Skin in the Game:
Colleges’ Financial Incentives and Student Loans

Nano Barahona (UC Berkeley & NBER)
Cauê Dobbin (Georgetown University)
Hanson Ho (Stanford GSB)
Sebastián Otero (Columbia University)
Constantine Yannelis (Chicago Booth & NBER)

NBER SI Education

July 24, 2024
A privately-run, but publicly-funded, higher education system
A privately-run, but publicly-funded, higher education system

1. Higher education has experienced a large expansion worldwide
 - **Brazil:** Access grew from 14% in the 2000s to 55% by 2020
A privately-run, but publicly-funded, higher education system

1. Higher education has experienced a large expansion worldwide
 - **Brazil**: Access grew from 14% in the 2000s to 55% by 2020

2. Governments have liberalized access of educational providers
 - **Brazil**: 75% of students enrolled in private colleges

Concerns of poor educational quality

- Dropout rate:
 - **Brazil**: 60%
 - **US**: 50%

- Default rate:
 - **Brazil**: 53%
 - **US**: 40%

⇒ High delinquency rate threatening the sustainability of loan programs
A privately-run, but publicly-funded, higher education system

1. Higher education has experienced a large expansion worldwide
 - Brazil: Access grew from 14% in the 2000s to 55% by 2020

2. Governments have liberalized access of educational providers
 - Brazil: 75% of students enrolled in private colleges

3. Governments have catalyzed growth by facilitating access to state-guaranteed loans
 → Share of undergrads with loan from federal government:
 - Brazil: 22%
 - US: 30% (1.7 trillion USD in 2022)
A privately-run, but publicly-funded, higher education system

1. Higher education has experienced a large expansion worldwide
 - **Brazil**: Access grew from 14% in the 2000s to 55% by 2020

2. Governments have liberalized access of educational providers
 - **Brazil**: 75% of students enrolled in private colleges

3. Governments have catalyzed growth by facilitating access to state-guaranteed loans
 → Share of undergrads with loan from federal government:
 - **Brazil**: 22%
 - **US**: 30% (1.7 trillion USD in 2022)

4. Concerns of poor educational quality
 → Dropout rate:
 - **Brazil**: 60%
 - **US**: 50%
A privately-run, but publicly-funded, higher education system

1. Higher education has experienced a large expansion worldwide
 - **Brazil**: Access grew from 14% in the 2000s to 55% by 2020

2. Governments have liberalized access of educational providers
 - **Brazil**: 75% of students enrolled in private colleges

3. Governments have catalyzed growth by facilitating access to state-guaranteed loans
 → Share of undergrads with loan from federal government:
 - **Brazil**: 22%
 - **US**: 30% (1.7 trillion USD in 2022)

4. Concerns of poor educational quality
 → Dropout rate:
 - **Brazil**: 60%
 - **US**: 50%

 → High **default rates** threatening the sustainability of loan programs
 → Delinquency rate:
 - **Brazil**: 53%
 - **US**: 40%
The economics behind the storm

Misaligned incentives

1. Imperfect information on education **quality**
 - No past experience/one-time decision → Opaque product
 - New students and new programs
 - Advertising is an important driver of demand (Armona and Cao, 2022)
The economics behind the storm

Misaligned incentives

1. Imperfect information on education quality
 - No past experience/one-time decision → Opaque product
 - New students and new programs
 - Advertising is an important driver of demand (Armona and Cao, 2022)

2. Governments/students cannot contract with universities on quality
The economics behind the storm

Misaligned incentives

1. Imperfect information on education **quality**
 - No past experience/one-time decision → Opaque product
 - New students and new programs
 - Advertising is an important driver of demand (Armona and Cao, 2022)

2. Governments/students cannot contract with universities on **quality**
 → Universities are not held accountable for delivering **quality**
The economics behind the storm

Misaligned incentives

1. Imperfect information on education quality
 - No past experience/one-time decision → Opaque product
 - New students and new programs
 - Advertising is an important driver of demand (Armona and Cao, 2022)

