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Abstract
We evaluate the introduction of direct-acting antiviral (DAA) therapy for hepatitis C (HCV)

on liver transplant allocation in the United States. We hypothesize that DAAs obviate the need
for transplant for some HCV-positive patients, which shortens the waiting list, potentially bene-
fiting HCV-negative registrants and inducing marginal HCV-negative patients to register. Using
data from the universe of transplants between 2005 and 2019, we find that DAA availability
resulted in an additional 5,682 liver transplants to HCV-negative end-stage liver disease patients
between 2014 and 2019, generating a positive externality of $7.52 billion. Our result is driven
in part by a 37% average annual increase in HCV-negative waiting list registrations. In the
absence of this behavioral response, DAA therapies would have eliminated the liver transplant
waiting list.
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1 INTRODUCTION

1 Introduction

The value of medical innovations partly relies on the incentives they generate. Across most

health conditions, medical innovation is enormously valuable (Dranove et al., 2022; Hall & Jones,

2007; Murphy & Topel, 2006; Cutler & McClellan, 2001; Newhouse, 1992). However, an important

contribution of economics has been to identify instances where innovation-generated incentives shift

behavior that aligns with, or works against, their direct social welfare implications. For example,

Papageorge (2016) shows that a significant benefit of HIV treatments (HAART) was to raise produc-

tivity and increase labor supply. Conversely, Kaestner et al. (2014) present evidence of technological

substitution away from diet and exercise when statin medications were introduced to lower choles-

terol. Medical innovation may also shift incentives (and subsequent behaviors and outcomes) for

individuals who are not their primary beneficiaries. We refer to such instances as innovation-induced

externalities. Especially in cases where new innovations are extremely costly relative to existing tech-

nology, valuing innovation-induced externalities may influence payer coverage decisions and research

and development investment choices (Chernew & Newhouse, 2011; Philipson, 2000; Fendrick et al.,

1996).

In this paper, we quantify the innovation-induced externalities associated with the recent intro-

duction of a breakthrough medical treatment that dramatically improved health outcomes. Specif-

ically, in December 2013, the Food and Drug Administration approved sofosbuvir, a direct-acting

antiviral (DAA), for the treatment of chronic hepatitis C (HCV). Prior to the availability of DAAs,

HCV was the leading cause of infectious-disease-related death in the United States and accounted

for nearly half of all liver transplant waiting list registrations (Powell et al., 2019). However, DAA

therapy, which achieves sustained viral clearance rates in over 90% of HCV patients, mechanically

reduces liver demand to the extent that, for many, therapy obviates the need for a transplant. We

conceive of those with end-stage liver disease (ESLD) resulting from conditions other than HCV

(e.g., alcohol-associated liver disease, nonalcoholic steatohepatitis, etc.) to be external to the market

for HCV pharmaceuticals, and we quantify the innovation-induced externalities to these individuals

resulting from DAA-induced changes in the demand for livers.

We study the universe of patients wait-listed for a liver transplant between 2005 and 2019 from the

Scientific Registry of Transplant Recipients (SRTR). The raw data highlight several clear implications

ofDAAavailability. First, between 2014 and 2019, transplants toHCV + individuals declined sharply,

while transplants to HCV − individuals increased. As a result, the annual percentage of HCV −
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1 INTRODUCTION

waiting list registrants who received a transplant increased from 33% in 2014 to 65% by 2019. Second,

mirroring the transplant dynamics, during this period, the data indicate a sharp reduction in the

number of HCV + individuals, and an increase in the number of HCV − individuals, added to the liver

transplant waiting list. Third, followingDAA availability, bothHCV + andHCV − patients receiving

a transplant were healthier at the time of transplant, as measured by the Model for End-Stage Liver

Disease (MELD) score. Finally, the data indicate an overall increase in liver transplants from 2014

through 2019 (see Figure 1). While we focus on demand-side responses to DAA availability, this

increase in liver transplants can only be explained by an increase in the supply of organs available for

transplant, and we examine several potential explanations for this supply increase, including waiting

list registrants’ increased willingness to accept HCV + organs in the post-DAA era. The raw data

suggest considerable welfare improvements to both HCV + and HCV − individuals resulting from

the availability of DAAs: many HCV + patients were cured of liver disease, and both marginal and

inframarginal HCV − patients gained access to livers.

While trends in the raw data imply significant innovation-induced externalities to HCV − in-

dividuals with ESLD, our main parameter of interest is the number of new transplants to HCV −

individuals resulting from DAA availability. That is, the relevant counterfactual is the trend in

HCV − transplants in the absence of DAAs. Changes in descriptive trends may be due to DAAs, but

they may also be due to concurrent shocks, such as the rise of fentanyl, which significantly increased

HCV transmission, opioid overdose deaths, and the supply of transplantable organs (Dickert-Conlin

et al., In press; Maclean et al., 2021; Powell et al., 2019), or by the full implementation of the Af-

fordable Care Act, which expanded health insurance coverage and increased transplant wait-listing

(Lemont, 2023). To address these concurrent shocks, our identification strategy compares trends

in HCV − liver transplants and wait-listing behaviors before and after the introduction of DAAs to

similar trends for kidneys. The basis for this approach is that a comparison between liver and kidney

behaviors and outcomes will net out common shocks to the demand and supply of organs for trans-

plant, leaving changes induced by DAAs. Threats to the validity of our research design primarily

involve spillovers from DAA availability to kidney waiting list registrants, but we show extensive

evidence that spillover effects are negligible in our setting.

Using a traditional difference-in-differences (DiD) design, we estimate a 35.8% average annual

increase in HCV − liver transplants and a 39.1% decrease in HCV + liver transplants following the

availability of DAAs, representing a total of 5,682 additional transplants to HCV − individuals with

ESLD from 2014 through 2019. We show that many newly transplanted HCV − individuals would
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have remained unlisted had they not been induced to join by the reduction in demand from HCV +

individuals; our estimates imply an average annual increase inHCV − waiting list registrations of 37%

following the introduction of DAAs. Combined with an estimated reduction in HCV + waiting list

registrations of 45%, we conclude that DAA availability would have eliminated the liver transplant

waiting list had marginal HCV − patients not been induced to join. Lending further credence to our

research design, our estimates of the externality effect of DAAs on HCV − transplants and waiting

list registrations are larger in areas with higher baseline HCV rates.

Because many HCV + patients were cured of liver disease, additional HCV − transplants did not

crowd-out HCV + transplants, and so these gains added to the overall welfare benefits of DAAs.

Under standard value of life assumptions, and assuming an additional 10.1 life-years per transplant

(Rana et al., 2015), the net value of the additional 5,682 HCV − transplants amounts to $1.25

billion per year, or $7.52 billion in total from 2014 through 2019. This calculation also depends on

characteristics of the marginal HCV − patient to be transplanted. We show that the time from wait-

listing to transplant for HCV − patients declined by 16% following the introduction of DAAs. Indeed,

examining transplant rates conditional on listing, we find that the growth in HCV − transplants

outpaced the growth in waiting list demand, which suggests more frequent and/or earlier liver offers

for HCV − individuals. Furthermore, interrupted time series estimates suggest that the average

MELD score at transplant for HCV − recipients fell (improved) by three points (12.8%).1 Both of

these findings suggest our externality estimate represents a lower bound, as healthier patients will

likely live longer post-transplant. We also detect a composition shift in the causes of liver disease

amongHCV − patients joining the waiting list. In our data, the proportion ofHCV − registrants with

alcohol-associated liver disease (ALD) increased followingDAAs, whichmay affect expected longevity

and thus our value estimate. However, this composition effect does not explain the increase in HCV −

waiting list registrations — using National Health and Nutrition Examination Survey (NHANES)

data, we show that the prevalence of ALD in the population was flat from 2014 through 2018. In

summary, we conclude that DAAs represented an innovation-induced externality that equates to

roughly 11.5% of the total potential HCV + therapeutic market as of 2014.

We also conclude that the reallocation of livers from HCV + to HCV − individuals resulted largely

from an endogenous change in the HCV composition of the waiting list. Prior studies suggest that

there was considerable room for such endogenous listing, as rates of waiting list referrals are quite low,
1Because MELD score is specific to liver disease, we cannot derive difference-in-differences estimates of MELD

score at transplant relative to kidneys.
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even among qualified ESLD candidates.2 Furthermore, prior work has documented strategic behavior

in organ transplant markets (Sweat, 2023; Agarwal et al., 2021, 2018; Zhang, 2010). A key finding of

these studies is that organ allocation simulationmodels that ignore strategic behavior generate biased

predictions. For example, our estimate of the positive externality toHCV − liver transplant recipients

resulting fromDAAs is larger than the estimate from an epidemiological simulationmodel that did not

account for behavioral listing responses (Jena et al., 2016). Our results also complement prior studies

that have documented a wait-listing response to organ supply shocks including the opioid epidemic

and the repealing of state motorcycle helmet laws (Dickert-Conlin et al., In press, 2019; Fernandez

et al., 2013). However, unlike these studies, our analysis focuses on the implications of a demand

shock (i.e., reduced demand for liver transplant among HCV + individuals and increased demand

among HCV − individuals) rather than a supply shock. This difference is notable in that behavioral

responses to a negative demand shock can provide insight into potential effects of a broader reduction

in the demand for organs if alternative treatments for conditions contributing to organ failure were

to be developed (e.g., improved hypertension control or diabetes treatment reducing demand for

kidneys).

Our study contributes to the larger literature on technological innovation by modeling and esti-

mating behavioral responses to treatment innovations (Baranov et al., 2015; Peltzman, 2011; Dow

et al., 1999), and adds to recent examples of innovation-induced behavioral responses, including

statin medications and diet and exercise (Kaestner et al., 2014), HAART therapy and risky sex

(Papageorge, 2016; Chan et al., 2015), cancer treatments and labor supply (Jeon & Pohl, 2019), im-

munization and disease screening (Moghtaderi & Dor, 2021), and immunotherapy and life insurance

(Koijen & Van Nieuwerburgh, 2019). Our findings also contribute to the literature that has examined

technological change in medical and pharmaceutical treatments, its impacts on value, and whether

the surplus generated by that change has primarily been captured by the innovators or by consumers

(Hult & Philipson, 2023; Jena & Philipson, 2008). For example, Hult et al. (2018) found that, among

the more than 6,000 innovations they studied, 68% of new technologies had higher quality-adjusted

prices than the incumbent technologies they sought to replace. Dunn et al. (2023) reported simi-

lar findings and concluded that much of the total surplus generated by pharmaceutical innovation

accrues to innovators rather than consumers but pointed to DAAs for HCV treatment as a clear
2For example, Goldberg et al. (2016) found the 3-year incidence rate of wait-listing to be 15.8% among privately

insured ESLD patients who met the clinical guidelines to join the waiting list and 10.0% among those with Medicaid
coverage. Further, conditional on receiving an evaluation, between 30%–50% of candidates do not end up joining the
liver transplant waiting list (Jesse et al., 2019; Bryce et al., 2010, 2009).
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exception. Our results imply that, in addition to the surplus captured by those treated with DAAs,

welfare gains also extended to HCV − individuals with ESLD — consumers who were not the direct

beneficiaries of the technological innovation, and whose gains are not considered in current estimates

of DAA cost-effectiveness.

