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Abstract 

To guide value-added modelling choices, we propose a state space model of student 
knowledge accumulaƟon, in which test scores are an imperfect measure of student knowledge, 
and students receive temporary and persistent shocks to their stock of knowledge.  The model 
clarifies that there are four sources of potenƟal selecƟon in value-added esƟmaƟon: 
heterogeneity in student growth, measurement error in baseline achievement, transitory 
teacher effects, and private informaƟon about students’ current knowledge.  Following six 
cohorts of students in North Carolina between 3rd and 8th grade, we invesƟgate all four sources 
of bias.  We find liƩle evidence of heterogeneity in student growth.  Rather, the primary 
challenge in value-added is finding a valid measure of baseline knowledge against which to 
measure differences. The model points to two alternaƟves to convenƟonal VAM models:  the 
Kalman filter (which efficiently summarizes students’ prior data) and instrumenƟng for baseline 
achievement with twice lagged scores.  The IV esƟmator is ideal when achievement scores are 
not observed at the Ɵme of assignment (as is the case in most states) and when teachers have 
private informaƟon about students’ current state of knowledge not reflected in test scores.  The 
state-space model has implicaƟons for the sources of achievement inequality and for other 
analyses of student-level panel achievement data (for instance, calling into quesƟon the use of 
student fixed effects and student trends.)   

 
  



Introduc on 
 

For more than five decades, economists have been using “value-added” models (VAM) 
to esƟmate the efficacy of schools, teachers and other intervenƟons (Hanushek (1971), 
Murnane (1975), Hanushek (1979)).  ConvenƟonal VAM models typically include a single year of 
baseline achievement and student covariates to control for prior inputs.  Despite the strong 
assumpƟons and the potenƟal for selecƟon, at least eleven studies over the past sixteen years 
have shown that convenƟonal VAM models yield forecast unbiased esƟmates of teacher and 
school effects.  Did researchers happen to choose seƫngs with liƩle selecƟon on 
unobservables?  Or do the results reveal something fundamental about how student 
achievement evolves over Ɵme? 

 
To invesƟgate, we propose a simple state-space model, in which test scores are a noisy 

measure of an underlying state variable (knowledge).  Teachers and other intervenƟons have 
persistent effects on student knowledge, which are passed on to the next period, as well as 
temporary effects on measured achievement, which are not.  In addiƟon, we allow each student 
to have their own fixed rate of growth.  

 
The model idenƟfies four sources of potenƟal bias in value-added models:  

heterogeneity in student growth, measurement error in baseline achievement, transitory 
teacher effects on achievement measures (which could be used for selecƟon) and private 
informaƟon about students’ current true level of achievement.  The laƩer three are all special 
cases of mismeasurement of students’ baseline knowledge. 

 
Following six cohorts of NC students from third through eighth grade, we find liƩle 

evidence of student-level heterogeneity in growth across different grades.  Similarly, we see 
liƩle evidence that students from high and low-income neighborhoods have differing levels of 
growth (aŌer condiƟoning on teacher effects.)  Both results imply that that there is liƩle 
unobserved heterogeneity in student growth which teachers, schools or parents could use for 
selecƟon.   

  
 Rather, the primary challenge in value-added esƟmaƟon is having a valid measure of 
baseline achievement against which to measure differences.  We evaluate two alternaƟves to 
convenƟonal value-added: the Kalman filter, which summarizes historical data, and an IV 
esƟmator (using twice-lagged achievement to instrument for baseline achievement).   
 

First, we show that the recursive Kalman filter outperforms the single year of baseline 
achievement and performs nearly as well as a fully flexible model in summarizing prior test 
scores and teacher effects. The results imply that the state space model is a good approximaƟon 
of the Ɵme series properƟes of student achievement.  

 
Second, the most vexing source of selecƟon in the state space model is private 

knowledge of a students’ current state not reflected in test scores.  Using unique data on 
teachers’ subjecƟve assessments of students’ mastery of the North Carolina state standards, we 



find that prior grade teachers’ assessments are indeed predicƟve of growth even aŌer 
condiƟoning on the Kalman filter.  Fortunately, the state space model also points to a soluƟon:  
instrumenƟng for baseline achievement using twice-lagged achievement.  We provide evidence 
that the IV esƟmates of teacher effects (using twice lagged achievement) are not sensiƟve to 
prior grade teachers’ raƟngs. 

 
Third, consistent with the prior literature, we find that teachers have both transitory and 

permanent effects on student achievement.  Transitory effects have been underappreciated as a 
potenƟal source of selecƟon, yet there are substanƟal differences in transitory effects between 
schools and teachers.  The model also points to a straighƞorward soluƟon:  including fixed 
effects for current as well as prior teachers. 

 
Fourth, while the convenƟonal VAM esƟmate is biased and the IV esƟmator and Kalman 

esƟmators are each unbiased (albeit under different condiƟons), the bias in each appears to be 
small relaƟve to the variance in teacher effects.  The correlaƟons in teacher effects from the 
three esƟmaƟon methods (convenƟonal, IV and Kalman) are all greater than .81.  Thus, the bias 
in convenƟonal value-added models may be sufficiently small to be undetectable under the 
standard of forecast unbiasedness, which is a more lenient standard. 

 
Finally, our findings imply that, aside from differing starƟng points, the most important 

source of achievement inequality is the quality of educaƟonal intervenƟons that students 
receive.  Using our IV models, students from higher income neighborhoods tend to have 
teachers with larger persistent impacts on achievement, while students from lower income 
neighborhoods tend to have teachers with larger transitory impacts on achievement.  Although 
neighborhood income has liƩle direct relaƟonship to achievement growth condiƟonal on 
teacher effects, there are sizable differences in school and teacher quality for students in high 
and low income neighborhoods. 

 
Value-added modelling has the potenƟal for much broader use than measuring the 

effects of teachers and schools.  The state space model implies diagnosƟcs which could be used 
to gauge the presence of student-level heterogeneity in growth and idenƟfies the condiƟons 
under which the Kalman filter and IV strategies could be relied upon to generate valid program 
impacts.  Given the ubiquity of student-level panel data on student achievement in state and 
local educaƟon agencies, value-added methods could allow for much more widespread tesƟng 
of a variety of intervenƟons in educaƟon, such as curricula.  The state-space model has strong 
implicaƟons, not just for value-added modelling, but for other analyses of student-level panel 
data (for example, calling into quesƟon models using student fixed effects and student 
achievement trends.)   
 

Literature Review 

 In reviewing the prior literature, we focus on models which combine three elements 

common to many VAM applicaƟons:  addiƟve separability,  a single year lagged measure of 



achievement in the same subject (either as a linear or cubic funcƟon of a standardized score) 

and indicators for student demographics or program parƟcipaƟon (race/ethnicity, free lunch 

status).1  While VAM models have been used most oŌen to esƟmate teacher or school impacts, 

similar models have been used to esƟmate the impacts of other educaƟonal intervenƟons, such 

as summer school (Callen et al. (2023)), math textbooks (Blazar et al. (2020)) and teacher 

training programs (Plecki et al. (2012) and Henry et al. (2014)).      

Before arriving at the current convenƟon, researchers experimented with other variants 

of VAM models.  For instance, with the introducƟon of large mulƟ-year student-level panel data 

sets in the mid-2000’s, researchers began including student fixed effects to control for selecƟon 

on unmeasured student characterisƟcs, while esƟmaƟng teacher or school effects (e.g. 

McCaffrey et al. (2009)).  Such models became rare aŌer Rothstein (2010) noted that they likely 

violated strict-exogeneity requirements.  They also perform poorly in validaƟon studies (Kane 

and Staiger (2008), Kane, McCaffrey, Miller and Staiger (2013)).   

Others began using the mean baseline characterisƟcs of students to control for 

classroom peer effects (see Ehlert et al. (2014)).  As part of the Measures of EffecƟve Teaching 

project, Kane, McCaffrey, Miller and Staiger (2013) decomposed value-added esƟmates of 

teacher effects into four mutually orthogonal components:  a core esƟmate based on all three 

categories of controls (lagged achievement, student characterisƟcs and peer achievement), the 

component that was removed with peer controls, the component that was removed with 

controls for student characterisƟcs, and the component that was removed with controls for 

baseline achievement.  While the last two components (student achievement and student 

demographics) played no role in predicƟng students’ achievement post random assignment to 

teachers, the component associated with peer controls and the core esƟmate were both 

predicƟve of achievement following random assignment.  The authors conclude that controlling 

for peer effects (without mulƟple years and teacher fixed effects) is “over-controlling” by 

removing true differences in teacher efficacy.  

Although the convenƟonal value-added model only includes one lag, Rothstein (2010) 

and Ehlert et al. (2014) find that they could not validly exclude two and three-year lagged 

scores.  Rothstein suggested that excluding mulƟple lags of achievement and teacher 

assignments could lead to bias.  However, Rothstein also found that their inclusion did not lead 

to any meaningful differences in esƟmated teacher effects in North Carolina.   

In Table 1, we summarize eleven studies tesƟng the validity of value-added esƟmates of 

teacher or school effects.  In each, researchers esƟmated a teacher’s or school’s value-added 

with one group of students and then tested the predicƟon in another group of students using 

some plausibly exogenous design, such as random assignment, a randomized school loƩery, 

annual fluctuaƟons in the make-up of those teaching in a parƟcular school/grade/subject or 

disconƟnuiƟes in school assignment.  Table 1 reports the coefficient on the esƟmate in 

 
1 Often analysts also include lagged values for student test scores in other subjects. 



predicƟng the outcome of the experiment (empirical Bayes adjusted to account for esƟmaƟon 

error).  Forecast unbiasedness (a coefficient of one on the VAM esƟmate) implies that the 

esƟmates are “right on average.”  However, as discussed in Angrist et al. (2017), a set of 

esƟmates can be forecast unbiased, yet sƟll contain esƟmates of individual school or teacher 

effects which are biased—i.e. differences which are larger than would plausibly be driven by 

sampling error. 

Three studies (Kane and Staiger (2008), Kane et al. (2013) and Glazerman and ProƟk 

(2015)) esƟmated teacher value-added with historical data, randomized teachers and observed 

differences in student achievement following random assignment.  With one excepƟon (middle 

school math in Glazerman and ProƟk (2015)), the authors could not reject that the value-added 

esƟmates based on the convenƟonal lagged score model and the less common “gain score” 

model (essenƟally constraining the coefficient on lagged achievement to be equal to one) are 

forecast unbiased.2  The studies involved teachers across 7-14 large urban districts.3    

In both models including student fixed effects, Kane and Staiger (2008) found forecast 

bias coefficients near two.  As described by Meghir and Rivkin (2011), student fixed effects 

essenƟally borrow from a student’s future outcomes to esƟmate the fixed effect.  Unless there 

is 100 percent fade-out of the effect in future periods (i.e. the intervenƟon only affects current 

year achievement), the student fixed effect models are biased downward.  If there were no 

fade-out, the bias would be equivalent to dividing by 2, consistent with the findings of Kane and 

Staiger (2008). 

Three more studies compared predicƟons based on VAM esƟmates of school effects to 

the results of randomized school loƩeries (Deming (2014), Angrist, Hull, Pathak and Walters 

(2017), Angrist, Hull, Pathak and Walters (2024)).  With one excepƟon, all three studies could 

not reject that value-added esƟmates of school effects were forecast unbiased esƟmates of 

school effects.  As Deming (2014) notes, the finding of forecast unbiasedness in the case of 

school effects is even more surprising than with teacher effects:  while a researcher might 

plausibly be able to condiƟon on the very same data—test scores, race, gender, program 

parƟcipaƟon, etc.—used to make teacher assignments within schools, families presumably sort 

across schools for many other reasons, such as the parents’ ability/willingness to pay for school 

quality.  The one excepƟon was for high school impacts on SAT math scores in New York, where 

the coefficient (.78) discernibly different from 1, but sƟll large. 

  Because their loƩery-based esƟmates are over-idenƟfied, Angrist et al. can go beyond 

“forecast unbiasedness” and test whether the value-added esƟmates are consistent with 

mulƟple instruments.  They conclude that while value-added may be forecast unbiased, the 

esƟmates for individual schools are subject to bias, with differences larger than would have 

 
2 Glazerman and Protik (2015) speculate that the middle school math results may have been due to unusually poor 

compliance with random assignment in those grades/subject. 
3 We say “up to” 14 districts, because while the first two studies name seven districts, Glazerman and Protik do not 

name the seven “large urban districts” where they conducted their study. 



been expected due to sampling variaƟon alone.  Thus, convenƟonal value-added models may be 

biased, but sƟll meet the lower standard of forecast unbiasedness (i.e. being “right on 

average.”) 