2. Governments/students cannot contract with universities on quality
 → Universities are not held accountable for delivering quality

Skin-in-the-game policies
The economics behind the storm

Misaligned incentives

1. Imperfect information on education quality
 - No past experience/one-time decision → Opaque product
 - New students and new programs
 - Advertising is an important driver of demand (Armona and Cao, 2022)

2. Governments/students cannot contract with universities on quality
 → Universities are not held accountable for delivering quality

Skin-in-the-game policies

- Create contracts based on outcomes → hold them accountable for student loan defaults
 - Brazil: Penalize schools for dropouts or defaults starting in 2018 (our experiment)
 - US: Proposed legislation makes institutions liable for 50% of student loans in default
Skin in the Game Act would require colleges pay 50% of student loans for students who default.

As bipartisan consensus emerges in Congress that colleges should share the burden of students who can't repay loans or find jobs, higher ed leaders consider how such a plan would work and whether it would discourage them from educating the disadvantaged.

Executive order under consideration would require schools to take financial stake when students don't repay.
This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?
This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?

Trade-offs:
This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?

Trade-offs:

- **Quality improvements**: colleges improve quality to increase graduation and repayment rates
Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?

Trade-offs:

Quality improvements: colleges improve quality to increase graduation and repayment rates

Student screening: academically-challenged students from low-income backgrounds may be screened out
This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?

Trade-offs:

- **Quality improvements**: colleges improve quality to increase graduation and repayment rates
- **Student screening**: academically-challenged students from low-income backgrounds may be screened out

What do we do?:
This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?

Trade-offs:

- **Quality improvements**: colleges improve quality to increase graduation and repayment rates
- **Student screening**: academically-challenged students from low-income backgrounds may be screened out

What do we do?:

1. Reduced-form evidence of policy that increased college accountability in 2017 in Brazil
This paper

Research Question: How do for-profit institutions respond to a policy that makes them accountable for students’ outcomes?

Trade-offs:

- Quality improvements: colleges improve quality to increase graduation and repayment rates
- Student screening: academically-challenged students from low-income backgrounds may be screened out

What do we do?:

1. Reduced-form evidence of policy that increased college accountability in 2017 in Brazil
2. Build equilibrium model to compute optimal penalty & conduct counterfactuals
Related Literature

- **Design of Government Loan Programs**: Gale (1991), Brosshardt, Kakhbod and Kermani (2023), Bachas, Kim and Yannelis (2020), Granja et al. (2022), Kuchler et al. (2022)
Related Literature

- **Design of Government Loan Programs**: Gale (1991), Brosshardt, Kakhbod and Kermani (2023), Bachas, Kim and Yannelis (2020), Granja et al. (2022), Kuchler et al. (2022)

Data and Setting
Data

University entrance exam
• Standardized national college entrance exam
• Period: 2009-2022

University census
• Universe of students enrolled in higher education
• Records of faculty composition, payroll, capital costs, maintenance costs, research investment
• Period: 2009-2022

Federal student loan program (FIES)
• Loans: amount, interest rate, conditions
• Repayment: loan balances, days overdue, delinquency rates
• Period: 2009-2023
Data

University entrance exam

- Standardized national college entrance exam
- Period: 2009-2022
Data

University entrance exam

- Standardized national college entrance exam
- Period: 2009-2022

University census

- Universe of students enrolled in higher education
- Records of faculty composition, payroll, capital costs, maintenance costs, research investment
- Period: 2009-2022
Data

University entrance exam

- Standardized national college entrance exam
- Period: 2009-2022

University census

- Universe of students enrolled in higher education
- Records of faculty composition, payroll, capital costs, maintenance costs, research investment
- Period: 2009-2022

Federal student loan program (FIES)

- Loans: amount, interest rate, conditions
- Repayment: loan balances, days overdue, delinquency rates [New!]
- Period: 2009-2023
Higher education landscape in Brazil

Market structure

- In 2018: 6 million students in 2,200 institutions
- Students enroll in specific degree (major-college combination)
Higher education landscape in Brazil

