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Most jobs require decision-making

• Workers valued not only for how much they can do, but for
their ability to decide what to do

• Canonical human capital theory takes “what to do” as given -
more HC ⇐⇒ more output per hour (e.g. Mincer 1958, Becker
1962)

• Perfect information rules out “allocative ability” (Welch 1970)

• Yet firms invest in managerial talent, emphasize
problem-solving as a desirable quality in new hires (NACE 2023)
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What do we know about decision-making as a skill?

• Behavior lit - complexity aversion and heuristics (e.g. Kahneman
and Frederick 2002, Oprea 2020)

• Rules of thumb as a rational response to complexity (e.g. Lieder
and Griffiths 2020)

• Some people less “behavioral” than others (e.g. Benjamin, Brown,
and Shapiro 2013))

• Cognitive ability and mental resources available for “system 2”
analysis

• Little systemic evidence of individual variation in decision
quality
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This paper

Develops a theory and measurement paradigm for assessing
individual variation in decision quality

1. We call this economic decision-making skill

1.1 Resource allocation, understanding of comparative advantage
1.2 Not complex counterfactuals (what should I do with my life,

strategic direction of company, etc.)

2. DM assigns factors of production to different roles to
maximize total output

2.1 A manager assigning workers to jobs, or workers allocating
effort to tasks
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A model of economic decision-making

Adapts a generalized rational inattention framework to
explain variation in labor productivity

1. DM acquires costly information about heterogeneous factor
productivity (Sims 2003, Mackowiak et al 2023)

1.1 Individual-specific attention costs - analogy to input costs in
production theory

1.2 ⇑ ED skill ⇒ more efficient assignments, holding
time/complexity/priors constant

2. Economic decision-making skill is the marginal product of
attention
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choose an assignment

• Paid for performance

• Measure allocative efficiency over multiple decision problems

• Design minimizes the importance of working memory
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• We administer the Assignment game to a survey of ~1,000
U.S. FT workers ages 25-55

• Paid for performance on AG + other cognitive tests
• Income, occupation, demographics

• ED skill is strongly associated with income, conditional on IQ,
numeracy, education

• 1 SD higher AG = 7% higher income; more than twice as large
as IQ

• Association between AG score and income greater in
decision-intensive jobs
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Does ED skill matter in the Danish labor market?

• We also administer the AG to ~2,300 people ages 25-55 in the
Danish population registry

• Admin data from Statistics Denmark; income/occ/demogs;
pop weights

• First draft of the paper was only U.S. results - constrained
ourselves to the same analysis across samples

• ED skill is strongly associated with labor income in Denmark,
conditional on education and demographics

• 1 SD higher AG = 9-11% higher income

• Association between AG score and income greater in
decision-intensive jobs

• Magnitudes strikingly similar in the two samples
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Model Setup

A risk neutral DM assigns a set of M factors (workers) to M tasks.
Assume 1:1 for simplicity.

Workers have a finite set of possible productivity schedules
ω (m) = (ω1 (m) , ...., ωM (m)) ∈ ΩM , where ωn (m) is worker m’s
productivity type in task n.
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Model Setup

A production function F maps task levels into output. The agent’s
expected output for any assignment a : {1, ...,M} → {1, ...,M}, in
any state ω is:

f (a, ω) ≡ F
(
ω1

(
a−1 (1) , ...ωM

(
a−1 (M)

)))
If worker productivity schedules are perfectly observed, the optimal
assignment solves the linear programming problem of Koopmans
and Beckmann (1957).



Introduction Macro evidence Model Data and Measurement Results Conclusion

Contribution

• If information is costly to observe, DMs weigh expected output
from F against expected cost of acquiring information about
ω

• The ability to learn about factor productivity has economic
value (e.g. Nelson and Phelps 1966, Jovanovic and Nyarko 1996)

• Fundamental source of allocative inefficiency is costly
attention

• In perfectly competitive markets, “allocative ability” can never
be the source of return to a factor (Welch 1970)

• “Waste is an error within the framework of modern economic
analysis, and it will not become a useful concept until we have
a theory of error (Leibenstein 1966, Stigler 1976)
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Model Setup

• DM begin with prior beliefs µ (ω) about productivity types,
develops an attention strategy that optimally refines beliefs

• Acquire costly signals - which workers to monitor and for how
long, what questions to ask etc.

