Hours Worked and Lifetime Earnings Inequality*

Alexander Bick Adam Blandin Richard Rogerson

St. Louis Fed, CEPR Vanderbilt

Princeton, NBER

July 16, 2024

NBER Summer Institute: Micro Data & Macro Models

*The views in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Motivation: The Sources of Lifetime Earnings Inequality

- Lifetime earnings (25-55) are highly unequal in the US
 - ▶ 75/25 ratio \approx 2.7 for both men and women (Guvenen, Kaplan, Song, Weidner)

- Lifetime earnings (25-55) are highly unequal in the US
 - ▶ 75/25 ratio ≈ 2.7 for both men and women (Guvenen, Kaplan, Song, Weidner)
- What are the sources of lifetime earnings inequality?
 - 1. Pre-labor market attributes vs. shocks during working years
 - 2. What are these attributes and shocks, and which are most important?

- Lifetime earnings (25-55) are highly unequal in the US
 - ▶ 75/25 ratio \approx 2.7 for both men and women (Guvenen, Kaplan, Song, Weidner)
- What are the sources of lifetime earnings inequality?
 - 1. Pre-labor market attributes vs. shocks during working years
 - 2. What are these attributes and shocks, and which are most important?
- Our focus: how important are hours worked for lifetime earn. inequality?
 - Static channel: more hours today, higher earnings today
 - Dynamic channel: more hours today, higher earnings in future

• Cultural belief in the importance of work / effort:

• Cultural belief in the importance of work / effort:

▶ "Genius is 1% inspiration and 99% perspiration." — Thomas Edison

- Cultural belief in the importance of work / effort:
 - "Genius is 1% inspiration and 99% perspiration." Thomas Edison
 - "There is no royal flower-strewn path to success. And if there is, I have not found it, for whatever success I have attained has been the result of much hard work and many sleepless nights." — Madam C.J. Walker

- Cultural belief in the importance of work / effort:
 - ▶ "Genius is 1% inspiration and 99% perspiration." Thomas Edison
 - "There is no royal flower-strewn path to success. And if there is, I have not found it, for whatever success I have attained has been the result of much hard work and many sleepless nights." — Madam C.J. Walker
- Little existing work on the role of hours for lifetime earnings
 - Cross-sectional hours variation \neq lifetime hours variation
 - Social Security data do not have hours

- 1. Construct long balanced panel of hours & earnings (NLSY79)
 - Large differences in lifetime hours: 75/25 ratio = 1.20 (\approx 430 hours/year)

- 1. Construct long balanced panel of hours & earnings (NLSY79)
 - Large differences in lifetime hours: 75/25 ratio = 1.20 (\approx 430 hours/year)
- 2. Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns

- 1. Construct long balanced panel of hours & earnings (NLSY79)
 - Large differences in lifetime hours: 75/25 ratio = 1.20 (\approx 430 hours/year)
- 2. Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns
- 3. Find: Hours worked are a key source of lifetime earnings inequality

- 1. Construct long balanced panel of hours & earnings (NLSY79)
 - Large differences in lifetime hours: 75/25 ratio = 1.20 (\approx 430 hours/year)
- 2. Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns
- 3. Find: Hours worked are a key source of lifetime earnings inequality
 - ▶ Hours variation accounts for 30% of earnings variation

- 1. Construct long balanced panel of hours & earnings (NLSY79)
 - Large differences in lifetime hours: 75/25 ratio = 1.20 (\approx 430 hours/year)
- 2. Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns
- 3. Find: Hours worked are a key source of lifetime earnings inequality
 - Hours variation accounts for 30% of earnings variation
 - Heterogeneous preferences account for 16% of earnings variation

- 1. Construct long balanced panel of hours & earnings (NLSY79)
 - Large differences in lifetime hours: 75/25 ratio = 1.20 (\approx 430 hours/year)
- 2. Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns
- 3. Find: Hours worked are a key source of lifetime earnings inequality
 - Hours variation accounts for 30% of earnings variation
 - Heterogeneous preferences account for 16% of earnings variation
 - Dynamic human capital channel plays an important role