Market structure

- In 2018: 6 million students in 2,200 institutions
- Students enroll in specific degree (major-college combination)
- Market-oriented system: private sector accounts for 75% of enrollment
Higher education landscape in Brazil

Market structure

- In 2018: 6 million students in 2,200 institutions
- Students enroll in specific degree (major-college combination)
- Market-oriented system: private sector accounts for 75% of enrollment
- Private institutions: charge tuition, lower quality, and not selective
 - 90% of the degrees operate below 80% of their capacity
Higher education landscape in Brazil

Market structure

- In 2018: 6 million students in 2,200 institutions
- Students enroll in specific degree (major-college combination)
- Market-oriented system: private sector accounts for 75% of enrollment
- Private institutions: charge tuition, lower quality, and not selective
 - 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

• Covers 100% of tuition costs
• Subsidized interest rates
• Broad coverage:
 - Largest year: 28% of incoming students (80% of degrees)
Higher education landscape in Brazil

Market structure

- In 2018: 6 million students in 2,200 institutions
- Students enroll in specific degree (major-college combination)
- Market-oriented system: private sector accounts for 75% of enrollment
- Private institutions: charge tuition, lower quality, and not selective
 - 90% of the degrees operate below 80% of their capacity

Federal student loan program (FIES)

- Covers 100% of tuition costs
- Subsidized interest rates
- Broad coverage:
 - Largest year: 28% of incoming students (80% of degrees)
The allocation of FIES loans (Since 2015)

- Limited number of loans per degree
- Loans distributed to students through a centralized mechanism based on test scores
- Creates degree-specific cutoffs to receive loans
The allocation of FIES loans (Since 2015)

- Limited number of loans per degree
- Loans distributed to students through a centralized mechanism based on test scores
- Creates degree-specific **cutoffs** to receive loans
 - Medicine: high loan cutoff; eg. applicants above 800 points gets a loan
 - Media studies: low loan cutoff; eg. applicants above 600 points gets a loan
The allocation of FIES loans (Since 2015)

- Limited number of loans per degree
- Loans distributed to students through a centralized mechanism based on test scores
- Creates degree-specific cutoffs to receive loans
 - Medicine: high loan cutoff; eg. applicants above 800 points gets a loan
 - Media studies: low loan cutoff; eg. applicants above 600 points gets a loan
- Admission to private colleges is not centralized
The allocation of FIES loans (Since 2015)

- Limited number of loans per degree
- Loans distributed to students through a centralized mechanism based on test scores
- Creates degree-specific **cutoffs** to receive loans
 - Medicine: high loan cutoff; eg. applicants above 800 points gets a loan
 - Media studies: low loan cutoff; eg. applicants above 600 points gets a loan
- Admission to private colleges is not centralized
- Colleges can request fewer slots than the maximum allowed
The allocation of FIES loans (Since 2015)

- Limited number of loans per degree
- Loans distributed to students through a centralized mechanism based on test scores
- Creates degree-specific **cutoffs** to receive loans
 - Medicine: high loan cutoff; eg. applicants above 800 points gets a loan
 - Media studies: low loan cutoff; eg. applicants above 600 points gets a loan
- Admission to private colleges is not centralized
- Colleges can request fewer slots than the maximum allowed
 → Increasing their degrees’ loan cutoff
Skin-in-the-game reform

- Passed in 2017, the program was reformed to increase school liability
- It targeted dropout and default rates
 - Default and dropout positively correlated
- Schools are liable for 10-25% of loans (based on dropout/default of students with loans)
Skin-in-the-game reform

- Passed in 2017, the program was reformed to increase school liability
- It targeted **dropout** and **default rates**
 - Default and dropout positively correlated
- Schools are liable for 10-25% of loans (based on dropout/default of students with loans)

\[
\text{Revenue per loan student} = (1 - \text{penalty}) \cdot \text{tuition}
\]

\[
\text{penalty(dropout, default)} \in [0.10, 0.25]
\]
Effects of the Skin in the Game Reform: Descriptive Evidence
How did the policy impact dropout rates?
How did the policy impact dropout rates?

