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Abstract 

To guide value-added modelling choices, we propose a state space model of student 
knowledge accumula on, in which test scores are an imperfect measure of student knowledge, 
and students receive temporary and persistent shocks to their stock of knowledge.  The model 
clarifies that there are four sources of poten al selec on in value-added es ma on: 
heterogeneity in student growth, measurement error in baseline achievement, transitory 
teacher effects, and private informa on about students’ current knowledge.  Following six 
cohorts of students in North Carolina between 3rd and 8th grade, we inves gate all four sources 
of bias.  We find li le evidence of heterogeneity in student growth.  Rather, the primary 
challenge in value-added is finding a valid measure of baseline knowledge against which to 
measure differences. The model points to two alterna ves to conven onal VAM models:  the 
Kalman filter (which efficiently summarizes students’ prior data) and instrumen ng for baseline 
achievement with twice lagged scores.  The IV es mator is ideal when achievement scores are 
not observed at the me of assignment (as is the case in most states) and when teachers have 
private informa on about students’ current state of knowledge not reflected in test scores.  The 
state-space model has implica ons for the sources of achievement inequality and for other 
analyses of student-level panel achievement data (for instance, calling into ques on the use of 
student fixed effects and student trends.)   

 
  



Introduc on 
 

For more than five decades, economists have been using “value-added” models (VAM) 
to es mate the efficacy of schools, teachers and other interven ons (Hanushek (1971), 
Murnane (1975), Hanushek (1979)).  Conven onal VAM models typically include a single year of 
baseline achievement and student covariates to control for prior inputs.  Despite the strong 
assump ons and the poten al for selec on, at least eleven studies over the past sixteen years 
have shown that conven onal VAM models yield forecast unbiased es mates of teacher and 
school effects.  Did researchers happen to choose se ngs with li le selec on on 
unobservables?  Or do the results reveal something fundamental about how student 
achievement evolves over me? 

 
To inves gate, we propose a simple state-space model, in which test scores are a noisy 

measure of an underlying state variable (knowledge).  Teachers and other interven ons have 
persistent effects on student knowledge, which are passed on to the next period, as well as 
temporary effects on measured achievement, which are not.  In addi on, we allow each student 
to have their own fixed rate of growth.  

 
The model iden fies four sources of poten al bias in value-added models:  

heterogeneity in student growth, measurement error in baseline achievement, transitory 
teacher effects on achievement measures (which could be used for selec on) and private 
informa on about students’ current true level of achievement.  The la er three are all special 
cases of mismeasurement of students’ baseline knowledge. 

 
Following six cohorts of NC students from third through eighth grade, we find li le 

evidence of student-level heterogeneity in growth across different grades.  Similarly, we see 
li le evidence that students from high and low-income neighborhoods have differing levels of 
growth (a er condi oning on teacher effects.)  Both results imply that that there is li le 
unobserved heterogeneity in student growth which teachers, schools or parents could use for 
selec on.   

  
 Rather, the primary challenge in value-added es ma on is having a valid measure of 
baseline achievement against which to measure differences.  We evaluate two alterna ves to 
conven onal value-added: the Kalman filter, which summarizes historical data, and an IV 
es mator (using twice-lagged achievement to instrument for baseline achievement).   
 

First, we show that the recursive Kalman filter outperforms the single year of baseline 
achievement and performs nearly as well as a fully flexible model in summarizing prior test 
scores and teacher effects. The results imply that the state space model is a good approxima on 
of the me series proper es of student achievement.  

 
Second, the most vexing source of selec on in the state space model is private 

knowledge of a students’ current state not reflected in test scores.  Using unique data on 
teachers’ subjec ve assessments of students’ mastery of the North Carolina state standards, we 



find that prior grade teachers’ assessments are indeed predic ve of growth even a er 
condi oning on the Kalman filter.  Fortunately, the state space model also points to a solu on:  
instrumen ng for baseline achievement using twice-lagged achievement.  We provide evidence 
that the IV es mates of teacher effects (using twice lagged achievement) are not sensi ve to 
prior grade teachers’ ra ngs. 

 
Third, consistent with the prior literature, we find that teachers have both transitory and 

permanent effects on student achievement.  Transitory effects have been underappreciated as a 
poten al source of selec on, yet there are substan al differences in transitory effects between 
schools and teachers.  The model also points to a straigh orward solu on:  including fixed 
effects for current as well as prior teachers. 

 
Fourth, while the conven onal VAM es mate is biased and the IV es mator and Kalman 

es mators are each unbiased (albeit under different condi ons), the bias in each appears to be 
small rela ve to the variance in teacher effects.  The correla ons in teacher effects from the 
three es ma on methods (conven onal, IV and Kalman) are all greater than .81.  Thus, the bias 
in conven onal value-added models may be sufficiently small to be undetectable under the 
standard of forecast unbiasedness, which is a more lenient standard. 

 
Finally, our findings imply that, aside from differing star ng points, the most important 

source of achievement inequality is the quality of educa onal interven ons that students 
receive.  Using our IV models, students from higher income neighborhoods tend to have 
teachers with larger persistent impacts on achievement, while students from lower income 
neighborhoods tend to have teachers with larger transitory impacts on achievement.  Although 
neighborhood income has li le direct rela onship to achievement growth condi onal on 
teacher effects, there are sizable differences in school and teacher quality for students in high 
and low income neighborhoods. 

 
Value-added modelling has the poten al for much broader use than measuring the 

effects of teachers and schools.  The state space model implies diagnos cs which could be used 
to gauge the presence of student-level heterogeneity in growth and iden fies the condi ons 
under which the Kalman filter and IV strategies could be relied upon to generate valid program 
impacts.  Given the ubiquity of student-level panel data on student achievement in state and 
local educa on agencies, value-added methods could allow for much more widespread tes ng 
of a variety of interven ons in educa on, such as curricula.  The state-space model has strong 
implica ons, not just for value-added modelling, but for other analyses of student-level panel 
data (for example, calling into ques on models using student fixed effects and student 
achievement trends.)   
 

Literature Review 

 In reviewing the prior literature, we focus on models which combine three elements 

common to many VAM applica ons:  addi ve separability,  a single year lagged measure of 



achievement in the same subject (either as a linear or cubic func on of a standardized score) 

and indicators for student demographics or program par cipa on (race/ethnicity, free lunch 

status).1  While VAM models have been used most o en to es mate teacher or school impacts, 

similar models have been used to es mate the impacts of other educa onal interven ons, such 

as summer school (Callen et al. (2023)), math textbooks (Blazar et al. (2020)) and teacher 

training programs (Plecki et al. (2012) and Henry et al. (2014)).      

Before arriving at the current conven on, researchers experimented with other variants 

of VAM models.  For instance, with the introduc on of large mul -year student-level panel data 

sets in the mid-2000’s, researchers began including student fixed effects to control for selec on 

on unmeasured student characteris cs, while es ma ng teacher or school effects (e.g. 

McCaffrey et al. (2009)).  Such models became rare a er Rothstein (2010) noted that they likely 

violated strict-exogeneity requirements.  They also perform poorly in valida on studies (Kane 

and Staiger (2008), Kane, McCaffrey, Miller and Staiger (2013)).   

Others began using the mean baseline characteris cs of students to control for 

classroom peer effects (see Ehlert et al. (2014)).  As part of the Measures of Effec ve Teaching 

project, Kane, McCaffrey, Miller and Staiger (2013) decomposed value-added es mates of 

teacher effects into four mutually orthogonal components:  a core es mate based on all three 

categories of controls (lagged achievement, student characteris cs and peer achievement), the 

component that was removed with peer controls, the component that was removed with 

controls for student characteris cs, and the component that was removed with controls for 

baseline achievement.  While the last two components (student achievement and student 

demographics) played no role in predic ng students’ achievement post random assignment to 

teachers, the component associated with peer controls and the core es mate were both 

predic ve of achievement following random assignment.  The authors conclude that controlling 

for peer effects (without mul ple years and teacher fixed effects) is “over-controlling” by 

removing true differences in teacher efficacy.  

Although the conven onal value-added model only includes one lag, Rothstein (2010) 

and Ehlert et al. (2014) find that they could not validly exclude two and three-year lagged 

scores.  Rothstein suggested that excluding mul ple lags of achievement and teacher 

assignments could lead to bias.  However, Rothstein also found that their inclusion did not lead 

to any meaningful differences in es mated teacher effects in North Carolina.   

In Table 1, we summarize eleven studies tes ng the validity of value-added es mates of 

teacher or school effects.  In each, researchers es mated a teacher’s or school’s value-added 

with one group of students and then tested the predic on in another group of students using 

some plausibly exogenous design, such as random assignment, a randomized school lo ery, 

annual fluctua ons in the make-up of those teaching in a par cular school/grade/subject or 

discon nui es in school assignment.  Table 1 reports the coefficient on the es mate in 

 
1 Often analysts also include lagged values for student test scores in other subjects. 



predic ng the outcome of the experiment (empirical Bayes adjusted to account for es ma on 

error).  Forecast unbiasedness (a coefficient of one on the VAM es mate) implies that the 

es mates are “right on average.”  However, as discussed in Angrist et al. (2017), a set of 

es mates can be forecast unbiased, yet s ll contain es mates of individual school or teacher 

effects which are biased—i.e. differences which are larger than would plausibly be driven by 

sampling error. 

Three studies (Kane and Staiger (2008), Kane et al. (2013) and Glazerman and Pro k 

(2015)) es mated teacher value-added with historical data, randomized teachers and observed 

differences in student achievement following random assignment.  With one excep on (middle 

school math in Glazerman and Pro k (2015)), the authors could not reject that the value-added 

es mates based on the conven onal lagged score model and the less common “gain score” 

model (essen ally constraining the coefficient on lagged achievement to be equal to one) are 

forecast unbiased.2  The studies involved teachers across 7-14 large urban districts.3    

In both models including student fixed effects, Kane and Staiger (2008) found forecast 

bias coefficients near two.  As described by Meghir and Rivkin (2011), student fixed effects 

essen ally borrow from a student’s future outcomes to es mate the fixed effect.  Unless there 

is 100 percent fade-out of the effect in future periods (i.e. the interven on only affects current 

year achievement), the student fixed effect models are biased downward.  If there were no 

fade-out, the bias would be equivalent to dividing by 2, consistent with the findings of Kane and 

Staiger (2008). 

Three more studies compared predic ons based on VAM es mates of school effects to 

the results of randomized school lo eries (Deming (2014), Angrist, Hull, Pathak and Walters 

(2017), Angrist, Hull, Pathak and Walters (2024)).  With one excep on, all three studies could 

not reject that value-added es mates of school effects were forecast unbiased es mates of 

school effects.  As Deming (2014) notes, the finding of forecast unbiasedness in the case of 

school effects is even more surprising than with teacher effects:  while a researcher might 

plausibly be able to condi on on the very same data—test scores, race, gender, program 

par cipa on, etc.—used to make teacher assignments within schools, families presumably sort 

across schools for many other reasons, such as the parents’ ability/willingness to pay for school 

quality.  The one excep on was for high school impacts on SAT math scores in New York, where 

the coefficient (.78) discernibly different from 1, but s ll large. 

  Because their lo ery-based es mates are over-iden fied, Angrist et al. can go beyond 

“forecast unbiasedness” and test whether the value-added es mates are consistent with 

mul ple instruments.  They conclude that while value-added may be forecast unbiased, the 

es mates for individual schools are subject to bias, with differences larger than would have 

 
2 Glazerman and Protik (2015) speculate that the middle school math results may have been due to unusually poor 

compliance with random assignment in those grades/subject. 
3 We say “up to” 14 districts, because while the first two studies name seven districts, Glazerman and Protik do not 

name the seven “large urban districts” where they conducted their study. 



been expected due to sampling varia on alone.  Thus, conven onal value-added models may be 

biased, but s ll meet the lower standard of forecast unbiasedness (i.e. being “right on 

average.”) 