Some Related Literature

- Sources of life-cycle earnings inequality
 - ► Topel, Ward (1992)
 - Heckman, Lochner, Taber (1998)
 - Rubinstein and Weiss (2006)
 - Huggett, Ventura, Yaron (2006, 2011)
 - Kaplan (2012)
 - Hosseini, Kopecky, Zhao (2022)
 - Karahan, Ozkan, Song (2022)
- · Life-cycle models with endogenous hours and learning
 - Imai, Keane (2004)
 - Wallenius (2011, 2013)
 - Kapicka (2015)
 - Stancheva (2015, 2017)
 - Keane, Wasi (2016)
 - Guvenen, Kuruscu, Ozkan (2014)
 - Badel, Huggett, Luo (2022)

Outline

3 Calibration

4 Quantifying the Impact of Hours Worked on Lifetime Earnings

6 Conclusion

• Coverage: 1979 - 2020

Annual through 1994, then biennial (hours for <u>all</u> years)

▶ 1979: ages 14 - 22. 2020: ages 56 - 64.

- Coverage: 1979 2020
 - Annual through 1994, then biennial (hours for <u>all</u> years)
 - ▶ 1979: ages 14 22. 2020: ages 56 64.
- Construct balanced panel of males ages 25 55 ("lifetime")

• Coverage: 1979 - 2020

Annual through 1994, then biennial (hours for <u>all</u> years)

- 1979: ages 14 22. 2020: ages 56 64.
- Construct balanced panel of males ages 25 55 ("lifetime")

▶ Initial male sample: $4,837 \rightarrow$ Lifetime sample: 2,998

- Companion paper: NLSY79 \approx aligns with CPS-ASEC, SSA data $_{(more)}$

• Coverage: 1979 - 2020

Annual through 1994, then biennial (hours for <u>all</u> years)

- ▶ 1979: ages 14 22. 2020: ages 56 64.
- Construct balanced panel of males ages 25 55 ("lifetime")

▶ Initial male sample: $4,837 \rightarrow \text{Lifetime sample: } 2,998$

- Companion paper: NLSY79 \approx aligns with CPS-ASEC, SSA data $_{(more)}$
- Today: focus on 1,418 men who worked 520 hours each year
 - Closest papers impose similar hours criteria (Huggett et al. '11, Guvenen et al. '14)
 - Less hours variation than full sample \implies lower bound for impact of hours

Cross-Sectional Earnings Moments over the Life-Cycle

• Most of previously-cited papers match these or related moments

• Some papers abstract from hours choice (e.g. Huggett et al. '11)

- Some papers abstract from hours choice (e.g. Huggett et al. '11)
- Some papers target cross-sectional mean (e.g. Guvenen et al. '14, Badel et al. '20)

- Some papers abstract from hours choice (e.g. Huggett et al. '11)
- Some papers target cross-sectional mean (e.g. Guvenen et al. '14, Badel et al. '20)
- A few target cross-sectional SD (Kaplan '12; Keane and Wasi '16) Measuren

Variation in Hours is Persistent Over the Life-Cycle

• Even 20 years apart, individual hours are positively correlated

Distribution of Lifetime Hours and Components

Percentile	Annualized Lifetime Hours	Weeks per Year Worked	Hours per Week Worked
5	1982.7	49.2	40.4
10	2054.8	50.6	40.7
25	2155.1	50.8	42.4
50	2340.3	51.1	45.8
75	2588.4	51.0	50.8
90	2904.4	51.5	56.4
95	3141.6	50.7	62.0

• Lifetime hours percentile ratios

▶
$$75/25 = 1.2$$
 ($pprox$ 430 hours/year)

