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Abstract

We study the environmental consequences of “bonus depreciation,” one of the largest
investment tax incentives in US history. To do so, we pair emissions data from the EPA’s
Toxic Release Inventory and National Emissions Inventory with quasi-experimental policy
variation in the extent to which establishments benefited from the policy. Differences-
in-differences estimates show bonus depreciation increased annual emissions by 30%. To
quantify aggregate damages associated with the policy, we integrate our estimates into a
pollution transport model. We estimate overall environmental damages at between $20 and
45 billion per year. For every dollar of GDP stimulated by the policy, we estimate between
39 and 88 cents of environmental costs. Our damage estimates differ by race and were 75%
higher for African Americans compared to the national average. We document that the
magnitude of the aggregate damages we estimate is due primarily to bonus depreciation’s
unintentional targeting of the most emissions-intensive industries. We show that alternative
policies can stimulate the same amount of investment and economic growth at a fraction of
the environmental cost.
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1 Introduction

Governments around the world rely on investment stimulus policies to advance key economic

objectives, including promoting growth, reducing unemployment, and stabilizing the macroecon-

omy. From 2004–2016, 98 countries implemented policies that decreased the cost of physical

capital (Steinmüller, Thunecke, and Wamser, 2019). A prescient example is the recent US Tax

Cuts and Jobs Act of 2017, which included more than $1 trillion in investment incentives (CBO,

2017).1 Due to their widespread use and immense fiscal cost, academic researchers have spent

considerable energy understanding how investment stimulus policies affect a wide range of out-

comes including investment, employment, and productivity. Missing from our understanding

are the environmental costs generated by the investment these policies stimulate. Given the

magnitude of these policies, their environmental consequences are potentially large and therefore

critical in any systematic policy analysis of their costs and benefits.

In this paper, we estimate the environmental impact of “bonus depreciation,” one of the

largest tax investment incentives in US history (Curtis et al., 2021). Bonus depreciation lowers

the cost of new capital investments by allowing firms to deduct the purchase price of new capital

assets from their taxable income more quickly. We estimate the effect of bonus depreciation on

a range of emissions in the industrial sector using well-established, quasi-experimental variation

in the policy and data from the Toxic Release Inventory and the National Emissions Inventory.

By combining our reduced-form emissions response estimates with a pollution transport model,

we quantify the magnitude and geographic distribution of economic damages generated by the

policy.

We find bonus depreciation has a large and positive effect on plant-level emissions. The third

of plants that benefit most from the policy increased emissions 30% more than plants that benefit

less after bonus depreciation was implemented. Results from the pollution transport model show

that the economic damages caused by these additional emissions amount to between $20 and

$43 billion per year or between 39 and 88 cents per dollar of policy benefits. The magnitude

of these damages is due primarily to bonus depreciation’s unintentional targeting of the most

emissions-intensive industries. Moreover, we show that alternative policies that target different

industries can stimulate the same amount of investment at a fraction of the environmental costs.

1This estimate is composed primarily of the cost of the bill’s statutory corporate income tax rate cut and its
accelerated depreciation incentives.
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We also find that damages are concentrated in areas with lower average incomes and higher

Black population shares, suggesting that investment stimulus policies can exacerbate existing

inequalities in exposure to pollution. Together, our results suggest that the efficient design of

investment stimulus policies must consider their potentially large and unequal environmental

costs.

The policy we study, bonus depreciation, was first implemented to combat the 2001 recession

and has been in nearly continuous use ever since. Bonus depreciation is expensive, and the

US Treasury estimates its fiscal cost was more than a quarter of a trillion dollars over the last

ten years. The Tax Cuts and Jobs Act extended a generous version of the incentive through

2027. Bonus depreciation allows firms to deduct an additional “bonus” percentage of the cost of

new investments from their taxable income in the year the investments are made. As a result,

the policy decreases the present-value cost of new investments because firms receive tax breaks

sooner in the lives of capital assets. Past research has documented the policy has large effects

on capital investment, employment, and output (House and Shapiro, 2008; Zwick and Mahon,

2017; Curtis et al., 2021).

While the aim of the policy was to stimulate investment and other attendant outcomes,

there are two potential channels by which the policy might lead to unintended environmental

consequences. First, additional capital investment and output due to the policy will increase

emissions through the so-called “scale effect.” Second, the policy might alter emissions intensity

(emissions per unit of output), thereby changing total emissions via the “technique effect”.

This technique effect may reduce emissions intensity if firms replace older capital with newer,

more efficient capital. On the other hand, the policy may induce firms to substitute toward

more capital-intensive production or allow firms to produce more intermediate goods “in-house”

resulting in more emissions per unit of output.2 In sum, there is ample reason to believe pollution

emissions are linked to bonus depreciation, but the strength and direction of the relationship is

an empirical question.

To answer this question, we link plant-level emissions data from the Environmental Protection

Agency’s (EPA) Toxic Release Inventory (TRI) and industry-level, quasi-experimental variation

in the generosity of bonus depreciation. In the absence of bonus depreciation, historic and largely

2“In-housing”, often referred to as the “make-buy” decision, is a form of vertical integration, which has long
been studied by economists (Joskow, 1985; Hortaçsu and Syverson, 2007; Atalay, Hortaçsu, and Syverson, 2014).
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arbitrary tax rules specify how quickly different types of capital assets may be deducted from

a firm’s taxable income. Bonus depreciation decreases the present value costs of investment

more for firms in industries that typically invest in assets that are deducted from taxable income

more slowly. Based on this variation, we follow Cummins, Hassett, and Hubbard (1994), House

and Shapiro (2008), Zwick and Mahon (2017), and Curtis et al. (2021) in comparing plants in

industries that benefit more from the policy to plants in industries that benefit less. Using a

difference-in-differences framework, we find that the third of plants in industries that benefit

most from bonus depreciation increased total chemical releases by 34.9% relative to plants in

industries that benefit less after the policy was introduced in 2001.

This estimate represents the causal effect of bonus depreciation on emissions if the emis-

sions of treated and control plants exhibit parallel trends in the absence of the policy. We

perform a number of tests designed to support the validity of this assumption. First, using dy-

namic difference-in-differences (DD) specifications, we show no differences in pre-period emissions

trends between treated and control plants. The dynamic DD estimates also show large, positive

differences in emissions starting in 2002, just after the policy was implemented. Second, we

show that our estimates are robust to the inclusion of county-by-year and sector-by-year (2-digit

NAICS) fixed effects. The county-by-year fixed effects eliminate concerns that time-varying geo-

graphic variation, such as changes in state-level policies or changes in county-level environmental

regulations, are responsible for our results. With sector-by-year fixed effects, our estimates are

identified using within-sector variation. Thus, time-varying, sector-level changes in factors such

as technological innovation or sector-specific regulations also do not drive our results. Third,

we show our estimates are stable when we directly control for industry-level variation in several

other contemporary policies. Finally, relying on a subsample of plants that we are able to link

to financial statement data from Compustat, we show that the policy caused a large increase

in capital stocks that coincided with the emissions patterns we document. Together these tests

provide support for our identifying assumption and suggest our estimates represent the causal

effect of bonus depreciation on pollution emissions.

The matched TRI-Compustat sample also allows us to explore the technique effect by estimat-

ing firm-level responses in emissions-intensity to bonus depreciation. Both DD and dynamic DD

specifications show that the policy did not decrease emissions intensity and may have even led to

increases in emissions per unit of capital (or revenue). This finding suggests that the additional
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capital investment induced by the policy was not less emissions intensive than previously-installed

capital. We infer that firms did not primarily respond to bonus depreciation by replacing existing

capital with cleaner production technologies.

Given the important role of environmental policy in mitigating emissions, we explore whether

existing environmental regulations have the power to temper emissions responses to investment

stimulus policies. To do so, we compare the emissions responses of plants in counties subject

to the Clean Air Act’s nonattainment standards to the responses of plants in counties subject

to less stringent regulations. We find that bonus depreciation had a 29% smaller impact in

nonattainment counties. Similar heterogeneity analysis provides suggestive evidence that county-

level nonattainment standards may have achieved this result by decreasing the capital investment

response to the policy. These results suggest that environmental regulations may have the power

to curb the emissions impacts of investment stimulus policies, but may do so at the expense of

capital investment, itself.

To provide additional support for the emissions responses we document and to calculate the

dollar value of economic damages due to the policy, we turn to the EPA’s National Emissions

Inventory (NEI) dataset. The NEI focuses on emissions of common air pollutants regulated

under the Clean Air Act–the so-called “criteria” air pollutants. Using a similar identification

strategy, we find bonus depreciation substantially increased these criteria air pollutants. Our

point estimates are similar in magnitude to the responses we document using the TRI and

therefore further corroborate our TRI findings.3

While the emissions responses we document are concerning, ultimately, we want to know how

these impacts translate into economic damages. To do so, we rely on a pollution transport model

called the Intervention Model for Air Pollution or simply “InMAP” and our NEI estimates. We

use the InMAP model to translate plant-level increases in criteria air emissions due to bonus

depreciation into increased pollution concentrations and environmental damages across the US.

The model accounts for both atmospheric transport and chemical reactions of pollution to de-

termine damages at a fine degree of spatial resolution. The InMAP model has been embraced by

economists and environmental agencies due to this spatial granularity, which allows for more pre-

cise estimation of pollution exposure across different demographic groups (e.g. Hernandez-Cortes

3We also reinforce these results using surface-level pollution data from the EPA’s Air Quality System (AQS).
We find that bonus depreciation increased particulate matter concentrations at AQS monitoring sites. Details of
this analysis are provided in the Appendix J.
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and Meng, 2023; Shapiro and Walker, 2020; Hernandez-Cortes, Meng, and Weber, 2022).

Estimates from the InMAP model suggest annual economic damages from bonus depreciation

range between $20 and $43 billion USD, which corresponds to per-capita damages between $56

and $127 USD.4 Economic damages are highly uneven geographically, with some sub-populations

incurring damages that far exceed the average.

Economic damages are also highly unequal across racial groups, with African Americans

experiencing per-capita economic damages 75% higher than the national average. Moreover,

counties with greater Black population shares incurred higher economic damages, even after

controlling for median income and poverty rates. Unfortunately, further analysis shows the jobs

created by the policy do not proportionally accrue to the same people and as a result, the

damages per job created are also concentrated among historically disadvantaged populations.

Overall, these results suggest that the policy exacerbated existing racial disparities in exposure

to air pollution.

Motivated by our findings that emissions responses are attenuated in counties subject to

more stringent nonattainment regulations, we use the InMAP model to quantify the role of

these regulations in reducing total damages caused by bonus depreciation. We find damages are

approximately 40% lower as a consequence of existing environmental regulations.