- Define treatment and control groups based on policy exposure:
How did the policy impact dropout rates?

- Define treatment and control groups based on policy exposure:
 - FIES reliance:
How did the policy impact dropout rates?

- Define treatment and control groups based on policy exposure:
 - **FIES reliance**: $E[\text{share students w/ loans|major, college, region}]$
How did the policy impact dropout rates?

- Define treatment and control groups based on policy exposure:
 - **FIES reliance:** $\mathbb{E} \left[\text{share students w/ loans} \mid \text{major, college, region} \right]$
- **Timing:**
 - Regression sample: 2016, 2017 (pre-policy); 2018, 2019 (post-policy)
 - FIES reliance: Calculated in 2015
Event study

\[\text{LoanDropout}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{FiesReliance}_j + \epsilon_{jt} \]
FIES dropout decreased for schools with higher FIES reliance

\[\text{LoanDropout}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{FiesReliance}_j + \epsilon_{jt} \]

- FIES reliance ↑ 1 sd ⇒ Dropout rate ↓ 1.3 pp (14%)
Decomposing dropout into degree and composition effects

- Change in dropout driven by:
 - Changes in degree quality
 - Changes in student body composition

\[
d_{ijt} = \alpha_{jt} + X_{ijt} \beta + \epsilon_{ijt}
\]

- Degree-year fixed effects
- \(X_{ijt}\): student characteristics (demographics, hh income, parental educ, test scores, etc)

We can decompose

\[
E[d_{ijt}|j] = \hat{\alpha}_{jt} + E[X_{ijt} \hat{\beta} | j]
\]
Decomposing dropout into degree and composition effects

- Change in dropout driven by:
 - Changes in degree quality
 - Changes in student body composition

- Let d_{ijt} indicate 1-year dropout for student i

$$d_{ijt} = \alpha_{jt} + X_{ijt}\beta + \epsilon_{ijt}$$

- α_{jt}: degree-year fixed effects
- X_{ijt}: student characteristics (demographics, hh income, parental educ, test scores, etc)
Decomposing dropout into degree and composition effects

- Change in dropout driven by:
 - Changes in degree quality
 - Changes in student body composition

- Let d_{ijt} indicate 1-year dropout for student i

 $$d_{ijt} = \alpha_{jt} + X_{ijt}\beta + \epsilon_{ijt}$$

 - α_{jt}: degree-year fixed effects
 - X_{ijt}: student characteristics (demographics, hh income, parental educ, test scores, etc)

- We can decompose

 $$\mathbb{E}[d_{ijt} | j] = \hat{\alpha}_{jt} + \mathbb{E}[X_{ijt}\beta | j]$$
Decomposing dropout into degree and composition effects

- Change in dropout driven by:
 - Changes in degree quality
 - Changes in student body composition

- Let d_{ijt} indicate 1-year dropout for student i
 \[d_{ijt} = \alpha_{jt} + X_{ijt}\beta + \epsilon_{ijt} \]
 - α_{jt}: degree-year fixed effects
 - X_{ijt}: student characteristics (demographics, hh income, parental educ, test scores, etc)

- We can decompose
 \[\mathbb{E} [d_{ijt} | j] = \hat{\alpha}_{jt} + \mathbb{E} [X_{ijt}\hat{\beta} | j] \]

→ Same event study, with degree and composition effects as outcomes
Decomposing dropout into degree and composition effects

\[\text{LoanDropout}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{FiesReliance}_j + \epsilon_{jt} \]
No effect on composition

\[\text{Composition}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{FiesReliance}_j + \epsilon_{jt} \]
Degree effect fully explains dropout changes

\[\text{DegreeEffect}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{FiesReliance}_j + \epsilon_{jt} \]
Mechanisms?