•
$$90/10 = 1.4 \ (\approx 850 \text{ hours/year})$$

Lifetime Earnings and Lifetime Hours Worked

• Elasticity of lifetime earnings

w.r.t. lifetime hours ≈ 1.3

• Elasticity of life-cycle earnings growth w.r.t. lifetime hours ≈ 1.6

3 Calibration

4 Quantifying the Impact of Hours Worked on Lifetime Earnings

6 Conclusion

• Life-cycle model of worker *j*

• Life-cycle model of worker j

Born in period $t = 0 \sim 25$. Retire at $T_r \sim 65$. Die at $T \sim 80$.

- Life-cycle model of worker *j*
 - Born in period $t = 0 \sim 25$. Retire at $T_r \sim 65$. Die at $T \sim 80$.
 - Preferences over consumption and leisure:
 - choose how much to consume vs. save
 - choose time spent producing, investing, and leisure (before retirement)

- Life-cycle model of worker *j*
 - Born in period $t = 0 \sim 25$. Retire at $T_r \sim 65$. Die at $T \sim 80$.
 - Preferences over consumption and leisure:
 - choose how much to consume vs. save
 - choose time spent producing, investing, and leisure (before retirement)
- Workers are heterogeneous

- Life-cycle model of worker *j*
 - Born in period $t = 0 \sim 25$. Retire at $T_r \sim 65$. Die at $T \sim 80$.
 - Preferences over consumption and leisure:
 - choose how much to consume vs. save
 - choose time spent producing, investing, and leisure (before retirement)
- Workers are heterogeneous
 - Fixed types: learning ability & permanent work disutility

- Life-cycle model of worker j
 - Born in period $t = 0 \sim 25$. Retire at $T_r \sim 65$. Die at $T \sim 80$.
 - Preferences over consumption and leisure:
 - choose how much to consume vs. save
 - choose time spent producing, investing, and leisure (before retirement)
- Workers are heterogeneous
 - Fixed types: learning ability & permanent work disutility
 - Initial state: human capital

- Life-cycle model of worker j
 - Born in period $t = 0 \sim 25$. Retire at $T_r \sim 65$. Die at $T \sim 80$.
 - Preferences over consumption and leisure:
 - choose how much to consume vs. save
 - choose time spent producing, investing, and leisure (before retirement)
- Workers are heterogeneous
 - Fixed types: learning ability & permanent work disutility
 - Initial state: human capital
 - Shocks to: human capital & persistent work disutility
• Preferences: permanent & transitory heterogeneity in work disutility

$$u(c_{j,t}, n_{j,t} + i_{j,t}) = \frac{c_{j,t}^{1 - \frac{1}{\sigma}} - 1}{1 - \frac{1}{\sigma}} - \psi_j \cdot \pi_{j,t} \cdot \frac{(n_{j,t} + i_{j,t})^{1 + \frac{1}{\gamma}}}{1 + \frac{1}{\gamma}}$$
$$\log \pi_{j,t} = \rho_\pi \log \pi_{j,t-1} + \nu_{j,t} \text{ with } \nu_{j,t} \sim N(0, \sigma_\pi)$$

• Preferences: permanent & transitory heterogeneity in work disutility

$$u(c_{j,t}, n_{j,t} + i_{j,t}) = \frac{c_{j,t}^{1-\frac{1}{\sigma}} - 1}{1 - \frac{1}{\sigma}} - \psi_j \cdot \pi_{j,t} \cdot \frac{(n_{j,t} + i_{j,t})^{1+\frac{1}{\gamma}}}{1 + \frac{1}{\gamma}}$$
$$\log \pi_{j,t} = \rho_\pi \log \pi_{j,t-1} + \nu_{j,t} \text{ with } \nu_{j,t} \sim N(0, \sigma_\pi)$$

• Human capital accumulation

$$x_{j,t+1} = \left[(1-\delta)x_{j,t} + \alpha_j (i_{j,t}x_{j,t})^{\phi} \right]$$