We iden fied three studies which use non-experimental varia on in the make-up of 

teaching teams within school/grade/subject over me to test the validity of predic ons based 

on teacher’s value-added es mates from other groups of students. Using data from a “large 

northeastern” school district, Che y, Friedman and Rockoff (2014) generated an es mate of 

forecast bias between .91 and .99.  The other two studies essen ally replicate Che y, Friedman 

and Rockoff’s methodology in two other, quite different se ngs: Los Angeles Unified School 

District (Bacher-Hicks, Kane and Staiger (2014)) and the state of North Carolina (Rothstein 

(2017)).  Both find similar results when using the previous study’s methods.  Rothstein (2017), 

preferred an alterna ve specifica on, including changes in achievement in the prior school year, 

and found a forecast bias coefficient of .860, which was sta s cally dis nct from one (standard 

error of .017). 

Finally, we iden fied two addi onal studies which used other quasi-experimental 

designs to test for validity of school-level value-added es mates.  Bri on, Clark and Lee (2023) 

tested the validity of value-added es mates of middle school impacts on student exam scores in 

England, using discon nui es in admission eligibility by travel distance from the parent’s home 

to the school.  Andrabi, Bau, Das and Khwaja (2022) measured the impact on students when 

schools closed in Pakistan (using pre-closure differences in value-added rela ve to schools in the 

same village).  Neither study could reject that school-level value-added es mates were 

unbiased predictors of impacts on students. 

Figure 1 portrays the confidence intervals for the forecast bias es mates in Table 1.  Only 

three of the es mates are able to reject forecast unbiasedness (Glazerman and Pro k (2015) 

es mate for middle schools, Angrist et al. (2024) es mate for NY high schools, and Rothstein 

(2017).  Nevertheless, the remainder of the es mates are centered around 1. 

In sum, value-added methods have been shown to generate forecast unbiased es mates 

of school and teacher impacts in a variety of se ngs, using both random assignment and quasi-

experimental methods to test their validity.  Despite these findings, there is s ll no consensus 

on the condi ons under which value-added methods should be expected to yield unbiased 

es mates.    

There are three primary reasons for the lack of consensus:  First, opportuni es for model 

valida on have been rare.  The eleven studies represent a small share of studies using value-

added es ma on.  Second, the exis ng valida on tests based on forecast unbiasedness are 

o en underpowered to detect specific model misspecifica ons which could lead to small 

amounts of bias— even with forecast unbiasedness.  But the third and most important reason is 

the absence of any agreed-upon sta s cal model describing the sources of varia on in student 

achievement over me.  In the absence of such a model, any claims of validity are therefore 



con ngent on a par cular use case (e.g. es ma ng teacher or school effects on math 

achievement) and in a par cular se ng (such as Charlo e or Boston or New York.)  In the next 

sec on, we present a framework for evalua ng different sources of bias. 

Model and Es ma on 

 In this sec on we describe a sta s cal model of test scores and student learning based 

on a standard value-added structure (and similar to that used in previous work such as Jacob, 

Lefgren & Sims, 2007). Achievement growth for individual students follows a simple state-space 

model in which test scores are a noisy measure of an underlying state variable (knowledge) that 

accumulates persistent innova ons over me. We allow for student and teacher components in 

both the transitory noise in test scores and the persistent innova ons to knowledge. We then 

use the model to mo vate three alterna ve approaches to es ma on and to discuss the 

poten al biases inherent in each approach. The first approach is a standard Value-Added Model 

(VAM) that es mates teacher effects a er controlling for prior year test scores and student 

characteris cs. The second approach is similar but uses an earlier test score to instrument for 

prior year test scores. The final approach uses the recursive Kalman Filter to predict each 

student’s expected baseline score based on the student’s history and es mates teacher effects 

a er condi oning on the Kalman filter predic on.  

1. Sta s cal Model 

 Our model is based on the idea that knowledge is cumula ve; each year a student adds 

to their exis ng stock of knowledge. We assume that each student’s true state of knowledge 

evolves over me according to a simple structure: 

(1)  𝜇 𝛿𝜇 , 𝜃  𝛼 𝜐   

Equa on (1) defines knowledge (𝜇 ) for student i at me t as the sum of their prior 

knowledge (𝜇 , ) that depreciates at rate 𝛿 and three terms represen ng new addi ons to 

knowledge in year t.4 5 The first term (𝜃 ) is the effect of having teacher j in year t (or more 

generally could represent any interven on j to which student i was assigned in year t). This is 

usually the key parameter of interest, as it captures the persistent impact of teacher j on 

student knowledge. The second term (𝛼 ) allows for heterogeneity in knowledge growth across 

students. This term captures persistent differences across students in family inputs or capacity 

 
4 For simplicity, we consider the case of knowledge in a single subject (e.g. math), but it is straightforward to allow 

for knowledge in each subject to also depend on prior knowledge in other subjects. In our empirical work, we 
allow for this and find little evidence of such cross-subject effects of prior knowledge.  

5 The state-space model meets the conditions described in Todd and Wolpin (2003) for including contemporaneous 
inputs and excluding prior inputs while conditioning on prior achievement:  with the exception of the prior 
year teacher’s temporary effect, the coefficients on earlier inputs, including initial achievement, decline 
geometrically at the same rate, 𝛿.  The key differences are that our model allows for an individual specific 
growth term each period, 𝛼 , measurement error in the outcome variable, 𝜂 , and allows for a temporary 
(single year) teacher effect, 𝜓 and permanent teacher effect, 𝜃 . 



to learn that results in greater knowledge growth every year. The final term (𝜐 ) is an i.i.d. shock 

to knowledge for each student. This term captures idiosyncra c student learning each year. 

Thus, 𝛼  captures persistent differences across years in a student’s knowledge growth, while 𝜐  

captures the remaining independent shocks.  

 Papers in educa on using longitudinal student-level data on test scores (𝑦 ) o en use 

hierarchical linear models (HLM) that incorporate student-level random intercepts and slopes, 

where 𝑦 𝛽  𝛽 𝑡 𝑢 . In these models the slope coefficient (𝛽 ) captures 

heterogeneity in student growth (𝑦 𝑦 , ) and is analogous to 𝛼  in equa on (1). Note that 

if equa on (1) is the correct specifica on, HLM trend es mates (𝛽 ) will be biased because the 

residual is highly persistent – analogous to spurious trends in random walks. VAM es mates of 

𝛼  with 𝛿 near 1 are analogous to first differencing, a standard solu on for random walks. In 

ongoing work we find that VAM models outperform HLM in one-year-ahead forecasts of test 

scores, as would be expected if VAM was the correct specifica on and HLM es mated spurious 

trends. 

 If knowledge was perfectly measured by test scores, equa on (1) would represent a 

standard value-added regression specifica on regressing end of year test score on prior year 

test score and teacher fixed effects. There would be two poten al sources of bias arising from 

the presence of 𝛼  in the error term. First, if student assignment to teachers is non-random and 

correlated with 𝛼  (e.g., fast learners or higher income students with tutors are assigned to 

par cular teachers) then es mates of teacher effects would be biased. Second, we might expect 

prior knowledge to be correlated with 𝛼  (e.g., fast learners or students from higher income 

families may have higher prior knowledge), which would bias the es mate of 𝛿. This would 

result in under-controlling for prior knowledge and would bias es mates of teacher effects if 

students were being assigned to teachers based on their prior knowledge (e.g. tracking). As is 

commonly done in VAM specifica ons, we will control for a short list of student characteris cs 

(race, ethnicity, gender, free lunch eligibility) in part to account for varia on across students in 

𝛼 .  

 Hypothe cally, one could es mate models such as equa on (1) using dynamic panel 

methods that allow for a student fixed effect in growth (e.g. Arellano and Bond, 1991), but in 

prac ce these methods are poorly iden fied in short panels with 𝛿 near to 1. Alterna vely, 

some VAM models include student fixed effects, but then do not control for prior score. If 

equa on (1) is the correct specifica on, these student fixed-effect models will yield biased 

es mates of teacher effects. These models implicitly assume that the current teacher has 

transitory effects that do not accumulate, so tend to underes mate effects of teachers if their 

impacts on knowledge are persistent (Meghir and Rivkin, 2011). Kane and Staiger (2008) found 

teacher effect es mates from VAM models were forecast unbiased while student fixed-effect 

models were downward biased forecasts when teachers were randomly assigned to classrooms, 

suppor ng the VAM model. 



 Of course, observed test scores (𝑦 ) are imperfect measures of students’ accumulated 

knowledge and contain substan al measurement error. We assume that this measurement 

error is purely transitory and follows a simple structure: 

(2) 𝑦 𝜇 𝜑 𝜂   . 

The first noise component (𝜑 ) is a teacher-level transitory impact that teacher j has on 

all her students. This component captures teaching to the test or other non-persistent learning. 

We include this component in the model to account for the fact that teacher effects (and other 

short-term impacts of interven ons) are regularly found to par ally “fade out” quickly. While 

we focus on teacher effects, this term could represent transitory impacts of any set of 

interven ons indexed by j (e.g. schools, tutoring providers, etc.) The second noise component is 

at the student level (𝜂 ) and represents the measurement error associated with any test, 

commonly referred to as the standard error of measurement. Typically, standardized tests have 

reported reliability ra os in the .8-.9 range, which implies that 10-20% of the variance in 

observed test scores will be due to test measurement error.   

2. VAM Es ma on 

 By relying on observed test scores rather than true student knowledge, value-added 

models introduce addi onal poten al sources of bias. To see this, note that equa on (2) implies 

that 𝜇 𝑦 𝜑 𝜂 , and plugging this into equa on (1) yields a familiar VAM-style 

es ma ng equa on: 

(3) 𝑦 𝛿𝑦 , 𝜃 𝜑 𝛿𝜑 ,  𝛼 𝜐  𝜂 𝛿𝜂 , ,  

(where 𝜑 ,  represents the transitory effect of teacher 𝑗  that student i had in year t-1). 

Equa on (3) differs from equa on (1) in three important ways:  

1. First, the current year teacher effect 𝜃 𝜑  is now the sum of the teacher’s 

persistent impact on knowledge and transitory impact on test scores. Typical VAM 

models do not dis nguish between permanent and transitory teacher effects and simply 

es mate the teacher’s total contemporaneous impact on test scores. It is important to 

separate out these two components because transitory impacts on test scores have no 

long-term value (although they may be valued by school administrators under 

accountability pressure). On average, the total teacher effect may either over or 

understate a teacher’s persistent impact on knowledge depending on the covariance 

between the permanent and transitory teacher impact: 

𝐸 𝜃 | 𝜃 𝜑 𝛽 𝜃 𝜑  where 𝛽
,

,

,
 

Moreover, this average fadeout may mask considerable varia on across teachers. 

 



2. Second, equa on (3) now includes a prior year teacher effect ( 𝛿𝜑 , ) that reflects 

the fading out of the prior-year teacher’s transitory effect on the student’s test score. 

Typical VAM models do not control for a student’s prior-year teacher. Failing to control 

for the prior-year teacher could further bias the es mate of the current-year teacher 

effect unless the prior-year teacher transitory effect is uncorrelated with current-year 

teacher assignments. However, it is straigh orward to add prior year teacher effects to a 

standard VAM specifica on, and this es mates both 𝜃 𝜑  and 𝛿𝜑 , , which 

along with an es mate of 𝛿 iden fies both persistent and transitory teacher effects. 