We idenƟfied three studies which use non-experimental variaƟon in the make-up of 

teaching teams within school/grade/subject over Ɵme to test the validity of predicƟons based 

on teacher’s value-added esƟmates from other groups of students. Using data from a “large 

northeastern” school district, CheƩy, Friedman and Rockoff (2014) generated an esƟmate of 

forecast bias between .91 and .99.  The other two studies essenƟally replicate CheƩy, Friedman 

and Rockoff’s methodology in two other, quite different seƫngs: Los Angeles Unified School 

District (Bacher-Hicks, Kane and Staiger (2014)) and the state of North Carolina (Rothstein 

(2017)).  Both find similar results when using the previous study’s methods.  Rothstein (2017), 

preferred an alternaƟve specificaƟon, including changes in achievement in the prior school year, 

and found a forecast bias coefficient of .860, which was staƟsƟcally disƟnct from one (standard 

error of .017). 

Finally, we idenƟfied two addiƟonal studies which used other quasi-experimental 

designs to test for validity of school-level value-added esƟmates.  BriƩon, Clark and Lee (2023) 

tested the validity of value-added esƟmates of middle school impacts on student exam scores in 

England, using disconƟnuiƟes in admission eligibility by travel distance from the parent’s home 

to the school.  Andrabi, Bau, Das and Khwaja (2022) measured the impact on students when 

schools closed in Pakistan (using pre-closure differences in value-added relaƟve to schools in the 

same village).  Neither study could reject that school-level value-added esƟmates were 

unbiased predictors of impacts on students. 

Figure 1 portrays the confidence intervals for the forecast bias esƟmates in Table 1.  Only 

three of the esƟmates are able to reject forecast unbiasedness (Glazerman and ProƟk (2015) 

esƟmate for middle schools, Angrist et al. (2024) esƟmate for NY high schools, and Rothstein 

(2017).  Nevertheless, the remainder of the esƟmates are centered around 1. 

In sum, value-added methods have been shown to generate forecast unbiased esƟmates 

of school and teacher impacts in a variety of seƫngs, using both random assignment and quasi-

experimental methods to test their validity.  Despite these findings, there is sƟll no consensus 

on the condiƟons under which value-added methods should be expected to yield unbiased 

esƟmates.    

There are three primary reasons for the lack of consensus:  First, opportuniƟes for model 

validaƟon have been rare.  The eleven studies represent a small share of studies using value-

added esƟmaƟon.  Second, the exisƟng validaƟon tests based on forecast unbiasedness are 

oŌen underpowered to detect specific model misspecificaƟons which could lead to small 

amounts of bias— even with forecast unbiasedness.  But the third and most important reason is 

the absence of any agreed-upon staƟsƟcal model describing the sources of variaƟon in student 

achievement over Ɵme.  In the absence of such a model, any claims of validity are therefore 



conƟngent on a parƟcular use case (e.g. esƟmaƟng teacher or school effects on math 

achievement) and in a parƟcular seƫng (such as CharloƩe or Boston or New York.)  In the next 

secƟon, we present a framework for evaluaƟng different sources of bias. 

Model and Es ma on 

 In this secƟon we describe a staƟsƟcal model of test scores and student learning based 

on a standard value-added structure (and similar to that used in previous work such as Jacob, 

Lefgren & Sims, 2007). Achievement growth for individual students follows a simple state-space 

model in which test scores are a noisy measure of an underlying state variable (knowledge) that 

accumulates persistent innovaƟons over Ɵme. We allow for student and teacher components in 

both the transitory noise in test scores and the persistent innovaƟons to knowledge. We then 

use the model to moƟvate three alternaƟve approaches to esƟmaƟon and to discuss the 

potenƟal biases inherent in each approach. The first approach is a standard Value-Added Model 

(VAM) that esƟmates teacher effects aŌer controlling for prior year test scores and student 

characterisƟcs. The second approach is similar but uses an earlier test score to instrument for 

prior year test scores. The final approach uses the recursive Kalman Filter to predict each 

student’s expected baseline score based on the student’s history and esƟmates teacher effects 

aŌer condiƟoning on the Kalman filter predicƟon.  

1. StaƟsƟcal Model 

 Our model is based on the idea that knowledge is cumulaƟve; each year a student adds 

to their exisƟng stock of knowledge. We assume that each student’s true state of knowledge 

evolves over Ɵme according to a simple structure: 

(1)  𝜇௜௧ ൌ 𝛿𝜇௜,௧ିଵ ൅ 𝜃௝௧ ൅  𝛼௜ ൅ 𝜐௜௧  

EquaƟon (1) defines knowledge (𝜇௜௧) for student i at Ɵme t as the sum of their prior 

knowledge (𝜇௜,௧ିଵ) that depreciates at rate 𝛿 and three terms represenƟng new addiƟons to 

knowledge in year t.4 5 The first term (𝜃௝௧) is the effect of having teacher j in year t (or more 

generally could represent any intervenƟon j to which student i was assigned in year t). This is 

usually the key parameter of interest, as it captures the persistent impact of teacher j on 

student knowledge. The second term (𝛼௜) allows for heterogeneity in knowledge growth across 

students. This term captures persistent differences across students in family inputs or capacity 

 
4 For simplicity, we consider the case of knowledge in a single subject (e.g. math), but it is straightforward to allow 

for knowledge in each subject to also depend on prior knowledge in other subjects. In our empirical work, we 
allow for this and find little evidence of such cross-subject effects of prior knowledge.  

5 The state-space model meets the conditions described in Todd and Wolpin (2003) for including contemporaneous 
inputs and excluding prior inputs while conditioning on prior achievement:  with the exception of the prior 
year teacher’s temporary effect, the coefficients on earlier inputs, including initial achievement, decline 
geometrically at the same rate, 𝛿.  The key differences are that our model allows for an individual specific 
growth term each period, 𝛼௜, measurement error in the outcome variable, 𝜂௜௧ , and allows for a temporary 
(single year) teacher effect, 𝜓௝௧and permanent teacher effect, 𝜃௝௧. 



to learn that results in greater knowledge growth every year. The final term (𝜐௜௧) is an i.i.d. shock 

to knowledge for each student. This term captures idiosyncraƟc student learning each year. 

Thus, 𝛼௜ captures persistent differences across years in a student’s knowledge growth, while 𝜐௜௧ 
captures the remaining independent shocks.  

 Papers in educaƟon using longitudinal student-level data on test scores (𝑦௜௧) oŌen use 

hierarchical linear models (HLM) that incorporate student-level random intercepts and slopes, 

where 𝑦௜௧ ൌ 𝛽଴௜ ൅  𝛽ଵ௜𝑡 ൅ 𝑢௜௧. In these models the slope coefficient (𝛽ଵ௜) captures 

heterogeneity in student growth (𝑦௜௧ െ 𝑦௜,௧ିଵ) and is analogous to 𝛼௜ in equaƟon (1). Note that 

if equaƟon (1) is the correct specificaƟon, HLM trend esƟmates (𝛽ଵ௜) will be biased because the 

residual is highly persistent – analogous to spurious trends in random walks. VAM esƟmates of 

𝛼௜ with 𝛿 near 1 are analogous to first differencing, a standard soluƟon for random walks. In 

ongoing work we find that VAM models outperform HLM in one-year-ahead forecasts of test 

scores, as would be expected if VAM was the correct specificaƟon and HLM esƟmated spurious 

trends. 

 If knowledge was perfectly measured by test scores, equaƟon (1) would represent a 

standard value-added regression specificaƟon regressing end of year test score on prior year 

test score and teacher fixed effects. There would be two potenƟal sources of bias arising from 

the presence of 𝛼௜ in the error term. First, if student assignment to teachers is non-random and 

correlated with 𝛼௜ (e.g., fast learners or higher income students with tutors are assigned to 

parƟcular teachers) then esƟmates of teacher effects would be biased. Second, we might expect 

prior knowledge to be correlated with 𝛼௜ (e.g., fast learners or students from higher income 

families may have higher prior knowledge), which would bias the esƟmate of 𝛿. This would 

result in under-controlling for prior knowledge and would bias esƟmates of teacher effects if 

students were being assigned to teachers based on their prior knowledge (e.g. tracking). As is 

commonly done in VAM specificaƟons, we will control for a short list of student characterisƟcs 

(race, ethnicity, gender, free lunch eligibility) in part to account for variaƟon across students in 

𝛼௜.  

 HypotheƟcally, one could esƟmate models such as equaƟon (1) using dynamic panel 

methods that allow for a student fixed effect in growth (e.g. Arellano and Bond, 1991), but in 

pracƟce these methods are poorly idenƟfied in short panels with 𝛿 near to 1. AlternaƟvely, 

some VAM models include student fixed effects, but then do not control for prior score. If 

equaƟon (1) is the correct specificaƟon, these student fixed-effect models will yield biased 

esƟmates of teacher effects. These models implicitly assume that the current teacher has 

transitory effects that do not accumulate, so tend to underesƟmate effects of teachers if their 

impacts on knowledge are persistent (Meghir and Rivkin, 2011). Kane and Staiger (2008) found 

teacher effect esƟmates from VAM models were forecast unbiased while student fixed-effect 

models were downward biased forecasts when teachers were randomly assigned to classrooms, 

supporƟng the VAM model. 



 Of course, observed test scores (𝑦௜௧) are imperfect measures of students’ accumulated 

knowledge and contain substanƟal measurement error. We assume that this measurement 

error is purely transitory and follows a simple structure: 

(2) 𝑦௜௧ ൌ 𝜇௜௧ ൅ 𝜑௝௧ ൅ 𝜂௜௧  . 

The first noise component (𝜑௝௧) is a teacher-level transitory impact that teacher j has on 

all her students. This component captures teaching to the test or other non-persistent learning. 

We include this component in the model to account for the fact that teacher effects (and other 

short-term impacts of intervenƟons) are regularly found to parƟally “fade out” quickly. While 

we focus on teacher effects, this term could represent transitory impacts of any set of 

intervenƟons indexed by j (e.g. schools, tutoring providers, etc.) The second noise component is 

at the student level (𝜂௜௧) and represents the measurement error associated with any test, 

commonly referred to as the standard error of measurement. Typically, standardized tests have 

reported reliability raƟos in the .8-.9 range, which implies that 10-20% of the variance in 

observed test scores will be due to test measurement error.   

2. VAM EsƟmaƟon 

 By relying on observed test scores rather than true student knowledge, value-added 

models introduce addiƟonal potenƟal sources of bias. To see this, note that equaƟon (2) implies 

that 𝜇௜௧ ൌ 𝑦௜௧ െ 𝜑௝௧ െ 𝜂௜௧, and plugging this into equaƟon (1) yields a familiar VAM-style 

esƟmaƟng equaƟon: 

(3) 𝑦௜௧ ൌ 𝛿𝑦௜,௧ିଵ ൅ ൫𝜃௝௧ ൅ 𝜑௝௧൯ െ 𝛿𝜑௝ᇲ,௧ିଵ ൅  𝛼௜ ൅ 𝜐௜௧ ൅  ൫𝜂௜௧ െ 𝛿𝜂௜,௧ିଵ൯,  

(where 𝜑௝ᇲ,௧ିଵ represents the transitory effect of teacher 𝑗ᇱ that student i had in year t-1). 

EquaƟon (3) differs from equaƟon (1) in three important ways:  

1. First, the current year teacher effect ൫𝜃௝௧ ൅ 𝜑௝௧൯ is now the sum of the teacher’s 

persistent impact on knowledge and transitory impact on test scores. Typical VAM 

models do not disƟnguish between permanent and transitory teacher effects and simply 

esƟmate the teacher’s total contemporaneous impact on test scores. It is important to 

separate out these two components because transitory impacts on test scores have no 

long-term value (although they may be valued by school administrators under 

accountability pressure). On average, the total teacher effect may either over or 

understate a teacher’s persistent impact on knowledge depending on the covariance 

between the permanent and transitory teacher impact: 

𝐸ൣ𝜃௝௧|൫𝜃௝௧ ൅ 𝜑௝௧൯൧ ൌ 𝛽௙௔ௗ௘൫𝜃௝௧ ൅ 𝜑௝௧൯ where 𝛽௙௔ௗ௘ ൌ
஼௢௩൫ఏೕ೟,ఏೕ೟ାఝೕ೟൯

௏௔௥൫ఏೕ೟ାఝೕ೟൯
ൌ

௏௔௥ሺఏሻା஼௢௩ሺఏ,ఝሻ

௏௔௥ሺఏሻା௏௔௥ሺఝሻାଶ௖௢௩ሺఏ,ఝሻ
 

Moreover, this average fadeout may mask considerable variaƟon across teachers. 