• Preferences: permanent & transitory heterogeneity in work disutility

$$u(c_{j,t}, n_{j,t} + i_{j,t}) = \frac{c_{j,t}^{1-\frac{1}{\sigma}} - 1}{1 - \frac{1}{\sigma}} - \psi_j \cdot \pi_{j,t} \cdot \frac{(n_{j,t} + i_{j,t})^{1+\frac{1}{\gamma}}}{1 + \frac{1}{\gamma}}$$
$$\log \pi_{j,t} = \rho_\pi \log \pi_{j,t-1} + \nu_{j,t} \text{ with } \nu_{j,t} \sim N(0, \sigma_\pi)$$

• Human capital accumulation is risky

$$x_{j,t+1} = z_{j,t+1} \left[(1-\delta) x_{j,t} + lpha_j (i_{j,t} x_{j,t})^\phi
ight]$$
 with $\log z_{j,t+1} \sim N(0,\sigma_z),$ ite

• Preferences: permanent & transitory heterogeneity in work disutility

$$u(c_{j,t}, n_{j,t} + i_{j,t}) = \frac{c_{j,t}^{1-\frac{1}{\sigma}} - 1}{1 - \frac{1}{\sigma}} - \psi_j \cdot \pi_{j,t} \cdot \frac{(n_{j,t} + i_{j,t})^{1+\frac{1}{\gamma}}}{1 + \frac{1}{\gamma}}$$
$$\log \pi_{j,t} = \rho_\pi \log \pi_{j,t-1} + \nu_{j,t} \text{ with } \nu_{j,t} \sim N(0, \sigma_\pi)$$

• Human capital accumulation is risky

$$x_{j,t+1} = z_{j,t+1} \left[(1-\delta)x_{j,t} + lpha_j (i_{j,t}x_{j,t})^\phi
ight]$$
 with $\log z_{j,t+1} \sim N(0,\sigma_z)$, iid

• Post-Tax Labor income: $au_0(wx_{j,t}n_{j,t})^{1- au_1}$

FOC of Investment Choice (interior, no shocks)

$$\underbrace{wx_t}_{\text{MC of investment}} = \underbrace{\alpha\phi x_t^{\phi} i_t^{\phi-1} \sum_{t'=t+1}^{T_R-1} \left[\frac{1}{1+R}\right]^{t'-t} w(n_{t'}+i_{t'})(1-\delta)^{t'-(t+1)}}_{\text{MB of investment}}$$

UMP

$$\underbrace{wx_t}_{\text{MC of investment}} = \underbrace{\alpha \phi x_t^{\phi} i_t^{\phi-1} \sum_{t'=t+1}^{T_R-1} \left[\frac{1}{1+R}\right]^{t'-t} w(n_{t'}+i_{t'})(1-\delta)^{t'-(t+1)}}_{\text{MB of investment}}$$

- MB of investment in t' > t: $x_{t'}$ increases by $\alpha \phi x_t^{\phi} i_t^{\phi-1} (1-\delta)^{t'-(t+1)}$
 - Value of extra human capital scaled by wage w and total hours $(n_{t'} + i_{t'})$

$$\underbrace{wx_t}_{\text{MC of investment}} = \underbrace{\alpha \phi x_t^{\phi} i_t^{\phi-1} \sum_{t'=t+1}^{T_R-1} \left[\frac{1}{1+R}\right]^{t'-t} w(n_{t'}+i_{t'})(1-\delta)^{t'-(t+1)}}_{\text{MB of investment}}$$

MB of investment in t' > t: x_{t'} increases by αφx^φ_ti^{φ-1}_t(1 − δ)^{t'−(t+1)}
 Value of extra human capital scaled by wage w and total hours (n_{t'} + i_{t'})

• All else constant: Higher future hours $(n_{t'} + i_{t'})$: RHS $\uparrow \implies i_t \uparrow$