 

3. Finally, even a er condi oning on current and prior year teacher, the error in equa on 

(3) s ll depends on the measurement error in both the lagged test score 𝜂 𝛿𝜂 , . 

This could introduce bias to tradi onal VAM es mates in two ways. First, the nega ve 

correla on between 𝑦  and 𝛿𝜂 ,  will generate standard a enua on bias on 

es mates of 𝛿. Again, this would result in under-controlling for prior knowledge, leaving 

a por on of prior knowledge in the error term. More specifically, if 𝛿 is the expected 

value of the a enuated coefficient, then the error term will contain 𝛿 𝛿 𝑦 ,

𝛿 𝛿 𝜇 , 𝜑 , 𝜂 ,  which introduces prior knowledge into the error term. 

If students were assigned to teachers based on be er informa on about their prior 

knowledge (e.g. tracking) then es mates of teacher effects will be biased. Similarly, if 

students are assigned to teachers in part based on knowledge of 𝜂 ,  (or equivalently, 

knowledge of 𝜇 , 𝜑 ,  if 𝑦 ,  is known), then teacher assignment would also be 

correlated with the error term. For example, if an administrator could iden fy which 

students simply had a bad day on the prior year test and assigned all those students to a 

par cular teacher, that teacher would appear to have large impacts on test score 

growth. 

The preceding discussion suggests that a VAM model that regresses end-of-year test 

score on prior score, current and lagged teacher fixed effects, and some student covariates (to 

account for 𝛼 ) faces three sources of poten al bias: (1) sor ng of students to teachers based 

on student-specific growth (𝛼 ) that is not captured by covariates, (2) sor ng of students to 

teachers based on the measurement error in the prior-year score (𝜂 , ), and (3) a enua on of 

the coefficient 𝛿 due to measurement error in prior test scores along with sor ng of students to 

teachers based on prior student knowledge (tracking). 

3. IV Es ma on 

 Since it is likely that students are sorted to teachers based on informa on about the 

student’s prior knowledge, a enua on of the lagged score coefficient is par cularly worrisome 

in VAM models. A standard solu on for a enua on bias due to measurement error is 

instrumental variables. Therefore, IV es mates of equa on (3) using a twice lagged test score 



(𝑦 , ) as an instrument for the lagged score will yield unbiased es mates of 𝛿.6  The twice 

lagged score will be correlated with the lagged score through equa on (1), yet has 

measurement error that is independent of the error in equa on (3), 𝛼 𝜐  𝜂 𝛿𝜂 , . 

 By elimina ng a enua on bias, IV es mates of VAM models (controlling for current and 

lagged teacher effects) are not biased by teacher assignment correlated with prior knowledge 

(𝜇 , ) since prior knowledge is uncorrelated with the error in equa on (3).7 To the extent that 

sor ng on prior knowledge (tracking) is an important source of bias in OLS es mates of VAM, 

this is an important strength of IV es mates of VAM.  

But we are s ll le  with the two remaining poten al sources of bias that were also 

present in OLS es mates of VAM models:  

1. Teacher assignment correlated with student growth (𝛼 ) will bias IV VAM es mates.  

2. Teacher assignment correlated with prior year measurement error in student scores 

(𝜂 , ) will bias IV VAM es mates.  

This second source of bias is likely to be the primary source of bias in IV VAM es mates. 

If teacher assignment is determined in part by prior year scores (𝑦 , ) then it will be correlated 

with the measurement error in prior year scores. However, if the baseline score 𝑦 ,  was not 

known at the me of assignment, then this bias will not be present. For example, un l recently 

many states did not report end-of-year test scores un l the following fall.8 In such states, 

teacher assignment could not rely on prior year scores. More generally, if value-added used a 

fall test from the beginning of the school year as the lagged score, this would ensure that 

assignment was not based on the baseline test. Similarly, evalua ons of non-randomized 

interven ons using IV VAM would avoid bias by using a baseline test administered to all 

students a er assignment.   

Overall, a VAM model that instruments for prior score with an earlier score, and includes 

current and lagged teacher fixed effects, and perhaps some student covariates (to account for 

𝛼 ) faces only two sources of poten al bias: (1) sor ng of students to teachers based on 

student-specific growth (𝛼 ) that is not captured by covariates, and (2) sor ng of students to 

teachers based on the measurement error in the prior-year score (𝜂 , ). This second bias is 

eliminated in situa ons where the baseline score was not known (or otherwise not used) at the 

me of assignment (either by chance or by design). Unlike OLS VAM es mates, assignment to 

teachers based on a student’s prior knowledge does not bias IV VAM es mates.  

 
6 more generally, any score from time t-1 or before with independent measurement error will be a valid 

instrument. 
7 Prior knowledge is correlated with the error through 𝛼 , but we consider the bias arising from 𝛼  separately. 
8 Our data come from North Carolina. North Carolina was unusual in that schools and students received their 

scores often within days of taking the test. 



4. Kalman Filter Es mates 

 An alterna ve way to think about VAM models is to plug equa on (1) directly into 

equa on (2), which yields: 

4  𝑦 𝛿𝜇 , 𝜃 𝜑  𝛼 𝜐 𝜂    

We cannot es mate equa on (4) directly because a student’s prior knowledge (𝜇 , ) is 

unknown. 

However, suppose we formed an unbiased predic on of 𝜇 ,  using all of the 

informa on available on the student up through and including the informa on in t-1. Call this 

predic on �̂� , | . Then consider the following equa on subs tu ng �̂� , |  for 𝜇 ,  in 

equa on (4): 

5  𝑦 𝛿�̂� , | 𝜃 𝜑  𝛼 𝜐 𝜂 𝛿 𝜇 , �̂� , |    

Equa on (5) is analogous to a standard OLS VAM model except instead of condi oning on prior 

score, we condi on on an op mal predic on of prior knowledge given all the informa on 

available. In this model, 𝛿�̂� , |  is the student’s expected score at me t, and current 

teacher effects are es mated based on the difference between actual and expected score at 

me t (end of year). 

The key poten al source of bias introduced in equa on (5) arises from the fact that our 

predic on error in predic ng true knowledge at baseline 𝜇 , �̂� , |  now appears in 

the residual. If students are assigned to teachers based on private informa on about 𝜇 ,  that 

is not captured by �̂� , | , then es mates derived from equa on (5) will be biased. Thus, it is 

par cularly important to incorporate as much informa on as possible into �̂� , | . 

Because equa ons (1) and (2) define a simple state-space model, we can use the Kalman 

filter to efficiently construct op mal predic ons based on the en re history of informa on 

available on each student at baseline. For this calcula on we assume 𝛼 0. Let �̂� , |

𝛿�̂� , |  be the predic on of knowledge at me t given informa on available at me t-1, and 

let 𝑢 , | 𝑦 , �̂� , |  be the corresponding predic on error. The Kalman filter es mates  

�̂� , |  using the following recursive rela onship: 

      6  �̂� , | �̂� , | 𝐾 𝑢 , | 𝛿𝜃 ,    

Equa on (6) states that the op mal predic on in year t updates the predic on from t-1 

based on the residual difference between the actual test score in year t and the predic on from 

t-1, and then adds on the persistent effect of the student’s teacher in year t. If 𝑦 ,  is above 

(below) the predic on from t-1, then the predic on at me t is revised upward (downward).  

The weight placed on the residual (𝐾 ) is referred to as the Kalman gain and is less than 1 and 



falls over me as the exis ng predic on becomes more precise and less weight is placed on the 

noisy new informa on in 𝑦 , . 

 Plugging equa on (6) into equa on (5) yields the final Kalman filter es ma ng equa on: 

7  𝑦 𝛿 �̂� , | 𝛿𝐾 𝑢 , | 𝛿𝜃 , 𝜃 𝜑  𝛼 𝜐 𝜂

𝛿 𝜇 , �̂� , |  

Equa on (7) is a vam specifica on that replaces the lagged score with three terms: The 

predicted test score in t-1, the predic on residual from t-1, and the persistent teacher effect 

from t-1. The first two terms add up to the test score in t-1, so this is a generaliza on of the 

usual vam specifica on that dis nguishes between the prior predic on of knowledge 

�̂� , |  and the new informa on that comes from the test score in t-1 𝑢 , | . Because 

the new informa on in t-1 includes measurement error, the new informa on is given lesser 

weight than the prior predic on in predic ng knowledge in me t. Equa on (7) also iden fies 

effects of the current and lagged teacher (as in the VAM and IV models). However, the lagged 

teacher effect (𝛿𝜃 , ) now has a different interpreta on: it captures the effect of the prior 

year teacher that persists into the current year.  

We es mate equa on (7) sequen ally in each grade to obtain es mates of 𝛿, 𝐾 , and 

current and lagged teacher fixed effects. We then use these es mates and the Kalman filter 

equa on (6) to es mate �̂� , |  and 𝑢 , |  for the next grade.9 In forming predic ons 

using equa on (6), we use empirical Bayes to form best linear unbiased predic ons of the prior 

year’s teacher persistent effect (𝜃 , ), e.g. we apply shrinkage to the es mated fixed effects 

(Kane and Staiger, 2008).  

Overall, the Kalman filter approach is an alterna ve to OLS VAM that a empts to 

minimize the bias arising from assignment to teachers based on be er informa on about 

student’s prior knowledge. It does so by more carefully controlling for the full history of 

available informa on. However, whether this eliminates bias in the es ma on of teacher effects 

will depend on how accurate the Kalman predic ons are, whether parents and administrators 

have access to be er informa on, and whether this informa on is used for student assignment 

to teachers. 

5. Allowing for non-linearity 

 VAM models commonly find non-linearity in the rela onship between end-of-year 

scores and prior year scores, with a fla er rela onship in the tails. Therefore, we es mate 

versions of the OLS and IV VAM specifica ons including a cubic in prior score (and in IV, 

instrumen ng with a cubic in the two-year lag score). We normalize the test scores to be mean 

zero in each grade, so that the coefficient on the linear term (𝛿) can be interpreted as the 

 
9 To estimate �̂� , |  in the initial period, when no baseline score is available, we simply run a regression of 𝑦  on 

student covariates. 



deprecia on rate of knowledge for a student with an average score. We use this es mate of 𝛿 

for the average student in all the formulas above.  

 In the Kalman filter model, there is a natural way to interpret the cubic rela onship 

between current and prior test scores. Recall that the coefficient on the predic on residual from 

t-1 𝑢 , |  in the Kalman model (equa on 7) is 𝛿𝐾 , where 𝐾  is the Kalman gain. If all test 

scores have similar measurement error then 𝐾  only varies by me, declining over me as the 

predic on in t-1 becomes more precise and the predic on residual in t-1 becomes mostly 

measurement error. However, most standardized tests are designed to minimize error for 

students with achievement near the mean, and therefore have less measurement error in the 

center of the distribu on and more measurement error for scores in the tails.10 If this is true, 

then the Kalman gain should be smaller for students whose prior score is in the tails of the 

distribu on. A typical plot of the standard error of measurement against percen les of the test 

score looks roughly quadra c – sugges ng that we should interact the predic on residual from 

t-1 𝑢 , |  with a quadra c a student’s baseline score. Since the predic on residual 

includes the baseline score, this is analogous to including a cubic in baseline score in the OLS 

and IV VAM models. Therefore, we es mate versions of the Kalman filter model including 

interac ons between the predic on residual and a quadra c in the baseline score.11 

6. Tests of model assump ons and poten al bias 

For each of our models we perform a series of specifica on tests to explore the 

plausibility of the model assump ons.  