Given the substantial damages we document, we explore whether the magnitude of these

damages are inherent to investment stimulus policies or are a particular feature of bonus de-

preciation. We document that bonus depreciation unintentionally targets the most emissions

intensive industries, resulting in disproportionately high environmental costs. Alternative poli-

cies designed to stimulate the same amount of investment by targeting either (i) the industries

benefiting least from bonus depreciation or (ii) the cleanest industries both generate less than

5% of the environmental costs of the actual policy.

Finally, we perform a simple empirical welfare analysis to compare the GDP benefits to the

fiscal and pollution costs of bonus depreciation. Ignoring pollution externalities, we find that

bonus depreciation had a fiscal cost of 77 cents per dollar of benefits. However, we estimate that

every dollar of benefits resulted in between 39 and 88 cents of pollution damages, implying a

4This range corresponds to low and high estimates of the relationship between mortality and pollution con-
centration from Krewski D (2019) and Lepeule J (2012). Throughout, we assume the value of a statistical life
(VSL) is 9 million 2020 USD following Goodkind et al. (2019). This is a conservative approximation of the EPA’s
current VSL standard (EPA, 2010).
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total social cost ranging between $1.16 and $1.66 per dollar of benefits. Thus, whether bonus

depreciation is a welfare-increasing or a welfare-decreasing policy hinges on whether pollution

damages are considered.

This paper’s findings represent four major contributions. First, the substantial environmental

costs of bonus depreciation that we document forces a reexamination of the relative costs and

benefits of the policy and investment stimulus policies, broadly. A well-established literature has

shown that federal bonus depreciation has large, positive effects on both capital investment and

employment (House and Shapiro, 2008; Zwick and Mahon, 2017; Garrett, Ohrn, and Suarez Ser-

rato, 2020; Curtis et al., 2021).5 We document a significant negative externality resulting from

bonus depreciation, finding that the policy’s true costs exceed it’s benefits when pollution dam-

ages are accounted for. We show that the magnitude of the economic damages we estimate is

due to the fact that bonus depreciation unintentionally targeted the most emissions-intensive

industries. Therefore, our findings suggest the reliance on very similar policies throughout the

world—including in UK, China, Japan, Poland, and Canada (Maffini, Devereux, and Xing, 2018;

Fan and Liu, 2020; Guceri and Albinowski, 2021)—may also result in large environmental costs.

Second, our results show that investment stimulus policies can be important determinants

of emissions and pollution.6 Our findings therefore add to the large literature in environmental

economics exploring the importance of various determinants of industrial emissions, including

trade and outsourcing, structural transformation, productivity growth, and environmental reg-

ulations (See e.g. Levinson, 2009, 2015; Shapiro, 2020; Najjar and Cherniwchan, 2021). Shapiro

and Walker (2018) demonstrates that environmental regulations are a key determinant of emis-

sions and are primarily responsible for the decline in total pollution in the United States over the

past 50 years. The environmental damages we estimate represent between 8.5% and 16.5% of the

environmental benefits of the landmark 1990 Clean Air Act Amendments (EPA, 2011).7 Thus,

we find the environmental costs of investment stimulus policies are large even compared to the

5Ohrn (2019) and Tuzel and Zhang (2021) find that state accelerated depreciation policies increase capital
investment. Most studies find no effect of bonus depreciation on wages, with the exception of Ohrn (2022), who
finds bonus depreciation lead to large increases in compensation for the very highest paid executives at large,
publicly traded firms.

6Kong, Xiong, and Qin (2022) find that a value added tax reform in China led to plant-level decreases in
emissions.

7Our damage estimates also represent between 74 and 125% of the environmental benefits of the Reconsider-
ation of the National Ambient Air Quality Standards for Particulate Matter (Environmental Protection Agency,
2024).
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effects of major, historical environmental regulations. Furthermore, by studying the interaction

between bonus depreciation and environmental regulations, we also directly contribute to our

understanding of the effects of environmental regulations on emissions (Greenstone, 2003; Hanna

and Oliva, 2010; Martin, Muûls, and Wagner, 2016; Cropper et al., 2023).

Third, because bonus depreciation decreases the cost of investment and can alleviate financing

frictions, this paper provides new evidence on the effects of financial conditions on environmental

performance. A number of previous papers have explored these relationships, generally finding

that removing credit constraints improves environmental outcomes (Aghion et al., 2022; Earnhart

and Segerson, 2012; Andersen, 2016, 2017; Xu and Kim, 2021; Cohn and Deryugina, 2018).

Motivated by increasing attention to sustainable (dis)investment trends, a related strand of

research investigates the impact of capital costs on environmental performance, finding that

increases in capital costs promote investment in dirty capital and increased emissions (Hartzmark

and Shue, 2023; Edmans, Levit, and Schneemeier, 2022). Recently, several papers have found

mixed results when exploring the effect of unconventional monetary policy on emissions via

changes in the cost of capital (Goetz, 2019; Papoutsi, Piazzesi, and Schneider, 2022). Our study

contributes to this literature by combining well-established, quasi-experimental variation and

plant-level emissions data to estimate the causal effects of changes in the cost of capital on

emissions and emissions intensity. We find that decreases in the cost of capital lead to increases

in emissions and do not decrease emissions intensity. Our findings caution generalizations that

decreases in the cost of capital lead to greener investments and better environmental performance.

Finally, this paper also contributes to the large and growing environmental justice literature,

which documents persistent inequalities in exposure to air pollution across racial-ethnic groups

(Clark, Millet, and Marshall, 2017; Colmer et al., 2020; Chambliss et al., 2021; Liu et al., 2021;

Jbaily et al., 2022; Wang et al., 2022; Hernandez-Cortes, Meng, and Weber, 2022; Whittemore,

2017; Rosofsky et al., 2018; Lane et al., 2022). We find that bonus depreciation led to higher

environmental costs for African American communities, which are not explained by differences

in income. Further analysis shows similar racial disparities in environmental damages per job

created by the policy. These results demonstrate that investment stimulus policies can exacerbate

pre-existing inequalities in pollution exposure.

The remainder of the paper proceeds as follows. Section 2 provides a more complete de-

scription of bonus depreciation. Section 3 describes our empirical framework and identification
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strategy. Section 4 details the data sources we use. In Section 5, we present our reduced form em-

pirical estimates. Section 6 presents the aggregate damage estimates from the pollution transport

model. In Section 7, we investigate whether the magnitude of the costs we estimate is particular

to bonus depreciation or is a general feature of investment stimulus policies. Section 8 concludes.

2 Bonus Depreciation

When businesses make investments in new capital, typically they are not allowed to immediately

deduct the full purchase price of the capital from their taxable income. Instead, tax rules govern

how quickly the cost of the new investment can be “depreciated” and therefore deducted from a

firm’s taxable income.8 All else equal, firms would prefer to depreciate capital more quickly and

as a result deduct the investment costs from their taxable income sooner or even immediately.

This would result in larger tax benefits earlier in the life of a given asset and a lower after-tax

present value cost of the investment. The policy we study, bonus depreciation, does exactly this.

Under bonus depreciation, firms are allowed to deduct a “bonus” percentage of the purchase

price of new investments in the year they are made. The remaining costs are deducted according

to existing tax rules. Figure 1, Panel (A) presents an example based on a “5-year” asset that

is typically deducted from taxable income over a six-year period. In the absence of bonus

depreciation, tax rules specify that 20% of costs are deducted in the first year, 32% are deducted

in the second year, etc. With 50% bonus depreciation, 50% of the investment costs are deducted

in the first year. The remaining 50% are deducted according to the typical tax rules. Assuming a

10% discount rate and a 35% tax rate (the rate during the period we study), bonus depreciation

decreases the after-tax present value cost of the 5-year asset by 2.4%.

Figure 1, Panel (C) displays US bonus depreciation rates during our sample period. Bonus

was first implemented as part of the Job Creation and Worker Assistance Act of 2002. The bill

allowed 30% bonus depreciation for investments made after September 10, 2001.9 In May 2003,

the bonus rate was increased to 50% for 2003 and 2004. The incentive was allowed to lapse in

2005, but Congress reinstituted the policy at a 50% rate in 2008. The 50% rate was available

through 2016 except for in 2011, when the bonus rate was 100% (sometimes referred to as full

8In the US, the tax rules that govern how quickly different types of assets can be deducted is called the
Modified Accelerated Cost Recovery System (MACRS). IRS Publication 946 details the percent of investment
costs that can be deducted in each year for each different type of capital investment.

9Given this retroactive implementation, we normalize outcomes in 2001 in our empirical analyses.
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expensing).10 Based on IRS Eexpenditure estimates, Garrett, Ohrn, and Suarez Serrato (2020)

conclude that bonus depreciation cost the US government approximately $30 billion per year on

average during the treatment period we analyze.

While the policy was implemented in 2001 and again in 2008 as a countercyclical fiscal

stimulus measure to promote business investment, in our empirical analysis we treat the policy

as available in all years after 2001. We do this for two reasons. First, while the generosity of

the policy varied over time, bonus depreciation was in nearly continuous use since its inception

in 2001; the average rate from 2002-2012 was 39%. Second, while the policy was allowed to

lapse, firms likely expected the policy to be reinstituted (it was often extended at the 11th hour)

and retroactively available. Consistent with this contention, House and Shapiro (2008) estimate

that firms acted as though the bonus depreciation rate in 2006 was between 25 and 50% even

after the policy had expired. Further, prior research has shown that the capital investment and

employment response to bonus depreciation implementation was persistent over the full 2002–

2012 period (Garrett, Ohrn, and Suarez Serrato, 2020; Curtis et al., 2021).

3 Identification and Empirical Strategy

The key to identifying the effect of bonus depreciation on emissions is that the policy benefits

firms in some industries more than others. In particular, firms in industries that typically invest

in capital that is depreciated more slowly according to IRS tax rules benefit more from the

policy. For these firms, bonus depreciation accelerates tax deductions from further in the future

and decreases the after-tax, present value cost of capital investments more.

Panels (A) and (B) of Figure 1 illustrate these differential effects. In both panels, the blue

(left) bars show the tax depreciation schedule in the absence of bonus depreciation. The green

(right) bars show how each asset is depreciated when bonus depreciation is applied at a 50%

10During the time period we study, the US made use of a second accelerated depreciation policy referred to as
Section 179 Expensing (§179). Under §179, firms are allowed to fully expense all capital investments costs below
the §179 limit (applied at the firm-level annually). The §179 limit increased from $24,000 to $500,000 during
our treatment period. Due to this limit, the policy applies only to smaller firms or those making fewer capital
investments. Kitchen and Knittel (2016) find that §179 only applied to only about 12% of investment during our
treatment period. Because the TRI and NEI datasets focus on large polluters, the §179 allowance is likely to
apply to an even smaller percentage of capital investment and emissions in our sample. However, because both
§179 and bonus depreciation provide larger benefits for firms that typically invest in capital that is depreciated
more slowly according to tax rules, our identification strategy does not separately identify the effects of the two
policies. Therefore, following Curtis et al. (2021), we interpret our estimates as responses to both accelerated
depreciation policies. We refer to the combination of the two policies as simply bonus depreciation throughout
the rest of the paper for simplicity.
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rate. Panel (A) shows the effect of 50% bonus depreciation on a 5-year asset while Panel (B)

shows the effect of bonus depreciation on a 7-year asset. For both types of assets, bonus depre-

ciation accelerates tax deductions and decreases the after-tax, present value cost of investment.