3 Calibration

4 Quantifying the Impact of Hours Worked on Lifetime Earnings

Mapping Data Measures into the Model

- Assumption 1: hours $h_{j,t} = n_{j,t} + i_{j,t}$
 - Implies all investment "on-the-job"
 - Mainly affects hours, hourly wages in first few years
 - Results robust to assuming half of investment "off-the-job"
- Assumption 2: classical measurement error in hours and earnings

$$\begin{split} \tilde{h}_{j,t} &= \exp(\epsilon_{j,t}^{h}) h_{j,t}, \quad \text{where } \epsilon_{j,t}^{h} \sim N(0,\sigma_{h}) \\ \tilde{e}_{j,t} &= \exp(\epsilon_{j,t}^{e}) e_{j,t}, \quad \text{where } \epsilon_{j,t}^{e} \sim N(0,\sigma_{e}) \end{split}$$

Calibration Summary

- Calibrate open economy stationary equilibrium
 - ► Government collects income taxes & proportional consumption tax → Redistributes lump sum transfer to balance budget
- One key parameter: $\rho_{\alpha,\psi} = -0.15$
 - Correlation of learning ability and permanent work disutility
 - Negative sign \implies high ability tend to have lower work disutility
 - Small magnitude many high ability types with strong dislike of work many low ability types willing to work long hours

Fit: Persistence of Hours Worked and Earnings (Targeted)

Hours Worked

Fit: Persistence of Hours Worked and Earnings (Targeted)

More

Fit: Lifetime Earnings and Lifetime Hours (Untargeted)

More

More

3 Calibration

4 Quantifying the Impact of Hours Worked on Lifetime Earnings

How Important are Hours Worked for Earnings Inequality?

• Common hours counterfactual: at each age t assign everyone \overline{n}_t and \overline{i}_t

How Important are Hours Worked for Earnings Inequality?

- Common hours counterfactual: at each age t assign everyone \overline{n}_t and \overline{i}_t
 - Variance of PV log lifetime earnings falls by 30%

How Important are Hours Worked for Earnings Inequality?

- Common hours counterfactual: at each age t assign everyone \overline{n}_t and \overline{i}_t
 - Variance of PV log lifetime earnings falls by 30%
- Just impose common investment, \bar{i}_t : variance declines by 9%

 \implies Dynamic channel accounts for $\approx 1/3$ of overall impact

- Common hours counterfactual: at each age t assign everyone \overline{n}_t and \overline{i}_t
 - Variance of PV log lifetime earnings falls by 30%
- Just impose common investment, \bar{i}_t : variance declines by 9%

 \implies Dynamic channel accounts for $\approx 1/3$ of overall impact

• Just impose common investment $\underline{\text{mix}}$, $\frac{\overline{i}_t}{\overline{n}_t}$: variance declines by only 3% \implies Total hours account for 90% of overall impact

- Common hours counterfactual: at each age t assign everyone \overline{n}_t and \overline{i}_t
 - Variance of PV log lifetime earnings falls by 30%
- Just impose common investment, \bar{i}_t : variance declines by 9%

 \implies Dynamic channel accounts for $\approx 1/3$ of overall impact

- Just impose common investment <u>mix</u>, $\frac{\overline{i}_t}{\overline{n}_t}$: variance declines by only 3% \implies Total hours account for 90% of overall impact
 - ▶ Huggett et al. ('11) do not feature any variation in total hours
 - Guvenen et al. ('14) have hours choice, but minimal variation

- <u>Counterfactual</u>: Turn off variances of initial conditions & shocks, 1 by 1
 - How does the variance of log lifetime earnings change?