- Faculty-student ratios are a standard measure of quality (Eaton et al., 2020, Angrist & Lavy, 1999; Angrist, et al., 2019; Hoffmann & Oreopoulos, 2009)
Faculty-student ratio went up for degrees with higher FIES reliance

- Faculty-student ratios are a standard measure of quality (Eaton et al., 2020, Angrist & Lavy, 1999; Angrist, et al., 2019; Hoffmann & Oreopoulos, 2009)

\[\log(\text{Faculty/Student}_{jt}) = \alpha_j + \alpha_t + \beta_t \cdot \text{FiesReliance}_j + \epsilon_{jt} \]

- FIES reliance ↑ 1 sd ⇒ Faculty-student ratio ↑ 8%
Which degrees have incentive to increase screening?

Expected profits from each loan student:

\[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

College keeps student if \(\pi_i \geq 0 \) → Higher expected penalty, more screening

Measuring exposure

Dropout risk: \(E_{\text{drop rate}} \) major, college, region

Timing:
- Regression sample: 2016, 2017 (pre-policy); 2018, 2019 (post-policy)
- Dropout risk: Calculated in 2015

Outcome:

FIES Cutoff → Negative correlation between scores and dropout/default
Which degrees have incentive to increase screening?

- Expected profits from each loan student:
 \[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

- College keeps student if \(\pi_i \geq 0 \)
Which degrees have incentive to increase screening?

- Expected profits from each loan student:
 \[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

- College keeps student if \(\pi_i \geq 0 \)

 → Higher expected penalty, more screening
Which degrees have incentive to increase screening?

- Expected profits from each loan student:
 \[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

- College keeps student if \(\pi_i \geq 0 \)

 → Higher expected penalty, more screening

Measuring exposure

- Dropout risk:
Which degrees have incentive to increase screening?

- Expected profits from each loan student:
 \[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

- College keeps student if \(\pi_i \geq 0 \)
 \[\rightarrow \] Higher expected penalty, more screening

Measuring exposure

- **Dropout risk:** \(\mathbb{E}[\text{drop rate}|\text{major, college, region}] \)
Which degrees have incentive to increase screening?

- Expected profits from each loan student:
 \[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

- College keeps student if \(\pi_i \geq 0 \)

 \(\rightarrow \) Higher expected penalty, more screening

Measuring exposure

- **Dropout risk**: \(E[\text{drop rate}|\text{major, college, region}] \)

- **Timing**:
 - Regression sample: 2016, 2017 (pre-policy); 2018, 2019 (post-policy)
 - Dropout risk: Calculated in 2015
Which degrees have incentive to increase screening?

- Expected profits from each loan student:
 \[\pi_i = \text{tuition} - \text{marginal cost} - \text{expected penalty} \]

- College keeps student if \(\pi_i \geq 0 \)

→ Higher expected penalty, more screening

Measuring exposure

- **Dropout risk:** \(\mathbb{E} [\text{drop rate}|\text{major, college, region}] \)
- **Timing:**
 - Regression sample: 2016, 2017 (pre-policy); 2018, 2019 (post-policy)
 - Dropout risk: Calculated in 2015
- **Outcome:** FIES Cutoff
 → Negative correlation between scores and dropout/default
Event study

\[\text{FiesCutoff}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{DropoutRisk}_j + \epsilon_{jt} \]
FIES cutoff increased in high-dropout degrees

\[\text{FiesCutoff}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{DropoutRisk}_j + \epsilon_{jt} \]

- Dropout risk \uparrow 1 sd \Rightarrow FIES Cutoff \uparrow 0.08 sd
High-dropout degrees less likely to stay in FIES

$$\text{HasAnyLoan}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{DropoutRisk}_j + \epsilon_{jt}$$

Dropout risk ↑ 1 sd ⇒ Has any loan ↓ 4pp (7%)
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

2. Degrees with high dropout risk:
 - Increased sorting (FIES cutoff)
 - More likely to opt-out of the loan program

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure
(b) Predict equilibrium outcomes of counterfactual policies

(a)+(b): Study optimal policy design and compare with alternative policy instruments
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure
(b) Predict equilibrium outcomes of counterfactual policies

(a)+(b): Study optimal policy design and compare with alternative policy instruments
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