Critically, however, bonus depreciation has a larger effect for the 7-year asset that is typically

depreciated more slowly. The reason is that, in the case of the 7-year asset, tax deductions are

accelerated from further in the future, thereby decreasing the after-tax present value cost of the

investment more.

Slightly more formally, let z0 be the present value of tax deductions due to depreciation

per $1 of investment in the absence of bonus depreciation under typical tax rules. z0 is the

present value of the blue (left) bars in Panels (A) and (B) of Figure 1. z0 is larger in Panel (A)

because the value of the asset is deducted from taxable income more quickly. If b is the bonus

depreciation rate, then b percent of the new asset is deducted immediately and the remaining

(1 − b) is deducted according to typical tax rules. We can represent the tax deductions in the

presence of bonus depreciation as z = b+ (1− b)z0. z is the present value of the tax deductions

represented by the green (right) bars.

Taking the derivative of z with respect to bonus yields dz/db = 1 − z0, meaning the value

of bonus depreciation is larger for assets that are typically deducted more slowly according to

typical tax rules. This simple math emphasizes that the benefit of bonus depreciation is larger

for firms and industries that invest in assets that are typically depreciated more slowly and have

lower z0 measures. Using corporate tax return data, Zwick and Mahon (2017) calculate z0 at the

4-digit NAICS industry-level. By comparing firms in industries with low z0 (that typically invest

in assets that are depreciated more slowly) to firms in industries with higher z0 (that typically

invest in assets that are depreciated more quickly), we identify the effect of bonus depreciation

on emissions.

This identification strategy is particularly appealing because most of the variation in the

z0 measure is determined not by the type of assets that are purchased, but by their use. For

example, IRS Publication 946 states that assets used in the “Manufacture of Chemicals and

Allied Products” are depreciated according to 5-year MACRS schedules. Assets used in the

“Manufacture of Rubber Products” on the other hand, are depreciated over a 7-year period.11

11MACRS class lives are based on the original Accelerated Cost Recovery System (ACRS) which was imple-
mented in 1981. ACRS class lives were “not intended to reflect actual useful lives, or even some percentage of the
useful lives” (Brazell, Dworin, and Walsh, 1989). The disconnect between depreciation schedules and how long
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As a result, firms differ in the extent to which they benefit from bonus depreciation even if

they are investing in the same types of capital. Further, firms are largely unable to change

their tax depreciation schedules in response to the policy because doing so would entail changing

industries. Because of this feature, a number of high-impact papers have examined the effect of

bonus depreciation on various outcomes by comparing firms in low z0 industries to firms in high

z0 industries over time (Cummins, Hassett, and Hubbard, 1994; House and Shapiro, 2008; Zwick

and Mahon, 2017; Garrett, Ohrn, and Suarez Serrato, 2020; Curtis et al., 2021).

The fact that bonus depreciation benefits some industries more than others naturally moti-

vates a difference-in-differences (DD) empirical strategy. We compare emissions outcomes (Yit)

in logs between plants that benefit most from bonus depreciation to plants that benefit less using

the regression specification:

Yit = β[Bonusj × Postt] + αi + λt + γXicjt + εit (1)

where subscripts i, c, j and t denote plant, county, industry, and year. Bonusj is an indicator equal

to unity for plants in industries in the bottom tercile of the z0 distribution.
12 Postt is an indicator

equal to one after policy implementation in 2002. αi and λt are plant and year fixed effects which

absorb time-invariant differences in plant-level emissions and aggregate trends in emissions.13

Xicjt is a vector of fixed effects and controls that varies across specifications. Throughout the

paper, we cluster standard errors at the 4-digit NAICS level following guidance provided by

Bertrand, Duflo, and Mullainathan (2004) and Cameron and Miller (2015).

Our DD estimate, β, which represents the change in emissions in the most affected plants

relative to less affected plants after bonus depreciation was implemented. This parameter repre-

sents the causal effect of bonus depreciation on emissions under the identifying assumption that,

in the absence of the policy, emissions trends in the most affected plants would track emissions

trends in less affected plants. Throughout the paper, we implement a number of strategies to

different types of capital actually last assuage concerns that comparing low z0 firms to higher z0 firms captures
differences in the types of capital utilized rather than arbitrary tax rules.

12In our baseline analysis, we use an indicator rather than continuous treatment variable for three reasons.
First, the indicator is agnostic to assumptions about firms’ discount rate. Second, there is a natural break in
4-digit NAICS z0 distribution at the 33rd percentile (Curtis et al., 2021). Finally, as Callaway, Goodman-Bacon,
and Sant’Anna (2021) point out, stronger assumptions are necessary to identify DD parameters when treatment
variation is continuous. We come to very similar conclusions when we define treatment using alternative cutoffs
or using the continuous variation in z0. These results are presented in Table A3.

13To adjust our estimates to account for plants with vastly different emissions levels, we weight all plant-level
regressions by outcome levels in 2001, just prior to bonus depreciation implementation.
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reinforce the validity of this identifying assumption. First, we augment our DD estimates with

dynamic specifications of the form:

Yit =
2012∑

y=1997, ̸=2001

βy[[Bonusj × I[y = t]] + αi + λt + γXicjt + εit. (2)

The time-varying coefficients βy describe differences in emission outcomes between the most- and

less-affected plants in each year relative to differences in 2001. If the identifying assumptions

hold and bonus depreciation has a significant impact on emissions, then βy should be statistically

indistinguishable from zero in years prior to 2002 and should then differ from zero upon bonus

depreciation implementation in 2002.

Next, we include a number of fixed effects designed to mitigate concerns that other coincident

shocks undermine the validity of our identifying assumption and bias our results. We show

that our estimates are insensitive to the inclusion of county-year, sector-year, and even county-

sector-year fixed effects in our regression models. County-year fixed effects absorb variation in

emissions due to shocks that differently affect some counties and not others. These fixed effects

assuage concerns that our estimates are due to policy or regulatory changes at the local level

or other localized shocks such as changes in trade and immigration policy. Sector-year fixed

effects eliminate concerns that shocks affecting one sector and not another, such as changes in

abatement technology or sector-specific regulations and incentives, drive our results.14 County-

sector-year fixed effects go one step further and control for changes in emissions due to shocks

that differently affect specific county-sectors and not others.

As a final check, we directly control for industry-level exposure to other relevant shocks

that occur during our analysis period. We are particularly concerned about other federal tax

and trade policies that have been shown to have differential effects across industries. To this

end, we directly control for a federal tax incentive called the Domestic Production Activities

Deduction (DPAD), which provided a tax benefit based on the percentage of income derived

from manufacturing activities (Ohrn, 2018). We also control for industry-level variation in trade

14Data in our primary specifications include the utilities sector, manufacturing sector, and a small number of
oil and gas extraction sites. All plants in the utilities sector (NAICS 2-digit Sector 22) are defined as treated. As
a result, when sector-year fixed effects are included in the model, estimates of the effect of bonus depreciation are
not driven by changes in utilities relative to plants in other sectors. Appendix A provides a detailed description of
how regulated utilities benefit from bonus depreciation. Although plants in the sector benefit from the investment
incentive, Table A2 shows our baseline estimates after dropping utilities plants from the sample. We find very
similar results.
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exposure due to China’s accession to the World Trade Organization (often referred to the “China

Shock,” Autor, Dorn, and Hanson, 2013).

Overall, our dynamic DD analyses—which display parallel trends in the pre-period and im-

mediate differences in emissions upon policy implementation—together with the stability of our

coefficient estimates across specifications that include a host of high-dimensional fixed effects and

industry-level controls assuage concerns that the identifying assumption underlying our estimates

is violated.

4 Data

To estimate the effects of bonus depreciation on emissions, we rely on a number of datasets. In

this section, we describe our primary data sources, detail the construction of our main variables

of interest, and present descriptive statistics for our main analysis sample. We begin with our

two primary sources of emissions data.

4.1 Toxic Release Inventory

In our main analysis, we use plant-level emissions data from the Environmental Protection

Agency’s (EPA) Toxic Release Inventory (TRI). The TRI includes emissions data for approxi-

mately 650 toxic chemicals, which are known to cause significant adverse human heath impacts

(e.g., cancer) or significant effects to the environment (or both). In particular, the dataset in-

cludes information on the annual quantity of emissions, the disposal media (air, surface water,

landfill, other), and information regarding whether releases were on-site or transferred offsite.15

Plants are required to self-report under the Emergency Planning Community Right-to-Know Act

(EPCRA) of 1986 whenever they employ at least ten employees and release at least one toxic

chemical in excess of the relevant reporting threshold. The EPA can assess civil penalties for

not reporting or misreporting releases. Additionally, the data are not used to calculate emissions

fees. These factors help assuage misreporting concerns.16 Appendix B provides a more extensive

and detailed discussion of the TRI dataset.

15Emissions encompasses a wide-range of types of releases, such as emitting, discharging, dumping, leak-
ing, leaching, and so on. Offsite emissions are transferred to geographically separate facilities, where chemi-
cals are recycled, treated, or disposed. For more details, see https://www.epa.gov/toxics-release-inventory-tri-
program/common-tri-terms.

16Misreporting is generally a concern whenever data are self-reported; however, the EPA finds that changes in
pollution concentration are correlated with changes in reported emissions (U.S. Environmental Protection Agency,
1993). See Marchi and Hamilton (2006) for an in-depth analysis of misreporting and accuracy of the TRI dataset.
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Using the TRI dataset, we construct several measures of pollution emissions. All measures

are aggregated at the establishment-level based on total weight (in metric tons). Total Releases

is the sum of all on-site and off-site chemical releases to all disposal media (air, water, land), and

Total On-Site Releases is the sum of only on-site chemical releases to all disposal media. Our

Total Releases variable reflects the sum of emissions generated, whereas Total On Site Releases

reflects the sum of emissions released at the site of the establishment. Air Releases is the sum of

all releases to the air; Water Releases is the sum of all releases to surface water, such as streams,

rivers, lakes, and other water bodies; and Land Releases is the sum of all releases to underground

and above ground land, including landfills, surface holding areas, underground injection sites,

and other leaks or spills. Finally, Clean Air Act Releases is the sum of air releases in the TRI

that are covered under the Clean Air Act.

In analyzing the effects of bonus depreciation on emissions, we rely on log transformed pol-

lution variables and winsorize outcomes at the 1st and 99th percentile to mitigate the effect of

outliers on our results.

4.2 National Emissions Inventory

In addition to the TRI, we also rely on data from the EPA’s National Emissions Inventory (NEI).