 



2. Second, equaƟon (3) now includes a prior year teacher effect (െ𝛿𝜑௝ᇲ,௧ିଵ) that reflects 

the fading out of the prior-year teacher’s transitory effect on the student’s test score. 

Typical VAM models do not control for a student’s prior-year teacher. Failing to control 

for the prior-year teacher could further bias the esƟmate of the current-year teacher 

effect unless the prior-year teacher transitory effect is uncorrelated with current-year 

teacher assignments. However, it is straighƞorward to add prior year teacher effects to a 

standard VAM specificaƟon, and this esƟmates both 𝜃௝௧ ൅ 𝜑௝௧ and െ𝛿𝜑௝ᇲ,௧ିଵ, which 

along with an esƟmate of 𝛿 idenƟfies both persistent and transitory teacher effects. 

 

3. Finally, even aŌer condiƟoning on current and prior year teacher, the error in equaƟon 

(3) sƟll depends on the measurement error in both the lagged test score ൫𝜂௜௧ െ 𝛿𝜂௜,௧ିଵ൯. 

This could introduce bias to tradiƟonal VAM esƟmates in two ways. First, the negaƟve 

correlaƟon between 𝑦௜௧ and െ𝛿𝜂௜,௧ିଵ will generate standard aƩenuaƟon bias on 

esƟmates of 𝛿. Again, this would result in under-controlling for prior knowledge, leaving 

a porƟon of prior knowledge in the error term. More specifically, if 𝛿መ is the expected 

value of the aƩenuated coefficient, then the error term will contain ൫𝛿 െ 𝛿መ൯𝑦௜,௧ିଵ ൌ
൫𝛿 െ 𝛿መ൯൫𝜇௜,௧ିଵ ൅ 𝜑௝ᇲ,௧ିଵ ൅ 𝜂௜,௧ିଵ൯ which introduces prior knowledge into the error term. 

If students were assigned to teachers based on beƩer informaƟon about their prior 

knowledge (e.g. tracking) then esƟmates of teacher effects will be biased. Similarly, if 

students are assigned to teachers in part based on knowledge of 𝜂௜,௧ିଵ (or equivalently, 

knowledge of 𝜇௜,௧ିଵ ൅ 𝜑௝,௧ିଵ if 𝑦௜,௧ିଵ is known), then teacher assignment would also be 

correlated with the error term. For example, if an administrator could idenƟfy which 

students simply had a bad day on the prior year test and assigned all those students to a 

parƟcular teacher, that teacher would appear to have large impacts on test score 

growth. 

The preceding discussion suggests that a VAM model that regresses end-of-year test 

score on prior score, current and lagged teacher fixed effects, and some student covariates (to 

account for 𝛼௜) faces three sources of potenƟal bias: (1) sorƟng of students to teachers based 

on student-specific growth (𝛼௜) that is not captured by covariates, (2) sorƟng of students to 

teachers based on the measurement error in the prior-year score (𝜂௜,௧ିଵ), and (3) aƩenuaƟon of 

the coefficient 𝛿 due to measurement error in prior test scores along with sorƟng of students to 

teachers based on prior student knowledge (tracking). 

3. IV EsƟmaƟon 

 Since it is likely that students are sorted to teachers based on informaƟon about the 

student’s prior knowledge, aƩenuaƟon of the lagged score coefficient is parƟcularly worrisome 

in VAM models. A standard soluƟon for aƩenuaƟon bias due to measurement error is 

instrumental variables. Therefore, IV esƟmates of equaƟon (3) using a twice lagged test score 



(𝑦௜,௧ିଶ) as an instrument for the lagged score will yield unbiased esƟmates of 𝛿.6  The twice 

lagged score will be correlated with the lagged score through equaƟon (1), yet has 

measurement error that is independent of the error in equaƟon (3), 𝛼௜ ൅ 𝜐௜௧ ൅  ൫𝜂௜௧ െ 𝛿𝜂௜,௧ିଵ൯. 

 By eliminaƟng aƩenuaƟon bias, IV esƟmates of VAM models (controlling for current and 

lagged teacher effects) are not biased by teacher assignment correlated with prior knowledge 

(𝜇௜,௧ିଵ) since prior knowledge is uncorrelated with the error in equaƟon (3).7 To the extent that 

sorƟng on prior knowledge (tracking) is an important source of bias in OLS esƟmates of VAM, 

this is an important strength of IV esƟmates of VAM.  

But we are sƟll leŌ with the two remaining potenƟal sources of bias that were also 

present in OLS esƟmates of VAM models:  

1. Teacher assignment correlated with student growth (𝛼௜) will bias IV VAM esƟmates.  

2. Teacher assignment correlated with prior year measurement error in student scores 

(𝜂௜,௧ିଵ) will bias IV VAM esƟmates.  

This second source of bias is likely to be the primary source of bias in IV VAM esƟmates. 

If teacher assignment is determined in part by prior year scores (𝑦௜,௧ିଵ) then it will be correlated 

with the measurement error in prior year scores. However, if the baseline score 𝑦௜,௧ିଵ was not 

known at the Ɵme of assignment, then this bias will not be present. For example, unƟl recently 

many states did not report end-of-year test scores unƟl the following fall.8 In such states, 

teacher assignment could not rely on prior year scores. More generally, if value-added used a 

fall test from the beginning of the school year as the lagged score, this would ensure that 

assignment was not based on the baseline test. Similarly, evaluaƟons of non-randomized 

intervenƟons using IV VAM would avoid bias by using a baseline test administered to all 

students aŌer assignment.   

Overall, a VAM model that instruments for prior score with an earlier score, and includes 

current and lagged teacher fixed effects, and perhaps some student covariates (to account for 

𝛼௜) faces only two sources of potenƟal bias: (1) sorƟng of students to teachers based on 

student-specific growth (𝛼௜) that is not captured by covariates, and (2) sorƟng of students to 

teachers based on the measurement error in the prior-year score (𝜂௜,௧ିଵ). This second bias is 

eliminated in situaƟons where the baseline score was not known (or otherwise not used) at the 

Ɵme of assignment (either by chance or by design). Unlike OLS VAM esƟmates, assignment to 

teachers based on a student’s prior knowledge does not bias IV VAM esƟmates.  

 
6 more generally, any score from time t-1 or before with independent measurement error will be a valid 

instrument. 
7 Prior knowledge is correlated with the error through 𝛼௜, but we consider the bias arising from 𝛼௜ separately. 
8 Our data come from North Carolina. North Carolina was unusual in that schools and students received their 

scores often within days of taking the test. 



4. Kalman Filter EsƟmates 

 An alternaƟve way to think about VAM models is to plug equaƟon (1) directly into 

equaƟon (2), which yields: 

ሺ4ሻ 𝑦௜௧ ൌ 𝛿𝜇௜,௧ିଵ ൅ ൫𝜃௝௧ ൅ 𝜑௝௧൯ ൅  𝛼௜ ൅ 𝜐௜௧ ൅ 𝜂௜௧   

We cannot esƟmate equaƟon (4) directly because a student’s prior knowledge (𝜇௜,௧ିଵ) is 

unknown. 

However, suppose we formed an unbiased predicƟon of 𝜇௜,௧ିଵ using all of the 

informaƟon available on the student up through and including the informaƟon in t-1. Call this 

predicƟon 𝜇̂௜,௧ିଵ|௧ିଵ. Then consider the following equaƟon subsƟtuƟng 𝜇̂௜,௧ିଵ|௧ିଵ for 𝜇௜,௧ିଵ in 

equaƟon (4): 

ሺ5ሻ 𝑦௜௧ ൌ 𝛿𝜇̂௜,௧ିଵ|௧ିଵ ൅ ൫𝜃௝௧ ൅ 𝜑௝௧൯ ൅  𝛼௜ ൅ 𝜐௜௧ ൅ 𝜂௜௧ ൅ 𝛿൫𝜇௜,௧ିଵ െ 𝜇̂௜,௧ିଵ|௧ିଵ൯   

EquaƟon (5) is analogous to a standard OLS VAM model except instead of condiƟoning on prior 

score, we condiƟon on an opƟmal predicƟon of prior knowledge given all the informaƟon 

available. In this model, 𝛿𝜇̂௜,௧ିଵ|௧ିଵ is the student’s expected score at Ɵme t, and current 

teacher effects are esƟmated based on the difference between actual and expected score at 

Ɵme t (end of year). 

The key potenƟal source of bias introduced in equaƟon (5) arises from the fact that our 

predicƟon error in predicƟng true knowledge at baseline ൫𝜇௜,௧ିଵ െ 𝜇̂௜,௧ିଵ|௧ିଵ൯ now appears in 

the residual. If students are assigned to teachers based on private informaƟon about 𝜇௜,௧ିଵ that 

is not captured by 𝜇̂௜,௧ିଵ|௧ିଵ, then esƟmates derived from equaƟon (5) will be biased. Thus, it is 

parƟcularly important to incorporate as much informaƟon as possible into 𝜇̂௜,௧ିଵ|௧ିଵ. 

Because equaƟons (1) and (2) define a simple state-space model, we can use the Kalman 

filter to efficiently construct opƟmal predicƟons based on the enƟre history of informaƟon 

available on each student at baseline. For this calculaƟon we assume 𝛼௜ ൌ 0. Let 𝜇̂௜,௧|௧ିଵ ൌ
𝛿𝜇̂௜,௧ିଵ|௧ିଵ be the predicƟon of knowledge at Ɵme t given informaƟon available at Ɵme t-1, and 

let 𝑢ො௜,௧|௧ିଵ ൌ 𝑦௜,௧ െ 𝜇̂௜,௧|௧ିଵ be the corresponding predicƟon error. The Kalman filter esƟmates  

𝜇̂௜,௧|௧ using the following recursive relaƟonship: 

      ሺ6ሻ 𝜇̂௜,௧|௧ ൌ 𝜇̂௜,௧|௧ିଵ ൅ 𝐾௧൫𝑢ො௜,௧|௧ିଵ൯ ൅ 𝛿𝜃௝,௧   

EquaƟon (6) states that the opƟmal predicƟon in year t updates the predicƟon from t-1 

based on the residual difference between the actual test score in year t and the predicƟon from 

t-1, and then adds on the persistent effect of the student’s teacher in year t. If 𝑦௜,௧ is above 

(below) the predicƟon from t-1, then the predicƟon at Ɵme t is revised upward (downward).  

The weight placed on the residual (𝐾௧) is referred to as the Kalman gain and is less than 1 and 



falls over Ɵme as the exisƟng predicƟon becomes more precise and less weight is placed on the 

noisy new informaƟon in 𝑦௜,௧. 

 Plugging equaƟon (6) into equaƟon (5) yields the final Kalman filter esƟmaƟng equaƟon: 

ሺ7ሻ 𝑦௜௧ ൌ 𝛿൫𝜇̂௜,௧ିଵ|௧ିଶ൯ ൅ 𝛿𝐾௧൫𝑢ො௜,௧ିଵ|௧ିଶ൯ ൅ 𝛿𝜃௝ᇲ,௧ିଵ ൅ ൫𝜃௝௧ ൅ 𝜑௝௧൯ ൅  𝛼௜ ൅ 𝜐௜௧ ൅ 𝜂௜௧
൅ 𝛿൫𝜇௜,௧ିଵ െ 𝜇̂௜,௧ିଵ|௧ିଵ൯ 

EquaƟon (7) is a vam specificaƟon that replaces the lagged score with three terms: The 

predicted test score in t-1, the predicƟon residual from t-1, and the persistent teacher effect 

from t-1. The first two terms add up to the test score in t-1, so this is a generalizaƟon of the 

usual vam specificaƟon that disƟnguishes between the prior predicƟon of knowledge 

൫𝜇̂௜,௧ିଵ|௧ିଶ൯ and the new informaƟon that comes from the test score in t-1 ൫𝑢ො௜,௧ିଵ|௧ିଶ൯. Because 

the new informaƟon in t-1 includes measurement error, the new informaƟon is given lesser 

weight than the prior predicƟon in predicƟng knowledge in Ɵme t. EquaƟon (7) also idenƟfies 

effects of the current and lagged teacher (as in the VAM and IV models). However, the lagged 

teacher effect (𝛿𝜃௝ᇲ,௧ିଵ) now has a different interpretaƟon: it captures the effect of the prior 

year teacher that persists into the current year.  

We esƟmate equaƟon (7) sequenƟally in each grade to obtain esƟmates of 𝛿, 𝐾௧, and 

current and lagged teacher fixed effects. We then use these esƟmates and the Kalman filter 

equaƟon (6) to esƟmate 𝜇̂௜,௧ିଵ|௧ିଶ and 𝑢ො௜,௧ିଵ|௧ିଶ for the next grade.9 In forming predicƟons 

using equaƟon (6), we use empirical Bayes to form best linear unbiased predicƟons of the prior 

year’s teacher persistent effect (𝜃௝ᇲ,௧ିଵ), e.g. we apply shrinkage to the esƟmated fixed effects 

(Kane and Staiger, 2008).  