Specialty drugs, like those we study, have been responsible for driving the largest increases in

pharmaceutical spending and have strained the budgets of public payers (ASPE, 2022; Hernandez

et al., 2019). Our estimate of the innovation-induced externality of DAAs to HCV − individuals

changes the benefit-cost ratio from a public-payer perspective. Valuing externalities may also play an

important role in generating new ideas and innovations (Dranove et al., 2022), where pharmaceutical

revenue models have moved away from relying on “blockbuster” medications and toward higher-cost

drugs with smaller patient populations (van der Gronde et al., 2017; Song & Jeung-Whan, 2016).

Finally, looking forward, two states in the U.S., Louisiana andWashington, have adopted innova-

tive subscriptionmodels to financeDAAmedications for theirMedicaid and incarcerated populations,

with policymakers in other states expressing interest in similar arrangements (Auty et al., 2022). The

Biden administration has also recently introduced the “National Hepatitis C Elimination Program,”

which provides significant funding for the diagnosis and treatment of HCV (Fleurence & Collins,

2023). Our findings suggest that these programs, aimed at expanding access to DAA therapies, will

significantly benefit HCV − individuals with ESLD.

2 Background

2.1 Hepatitis C and Treatment Innovation

HCV is a chronic viral infection that leads to cirrhosis of the liver and its complications, including

hepatocellular carcinoma (Kamal, 2008). Approximately 2.5 million people are living with HCV in

the U.S., and prevalence rates have tripled over the past decade, largely as a consequence of the opioid

epidemic and increased intravenous drug use (Powell et al., 2019; Zibbell et al., 2018). Traditional

treatments for HCV have had limited effectiveness and are associated with debilitating side effects

(Burstow et al., 2017). However, in December 2013, the Food and Drug Administration (FDA)

approved sofosbuvir for the treatment of HCV. Sofosbuvir is a DAA that inhibits the replication

of HCV’s viral RNA and has shown a high resistance barrier. During the following year, three new

DAAs were approved for HCV treatment, and since then, treatment with a combination of sofosbuvir

(a NS5B protein inhibitor) and NS5A protein inhibitors has vastly improved sustained viral response
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in HCV + patients (Burstow et al., 2017).

The 2013 FDA approval of the DAA NS5B inhibitor sofosbuvir and the 2016 approval of a

sofosbuvir/velpatasvir regimen marked a new era for HCV treatment (Burstow et al., 2017). With

cure rates approaching 100%, DAAs are now the frontline recommendation for treating HCV. They

are alsowidely considered to be cost-effective (Dunn et al., 2023; Chhatwal et al., 2017; He et al., 2017).

However, despite these benefits, the high cost of DAA medications has led to significant barriers to

access (Henry, 2018). Though the actual price paid for medications such as DAAs depends on a

variety of factors, the wholesale acquisition cost (i.e., list price) of a 12-week course of sofosbuvir

treatment was $84,000 after its initial approval in 2013 (Roshenthal & Graham, 2016). By 2019, the

median price for a course of DAA treatment fell to approximately $37,000 as competing medications

were introduced. The high cost associated with DAA treatment, along with the fact that many of

those living with HCV are unaware of their disease, have led to projections of sustained HCV disease

prevalence in the era of DAAs (Chhatwal et al., 2016). In fact, despite the introduction of a curative

therapy for HCV, U.S. deaths attributed to the virus in 2018 (3.7 per 100,000) had declined only

modestly from 2013 levels (5.3 per 100,000) (CDC, 2020).

2.2 Hepatitis C, Wait-Listing, and Liver Transplant

Between 15% and 30% of those with an HCV infection experience spontaneous viral clearance

(Kamal, 2008). However, for those who cannot clear the virus on their own, HCV becomes a chronic

illness. Delaying treatment for HCV has serious health consequences (Erman et al., 2020). Left

untreated, chronic HCV can lead to cirrhosis and its complications, eventually necessitating liver

transplant (Zoulim et al., 2003). In fact, prior to the availability of DAAs, HCV was the leading

cause of infectious-disease-related deaths in the United States (Powell et al., 2019) and accounted for

nearly half of all liver transplant waiting list registrations.

Joining the liver transplant waiting list requires prospective candidates to first be referred to

a transplant center where they undergo a thorough medical workup along with an evaluation of

financial and psychosocial factors, including degree of social support, psychiatric illness, and whether

the candidate uses alcohol, tobacco, or other substances (Wahid et al., 2021). While the process

from evaluation to listing is informed by practice guidelines, transplant centers have latitude in how

they evaluate candidates and assess transplant risk, with the center’s transplant team ultimately

responsible for waiting list determinations (Martin et al., 2014). Prior studies have documented low

rates of evaluation referrals and wait-listing among qualified ESLD candidates, including Goldberg
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et al. (2016) which reported the 3-year incidence rate of wait-listing to be 15.8% among privately

insured ESLD patients who met the clinical guidelines to join the waiting list and 10.0% among

those with Medicaid coverage. Of those who are evaluated for the waiting list, between 30%–50% of

candidates fail to join (Jesse et al., 2019; Bryce et al., 2010, 2009).

Within three years of wait-listing, more than 10% of liver transplant candidates will die before

receiving a transplant and 20%will be removed from the waiting list without undergoing transplant—

primarily due to their disease progressing to the extent that they are no longer viable transplant

candidates (Kwong et al., 2020). Nearly 30% of those receiving a liver transplant will experience

graft failure within five years. Further complicating these issues is that untreated HCV leads to

universal recurrence of infection after transplant, potentially resulting in graft loss and necessitating

re-transplantation (Ciesek & Wedemeyer, 2012). HCV has historically limited the supply of trans-

plantable livers as HCV + livers were commonly discarded (Levitsky et al., 2017). However, since

the introduction of DAAs, there has been a shift toward more frequent transplantation of HCV +

livers, and patients have shown an increased willingness to accept an HCV + liver (Kwong et al.,

2020; Axelrod et al., 2018).

2.3 Conceptual Framework

To motivate our empirical work, we envision a simple discrete time model of a representative

end-stage liver disease patient/physician team.3 Each period of the model contains two stages. In

the second-stage, conditional on being on the liver transplant waiting list, the probability that the

patient receives an offer of a liver for transplant is a function of their health and the number of waiting

list patients ahead of them on the list. Conditional on receiving a liver offer, the patient must decide

whether to accept or refuse the organ for transplant. A patient may refuse an offer of a liver if they

believe that they will receive an offer of a higher quality liver in the future. In the first-stage of a given

period, clinically eligible liver patients must decide whether to join the waiting list. Because between

40% and 50% of those referred to transplant evaluation report concern over affording the costs of

travel, visits, and testing (Harding et al., 2021; Dageforde et al., 2015), waiting list participation is a

repeated choice (i.e., each period) even if the patient was previously on the list. The model takes the

form of an optimal stopping problem conditional on being wait-listed for an organ, where the decision

to join the waiting list is endogenous. In this sense, the model aligns with the framework of Howard
3(Agarwal et al., 2020) highlight important agency issues faced by the patient/physician team, which we abstract

from here.
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(2002), who focuses on the decision to accept an organ offer, and Agarwal et al. (2021), who develop

methods for evaluating alternative mechanisms with respect to efficiency and equity. The common

thread in all these models is that individuals are allowed to endogenously respond to changes in the

environment.

In our case, the change in the environment is a dramatic and curative innovation for a subset

of individuals on the waiting list. DAAs cause both HCV + attrition from the waiting list and

stem the flow of new HCV + registrants to the waiting list because the prevalence of HCV falls

in the population. The implications are a shorter waiting list and a list whose composition shifts

towards HCV − registrants. For a given supply of organs, liver transplant offers increase for HCV −

registrants, and, as a direct result, the value of wait-listing increases for marginal HCV − ESLD

patients. The model clarifies the mechanisms by which DAAs will affect the welfare of HCV + and

HCV − individuals with liver disease. It highlights that changes in levels of equilibrium transplants

will depend on the endogenous listing behavior of each group. This suggests that regressions of

equilibrium transplant levels, which depend on both transplant acceptance probabilities and waiting

list enrollment decisions, may generate different results than regressions of equilibrium transplant

rates, which are conditional on waiting list size. Furthermore, the model highlights how HCV −

individuals, who are external to the market for DAAs, may still be affected by their introduction.

That is, while the health of HCV − individuals is not directly affected by DAAs, transplant offers

change because of the direct health effects to HCV + individuals, and changes in transplant offers

change HCV − listing behavior.

Our data are well-suited to capture these changes. In what follows, we document raw trends in

liver transplants and waiting list additions. We also describe changes in the health composition of the

liver transplant waiting list by examining trends in MELD scores, time from listing to transplant, and

waiting list exits due to condition improvement or death. Finally, our data also allow us to investigate

an unmodeled, but potentially important, dynamic in the willingness of waiting list registrants to

accept an HCV + liver for transplant. DAA availability may result in an increase in the supply

of donors, and shift candidate preferences such that HCV + livers become more attractive, which

would affect the number of livers available for transplant. The implication of such a change would

be to increase liver offers, allowing for greater selectivity among transplant candidates. Following

our presentation of the raw data, we present plausibly causal evidence on the comparative dynamics

suggested by our theory from a research design in which we compare trends in liver transplant waiting

list behavior and transplant outcomes to similar trends for kidneys.
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3 Data and Descriptive Trends

3.1 Data Description and Summary Statistics

We use data from the Scientific Registry of Transplant Recipients (SRTR) from 2005 to 2019.4

SRTRcollects individual-level data on the universe of organ transplantwaiting list registrants, donors,

and transplant recipients from theUnitedNetwork forOrgan Sharing (UNOS) (Wright, 2022).5 Using

the SRTR data, we can calculate changes to the extensive margin of the liver transplant waiting

list, including the number of registrants currently wait-listed and the number of those added and

removed from the waiting list. We can also observe waiting list registrant characteristics including

age, sex, race, ethnicity, source of insurance coverage, and the donation service area (DSA)where each

registrant wait-lists.6 In addition, the data allow us to track the severity of registrants’ liver disease

through their MELD score, where a higher score indicates a higher mortality risk. Throughout the

analysis, we exclude individuals younger than 18 years at time of wait-listing or receiving a transplant

since minors face different allocation rules and procedures than adults.