The NEI data are helpful for two reasons. First, we use this alternative data source to corroborate

our findings based on the TRI. Second, and more importantly, we use estimates based on the

NEI to quantify the aggregate and distributional consequences of bonus depreciation. The NEI

includes detailed emissions data for criteria air pollutants and precursors from both point and

non-point sources. The NEI was collected in 1990, every year between 1996 and 2000, and

every third year starting in 2002 (i.e., 2002, 2005, 2008, and so on). We focus on particulate

matter 2.5 (PM2.5, which are particles in the air that are 2.5 microns or less in width), sulphur

dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOC), from point sources

(i.e., larger sources at fixed locations). Emissions data are collected by state and local agencies

and submitted to the EPA according to emissions thresholds determined by the Air Emissions

Reporting Rule (AERR). While reporting requirements are based on the emissions potential of

each facility, the reporting thresholds vary over time and by county.17

17These thresholds vary due to county-level attainment status and voluntary reporting decisions. Changes in
reporting thresholds are a potential concern. However, our estimates are stable using only within-county-year
variation (when county-year fixed effects are included) and are very similar when we use the TRI dataset, which
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The primary advantage of the NEI is that it is a comprehensive measure of criteria air pollu-

tants and precursors, which are the primary air pollutants responsible for harming human health

and the environment. Moreover, the NEI includes detailed emissions-release data, including

stack height, diameter, temperature, and velocity. As a consequence, the NEI is particularly

well suited to use as an input in pollution-transport models and estimating aggregate economic

damages from emissions. The primary disadvantages of the NEI dataset (and the reason we first

look to the TRI) is that the NEI is not collected every year and facilities do not have consistent

identifiers across survey years.

We use the NEI in two primary ways. First, we construct annual (for years in the sample)

county-by-industry measures of emissions for PM2.5, SO2, NOx, and VOCs, which we employ

as dependent variables. Second, we use facility-level emissions data (and stack characteristics)

for PM2.5, SO2, NOx, and VOCs, combined with our coefficient estimates, to estimate aggregate

damages using the InMAP pollution-transport model.

4.3 Compustat

In supporting analyses, we explore the effect of bonus depreciation on capital investment and

emissions intensity, which we measure as firm-level emissions per dollar of capital (or per dollar

of revenue or pre-tax income). To do so, we match emissions data from the TRI to capital stock

and other financial statement data from Compustat’s North American Annual Fundamentals

database (Standard & Poor’s, 1997-2012) using the matching procedure developed in Andersen

(2016). Our matched sample is based on 5,902 TRI plants. Appendix C provides a detailed

description of the construction of this sample.

4.4 Bonus Depreciation Variation

As we note in Section 3, we rely on 4-digit NAICS-level measures of z0 to classify plants as most- or

less-affected. Our z0 measures come from Zwick and Mahon (2017), who construct the industry

averages using administrative tax return data. First, for each asset class, Zwick and Mahon

(2017) calculate z0. Then, they construct industry-level average z0 based on the percentage of

investment in each asset-class in non-bonus years using data from IRS form 4562. We limit our

treatment period to the 2002–2012 period because Zwick and Mahon (2017) construct z0 using

is not affected by these same thresholds.
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data only through tax-year 2010. As discussed above, we transform the continuous z0 measure

into a discrete indicator to identify plants in industries that benefit most from the policy.

4.5 Descriptive Statistics

Table 1 presents descriptive statistics for our main TRI analysis sample. In total, we observe

just under 5,800 treated plants (Bonus = 1) and just over 12,000 untreated plants. While treated

plants, on average, generate more emissions, both treatment and control plants show very similar

ratios of on-site releases, air releases, water releases, land releases, and releases governed under

the CAA relative to total releases. Approximately 40% of both control and treatment plants are

located in a county designated under Nonattainment according to National Ambient Air Quality

Standards during the sample period. We are able to link approximately 25% of plants in the

treatment and 24% of plants in the control groups to Compustat. Compustat firms with treated

plants have slightly larger capital stocks in 2001 than firms with control plants. Overall, while

there exist some differences between treated and control plants, our DD and event study DD

empirical strategies account for such time-invariant differences.

5 Effects of Bonus Depreciation on Emissions

We now measure the effect of bonus depreciation on toxic releases. We start by estimating

baseline DD models. We then show that our estimates are robust to the inclusion of a number

of fixed effects designed to assuage concerns that our results are influenced by other shocks that

manifest at the local or industry level. Next, we implement dynamic DD models to test for

pre-period trends and uncover the timing of the policy impacts. We then present estimates for

different types of chemical releases: on-site releases, releases to air, releases to water, releases

to land, and releases regulated by the CAA. To reinforce that the environmental impacts we

document are due to investment stimulus, we estimate the effect of the policy on capital stocks

for a subsample of plants. For these plants, we are also able to test whether bonus depreciation

affected emissions intensity. Next, we explore whether environmental regulation had the power

to mitigate the environmental impacts of the policy. Finally, we show that bonus depreciation

elicited very similar responses in terms of criteria air pollutants using NEI data.
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5.1 Baseline Impacts and Robustness

Table 2 Specification (1) presents estimates of the effect of bonus depreciation on emissions in

the presence of plant and year fixed effects. The Bonus × Post coefficient is equal to 0.314 and

is statistically significant at the 1% level. The estimate indicates that total releases for plants

that benefit most from bonus depreciation increase by 31.4% relative to plants that benefit less

after 2002 when the policy was first implemented. Specifications (2)–(6) progressively add more

advanced levels of fixed effects in an effort to isolate variation due only to bonus depreciation.

Specifications (2) and (3) replace the year fixed effects with county-year and sector-year fixed

effects, respectively. Specification (4) includes both county-year and sector-year fixed effects.

We base further analyses on this specification as it is the most parsimonious model that controls

for time-varying shocks to emissions that differentially affect some counties or sectors more

than others. Specification (5) includes county-sector-year fixed effects. Finally, Specification (6)

reverts to the combination of county-year and sector-year fixed effects and additionally directly

controls for industry-level exposure to other federal tax and international trade policies.18

The DD estimates across all six specifications are positive, statistically significant, and stable,

ranging from 0.314 to 0.349. That the estimated effects are generally invariant indicates that

our estimation strategy is not contaminated by shocks to counties or sectors that covary with

bonus depreciation. Overall, the Table 2 findings indicate plants that benefited most from the

the policy increased toxic releases by approximately 30%. For context, Zwick and Mahon (2017)

and Curtis et al. (2021) estimate that the same policy increased corporate capital investment by

around 15% and manufacturing employment by around 10% during the same period we study.

Thus, the substantial response that we document is large even relative to the capital and labor

responses to the policy. The relative size of these effects is consistent with the emissions intensity

effects we document in Section 5.5.

18To control for the DPAD, we measure the value of the deduction at the 4-digit NAICS industry based on
data from Ohrn (2018). We control for the China Shock by measuring industry-level changes in Chinese import
penetration between 1999 and 2007 Autor, Dorn, and Hanson (2016). To avoid a bad controls problem, we create
quintile bins of exposure to each control, then include interactions between these quintile bins and year fixed
effects.
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5.2 Dynamic DD Analysis

To further assess the validity of these estimates, we implement a dynamic DD analysis based on

Specification (4) from Table 2. Panel (A) of Figure 2 displays these event study estimates and

corresponding 95% confidence intervals. Estimates in pre-treatment years 1997–2001 are small,

statistically insignificant, and display no concerning trends. Starting in 2002, the year of bonus

depreciation implementation, the coefficients are positive, statistically significant, and generally

increasing in magnitude. Together, these findings indicate that differences in emissions between

plants that benefited the most from bonus depreciation and plants that benefited less increase

dramatically after bonus was first implemented. These findings also reinforce the validity of

our empirical design; the absence of differential trends prior to 2002 and the immediate and

observable differences in emissions after policy implementation provide strong evidence that the

DD effects we estimated in Table 2 are caused by bonus depreciation.19

To place the magnitude of these effects in context, Panel (B) of Figure 2 maps our reduced-

form estimates onto trends in plant-level average log emissions. The resulting figure presents two

plots, one describing the evolution of the log of total chemical releases for plants that benefited

most from bonus depreciation and another describing the evolution of the same outcome for

plants that benefited less from the policy.20 Toxic releases for the most- and less-affected plants

track each other in the years 1997 to 2001 then diverge starkly after policy implementation in

2002. While both series show the dramatic decreases in total releases documented by Shapiro

and Walker (2018) over the full period, declines for plants that benefited most from the policy

were substantially curbed after 2001.

5.3 Effects on Different Types of Toxic Releases

Table 3 displays estimates describing the effect of bonus depreciation on different types of toxic

releases. Specification (1) shows the effect of bonus depreciation on the log of Total On-site

Releases. The coefficient is 0.366, indicating the effect on on-site releases is very similar to effect

on total releases, meaning firms did not shift to—or away from—off-site releases in response to

19Appendix Figure A1 displays event study estimates corresponding to the Specifications (1), (5), and (6) from
Table 2. All three plots show statistically insignificant differences in emissions in the pre-period and immediate,
large differences in emissions after bonus implementation in 2002.

20To construct these plots we add or subtract 0.5 × our coefficient estimates from Panel (A) to the average log
of total chemical releases for the balanced sample of plant we observe.

18



the policy. Therefore, to the extent that off-site pollution represents recycling or clean-up efforts,

we do not see a proportional increase in these efforts in response to the policy. Next, we measure

the effect of bonus depreciation on total releases to air, water, and land (recall most releases are

to air). Specifications (2), (3), and (4) indicate bonus had a large statistically significant effect on

air and water, but not land releases (perhaps due to the small number of plants that make land

releases). Specification (5) shows bonus depreciation has a positive and statistically significant

effect on CAA releases that is approximately 70% as large as the corresponding total releases

estimate (Specification (4), Table 2). The smaller effect for these more stringently regulated

pollutants suggests a role for environmental regulation in mitigating the effects of investment

stimulus policies on emissions. We further explore this hypothesis in Section 5.6.

5.4 Attributing Emissions Responses to Bonus Depreciation

To reinforce that the environmental consequences we document are due to bonus depreciation, we

now turn to the sample of plants that we successfully match to firm-level capital stock data from

financial statements. We begin by repeating our total releases analysis for the matched plants.

Panel (A) of Figure 3 presents dynamic DD estimates. As was the case for the full sample,

the dynamic DD analysis shows that releases between the most- and less-affected plants trended

similarly between 1997 and 2001. Toxic releases for treated plants then increased dramatically

relative to control plants beginning in 2002. Appendix Table A4 presents DD coefficients using

the same set of specifications as Table 2 for the set of plants we successfully match to Compustat.

As was the case for the full sample, bonus depreciation has a large and positive effect on total

emissions regardless of the model. Our preferred specification for this selected sample indicates

total releases increase by 55% for the most-affected plants relative to the less-affected plants after

the policy was introduced.