Overall, the Kalman filter approach is an alternaƟve to OLS VAM that aƩempts to 

minimize the bias arising from assignment to teachers based on beƩer informaƟon about 

student’s prior knowledge. It does so by more carefully controlling for the full history of 

available informaƟon. However, whether this eliminates bias in the esƟmaƟon of teacher effects 

will depend on how accurate the Kalman predicƟons are, whether parents and administrators 

have access to beƩer informaƟon, and whether this informaƟon is used for student assignment 

to teachers. 

5. Allowing for non-linearity 

 VAM models commonly find non-linearity in the relaƟonship between end-of-year 

scores and prior year scores, with a flaƩer relaƟonship in the tails. Therefore, we esƟmate 

versions of the OLS and IV VAM specificaƟons including a cubic in prior score (and in IV, 

instrumenƟng with a cubic in the two-year lag score). We normalize the test scores to be mean 

zero in each grade, so that the coefficient on the linear term (𝛿) can be interpreted as the 

 
9 To estimate 𝜇̂௜,௧|௧ in the initial period, when no baseline score is available, we simply run a regression of 𝑦௜௧ on 

student covariates. 



depreciaƟon rate of knowledge for a student with an average score. We use this esƟmate of 𝛿 

for the average student in all the formulas above.  

 In the Kalman filter model, there is a natural way to interpret the cubic relaƟonship 

between current and prior test scores. Recall that the coefficient on the predicƟon residual from 

t-1 ൫𝑢ො௜,௧ିଵ|௧ିଶ൯ in the Kalman model (equaƟon 7) is 𝛿𝐾௧, where 𝐾௧ is the Kalman gain. If all test 

scores have similar measurement error then 𝐾௧ only varies by Ɵme, declining over Ɵme as the 

predicƟon in t-1 becomes more precise and the predicƟon residual in t-1 becomes mostly 

measurement error. However, most standardized tests are designed to minimize error for 

students with achievement near the mean, and therefore have less measurement error in the 

center of the distribuƟon and more measurement error for scores in the tails.10 If this is true, 

then the Kalman gain should be smaller for students whose prior score is in the tails of the 

distribuƟon. A typical plot of the standard error of measurement against percenƟles of the test 

score looks roughly quadraƟc – suggesƟng that we should interact the predicƟon residual from 

t-1 ൫𝑢ො௜,௧ିଵ|௧ିଶ൯ with a quadraƟc a student’s baseline score. Since the predicƟon residual 

includes the baseline score, this is analogous to including a cubic in baseline score in the OLS 

and IV VAM models. Therefore, we esƟmate versions of the Kalman filter model including 

interacƟons between the predicƟon residual and a quadraƟc in the baseline score.11 

6. Tests of model assumpƟons and potenƟal bias 

For each of our models we perform a series of specificaƟon tests to explore the 

plausibility of the model assumpƟons.  

First, we test the staƟsƟcal assumpƟons imposed by our model by comparing 

regressions predicƟng end-of-grade test scores using the Kalman filter to more and less flexible 

models. We first test the Kalman filter model against the more restricƟve convenƟonal OLS VAM 

models using only the prior year score as a covariate with no lagged teacher effects. We then 

test the Kalman filter model against less restricƟve models that flexibly include a student’s 

history of prior scores and teachers. The Kalman model imposes strong restricƟons on how 

these prior variables enter the regression by assuming all prior contribuƟons to knowledge 

depreciate at the same rate 𝛿. Given our sample size, these tests have high power.  As a result, 

we focus on whether the addiƟonal flexibility meaningfully improves the regression’s adjusted 

R-squared.   

Second, we consider two empirical tests for the presence of student heterogeneity in 

growth ሺ𝛼௜ሻ in each of our three models (OLS VAM, IV VAM, and Kalman). First, using each 

student’s census tract income (something not typically available in VAM models), we 

parameterize  𝛼௜ ൌ 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝛾 and directly esƟmate the impact of income on growth and the 

 
10 The technical documentation on NC EOG tests includes details on the standard error of measurement suggesting 

much more error in the tails. This is likely to be less true with adaptive tests which adjust to ask more 
appropriate questions to students in the tails of the distribution. 

11 We also include the direct effect for the quadratic term in baseline score, although this has little impact. 



variance of 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝛾 . Our second empirical test for the presence of 𝛼௜ uses the covariance of 

each model’s residuals two or more years apart to esƟmate the variance of 𝛼௜: Since the 

remaining terms in the residual are expected to be uncorrelated beyond one lag, these 

covariances are esƟmates of the variance of student-specific growth. To esƟmate this 

covariance, we esƟmate a Hierarichical Linear Model (using the mixed command in Stata) for 

the student residuals, allowing for random student intercept (𝛼௜) and a Toeplitz error structure 

with one lag to account for the addiƟonal error terms in each model that may add variance and 

covariance at one lag. 

Third, we explore whether private informaƟon about student prior knowledge (𝜇௜,௧ିଵ) 

could contribute to bias in each model. We add to each model the prior teacher’s judgement 

about each student’s level of knowledge. For three of the six cohorts we study, teachers 

provided their subjecƟve judgements of students’ mastery of state standards before seeing the 

end of grade test results.  Although typically not available to the value-added researcher, this is 

the kind of private informaƟon that could be used in teacher assignments.12 As with income, we 

add this variable to our models and quanƟfy the amount of variaƟon this type of private 

informaƟon can explain. 

Fourth, to quanƟfy whether any of these potenƟal biases maƩer in pracƟce, we esƟmate 

teacher persistent and transitory effects from each of the models, with and without addiƟonal 

controls for income and prior teacher’s judgement and report the correlaƟon in these esƟmates 

across models.  

FiŌh, we use observable proxies for each type of potenƟal sorƟng and esƟmate how 

these proxies vary systemaƟcally across teachers. To do this, we esƟmate HLM models (using 

the mixed command in Stata) in which the dependent variable is one of the observable proxies, 

and we esƟmate random intercepts at the school and teacher level. These models how much 

actual sorƟng actually occurred based on these observable proxies. We consider the following 

proxies, available at the student-level: 

1.  𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝛾, which proxies for sorƟng on student growth. 

2. TeacherJudgement*b, which proxies for sorƟng on private informaƟon about student 

knowledge. 

3. The Kalman predicƟon of student knowledge at Ɵme t-1 (൫𝜇̂௜,௧ିଵ|௧ିଶ൯), which proxies for 

the extent of sorƟng on observable informaƟon about student knowledge. 

4. The Kalman predicƟon residual at Ɵme t-1 (൫𝑢ො௜,௧ିଵ|௧ିଶ൯), which proxies for the extent of 

sorƟng on the measurement error in test scores in t-1. This is an imperfect proxy 

because the Kalman predicƟon residual is a mix of true student knowledge and 

measurement error. 

 
12 We also have information on each student’s expected grade, which yields very similar results. 



5. The prior year teacher’s transitory effect (𝜑௝ᇲ,௧ିଵ), which proxies for sorƟng on prior 

teacher fadeout.  

Finally, we use the IV VAM esƟmates to do a full decomposiƟon of the variance components 

in our model ൫𝜃௝௧,𝜑௝௧ ,𝛼௜ , 𝜐௜௧ , 𝜂௜௧ ,𝑎𝑛𝑑 𝜇௜,௧൯. We use these variance component esƟmates to 

invesƟgate the importance of teacher versus other innovaƟons contribuƟng to learning. We 

esƟmate the variance and covariance of the persistent and transitory teacher effects  ൫𝜃௝௧,𝜑௝௧൯ 

using standard empirical Bayes methods that correct for (correlated) esƟmaƟon error in the 

fixed effect esƟmates (Kane and Staiger, 2008). These esƟmates provide direct evidence on 

whether it is important to account for fadeout in value added models, and we also use them to 

esƟmate the average rate of fadeout of teacher effects ൫𝛽௙௔ௗ௘൯. We esƟmate the variances of 

𝛼௜ , 𝜐௜௧ , 𝜂௜௧ using the IV VAM model’s residuals ቀ𝛼௜ ൅ 𝜐௜௧ ൅  ൫𝜂௜௧ െ 𝛿𝜂௜,௧ିଵ൯ቁ. We esƟmate a 

Hierarichical Linear Model (using the mixed command in Stata) for the student residuals from 

grades 5-8, allowing for random student intercept (𝛼௜) and a Toeplitz error structure with one 

lag to account for the addiƟonal variance and covariance at one lag due to 𝜐௜௧ ൅
 ൫𝜂௜௧ െ 𝛿𝜂௜,௧ିଵ൯. Using our esƟmate of 𝛿 from the IV VAM model, these esƟmates can be 

transformed to yield esƟmates of the variance of 𝜐௜௧ and 𝜂௜௧. Finally, the variance of 𝜇௜௧ is 

esƟmated based on equaƟon (2), which implies 𝑉𝑎𝑟ሺ𝜇௜௧ሻ ൌ 𝑉𝑎𝑟ሺ𝑦௜௧ሻ െ 𝑉𝑎𝑟൫𝜑௝௧൯ െ 𝑉𝑎𝑟ሺ𝜂௜௧ሻ.  

Data 

 We use student-level panel data from the North Carolina EducaƟon Research Data 

Center (NCERDC).  Our primary analysis sample consists of students in third through eighth 

grade between 2007 and 2017.  We exclude data prior to 2007 due to a lack of student-teacher 

linkages.  We excluded data aŌer 2017, because students could choose to take an end of course 

Algebra I test rather than the 8th grade end of grade assessment taken by other students.  

Because of the change in 2018, we would have been missing 8th grade end of grade assessments 

for a non-random sample of students.   

Due to the data requirements of the state-space model, we exclude from our sample any 

students missing in grades 3-8 and those who repeat or skip a grade.  We also exclude students 

missing any of the following data in any year: math and reading scores, race/ethnicity, indicators 

for economic disadvantage indicator, limited English proficiency or learning disability, or the id 

codes for primary math and reading instructor.13 

 For a subset of our analyses, we use data from 2007 through 2013 in which teachers 

were asked to provide their subject assessments of students’ mastery of state content standards 

in math and reading.  Therefore, our analyses involving prior grade teacher raƟngs are limited to 

the three cohorts of students who were in 8th grade between 2012 and 2014.  When using prior 

 
13 All the methods we discuss can be modified to accommodate students with missing years or data, but we focus 

on this complete data sample to simplify the presentation and analysis. 



year teacher judgements, we exclude from our regressions the small percentage of students for 

whom teacher judgements were missing. 

 The NCERDC data also include block group idenƟfiers from the U.S. Bureau of the 

Census.  Between 2010 and 2017, the data provided correspond to 2010 Census block group 

boundaries.  Between 2007 and 2009, the data provided by NCERD correspond to the 2000 

block group boundaries.  As a measure of neighborhood income, we the 2013 ACS 5-year 

esƟmate of median household income by block group between 2010 and 2017. Between 2007 

and 2009, we use the 2000 Census median household income measure by block group.  We sort 

the neighborhood income measures each year into deciles, aŌer converƟng to 2022 dollars.14  

Because the block group idenƟfiers are provided for individual students—not school—we 

observe variaƟon in neighborhood income within teachers and schools and not just between.  

In the analyses involving neighborhood characterisƟcs, we exclude anyone missing the 

neighborhood idenƟfiers. This primarily excludes charter school students from the analyses 

using neighborhood income because NCERD did not provide block groups for these students. 

Results 

 In Table 2, we evaluate the Kalman filter esƟmates' ability to predict end-of-year test 

scores compared to convenƟonal VAM specificaƟon and against more flexible specificaƟons. 

Since the Kalman filter esƟmates are opƟmal if our staƟsƟcal model is correct, these results 

provide a test of the assumpƟons in our staƟsƟcal model. To provide the strongest test of the 

Kalman, we focus on 8th grade math achievement, given that we have achievement measures in 

five prior years (grades 3, 4, 5, 6 and 7) and teacher assignments in four prior grades (4th, 5th, 6th 

and 7th).   

One key difference between our model and the convenƟonal VAM model is the inclusion 

of fixed effects for both prior year and current teacher.  Column (1) reports the results of the 

convenƟonal VAM model with fixed effects for current grade 8 teachers, while column (2) 

includes fixed effects for both 7th and 8th grade teachers.  Moving from column (1) to (2), the 

adjusted R2 increases from .7448 to .7520 and the F-test rejects exclusion of the prior teacher 

effects.  That is what we would expect if there were any transitory effect of last year’s teacher 

not captured by students’ the baseline score.  