First, we test the sta s cal assump ons imposed by our model by comparing 

regressions predic ng end-of-grade test scores using the Kalman filter to more and less flexible 

models. We first test the Kalman filter model against the more restric ve conven onal OLS VAM 

models using only the prior year score as a covariate with no lagged teacher effects. We then 

test the Kalman filter model against less restric ve models that flexibly include a student’s 

history of prior scores and teachers. The Kalman model imposes strong restric ons on how 

these prior variables enter the regression by assuming all prior contribu ons to knowledge 

depreciate at the same rate 𝛿. Given our sample size, these tests have high power.  As a result, 

we focus on whether the addi onal flexibility meaningfully improves the regression’s adjusted 

R-squared.   

Second, we consider two empirical tests for the presence of student heterogeneity in 

growth 𝛼  in each of our three models (OLS VAM, IV VAM, and Kalman). First, using each 

student’s census tract income (something not typically available in VAM models), we 

parameterize  𝛼 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝛾 and directly es mate the impact of income on growth and the 

 
10 The technical documentation on NC EOG tests includes details on the standard error of measurement suggesting 

much more error in the tails. This is likely to be less true with adaptive tests which adjust to ask more 
appropriate questions to students in the tails of the distribution. 

11 We also include the direct effect for the quadratic term in baseline score, although this has little impact. 



variance of 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝛾 . Our second empirical test for the presence of 𝛼  uses the covariance of 

each model’s residuals two or more years apart to es mate the variance of 𝛼 : Since the 

remaining terms in the residual are expected to be uncorrelated beyond one lag, these 

covariances are es mates of the variance of student-specific growth. To es mate this 

covariance, we es mate a Hierarichical Linear Model (using the mixed command in Stata) for 

the student residuals, allowing for random student intercept (𝛼 ) and a Toeplitz error structure 

with one lag to account for the addi onal error terms in each model that may add variance and 

covariance at one lag. 

Third, we explore whether private informa on about student prior knowledge (𝜇 , ) 

could contribute to bias in each model. We add to each model the prior teacher’s judgement 

about each student’s level of knowledge. For three of the six cohorts we study, teachers 

provided their subjec ve judgements of students’ mastery of state standards before seeing the 

end of grade test results.  Although typically not available to the value-added researcher, this is 

the kind of private informa on that could be used in teacher assignments.12 As with income, we 

add this variable to our models and quan fy the amount of varia on this type of private 

informa on can explain. 

Fourth, to quan fy whether any of these poten al biases ma er in prac ce, we es mate 

teacher persistent and transitory effects from each of the models, with and without addi onal 

controls for income and prior teacher’s judgement and report the correla on in these es mates 

across models.  

Fi h, we use observable proxies for each type of poten al sor ng and es mate how 

these proxies vary systema cally across teachers. To do this, we es mate HLM models (using 

the mixed command in Stata) in which the dependent variable is one of the observable proxies, 

and we es mate random intercepts at the school and teacher level. These models how much 

actual sor ng actually occurred based on these observable proxies. We consider the following 

proxies, available at the student-level: 

1.  𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝛾, which proxies for sor ng on student growth. 

2. TeacherJudgement*b, which proxies for sor ng on private informa on about student 

knowledge. 

3. The Kalman predic on of student knowledge at me t-1 ( �̂� , | ), which proxies for 

the extent of sor ng on observable informa on about student knowledge. 

4. The Kalman predic on residual at me t-1 ( 𝑢 , | ), which proxies for the extent of 

sor ng on the measurement error in test scores in t-1. This is an imperfect proxy 

because the Kalman predic on residual is a mix of true student knowledge and 

measurement error. 

 
12 We also have information on each student’s expected grade, which yields very similar results. 



5. The prior year teacher’s transitory effect (𝜑 , ), which proxies for sor ng on prior 

teacher fadeout.  

Finally, we use the IV VAM es mates to do a full decomposi on of the variance components 

in our model 𝜃 ,𝜑 ,𝛼 , 𝜐 , 𝜂 ,𝑎𝑛𝑑 𝜇 , . We use these variance component es mates to 

inves gate the importance of teacher versus other innova ons contribu ng to learning. We 

es mate the variance and covariance of the persistent and transitory teacher effects  𝜃 ,𝜑  

using standard empirical Bayes methods that correct for (correlated) es ma on error in the 

fixed effect es mates (Kane and Staiger, 2008). These es mates provide direct evidence on 

whether it is important to account for fadeout in value added models, and we also use them to 

es mate the average rate of fadeout of teacher effects 𝛽 . We es mate the variances of 

𝛼 , 𝜐 , 𝜂  using the IV VAM model’s residuals 𝛼 𝜐  𝜂 𝛿𝜂 , . We es mate a 

Hierarichical Linear Model (using the mixed command in Stata) for the student residuals from 

grades 5-8, allowing for random student intercept (𝛼 ) and a Toeplitz error structure with one 

lag to account for the addi onal variance and covariance at one lag due to 𝜐
 𝜂 𝛿𝜂 , . Using our es mate of 𝛿 from the IV VAM model, these es mates can be 

transformed to yield es mates of the variance of 𝜐  and 𝜂 . Finally, the variance of 𝜇  is 

es mated based on equa on (2), which implies 𝑉𝑎𝑟 𝜇 𝑉𝑎𝑟 𝑦 𝑉𝑎𝑟 𝜑 𝑉𝑎𝑟 𝜂 .  

Data 

 We use student-level panel data from the North Carolina Educa on Research Data 

Center (NCERDC).  Our primary analysis sample consists of students in third through eighth 

grade between 2007 and 2017.  We exclude data prior to 2007 due to a lack of student-teacher 

linkages.  We excluded data a er 2017, because students could choose to take an end of course 

Algebra I test rather than the 8th grade end of grade assessment taken by other students.  

Because of the change in 2018, we would have been missing 8th grade end of grade assessments 

for a non-random sample of students.   

Due to the data requirements of the state-space model, we exclude from our sample any 

students missing in grades 3-8 and those who repeat or skip a grade.  We also exclude students 

missing any of the following data in any year: math and reading scores, race/ethnicity, indicators 

for economic disadvantage indicator, limited English proficiency or learning disability, or the id 

codes for primary math and reading instructor.13 

 For a subset of our analyses, we use data from 2007 through 2013 in which teachers 

were asked to provide their subject assessments of students’ mastery of state content standards 

in math and reading.  Therefore, our analyses involving prior grade teacher ra ngs are limited to 

the three cohorts of students who were in 8th grade between 2012 and 2014.  When using prior 

 
13 All the methods we discuss can be modified to accommodate students with missing years or data, but we focus 

on this complete data sample to simplify the presentation and analysis. 



year teacher judgements, we exclude from our regressions the small percentage of students for 

whom teacher judgements were missing. 

 The NCERDC data also include block group iden fiers from the U.S. Bureau of the 

Census.  Between 2010 and 2017, the data provided correspond to 2010 Census block group 

boundaries.  Between 2007 and 2009, the data provided by NCERD correspond to the 2000 

block group boundaries.  As a measure of neighborhood income, we the 2013 ACS 5-year 

es mate of median household income by block group between 2010 and 2017. Between 2007 

and 2009, we use the 2000 Census median household income measure by block group.  We sort 

the neighborhood income measures each year into deciles, a er conver ng to 2022 dollars.14  

Because the block group iden fiers are provided for individual students—not school—we 

observe varia on in neighborhood income within teachers and schools and not just between.  

In the analyses involving neighborhood characteris cs, we exclude anyone missing the 

neighborhood iden fiers. This primarily excludes charter school students from the analyses 

using neighborhood income because NCERD did not provide block groups for these students. 

Results 

 In Table 2, we evaluate the Kalman filter es mates' ability to predict end-of-year test 

scores compared to conven onal VAM specifica on and against more flexible specifica ons. 

Since the Kalman filter es mates are op mal if our sta s cal model is correct, these results 

provide a test of the assump ons in our sta s cal model. To provide the strongest test of the 

Kalman, we focus on 8th grade math achievement, given that we have achievement measures in 

five prior years (grades 3, 4, 5, 6 and 7) and teacher assignments in four prior grades (4th, 5th, 6th 

and 7th).   

One key difference between our model and the conven onal VAM model is the inclusion 

of fixed effects for both prior year and current teacher.  Column (1) reports the results of the 

conven onal VAM model with fixed effects for current grade 8 teachers, while column (2) 

includes fixed effects for both 7th and 8th grade teachers.  Moving from column (1) to (2), the 

adjusted R2 increases from .7448 to .7520 and the F-test rejects exclusion of the prior teacher 

effects.  That is what we would expect if there were any transitory effect of last year’s teacher 

not captured by students’ the baseline score.  

Column (3) reports results for the Kalman filter specifica on.  The Kalman filter breaks 

baseline achievement into two parts: the expected achievement (based on prior scores and 

teacher assignments) and the new informa on which emerged in the baseline year, t-1.  While 

the conven onal VAM forces the same coefficient on both parts—es ma ng a coefficient of 

.758 on baseline score-- the Kalman filter allows us to es mate different coefficients on each, 

.925 on the Kalman predic on and .407 on the Kalman residual. One of the reasons that 

conven onal value-added is biased is that it constrains these coefficients to be equal.  The 

 
14 While we report results for income deciles, we obtain very similar results using deciles of the block group’s Area 

Deprivation Index. 



Kalman is clearly a be er fit, with an adjusted R2 of .7877 vs. .7520.  Given the large sample size, 

the p-value of the F-sta s c comparing the specifica ons in columns (2) and (3) is less than 

.001.  Note also that while the coefficient on the Kalman predic on of achievement in t-1 is near 

one, .925, the coefficient on the Kalman residual (which will include measurement error in t-1 

achievement, 𝜂 ,as well as persistent effects of t-1 interven ons, 𝜈 , and new informa on 

about a student’s true state) is much smaller (.407).   

In the remaining columns of Table 1, we test how well the Kalman filter summarizes the 

informa on from prior performance and teacher assignments by gradually allowing for more 

flexible specifica ons.  For instance, in column 4, we add a control for 6th grade math 

achievement.  In column (5) we es mate independent effects for lagged math achievement in 

grades 3 through 6.  In both instances, the F-test rejects the Kalman specifica on in Column (2), 

but the adjusted R2 remains the same through four digits, .7877.  In column 6, we add lags of 

reading achievement in grades 3 through 6.  The adjusted R2 increases slightly to .7898, an 

increase of .0022.  In the last column, we add fixed effects for each students’ history of teacher 

assignments in grades 3-6.  The increase in adjusted R2 is somewhat larger, but s ll is less than a 

full percentage point larger (.0072) than the Kalman filter specifica on in column (2).  We take 

this as evidence that the Kalman filter faithfully summarizes the history of students’ 

achievement and teacher assignments quite well—certainly be er than a single year of 

achievement as with conven onal value-added and nearly as well as a completely flexible 

specifica on. 

Table 3 reports similar results for reading.  The Kalman specifica on fits be er than the 

conven onal VAM (adjusted R2 of .7263 vs. .6653).  As with math, the inclusion of all lags and 

the full history of teacher dummies in column (7) improves the adjusted R2 by less than 1 

percent, by .0068, rela ve to the two-part Kalman specifica on in column (3).   