If this emissions response is due to the investment stimulus policy, then we should observe

a concomitant capital investment response among the sample of firms that we match to plant-

level TRI data. We test this hypothesis using firm-level data and a slightly-modified dynamic

DD design. The outcome is the log of capital stock.21 Figure 3, Panel (B) shows our baseline

dynamic DD specification. Coefficient estimates indicate that in the years after implementation,

21Capital stocks are measured using the financial statement variable “property, plant, and equipment net of
depreciation”.

19



capital stocks for the most-treated firms show a large statistically significant increase relative

to firms that benefit less from the policy. Corresponding DD estimates with alternative levels

of fixed effects are presented in Panel (A) of Table 4. Specification (2), which corresponds to

the dynamic DD estimates and includes firm and pre-period firm size bins interacted with year

fixed shows bonus depreciation increased capital stocks by just over 30% for firms in industries

that that benefited most from the policy relative to firms in industries that benefited less.22 The

capital stock response that we document echos the findings of House and Shapiro (2008), Zwick

and Mahon (2017), and Curtis et al. (2021) and reinforces the conclusion that the emissions

response we document is due to the investment stimulus policy rather than some other shock to

toxic emissions.

5.5 Effects on Emissions Intensity and Energy Efficient Investments

Another benefit of the TRI-Compustat sample is that it allows us to directly explore the effect

of bonus depreciation on emissions intensity. To do so, we use our DD approach to estimate

the effect of the policy on firm-level emission intensity, measured as the log of total releases

scaled by capital stock.23 DD estimates are presented in Panel (B) of Table 4. Focusing on

Specification (2), which includes firm fixed effects and pre-period firm size bins interacted with

year fixed effects, our DD coefficient is 0.143 and is statistically insignificant at conventional

levels. Dynamic DD estimates corresponding to this specification are presented in Panel (C)

of Figure 3. The figure shows no differential trends in the pre-period and also no statistically

significant effects in any years after bonus depreciation was implemented. In Specifications (1),

(3), and (4) of Table 4 Panel (B), we show these null effects are robust to alternative fixed effects

designed to control for other pre-period firm-level differences in capital structure. We also find

null results when we explore the effect of bonus depreciation on alternative measures of emissions

intensity in Appendix Table A5. Overall, we do not find any evidence that bonus depreciation

decreases emissions intensity.

22Specification (1) of the same panel shows this finding is not driven by the inclusion of the firm-size bins
interacted with year fixed effects. Specifications (3) and (4) show this finding is also robust to the inclusion of
pre-period debt ratio bins interacted with year fixed effects and pre-period capital intensity bins interacted with
year fixed effects.

23We rely primarily on emissions scaled by capital stock because bonus depreciation is designed to stimulate
investment in capital assets. We also construct measures of emissions intensity as (1) total releases scaled by
revenue and (2) total releases scaled by pre-tax income. Results based for theses outcomes are presented in
Appendix Table A5.
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That bonus depreciation does not affect average emissions intensity, begs the question “did

bonus depreciation lead to any adoption of cleaner production technologies?” Unfortunately,

recent data on pollution abatement investments are scarce.24 To provide some tangentially

related evidence on this question, we turn to the Manufacturing Energy Consumption Survey

(MECS) from the Department of Energy.25 Using the MECS, we construct industry-by-year

aggregates of the share of surveyed firms who made investments in seven categories of capital

to increase energy efficiency. We also construct the share of establishments who underwent a

voluntary energy audit and who installed or retrofitted an energy source. We use these measures

in a simple DD framework that includes industry and year fixed effects. Appendix Table A6

presents our results. We find that bonus depreciation did lead to increased investments in

several categories of energy efficient investments, including compressed air systems, machine

drive systems, and process cooling systems. Additionally, the results show bonus increased the

likelihood of plants undertaking an energy audit and increased installations or retrofits of an

energy source. Overall, we take this as suggestive evidence that bonus depreciation may have

stimulated some investments in greener technologies.

One possible explanation for the null emissions intensity effects and the suggestive evidence

that bonus stimulated some green investment is that bonus depreciation led to an increase in

capital intensity. Because capital-intensive production is more emissions intensive, this adjust-

ment may have offset any of the gains from greener technologies. To explore this hypothesis, we

estimate the effect of bonus depreciation on firm-level capital intensity (the log of capital stock

per unit of total assets). The results presented in Panel (D) of Figure 3 and Panel (C) of Table

4 show bonus depreciation led to an increase in capital intensity.

Overall, we find that while bonus depreciation likely stimulated some “greener” technology

adoption, the overall technique effect did not decrease emissions intensity. A plausible explana-

tion for these two responses is that the policy led to an increase in firm-level capital intensity.

24The Pollution Abatement Cost Expenditures (PACE) survey was conducted annually from 1973–1994 (except
for 1987) and 1999 and 2005. Variables from PACE are also unreliable and inconsistent across years, limiting our
ability to examine changes over time (Ross et al., 2004).

25In Appendix F, we provide more description of the MECS survey and our analysis.
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5.6 Can Environmental Policies Mitigate Emissions Effects?

Given the important role of environmental policy as a determinant of overall emissions (Shapiro,

2022), we empirically test whether CAA environmental regulations led to heterogeneous emissions

responses to bonus depreciation. To do so, we compare emissions responses across plants in

attainment and nonattainment counties. We focus primarily on air pollutants covered under

the CAA as these pollutants would be subject to the relevant regulations. During the sample

period, there were two amendments (for Ozone and Particulate Matter) to the CAA, which led

to a significant increase in the number of nonattainment counties in 2004 and 2005. We use

a time-invariant measure of nonattainment, defining a county as in nonattainment if was in

nonattainment following the 2004 and 2005 reforms.26

As a prelude to the attainment status heterogeneity analysis, Figure 4, Panel (A) shows

dynamic DD estimates of the effect of bonus depreciation on the Log of CAA Releases. As was

the case with total emissions, estimates from 1997–2001 show differences in CAA releases between

treated and control plants are statistically insignificant and stable. The dynamic DD estimates

also show large increases in CAA releases for those plants benefiting most from bonus depreciation

relative to other plants after 2002. These estimates reinforce the finding in Specification (5) of

Table 3 and show bonus depreciation had a large, positive impact on the emissions regulated by

the CAA.

Panel (B) shows dynamic DD estimates describing the effect of bonus depreciation on CAA

emissions separately for plants in attainment and nonattainment counties. Both plots show

insignificant and stable pre-trends, and statistically significant and positive coefficients after

bonus depreciation was implemented. Importantly, prior to 2005, the effects of bonus depreciation

were nearly identical for nonattainment and attainment counties, but the effects diverged at the

exact same time that the new nonattainment standards went into effect. In particular, the

emissions response for plants in nonattainment counties grew slower than those in attainment

counties after 2005, suggesting the more strict regulations mitigated the emissions response to

bonus depreciation.

To quantify this heterogeneity, Table 5 provides regression estimates in which we include

26Almost all counties in nonattainment status prior to the 2004 and 2005 reforms remained in nonattainment
status following these reforms which introduced more strict guidelines. Data on county-level attainment status
can be found at https://www.epa.gov/green-book.
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interactions between Bonus × Post and an indicator equal to one for plants in nonattainment

counties.27 Specification (1) focuses on the CAA Releases outcome variable. The Bonus ×

Post coefficient is positive and statistically significant. Its magnitude indicates that bonus de-

preciation increases CAA Releases by 48.2% for plants in counties that were less severely reg-

ulated. The interaction coefficient is negative and statistically significant and indicates that

bonus depreciation decreased the emissions response to bonus depreciation by approximately

29% (0.286=0.138/0.482) in nonattainment counties.

We also test in Specification (2) whether there is a heterogeneous response to bonus depreci-

ation using On-Site Releases. We focus on On-Site Releases as, unlike Total Releases, we know

with certainty the location and can therefore determine whether the releases would be covered

under nonattainment regulations. There are two reasons we perform this test. First, it is impor-

tant to know whether the regulations also mitigated the response of a broader set of emissions.

Second, by comparing the heterogeneous responses for CAA Releases and On-Site Releases, we

can infer whether the nonattainment standards caused a shift from regulated to unregulated

emission (Gibson, 2019).

The Specification (2) interaction term remains negative and statistically significant. The fact

that the heterogeneous effect coefficients are nearly identical for CAA releases and On-Site Re-

leases suggests that nonattainment standards did indeed temper responses to bonus depreciation

for a broader set of emissions. This result also suggests that nonattainment standards did not

cause a significant shift from regulated and unregulated emissions. This is consistent with the

co-generation of regulated and unregulated pollutants (Burtraw et al., 2003).

A potential explanation for the nonattainment heterogeneity results is that capital investment

is also less responsive to bonus depreciation in more regulated counties. In Appendix Table A7,

we compare capital investment responses to bonus depreciation for firms that have plants in

nonattainment counties to responses for firms that do not using a regression specification similar

to those used in Table 5.28 All interaction coefficients are negative and economically significant in

magnitude but are imprecisely estimated, likely owing to the smaller matched TRI-Compustat

sample. These results suggest that environmental regulation may have the ability to temper

27For these regressions, we exclude county-year fixed effects because the goal of the analysis is to uncover differ-
ences in response among counties over time depending on their CAA status. Estimates based on regressions that
include county-year fixed effects yield similar estimates in terms of sign, magnitude, and statistical significance.

28We define a firm as Nonattainment if at least one of its plants is located in a nonattainment county.
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emissions responses to investment stimulus policies, although they may do so by undermining

the ability of the policy to actually stimulate investment.

Overall, based on the heterogeneity evidence presented in Figure 4 and 5, we conclude that

the CAA played a significant role in mitigating emissions responses to bonus depreciation. In

Section 6.5, we provide further evidence for this conclusion using NEI data. That the CAA

mitigated emissions responses to bonus depreciation suggests environmental policy can play a

vital role in shaping environmental responses to fiscal stimulus policies.

5.7 Effects on NEI Criteria Air Emissions

We now turn to the NEI to estimate the effect of bonus depreciation on criteria air pollutants.

This analysis provides both corroborating evidence for our TRI results and allows us to quantify

aggregate economic damages due to policy’s environmental consequences, which we do in the

following section.

We slightly modify the empirical strategy described in Section 3 to identify the effects of

bonus depreciation on county-industry NEI emissions. In particular, we estimate the following

DD specifications:

Ycjt = β[Bonusj × Postt] + αcj + γXcjt + εcjt. (3)

where Ycjt is the log of annual aggregate emissions of PM2.5, SO2, NOx, and VOCs in county-

industry cj. We follow our preferred TRI analysis in using observation-level (county-industry)

fixed effects as well as county-year and sector-year fixed effects in all specifications. We continue

to cluster standard errors at the four-digit-NAICS industry level.