Column (3) reports results for the Kalman filter specificaƟon.  The Kalman filter breaks 

baseline achievement into two parts: the expected achievement (based on prior scores and 

teacher assignments) and the new informaƟon which emerged in the baseline year, t-1.  While 

the convenƟonal VAM forces the same coefficient on both parts—esƟmaƟng a coefficient of 

.758 on baseline score-- the Kalman filter allows us to esƟmate different coefficients on each, 

.925 on the Kalman predicƟon and .407 on the Kalman residual. One of the reasons that 

convenƟonal value-added is biased is that it constrains these coefficients to be equal.  The 

 
14 While we report results for income deciles, we obtain very similar results using deciles of the block group’s Area 

Deprivation Index. 



Kalman is clearly a beƩer fit, with an adjusted R2 of .7877 vs. .7520.  Given the large sample size, 

the p-value of the F-staƟsƟc comparing the specificaƟons in columns (2) and (3) is less than 

.001.  Note also that while the coefficient on the Kalman predicƟon of achievement in t-1 is near 

one, .925, the coefficient on the Kalman residual (which will include measurement error in t-1 

achievement, 𝜂௜௧ିଵ,as well as persistent effects of t-1 intervenƟons, 𝜈௜௧ , and new informaƟon 

about a student’s true state) is much smaller (.407).   

In the remaining columns of Table 1, we test how well the Kalman filter summarizes the 

informaƟon from prior performance and teacher assignments by gradually allowing for more 

flexible specificaƟons.  For instance, in column 4, we add a control for 6th grade math 

achievement.  In column (5) we esƟmate independent effects for lagged math achievement in 

grades 3 through 6.  In both instances, the F-test rejects the Kalman specificaƟon in Column (2), 

but the adjusted R2 remains the same through four digits, .7877.  In column 6, we add lags of 

reading achievement in grades 3 through 6.  The adjusted R2 increases slightly to .7898, an 

increase of .0022.  In the last column, we add fixed effects for each students’ history of teacher 

assignments in grades 3-6.  The increase in adjusted R2 is somewhat larger, but sƟll is less than a 

full percentage point larger (.0072) than the Kalman filter specificaƟon in column (2).  We take 

this as evidence that the Kalman filter faithfully summarizes the history of students’ 

achievement and teacher assignments quite well—certainly beƩer than a single year of 

achievement as with convenƟonal value-added and nearly as well as a completely flexible 

specificaƟon. 

Table 3 reports similar results for reading.  The Kalman specificaƟon fits beƩer than the 

convenƟonal VAM (adjusted R2 of .7263 vs. .6653).  As with math, the inclusion of all lags and 

the full history of teacher dummies in column (7) improves the adjusted R2 by less than 1 

percent, by .0068, relaƟve to the two-part Kalman specificaƟon in column (3).   

As discussed earlier in the methods secƟon, VAM models commonly find non-linearity in 

the relaƟonship between end-of-year scores and prior year scores, with a flaƩer relaƟonship in 

the tails. To account for this non-linearity, convenƟonal VAM models oŌen include a cubic in 

prior score. In appendix Table A1 we compare convenƟonal VAM models with linear controls for 

prior scores to those with cubic controls for prior scores and find that the addiƟonal cubic terms 

are highly significant and improve the adjusted R-squared. Similarly, when we esƟmate VAM by 

IV in Appendix Table A1, we find the addiƟonal cubic terms are highly significant (adjusted R-

squared is not relevant for IV). Finally, as discussed in the methods secƟon, an analogous 

specificaƟon in the Kalman specificaƟon would include interacƟons between a quadraƟc in 

baseline score and the Kalman residual to account for greater measurement error in the tails of 

the baseline score distribuƟon. Again, in Table A1 we find that the addiƟonal interacƟons and 

quadraƟc terms are highly significant and improve the adjusted R-squared of the Kalman 

specificaƟon. Therefore, in the remainder of the paper we focus on specificaƟons that include 

these non-linear terms, although none of the results are qualitaƟvely changed if we reported 

results from more simple linear models. 



   In Table 4, we incorporate the subjecƟve assessments of prior grade teachers regarding 

their students’ mastery of math and reading standards.  The data were collected as students 

were siƫng down to take the state tests and before test results were available.  Teachers chose 

from five categories from insufficient mastery to consistently superior.15  Although such 

measures are typically not available to the value-added researcher, we use it here to test 

whether the prior grade teachers have addiƟonal informaƟon (beyond a students’ achievement 

history and prior teachers) which could be used for sorƟng and bias.   In the state-space model, 

year t achievement depends solely on period t inputs (𝜈௜௧,𝛼௜ ,𝜃௝௧,𝜓௝௧ሻ and true baseline 

achievement, 𝜇௜௧ିଵ.  However, any addiƟonal informaƟon teachers have regarding a student’s 

true baseline knowledge is an addiƟonal source of selecƟon, which would lead to bias in 

convenƟonal VAM and the Kalman filter specificaƟons if used to sort students.   

We included indicators for whether the prior teacher rated the students’ mastery of 

state standards as “insufficient,” “inconsistent”, “consistently superior”, or “none of the above” 

with the most common response, “consistent mastery,” as the excluded category.  Clearly, the 

prior grade teachers do have informaƟon not captured in the t-1 achievement scores: in the 

convenƟonal VAM for math (column 1), the students who were rated as having insufficient 

mastery of math by their 7th grade teacher scored .323 SD lower on the 8th grade test than 

those who had the same 7th grade scores, but whose teachers reported they had “consistent” 

mastery.    Meanwhile, those judged to have “consistently superior” achievement scored .205 

SD higher.  

 We created an index of teacher judgements, using the coefficients in Table 3, and 

regressed the index on the remaining variables in Table 3, using the residual to calculate the 

potenƟal bias from excluding such private judgements.  The esƟmated variance was .011, 

implying an SD of .105.   Because it is similar in size to the signal variance in teacher effect 

esƟmates, it implies that perfect sorƟng on teacher judgements could produce 100 percent bias 

in teacher effects.  (However, we will present evidence in Table 5 that there is only modest 

sorƟng on teacher judgements in our data.) 

 In the next column, we report a similar test for the Kalman filter specificaƟon.  

Apparently, grade 7 teachers do have informaƟon not captured by the Kalman predicƟon or 

Kalman residual, as the coefficients on teacher judgements remain significant.  However, the 

variance of the potenƟal bias due to teacher judgements is about 70 percent smaller, .003, 

implying an SD of .059, about half the size of the SD of convenƟonal VAM esƟmates of teacher 

effects. Thus, while the Kalman fails to fully capture the informaƟon that the prior year teacher 

has about student knowledge, it captures substanƟally more informaƟon than convenƟonal 

VAM. 

 
15 In addition to the mastery questions, teachers were asked to report the grade they were expecting to give to 

each student.  We have done a parallel analysis using teacher’s planned grades and found very similar results. 



 In column (3), we report the same test for the IV specificaƟon.  In the IV, the coefficients 

on the teacher judgement variables are near zero and individually insignificant. We cannot 

reject the joint hypothesis that teacher judgements carry no addiƟonal informaƟon (p-

value=.801.) and the variance in potenƟal bias is zero to three digits with an implied SD of .006.   

As reported in the right-hand panel of Table 3, the results are generally similar in 

reading. Prior teacher judgement has effects that are large and significant in convenƟonal VAM, 

about half the size but sƟll significant in the Kalman specificaƟon, and near zero in the IV 

specificaƟon (although the p-value of the F-test is .008.) The implied SD in the potenƟal bias due 

to teachers’ private informaƟon is .119 in the convenƟonal VAM, .050 with the Kalman 

specificaƟon and .008 for the IV. 

The results in Table 4 highlight the main advantage of the IV specificaƟon. Unlike 

convenƟonal VAM and to a lesser extent the Kalman specificaƟon, the prior-year teacher’s 

judgement cannot predict student gains in the IV specificaƟon. The reason for this is twofold. 

First, by instrumenƟng with twice-lagged scores, the IV specificaƟon corrects for aƩenuaƟon 

bias due to measurement error in the lagged score and gets an unbiased esƟmate of 𝛿, the true 

depreciaƟon rate of baseline knowledge. Second, because the IV specificaƟon correctly 

accounts for the depreciaƟon of the baseline knowledge that is part of the lagged score, the IV 

residual no longer has any associaƟon with baseline knowledge – and, hence, private 

informaƟon about baseline knowledge plays no role in the IV specificaƟon.  

     In Table 5, we perform a similar analysis, incorporaƟng informaƟon on the median 

household income of the Census block group (sorted into deciles) where a student resides.  

Again, such data are typically not available to the value-added researcher.  We include them to 

test if there is any differenƟal growth for students from high- and low-income neighborhoods, 

condiƟonal on baseline achievement and teacher assignments.  In the convenƟonal VAM 

specificaƟon, students living in census tracts in the top three income deciles scored .03 to .04 

standard deviaƟons above those with similar baseline achievement residing in the lowest 

income decile neighborhoods.  Columns (2) and (3) repeat the exercise using the Kalman Filter 

and IV specificaƟons.  Although there were small differences in achievement growth not 

captured by the Kalman filter (a potenƟal bias variance of .00006), neighborhood income played 

liƩle role in the IV model.  In fact, the p-value of the constraint that all the differences by 

neighborhood income were zero, was .213 for math and .992 in reading.  The potenƟal bias 

variance due to exclusion of the neighborhood income declines was .00003 in math and .00002 

in reading for the IV specificaƟon. 

The results in Table 5 suggest that neighborhood income does not idenƟfy students who 

consistently have higher test score growth (𝛼௜). This is surprising but may reflect that census 

block income is a weak proxy for the factors that contribute to 𝛼௜. In our model, if there is 

substanƟal variance in 𝛼௜ across students, it will generate a posiƟve correlaƟon in their residuals 

across grades two or more years apart: students with unexpectedly high test-score growth in 



early grades will conƟnue to have unexpectedly high test-score growth in later grades.16  For 

residuals two or more years apart, the correlaƟon is .07 for convenƟonal VAM in math and .09 

in reading.17  In the IV and Kalman, the correlaƟon in residuals two or more years apart is below 

.01 for both math and reading. Thus, there is liƩle evidence of “fast learners and slow learners”, 

e.g. students who consistently have higher (or lower) than expected test score growth.  

 Under the IV specificaƟon, neither teacher judgements nor neighborhood income were 

predicƟve of student outcomes, implying that even if there were perfect sorƟng on those traits, 

it would not lead to bias for the IV.  In contrast, when using convenƟonal VAM or the Kalman 

filter, any sorƟng on neighborhood income or private teacher judgements would lead to bias.  

However, the amount of potenƟal bias for the Kalman due to sorƟng on neighborhood income 

was considerably smaller than the potenƟal bias from sorƟng on teacher’s private informaƟon.   

 Table 6 gauges the amount of bias due to sorƟng on each of five factors:  neighborhood 

income, teacher judgements of students’ mastery, the transitory impact of prior teachers, the 

Kalman predicƟon of the prior grade score and the Kalman residual for the prior grade score.  

The esƟmates in Table 6 are derived from hierarchical linear models (HLM) regressing each of 

the listed variables on random school effects and random teacher effects nested within schools. 

We include the school-level random effects as an indicator of sorƟng of students between 

schools.  The teacher random effects, because they are nested within schools, indicate the 

amount of sorƟng which occurred across teachers within schools. SorƟng within schools will 

bias esƟmates of teacher effects but has no impact on esƟmates of school-level value added, 

while sorƟng between schools affects esƟmates of both teacher and school value added.   

 The top panel reports the amount of sorƟng on the index of predicted achievement 

growth by neighborhood income deciles (esƟmated in Table 5.)  Because we used the direct 

effects of neighborhood income on achievement growth to create the index, the esƟmates in 

Table 6 are interpretable as esƟmates of the variance of actual bias which would result from 

excluding neighborhood income.  As a benchmark, typical esƟmates of the variance of school 

and teacher effects range from .01 to .04 (SD .1 to .2). The raƟo of our esƟmates of bias variance 

to these benchmark esƟmates of total variance indicates the degree of bias in teacher effects 

due to sorƟng on neighborhood income.   

