set: all private degrees in student’s region Selectivity

▶ Students choose a degree (or the outside option j = 0) to maximize utility:

Uijt = βh
i hj + αiLij pjt + ξijt
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Uijt = βh
i hj + αiLij pjt + ξijt

- hj are fixed degree characteristics

- βh
i represents preference heterogeneity
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Demand: Degree choice

▶ Market: All students who took ENEM (centralized exam) in each year t

▶ Choice set: all private degrees in student’s region Selectivity

▶ Students choose a degree (or the outside option j = 0) to maximize utility:

Uijt = βh
i hj + αiLij pjt + ξijt

- ξijt : demand shock

- Parameterization: ξijt = γj + γrt + ξjt + ϵij

- ϵij
iid∼ Extreme Value Type I

- γ: fixed effects

Student loan allocation
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Supply: Colleges choose price, quality, cutoff to maximize net profits

max
p,q,r

profits︷ ︸︸ ︷[
p − c(q, r)

]
· s(p, r)−

expected penalty︷ ︸︸ ︷
θ · p · d(p,q, r)

▶ p : price

▶ r : loan cutoff

▶ q : quality

▶ s(p, r) : market share

▶ c(q, r) : marginal cost

▶ d(p,q, r) : expected dropout

▶ θ : penalty rate
Marginal costs: Details
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Dropout depends on cutoff, quality

▶ Student i drops out from degree j if:

dijt = 1
{

f (qjt , ri) + ∆δit ≥ 0
}
,

- qjt : quality

- ri : score

- ν: parameter

- ν: student-level iid dropout shock
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Estimation: Method of moments

Key parameters and moments:

▶ Effect of loans on price sensitivity
Moment: Enrollment discontinuity across loan eligibility cutoffs

Details

▶ Dropout function
Moment: Each degree’s dropout rate; and the correlation between scores and dropout

Details

▶ Marginal cost function
Moment: Exposure to policy change uncorrelated with marginal cost shocks

Details
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Results
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Welfare

Welfare = CS +Π+ T

▶ CS: Consumer surplus

▶ Π: Profits

▶ T : Government losses due to default
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Welfare

Welfare = CS +Π+ T

▶ CS: Consumer surplus
- Assumption: Choices of students w/ loans are welfare mazimizing

▶ Π: Profits

▶ T : Government losses due to default
- Assumption: All students who dropout default the full amount of their loans
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Optimal penalty is 50%
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Conclusion

Descriptive evidence: Following a skin-in-the-game policy implemented in Brazil in 2017, colleges:

Quality improvements: reduced dropout, hired more faculty

Student screening: increased cutoff scores

Structural model: Colleges should be liable for 50% of loans

Next steps: Incorporate student-level default data into the analysis
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Thank you!
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Marginal costs depend on cutoff, quality

cjt(qjt , r jt) = Γ(qjt − γjt)
2 + R(r jt − υjt)

2 + ωjt

▶ γjt ,υjt capture exogenous factors determing quality, cutoff decisions
- Providing quality is costly

- Government imposes minimum cutoff, quality requirements

- Demand might be affected in the long term (prestige etc.)

→ γjt ,υjt estimated to match observed quality, cutoffs

Structural Estimation Model: Supply
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Students are more likely to enroll if a loan is available

Structural Estimation
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Dropout score

Structural Estimation
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Dropout quality

Structural Estimation
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Skin-in-the-game reform

penaltyj = 0.16 + 0.025 ·
xj − mean(x)

sd(x)

xj =
1
2

defaultj − mean(default)
sd(default)

+
1
2

dropoutj − mean(dropout)
sd(dropout)

▶ The penalty is capped between 10% and 25%.
Back
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The Allocation of Student Loans

▶ The allocation of student loans is given by:

Lij =

{
1, if Bi = 1 and ri ≥ r jt

0, if Bi = 0 or ri < r jt

- Bi : loan take-up indicator

- r jt : cutoff to receive a loan in degree j in year t

▶ ρ(xi) ≡ P(Bi = 1|xi) is a known function
- Up to parameters to be estimated

Back
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No significant effects on dropout rates

DropoutRatejt = αj + αt + βt · DropoutRiskj + ϵjt
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Dropout and default are positively correlated
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How did the policy impact dropout rates?

FIES Degrees
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