Table 6 presents our DD estimates for the four NEI criteria air pollution outcomes. The DD

coefficients are economically large and statistically significant at the 10% level or better for the

outcomes PM2.5, SO2, and NOx. Bonus depreciation does not have a statistically significant effect

on VOCs, but the coefficient is large and positive. For the statistically significant effects, the

magnitudes are remarkably similar in size to the TRI coefficients, with estimates ranging from

0.301 to 0.348, indicating that county-industries benefiting the most from bonus depreciation

increased their emissions of these criteria air pollutants by between 30 and 35% after the policy

was implemented in 2002.
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As with the TRI analysis, we estimate dynamic DD models for each criteria air pollutant.29

Figure 5 presents the dynamic DD estimates for each of the four outcomes. All four plots show

relatively small and stable differences in emissions between treated and control units in the pre-

period, indicating that differential trends are not responsible for the effects we estimate. The plots

also show large, positive increases in differences in emissions between treated and control units

in the years after bonus depreciation implementation. Together, these dynamic DD estimates

reinforce the plant-level TRI findings showing that bonus depreciation had a large, positive effect

on emissions of criteria air pollutants.30 Ultimately, that we find such similar results from two

very different data sources reinforces the validity of our conclusion that bonus depreciation had

a large positive effect on emissions.

6 Aggregate Economic Damages

Thus far we have documented that investment stimulus policies can have large effects on emis-

sions. Ultimately, we want to know how these emissions translate into reduced environmental

quality and economic damages. To this end, we now quantify the aggregate economic damages

caused by bonus depreciation and explore whether these damages are concentrated among certain

socioeconomic or demographic groups.

To estimate economic damages, we use a four-step procedure closely following a number of

recent high-impact papers (e.g. Holland et al., 2016; Fowlie and Muller, 2019). First, we estimate

changes in criteria air pollutants due to the policy. Second, we use these estimates as inputs for a

pollution transport model to map source emissions changes to changes in destination (receptor)

PM2.5 pollution concentrations.31 Third, we calculate excess mortality due to increased exposure

to local pollution concentrations. Fourth and finally, using a standard value of statistical life

estimate, we translate excess mortality into a dollar value of economic damages due to the

29We omit the 2000 interaction term—rather than 2001 as in our TRI analysis—because NEI data was not
collected in 2001.

30Across all four event study plots presented in Figure 5, coefficients in years 1996–1998 and coefficients in
years 1999 and 2000 are very similar. In Appendix E, we investigate these similarities and show that our results
are robust to limiting the analysis to a subsample that excludes years with highly correlated responses to the NEI
survey.

31Around 85% of the economic costs associated with increased pollution concentrations are due to increased
mortality risk from particulate pollution (EPA, 2011). The use of a sophisticated pollution transport model is
necessary in this situation because actual pollution concentrations are subject to complex modes of atmospheric
transport and chemical reactions (Deschenes and Meng, 2018; Hernandez-Cortes, Meng, and Weber, 2022). More-
over, quantifying economic damages from ambient pollution concentrations requires a precise understanding of
the health effects of exposure to particular pollutants.
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policy.

6.1 Calculating Emissions Changes

We use the coefficient estimates from Table 6 to quantify the changes in criteria air pollutant

emissions due to the policy. We calculate emissions changes for a given pollutant, ∆Yi, as:

∆Yi = βI[Bonusj]× Yi (4)

where Yi is the baseline emissions from facility i, and I[Bonusj] is a dummy variable equal to one

for facilities we classify as most affected by the policy in the analysis above.32 β is the estimated

effect of bonus depreciation, which differs by pollutant type. This procedure implicitly assumes

the group of control plants experience no increase in emissions as a result of bonus depreciation.

This approach results in a conservative estimate of the emissions changes due to the policy. Our

estimates are also conservative because we assume bonus depreciation has no effect on VOCs

despite the large—but statistically insignificant—point estimate.

Table 7 presents baseline pollution emissions and our estimates of total pollution emissions

(in metric tons) of criteria air pollutants generated by bonus depreciation. The first row (Total

Emissions) is total baseline emissions for all point-source emissions sources. The total amount of

PM2.5 emissions was around 101 thousand, SO2 emissions was around 1.8 million, NOx emissions

was around 896 thousand, and VOC was around 180 thousand. The second row (∆ Emissions

(Average)) presents total estimated emissions changes due to bonus depreciation (following equa-

tion 4) using the coefficients from Table 6. The remaining rows are discussed in Section 6.5.

6.2 From Emissions Changes to Economic Damages

We map emissions changes (∆Yi) from their sources to their destination PM2.5 concentrations us-

ing the InMAP pollution transport model.33 We then calculate aggregate damages based on the

number of additional deaths attributable to the increase in PM2.5 pollution, which depends on the

32We rely on the 2008 NEI dataset for baseline emissions levels for several reasons. The first is that—consistent
with the choices we make elsewhere—the later year yields more conservative estimates. This is because i) ambient
pollution concentrations (from NEI sources and all other sources) have generally declined over the sample period
and ii) the stringency of environmental regulations, such as minimum stack heights, has increased during the
sample period. As a result, the 2008 data provide a smaller base and an environment where the same changes
lead to smaller aggregate damages. We opt to use 2008 rather than later years in our sample, due to concerns
that these estimates may be influenced by the Great Recession.

33In order to retain computational tractability, we use the source-receptor matrix (SRM) InMAP model devel-
oped by Goodkind et al. (2019).
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number of individuals exposed and the population-specific mortality rate. Following the epidemi-

ological literature (and the InMAP model), we estimate excess deaths using Cox proportional-

hazard models. A key parameter in this calculation is the “concentration-response relationship,”

which is defined as the increased risk of all-cause mortality associated with a 10 µg/m3 increase

in PM2.5. To account for uncertainty with respect to this key parameter, we follow standard

InMAP practice and provide a range of damages based on a range of concentration-response

estimates from 4% (Krewski D, 2019) to 14% (Lepeule J, 2012). To translate these estimates

into monetary damages, we multiply the number of deaths attributed to bonus depreciation by

the standard value of statistical life, $9 million USD (EPA, 2010).

Table 8 presents our estimates of annual aggregate economic damages due to bonus depreci-

ation for the United States as a whole and by racial groups. Aggregate economic damages are

expressed in terms of total damages (million $) and damages per capita ($/pop). The “Low”

columns use the 4% concentration-response parameter and the “High” columns use the 14%

parameter. Annual aggregate economic damages range from $20 to 45 billion US, which corre-

sponds to per capita damages between $66 and $148.34 These damages represent between 51

and 115% of the fiscal cost of the policy. We further detail this simple calculation and provide

an empirical welfare analysis to better contextualize the magnitude of our damage estimates in

Section 7.3.

The results presented in Table 8 also show that the economic damages from the policy are

highly disproportionate across racial groups, with Black populations incurring per-capita eco-

nomic damages that are 75% higher than the national average.

6.3 Disparate Impacts of Bonus Depreciation Emissions

To more closely examine the disparate impacts of emissions generated by bonus depreciation

across regions, socioeconomic status, and racial groups, we aggregate economic damages to the

county level. We then merge aggregate damages with county-level data on median income,

poverty rates, and racial composition from the United States Census Bureau’s Small Area Income

and Poverty Estimates.35

34We highlight that these damages are based solely on increases in particulate matter concentrations. Bonus
depreciation also likely generates damages via increased greenhouse gases. Unfortunately, no plant-level data on
carbon dioxide and other greenhouse gas emission is available during our sample period.

35The InMAP uses a variable-resolution computational grid containing grid-level data on population and racial
composition. However, income and poverty measures are only estimated for larger administrative units, such as
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Figure 6 maps aggregate per-capita economic damages using the lower concentration-response

parameter of 4%. The map demonstrates that economic damages are highly uneven across

counties, with higher damages more concentrated in the South, Midwest, and Mid-Atlantic.

County-level per-capita economic damages range from as low as $0.08 to as high as $365.

Given this significant geographic heterogeneity in damages, we explore the extent to which

low-income and racial minorities are differentially (both unconditionally and conditionally) im-

pacted by pollution due to bonus depreciation. As a first step in this analysis, we present some

visual evidence of these relationships. Figure 7 presents binscatter plots relating per-capita

economic damages to (A) median household income, (B) poverty rate (all ages), (C) share of

non-white population, and (D) share of Black population. The dots represent average damages

for 30 equal-sized bins (population weighted) for each variable. The lines are based on regres-

sions of county-level damages on each characteristic based on the underlying data. The plots

presented in Figure 7 provide strong visual evidence that economic damages from bonus depre-

ciation emissions are concentrated in counties with lower median incomes, higher poverty rates,

lower non-white share of the population, and higher Black population share.

To formally analyze the relationships between socioeconomic status and race with economic

damages, Table 9 presents both conditional and unconditional regressions of per-capita economic

damages on median income, poverty-rate, and racial group shares.36 Specification (1) indicates

that per-capita damages are negatively related to median income, while Specification (2) indi-

cates that per-capita damages are positively related to poverty rates, but the relationship is not

statistically significant. Specifications (3)-(6) indicate that per-capita damages are positively

related to the county-level share of Black residents, whereas per-capita damages are negatively

related to the share of Latino, Asian, and Native American residents. Specification (7) indicates

that per-capita damages are negatively related to the share of Non-White population. These

findings are consistent with Table 8, which shows that per-capita damages are 75% higher for

African Americans than the national average. The disparity in economic damages for Black pop-

ulations reflects both differences in pollution exposure and differences in mortality sensitivity to

pollution. We estimate that African Americans are exposed to 29.8% higher levels of pollution

generated by the policy than the national average. This constitutes a large portion of the 75%

counties.
36We weight the regressions in Table 9 by county population.
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overall difference in damages, which suggests that both differences in exposure and differences

in mortality sensitivity to pollution are important factors in explaining the racial disparities we

document.

Of course, income and race are correlated so the results in Specifications (1) and (2) may

be driven by the correlations presented in Specification (3)-(7) and vice versa. To try to dis-

entangle the relationships, in Specifications (8) and (9), we regress damages on measures of

both income and race. In both regressions, the emissions damages show strong, statistically

significant relationships with racial composition, but not with income measures. We take these

results to suggest that even among counties with similar median income levels and poverty rates,

the economic damages of emissions generated by bonus depreciation are most concentrated in

counties with larger shares of Black residents. A sizable literature documents inequalities in

exposure to air pollution across income and racial-ethnic groups (Banzhaf, Ma, and Timmins,

2019). Our results show that bonus depreciation likely exacerbated the differences documented

in these papers.37

6.4 Pollution and Jobs

While the economic damages associated with bonus depreciation are concentrated among low-

income and Black populations, the economic benefits generated by the policy may also dispropor-

tionately accrue to these communities. A particularly salient benefit of the policy is the jobs that

it created. To investigate the relationship between the jobs created and pollution damages from

the policy, we compare our estimates of county-level damages (per-capita) to county-level job

creation (per 100k population) estimates based on Garrett, Ohrn, and Suárez Serrato (2020).38

Panel (A) of Figure 8 shows a binned scatterplot representing this comparison. Perhaps surpris-

ingly, we find that county-level pollution damages are inversely related to the jobs created by

the policy. That is, the job benefits of the policy do not disproportionately accrue to the same

populations as the pollution costs. There are two reasons for this negative correlation. First,

emissions generated by the policy disperse in the atmosphere and are transported downwind,

often to distant counties.