In the convenƟonal VAM model, we esƟmate that the standard deviaƟon of the bias due 

to excluding students’ neighborhood income is .013 at the school level (a variance of .0002) and 

.005 for teachers within-schools (a variance of .000025).  RelaƟve to a total variance in school 

and teacher effects of .01-.04, the implied bias from excluding neighborhood income is 

expected to be less than 2 percent for schools and less than 1 percent for teachers.  There are 

 
16 At the first lag, there is a substantial negative correlation in the conventional VAM and IV VAM 

residuals due to estimation error from the prior year score (𝜂௜௧ିଵ). 
17 This is because in the conventional VAM, the coefficient on baseline score is attenuated, leaving some of true 

baseline achievement in the residual. 



similarly small amounts of bias from the exclusion of neighborhood income for the Kalman filter 

and IV esƟmators.  The results for reading are similar. Thus, there is no evidence that the actual 

sorƟng of students to schools and teachers in NC contributed to bias.  

 The next panel in Table 6 reports esƟmates of bias due to the exclusion of teacher’s 

judgement of students’ mastery of standards.  In the convenƟonal VAM, for math, the standard 

deviaƟon in school and teacher effects is .051 and .054 respecƟvely, implying bias variance is 

.003 for schools and .003 for teachers within schools—as much as 30% percent of typical school 

and teacher variance esƟmates.  In the Kalman filter, the standard deviaƟons are .043 and .033 

respecƟvely, implying a bias variance of .002 and .001 for teachers and schools respecƟvely, 

implying as much as 20% bias for teachers and 10% bias for schools.  By contrast, the bias 

variance in the IV is very small, just .00012 for schools and .00012 for teachers, so excluding 

teacher judgement would lead to minimal (<2%) bias in the IV.  As shown in the remaining 

columns, the results are similar for reading.   

 The third panel reports sorƟng based on the prior teacher’s transitory effect on 

achievement.  In order to interpret as bias, we used the empirical Bayes esƟmates of the 

transitory teacher effects of last year’s teacher ( -𝛿 𝜓௝௧ିଵ) to account for the porƟon that is 

passed along from one year to the next.  We have included fixed effects for prior teachers, so 

any sorƟng on this variable should not lead to bias.  However, the results for both math and 

reading suggest that there would be considerable bias if not condiƟoning on prior year teacher.  

Much of the sorƟng happens at the school level – prior teachers at some schools tend to have 

highly transitory effects on test scores while prior teachers at other schools do not.  

 The fourth panel reports the amount of sorƟng based on the Kalman predicƟon of the 

baseline score.  Since the Kalman model includes controls for the Kalman predicƟon, such 

sorƟng does not lead to bias.  Nonetheless, the result suggest that there is a considerable 

amount of sorƟng based on predicted baseline achievement:  for both math and reading, a 

standard deviaƟon at the school level of .31 and for teachers within schools of .28. Given this 

evidence that there is pervasive sorƟng on predicted baseline achievement, the potenƟal for 

bias in convenƟonal and IV VAM models resulƟng from sorƟng on private informaƟon about 

baseline achievement is of parƟcular concern.  

 The final panel in Table 6 reports similar results for the Kalman residual.  The Kalman 

residual contains several components: the true effect of year t-1 intervenƟons, 𝜈௜௧ିଵ, student-

level heterogeneity in growth, 𝛼௜, and measurement error in baseline achievement, 𝜂௜௧ିଵ. In 

addiƟon, because the Kalman filter could not perfectly predict baseline achievement, some 

component of baseline achievement is also in the Kalman residual.  Since the unbiasedness of 

the IV esƟmator depends on absence of sorƟng on measurement error in baseline achievement,  

𝜂௜௧ିଵ, we interpret sorƟng on the Kalman residual as an upper bound esƟmate of the sorƟng on 

baseline measurement error,  𝜂௜௧ିଵ .  There is no sorƟng at the school level (not a surprise, 

given that we included teacher effects in the Kalman –even though this is lagged, it is likely to 



nearly perfectly absorb school effects).  There’s also very liƩle evidence of sorƟng at the teacher 

level, with an SD of .025 (variance .0006) for math and .010 (variance .0001) for reading, 

implying an upper bound of 6% bias for math and 1% bias for reading due to sorƟng on 

measurement error in the baseline score.   

 In the first three columns of Table 7, we report the correlaƟon among the three sets of 

esƟmates—convenƟonal VAM, Kalman and IV.  All include fixed effects for current and lagged 

teacher that are used to esƟmate the permanent and transitory teacher effects.  The correlaƟon 

in the permanent teacher effects esƟmated by the three methods is between .85 and .88 for 

math.  The correlaƟon in the transitory effect is even higher, ranging from .91 to .96 for math.   

As reported in the lower panel, the results are similar for reading.  In other words, as long as 

one is condiƟoning on current and lagged teacher, the esƟmated teacher effects are highly 

correlated under the three methods. 

In the last three columns of Table 7, we report the correlaƟon between esƟmates 

without and with condiƟoning on teacher raƟngs of student mastery and neighborhood income 

effects.  While the leŌ side of Table 7 is esƟmated for the full sample of six cohorts, the 

esƟmates on the right side of Table 7 are limited to the three cohorts for whom teacher raƟngs 

are available.  The correlaƟon is highest for the IV model, .998 to 1.  That is to be expected given 

that the IV should not be sensiƟve to teacher private informaƟon learned during the prior 

school year.  However, the convenƟonal VAM is also largely unaffected by the inclusion of the 

addiƟonal controls, with a correlaƟon of .955 to .964.  This simply reflects the finding from Table 

6: while there is considerable sorƟng to teachers and schools based on expected achievement in 

the baseline year, there is liƩle sorƟng based on teacher’s private informaƟon about students’ 

current state of knowledge or neighborhood income.  Comparing the upper and lower panels of 

Table 6, the results are similar for math and reading. 

 Table 8 summarizes the main parameters of the state space model. We esƟmate these 

only for the IV specificaƟon because there is less evidence of bias in this specificaƟon and 

because the other two models have other components in their residuals that making esƟmaƟng 

the error components more complex.  As reported in the top row, for both math and reading, 

we esƟmate that slightly less than 100 percent of the beginning stock of knowledge and 

persistent innovaƟons each year is passed on as students transfer between grades.  (𝛿መ  is .972 in 

math and .984 in reading.) In the absence of a verƟcal scale that extends from one grade to 

another, we have standardized test scores within each grade and year.  Under the state space 

model, with random innovaƟons arriving each year, the variance in achievement would be 

growing in each grade.  Thus, a one unit increase in achievement in grade g would translate into 

a less than full unit increase in achievement in grade g+1, even if it were permanent (Cascio and 

Staiger, 2012).   

 The next two rows of Table 8 contain our esƟmates of the variance in measured 

achievement as well as the measurement error variance.  Our esƟmates imply a test reliability 



of about 90 percent for math and 85 percent for reading – in line with the reliability reported in 

technical reports for NC end-of-grade tests in these years.   

 The next rows report the variance in true knowledge and the variance in baseline 

achievement predicted by the Kalman filter.  The larger the difference between the two, the 

greater the scope for private informaƟon about a student’s true state to lead to bias in the 

Kalman filter (although that informaƟon would not lead to bias in the IV).  The esƟmated 

variance in baseline achievement predicted by the Kalman is .629 and .619 in math and reading 

respecƟvely.  The true variance in knowledge implied by the model is .759 in math and .730 in 

reading.  The roughly .11 to .13 gap in variance between predicted achievement and true 

achievement implies that teachers or parents or students may have private informaƟon about a 

student’s baseline state of knowledge which, if used to sort into teachers or other intervenƟons 

could lead to substanƟal bias. This is not a concern for IV esƟmates because teacher effects 

using the IV method are not biased by private informaƟon about student baseline achievement. 

 The next panel refers to the variance in the annual innovaƟons to achievement which 

persist into future years. The first two rows describe the share of innovaƟons associated with 

student unobservables and student traits.   As noted above, a limited share of the growth from 

one year to the next is aƩributable to fixed differences in student growth unrelated to student 

traits: .001 in math and reading.  Following the convenƟon in the value-added literature, we 

also condiƟon on indicators for student race/ethnicity, gender, economic disadvantage, limited 

English proficiency and learning disability.   When we form an index by mulƟplying each of those 

indicators by the coefficients from the value-added models, the variance is .005 in math and 

.002 in reading.  When combined with the heterogeneity in student growth from unobservables 

(𝛼௜ሻ, the combined student level variance is .006 in math and .003 in reading. 

 For comparison, the variance in persistent teacher effects is .022 in math and .019 in 

reading—implying a standard deviaƟon in teacher effects of .148 in math and .138 in reading, 

both of which are in range reported in the prior literature (Koedel et al. (2015)). In addiƟon to 

teacher effects, we esƟmate that the variance in other persistent innovaƟons is .040 in math 

and .037 in reading—yielding a combined variance in persistent innovaƟons of .062 in math and 

.056 in reading.  The variance in growth due to annual persistent innovaƟons is 10-20 Ɵmes 

larger than the variance due to student-level factors.  In other words, the variance in 

achievement is growing over Ɵme primarily due to the varying quality of the teachers and other 

idiosyncraƟc factors that affect students that year—not because some students are fast learners 

or slow learners and not because of differences in student growth associated with demographic 

characterisƟcs or income. 

 The next panel in Table 8 reports on the share of teacher effects which is transitory.   

Although many have esƟmated aggregate fade-out of teacher effects, the state space model 

allows us to esƟmate both a permanent and transitory effect for each teacher.18  Our esƟmate 

 
18  One exception is Jacob, Lefgren and Sims (2010), who allow teachers to have differing levels of persistence. 



of the variance in transitory teacher effects (effects which dissipate aŌer the current year) is 

.027 in math and .013 in reading, implying a standard deviaƟon in transitory teacher effects of 

.16 in math and .11 in reading.  The model also implies a modest negaƟve correlaƟon in 

teachers’ permanent and transitory effect:  those who have larger permanent effects on student 

achievement tend to have smaller transitory effects.  The variance of the sum of current and 

transitory effects in a single year is .039 in math and .017 in reading (or .197 standard deviaƟons 

in math and .13 standard deviaƟons in reading.)  The implied average fade-out rate (the share of 

the variance in total effects which persists) is 44 percent in math and 70 percent in reading. 

However, there is considerable variaƟon in this relaƟonship: the correlaƟon between the total 

(transitory + persistent) and persistent effect is only .59 for math and .66 for reading.  

 In Table 9, we esƟmate the indirect effect of neighborhood income operaƟng through 

quality of teachers.  As reported in Table 5, the direct effect of differences in growth between 

students from the highest and lowest income neighborhoods, condiƟonal on teacher effects, is 

quite small. However, income may have an indirect effect through teacher quality. The first two 

columns of Table 9 report differences across income deciles (relaƟve to the lowest income 

decile) in average teacher persistent and transitory effects for math. The difference between the 

top and boƩom three deciles of neighborhoods in terms of average persistent teacher effects is 

.032 in math. In other words, each year, students in the highest income neighborhoods receive 

.032 standard deviaƟons more in persistent math teacher effects than students in the lowest 

income neighborhoods. Moreover, students in higher income neighborhoods receive less 

transitory teacher effects (which disappear aŌer one year) in math (a difference of -.015 

between the top and boƩom three deciles). The next two columns report the differences in 

persistent and transitory teacher effects for math aŌer condiƟoning on school fixed effects. 

Apparently, much of the observed difference is due to differences in teacher quality by school. 

The remaining columns repeat the exercise for reading. In contrast to math, there is very liƩle 

difference in teacher quality (persistent or transitory) between the top and boƩom deciles. 

Summary and Conclusion 

 The state space model allows us to take the catch-all concern of “selecƟon on 

unobservables” and parse it into four parts:  heterogeneity in student growth rates, transitory 

teacher effects, private informaƟon about students’ baseline knowledge and measurement 

error in baseline achievement.  We find liƩle evidence of heterogeneity of student growth rates 

in North Carolina.  This may explain one of the more surprising findings in the value-added 

validaƟon studies: that it is not just teacher effects which are forecast unbiased but school 

effects too (Deming (2014), Angrist et al. (2017), Angrist et al. (2024)).  While the value-added 

researcher could plausibly have access to the same administraƟve data used to assign students 

to teachers within schools, that would not be true for the many unobserved factors leading 

families to sort between schools.  One might expect student growth rates to vary, based on 

unchanging factors such as parents’ ability to pay tutors family homework rouƟnes, student 

moƟvaƟon or family involvement in educaƟon.  To the extent that fixed family background 



factors do maƩer, though, they may be reflected in students’ starƟng knowledge, not growth 

rates.  

Rather than student-level heterogeneity in growth, our findings imply that the primary 

challenge in value-added esƟmaƟon is finding a measure of baseline achievement which is free 

from the remaining three sources of bias: transitory teacher effects, private informaƟon about 

students’ current state and measurement error.  Each is a special case of measurement error in 

baseline achievement.  Fortunately, our findings point to ways to resolve each of them: 

 Transitory teacher effects: Although others have reported transitory effects of teachers 

on student achievement, such effects have been underappreciated as a potenƟal source of 

selecƟon.  Under the assumpƟon that transitory effects disappear aŌer one year, and that 

persistent effects become part of a students’ stock of knowledge to be passed on into future 

years, this is perhaps the easiest of the three to resolve: researchers should include fixed effects 

for current and prior teacher. 