As discussed earlier in the methods sec on, VAM models commonly find non-linearity in 

the rela onship between end-of-year scores and prior year scores, with a fla er rela onship in 

the tails. To account for this non-linearity, conven onal VAM models o en include a cubic in 

prior score. In appendix Table A1 we compare conven onal VAM models with linear controls for 

prior scores to those with cubic controls for prior scores and find that the addi onal cubic terms 

are highly significant and improve the adjusted R-squared. Similarly, when we es mate VAM by 

IV in Appendix Table A1, we find the addi onal cubic terms are highly significant (adjusted R-

squared is not relevant for IV). Finally, as discussed in the methods sec on, an analogous 

specifica on in the Kalman specifica on would include interac ons between a quadra c in 

baseline score and the Kalman residual to account for greater measurement error in the tails of 

the baseline score distribu on. Again, in Table A1 we find that the addi onal interac ons and 

quadra c terms are highly significant and improve the adjusted R-squared of the Kalman 

specifica on. Therefore, in the remainder of the paper we focus on specifica ons that include 

these non-linear terms, although none of the results are qualita vely changed if we reported 

results from more simple linear models. 



   In Table 4, we incorporate the subjec ve assessments of prior grade teachers regarding 

their students’ mastery of math and reading standards.  The data were collected as students 

were si ng down to take the state tests and before test results were available.  Teachers chose 

from five categories from insufficient mastery to consistently superior.15  Although such 

measures are typically not available to the value-added researcher, we use it here to test 

whether the prior grade teachers have addi onal informa on (beyond a students’ achievement 

history and prior teachers) which could be used for sor ng and bias.   In the state-space model, 

year t achievement depends solely on period t inputs (𝜈 ,𝛼 ,𝜃 ,𝜓  and true baseline 

achievement, 𝜇 .  However, any addi onal informa on teachers have regarding a student’s 

true baseline knowledge is an addi onal source of selec on, which would lead to bias in 

conven onal VAM and the Kalman filter specifica ons if used to sort students.   

We included indicators for whether the prior teacher rated the students’ mastery of 

state standards as “insufficient,” “inconsistent”, “consistently superior”, or “none of the above” 

with the most common response, “consistent mastery,” as the excluded category.  Clearly, the 

prior grade teachers do have informa on not captured in the t-1 achievement scores: in the 

conven onal VAM for math (column 1), the students who were rated as having insufficient 

mastery of math by their 7th grade teacher scored .323 SD lower on the 8th grade test than 

those who had the same 7th grade scores, but whose teachers reported they had “consistent” 

mastery.    Meanwhile, those judged to have “consistently superior” achievement scored .205 

SD higher.  

 We created an index of teacher judgements, using the coefficients in Table 3, and 

regressed the index on the remaining variables in Table 3, using the residual to calculate the 

poten al bias from excluding such private judgements.  The es mated variance was .011, 

implying an SD of .105.   Because it is similar in size to the signal variance in teacher effect 

es mates, it implies that perfect sor ng on teacher judgements could produce 100 percent bias 

in teacher effects.  (However, we will present evidence in Table 5 that there is only modest 

sor ng on teacher judgements in our data.) 

 In the next column, we report a similar test for the Kalman filter specifica on.  

Apparently, grade 7 teachers do have informa on not captured by the Kalman predic on or 

Kalman residual, as the coefficients on teacher judgements remain significant.  However, the 

variance of the poten al bias due to teacher judgements is about 70 percent smaller, .003, 

implying an SD of .059, about half the size of the SD of conven onal VAM es mates of teacher 

effects. Thus, while the Kalman fails to fully capture the informa on that the prior year teacher 

has about student knowledge, it captures substan ally more informa on than conven onal 

VAM. 

 
15 In addition to the mastery questions, teachers were asked to report the grade they were expecting to give to 

each student.  We have done a parallel analysis using teacher’s planned grades and found very similar results. 



 In column (3), we report the same test for the IV specifica on.  In the IV, the coefficients 

on the teacher judgement variables are near zero and individually insignificant. We cannot 

reject the joint hypothesis that teacher judgements carry no addi onal informa on (p-

value=.801.) and the variance in poten al bias is zero to three digits with an implied SD of .006.   

As reported in the right-hand panel of Table 3, the results are generally similar in 

reading. Prior teacher judgement has effects that are large and significant in conven onal VAM, 

about half the size but s ll significant in the Kalman specifica on, and near zero in the IV 

specifica on (although the p-value of the F-test is .008.) The implied SD in the poten al bias due 

to teachers’ private informa on is .119 in the conven onal VAM, .050 with the Kalman 

specifica on and .008 for the IV. 

The results in Table 4 highlight the main advantage of the IV specifica on. Unlike 

conven onal VAM and to a lesser extent the Kalman specifica on, the prior-year teacher’s 

judgement cannot predict student gains in the IV specifica on. The reason for this is twofold. 

First, by instrumen ng with twice-lagged scores, the IV specifica on corrects for a enua on 

bias due to measurement error in the lagged score and gets an unbiased es mate of 𝛿, the true 

deprecia on rate of baseline knowledge. Second, because the IV specifica on correctly 

accounts for the deprecia on of the baseline knowledge that is part of the lagged score, the IV 

residual no longer has any associa on with baseline knowledge – and, hence, private 

informa on about baseline knowledge plays no role in the IV specifica on.  

     In Table 5, we perform a similar analysis, incorpora ng informa on on the median 

household income of the Census block group (sorted into deciles) where a student resides.  

Again, such data are typically not available to the value-added researcher.  We include them to 

test if there is any differen al growth for students from high- and low-income neighborhoods, 

condi onal on baseline achievement and teacher assignments.  In the conven onal VAM 

specifica on, students living in census tracts in the top three income deciles scored .03 to .04 

standard devia ons above those with similar baseline achievement residing in the lowest 

income decile neighborhoods.  Columns (2) and (3) repeat the exercise using the Kalman Filter 

and IV specifica ons.  Although there were small differences in achievement growth not 

captured by the Kalman filter (a poten al bias variance of .00006), neighborhood income played 

li le role in the IV model.  In fact, the p-value of the constraint that all the differences by 

neighborhood income were zero, was .213 for math and .992 in reading.  The poten al bias 

variance due to exclusion of the neighborhood income declines was .00003 in math and .00002 

in reading for the IV specifica on. 

The results in Table 5 suggest that neighborhood income does not iden fy students who 

consistently have higher test score growth (𝛼 ). This is surprising but may reflect that census 

block income is a weak proxy for the factors that contribute to 𝛼 . In our model, if there is 

substan al variance in 𝛼  across students, it will generate a posi ve correla on in their residuals 

across grades two or more years apart: students with unexpectedly high test-score growth in 



early grades will con nue to have unexpectedly high test-score growth in later grades.16  For 

residuals two or more years apart, the correla on is .07 for conven onal VAM in math and .09 

in reading.17  In the IV and Kalman, the correla on in residuals two or more years apart is below 

.01 for both math and reading. Thus, there is li le evidence of “fast learners and slow learners”, 

e.g. students who consistently have higher (or lower) than expected test score growth.  

 Under the IV specifica on, neither teacher judgements nor neighborhood income were 

predic ve of student outcomes, implying that even if there were perfect sor ng on those traits, 

it would not lead to bias for the IV.  In contrast, when using conven onal VAM or the Kalman 

filter, any sor ng on neighborhood income or private teacher judgements would lead to bias.  

However, the amount of poten al bias for the Kalman due to sor ng on neighborhood income 

was considerably smaller than the poten al bias from sor ng on teacher’s private informa on.   

 Table 6 gauges the amount of bias due to sor ng on each of five factors:  neighborhood 

income, teacher judgements of students’ mastery, the transitory impact of prior teachers, the 

Kalman predic on of the prior grade score and the Kalman residual for the prior grade score.  

The es mates in Table 6 are derived from hierarchical linear models (HLM) regressing each of 

the listed variables on random school effects and random teacher effects nested within schools. 

We include the school-level random effects as an indicator of sor ng of students between 

schools.  The teacher random effects, because they are nested within schools, indicate the 

amount of sor ng which occurred across teachers within schools. Sor ng within schools will 

bias es mates of teacher effects but has no impact on es mates of school-level value added, 

while sor ng between schools affects es mates of both teacher and school value added.   

 The top panel reports the amount of sor ng on the index of predicted achievement 

growth by neighborhood income deciles (es mated in Table 5.)  Because we used the direct 

effects of neighborhood income on achievement growth to create the index, the es mates in 

Table 6 are interpretable as es mates of the variance of actual bias which would result from 

excluding neighborhood income.  As a benchmark, typical es mates of the variance of school 

and teacher effects range from .01 to .04 (SD .1 to .2). The ra o of our es mates of bias variance 

to these benchmark es mates of total variance indicates the degree of bias in teacher effects 

due to sor ng on neighborhood income.   

In the conven onal VAM model, we es mate that the standard devia on of the bias due 

to excluding students’ neighborhood income is .013 at the school level (a variance of .0002) and 

.005 for teachers within-schools (a variance of .000025).  Rela ve to a total variance in school 

and teacher effects of .01-.04, the implied bias from excluding neighborhood income is 

expected to be less than 2 percent for schools and less than 1 percent for teachers.  There are 

 
16 At the first lag, there is a substantial negative correlation in the conventional VAM and IV VAM 

residuals due to estimation error from the prior year score (𝜂 ). 
17 This is because in the conventional VAM, the coefficient on baseline score is attenuated, leaving some of true 

baseline achievement in the residual. 



similarly small amounts of bias from the exclusion of neighborhood income for the Kalman filter 

and IV es mators.  The results for reading are similar. Thus, there is no evidence that the actual 

sor ng of students to schools and teachers in NC contributed to bias.  

 The next panel in Table 6 reports es mates of bias due to the exclusion of teacher’s 

judgement of students’ mastery of standards.  In the conven onal VAM, for math, the standard 

devia on in school and teacher effects is .051 and .054 respec vely, implying bias variance is 

.003 for schools and .003 for teachers within schools—as much as 30% percent of typical school 

and teacher variance es mates.  In the Kalman filter, the standard devia ons are .043 and .033 

respec vely, implying a bias variance of .002 and .001 for teachers and schools respec vely, 

implying as much as 20% bias for teachers and 10% bias for schools.  By contrast, the bias 

variance in the IV is very small, just .00012 for schools and .00012 for teachers, so excluding 

teacher judgement would lead to minimal (<2%) bias in the IV.  As shown in the remaining 

columns, the results are similar for reading.   

 The third panel reports sor ng based on the prior teacher’s transitory effect on 

achievement.  In order to interpret as bias, we used the empirical Bayes es mates of the 

transitory teacher effects of last year’s teacher ( -𝛿 𝜓 ) to account for the por on that is 

passed along from one year to the next.  We have included fixed effects for prior teachers, so 

any sor ng on this variable should not lead to bias.  However, the results for both math and 

reading suggest that there would be considerable bias if not condi oning on prior year teacher.  

Much of the sor ng happens at the school level – prior teachers at some schools tend to have 

highly transitory effects on test scores while prior teachers at other schools do not.  

 The fourth panel reports the amount of sor ng based on the Kalman predic on of the 

baseline score.  Since the Kalman model includes controls for the Kalman predic on, such 

sor ng does not lead to bias.  Nonetheless, the result suggest that there is a considerable 

amount of sor ng based on predicted baseline achievement:  for both math and reading, a 

standard devia on at the school level of .31 and for teachers within schools of .28. Given this 

evidence that there is pervasive sor ng on predicted baseline achievement, the poten al for 

bias in conven onal and IV VAM models resul ng from sor ng on private informa on about 

baseline achievement is of par cular concern.  