- Counterfactual: Turn off variances of initial conditions & shocks, 1 by 1
 - How does the variance of log lifetime earnings change?
- Initial Conditions
 - ▶ Initial human capital + learning ability account for 60%
 - Permanent work disutility accounts for 12%

- <u>Counterfactual</u>: Turn off variances of initial conditions & shocks, 1 by 1
 - How does the variance of log lifetime earnings change?
- Initial Conditions
 - ▶ Initial human capital + learning ability account for 60%
 - Permanent work disutility accounts for 12%
- Shocks
 - Shocks to human capital account for 30%
 - Shocks to work disutility account for 6%

- <u>Counterfactual</u>: Turn off variances of initial conditions & shocks, 1 by 1
 - How does the variance of log lifetime earnings change?
- Initial Conditions
 - ▶ Initial human capital + learning ability account for 60%
 - Permanent work disutility accounts for 12%
- Shocks
 - Shocks to human capital account for 30%
 - Shocks to work disutility account for 6%
- $\Rightarrow\,$ Together, preference heterogeneity drives 16% of lifetime inequality

- Key message from our calibrated model:
 - Policies that constrain hours choices may have large impact on both mean of and inequality in lifetime earnings

Policy Implications: An Illustrative Example

- Key message from our calibrated model:
 - Policies that constrain hours choices may have large impact on both mean of and inequality in lifetime earnings
- Example: French hours caps rolled out 2000-2002 ("Aubry I, II") (more)
 - Reduced standard workweek from 39 to 35 hours (OT pay above this)
 - Imposed hard maximum of 48 hours per week
 - Exceptions for managers and executive "cadres"

- Key message from our calibrated model:
 - Policies that constrain hours choices may have large impact on both mean of and inequality in lifetime earnings
- Example: French hours caps rolled out 2000-2002 ("Aubry I, II") (more)
 - Reduced standard workweek from 39 to 35 hours (OT pay above this)
 - Imposed hard maximum of 48 hours per week
 - Exceptions for managers and executive "cadres"
- Motivated by the Aubry reforms, we run the following counterfactual
 - Cap production time, n, at 48 hours/week

- Impact on lifetime earnings
 - Mean declines 13%
 - Variance declines 17%
- Mean decline in lifetime utility is 3% (CEV)
- Impact larger for workers with low ψ
 - $\blacktriangleright~\approx 4\%$ earnings loss for highest ψ quintile
 - $\blacktriangleright~\approx 20\%$ earnings loss for lowest ψ quintile
 - $corr(\psi, \alpha) = -0.15 \implies$ many low earners experience large losses

3 Calibration

4 Quantifying the Impact of Hours Worked on Lifetime Earnings

- Construct long balanced panel of hours & earnings (NLSY79)
 - Substantial variation in lifetime hours

- Construct long balanced panel of hours & earnings (NLSY79)
 - Substantial variation in lifetime hours
- Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns

- Construct long balanced panel of hours & earnings (NLSY79)
 - Substantial variation in lifetime hours
- Use data to discipline life-cycle human capital model of hours & earnings
 - Model requires preference heterogeneity to match hours patterns
- Find: Hours worked are a key source of lifetime earnings inequality
 - Hours variation accounts for 30% of variation
 - Heterogeneous preferences account for 16% of variation
 - Dynamic human capital channel plays an important role

Thank you!

Back

Back

Sample Validation: Lifetime Earnings

- Guvenen et al (2022): Social Security Earnings for the cohort born in 1957
- NLSY79: Self-reported earnings for the cohorts born 1957-64 Back

Sample Validation: Lifetime Earnings

- Guvenen et al (2022): Social Security Earnings for the cohort born in 1957
- NLSY79: Self-reported earnings for the cohorts born 1957-64 Back

• American Time Use Survey (ATUS): Hours worked at the main job

• Conducted for subset of CPS ORG: Usual weekly hours worked

 \Rightarrow Construct avg. weekly time use hours by usual weekly hours bin $$^{\tt Back}$$