 Private informaƟon about a students’ current state of knowledge:  Under the state space 

model, future knowledge is a funcƟon of current knowledge plus innovaƟons from teachers and 

other intervenƟons.  Therefore, when we are measuring intervenƟon impacts using growth in 

imperfectly measured achievement, private informaƟon about a students’ true knowledge is an 

obvious source of potenƟal selecƟon bias. Using a unique set of quesƟons available in the NC 

data, we find that teachers do indeed have private informaƟon about students’ knowledge not 

reflected in test score histories.  Our model also implies that geƫng an unbiased esƟmate of the 

change in knowledge, by instrumenƟng with twice lagged achievement, should resolve the 

problem.  It appears to do so.  When we instrument for baseline achievement with twice-lagged 

achievement, the prior grade teachers’ subjecƟve raƟngs are no longer predicƟve of end of 

grade achievement.  

 Measurement error in baseline achievement:  Prior research has largely ignored the 

potenƟal role of measurement error in sorƟng students to teachers and intervenƟons.  The 

usual soluƟon to measurement error in achievement—such as instrumenƟng with prior lags—

may yield a baseline score which is independent of the measurement error, but it does nothing 

to resolve the fact that the intervenƟon assignments themselves may also be a funcƟon of the 

baseline measurement error.   If there is sorƟng on the measurement error, there would sƟll be 

bias in the intervenƟon impact esƟmates.  Fortunately, many states do not provide the test 

scores used in value-added measures unƟl aŌer teacher and school assignments are made in 

late summer—thus making it difficult to select based on measurement error.  Indeed, the late 

delivery of scores may be one of the reasons why value-added measures of teacher effects have 

been forecast unbiased!  But sorƟng on measurement error in baseline achievement would 

present a bigger problem for measuring the impact of tutoring and other catch-up 

intervenƟons, which start aŌer the beginning of the year.  In such cases, the best approach may 

be to administer a new test post assignment, and to instrument for that new baseline measure 

of achievement.   



 While there are soluƟons to the laƩer three sources of selecƟon, addressing the 

challenge of student-level heterogeneity in growth is more challenging.  We find liƩle evidence 

of student level of heterogeneity in growth in the North Carolina data.  The fact that others have 

found value-added esƟmates to be forecast unbiased in a variety of seƫngs leads us to believe 

that the same may be true elsewhere.  Nevertheless, we encourage others to use our staƟsƟcal 

model to test for student level heterogeneity in growth in their own data.   

 If the finding of limited heterogeneity in student level growth proves to be generally 

true, it would set the stage for a much broader effort to evaluate educaƟonal products and 

intervenƟons, not just teachers and schools.  Value-added studies could be a first cut, followed 

up with randomized trials, especially for expensive intervenƟons.  But given the value of student 

achievement for earnings and producƟvity growth, even a small increase in the rate at which 

effecƟve intervenƟons are idenƟfied and spread would produce large social returns. 

Our results also have implicaƟons for other analyses of student-level panel data. 

EsƟmates of our state-space model suggest strong persistence of prior innovaƟons to 

knowledge with 𝛿 near to 1, which implies that student test scores contain a large unit root 

component (plus some transitory measurement error). As in the Ɵme series literature, unit 

roots can generate spurious student-level trends and spurious associaƟons with other trending 

variables. They also introduce bias into models with student fixed effects. Moreover, other 

aggregaƟons of student achievement, such as school and district averages, may also be 

following similar paƩerns – with unit roots in the aggregate measures.  We will be exploring 

those implicaƟons in future research. 
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Table 1.     Forecast Bias in Value-Added Estimates of School and Teacher Effects

Study:
Teacher/ 

School
Grade 
Level Subject Setting

Value-Added
Model

Type of 
Validation

Forecast 
Bias 

1 Kane and Staiger (2008) Teacher Elem. Math Los Angeles
Lagged Score 

(w peer controls)
Random

assignment
.905

(.280)

Teacher Elem. Math Los Angeles
Gain Score

(w peer controls)
Random

assignment
.865

(.213)

Teacher Elem. Reading Los Angeles
Lagged Score 

(w peer controls)
Random

assignment
1.089
(.289)

Teacher Elem. Reading Los Angeles 
Gain Score

(w peer controls)
Random

assignment
.886

(.274)

Teacher Elem. Math Los Angeles Student f.e.
Random

assignment
1.859
(.470)

Teacher Elem. Reading Los Angeles Student f.e.
Random

assignment
2.144
(.635)

2
Kane, McCaffrey, Miller 
and Staiger (2013) Teacher

Elem./
Middle

Math/       
Reading

New York, 
Denver, 
Dallas 

Memphis, 
Hillsborough 
FL, Charlotte

Lagged Score 
(w peer controls)

Random  
assignment

.955
(.123)

3
Glazerman and Protik 
(2015) Teacher Elem. Math

7 Large 
Districts

Lagged Score 
(w demog 

Random 
assignment

1.01
(.33)

Teacher Elem. Reading
7 Large 

Districts
Lagged Score 

(w demog 
Random 

assignment
.66

(.34)

Teacher Middle Math
7 Large 

Districts
Lagged Score 

(w demog 
Random 

assignment
-.05
(.36)

Teacher Middle Reading
7 Large 

Districts
Lagged Score 

(w demog 
Random 

assignment
0.75
(.99)

4
Angrist, Hull, Pathak, 
Walters (2017) School Middle Math Boston

Lagged Score 
(w demog 

Random 
assignment

.864
(.075)

School Middle Math Boston
Gain Score
(w demog 

Random 
assignment

.950
(.084)

5
Angrist, Hull, Pathak, 
Walters (2024) School Middle Math New York

Lagged Score 
(w demog 

Random 
assignment

1.12
(.106)

School Middle Math Denver
Lagged Score 

(w demog 
Random 

assignment
.933

(.041)

School H.S. SAT Math New York
Lagged Score 

(w demog 
Random 

assignment
.783

(.064)

6 Deming (2014) School Middle
Math/       

Reading Charlotte

Lagged Score 
(w demog 

controls& drift 
adjustment)

Random 
assignment

1.185
(.323)

7
Chetty, Friedman and 
Rockoff (2014) Teacher

Elem./
Middle

Math/       
Reading Large district

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)
.950

(.023)

8
Bacher-Hicks, Kane and 
Staiger (2014) Teacher

Elem./
Middle

Math/       
Reading Los Angeles

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)
1.030
(.044)

9 Rothstein  (2017) Teacher Elem.
Math/       

Reading
North 

Carolina

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)
1.030
(.021)

Teacher Elem.
Math/       

Reading
North 

Carolina

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)+ 
change in prior 

year score 
.860

(.017)

10
Britton, Clark and Lee 
(2023) School Middle 

Math/       
Reading England

  
(w demog 
controls)

(No Shrinkage)

Quasi Exp
(RD in distance 

to school)
1.002
(.162)

11
Andrabi, Bau, Das, Khwaja 
(2022) School Elem.

Math, 
English, 

Urdu Pakistan

Lagged Score 
(w demog 
controls)

Quasi Exp
(School 

Closures)
.977

(.120)



Table 2. Testing the Kalman Filter: 8th Grade Math 

 

Conventional 
VAM 
(1) 

Conventional 
VAM + Lagged 

Teacher 
(2) 

Kalman Filter 
(3) 

Kalman + 
G6 Math 

Test 
(4) 

Kalman + 
All Lags 

Math Test 
(5) 

Kalman + 
All Lags 
Math & 
Reading 

(6) 

Kalman + 
All Lagged Tests 
+ Full Teacher 

History 
(7) 

G7 Math 0.754*** 0.758*** - - - - - 
 (0.001) (0.001) - - - - - 
G7 Kalman 
Math  - - 0.925*** 0.916*** 0.895*** 0.755*** 1.017*** 

 - - (0.001) (0.004) (0.040) (0.041) (0.063) 
G7 Kalman 
Math Residual - - 0.407*** 0.407*** 0.454*** 0.398*** 0.376*** 

 - - (0.002) (0.002) (0.038) (0.038) (0.002) 
G8 Math Tchr X X X X X X X 
G7 Math Tchr   X X X X X X 
G6 Math    X X X X 
G3-7 Math     X X X 
G3-7 Reading      X X 
G3-7 Math Tchr       X 
Adj. R2 0.7448 

 
0.7520 0.7877 0.7877 0.7877 0.7898 0.7948 

Difference in 
Adj. R2 relative 
to Col (3) 

-0.0428 -0.0357 0 0.0000 0.0001 0.0022 0.0072 

p-value of F-test 
of constraint - 0.000 

Vs. Col (3) - 
0.027 

Vs. Col (3) 
0.000 

Vs. Col (3) 
0.000 

Vs. Col. (3) 
- 

N 276184 275828 273139 273139 273139 273139 273019 
Note: All specifications include indicators for year, race, gender, economic disadvantage, IEP and LEP 

status. All models are linear in the covariates. 𝐸𝐸[𝜇𝜇𝑖𝑖,𝑡𝑡−1||Ω𝑖𝑖,𝑡𝑡−1] incorporates scores and teachers 
from both subjects from all periods through 𝑡𝑡 − 1. Standard errors are in parentheses: * p < 0.05, 

** p < 0.01, *** p < 0.001.  Sample fluctuates slightly because singletons are dropped with multiple 

fixed effects. 

  



Table 3.   Testing the Kalman Filter:  8th Grade Reading 

 
 

Conventional 
VAM 
(1) 

Conventional 
VAM + Lagged 

Teacher 
(2) 

Kalman Filter 
(3) 

Kalman + 
G6 Math 

Test 
(4) 

Kalman + 
All Lags 

Math Test 
(5) 

Kalman + 
All Lags 
Math & 
Reading 

(6) 

Kalman + 
All Lagged Tests 
+ Full Teacher 

History 
(7) 

G7 Math 0.714*** 0.707*** - - - - - 
 (0.001) (0.001) - - - - - 
G7 Kalman 
Math  

- 
- 0.956*** 0.947*** 0.623*** 0.226*** 0.562*** 

 - - (0.002) (0.004) (0.032) (0.034) (0.066) 
G7 Kalman 
Math Residual 

 - 0.331*** 0.331*** 0.178*** 0.067* 0.301*** 

 - - (0.002) (0.002) (0.029) (0.029) (0.002) 
G8 Math Tchr X X X X X X X 
G7 Math Tchr   X X X X X X 
G6 Math    X X X X 
G3-7 Math     X X X 
G3-7 Reading      X X 
G3-7 Math Tchr       X 
Adj. R2 0.6623 0.6653 0.7263 0.7263 0.7267 0.7305 0.7331 
Difference in 
Adj. R2 relative 
to Col (3) 

-0.0641 -0.0611 0 0.0000 0.0004 0.0042 0.0068 

p-value of F-test 
of constraint - 0.000 

Vs. Col (3) - 0.030 
Vs. Col (3) 

0.000 
Vs. Col (3) 

0.000 
Vs. Col (3) 

- 

N 276158 275775 273119 273119 273119 273119 272990 
Note: All specifications include indicators for year, race, gender, economic disadvantage, IEP and LEP 

status. All models are linear in the covariates. 𝐸𝐸[𝜇𝜇𝑖𝑖,𝑡𝑡−1||Ω𝑖𝑖,𝑡𝑡−1] incorporates scores and teachers 

from both subjects from all periods through 𝑡𝑡 − 1. Standard errors are in parentheses: * p < 0.05, 

** p < 0.01, *** p < 0.001.  Sample fluctuates slightly because singletons are dropped with multiple 

fixed effects.