37Curtis et al. (2021) show that the employment effects due to the policy are also concentrated among workers
who have been historically disadvantaged in the labor market, including Black workers. Thus, both the benefits
and environmental damages due to the policy are at least somewhat progressive.

38Using a local labor markets empirical approach, Garrett, Ohrn, and Suárez Serrato (2020) estimate that
during the time period we study, bonus depreciation created more than 6 million jobs.
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Second, and perhaps more importantly, bonus depreciation created jobs in industries through-

out the economy. In contrast, only a selection of industries are responsible for the majority of

toxic emissions and criteria air pollutants.39 As a result, the job benefits do not accrue to

populations that are disproportionately harmed by bonus depreciation.

We further explore the relationship between pollution damages and jobs created in Panels

(B) and (C) of of Figure 8, which correlate damages per job to median household income and

Black population shares. We find that damages per job, like damages themselves, are highest

in counties with lower median incomes and in counties with larger Black population shares.40,41

These comparisons reinforce our conclusion that the jobs created by bonus depreciation do not

offset the pollution costs of the policy in ways that undo its disparate impact among low-income

and Black populations.

6.5 Quantifying the Role of Regulations

In Section 5.6, we showed that environmental regulations can play a key role in mitigating the

emissions response to bonus depreciation. We now use analysis based on NEI data and the

InMAP model to explore how environmental regulations may affect the level and distribution of

economic damages due to the policy.

To begin, we use NEI data to estimate heterogeneous responses to bonus depreciation by

county nonattainment status.42 The results presented in Table 10 show that bonus deprecia-

tion has a large and statistically significant effect on all four criteria pollutants in attainment

counties. The table also shows that the response of all four types of emissions to the policy

was significantly smaller in nonattainment counties. These findings echo the results presented in

Section 5.6 and reinforce the conclusion that environmental regulations can significantly mitigate

the environmental effect of investment stimulus policies.

Next, we adapt the procedure in Section 6.1 to quantify the emissions changes associated with

bonus depreciation. In particular, we allow the effect of bonus depreciation on each pollutant to

39When we instead focus exclusively on jobs created in the industrial sector, which contains all high-emitting
industries (see Appendix H), then we do observe a positive correlation between pollution damages and jobs
generated by bonus depreciation (Figure A4).

40Appendix Table A11 reports regressions of pollution damages per 100 thousand jobs on county-level demo-
graphic measures. The table shows that even in a multivariate regression, damages per job are concentrated
among both low-income counties and counties with high Black population shares.

41We also find that the relationships in Panels (B) and (C) are similar when restricting jobs to only those in
the industrial sector (see Panels (B) and (C) of Appendix Figure A4).

42This heterogeneity analysis largely follows the TRI heterogeneity analysis presented in Section 5.6.
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vary based on whether the facility is in an attainment or nonattainment county.

Row 3 of Table 7 presents the total changes in emissions due to the bonus depreciation pol-

icy, accounting for heterogeneous emission responses according to county-level attainment status.

Accounting for heterogeneity increases aggregate changes in PM2.5, SO2, and NOx emissions. We

also now estimate positive changes in VOCs due to the policy as the additional interaction re-

sulted in statistically significant effects in attainment counties. To obtain hypothetical emissions

changes if all counties or no counties were in nonattainment status, we use the regression estimates

for either nonattainment or attainment counties, respectively. Emissions changes assuming all

counties were in attainment are presented in the fourth row of Table 7 and the fifth row presents

emissions changes assuming all counties were in nonattainment status.

To calculate aggregate economic damages and economic damages for different racial/ethnic

groups, we use the coefficient estimates from Table 10 as inputs for the InMAP model under

three scenarios, each described below. The damage estimates are presented in Table 11. The two

columns entitled Actual Nonattainment refer to economic damages under the Actual Nonattain-

ment designations. We expect that economic damages under Actual Nonattainment designations

should be similar to baseline economic damages presented in Table 8; however, there might be

small differences due to difference in the distribution of emissions across nonattainamnet and

attainment counties.43 Table 11 demonstrates that economic damages are slightly lower after

accounting for heterogeneous effects, ranging from around 19 to 43 billion USD.

Table 11 also presents two counterfactual scenarios regarding attainment status. First, we

estimate economic damages under the counterfactual assumption that all counties are in at-

tainment (All Attainment). Second, we estimate economic damages under the counterfactual

assumption that all counties are in nonattainment (All Nonattainment). Comparing damages

between the Actual Nonattainment and All Attainment scenarios shows that between $7.8 and

17.6 billion USD or 40% of damages were avoided due to the extant regulatory environment.

43The primary difference is that emissions changes would be relatively larger in attainment counties and smaller
in nonattainment counties (compared to the average effect captured in the baseline model). Because excess
mortality depends on the number of individuals exposed and the pollution sensitivity of the population, and
these factors are plausibly related to attainment status, aggregate damages would generally be dissimilar after
accounting for heterogeneous effects across attainment status. A secondary difference results from the fact that
the coefficient for VOC was not statistically different from zero in the baseline estimations, implying there were
no VOC emissions changes used to calculate aggregate damages. However, after accounting for heterogeneous
effects, the coefficient is statistically significant, and the aggregate damages presented in Table 11 reflect these
VOC emissions changes.
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Along the same lines, the difference in damages between the Actual Nonattainment and All

Nonattainment scenarios shows $5.4 to 12.2 billion USD or 28% in additional damages could

have potentially been avoided if all counties were designated nonattainment.

Note that across the three scenarios presented in Table 11, the percentage differences in

economic damages between the scenarios are generally larger than the corresponding percentage

differences in emissions changes. This implies that environmental regulations not only serve to

reduce the effect of bonus depreciation on emissions, but also shift the emissions generated by

the policy to places with less existing pollution or less susceptible populations, where they create

less damage.

7 Policy Analysis: Bonus Depreciation vs. Alternatives

In this section, we seek to understand why bonus depreciation resulted in substantial pollution

damages, and whether alternative stimulus policies might achieve similar fiscal objectives at

lower environmental costs. To provide additional insight, we also provide a simple back-of-the

envelope welfare analysis of bonus depreciation and these alternative policy options.

7.1 Does Bonus Target Dirty Industries?

A natural question that arises is whether the magnitude of damages we estimate are a natural

feature of all fiscal stimulus policies or whether they are specific to bonus depreciation? That is,

bonus depreciation may unintentionally benefit the most emissions-intensive industries, thereby

resulting in disproportionately high economic costs. To explore this question, in Panel (A)

of Figure 9, we compare bonus depreciation generosity to emissions intensity at the industry-

level. On the horizontal axis, we measure bonus depreciation generosity as the log of (1 −

z0), where z0 is the weighted present value of depreciation allowances in the absence of bonus

depreciation. Industries with higher log of (1 − z0) benefit more from the investment stimulus

policy. We measure emissions intensity as the log of annual emissions damages per annual dollar

of investment.44 The size of each data point corresponds to the industry’s annual investment. The

44Economic damages are the weighted sum of industry level emissions of NEI criteria air pollutants (PM2.5,
SOx, NOx, VOC) where the weights are average economic damages for each pollutant type. We calculate average
economic damages using the InMAP model by estimating economic damages for each pollutant type divided by
the change in corresponding emissions. We focus on industry emissions damages per dollar of investment as a
measure of pollution costs relative to the primary benefit of increased investment under bonus depreciation. We
find similar patterns using alternative measures of emissions intensity, such as capital stock or sales.
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figure shows a strong positive correlation between bonus depreciation generosity and emissions

intensity. Industries to the right of the green dashed line are those that we classify as treated

in our empirical analysis. Clearly, bonus depreciation does, in fact, favor the most emissions

intensive industries, suggesting the economic damages we estimate are due to bonus depreciation,

itself, rather than investment stimulus policies in general.

7.2 Alternative Stimulus Policies

To better understand the extent to which the damages we estimate are due to this unintentional

targeting feature of bonus depreciation, we now design two alternative investment stimulus poli-

cies and compare their damages to those from bonus depreciation. We imagine these policies

can be directed at a particular set of target industries in the industrial sector and generate the

same investment response as bonus depreciation, in percentage terms (e.g. 10%). An example

of such a policy would be a corporate income tax cut targeted at certain industries that is suffi-

ciently large to generate the same percent investment response as bonus depreciation. Because

the investment stimulus effects of these hypothetical policies are, by definition, the same as for

bonus depreciation, and because the investment bases are the same, these hypothetical policies

must stimulate the same amount of total investment as bonus depreciation.

We define the two hypothetical policies by the industries they target. The first policy targets

the industries that benefit the least from bonus depreciation. To choose exactly which industries’

investment is stimulated, we start with the industries with the highest z0 and add industries to

our targeted group until their cumulative investment base is the same as for the industries we

define as treated by bonus depreciation in our main analysis. Because the investment stimulus

effect of this hypothetical policy is by definition the same as for bonus depreciation and because

the investment base is the same for those targeted by this “Anti-bonus” policy, it stimulates the

same amount of total investment as bonus depreciation, itself.

The industries that are targeted by this alternative Anti-bonus policy lie to the left of the

blue-dashed line in Figure 9 Panel (A). Clearly, the industries treated by this Anti-bonus policy

have lower emissions intensity. As a result, our first alternative policy, which stimulates the same

amount of investment as bonus depreciation, does so at a fraction of the environmental cost.

Figure 9 Panel (B) presents economic damages per capita for bonus depreciation (green bars)

and the hypothetical Anti-Bonus depreciation policy (blue bars). Recall that bonus depreciation
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generated between $20 and $45 billion in annual damages. We estimate that the Anti-Bonus pol-

icy would produce significantly less damages, ranging between 1 and 2.3 billion annually. These

damages represent around 5% of the damage of the actual bonus depreciation policy. The fig-

ure demonstrates that damages were slightly over $145 per capita under the bonus depreciation

policy, whereas damages were less than $8 per capita under the Anti-Bonus policy. Per-capita

damages were drastically lower under the Anti-Bonus policy for all racial groups. African Amer-

icans, who had the highest damages per capita under the actual policy, had the largest reduction

in damages under the anti-bonus policy in absolute terms; however, the percentage reduction was

less than the national average. These comparisons reinforce that bonus depreciation was biased

towards emissions-intensive industries and therefore produced nearly 20 times more economic

damages compared to an alternative policy targeting Anti-Bonus industries.