• After receiving signals, they form a posterior γ (ω) and choose
an assignment a that maximizes expected output

• Next characterize agents’ attention costs, e.g. their signal
extraction efficiency.
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Beliefs

Define an attention strategy function Q, where Q (γ) is the
unconditional probability of posterior belief γ.

Define the optimal value of a posterior belief as
f̂ (γ) = maxa

∑
ω f (a,w) γ (ω).

Thus the optimal value of an attention strategy is a
probability-weighted posterior belief function:

f̂ (Q) =
∑

γ Q (γ) f̂ (γ).
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Attention as a Production Input

Just as production theory requires functional form assumptions to
deliver smooth comparative statics, we consider attention cost
functions K (Q) that can be scaled by some multiple c > 0, e.g.:

V (c ,Q) = f̂ (Q)− cK (Q)

A production function with attention as the input, rather than labor
and capital.
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Attention Production Possibility Set

Y=
{
(x , y) ∈ R2|∃Q ∈ Q (µ) s.t.f̂ (Q) ≥ y ,K (Q) ≤ x

}
where y is the output level, x is an attention input, and K (Q) is
an attention cost function that depends on beliefs.

The attention production function g (x) - supremum of Y for
attention inputs of x or below.

With two add’l assumptions about K (Q), Y is convex, g (x) is
concave, and optimal strategies for all c > 0.

See the paper for a proof.
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Identifying ED Skill

Recall that V (c ,Q) = f̂ (Q)− cK (Q). Now rewrite beliefs as
assignment probabilities P (a | ω):

Vj (a, ω) = maxPj

∑
a

∑
ω yj (a, ω)Pj (a | ω)µj (ω)− cjK (Pj)

where cj > 0 is the agent’s marginal cost of attention, and
economic decision-making skill is αj =

1
cj

.

Empirical challenge - isolate αj from other individual differences
(utility, available actions, prior beliefs....).
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The Assignment Game

• Participants are managers assigning fictional workers 1:1 to
jobs

• Observe multiple “days” of each worker’s productivity schedule
• “Workers have good days and bad days”; figure out “how good

workers are at different tasks ON AVERAGE”

• After seeing separately, they see the full matrix again for each
day

• Can make/change assignments at any time
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Table 3 - Economic Decision-Making Skill Predicts Higher Wage and Salary Income
Panel A - U.S. Survey Sample

(1) (2) (3) (4) (5) (6)
ED Skill (AG Score) 6,006 4,480 5,881 5,012 5,227

[1,423] [1,312] [1,520] [1,516] [1,538]
Nonverbal IQ (Ravens) 3,099 1,601 1,811

[1,588] [1,611] [1,653]
Cognitive Reflection Test 978

[1,916]
Berlin Numeracy Test -2,183

[1,756]
Demographic Controls X X X X X
Population Weights X X X X
R-Squared 0.018 0.182 0.193 0.186 0.195 0.197
Sample Size 1,008 1,008 1,008 1,008 1,008 1,008

Panel B - Danish Registry Sample
ED Skill (AG Score) 3,694 4,050 3,243

[709] [665] [676]
Demographic Controls X X
Population Weights X
R-Squared 0.010 0.252 0.262
Sample Size 2,297 2,297 2,297
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Observation Day 4 Assignment

Observation Day 5 Assignment

Observation Day 1 Assignment

Observation Day 4 Assignment

Observation Day 5 Assignment

Observation Day 1 Assignment

Observation Day 4 Assignment

Observation Day 5 Assignment

Observation Day 1 Assignment

A B C
W1 6 5 2
W2 7 5 4
W3 10 6 5

Full productivity schedule
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Table 6 - AG Score is Less Predictive of Income when Answers are Heuristic
(1) (2) (3) (4) (6)

ED Skill (AG Score) 10,457 10,109 9,617 9,387 9,450
[2,420] [2,460] [2,445] [2,427] [2,663]

    AG * # Sequential -1,944 -2,205 -2,177 -2,060 -2,008
[804] [809] [806] [825] [886]

# of Sequential Answers -242 -826 -790 -779 -908
[1,098] [997] [995] [997] [995]

Nonverbal IQ (Ravens) 1,438 1,997 2,158
[1,594] [2,614] [2,687]