While the SRTRdata do not allow us to observeHCV status at the time of waiting list registration,

they do include HCV status determined by an antibody test for those receiving a transplant. We use

this information to infer the HCV status of waiting list registrants by examining the prevalence of

primary diagnosis codes commonly found among HCV + but not HCV − liver transplant recipients,

and vice versa. For example, 59% of HCV + transplant recipients have a diagnosis of “cirrhosis: type

C” (SRTR code 4204) compared to only 2.2% of HCV − recipients. Similarly, “alcoholic cirrhosis

with hepatitis C” (SRTR code 4216) is observed in 13.3% of HCV + transplant recipients and only

0.6% of HCV − recipients. Conversely, “cirrhosis: fatty liver (NASH)” (SRTR code 4214) is found

among 14.3% of HCV − transplant recipients compared to only 0.6% of HCV + recipients. Likewise,

“alcoholic cirrhosis” (SRTR code 4215) is present in 26.7% of HCV − transplant recipients and only

3.5% of HCV + recipients. We take a conservative approach and classify a diagnosis code as HCV-
4The SRTR data system includes data on all donors, waiting list registrants, and transplant recipients in the U.S.,

submitted by the members of the Organ Procurement and Transplantation Network (OPTN). The Health Resources
and Services Administration of the U.S. Department of Health and Human Services provides oversight to the activities
of the OPTN and SRTR contractors.

5A small number of people receive a liver transplant without being wait-listed. Our transplant measure includes
those receiving a transplant whether they are wait-listed or not.

6Due to changes over time in the existence and services of certain DSAs, we use modified DSA identifiers throughout
our analyses and proceed in three steps. First, we combine the Sierra Donor Services DSA into the Donor Network
West DSA in California since Sierra Donor Services ended their liver program in 2008/2009 and was geographically
entirely surrounded by Donor Network West. Second, the Mississippi Organ Recovery Agency began operating in
2013, so we combine that DSA with their pre-existing contiguous DSAs in Tennessee and north Mississippi, Louisiana,
and Alabama. Third, because Lifelink of Southwest Florida ended in 2004, OurLegacy in Florida started in 2007,
and Lifelink Puerto Rico started in 2012, we combine all Florida and Puerto Rico DSAs into one DSA unit.
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related if its rate of occurrence among HCV + transplant recipients is at least four times greater than

its rate of occurrence among HCV − recipients, and vice versa. After assigning registrants based on

their primary diagnosis codes, we identify additional HCV + waiting list registrants using an optional

diagnosis text description field. The strings in this description field include terms such as “HCV,”

“Hepatitis C,” “Hep C,” as well as variations that may include periods, dashes, slashes, or minor

typos.7 Although we know the actual HCV status of transplant recipients, for consistency, we use

inferred status in all regression analyses. In practice, our estimates using inferred HCV status are

likely to be conservative, since we expect that misidentifying some HCV + individuals as HCV −

and vice versa would bias our estimates toward zero.8 Also, since HCV antibodies remain even after

achieving viral clearance, we are able to use HCV antibody status at time of transplant to assess

whether our HCV − classification might capture those with a cured HCV infection, thus potentially

overstatingDAA-associated changes inHCV − wait-listing. We find no evidence of this. For example,

in 2014, 99 (3.2%) of the 3,128 liver transplant recipients that we categorized as HCV − based on

diagnosis codes tested positive for HCV antibodies at the time of transplant, compared to 206 (3.3%)

of the 6,180 liver transplant recipients categorized as HCV − in 2019. For approximately 15% of

waiting list registrants, neither the diagnosis code nor the text description allow us to assign an HCV

status, so we exclude those individuals from our analyses.

Table 1 presents descriptive statistics for liver transplant waiting list registrants by HCV status

and over time. Waiting list registrations among HCV + individuals with ESLD dropped from an

average of 3,896 per year (35,068 total) over the 9 pre-DAA years in our sample to an average of

2,405 per year (14,431 total) across the 6 post-DAA years. The number of waiting list removals and

transplants among HCV + registrants also dropped after DAAs became available, from 4,017 per year

(36,157 total) to 2,984 per year (17,901 total). In contrast, yearly waiting list registrations, removals,

and transplants increased among HCV − individuals with ESLD, going from 5,191 to 7,804 average

yearly listings, and from 5,163 to 7,776 average yearly removals and transplants. The most common

outcome of the wait-listing process is a transplant from a deceased donor, followed by removal from

the waiting list due to condition deterioration or death. For both HCV + and HCV − registrants,

the probability of removal due to condition deterioration or death fell in the period following DAA

availability, while removal due to condition improvement increased. MELD scores indicate that, on
7Using this approach, 1,804 additional registrants (roughly 120 per year) can be flagged as HCV + relative to the

93,547 registrants (roughly 6,236 per year) who are identified as HCV + or HCV − using only their diagnosis code.
8For example, our coefficient estimate of the effect of DAA availability on transplants to HCV − recipients is 0.31

log points using inferred HCV status versus 0.37 log points when using actual HCV antibody status.
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average, HCV − registrants face a higher mortality risk than HCV + registrants. Due in part to the

lower average MELD score for HCV + registrants, the time from listing to transplant is longer for

those with HCV. The descriptive statistics indicate an increase in time to transplant in the DAA era

for HCV + registrants and a decrease for HCV − registrants. The majority of waiting list registrants

are privately insured, between the ages of 40 and 64, and live in the South census region.

3.2 Trends in Equilibrium Transplants and Liver Demand

Figure 1 shows the equilibrium number of liver transplants over our sample period, both overall

and by HCV status. We see a clear trend break following the introduction of DAAs, as the total

number of liver transplants increased from 6,190 in 2014 to 8,330 in 2019. This total increase in

transplants reflects both a significant reduction in transplants to HCV + individuals (solid line) and

a significant increase in transplants to HCV − individuals (long-dashed line). To quantify changes

in raw trends, we estimate a series of comparative interrupted time series (CITS) models. CITS is

a more general form of the difference-in-differences design where each group is compared to its own

baseline trend rather than to a counterfactual generated by an untreated group, and is appropriate

in this case because, consistent with our behavioral model above, both HCV + and HCV − waiting

list registrants are potentially affected by the development of DAAs. We stress that this exercise

is meant to be descriptive in nature — we do not interpret CITS estimates as causal effects, but

they serve as useful benchmarks to which we will compare difference-in-differences estimates in later

sections. A description of the CITS specification, as well as the full set of CITS results, can be

found in Appendix Section 1 and Appendix Table 1.9 From 2014 to 2019, the number of HCV −

liver transplant recipients increased by an average of 53.6% relative to their baseline trend, while

the number of HCV + individuals receiving a transplant decreased by an average of 55.7%. Before

2014, approximately 30% of HCV + and HCV − waiting list registrants received a liver transplant

each year, and the trends in this outcome were flat for both groups; by 2019, the share of HCV −

registrants who exited the waiting list because they received a transplant stood at nearly 65%.10

Conceptually, changes in equilibrium transplants shown in Figure 1 reflect both changes in the

demand and supply of livers. In Section 4.1.3, we return to the issue of how DAAs may have changed

the supply of livers, but our primary statistical and econometric exercises focus on demand-side effects.

To study the role of these effects on equilibrium levels of transplants, we begin by documenting trends
9When interpreting the magnitudes of the changes implied by the coefficient estimates from logged outcome models,

we use the following calculation: %∆ = 100 × (eestimate − 1).
10We present trends in transplant rates in Appendix Figure 2.

11



3.2 Trends 3 DATA AND DESCRIPTIVE TRENDS

in waiting list additions and removals. Figure 2a presents trends in the number of liver transplant

waiting list registrants, both overall and by HCV status. Between 2005 and 2012, both the size and

HCV composition of the waiting list were relatively flat and stable. From 2013 to 2019, the total

waiting list count fell from 16,738 to 13,911 registrants, and the composition of the waiting list shifted

toward HCV − registrants. Changes in waiting list size could be driven by the changes in transplant

volume documented in Figure 1, but they could also result from changes in the flow of patients to the

list. Indeed, because Figure 2a shows a decline in the size of the list, our model predicts that marginal

ESLD patients will be induced to join the list. Figure 2b shows that following the introduction of

DAAs, waiting list additions for HCV + registrants sharply declined, while additions for HCV −

registrants increased. The estimates from our CITS models indicate an average increase in waiting

list additions of 22.6% from 2014 to 2019 for HCV − registrants and an average decrease of 51.4% for

HCV + registrants relative to each group’s baseline mean.

In addition to changes in transplants, the change in the health composition of the waiting list

is also important because it potentially affects the value of the average transplant in terms of graft

survival. To examine changes in the health composition of the waiting list, Figure 3a shows the

average last MELD score prior to transplant for both HCV − and HCV + waiting list registrants.

Average MELD scores at transplant were rising (i.e., worsening health) for both HCV + and HCV −

registrants between 2005 and 2013. HCV + registrants saw steep declines in average MELD scores

at transplant coinciding with the introduction of DAAs, while the growth rate in average MELD

score at transplant for HCV − registrants fell at a slower rate. Evidence in Figure 3a could reflect

a selection of healthier patients on the waiting list, or it could reflect shorter waiting times from

listing to transplant. In Figure 3b, we present the mean initial MELD score upon listing for both

HCV − and HCV + waiting list registrants. The mean initial MELD score for HCV − registrants

rises slightly through the introduction of DAAs, whereas it falls from roughly 17 to 15 for HCV +

patients. For both transplant and listing, we present CITS estimates of changes in MELD scores

associated with the introduction of DAAs in Appendix Table 2. These results are consistent with

health improvements for both HCV + and HCV − patients at the time of transplant and for HCV +

patients at the time of listing.11

11We also track trends in waiting list attrition due to condition deterioration/death and condition improvement
before and after the introduction of DAAs. The likelihood of leaving the waiting list because of deteriorated condition
or death was increasing for both groups through 2013 before declining once DAAs became available (Appendix Figure
1a and Appendix Table 3). HCV − registrants were consistently more likely to leave the waiting list due to condition
improvement compared to HCV + registrants in the pre-DAA period, but this relationship reversed shortly after the
introduction of DAAs (Appendix Figure 1b and Appendix Table 3).
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There are several key takeaways from the patterns we observe in transplant, wait-listing behav-

iors, and the health composition of liver waiting list registrants. We document an increase in the

number of liver transplants following the introduction of DAAs that is driven entirely by HCV −

recipients. We also see significant reductions in both the number of HCV + waiting list registrants

and transplants to HCV + recipients. These patterns highlight the extent of the positive externalities

of DAA development that have accrued to HCV − individuals with ESLD. Namely, reduced demand

for livers from HCV + individuals has resulted in greater organ availability for HCV − individuals.