2. Degrees with high dropout risk:
 - Increased sorting (FIES cutoff)
 - More likely to opt-out of the loan program
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

2. Degrees with high dropout risk:
 - Increased sorting (FIES cutoff)
 - More likely to opt-out of the loan program

Next: Structural model
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

2. Degrees with high dropout risk:
 - Increased sorting (FIES cutoff)
 - More likely to opt-out of the loan program

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure
(b) Predict equilibrium outcomes of counterfactual policies
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

2. Degrees with high dropout risk:
 - Increased sorting (FIES cutoff)
 - More likely to opt-out of the loan program

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure
(b) Predict equilibrium outcomes of counterfactual policies

(a)+(b): Study optimal policy design and compare with alternative policy instruments
Takeaways

Descriptive evidence

1. Degrees more reliant on FIES:
 - Decreased dropout rate
 - Change in dropout rate not explained by student composition
 - Increased faculty-student ratio

2. Degrees with high dropout risk:
 - Increased sorting (FIES cutoff)
 - More likely to opt-out of the loan program

Next: Structural model

(a) Incorporate trade-offs into unified welfare measure [In Progress]
(b) Predict equilibrium outcomes of counterfactual policies ✓

(a)+(b): Study optimal policy design and compare with alternative policy instruments
Structural Model
The model in a nutshell

1. **Supply**: Colleges choose price, loan cutoff, quality to maximize profits

2. **Demand**: Students choose a degree to maximize utility
The model in a nutshell

1. **Supply**: Colleges choose price, loan cutoff, quality to maximize profits

2. **Demand**: Students choose a degree to maximize utility
The model in a nutshell

1. **Supply:** Colleges choose price, loan cutoff, quality to maximize profits

2. **Demand:** Students *choose a degree* to maximize utility
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year t
- Choice set: all private degrees in student’s region
- Students choose a degree (or the outside option $j = 0$) to maximize utility:

$$U_{ijt} = \beta_i h_j + \alpha_{ij} p_{jt} + \xi_{ijt}$$
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year t
- Choice set: all private degrees in student’s region
- Students choose a degree (or the outside option $j = 0$) to maximize utility:

$$ U_{ijt} = \beta_i^h h_j + \alpha_i L_{ij} p_{jt} + \xi_{ijt} $$

Selectivity
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year \(t \)
- Choice set: all private degrees in student’s region
- Students choose a degree (or the outside option \(j = 0 \)) to maximize utility:

\[
U_{ijt} = \beta_i h_j + \alpha_i L_{ij} p_{jt} + \xi_{ijt}
\]
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year t
- Choice set: all private degrees in student’s region
- Students choose a degree (or the outside option $j = 0$) to maximize utility:

$$U_{ijt} = \beta_i^h h_j + \alpha_{iLij} p_{jt} + \xi_{ijt}$$

- h_j are fixed degree characteristics
- β_i^h represents preference heterogeneity
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year t
- Choice set: all private degrees in student’s region
- Students choose a degree (or the outside option $j = 0$) to maximize utility:

$$U_{ijt} = \beta_i^h h_j + \alpha_{Li} p_{jt} + \xi_{ijt}$$

- Prices (p_{jt})
- Price sensitivity (α)
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year t
- Choice set: all private degrees in student’s region
- Students choose a degree (or the outside option $j = 0$) to maximize utility:

$$U_{ijt} = \beta_i h_j + \alpha_{Lij} p_{jt} + \xi_{ijt}$$

- Prices (p_{jt})
- Price sensitivity (α) depends on whether the student has a loan (L_{ijt})
 - Subsidized interest rates
 - Alleviate credit constraints
 - Some students expect to not pay back

Selectivity

Prices (p_{jt})
Price sensitivity (α) depends on whether the student has a loan (L_{ijt})
- Subsidized interest rates
- Alleviate credit constraints
- Some students expect to not pay back
Demand: Degree choice