 The final panel in Table 6 reports similar results for the Kalman residual.  The Kalman 

residual contains several components: the true effect of year t-1 interven ons, 𝜈 , student-

level heterogeneity in growth, 𝛼 , and measurement error in baseline achievement, 𝜂 . In 

addi on, because the Kalman filter could not perfectly predict baseline achievement, some 

component of baseline achievement is also in the Kalman residual.  Since the unbiasedness of 

the IV es mator depends on absence of sor ng on measurement error in baseline achievement,  

𝜂 , we interpret sor ng on the Kalman residual as an upper bound es mate of the sor ng on 

baseline measurement error,  𝜂  .  There is no sor ng at the school level (not a surprise, 

given that we included teacher effects in the Kalman –even though this is lagged, it is likely to 



nearly perfectly absorb school effects).  There’s also very li le evidence of sor ng at the teacher 

level, with an SD of .025 (variance .0006) for math and .010 (variance .0001) for reading, 

implying an upper bound of 6% bias for math and 1% bias for reading due to sor ng on 

measurement error in the baseline score.   

 In the first three columns of Table 7, we report the correla on among the three sets of 

es mates—conven onal VAM, Kalman and IV.  All include fixed effects for current and lagged 

teacher that are used to es mate the permanent and transitory teacher effects.  The correla on 

in the permanent teacher effects es mated by the three methods is between .85 and .88 for 

math.  The correla on in the transitory effect is even higher, ranging from .91 to .96 for math.   

As reported in the lower panel, the results are similar for reading.  In other words, as long as 

one is condi oning on current and lagged teacher, the es mated teacher effects are highly 

correlated under the three methods. 

In the last three columns of Table 7, we report the correla on between es mates 

without and with condi oning on teacher ra ngs of student mastery and neighborhood income 

effects.  While the le  side of Table 7 is es mated for the full sample of six cohorts, the 

es mates on the right side of Table 7 are limited to the three cohorts for whom teacher ra ngs 

are available.  The correla on is highest for the IV model, .998 to 1.  That is to be expected given 

that the IV should not be sensi ve to teacher private informa on learned during the prior 

school year.  However, the conven onal VAM is also largely unaffected by the inclusion of the 

addi onal controls, with a correla on of .955 to .964.  This simply reflects the finding from Table 

6: while there is considerable sor ng to teachers and schools based on expected achievement in 

the baseline year, there is li le sor ng based on teacher’s private informa on about students’ 

current state of knowledge or neighborhood income.  Comparing the upper and lower panels of 

Table 6, the results are similar for math and reading. 

 Table 8 summarizes the main parameters of the state space model. We es mate these 

only for the IV specifica on because there is less evidence of bias in this specifica on and 

because the other two models have other components in their residuals that making es ma ng 

the error components more complex.  As reported in the top row, for both math and reading, 

we es mate that slightly less than 100 percent of the beginning stock of knowledge and 

persistent innova ons each year is passed on as students transfer between grades.  (𝛿  is .972 in 

math and .984 in reading.) In the absence of a ver cal scale that extends from one grade to 

another, we have standardized test scores within each grade and year.  Under the state space 

model, with random innova ons arriving each year, the variance in achievement would be 

growing in each grade.  Thus, a one unit increase in achievement in grade g would translate into 

a less than full unit increase in achievement in grade g+1, even if it were permanent (Cascio and 

Staiger, 2012).   

 The next two rows of Table 8 contain our es mates of the variance in measured 

achievement as well as the measurement error variance.  Our es mates imply a test reliability 



of about 90 percent for math and 85 percent for reading – in line with the reliability reported in 

technical reports for NC end-of-grade tests in these years.   

 The next rows report the variance in true knowledge and the variance in baseline 

achievement predicted by the Kalman filter.  The larger the difference between the two, the 

greater the scope for private informa on about a student’s true state to lead to bias in the 

Kalman filter (although that informa on would not lead to bias in the IV).  The es mated 

variance in baseline achievement predicted by the Kalman is .629 and .619 in math and reading 

respec vely.  The true variance in knowledge implied by the model is .759 in math and .730 in 

reading.  The roughly .11 to .13 gap in variance between predicted achievement and true 

achievement implies that teachers or parents or students may have private informa on about a 

student’s baseline state of knowledge which, if used to sort into teachers or other interven ons 

could lead to substan al bias. This is not a concern for IV es mates because teacher effects 

using the IV method are not biased by private informa on about student baseline achievement. 

 The next panel refers to the variance in the annual innova ons to achievement which 

persist into future years. The first two rows describe the share of innova ons associated with 

student unobservables and student traits.   As noted above, a limited share of the growth from 

one year to the next is a ributable to fixed differences in student growth unrelated to student 

traits: .001 in math and reading.  Following the conven on in the value-added literature, we 

also condi on on indicators for student race/ethnicity, gender, economic disadvantage, limited 

English proficiency and learning disability.   When we form an index by mul plying each of those 

indicators by the coefficients from the value-added models, the variance is .005 in math and 

.002 in reading.  When combined with the heterogeneity in student growth from unobservables 

(𝛼 , the combined student level variance is .006 in math and .003 in reading. 

 For comparison, the variance in persistent teacher effects is .022 in math and .019 in 

reading—implying a standard devia on in teacher effects of .148 in math and .138 in reading, 

both of which are in range reported in the prior literature (Koedel et al. (2015)). In addi on to 

teacher effects, we es mate that the variance in other persistent innova ons is .040 in math 

and .037 in reading—yielding a combined variance in persistent innova ons of .062 in math and 

.056 in reading.  The variance in growth due to annual persistent innova ons is 10-20 mes 

larger than the variance due to student-level factors.  In other words, the variance in 

achievement is growing over me primarily due to the varying quality of the teachers and other 

idiosyncra c factors that affect students that year—not because some students are fast learners 

or slow learners and not because of differences in student growth associated with demographic 

characteris cs or income. 

 The next panel in Table 8 reports on the share of teacher effects which is transitory.   

Although many have es mated aggregate fade-out of teacher effects, the state space model 

allows us to es mate both a permanent and transitory effect for each teacher.18  Our es mate 

 
18  One exception is Jacob, Lefgren and Sims (2010), who allow teachers to have differing levels of persistence. 



of the variance in transitory teacher effects (effects which dissipate a er the current year) is 

.027 in math and .013 in reading, implying a standard devia on in transitory teacher effects of 

.16 in math and .11 in reading.  The model also implies a modest nega ve correla on in 

teachers’ permanent and transitory effect:  those who have larger permanent effects on student 

achievement tend to have smaller transitory effects.  The variance of the sum of current and 

transitory effects in a single year is .039 in math and .017 in reading (or .197 standard devia ons 

in math and .13 standard devia ons in reading.)  The implied average fade-out rate (the share of 

the variance in total effects which persists) is 44 percent in math and 70 percent in reading. 

However, there is considerable varia on in this rela onship: the correla on between the total 

(transitory + persistent) and persistent effect is only .59 for math and .66 for reading.  

 In Table 9, we es mate the indirect effect of neighborhood income opera ng through 

quality of teachers.  As reported in Table 5, the direct effect of differences in growth between 

students from the highest and lowest income neighborhoods, condi onal on teacher effects, is 

quite small. However, income may have an indirect effect through teacher quality. The first two 

columns of Table 9 report differences across income deciles (rela ve to the lowest income 

decile) in average teacher persistent and transitory effects for math. The difference between the 

top and bo om three deciles of neighborhoods in terms of average persistent teacher effects is 

.032 in math. In other words, each year, students in the highest income neighborhoods receive 

.032 standard devia ons more in persistent math teacher effects than students in the lowest 

income neighborhoods. Moreover, students in higher income neighborhoods receive less 

transitory teacher effects (which disappear a er one year) in math (a difference of -.015 

between the top and bo om three deciles). The next two columns report the differences in 

persistent and transitory teacher effects for math a er condi oning on school fixed effects. 

Apparently, much of the observed difference is due to differences in teacher quality by school. 

The remaining columns repeat the exercise for reading. In contrast to math, there is very li le 

difference in teacher quality (persistent or transitory) between the top and bo om deciles. 

Summary and Conclusion 

 The state space model allows us to take the catch-all concern of “selec on on 

unobservables” and parse it into four parts:  heterogeneity in student growth rates, transitory 

teacher effects, private informa on about students’ baseline knowledge and measurement 

error in baseline achievement.  We find li le evidence of heterogeneity of student growth rates 

in North Carolina.  This may explain one of the more surprising findings in the value-added 

valida on studies: that it is not just teacher effects which are forecast unbiased but school 

effects too (Deming (2014), Angrist et al. (2017), Angrist et al. (2024)).  While the value-added 

researcher could plausibly have access to the same administra ve data used to assign students 

to teachers within schools, that would not be true for the many unobserved factors leading 

families to sort between schools.  One might expect student growth rates to vary, based on 

unchanging factors such as parents’ ability to pay tutors family homework rou nes, student 

mo va on or family involvement in educa on.  To the extent that fixed family background 



factors do ma er, though, they may be reflected in students’ star ng knowledge, not growth 

rates.  

Rather than student-level heterogeneity in growth, our findings imply that the primary 

challenge in value-added es ma on is finding a measure of baseline achievement which is free 

from the remaining three sources of bias: transitory teacher effects, private informa on about 

students’ current state and measurement error.  Each is a special case of measurement error in 

baseline achievement.  Fortunately, our findings point to ways to resolve each of them: 

 Transitory teacher effects: Although others have reported transitory effects of teachers 

on student achievement, such effects have been underappreciated as a poten al source of 

selec on.  Under the assump on that transitory effects disappear a er one year, and that 

persistent effects become part of a students’ stock of knowledge to be passed on into future 

years, this is perhaps the easiest of the three to resolve: researchers should include fixed effects 

for current and prior teacher. 

 Private informa on about a students’ current state of knowledge:  Under the state space 

model, future knowledge is a func on of current knowledge plus innova ons from teachers and 

other interven ons.  Therefore, when we are measuring interven on impacts using growth in 

imperfectly measured achievement, private informa on about a students’ true knowledge is an 

obvious source of poten al selec on bias. Using a unique set of ques ons available in the NC 

data, we find that teachers do indeed have private informa on about students’ knowledge not 

reflected in test score histories.  Our model also implies that ge ng an unbiased es mate of the 

change in knowledge, by instrumen ng with twice lagged achievement, should resolve the 

problem.  It appears to do so.  When we instrument for baseline achievement with twice-lagged 

achievement, the prior grade teachers’ subjec ve ra ngs are no longer predic ve of end of 

grade achievement.  

 Measurement error in baseline achievement:  Prior research has largely ignored the 

poten al role of measurement error in sor ng students to teachers and interven ons.  The 

usual solu on to measurement error in achievement—such as instrumen ng with prior lags—

may yield a baseline score which is independent of the measurement error, but it does nothing 

to resolve the fact that the interven on assignments themselves may also be a func on of the 

baseline measurement error.   If there is sor ng on the measurement error, there would s ll be 

bias in the interven on impact es mates.  Fortunately, many states do not provide the test 

scores used in value-added measures un l a er teacher and school assignments are made in 

late summer—thus making it difficult to select based on measurement error.  Indeed, the late 

delivery of scores may be one of the reasons why value-added measures of teacher effects have 

been forecast unbiased!  But sor ng on measurement error in baseline achievement would 

present a bigger problem for measuring the impact of tutoring and other catch-up 

interven ons, which start a er the beginning of the year.  In such cases, the best approach may 

be to administer a new test post assignment, and to instrument for that new baseline measure 

of achievement.   



 While there are solu ons to the la er three sources of selec on, addressing the 

challenge of student-level heterogeneity in growth is more challenging.  We find li le evidence 

of student level of heterogeneity in growth in the North Carolina data.  The fact that others have 

found value-added es mates to be forecast unbiased in a variety of se ngs leads us to believe 

that the same may be true elsewhere.  Nevertheless, we encourage others to use our sta s cal 

model to test for student level heterogeneity in growth in their own data.   