Therefore, we conclude that the post-DAA growth in HCV − liver waiting list registrants is primarily

a function of marginal candidates entering the waiting list (i.e., individuals who likely would not

have wait-listed in the absence of DAA-induced changes to the value of listing). This interpretation

is supported by higher post-DAA MELD scores at the time of listing for HCV − registrants and by

prior research which has found that fewer than half of those who met the clinical guidelines to join

the liver transplant waiting list actually did prior to DAAs (Jesse et al., 2019; Goldberg et al., 2016;

Bryce et al., 2010, 2009). Further, HCV − waiting list registrants were more likely to suffer from

ALD in the post-DAA period and those with ALD comprised the bulk of new waiting list additions

(see CITS evidence by diagnosis category in Appendix Table 4). Evidence indicates that physicians

are less likely to refer ALD patients to the waiting list relative to other diagnosis categories and that

pre-DAA rates of liver transplant wait-listing among those with ALD were as low as 5% (Leong &

Im, 2012). Finally, lower average MELD scores for HCV − recipients at the time of transplant, likely

due to shorter times from wait-listing to transplant (see Appendix Figure 7 and Appendix Table 5),

have implications for graft survival and the benefits associated with transplant. We return to this

point later in our discussion of the value of the innovation-induced externalities generated by DAAs

in Section 5.

4 Research Design: Comparing Trends in Livers and Kidneys

While trend estimates imply substantial gains to HCV − individuals with ESLD associated with

the timing of DAA introduction, the lack of a comparison group that is unaffected by the availability

of DAAs could limit our ability to address potential sources of confounding. For example, a supply

shock to the liver transplant waiting list concurrent with the introduction of DAAs is the increase in

the availability of transplantable organs associated with the rising number of drug overdose deaths

(see Appendix Figure 4). From 2014 to 2019, drug overdose deaths from synthetic opioids, including
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fentanyl, increased by an average of 58% per year compared to an average increase of 12% per year

between 2005 and 2013, leading to an estimated 25,000-plus additional organ transplants (Dickert-

Conlin et al., In press). Similarly, the Affordable Care Act’sMedicaid expansions, which 26 states and

Washington D.C. adopted in 2014, led to increased organ waiting list registrations (Lemont, 2023).

CITS models are unable to distinguish between concurrent shocks, and thus return the combined

effect of DAAs and drug overdose deaths or health insurance gains on changes in transplant and

waiting list registration.

To separately identify the impact of DAAs from concurrent shocks, we estimate a traditional

difference-in-differences (DiD) design that compares equilibrium liver transplants and liver demand

(i.e., waiting list additions) for bothHCV + andHCV − individuals to similar outcomes and behaviors

for end-stage renal disease (ESRD) patients before and after the introduction of DAAs. To the extent

that secular trends in the supply or demand for transplantable organs are reflected similarly among

HCV − liver waiting list registrants and those on the kidney waiting list, the DiD strategy will

improve our ability to isolate the reallocation effects of DAAs on the listing behaviors and outcomes

for HCV − registrants and estimate the value of the innovation-induced externality. For example,

Dickert-Conlin et al. (In press) shows that the opioid epidemic has led to a large increase in the supply

of transplantable organs. However, since the magnitude of this supply shock was similar for livers

and kidneys, our DiD models should difference out the influence of overdose deaths, allowing us to

isolate the effect of DAAs. Similarly, Lemont (2023) shows that Medicaid expansion was associated

with comparable increases in both liver and kidney waiting list registrations (34% for livers and 38%

for kidneys) and transplants (40% for livers and 50% for kidneys) for Medicaid beneficiaries.12

Data on equilibrium kidney transplants and waiting list additions also come from SRTR, and

Appendix Table 6 provides descriptive statistics for these data.13 For a comparison of liver and

kidney trends to produce credible causal estimates of the effect of DAA availability on transplants

and listing behaviors for HCV − individuals with ESLD, baseline differences in outcomes between

liver and kidney transplant recipients and waiting list registrants must remain stable over time in the

absence of DAAs. While this parallel trend assumption is not directly testable, we provide suggestive

evidence that it holds by plotting trends in equilibrium kidney and liver transplants and waiting list
12In a subsample of states yet to expand Medicaid by 2019, estimates of DAA effects on transplants and wait-listing

behavior were similar to those from our full sample and are available upon request.
13We exclude known HCV + kidney transplant waiting list registrants based on optionally provided diagnosis text

from our control group in all analyses, which amounts to only 0.13% of all kidney candidates from 2005 to 2019.
For reference, HCV + kidney transplant recipients account for fewer than 5% of all recipients in our data based on
antibody tests at the time of transplant. Because five kidney DSAs do not have a liver program, our sample includes
50 modified DSA identifiers for kidneys and 45 modified DSA identifiers for livers.
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inflows in Figure 4. Because of the large level differences between liver and kidney transplants and

waiting list registrations, we plot log trends in Figure 4 and use log outcomes in our DiD regression

models. Trends in kidney transplants (Figure 4a) and waiting list additions (Figure 4b) track closely

with trends in liver transplant and waiting list additions through 2013, providing no indication of a

violation of the parallel trends assumption.

We estimate the following DiD specification separately for HCV + and HCV − liver transplant

recipients and waiting list registrants using kidney transplant recipients and waiting list registrants

as controls:14

Ydlt = β[1(l = liver) × DAAt] + γdl + ηt + ϵdlt, (1)

where Ydlt is the outcome for DSA d, organ l ∈ {liver, kidney}, in year t. The treatment effect of

interest is β, which is the coefficient on the interaction between the indicator for liver (i.e., treated)

or kidney (i.e., control) transplant recipient/waiting list registrant and DAAt, the indicator for the

post-DAA period (2014–2019). Finally, we include DSA-by-organ fixed effects γdl, year fixed effects

ηt, and an idiosyncratic error term ϵdlt clustered at the DSA-by-organ level.

Table 2 contains our DiD estimates of the effects of DAA availability on liver transplants (columns

1 and 2) and liver transplant waiting list additions (column 3) for HCV − individuals (Panel A)

and HCV + individuals (Panel B). The estimates in columns 1 and 3 are from models where the

dependent variables are measured in logs, while the estimate in column 2 is from a model where the

dependent variable is defined as a fraction of the HCV-specific number of registrants on the waiting

list (i.e., the transplant rate). Thus, estimates in column 2 effectively remove the influence of DAA-

induced changes to waiting list inflows and outflows and provide an indication of how DAAs impacted

transplants conditional on wait-listing.

Table 2, column 1 presents transplant estimates and underscores the substantial externality

accruing to HCV − individuals with ESLD seeking transplant as a result of DAA availability. Average

annual liver transplants for HCV − recipients increased by 100 × (e0.3059 − 1) = 35.8% relative to

changes in kidney transplants from 2014 through 2019. Estimates in Panel B clearly show that the

gains to HCV − transplant recipients came from the reallocation of transplantable livers from HCV +

individuals who no longer needed a transplant. We estimate that DAAs reduced average annual liver

transplants for HCV + individuals by 39.1% relative to kidney transplants.
14We primarily report OLS estimates using logged outcomes throughout the paper. We also estimated Poisson

regressions that generated virtually identical results that are available upon request.
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Estimates of DAA-induced changes in HCV-specific transplant rates in Table 2, column 2 indicate

that transplants to HCV − recipients increased relative to the number of HCV − waiting list regis-

trants (16.0 percentage points, 31.6%). In other words, DAA-induced transplant gains to HCV −

recipients were (proportionally) larger than the net overall growth in waiting list additions, sug-

gesting that HCV − waiting list registrants were receiving more frequent and/or earlier liver offers.

Consistent with this interpretation, we show in Appendix Figure 7 and Appendix Table 5 that the

time to transplant for HCV − patients declined by 16% following the introduction of DAAs. The

transplant rate estimate forHCV + registrants in Panel B, column 2 is positive (5.8 percentage points,

11.4%) and, while not statistically significant at conventional levels, suggests that DAAs conferred

modest benefits to HCV + individuals who remained on the waiting list. We interpret this finding as

evidence that the large, estimated reduction in transplants to HCV + recipients in Panel B, column 1

was driven entirely by the reduction in transplant demand from HCV + individuals who were cured

by DAA treatment.

Estimates of the effect of DAAs on liver transplant waiting list additions are presented in Table

2, column 3. DAAs increased HCV − liver waiting list additions by an average of 36.8% relative to

kidney waiting list additions from 2014 through 2019 and decreasedHCV + liver waiting list additions

by an average of 45.4%.15

We also estimate a time-disaggregated (i.e., event study) version of our DiD specification:

Ydlt =
2019∑

k=2005
βk[1(l = liver) × 1(t = k)] + γdl + ηt + ϵdlt, (2)

where the vector of the coefficient estimates, βk, reflects the time-specific differences in outcomes

between liver and kidney waiting list registrants and transplant recipients. We specify the baseline

period as 2012 in our event study models so that we can detect any potential anticipatory effects

occurring in 2013 as DAAs became available in December of that year. These estimates allow us

to investigate whether there were any differential pre-intervention trends between liver and kidney

transplant recipients and waiting list registrants as well as the dynamics of the treatment effects

across the post-treatment periods.

Figure 5 presents event study estimates that correspond to the DiD transplant and wait-listing

estimates in Table 2 (see Appendix Figure 3 for transplant rate event studies). Relative to kidney

transplants and waiting list additions, Figure 5a shows a clear decline in liver transplants to HCV +

15Our regression results are economically similar when we restrict our sample by dropping those patients observed
to ever list for both a liver and a kidney.
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recipients, and Figure 5b shows a clear decline in liver waiting list additions from HCV + individuals.

In both cases, trends in the pre-DAA period were flat, with annual estimates growing monotonically

over time from 2013/2014. Results are a mirror image for HCV − individuals – both liver trans-

plants (5c) and liver waiting list additions monotonically increase (Figure 5d), with little evidence

of differential pre-trends. Our event study estimates imply that DAAs led to an additional 1,648

HCV − people joining the liver transplant waiting list per year, on average, or 9,888 total HCV −

additions to the liver transplant waiting list from 2014 to 2019. On average, DAAs reduced HCV +

liver transplant waiting list additions by 1,616 people each year for a total of 9,693 fewer HCV +

additions to the liver transplant waiting list from 2014 to 2019.

Finally, we conduct a heterogeneity analysis that allows the effect of DAAs on transplants and

wait-listing for HCV − patients to vary by baseline DSA HCV prevalence. Technically, the regression

specification is a triple differences strategy where we compare liver transplant recipients and waiting

list registrants to kidney recipients/registrants and allow that comparison to vary by the baseline

share of DSA transplant recipients testing positive for HCV. The intuition behind this approach is

that the demand response to DAA availability from HCV + individuals with ESLD should be larger

in areas with greater HCV prevalence, freeing more livers for transplant to HCV − recipients listing

in these areas. Table 3 presents these results for waiting list additions (Panel A) and log transplants

(Panel B). Column 1 of Table 3, which we label the dose-response effect, shows clearly that both

waiting list additions and transplants are increasing in the fraction of DSA transplant recipients with

HCV. For every 10-percentage point increase in baseline transplant recipient HCV share, the effect of

DAAs on HCV − wait-listing and transplant increases by 13.7% and 13.1%, respectively. In Columns

2 and 3 of Table 3, we split our sample by baseline HCV rate and repeat our standard DiD analysis

from Equation 1. Again, the evidence suggests a strong dose response; our estimates of the impact of

DAAs on both HCV − waiting list additions and transplants are significantly larger in the subsample

of DSAs that are above the baseline HCV rate median.