Table 4. Role of Prior Teacher Judgement of Student Mastery in Predicting End of 8th Grade Achievement 

 Math Reading 
 Conventional 

VAM 
Kalman 

Filter 
IV Conventional 

VAM 
Kalman 

Filter 
IV 

Prior Teacher Judgement       
Insufficient Mastery -0.323*** -0.192*** 0.002 -0.326*** -0.138*** 0.002 

 (0.009) (0.008) (0.011) (0.009) (0.009) (0.011) 
Inconsistent Mastery -0.179*** -0.108*** 0.006 -0.202*** -0.090*** -0.022*** 

 (0.004) (0.004) (0.006) (0.005) (0.005) (0.006) 
Consistent Mastery 
(ref) - - - - - - 

Consistently Superior 0.205*** 0.108*** -0.001 0.234*** 0.078*** 0.000 
 (0.004) (0.004) (0.005) (0.004) (0.004) (0.006) 

None of the Above -0.219** -0.191** -0.037 -0.260** -0.185* -0.002 
 (0.067) (0.060) (0.087) (0.096) (0.086) (0.109) 
p-value for F-test   0.000 0.000 0.801 0.000 0.000 0.001 
N (Grade 8) 122672 120662 122672 122634 120657 122634 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝛾𝛾�|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 0.011*** 0.003*** 0.000*** 0.014*** 0.002*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
𝑆𝑆𝑆𝑆(𝑍𝑍𝛾𝛾�|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 0.105 0.059 0.006 0.119 0.050 0.008 
N (Grades 5-8) 490255 484751 490255 490015 484451 490015 

Note: The coefficient results are based on 8th grade only, while the variance estimates are based on grades 5-8. The 

Kalman specification includes the quadratic of prior achievement and the VAM and IV specifications the cubic of prior 

achievement.  The p-value is reported for F-test that all teacher judgement categories are zero. Standard errors are in 

parentheses: * p < 0.05,** p < 0.01,*** p < 0.001. 



Table 5. Direct Effect of Neighborhood Income in Predicting End of 8th Grade Achievement 

 Math Reading 
 Conventional 

VAM 
Kalman 

Filter 
IV Conventional 

VAM 
Kalman 

Filter 
IV 

Neighborhood Median  
Income Decile 

 
      

1 (ref.) 
 --- --- --- --- --- --- 

2 0.012* 0.007 0.004 0.008 0.003 0.001 
 (0.006) (0.005) (0.006) (0.007) (0.006) (0.007) 

3 0.010 0.005 0.003 0.014* 0.005 0.003 
 (0.006) (0.005) (0.006) (0.007) (0.006) (0.007) 

4 0.010 0.006 0.000 0.009 0.002 -0.004 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

5 0.011 0.005 0.000 0.014* 0.008 -0.002 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

6 0.013* 0.009 -0.002 0.016* 0.002 0.000 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

7 0.013* 0.008 -0.004 0.021** 0.005 -0.003 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

8 0.030*** 0.016** 0.008 0.032*** 0.01 0.001 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

9 0.040*** 0.025*** 0.010 0.041*** 0.011 -0.001 
 (0.006) (0.006) (0.007) (0.007) (0.007) (0.008) 

10 0.043*** 0.019** -0.004 0.066*** 0.013 0.002 
 (0.007) (0.006) (0.007) (0.008) (0.007) (0.008) 

p-value for F-test  0.000 0.003 0.213 0.000 0.726 0.992 
N (Grade 8) 165813 162708 165813 165749 162675 165749 
𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝛽̂𝛽|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� 0.00013*** 0.00006*** 0.00003*** 0.00015*** 0.00003*** 0.00002*** 

 (0.000000) (0.000000) (0.000000) (0.000000) (0.000000) (0.000000) 
𝑆𝑆𝑆𝑆�𝑋𝑋𝛽̂𝛽|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� 0.011510 0.007920 0.005400 0.012090 0.005590 0.004350 

N (Grades 5-8) 662496 654192 662496 662086 653700 662086 
Note: The income decile coefficients presented here are based on only 8th graders. The variance estimates are based on 

5th-8th graders. The Kalman specification includes the quadratic of prior achievement and the IV and VAM specifications 

the cubic of prior achievement. The p-value reported is testing whether all neighborhood income deciles equal 0. 

Standard errors are in parentheses: * p < 0.05,** p < 0.01,*** p < 0.001. 

  



Table 6.  Sorting of Students by Teacher and School 

 Math Reading 
Dependent variable: Conventional 

VAM 
Kalman 

Filter 
IV Conventional 

VAM 
Kalman 

Filter 
IV 

Index using neighborhood income 
deciles       

SD of random school effects 0.013*** 0.009*** 0.006*** 0.012*** 0.006*** 0.003*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

SD of random teacher effects  0.005*** 0.005*** 0.005*** 0.003*** 0.004*** 0.002*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
N 662496 654192 662496 662086 653700 662086 
Index using prior teacher 
judgements       

SD of random school effects 0.051*** 0.043*** 0.011*** 0.057*** 0.045*** 0.007*** 
 (0.001) (0.001) (0.000) (0.001) (0.001) (0.000) 

SD of random teacher effects  0.054*** 0.033*** 0.011*** 0.068*** 0.039*** 0.013*** 
 (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) 
N 490255 484751 490255 490015 484451 490015 
Prior teacher transitory effect (𝜓𝜓)        

SD of random school effects 0.073*** 0.053*** 0.086*** 0.061*** 0.049*** 0.064*** 
 (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

SD of random teacher effects  0.068*** 0.064*** 0.079*** 0.052*** 0.056*** 0.057*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
N 1103000 1370145 1103000 1102699 1369889 1102699 
Kalman prediction for baseline score       

SD of random school effects - 0.306*** - - 0.308*** - 
 - (0.006) - - (0.006) - 

SD of random teacher effects  - 0.278*** - - 0.279*** - 
 - (0.002) - - (0.002) - 
N  1097264   1096999  
Kalman residual for baseline score       

SD of random school effects - 0.000 - - 0.000 - 
 - (0.000) - - (0.000) - 

SD of random teacher effects  - 0.025*** - - 0.010*** - 
 - (0.001) - - (0.001) - 
N  1097264   1096999  

Note: The results are hierarchical random effects, estimated for grades 5-8. Sample sizes for the index results are smaller because of 

limited availability of income deciles and teacher judgement variables.  The indices for neighborhood income and prior teacher 

judgements were derived using coefficients from value-added specifications.  All model specifications are non-linear in the prior 

measure of achievement (cubic for VAM and IV, quadratic for Kalman). Standard errors are in parentheses: * p < 0.05,** p < 0.01,*** 

p < 0.001. 



Table 7. Correlation in Teacher Effects from Conventional VAM, Kalman Filter and IV Specifications 

   Standard Controls Adding Neighborhood Income Deciles 
and Lagged Teacher Judgements 

   Conventional 
VAM 

Kalman 
Filter 

IV Conventional 
VAM 

Kalman 
Filter 

IV 

Math 

Permanent 
Teacher 
Effect  

Conv.  VAM 1.000 - - 0.955 - - 
Kalman Filter 0.887 1.000  - 0.981 - 
IV 0.852 0.872 1.000 - - 0.998 

 Transitory  
Teacher 

Effect  

Conv. VAM 1.000 - - 0.964 - - 
Kalman Filter 0.915 1.000 - - 0.989 - 
IV 0.937 0.961 1.000 - - 1.000 

Reading 

Permanent  
Teacher 

Effect  

Conv. VAM 1.000 - - 0.958 - - 
Kalman Filter 0.815 1.000 - - 0.991 - 
IV 0.762 0.817 1.000 - - 0.998 

Transitory  
Teacher 

Effect  

Conv. VAM 1.000 - - 0.960 - - 
Kalman Filter 0.829 1.000 - - 0.994 - 
IV 0.877 0.913 1.000 - - 1.000 

Note: All model specifications are non-linear in the prior measure of achievement (cubic for VAM and IV, quadratic for 

Kalman). Correlations are computed across grades 5-7, the grades in which it is possible to estimate both transitory and 

teacher effects.   The first three columns use all six student cohorts.  The last three columns, which add neighborhood 

income and teacher judgement indicators to the specification, are limited to the three cohorts with available data.  

 

 

 

 

 

  



Table 8: State Space Model Parameters 

Component:  Math Reading 
Delta (averaged across grades) 𝛿̂𝛿 0.972 0.984 
Measuring Achievement:    

Measured score variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖𝑖𝑖) 0.883 0.880 
Measured error variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜂𝜂𝑖𝑖𝑖𝑖) 0.097 0.137 

The gap between true and predictable baseline 
achievement: 

   

True score variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜇𝜇𝑖𝑖𝑖𝑖) 0.759 0.730 
Kalman prediction variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�𝑖𝑖𝑖𝑖) 0.629 0.619 

Sources of persistent innovations:    
Student-level heterogeneity (unobserved) 𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑖𝑖) 0.001 0.001 
Student-level heterogeneity (assoc. with 
demographics/program use) 

𝐸𝐸[𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝛾𝛾�|𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)] 0.005 0.002 

Persistent teacher effects 𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃𝑗𝑗) 0.022 0.019 
Other persistent innovations 𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣𝑖𝑖𝑖𝑖) 0.040 0.037 

Transitory teacher effects:    
Transitory teacher effects 𝑉𝑉𝑉𝑉𝑉𝑉(𝜓𝜓𝑗𝑗) 0.027 0.013 
Correlation between persistent, transitory 
teacher effects 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃𝑗𝑗 ,𝜓𝜓𝑗𝑗) -0.195 -0.456 

Overall teacher effect 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗� 
 

0.039 0.017 

Implied teacher fadeout 𝐶𝐶𝐶𝐶𝐶𝐶�𝜃𝜃𝑗𝑗 ,𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗�
/ 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗� 

 

0.442 0.696 

Correlation between total and persistent 
teacher effects 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗 ,𝜃𝜃𝑗𝑗) 
 

0.590 0.660 

Note: The IV specification uses the cubic in the lagged score of the same subject. All parameter estimates are estimated 

across grades 5-8 except for the variance in the permanent teacher effects, which are only available in grades 5-7, and 

the variance in the teacher transitory effects, which are only available in grades 4-7. The correlation in the teacher 

permanent and transitory effects is taken over grades 5-7. Kalman predictions use the quadratic in the prior prediction. 

 

 

 

 

  



Table 9.   Differences in Teacher Quality by Neighborhood Income 

 Math Reading 
 Teacher Effects 

No Controls 
Teacher Effects 
With School FEs 

Teacher Effects 
No Controls 

Teacher Effects 
With School FEs 

Neigh. 
Income 
Decile 

𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  

1 (ref.) 
 --- --- --- --- --- --- --- --- 

2 0.005** 0.016*** 0.002 -.002* -0.003* -0.002 0.002 -0.002* 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

3 0.006*** -0.005*** 0.000 -0.001 -0.007*** 0.001 0.000 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

4 0.005*** -0.012*** 0.001 -0.001 -0.010*** 0.008*** 0.000 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

5 0.006*** -0.012*** 0.001 -0.002 -0.007*** 0.001 0.000 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

6 0.004** -0.019*** 0.001 -0.001 -0.017*** 0.000 0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

7 0.017*** -0.016*** 0.001 0.001 -0.003* -0.002* 0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

8 0.020*** -0.021*** 0.002 -0.001 0.001 -0.007*** 0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

9 0.038*** -0.029*** 0.003** 0.000 0.001 -0.006*** 0.001 -0.002 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

10 0.048*** -0.017*** 0.003* 0.002 -0.010*** -0.003* 0.000 -0.002 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

         
N 495807 497168 495807 497168 495385 496912 495385 496912 

Notes: The permanent and transitory teacher effect estimates come from an IV regression cubic in the lagged score of 

the same subject. The sample represented in this table includes grades 5-7, the grades in which we can estimate both 

permanent and transitory teacher effects with IV. Standard errors are in parentheses: * p < 0.05, ** p < 0.01, *** p < 

0.001. 

 

 

 

 

 

 

  



Appendix 
 

Table A1. Comparing Linear and Non-Linear Specifications of VAM and Kalman Filter for 8th Grade Achievement 

 Math Reading 
 Linear Non-Linear Linear Non-Linear 
Achievement Measure Conventional VAM 
L1 Math X X X X 
L1 Reading X X X X 
L1 Math2  X  X 
L1 Reading2  X  X 
L1 Math3  X  X 
L1 Reading3  X  X 
Adj. R2 0.760 0.766 0.683 0.686 
p-value for non-linear effects=0 - 0.000 - 0.000 
N 275829 275829 275776 275776 
 Kalman Filter 
L1 Math Kalman Prediction X X X X 
L1 Math Kalman Residual X X X X 
L1 Reading Kalman Prediction X X X X 
L1 Reading Kalman Residual X X X X 
L1 Math2  X  X 
L1 (Math x Math Kalman Residual)  X  X 
L1 (Math2 x Math Kalman Residual)  X  X 
L1 Reading2  X  X 
L1 (Reading x Reading Kalman Residual)  X  X 
L1 (Reading2 x Reading Kalman Residual)  X  X 
Adj. R2 0.789 0.793 0.729 0.730 
p-value for non-linear effects=0 - 0.000 - 0.000 
N 272881 272881 272890 272890 

Note: All specifications include indicators for current outcome subject teacher, lagged outcome subject teacher, 

year, race, gender, economic disadvantage, IEP and LEP status. Standard errors are in parentheses: * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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