    IQ * # Sequential -314 -261
[955] [975]

Cognitive Reflection Test 955
[3,253]

    CRT * # Sequential 32
[1137]

Berlin Numeracy Test -1,643
[2,969]

    BNT * # Sequential -512
[1,155]

Demographic Controls X X X X
Population Weights X X X X
R-Squared 0.024 0.202 0.203 0.203 0.205
Sample Size 1,003 1,003 1,003 1,003 1,003
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Table 4 - Occupational Sorting on Economic Decision-Making Skill
Panel A - U.S. Survey Sample

(1) (2) (3) (4) (5) (6)
ED Skill (AG Score) 0.311 0.220 0.258 0.209 0.157

[0.077] [0.076] [0.096] [0.102] [0.105]
Nonverbal IQ (Ravens) 0.218 0.155 0.079

[0.086] [0.092] [0.098]
Cognitive Reflection Test 0.016

[0.122]
Berlin Numeracy Test 0.286

[0.114]
Demographic Controls X X X X X
Population Weights X X X X
R-Squared 0.015 0.136 0.149 0.147 0.152 0.163
Sample Size 1,033 1,033 1,033 1,033 1,033 1,033

Panel B - Danish Registry Sample
ED Skill (AG Score) 0.343 0.211 0.275

[0.051] [0.046] [0.051]
Demographic Controls X X
Population Weights X
R-Squared 0.019 0.253 0.232
Sample Size 2,297 2,297 2,297
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Table 5A - Allocative Skill Predicts Income More in Decision-Intensive Occupations
Panel A - U.S. Survey Sample

(1) (2) (3) (4) (5)
ED Skill (AG Score) 4,200 3,758 4,701 5,059

[1,381] [1,318] [1,536] [1,622]
      * Decision Intensity 1,115 1,177 1,064 1,126

[497] [467] [506] [507]
Decision Intensity (O*NET) 5,793 4,031 3,907 3,963 3,984

[468] [456] [474] [477] [483]
Nonverbal IQ (Ravens) 2,215 1,760

[1,540] [1,610]
      * Decision Intensity 602 416

[579] [593]
Cognitive Reflection Test 927

[1,999]
      * Decision Intensity 631

[624]
Berlin Numeracy Test -3,921

[1,825]
      * Decision Intensity -1,015

[558]
Demographic Controls X X X X
Population Weights X X X
R-Squared 0.121 0.229 0.240 0.231 0.248
Sample Size 1,003 1,003 1,003 1,003 1,003
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[497] [467] [506] [507]
Decision Intensity (O*NET) 5,793 4,031 3,907 3,963 3,984

[468] [456] [474] [477] [483]
Nonverbal IQ (Ravens) 2,215 1,760

[1,540] [1,610]
      * Decision Intensity 602 416

[579] [593]
Cognitive Reflection Test 927

[1,999]
      * Decision Intensity 631

[624]
Berlin Numeracy Test -3,921

[1,825]
      * Decision Intensity -1,015

[558]
Demographic Controls X X X X
Population Weights X X X
R-Squared 0.121 0.229 0.240 0.231 0.248
Sample Size 1,003 1,003 1,003 1,003 1,003
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Table 5B - Allocative Skill Predicts Income More in Decision-Intensive Occupations
Panel B - Danish Registry Sample

(1) (2) (3)
ED Skill (AG Score) 2,144 3,387 2,558

[682] [658] [611]
      * Decision Intensity 679 563 630

[272] [245] [253]
Decision Intensity (O*NET) 4,879 3,706 3,826

[278] [298] [314]
Demographic Controls X X
Population Weights X
R-Squared 0.131 0.306 0.321
Sample Size 2,297 2,297 2,297
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ED Skill Predicts Income in Two Countries

• Theory and measurement paradigm for assessing individual
differences in quality of economic decision-making

• DMs assign heterogeneous factors to tasks, information is
costly to acquire

• Performance diffs measure DM’s marginal product of attention

• The Assignment Game, a novel decision-making task that
predicts income conditional on IQ, education

• Very similar results in US and Danish registry samples

• Decision-making skills, attention, and labor productivity
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Thanks!

david_deming@harvard.edu
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