 If the finding of limited heterogeneity in student level growth proves to be generally 

true, it would set the stage for a much broader effort to evaluate educa onal products and 

interven ons, not just teachers and schools.  Value-added studies could be a first cut, followed 

up with randomized trials, especially for expensive interven ons.  But given the value of student 

achievement for earnings and produc vity growth, even a small increase in the rate at which 

effec ve interven ons are iden fied and spread would produce large social returns. 

Our results also have implica ons for other analyses of student-level panel data. 

Es mates of our state-space model suggest strong persistence of prior innova ons to 

knowledge with 𝛿 near to 1, which implies that student test scores contain a large unit root 

component (plus some transitory measurement error). As in the me series literature, unit 

roots can generate spurious student-level trends and spurious associa ons with other trending 

variables. They also introduce bias into models with student fixed effects. Moreover, other 

aggrega ons of student achievement, such as school and district averages, may also be 

following similar pa erns – with unit roots in the aggregate measures.  We will be exploring 

those implica ons in future research. 
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Table 1.     Forecast Bias in Value-Added Estimates of School and Teacher Effects

Study:
Teacher/ 

School
Grade 
Level Subject Setting

Value-Added
Model

Type of 
Validation

Forecast 
Bias 

1 Kane and Staiger (2008) Teacher Elem. Math Los Angeles
Lagged Score 

(w peer controls)
Random

assignment
.905

(.280)

Teacher Elem. Math Los Angeles
Gain Score

(w peer controls)
Random

assignment
.865

(.213)

Teacher Elem. Reading Los Angeles
Lagged Score 

(w peer controls)
Random

assignment
1.089
(.289)

Teacher Elem. Reading Los Angeles 
Gain Score

(w peer controls)
Random

assignment
.886

(.274)

Teacher Elem. Math Los Angeles Student f.e.
Random

assignment
1.859
(.470)

Teacher Elem. Reading Los Angeles Student f.e.
Random

assignment
2.144
(.635)

2
Kane, McCaffrey, Miller 
and Staiger (2013) Teacher

Elem./
Middle

Math/       
Reading

New York, 
Denver, 
Dallas 

Memphis, 
Hillsborough 
FL, Charlotte

Lagged Score 
(w peer controls)

Random  
assignment

.955
(.123)

3
Glazerman and Protik 
(2015) Teacher Elem. Math

7 Large 
Districts

Lagged Score 
(w demog 

Random 
assignment

1.01
(.33)

Teacher Elem. Reading
7 Large 

Districts
Lagged Score 

(w demog 
Random 

assignment
.66

(.34)

Teacher Middle Math
7 Large 

Districts
Lagged Score 

(w demog 
Random 

assignment
-.05
(.36)

Teacher Middle Reading
7 Large 

Districts
Lagged Score 

(w demog 
Random 

assignment
0.75
(.99)

4
Angrist, Hull, Pathak, 
Walters (2017) School Middle Math Boston

Lagged Score 
(w demog 

Random 
assignment

.864
(.075)

School Middle Math Boston
Gain Score
(w demog 

Random 
assignment

.950
(.084)

5
Angrist, Hull, Pathak, 
Walters (2024) School Middle Math New York

Lagged Score 
(w demog 

Random 
assignment

1.12
(.106)

School Middle Math Denver
Lagged Score 

(w demog 
Random 

assignment
.933

(.041)

School H.S. SAT Math New York
Lagged Score 

(w demog 
Random 

assignment
.783

(.064)

6 Deming (2014) School Middle
Math/       

Reading Charlotte

Lagged Score 
(w demog 

controls& drift 
adjustment)

Random 
assignment

1.185
(.323)

7
Chetty, Friedman and 
Rockoff (2014) Teacher

Elem./
Middle

Math/       
Reading Large district

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)
.950

(.023)

8
Bacher-Hicks, Kane and 
Staiger (2014) Teacher

Elem./
Middle

Math/       
Reading Los Angeles

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)
1.030
(.044)

9 Rothstein  (2017) Teacher Elem.
Math/       

Reading
North 

Carolina

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)
1.030
(.021)

Teacher Elem.
Math/       

Reading
North 

Carolina

Lagged Score 
(w demog 

controls& drift 
adjustment)

Quasi Exp 
(shifting 
teacher 

assignments)+ 
change in prior 

year score 
.860

(.017)

10
Britton, Clark and Lee 
(2023) School Middle 

Math/       
Reading England

  
(w demog 
controls)

(No Shrinkage)

Quasi Exp
(RD in distance 

to school)
1.002
(.162)

11
Andrabi, Bau, Das, Khwaja 
(2022) School Elem.

Math, 
English, 

Urdu Pakistan

Lagged Score 
(w demog 
controls)

Quasi Exp
(School 

Closures)
.977

(.120)



Table 2. Testing the Kalman Filter: 8th Grade Math 

 

Conventional 
VAM 
(1) 

Conventional 
VAM + Lagged 

Teacher 
(2) 

Kalman Filter 
(3) 

Kalman + 
G6 Math 

Test 
(4) 

Kalman + 
All Lags 

Math Test 
(5) 

Kalman + 
All Lags 
Math & 
Reading 

(6) 

Kalman + 
All Lagged Tests 
+ Full Teacher 

History 
(7) 

G7 Math 0.754*** 0.758*** - - - - - 
 (0.001) (0.001) - - - - - 
G7 Kalman 
Math  - - 0.925*** 0.916*** 0.895*** 0.755*** 1.017*** 

 - - (0.001) (0.004) (0.040) (0.041) (0.063) 
G7 Kalman 
Math Residual - - 0.407*** 0.407*** 0.454*** 0.398*** 0.376*** 

 - - (0.002) (0.002) (0.038) (0.038) (0.002) 
G8 Math Tchr X X X X X X X 
G7 Math Tchr   X X X X X X 
G6 Math    X X X X 
G3-7 Math     X X X 
G3-7 Reading      X X 
G3-7 Math Tchr       X 
Adj. R2 0.7448 

 
0.7520 0.7877 0.7877 0.7877 0.7898 0.7948 

Difference in 
Adj. R2 relative 
to Col (3) 

-0.0428 -0.0357 0 0.0000 0.0001 0.0022 0.0072 

p-value of F-test 
of constraint - 0.000 

Vs. Col (3) - 
0.027 

Vs. Col (3) 
0.000 

Vs. Col (3) 
0.000 

Vs. Col. (3) 
- 

N 276184 275828 273139 273139 273139 273139 273019 
Note: All specifications include indicators for year, race, gender, economic disadvantage, IEP and LEP 

status. All models are linear in the covariates. 𝐸𝐸[𝜇𝜇𝑖𝑖,𝑡𝑡−1||Ω𝑖𝑖,𝑡𝑡−1] incorporates scores and teachers 
from both subjects from all periods through 𝑡𝑡 − 1. Standard errors are in parentheses: * p < 0.05, 

** p < 0.01, *** p < 0.001.  Sample fluctuates slightly because singletons are dropped with multiple 

fixed effects. 

  



Table 3.   Testing the Kalman Filter:  8th Grade Reading 

 
 

Conventional 
VAM 
(1) 

Conventional 
VAM + Lagged 

Teacher 
(2) 

Kalman Filter 
(3) 

Kalman + 
G6 Math 

Test 
(4) 

Kalman + 
All Lags 

Math Test 
(5) 

Kalman + 
All Lags 
Math & 
Reading 

(6) 

Kalman + 
All Lagged Tests 
+ Full Teacher 

History 
(7) 

G7 Math 0.714*** 0.707*** - - - - - 
 (0.001) (0.001) - - - - - 
G7 Kalman 
Math  

- 
- 0.956*** 0.947*** 0.623*** 0.226*** 0.562*** 

 - - (0.002) (0.004) (0.032) (0.034) (0.066) 
G7 Kalman 
Math Residual 

 - 0.331*** 0.331*** 0.178*** 0.067* 0.301*** 

 - - (0.002) (0.002) (0.029) (0.029) (0.002) 
G8 Math Tchr X X X X X X X 
G7 Math Tchr   X X X X X X 
G6 Math    X X X X 
G3-7 Math     X X X 
G3-7 Reading      X X 
G3-7 Math Tchr       X 
Adj. R2 0.6623 0.6653 0.7263 0.7263 0.7267 0.7305 0.7331 
Difference in 
Adj. R2 relative 
to Col (3) 

-0.0641 -0.0611 0 0.0000 0.0004 0.0042 0.0068 

p-value of F-test 
of constraint - 0.000 

Vs. Col (3) - 0.030 
Vs. Col (3) 

0.000 
Vs. Col (3) 

0.000 
Vs. Col (3) 

- 

N 276158 275775 273119 273119 273119 273119 272990 
Note: All specifications include indicators for year, race, gender, economic disadvantage, IEP and LEP 

status. All models are linear in the covariates. 𝐸𝐸[𝜇𝜇𝑖𝑖,𝑡𝑡−1||Ω𝑖𝑖,𝑡𝑡−1] incorporates scores and teachers 

from both subjects from all periods through 𝑡𝑡 − 1. Standard errors are in parentheses: * p < 0.05, 

** p < 0.01, *** p < 0.001.  Sample fluctuates slightly because singletons are dropped with multiple 

fixed effects.



Table 4. Role of Prior Teacher Judgement of Student Mastery in Predicting End of 8th Grade Achievement 

 Math Reading 
 Conventional 

VAM 
Kalman 

Filter 
IV Conventional 

VAM 
Kalman 

Filter 
IV 

Prior Teacher Judgement       
Insufficient Mastery -0.323*** -0.192*** 0.002 -0.326*** -0.138*** 0.002 

 (0.009) (0.008) (0.011) (0.009) (0.009) (0.011) 
Inconsistent Mastery -0.179*** -0.108*** 0.006 -0.202*** -0.090*** -0.022*** 

 (0.004) (0.004) (0.006) (0.005) (0.005) (0.006) 
Consistent Mastery 
(ref) - - - - - - 

Consistently Superior 0.205*** 0.108*** -0.001 0.234*** 0.078*** 0.000 
 (0.004) (0.004) (0.005) (0.004) (0.004) (0.006) 

None of the Above -0.219** -0.191** -0.037 -0.260** -0.185* -0.002 
 (0.067) (0.060) (0.087) (0.096) (0.086) (0.109) 
p-value for F-test   0.000 0.000 0.801 0.000 0.000 0.001 
N (Grade 8) 122672 120662 122672 122634 120657 122634 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝛾𝛾�|𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶) 0.011*** 0.003*** 0.000*** 0.014*** 0.002*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
𝑆𝑆𝑆𝑆(𝑍𝑍𝛾𝛾�|𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶) 0.105 0.059 0.006 0.119 0.050 0.008 
N (Grades 5-8) 490255 484751 490255 490015 484451 490015 

Note: The coefficient results are based on 8th grade only, while the variance estimates are based on grades 5-8. The 

Kalman specification includes the quadratic of prior achievement and the VAM and IV specifications the cubic of prior 

achievement.  The p-value is reported for F-test that all teacher judgement categories are zero. Standard errors are in 

parentheses: * p < 0.05,** p < 0.01,*** p < 0.001. 