- Market: All students who took ENEM (centralized exam) in each year t
- Choice set: all private degrees in student's region
- Students choose a degree (or the outside option $j = 0$) to maximize utility:

$$U_{ijt} = \beta_i h_j + \alpha_i L_{ij} p_{jt} + \xi_{ijt}$$

- ξ_{ijt}: demand shock
- Parameterization: $\xi_{ijt} = \gamma_j + \gamma_{rt} + \xi_{jt} + \epsilon_{ij}$
- $\epsilon_{ij} \overset{iid}{\sim}$ Extreme Value Type I
- γ: fixed effects

Student loan allocation
Supply: Colleges choose price, quality, cutoff to maximize net profits

\[
\max_{p, q, r} \left[p - c(q, r) \right] \cdot s(p, r) - \theta \cdot p \cdot d(p, q, r)
\]

- **\(p \)**: price
- **\(\bar{r} \)**: loan cutoff
- **\(q \)**: quality
- **\(s(p, \bar{r}) \)**: market share
- **\(c(q, \bar{r}) \)**: marginal cost
- **\(d(p, q, \bar{r}) \)**: expected dropout
- **\(\theta \)**: penalty rate
Dropout depends on cutoff, quality

Student i drops out from degree j if:

$$d_{ijt} = \mathbb{1}\{f(q_{jt}, r_i) + \Delta \delta_{it} \geq 0\},$$

- q_{jt}: quality
- r_i: score
- ν: parameter
- ν: student-level iid dropout shock
Estimation: Method of moments

Key parameters and moments:

- Effect of loans on price sensitivity
 - Moment: Enrollment discontinuity across loan eligibility cutoffs
 - Details
- Dropout function
 - Moment: Each degree's dropout rate; and the correlation between scores and dropout
 - Details
- Marginal cost function
 - Moment: Exposure to policy change uncorrelated with marginal cost shocks
 - Details
Estimation: Method of moments

Key parameters and moments:

▶ Effect of loans on price sensitivity
 Moment: Enrollment discontinuity across loan eligibility cutoffs

▶ Dropout function
 Moment: Each degree’s dropout rate; and the correlation between scores and dropout

▶ Marginal cost function
 Moment: Exposure to policy change uncorrelated with marginal cost shocks
Key parameters and moments:

▶ Effect of loans on price sensitivity
Moment: Enrollment discontinuity across loan eligibility cutoffs

▶ Dropout function
Moment: Each degree’s dropout rate; and the correlation between scores and dropout

▶ Marginal cost function
Moment: Exposure to policy change uncorrelated with marginal cost shocks
Estimation: Method of moments

Key parameters and moments:

▶ Effect of loans on price sensitivity
 Moment: Enrollment discontinuity across loan eligibility cutoffs

▶ Dropout function
 Moment: Each degree’s dropout rate; and the correlation between scores and dropout

▶ Marginal cost function
 Moment: Exposure to policy change uncorrelated with marginal cost shocks
Estimation: Method of moments

Key parameters and moments:

▶ Effect of loans on price sensitivity

Moment: Enrollment discontinuity across loan eligibility cutoffs

▶ Dropout function

Moment: Each degree’s dropout rate; and the correlation between scores and dropout

▶ Marginal cost function

Moment: Exposure to policy change uncorrelated with marginal cost shocks
Results
Welfare

\[\text{Welfare} = CS + \Pi + T \]

- \(CS \): Consumer surplus
- \(\Pi \): Profits
- \(T \): Government losses due to default
Welfare

\[\text{Welfare} = CS + \Pi + T \]

- **CS**: Consumer surplus
 - Assumption: Choices of students with loans are welfare maximizing

- **\(\Pi\)**: Profits

- **\(T\)**: Government losses due to default
Welfare

\[\text{Welfare} = CS + \Pi + T \]

- **CS**: Consumer surplus
 - Assumption: Choices of students w/ loans are welfare maximizing

- **\(\Pi \)**: Profits

- **\(T \)**: Government losses due to default
 - Assumption: All students who dropout default the full amount of their loans
Optimal penalty is 50%
Conclusion
Conclusion