4.1 Robustness

4.1.1 Concurrent Shocks

Our conceptual model suggests that the value of wait-listing for HCV − individuals increases

when the number of HCV + waiting list registrants falls, and so we expect to see increased HCV −
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wait-listing following the introduction of DAAs.16 However, a competing explanation for the observed

pattern in HCV − wait-listing in Table 2 would be concurrent changes in the prevalence of non-HCV

conditions leading to ESLD. To distinguish between these explanations, we first estimate changes in

waiting list additions by leading non-HCV disease indicators for wait-listing including nonalcoholic

steatohepatitis (NASH) and alcohol liver disease (ALD).17 These estimates are included in Appendix

Table 4 and indicate thatHCV − waiting list additions followingDAAs are being driven by individuals

with ALD. Second, we use data from the NHANES to track ALD prevalence rates among adults in

the U.S. using established guidelines for identifying ALD (Younossie et al., 2011). Appendix Figure

5 plots the prevalence of ALD throughout our sample period, indicating a small uptick in 2015/2016

followed by a return to pre-DAA levels by 2017/2018.18 So, while post-DAA additions to the liver

transplant waiting list were predominantly driven by HCV − registrants with ALD, this appears to

be a compositional change that aligns with our discussion of DAA-induced wait-listing for “marginal”

registrants in Section 3.2.

4.1.2 DAA Spillovers to Kidney Transplants

Another consideration of using characteristics of kidney transplant recipients and waiting list

registrants to generate the counterfactual for our DiD models is that DAA effects may spill over

to individuals with ESRD. This can happen in several ways. First, the availability of DAAs may

increase the willingness of kidney transplant waiting list registrants to accept an HCV + organ.

Second, individuals who are cured of HCV may become organ donors.19 Third, those cured of HCV

may become less likely to develop ESRD and join the kidney waiting list,20 or if they already have

ESRD, they may become healthy enough for a kidney transplant.

In Appendix Figure 6, we assess each of these potential spillover pathways through which DAAs

could induce changes in the supply or demand for transplantable kidneys. Appendix Figure 6a shows
16The idea is that marginal HCV − individuals are induced to join the waiting list due to the increased likelihood

of a transplant associated with DAA availability and because of a reduced time from listing to transplant. Appendix
Figure 7 plots trends in time from wait listing to transplant for HCV − recipients and shows a steep decline following
the introduction of DAAs. Estimates in Appendix Table 5 indicate that the time from wait-listing to liver transplant
fell by 16.0%, on average, for HCV − liver waiting list registrants compared to kidney waiting list registrants following
the introduction of DAAs.

17An individual in our sample was considered to have NASH/ALD when NASH/ALD was listed as a primary diag-
nosis or when hepatocellular carcinoma was listed as a primary diagnosis with a secondary diagnosis of NASH/ALD.

18We cannot include NHANES data for 2019 in our ALD prevalence rate estimates as the 2019/2020 NHANES
data collection was halted due to COVID-19.

19Using a simulation model and data from the United Kingdom, Jena et al. (2019) estimate that curing 240,000
cases of HCV and then implementing universal screening and treatment would lead to an additional 127 kidney
transplants per year.

20This is because HCV potentially increases the risk for developing ESRD (Lee et al., 2014).
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a clear increase in the willingness of both kidney andHCV − liver transplant waiting list registrants to

accept an HCV + organ. We take this as evidence of a similar demand response among kidney waiting

list registrants to the availability of DAAs. Therefore, our DiD estimates will isolate the decreased

demand for transplantable livers associated with DAAs for HCV + registrants and its effect on

HCV − individuals, excluding gains associated with increased willingness to accept an HCV + liver.

As a result, our DiD analyses will represent lower bound estimates of DAA-induced externalities.

Appendix Figure 6b examines whether DAAs affected the supply of kidneys available for transplant

in the case where those newly cured of HCV became living kidney donors. Since HCV status is

determined through an antibody test and antibodies remain even after achieving viral clearance, we

can examine whether the number of living kidney donors with HCV antibodies increased following

the availability of DAAs. The figure indicates a slight increase in donors with HCV antibodies from

2012 to 2013, just before DAA availability. However, the magnitude of this increase is quite small,

representing approximately 20 additional living donors with HCV antibodies per year, or about 0.3%

of all living donors. Appendix Figures 6c and 6d plot the log number of HCV + transplant recipients

and the share of recipients who are HCV + for both livers and kidneys. If DAAs impacted demand for

kidneys through improved health for those with ESRD, we would expect to see fewer HCV + kidney

transplant recipients (similar to the effects for HCV + liver transplants). Instead, we see an uptick in

the number of HCV + kidney transplant recipients in Appendix Figure 6c and no discernible change

in the share of kidney transplant recipients who are HCV + from 2013 to 2019 in Appendix Figure

6d.

Finally, while the descriptive evidence inAppendixFigure 6a indicating an increasedwillingness to

accept an HCV + liver is consistent with predictions from our conceptual model, the model developed

in Howard (2002) also predicts that waiting list registrants will become more selective when demand

from HCV + individuals falls and liver offers increase. We assess changing selectivity by estimating

the effect of DAAs on livers discarded due to “poor quality” in Appendix Table 7.21 Overall, the

average annual number of livers discarded due to poor quality rose by 14.7% from 2014 through 2019

compared to kidneys (column 1) and the fraction of livers discarded increased by 2.4 percentage
21We define a discard as being due to “poor quality” based on disposition and discard codes in the SRTR deceased

donor disposition file. One example is where authorization to recover an organ was not requested due to reason
codes “Acute/Chronic Renal Failure” or “Donor Quality”. Another example is where authorization was obtained but
the organ was still not recovered due to reason codes such as “Poor Organ Function”, “Infection”, “Positive HIV”,
“Diseased Organ”, and more. Finally, there are cases where the organ was recovered for transplant but discarded
due to reason codes like “Too old on pump”, “Vascular damage”, ”Donor medical history”, “Warm ischemic time too
long”, “Poor organ function”, ”Infection”, and so on. In constructing this indicator, we do not include cases where
a recipient was not located, where the organ was refused by all programs, or other non-donor-quality codes such as
“Other”, “Surgical damage in OR”, “No Local Recovery Team”, “Medical Examiner Restricted”, etc.
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points (16%, column 2). Alternatively, estimates in column 3 of Appendix Table 7 show that there

was no relative increase in the share of HCV + livers discarded due to poor quality following DAA

availability. We interpret these results as suggestive evidence that transplant candidates became

more selective after DAAs became available, but that HCV status was no longer viewed as a marker

of poor organ quality.

4.1.3 Organ Supply Changes

To this point, we have focused our discussion on the demand-side effects of DAA availability, but

equilibrium changes in transplants and waiting list additions could also be a function of changes in

the supply of transplantable organs. Figure 6 plots the number of deceased donor livers and kidneys

recovered for transplant separately by HCV status. Figure 6a shows a steep increase in HCV + livers

and kidneys recovered for transplant beginning in 2014, which is likely driven by a combination of

drug overdose deaths (which accrue disproportionately to HCV + individuals (Durand et al., 2018))

and an increased willingness among waiting list registrants to accept HCV + organs (see Appendix

Figure 6a ). Figure 6b shows much smaller relative increases in the supply of transplantable organs

recovered from HCV − donors beginning in 2014. More importantly for our identification strategy,

the magnitudes of the increases in organ availability for both HCV + and HCV − livers and kidneys

are quite similar suggesting that estimates from our DiD models reflect demand-side changes in

response to the introduction of DAAs.

4.1.4 Reconciling CITS and DiD Estimates

In Section 3.2, we discuss trends in liver transplants and waiting list inflows and outflows for those

with and without HCV. To measure the magnitude of these trends compared to the baseline (i.e., pre-

DAA) means, we use a CITS procedure, which is detailed in Appendix Section 1. We then present

DiD estimates that assess the effect of DAAs on transplant and liver waiting list additions, using

kidney transplant recipients and waiting list registrants as controls. We now compare the estimates

generated by these two different techniques and briefly describe the relevance of this exercise to our

preferred identification strategy.

Table 4 contains annual estimates of the effect of DAAs on transplants for HCV − recipients from

our CITS model (column 1) and our DiDmodel (column 2) relative to the 2005–2012 period. In every

year, the CITS estimates are larger than the DiD estimates, likely due to unobserved confounders

inflating the CITS estimates (e.g., drug overdose deaths, Medicaid expansion, increased willingness

20



5 VALUE OF EXTERNALITIES

to accept HCV + donor organs, etc.). Column 3 calculates the magnitude of the difference between

the CITS and DiD estimates, and columns 4–6 contain CITS estimates of trends in transplant for all

organs, livers, and kidneys, respectively.

Two key takeaways from Table 4 are worth noting. First, annual growth in liver and kidney

transplants are quite similar over the post-DAA period. For example, liver transplants had increased

by 42.7% (column 5) and kidney transplants by 39.9% (column 6) from 2012 to 2019, indicating

that trends in the availability of livers and kidneys for transplant were similarly affected by supply

changes and willingness to accept HCV + organs over this period. Second, the differences between

our CITS and DiD estimates of DAA effects on transplants for HCV − recipients in column 3 are

nearly identical to the overall growth of organ transplants in column 4, suggesting that our DiD

estimates capture the externality effect of a reallocation of livers from HCV + to HCV − transplant

recipients, removing the influence of confounders. Taken together, these findings provide additional

support for our choice to use kidney transplant recipients and waiting list registrants to approximate

the counterfactual in our DiD model.

5 Value of Externalities

Our DiD event study estimates from Table 4 indicate that from 2014 through 2019, DAAs were

responsible for an additional 5,682 liver transplants to HCV − recipients. Given the large concurrent

reduction in HCV + individuals on the liver transplant waiting list, the evidence we present suggests

that these transplant gains for HCV − recipients did not crowd out transplants that would have

otherwise gone to those who were HCV +. Multiplying 5,682 transplants by 10.1 life-years22 per

liver transplant (Rana et al., 2015) equals 57,388 life-years, and assuming a 3% annual discount rate

and a value of $150,000 per life-year, our DiD estimates imply that DAAs generated $7.52 billion, or

$1.25 billion per year, in value to HCV − transplant recipients between 2014 and 2019. For context,

Chhatwal et al. (2015) estimate that providing DAAs for all HCV + individuals in 2015 at market

prices would have cost roughly $65 billion. Recognizing that providing DAAs to all those who were

HCV + would have generated further externalities, our estimated innovation-induced externality

value accruing to HCV − individuals with ESLD is roughly 11.5% of the total potential market for

DAAs in 2015.