Table 5. Direct Effect of Neighborhood Income in Predicting End of 8th Grade Achievement 

 Math Reading 
 Conventional 

VAM 
Kalman 

Filter 
IV Conventional 

VAM 
Kalman 

Filter 
IV 

Neighborhood Median  
Income Decile 

 
      

1 (ref.) 
 --- --- --- --- --- --- 

2 0.012* 0.007 0.004 0.008 0.003 0.001 
 (0.006) (0.005) (0.006) (0.007) (0.006) (0.007) 

3 0.010 0.005 0.003 0.014* 0.005 0.003 
 (0.006) (0.005) (0.006) (0.007) (0.006) (0.007) 

4 0.010 0.006 0.000 0.009 0.002 -0.004 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

5 0.011 0.005 0.000 0.014* 0.008 -0.002 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

6 0.013* 0.009 -0.002 0.016* 0.002 0.000 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

7 0.013* 0.008 -0.004 0.021** 0.005 -0.003 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

8 0.030*** 0.016** 0.008 0.032*** 0.01 0.001 
 (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) 

9 0.040*** 0.025*** 0.010 0.041*** 0.011 -0.001 
 (0.006) (0.006) (0.007) (0.007) (0.007) (0.008) 

10 0.043*** 0.019** -0.004 0.066*** 0.013 0.002 
 (0.007) (0.006) (0.007) (0.008) (0.007) (0.008) 

p-value for F-test  0.000 0.003 0.213 0.000 0.726 0.992 
N (Grade 8) 165813 162708 165813 165749 162675 165749 
𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋�̂�𝛽|𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶� 0.00013*** 0.00006*** 0.00003*** 0.00015*** 0.00003*** 0.00002*** 

 (0.000000) (0.000000) (0.000000) (0.000000) (0.000000) (0.000000) 
𝑆𝑆𝑆𝑆�𝑋𝑋�̂�𝛽|𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶� 0.011510 0.007920 0.005400 0.012090 0.005590 0.004350 

N (Grades 5-8) 662496 654192 662496 662086 653700 662086 
Note: The income decile coefficients presented here are based on only 8th graders. The variance estimates are based on 

5th-8th graders. The Kalman specification includes the quadratic of prior achievement and the IV and VAM specifications 

the cubic of prior achievement. The p-value reported is testing whether all neighborhood income deciles equal 0. 

Standard errors are in parentheses: * p < 0.05,** p < 0.01,*** p < 0.001. 

  



Table 6.  Sorting of Students by Teacher and School 

 Math Reading 
Dependent variable: Conventional 

VAM 
Kalman 

Filter 
IV Conventional 

VAM 
Kalman 

Filter 
IV 

Index using neighborhood income 
deciles       

SD of random school effects 0.013*** 0.009*** 0.006*** 0.012*** 0.006*** 0.003*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

SD of random teacher effects  0.005*** 0.005*** 0.005*** 0.003*** 0.004*** 0.002*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
N 662496 654192 662496 662086 653700 662086 
Index using prior teacher 
judgements       

SD of random school effects 0.051*** 0.043*** 0.011*** 0.057*** 0.045*** 0.007*** 
 (0.001) (0.001) (0.000) (0.001) (0.001) (0.000) 

SD of random teacher effects  0.054*** 0.033*** 0.011*** 0.068*** 0.039*** 0.013*** 
 (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) 
N 490255 484751 490255 490015 484451 490015 
Prior teacher transitory effect (𝜓𝜓)        

SD of random school effects 0.073*** 0.053*** 0.086*** 0.061*** 0.049*** 0.064*** 
 (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

SD of random teacher effects  0.068*** 0.064*** 0.079*** 0.052*** 0.056*** 0.057*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
N 1103000 1370145 1103000 1102699 1369889 1102699 
Kalman prediction for baseline score       

SD of random school effects - 0.306*** - - 0.308*** - 
 - (0.006) - - (0.006) - 

SD of random teacher effects  - 0.278*** - - 0.279*** - 
 - (0.002) - - (0.002) - 
N  1097264   1096999  
Kalman residual for baseline score       

SD of random school effects - 0.000 - - 0.000 - 
 - (0.000) - - (0.000) - 

SD of random teacher effects  - 0.025*** - - 0.010*** - 
 - (0.001) - - (0.001) - 
N  1097264   1096999  

Note: The results are hierarchical random effects, estimated for grades 5-8. Sample sizes for the index results are smaller because of 

limited availability of income deciles and teacher judgement variables.  The indices for neighborhood income and prior teacher 

judgements were derived using coefficients from value-added specifications.  All model specifications are non-linear in the prior 

measure of achievement (cubic for VAM and IV, quadratic for Kalman). Standard errors are in parentheses: * p < 0.05,** p < 0.01,*** 

p < 0.001. 



Table 7. Correlation in Teacher Effects from Conventional VAM, Kalman Filter and IV Specifications 

   Standard Controls Adding Neighborhood Income Deciles 
and Lagged Teacher Judgements 

   Conventional 
VAM 

Kalman 
Filter 

IV Conventional 
VAM 

Kalman 
Filter 

IV 

Math 

Permanent 
Teacher 
Effect  

Conv.  VAM 1.000 - - 0.955 - - 
Kalman Filter 0.887 1.000  - 0.981 - 
IV 0.852 0.872 1.000 - - 0.998 

 Transitory  
Teacher 

Effect  

Conv. VAM 1.000 - - 0.964 - - 
Kalman Filter 0.915 1.000 - - 0.989 - 
IV 0.937 0.961 1.000 - - 1.000 

Reading 

Permanent  
Teacher 

Effect  

Conv. VAM 1.000 - - 0.958 - - 
Kalman Filter 0.815 1.000 - - 0.991 - 
IV 0.762 0.817 1.000 - - 0.998 

Transitory  
Teacher 

Effect  

Conv. VAM 1.000 - - 0.960 - - 
Kalman Filter 0.829 1.000 - - 0.994 - 
IV 0.877 0.913 1.000 - - 1.000 

Note: All model specifications are non-linear in the prior measure of achievement (cubic for VAM and IV, quadratic for 

Kalman). Correlations are computed across grades 5-7, the grades in which it is possible to estimate both transitory and 

teacher effects.   The first three columns use all six student cohorts.  The last three columns, which add neighborhood 

income and teacher judgement indicators to the specification, are limited to the three cohorts with available data.  

 

 

 

 

 

  



Table 8: State Space Model Parameters 

Component:  Math Reading 
Delta (averaged across grades) �̂�𝛿 0.972 0.984 
Measuring Achievement:    

Measured score variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖𝑡𝑡) 0.883 0.880 
Measured error variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜂𝜂𝑖𝑖𝑡𝑡) 0.097 0.137 

The gap between true and predictable baseline 
achievement: 

   

True score variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜇𝜇𝑖𝑖𝑡𝑡) 0.759 0.730 
Kalman prediction variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�𝑖𝑖𝑡𝑡) 0.629 0.619 

Sources of persistent innovations:    
Student-level heterogeneity (unobserved) 𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑖𝑖) 0.001 0.001 
Student-level heterogeneity (assoc. with 
demographics/program use) 

𝐸𝐸[𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝛾𝛾�|𝑔𝑔𝑉𝑉𝑉𝑉𝑔𝑔𝑔𝑔)] 0.005 0.002 

Persistent teacher effects 𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃𝑗𝑗) 0.022 0.019 
Other persistent innovations 𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣𝑖𝑖𝑡𝑡) 0.040 0.037 

Transitory teacher effects:    
Transitory teacher effects 𝑉𝑉𝑉𝑉𝑉𝑉(𝜓𝜓𝑗𝑗) 0.027 0.013 
Correlation between persistent, transitory 
teacher effects 

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(𝜃𝜃𝑗𝑗 ,𝜓𝜓𝑗𝑗) -0.195 -0.456 

Overall teacher effect 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗� 
 

0.039 0.017 

Implied teacher fadeout 𝐶𝐶𝐶𝐶𝑣𝑣�𝜃𝜃𝑗𝑗 ,𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗�
/ 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗� 

 

0.442 0.696 

Correlation between total and persistent 
teacher effects 

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(𝜃𝜃𝑗𝑗 + 𝜓𝜓𝑗𝑗 ,𝜃𝜃𝑗𝑗) 
 

0.590 0.660 

Note: The IV specification uses the cubic in the lagged score of the same subject. All parameter estimates are estimated 

across grades 5-8 except for the variance in the permanent teacher effects, which are only available in grades 5-7, and 

the variance in the teacher transitory effects, which are only available in grades 4-7. The correlation in the teacher 

permanent and transitory effects is taken over grades 5-7. Kalman predictions use the quadratic in the prior prediction. 

 

 

 

 

  



Table 9.   Differences in Teacher Quality by Neighborhood Income 

 Math Reading 
 Teacher Effects 

No Controls 
Teacher Effects 
With School FEs 

Teacher Effects 
No Controls 

Teacher Effects 
With School FEs 

Neigh. 
Income 
Decile 

𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  𝜃𝜃�𝑗𝑗 𝜓𝜓�𝑗𝑗  

1 (ref.) 
 --- --- --- --- --- --- --- --- 

2 0.005** 0.016*** 0.002 -.002* -0.003* -0.002 0.002 -0.002* 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

3 0.006*** -0.005*** 0.000 -0.001 -0.007*** 0.001 0.000 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

4 0.005*** -0.012*** 0.001 -0.001 -0.010*** 0.008*** 0.000 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

5 0.006*** -0.012*** 0.001 -0.002 -0.007*** 0.001 0.000 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

6 0.004** -0.019*** 0.001 -0.001 -0.017*** 0.000 0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

7 0.017*** -0.016*** 0.001 0.001 -0.003* -0.002* 0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

8 0.020*** -0.021*** 0.002 -0.001 0.001 -0.007*** 0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

9 0.038*** -0.029*** 0.003** 0.000 0.001 -0.006*** 0.001 -0.002 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

10 0.048*** -0.017*** 0.003* 0.002 -0.010*** -0.003* 0.000 -0.002 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

         
N 495807 497168 495807 497168 495385 496912 495385 496912 

Notes: The permanent and transitory teacher effect estimates come from an IV regression cubic in the lagged score of 

the same subject. The sample represented in this table includes grades 5-7, the grades in which we can estimate both 

permanent and transitory teacher effects with IV. Standard errors are in parentheses: * p < 0.05, ** p < 0.01, *** p < 

0.001. 

 

 

 

 

 

 

  



Appendix 
 

Table A1. Comparing Linear and Non-Linear Specifications of VAM and Kalman Filter for 8th Grade Achievement 

 Math Reading 
 Linear Non-Linear Linear Non-Linear 
Achievement Measure Conventional VAM 
L1 Math X X X X 
L1 Reading X X X X 
L1 Math2  X  X 
L1 Reading2  X  X 
L1 Math3  X  X 
L1 Reading3  X  X 
Adj. R2 0.760 0.766 0.683 0.686 
p-value for non-linear effects=0 - 0.000 - 0.000 
N 275829 275829 275776 275776 
 Kalman Filter 
L1 Math Kalman Prediction X X X X 
L1 Math Kalman Residual X X X X 
L1 Reading Kalman Prediction X X X X 
L1 Reading Kalman Residual X X X X 
L1 Math2  X  X 
L1 (Math x Math Kalman Residual)  X  X 
L1 (Math2 x Math Kalman Residual)  X  X 
L1 Reading2  X  X 
L1 (Reading x Reading Kalman Residual)  X  X 
L1 (Reading2 x Reading Kalman Residual)  X  X 
Adj. R2 0.789 0.793 0.729 0.730 
p-value for non-linear effects=0 - 0.000 - 0.000 
N 272881 272881 272890 272890 

Note: All specifications include indicators for current outcome subject teacher, lagged outcome subject teacher, 

year, race, gender, economic disadvantage, IEP and LEP status. Standard errors are in parentheses: * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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