Usual Hours Predict ATUS Hours Well

• Avgerage weekly time use hours increasing in usual weekly hours Days

Usual Hours Predict ATUS Hours Well

- Avgerage weekly time use hours increasing in usual weekly hours Days
- Diff. b/w avg. weekly time use & usual hours small (below 70 hours) SH

Avg. Time Use Hours Increase in Usual Weekly Hours

Avg. Time Use Hours Increase in Usual Weekly Hours

back

Lifetime Hours and Earnings Growth (Targets: 2750-1500 hour bins)

back

Hours Variation & Persistence: Benchmark Model

Hours Variation & Persistence: "Homogeneous" Model

Lifetime Earnings & Hours: Comparing Models

Lifetime Earnings & Hours: Comparing Models

Lifetime Earnings & Hours: Comparing Models

42

• Hours cap eliminates most additional earnings of low- ψ types

French Hours Worked

Share Working More Than 35 Hours

Share Working More Than 48 Hours

• A worker's problem $(t < T_r)$

$$V_{t}(k, x; \pi, \psi, \alpha) = \max_{c, k', i, n} \quad u(c, i + n; \pi, \psi) + \beta \mathbb{E}_{z', \pi'} V_{t+1}(k', z'\tilde{x}'; \pi', \psi, a)$$

s.t. $(1 + \tau_{c})c + k' = Rk + \tau_{0}(wxn)^{1 - \tau_{1}} + G$
 $\tilde{x}' = (1 - \delta)x + \alpha(ix)^{\phi}$

• A worker's problem $(t < T_r)$

$$V_t(k, x; \pi, \psi, \alpha) = \max_{c, k', i, n} \quad u(c, i + n; \pi, \psi) + \beta \mathbb{E}_{z', \pi'} V_{t+1}(k', z' \tilde{x}'; \pi', \psi, a)$$

s.t. $(1 + \tau_c)c + k' = Rk + \tau_0 (wxn)^{1 - \tau_1} + G$
 $\tilde{x}' = (1 - \delta)x + \alpha (ix)^{\phi}$

• A retiree's problem $(t \ge T_r)$

▶ Identical except with added constraint n = i = 0

Parameter	Interpretation	Value	Source
R	Gross interest rate	1.02	$1/\beta$
β	Patience	0.9804	Huggett et al. (2011)
σ	CRRA	1.0	_
γ	Frisch elasticity	0.3	_
δ	Human capital depreciation	0.02	Huggett et al. (2011)
$ au_0$	Tax Rate	0.81	Heathcote et al. (2014)
$ au_1$	Tax Progressivity	0.181	Heathcote et al. (2014)
$ au_c$	Consumption tax	0.08	Heathcote et al. (2014)
μ_x	Mean of $\log x_0$	0.0	Normalization

• Calibrate stationary eq. of open economy with balanced gov't budget

Parameter	Interpretation	Value	Moment
σ_x	SD of $\log x_0$	0.3625	SD earnings, age 30
μ_{lpha}	Mean of $\log lpha$	-2.2459	Mean earnings, age 50
σ_{lpha}	SD of $\log \alpha$	0.2109	SD earnings, age 50
μ_ψ	Mean of $\log\psi$	3.5993	Mean annual hours, age 25-52
σ_ψ	SD of $\log \psi$	0.45	SD annual hours, age 25-52
$ ho_{lpha,\psi}$	Corr. of $(\log \alpha, \log \psi)$	-0.15	Correlation of hours and earnings, age 30
σ_{π}	SD of $\log \pi$	0.4	Hours autocorrelation profile
$ ho_{\pi}$	Autocorrelation of $\log \pi$	0.88	Hours autocorrelation profile
σ_{mh}	SD measurement error	0.1	Hours autocorrelation profile
σ_{me}	SD measurement error	0.17	Earnings autocorrelation profile
σ_z	SD human capital shock	0.085	Earnings autocorrelation profile
ϕ	HC elasticity wrt investment	0.57	Lifetime hours, earnings growth