It is also worth reiterating that this externality estimate is likely to represent a lower bound for two
22Jena et al. (2016) assume a more conservative 7.2 years, but this estimate does not appear in the literature.
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reasons. First, ourDiD estimates do not capture additional transplants that arose due to the increased

willingness to accept an HCV + organ once DAAs became available, since we see a similar increased

willingness among those on the kidney transplant waiting list. Second, whether through improved

time from listing to transplant or through health compositional changes in marginal registrants, we

show evidence that HCV − transplant recipients are in better health at the time of their transplant

in the post-DAA era and this is not reflected in the estimates of post-transplant survival that we

use in our value calculation. While a direct mapping between pre-transplant MELD score and post-

transplant survival has yet to be established, evidence indicates that moving from a pre-transplant

MELD score above 25 to a score below 25 – consistent with the pattern for HCV − recipients following

the introduction of DAAs (see Figure 3a) – is associated with up to a 30% improvement in 10-year

post-transplant survival (Habib et al., 2006).

Relative to the simulation-based literature, our estimates of the value that DAAs conferred on

HCV − individuals with ESLD are large. For example, Jena et al. (2016) simulate an epidemiological

model for 20 years starting in 2015 and conclude that DAAs would lead to an additional 7,321

HCV − liver transplants, or 366 transplants per year. By contrast, using actual retrospective data,

we estimate an additional 947 HCV − transplants per year between 2014 and 2019, on average. The

key conceptual difference is that our economic model suggests changes in listing behavior among

HCV − patients when the size of the waiting list changes. In the simulation model of Jena et al.

(2016), the demand for organs from HCV − individuals is assumed to increase linearly until 2025 and

then remain flat, and this demand is not a function of the characteristics of the waiting list. Our

point is that consistent with the notion that listing behavior is elastic with respect to expectations

about transplant probabilities and outcomes (Dickert-Conlin et al., 2019; Agarwal et al., 2021), DAAs

shrank the waiting list, which induced marginal HCV − patients to list, and these marginal HCV −

individuals may have contributed significantly to the effect of DAAs on HCV − transplants. For

example, using kidney transplant waiting list additions as a counterfactual, our estimates imply that

DAA availability resulted in an additional 9,888 HCV − liver transplant waiting list registrants from

2014 and 2019, or 1,648 additions per year.

Accounting for the behavioral impact of DAAs on waiting list additions is important considering

the implications of our findings for the size of the liver transplant waiting list. We estimate that, in

the absence of DAAs, 6,397 HCV − individuals with ESLD would have joined the liver transplant

waiting list in 2019.23 That same year, there were 6,182 liver transplants performed on HCV −

23The actual number of HCV − liver transplant waiting list adds in 2019 was 9,399.
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recipients and, as Figure 1 indicates, this number was maintaining an upward trend in the post-DAA

period. As a result, with no DAA-induced HCV − wait-listing response, our estimates suggest that

the development of DAAs would have effectively eliminated the liver transplant waiting list. Instead,

the gap between the number of HCV − waiting list adds and transplants to HCV − recipients was

actually larger in 2019 than in 2012 (the year prior to the development of DAAs).24

6 Conclusion

We study the externalities generated by technological innovation in the context of HCV and liver

transplantation. Our primary finding reveals that the availability of DAAs, which were approved to

treat HCV in late 2013, generated substantial benefits for individuals outside the market for HCV

medical care: those with non-HCV-induced ESLD. Our economic model suggests that part of the

externality effect is driven by endogenous HCV − listing. Given the dramatic reduction in the size of

the liver transplant waiting list, HCV − individuals with ESLD who may have been either relatively

healthy, perhaps attempting to forestall listing, or very sick, perhaps rationally not expecting to

receive a transplant, chose to list. Notably, a significant fraction of these marginal listers received a

transplant.

Although our estimates are conservative, as we may be under-counting HCV cases in kidney

transplantation and there may be spillovers (on top of our controls and research design) of DAAs on

the demand and supply of kidneys, they clearly highlight the importance of considering innovation-

induced externalities when valuing technological advances. Additionally, it is likely we underestimate

the number of DAA-induced HCV − liver transplant waiting list adds, and our results show larger

effects when HCV status is measured through antibody testing at the time of transplant rather than

at listing.

In sum, we provide the first retrospective evidence on the effect of DAAs on liver transplant

and wait-listing behaviors, and, by doing so, we contribute to a growing economics literature on the

incentives generated by medical innovation. Our results are timely. In March of 2023, the Biden

administration proposed funding that would expand access to DAAs, with the goal of eliminating

HCVby 2034. Using a similarmodel to that in Jena et al. (2016), Chhatwal et al. (2023) simulated that

from 2024 to 2034, increased DAA access will decrease U.S. HCV prevalence by 94% and prevent the

need for 2,500 liver transplants. Our work suggests that these 2,500 spared transplants will generate
24There were 5,440 HCV − waiting list adds in 2012 and 2,720 transplants to HCV − recipients (difference = 2,720).

There were 9,399 HCV − waiting list adds in 2019 and 6,182 transplants to HCV − recipients (difference = 3,217).
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significant value for HCV − patients in search of a liver.
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Table 1: Liver Registrants’ Summary Statistics, by HCV Status

HCV + Liver Registrants HCV −Liver Registrants
2005-19 2005-13 2014-19 2005-19 2005-13 2014-19

Totals
National # of Listings 49,499 35,068 14,431 93,542 46,719 46,823
National # of WL Removals & TXs 54,058 36,157 17,901 93,123 46,470 46,653

Waiting List Flows (Counts)
Nat’l Yrly # of Listings 3,300 3,896 2,405 6,236 5,191 7,804
Nat’l Yrly # of WL Remov. & TXs 3,604 4,017 2,984 6,208 5,163 7,776

Waiting List Outcomes (Means)
Too Sick / Died 0.257 0.269 0.235 0.226 0.240 0.213
Improved 0.048 0.032 0.079 0.067 0.066 0.069
Dec. Don. TX 0.511 0.511 0.511 0.535 0.510 0.559
Liv. Don. TX 0.014 0.015 0.014 0.027 0.024 0.031
Days to TX 316.7 302.1 346.1 228.1 241.5 215.9

Waiting List Characteristics (Means)
Initial MELD 16.47 16.60 16.15 19.67 19.18 20.15
High School or Less 0.582 0.576 0.593 0.448 0.470 0.429
White Pct. 0.680 0.691 0.654 0.731 0.736 0.725
Primary Payer: Private 0.549 0.584 0.464 0.609 0.642 0.576
Primary Payer: Medicare 0.251 0.226 0.311 0.236 0.217 0.255
Primary Payer: Medicaid 0.200 0.190 0.225 0.155 0.141 0.170
Listing Age 18 to 39 0.022 0.024 0.019 0.135 0.139 0.131
Listing Age 40 to 64 0.873 0.906 0.792 0.694 0.713 0.675
Listing Age Over 64 0.105 0.070 0.189 0.171 0.148 0.194
South Census Region 0.372 0.359 0.405 0.379 0.361 0.397
NE Census Region 0.220 0.228 0.199 0.186 0.195 0.177
MW Census Region 0.170 0.170 0.170 0.231 0.236 0.226
West Census Region 0.238 0.243 0.226 0.204 0.208 0.201

Notes: Authors’ calculations of fraction of liver registrants belonging to each characteristic or outcome
group from SRTR data. Except for waiting list outcomes (too sick/died, improved, transplants, and days
to transplant), which are calculated based on the timing of waiting list removal, all summary statistics are
calculated based on when the registrants joined the waiting list. Those for whom HCV status cannot be
inferred are excluded from the calculations in this table. This amounts to roughly 15% of liver registrants,
or 24,847 of 167,888 total liver registrants who listed between 2005 to 2019. Higher MELD score reflects
higher mortality risk.
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Table 2: Liver vs. Kidney Waiting List Additions and Transplants

Log Transplant Log WL
Transplants Rate Additions

(1) (2) (3)
Panel A: HCV −

Liver x DAA 0.3059*** 0.1604*** 0.3134***
(0.0514) (0.0407) (0.0545)

Baseline Mean 61.27 0.507 115.36
Observations 1,425 1,425 1,425
Number of Clusters 95 95 95

Panel B: HCV +

Liver x DAA -0.4965*** 0.0576 -0.6044***
(0.0578) (0.0392) (0.0601)

Baseline Mean 46.89 0.506 86.59
Observations 1,425 1,425 1,425
Number of Clusters 95 95 95
Notes: The first and third columns of coefficients represent log point changes per
year, which can be transformed into percentages using the formula 100×(eβ̂ −1).
In column 2, the outcome is defined as the number of transplants divided by
the organ-specific number of waiting list registrants. Baseline means reflect the
pre-treatment period (2005–2013) DSA-year means for liver registrants only. In
columns 1 and 3, baselinemeans reflect level counts rather than log counts. While
there are 57 DSAs in the U.S., we use modified DSA identifiers (see footnote
13) due to changes in DSA existence and services over time, which yields 50
kidney-serving DSA and 45 liver-serving DSA identifiers. Standard errors are in
parentheses and are clustered at the DSA-by-organ level. *** p<0.01, ** p<0.05,
* p<0.1
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Table 3: Heterogeneity among HCV − Individuals by Fraction of Transplant Recipients with HCV Antibodies

Dose- ≥ Median < Median
Response HCV + Rate HCV + Rate

Panel A: Log Waiting List Additions
Liver x DAA -0.2709 0.3547*** 0.2086**

(0.2757) (0.0635) (0.0836)

Liver x DAA x Fraction HCV + 1.2829**
(0.6069)

Mean of DV (Level) 115.36 145.53 83.81

Panel B: Log Transplants
Liver x DAA -0.2478 0.3649*** 0.2109***

(0.2860) (0.0694) (0.0697)

Liver x DAA x Fraction HCV + 1.2347*
(0.6584)

Mean of DV (Level) 61.27 71.52 50.56

Observations 1,350 690 660
N of Clusters 90 46 44
Notes: This table presents differences-in-differences heterogeneity estimates, comparing log
HCV − liver transplants and waiting list additions to log kidney transplants and waiting
list additions, by DSAs’ fraction of pre-treatment (2005-13) liver transplant recipients who
tested positive for antibodies to HCV. The baselinemeans of the dependent variables reflect
level counts (at the DSA-year level) rather than log counts during the pre-treatment period
(2005-13) for liver registrants only. While there are 57 DSAs in the U.S., we use modified
DSA identifiers (see footnote 13) due to changes in DSA existence and services over time,
which yields 50 kidney-serving DSA and 45 liver-serving DSA identifiers. Standard errors
are in parentheses, and clustered at the DSA-by-organ level. *** p<0.01, ** p<0.05, *
p<0.1
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Table 4: CITS vs. DiD Estimates of Transplants to HCV − Registrants

Log Transplants
HCV − HCV − All TX Liver TX Kidney TX
CITS DiD Difference CITS CITS CITS
(1) (2) (3) (4) (5) (6)

DAA x 2013 0.0960*** 0.0667 0.0293 0.0241 0.0435 0.0159
(0.0334) (0.0435) (0.0190) (0.0288) (0.0222)