Descriptive evidence: Following a skin-in-the-game policy implemented in Brazil in 2017, colleges:
Descriptive evidence: Following a skin-in-the-game policy implemented in Brazil in 2017, colleges:

- Quality improvements: reduced dropout, hired more faculty
Conclusion

Descriptive evidence: Following a skin-in-the-game policy implemented in Brazil in 2017, colleges:

- **Quality improvements**: reduced dropout, hired more faculty
- **Student screening**: increased cutoff scores
Conclusion

Descriptive evidence: Following a skin-in-the-game policy implemented in Brazil in 2017, colleges:

- Quality improvements: reduced dropout, hired more faculty
- Student screening: increased cutoff scores

Structural model: Colleges should be liable for 50% of loans
Conclusion

Descriptive evidence: Following a skin-in-the-game policy implemented in Brazil in 2017, colleges:

- **Quality improvements**: reduced dropout, hired more faculty
- **Student screening**: increased cutoff scores

Structural model: Colleges should be liable for 50% of loans

Next steps: Incorporate student-level default data into the analysis
Thank you!
Marginal costs depend on cutoff, quality

\[c_{jt}(q_{jt}, \bar{r}_{jt}) = \Gamma(q_{jt} - \gamma_{jt})^2 + R(\bar{r}_{jt} - \nu_{jt})^2 + \omega_{jt} \]
Marginal costs depend on cutoff, quality

\[c_{jt}(q_{jt}, \bar{r}_{jt}) = \Gamma(q_{jt} - \gamma_{jt})^2 + R(\bar{r}_{jt} - \nu_{jt})^2 + \omega_{jt} \]

\(\gamma_{jt}, \nu_{jt} \) capture exogenous factors determining quality, cutoff decisions
- Providing quality is costly
- Government imposes minimum cutoff, quality requirements
- Demand might be affected in the long term (prestige etc.)
Marginal costs depend on cutoff, quality

\[c_{jt}(q_{jt}, r_{jt}) = \Gamma(q_{jt} - \gamma_{jt})^2 + R(r_{jt} - \nu_{jt})^2 + \omega_{jt} \]

\(\gamma_{jt}, \nu_{jt}\) capture exogenous factors determining quality, cutoff decisions
- Providing quality is costly
- Government imposes minimum cutoff, quality requirements
- Demand might be affected in the long term (prestige etc.)

\(\gamma_{jt}, \nu_{jt}\) estimated to match observed quality, cutoffs
Students are more likely to enroll if a loan is available
Dropout score
Dropout quality
Skin-in-the-game reform

\[
penalty_j = 0.16 + 0.025 \cdot \frac{x_j - \text{mean}(x)}{\text{sd}(x)}
\]

\[
x_j = \frac{1}{2} \frac{\text{default}_j - \text{mean}(\text{default})}{\text{sd}(\text{default})} + \frac{1}{2} \frac{\text{dropout}_j - \text{mean}(\text{dropout})}{\text{sd}(\text{dropout})}
\]

- The penalty is capped between 10% and 25%.
The allocation of student loans is given by:

\[L_{ij} = \begin{cases}
1, & \text{if } B_i = 1 \text{ and } r_i \geq \bar{r}_{jt} \\
0, & \text{if } B_i = 0 \text{ or } r_i < \bar{r}_{jt}
\end{cases} \]

- \(B_i \) : loan take-up indicator
- \(\bar{r}_{jt} \) : cutoff to receive a loan in degree \(j \) in year \(t \)

\[\rho(x_i) \equiv P(B_i = 1|x_i) \] is a known function
- Up to parameters to be estimated
No significant effects on dropout rates

\[\text{DropoutRate}_{jt} = \alpha_j + \alpha_t + \beta_t \cdot \text{DropoutRisk}_j + \epsilon_{jt} \]
Dropout and default are positively correlated.

![Graph showing the correlation between dropout rate and percentage of late payment for for-profit and non-profit institutions.](image-url)
How did the policy impact dropout rates?

![Graph showing the impact of the policy on dropout rates](image-url)