DAA x 2014 0.1356*** 0.0846* 0.0510 0.0587** 0.0844** 0.0417
(0.0481) (0.0499) (0.0263) (0.0381) (0.0295)

DAA x 2015 0.2307*** 0.1529*** 0.0778 0.0895*** 0.1055** 0.0715**
(0.0618) (0.0563) (0.0312) (0.0505) (0.0339)

DAA x 2016 0.4750*** 0.3391*** 0.1359 0.1685*** 0.2271*** 0.1335***
(0.0681) (0.0581) (0.0386) (0.0620) (0.0393)

DAA x 2017 0.5271*** 0.3457*** 0.1814 0.2132*** 0.2620*** 0.1822***
(0.0873) (0.0665) (0.0409) (0.0744) (0.0410)

DAA x 2018 0.6035*** 0.3666*** 0.2369 0.2569*** 0.2754*** 0.2413***
(0.0945) (0.0642) (0.0477) (0.0843) (0.0466)

DAA x 2019 0.7643*** 0.4367*** 0.3276 0.3494*** 0.3553*** 0.3356***
(0.1074) (0.0656) (0.0508) (0.0974) (0.0486)

Observations 675 1,425 750 675 750
Number of Clusters 45 95 50 45 50
Notes: The outcome variables in columns 1 and 2 are log number of transplants received by HCV −

registrants, where the difference is column 1 presents time-disaggregated interrupted time-series
estimates, while column 2 presents time-disaggregated DiD estimates comparing liver transplants to
kidney transplants. Column 3 presents the difference between the column 1 and column 2 estimates for
each post-treatment year. Columns 4-6 present time-disaggregated interrupted time-series estimates
of overall transplant trends for all registrants (both HCV − and HCV +). Note that all coefficients in
this table represent log point changes, which can be transformed into percentages using the formula
100 × (eβ̂ − 1). While there are 57 DSAs in the U.S., we use modified DSA identifiers (see footnote
13) due to changes in DSA existence and services over time, which yields 50 kidney-serving DSA
and 45 liver-serving DSA identifiers. Standard errors are in parentheses. They are clustered at the
DSA-by-organ level when comparing livers to kidneys (column 2 only) and at the DSA level when
estimating interrupted time-series models (all other columns). *** p<0.01, ** p<0.05, * p<0.1
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Figure 1
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Notes: Authors’ calculations of yearly national counts using SRTR data.
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Figure 2: Liver Waiting List Levels and Inflows
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Notes: Authors’ calculations of yearly national counts and rates using SRTR data.
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Figure 3: Change in Health Composition
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Notes: Authors’ calculations of average MELD scores using SRTR data. Note that a higher MELD score
reflects higher mortality risk. Roughly 20% of registrants have the same initial and last MELD score.
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Figure 4: Liver vs. Kidney Waiting List Inflows and Outflows
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Notes: Authors’ calculations of yearly national log counts using SRTR data. This figure adds the kidney
registrant comparison group and recalculates the trends in terms of deviations from 2012. We exclude the
0.13% of kidney registrants who are known to have an HCV-related diagnosis using the optional diagnosis
text field in the data.
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Figure 5: Liver vs. Kidney Waiting List Additions and Transplants, Log Counts
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Notes: Each panel presents time-disaggregated DiD estimates, comparing HCV -specific liver waiting list
transplants and waiting list additions to kidney transplants and waiting list additions. The outcomes in
each are log counts, implying that the coefficients can be transformed into percentage changes relative to the
omitted baseline period (2012) using the formula 100 × (eβ̂k − 1). The bars around each coefficient reflect
the 95% confidence interval using standard errors clustered at the DSA-by-organ level.
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Figure 6: Supply of HCV + and HCV − Donor Organs
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Notes: Authors’ calculations of yearly national counts using SRTR data. Includes all livers (left-scale) and
kidneys (right-scale) recovered for transplant, including those that are subsequently discarded. For reference,
the 2005-2013 average number of HCV − kidneys recovered is 14,062; the corresponding average for livers
is 6,513. The 2005-2013 average number of HCV + kidneys recovered is 531; the corresponding average for
livers is 237.
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1 COMPARATIVE INTERRUPTED TIME SERIES

1 Comparative Interrupted Time Series

Our CITS model is specified as follows:

YdHt = β1t + β2(H × t) + β3DAAt + β4(H × DAAt)+

β5(DAAt × t) + β6(H × DAAt × t) + γdH + ϵdHt

(1)

where d indexes donor service area (DSA),1 H indexes HCV status, and t indexes year. The first

regressor, t, is a linear time trend, such that β1 measures the slope of the pre-DAA trend for HCV −

registrants and β1 + β2 measures the slope of the pre-DAA trend for HCV + registrants. DAAt is

an indicator for the post-DAA period (i.e., 2014 through 2019). Thus, β3 reflects the level change

in HCV − registrants’ outcomes associated with the introduction of DAAs relative to their baseline

level, while β3 + β4 reflects this level change for HCV + registrants. Finally, β5 measures the post-

DAA change in slope relative to the pre-DAA slope β1 for HCV − registrants, while β5 + β6 captures

this slope change for HCV + registrants. Finally, we include DSA-HCV fixed effects γdH to address

potential unobserved confounders across HCV status and donation service areas, and an idiosyncratic

error term ϵdHt clustered at the DSA-HCV level.

1Note that we use modified DSA identifers throughout our analyses due to changes over time in the existence and
services of certain DSAs. First, we combine the Sierra Donor Services DSA into the Donor Network West DSA in
California, as Sierra Donor Services ended their liver program in 2008/2009 and was geographically entirely surrounded
by Donor Network West. Second, the Mississippi Organ Recovery Agency started up in 2013, so we combine that
DSA with their pre-existing contiguous DSAs in Tennessee and north Mississippi, Louisiana, and Alabama. Third,
because Lifelink of Southwest Florida ended in 2004, OurLegacy in Florida started in 2007, and Lifelink Puerto Rico
started in 2012, we combine all Florida and Puerto Rico DSAs into one DSA unit. It is also important to note that
5 DSAs do not have a liver program. Thus, we end up with 50 modified DSA identifiers for kidneys and 45 modified
DSA identifiers for livers.
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1 COMPARATIVE INTERRUPTED TIME SERIES

Appendix Table 1: Comparative Interrupted Time-Series, Liver Waiting List Additions and Transplants

Log Transplant Log WL
Transplants Rate Additions

Years Since DAA 0.1169*** 0.0808*** 0.0569***
(0.0154) (0.0134) (0.0142)

HCV +× Years Since DAA -0.2604*** -0.0688*** -0.2276***
(0.0252) (0.0179) (0.0224)

DAA -0.0116 -0.0195 -0.0144
(0.0376) (0.0364) (0.0411)

HCV +× DAA 0.2856*** 0.0980* 0.0979
(0.0714) (0.0559) (0.0709)

Pre-DAA Trend 0.0097 -0.0166* 0.0300***
(0.0095) (0.0091) (0.0083)

HCV +× Pre-DAA Trend -0.0235* 0.0053 -0.0292**
(0.0129) (0.0115) (0.0122)

HCV − Mean of DV (Level) 61.27 0.507 115.36
HCV + Mean of DV (Level) 46.89 0.506 86.59
Observations 1,350 1,350 1,350
N of Clusters 90 90 90
Notes: The outcome variable in column 1 is the log number of trans-
plants per DSA-year. In column 3, the outcome variable is de-
fined as the log number of waiting list additions. The estimates in
columns 1 and 3 can be transformed into percentages using the for-
mula 100 × (eβ̂ − 1). In column 2, the outcome is defined as the
number of transplants divided by the HCV-specific number of wait-
ing list registrants. Dependent variable means (at the DSA-year level)
are reported in the two rows immediately following the coefficients,
and reflect the pre-treatment period (2005-13) means for liver reg-
istrants. In columns 1 and 3, the means are of level counts rather
than log counts. While there are 57 DSAs in the U.S., we use modi-
fied DSA identifiers (see footnote 1) due to changes in DSA existence
and services over time, which yields 50 kidney-serving DSA and 45
liver-serving DSA identifiers. Standard errors are in parentheses, and
clustered at the DSA level. *** p<0.01, ** p<0.05, * p<0.1
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2 HEALTH COMPOSITION

2 Health Composition

Appendix Table 2: CITS, Health of Liver Waiting List Registrants and Transplant Recipients

Initial MELD Final MELD
at Listing before Transplant

Time Since DAA -0.2198*** -0.8480***
(0.0729) (0.0971)

HCV +× Time Since DAA -0.0364 0.0298
(0.1233) (0.1846)

DAA 0.5182** 0.9127***
(0.2590) (0.3411)

HCV +× DAA -0.6301 -1.3716**
(0.4281) (0.6002)

Pre-DAA Trend 0.1614*** 0.4257***
(0.0384) (0.0505)

HCV +× Pre-DAA Trend -0.0998* -0.2329***
(0.0507) (0.0704)

HCV − Mean of DV 19.22 23.42
HCV + Mean of DV 16.82 21.03
Observations 1,350 1,350
R-squared 0.5800 0.5763
N of Clusters 90 90
Notes: The outcome variable in column 1 is the average MELD score
among new waiting list additions by DSA-year. The outcome vari-
able in column 2 is the average last MELD score among individuals
receiving a transplant. A higher MELD score indicates a shorter life
expectancy in the absence of a liver transplant, and thus confers higher
priority on the waiting list. Dependent variable means (at the DSA-
year level) are reported in the two rows immediately following the
coefficients, and reflect the pre-treatment period (2005-13) means for
liver registrants. While there are 57 DSAs in the U.S., we use modi-
fied DSA identifiers (see footnote 1) due to changes in DSA existence
and services over time, which yields 50 kidney-serving DSA and 45
liver-serving DSA identifiers. Standard errors are in parentheses, and
clustered at the DSA level. *** p<0.01, ** p<0.05, * p<0.1
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3 WAITING LIST ATTRITION

3 Waiting List Attrition

Appendix Figure 1: Liver Waiting List Outflows
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Notes: Authors’ calculations of yearly national rates using SRTR data.
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3 WAITING LIST ATTRITION

Appendix Table 3: CITS, Liver Transplant Waiting List Outflows

Log Outcomes Rates
Too Sick / Died Improved Too Sick / Died Improved

Years Since DAA -0.0470*** -0.0057 -0.0064** -0.0018
(0.0168) (0.0352) (0.0028) (0.0035)

HCV + x Years Since DAA -0.1766*** -0.0378 -0.0041 0.0087
(0.0264) (0.0499) (0.0048) (0.0053)

DAA 0.1176** -0.0425 0.0258*** 0.0014
(0.0469) (0.0875) (0.0097) (0.0087)

HCV + x DAA -0.0686 0.3017** -0.0378** 0.0039
(0.0837) (0.1324) (0.0179) (0.0141)

Pre-DAA Trend 0.0523*** 0.0743*** 0.0042** 0.0033**
(0.0096) (0.0179) (0.0017) (0.0014)

HCV + x Pre-DAA Trend -0.0165 -0.0258 0.0014 -0.0008
(0.0152) (0.0241) (0.0027) (0.0019)

HCV − Mean of DV (Level) 27.52 7.60 0.161 0.046
HCV + Mean of DV (Level) 23.99 2.88 0.181 0.026
Observations 1,350 1,350 1,350 1,350
N of Clusters 90 90 90 90
Notes: Notes: The outcome variables in columns 1 and 2 are the log number of waiting list
removals due to condition deterioration/death and condition improvement per DSA-year. The
estimates in columns 1 and 2 can be transformed into percentages using the formula 100 ×
(eβ̂ − 1). In columns 3 and 4, the outcomes are defined as the number of removals divided by
the HCV-specific number of waiting list registrants. Dependent variable means (at the DSA-
year level) are reported in the two rows immediately following the coefficients, and reflect the
pre-treatment period (2005-13) means for liver registrants. In columns 1 and 2, the means are
of level counts rather than log counts. While there are 57 DSAs in the U.S., we use modified
DSA identifiers (see footnote 1) due to changes in DSA existence and services over time, which
yields 50 kidney-serving DSA and 45 liver-serving DSA identifiers. Standard errors are in
parentheses, and clustered at the DSA level. *** p<0.01, ** p<0.05, * p<0.1
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4 TRANSPLANT RATES

4 Transplant Rates

Appendix Figure 2
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4 TRANSPLANT RATES

Appendix Figure 3: Liver vs. Kidney Transplants
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Notes: Each subfigure presents time-disaggregated differences-in-differences estimates, comparing HCV +

and HCV − transplants to kidney waiting list additions and transplants. The outcome is defined as trans-
plants divided by number of waiting list registrants. For kidneys, this rate reflects transplants divided by
number of kidney registrants. For livers, this rate reflects transplants to HCV + registrants divided by num-
ber of HCV + liver registrants in subfigure (a), and transplants to HCV − registrants divided by number of
HCV − liver registrants in subfigure (b). The bars around each coefficient reflect the 95% confidence interval
using standard errors that are clustered at the DSA-by-organ level.
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5 DOSE-RESPONSE REGRESSIONS

5 Dose-Response Regressions

To build further understanding on our results in Table 2 of themain paper, we estimate regressions

in which we allow the effects of DAAs to vary by the baseline HCV + rate in a DSA. Beacuse

our hypothesized mechanism is that DAAs affect HCV − listing behavior and transplant outcomes

through reduced HCV + liver demand, we should expect to see larger effects of DAAs in areas with

greater HCV prevalence. The regression we estimate is:

Ydlt = β[1(l = liver) × DAAt] + τ[1(l = liver) × DAAt]Fd + γdl + ηt + ϵdlt, (2)

where Fd is the pre-DAA mean prevalence of HCV in DSA d. Results are presented in Table 3 of the

main paper.
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6 CONCURRENT SHOCKS

6 Concurrent Shocks

Appendix Figure 4: Drug Overdose Deaths by Year

Notes: Figure includes deaths deemed “prevantable or accidental”. Synthetic opioids category is “synthetic
opioids other than methadone” and includes fentanyl. Source: National Safety Council analysis of National
Center for Health Statistics Mortality Data.
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6 CONCURRENT SHOCKS

Appendix Figure 5: Alcoholic Liver Disease Prevalence by Year

Notes: Alcoholic liver disease is based on the following criteria: 1) average daily alcohol consumption of
more than 10 grams for females and more than 20 grams for males and 2) alanine transaminase level or
aspartate aminotransferase level greater than 31 U/L in females and an alanine transaminase level greater
than 40 U/L or aspartate aminotransferase level greater than 37 U/L in males. Those with Hepatitis B or
C infections were excluded. Source: National Health and Nutrition Examination Survey.
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6 CONCURRENT SHOCKS

Appendix Table 4: CITS, HCV − Liver Waiting List Additions by Diagnosis Category

Log HCV − WL Adds

Time Since DAA 0.0235
(0.0146)

Time Since DAA x NASH -0.0161
(0.0157)

Time Since DAA x ALD 0.0679***
(0.0142)

DAA -0.0205
(0.0391)

DAA x NASH 0.0326
(0.0498)

DAA x ALD 0.0527
(0.0573)

Year -0.0030
(0.0080)

Year x NASH 0.0992***
(0.0089)

Year x ALD 0.0447***
(0.0081)

Observations 2,025
R-squared 0.8825
N of Clusters 45
Notes: Includes DSA-by-Diagnosis FEs to mimic subsample anal-
yses. Standard errors are in parentheses, and clustered at theDSA
level. *** p<0.01, ** p<0.05, * p<0.1
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7 POTENTIAL SPILLOVERS

7 Potential Spillovers

Appendix Figure 6: Potential Supply- and Demand-Side Spillovers to Kidney Context
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Notes: Authors’ calculations of yearly national counts and fractions using SRTR data. In panel (a), we
exclude kidney registrants who are known to have an HCV-related diagnosis using the optional diagnosis
text field in the data. This is a very small fraction of kidney candidates: only 0.13% of registrants from
2005 to 2019. Panels (c) and (d) use known HCV antibody test results at the time of transplant to identify
HCV + transplant recipients. These results are conditional on receiving a transplant.
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8 Further Evidence

Appendix Figure 7: Time from Wait-Listing to Transplant for HCV − Liver Transplant Recipients
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Notes: Authors’ calculations of yearly national averages using SRTR data, measured as the difference between
date of transplant and date of waiting list registration. In less than 0.2% of transplants, this equals zero. A
value of zero can reflect either a true same-day transplant, or a case where a living liver donor recipient did
not first join the deceased donor waiting list.
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Appendix Table 5: Liver vs. Kidney Time from Wait-Listing to Transplant by HCV Status

TX Faster Than
Log Days to TX 2005-12 Median

Panel A: HCV −

Liver x DAA -0.1749*** 0.0383**
(0.0543) (0.0155)
[245.57] [0.315]

Panel B: HCV +

Liver x DAA -0.0057 -0.0303**
(0.0505) (0.0151)
[295.04] [0.266]

Observations 1,425 1,425
N of Clusters 95 95
Notes: Difference-in-differences estimates from Equation 1
of the main text. The dependent variable in the first column
equals the log of 1 plus the number of days elapsed fromwait-
ing list registration to transplant. For those who got a trans-
plant the same day or did not register on the waiting list
before receiving a transplant, days elapsed equals zero. The
second dependent variable is a binary indicator for whether
the candidate received a transplant more quickly than the
median days to transplant during the 2005-12 sample pe-
riod. Dependent variable means (at the DSA-year level)
are in brackets, and reflect the pre-treatment period (2005-
13) means for liver registrants only. In column 1, the means
reflect level number of days rather than log number of days.
While there are 57 DSAs in the U.S., we use modified DSA
identifiers (see footnote 1) due to changes in DSA existence
and services over time, which yields 50 kidney-serving DSA
and 45 liver-serving DSA identifiers. Standard errors are in
parentheses, and clustered at the DSA-by-organ level. ***
p<0.01, ** p<0.05, * p<0.1
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Appendix Table 6: Liver and Kidney Waiting List Registrant Summary Statistics

Liver Registrants Kidney Registrants
2005-19 2005-13 2014-19 2005-19 2005-13 2014-19

Mean SD Mean Mean Mean SD Mean Mean
HCV-Related Diagnosis 0.295 0.456 0.365 0.201
Can’t Infer HCV Status 0.148 0.355 0.148 0.148
Initial MELD 18.00 9.01 17.71 18.38
Too Sick / Died 0.233 0.422 0.246 0.216 0.235 0.424 0.234 0.237
Improved 0.059 0.235 0.051 0.068 0.005 0.070 0.005 0.005
Dec. Don. TX 0.537 0.499 0.524 0.554 0.349 0.477 0.347 0.350
Liv. Don. TX 0.022 0.145 0.019 0.025 0.175 0.380 0.195 0.151
Days to TX 252.3 482.5 252.3 252.2 698.5 749.8 659.6 747.0
High School or Less 0.494 0.500 0.514 0.471 0.471 0.499 0.502 0.430
White Pct. 0.704 0.457 0.709 0.697 0.455 0.498 0.472 0.432
Primary Payer: Private 0.586 0.493 0.618 0.544 0.449 0.497 0.455 0.441
Primary Payer: Medicare 0.246 0.431 0.223 0.276 0.473 0.499 0.474 0.473
Primary Payer: Medicaid 0.168 0.374 0.159 0.180 0.078 0.267 0.071 0.086
Listing Age 18 to 39 0.095 0.293 0.091 0.100 0.189 0.392 0.197 0.179
Listing Age 40 to 64 0.749 0.434 0.789 0.694 0.634 0.482 0.642 0.624
Listing Age Over 64 0.156 0.363 0.119 0.206 0.177 0.381 0.162 0.197
South Census Region 0.373 0.483 0.355 0.396 0.376 0.484 0.360 0.399
NE Census Region 0.207 0.405 0.220 0.189 0.208 0.406 0.216 0.198
MW Census Region 0.207 0.405 0.207 0.206 0.197 0.398 0.205 0.187
West Census Region 0.213 0.410 0.217 0.209 0.218 0.413 0.220 0.216
Notes: Except for transplant/waiting list outcomes (too sick/died, improved, transplants, and days to
transplant), which are calculated based on transplant timing andwaiting list removal timing, all summary
statistics are calculated based on when the candidates joined the waiting list.
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Appendix Table 7: Livers Discarded Due to Poor Quality

Log # #/All Organs #HCV/All HCV

Liver x DAA 0.1374** 0.0243*** -0.0353
(0.0686) (0.0081) (0.0237)

Baseline Mean 24.96 0.152 0.377
Observations 1,500 1,500 1,414
N of Clusters 100 100 100
Notes: Difference-in-differences estimates from Equation 1
of the main text. The outcome variable in column 1 is the
log number of livers that were discarded due to reasons re-
lated to poor quality per DSA-year (see footnote 21 in the
main text for the definition of “poor quality”). Baseline
means reflect the pre-treatment period (2005–2013) means
for liver registrants only. In column 1, the mean reflects the
DSA-year level count rather than log count. While there are
57 DSAs in the U.S., we use modified DSA identifiers (see
footnote 1) due to changes in DSA existence and services
over time, which yields 50 kidney-recovering and 50 liver-
recovering DSA identifiers. Note that, even though there are
only 45 modified DSAs with liver transplant programs in our
data, organ procurement organizations across all 50 modi-
fied DSAs recover and allocate livers from deceased donors,
which explains the slightly larger number of clusters and ob-
servations here relative to Tables 2-4. Standard errors are
in parentheses and are clustered at the DSA-by-organ level.
*** p<0.01, ** p<0.05, * p<0.1
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