The second hypothetical policy targets the least emissions intensive industries.45 Again, we

assume this policy stimulates the same percent increase in investment as bonus depreciation. To

identify the industries targeted by this second policy, we begin by ranking industries according

to emissions intensity. Our targeted group is composed of the lowest emissions-intensity indus-

tries that represent the same investment base as the industries we define as treated by bonus

depreciation in our main analysis. The industries treated by this “Low Emissions Policy” lie

below the black dashed line in Figure 9.

Figure 9 Panel (B) also presents economic damages per capita for this “Low Emissions-

Intensity Targeting Policy” (black bars, which are barely visible). Remarkably, total economic

damages under this targeted policy are less than half a percent of actual economic damages due

to bonus depreciation. Under this alternative policy, economic damages were equal to or less

than $1 per capita for all demographic groups.

Our analysis of these two alternative hypothetical investment stimulus policies clearly demon-

strates that the scale of economic damages from bonus depreciation is not an inevitable conse-

quence of fiscal policy in general. Instead, the large environmental damages generated by bonus

depreciation are due to the fact that the most emissions-intensive industries disproportionately

benefit from the policy. We conclude that alternative policies can be designed to stimulate the

45An important related question to this second policy is the scope to stimulate investment while maintaining
low or acceptable levels of pollution damages. In Appendix I, we show that a policy targeting the lowest emissions
industries can be designed to stimulate around twice the amount of additional investment as the actual bonus
depreciation policy with very little resultant economic damages.
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same amount of investment at a fraction of the environmental cost. In the following section,

we examine the welfare consequences of these findings using a Marginal Value of Public Funds

(MVPF) framework.

7.3 Welfare Analysis

The MVPF is used across a variety of fields as a benchmark for empirical welfare analysis

(Hendren and Sprung-Keyser, 2020).46 The MVPF is defined as the ratio of the marginal benefit

to the marginal fiscal cost of the policy (Finkelstein and Hendren, 2020). We define the net

marginal benefit as the change in GDP associated with the policy less the corresponding pollution

damages.47 More formally, the MVPF is defined as

MVPF =
dY - dE

dT
,

where dY is the change in GDP, dE is the change in pollution damages, and dT is the change in

government revenue.

To provide additional insight into how pollution damages contribute to this measure, we can

divide the MVPF into two distinct effects,

MVPF =
dY

dT
− dE

dT
.

The first effect, dY/dT, is the ratio of additional GDP to the fiscal cost of bonus depreciation.

This ratio represents the amount of GDP stimulus generated per dollar of government tax ex-

penditures, which we refer to as the stimulus value of public funds or SVPF. The second effect,

dE/dT is the amount of pollution damages per dollar of government tax expenditure, which we

refer to as the environmental burden of public funds or EBPF. Hence, the MVPF is composed of

the stimulus value of public funds and the environmental burden of public funds:

MVPF = SVPF− EBPF.

46Finkelstein and Hendren (2020) provide guidance on the implementation and interpretation of using the
MVPF in empirical welfare analysis. Briefly, the MVPF can be interpreted as the social benefit (or willingness to
pay) for $1 of government spending (or foregone tax revenue). The MVPF for a given policy therefore elucidates
the tradeoffs involved in policies and facilitates comparison with other dissimilar policies. As is conventional
in the literature, the empirical welfare analysis represents a partial-equilibrium analysis, and we abstract from
potential general equilibrium and income effects of the policy.

47We use changes in GDP as a welfare measure as it is transparent, objectively measured, comparable to other
studies (for example, Kennedy et al. (2024)), and does not require making additional assumptions (such as,
functional-form assumptions regarding the curvature of utility functions).
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Abstracting from distributional considerations, a welfare-improving policy would require that

the MVPF exceed the marginal cost of public funds (i.e., the cost of raising $1 of tax revenue

to finance bonus depreciation). Although the marginal cost of public funds (MCPF) depends on

the tax instruments used to finance bonus depreciation, a useful benchmark is to assume that the

MCPF is equal to 1.48 Using this benchmark, bonus depreciation is therefore welfare improving

when the MVPF is greater than one. Analogously, the policy increases welfare when the positive

stimulus externality (SVPF −1) exceeds the negative pollution externality (EBPF).49

To calculate the MVPF, we assign values of government fiscal cost based on previous studies,

and use estimates of the capital response to the policy coupled with well-established capital-

output elasticities to quantify the effect of the bonus on GDP.50 Garrett, Ohrn, and Suarez Serrato

(2020) estimate that the fiscal cost of bonus depreciation was $311 billion total or about $31

billion per year during the period we study. Zwick and Mahon (2017) estimate that bonus

depreciation increased capital investment by $73.6 billion and $135 billion per year in the first

and second rounds, respectively. We use a well-established capital-output elasticity of 1/3 to

translate changes in capital investment to changes in output (Vollrath, 2021).

Table 12 reports our welfare estimates for bonus depreciation and our alternative investment

stimulus policies. For the actual policy, We calculate a SVPF equal to 1.3, implying that every

dollar that the government spends on bonus depreciation increases GDP by $1.30.51 Thus, in

the absence of any pollution externalities, we estimate bonus depreciation is welfare improving

because the SVPF is greater than 1, with a positive stimulus externality of 30 cents per dollar

of tax expenditure.

48Assuming the MCPF = 1 is equivalent to assuming the government financed bonus depreciation via non-
distortionary lump-sum taxes. More realistically, under the assumption that the government financed bonus
depreciation via distortionary taxes, the MVPF would need to exceed unity plus the deadweight loss (or excess
burden) from these taxes. However, specifying which additional taxes are associated with bonus depreciation is
challenging. For details regarding the theoretical underpinnings of the arguments in this paragraph, we refer to
the recent paper by Bastani (2024).

49Because taxes create a deadweight loss, additional GDP per dollar tax expenditure consists of the mechanical
effect of cutting effective taxes equal to 1 (holding behavioral effects constant) and the efficiency gain associated
with positive behavioral effects (increasing investment and in turn GDP), implying that the SVPF exceeds unity.
From a welfare point of view, the mechanical effect is generally neither a welfare gain nor loss as bonus depreciation
would need to be financed via other tax increases or government spending reductions. On the other hand, the
behavioral effect (dY/dT - 1) represents a net welfare gain from increasing efficiency (positive externality).

50Appendix K details our MVPF calculations and tests the sensitivity of our results to alternative parameteri-
zations.

51This estimate is consistent with MVPFs for other corporate tax cuts (which do not account for pollution
externalities). Based on findings from Kennedy et al. (2024), we calculate an MVPF of 1.4 for the corporate
income tax cuts that were part of the Tax cuts and Jobs Act (TCJA) of 2017.
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However, our estimates of the negative pollution externality (EBPF) from bonus depreciation

range from 51 cents to $1.14, depending on the concentration-response parameter. As a result,

after accounting for the pollution externality, our estimates of the policy’s MVPF ranges between

0.15 and 0.79. These estimates are well below the necessary benchmark of unity for the policy

to be welfare-improving.

There are two ways to see why incorporating pollution externalities leads us to conclude

that bonus depreciation is a welfare-decreasing policy. First, the policy’s negative externality

in terms of the environmental burden from public funds ranges between 51 cents and $1.14,

which exceeds the 30 cent positive stimulus externality. Second, we can consider the fiscal and

pollution costs per dollar of GDP stimulus. The inverse of the SVPF (i.e. 1/SVPF) gives us

the fiscal cost per dollar of stimulus, which we calculate as 77 cents. That it costs only 77 cents

to stimulate a dollar of GDP implies that the policy, in the absence of pollution externalities,

is welfare improving. However, when we add between 39 and 88 cents of pollution damages per

dollar of stimulus (EBPF/SVPF), the social cost of the policy per dollar of stimulus ranges from

$1.16 and $1.65. Because it costs more than $1 to generate a dollar in GDP stimulus, the policy

is now welfare-decreasing.

This same comparison is even more striking in nominal terms. That is, we estimate that the

increase in GDP less the fiscal cost of bonus depreciation was $11.8 billion per year. However,

subtracting our pollution damage estimates from this number suggests that the policy decreased

welfare by between $8.2 billion and $33 billion per year.

We can also use the MVPF framework to evaluate the two hypothetical investment stimulus

policies we introduced in Section 7.2. Given that, by design, both alternative policies (Anti-bonus

and Low Emissions-Intensity Targeting) stimulate the same amount of investment and, under

reasonable assumptions, have the same fiscal cost as bonus depreciation (see Appendix K), we

estimate both alternative policies also have the same SVPF. However, pollution damages and

corresponding MVPFs are highly dissimilar.

Focusing first on the Anti-Bonus policy, we estimate that the negative pollution externality

(EBPF) is between 4 and 12 cents per dollar of tax expenditure. As a result, the MVPF ranges

between 1.19 and 1.27. The low-end of this range lies well above the unity benchmark, because

the 30 cent positive stimulus externality far exceeds the 4 cent to 12 cent range of the negative

pollution externality.
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For the Low Emissions-Intensity Targeting policy, the negative pollution externality (EBPF)

is between 0.3 and 0.7 cents per dollar tax expenditures, while the pollution damages per dollar

of GDP stimulus ranges between 0.2 and 0.5 cents. In the Low Emissions-Intensity Targeting

policy, the MVPF is nearly identical to the SVPF and adding pollution damages contributes

virtually zero to the total cost of the investment stimulus policy.

For both of the alternative policies, the MVPF remains above unity, suggesting both are

welfare-increasing even accounting for the pollution damages they create. Overall, these results

underscore that the magnitude of the economic damages we estimate is due to the fact that

bonus depreciation unintentionally targets the most emissions intensive industries. Investment

stimulus policies that do not favor polluting industries can yield sizable improvements in total

welfare compared to bonus depreciation and result in welfare-improving stimulus policies.

8 Conclusion

In this paper, we study the environmental consequences of bonus depreciation, one of the largest

investment stimulus policies in US history. We find the policy increased toxic emissions and

criteria air pollutants in plants that benefited the most by approximately 30%. We estimate that

these emissions resulted in large environmental damages, which also exacerbated existing racial

disparities in exposure to pollution in the US. We document that the magnitude and disparate

effects of bonus depreciation are primarily due to the fact that the policy provided the most

benefit to firms in the most emissions-intensive industries. Finally, we perform a back-of-the-

envelope welfare analysis, estimating that pollution damages per dollar of GDP stimulus ranged

between 39 and 88 cents, which, when added to the fiscal cost of the policy, exceed the GDP

benefits.

These findings have important implications for policymakers designing investment stimulus

policies. First, policymakers should consider the potentially large and unequal environmental

costs generated by such policies. For example, to inform legislative deliberations, US congres-

sional budget rules require all tax, spending, and regulatory policies to be “scored” for budgetary

impacts. In addition to scoring the fiscal cost, our findings suggest that the environmental con-

sequences should also play a major role in policy deliberations as they can potentially exceed

the fiscal cost. Second, the design of investment stimulus policies should consider the emissions-

intensity of the firms or industries that benefit most. Policies that intentionally target invest-
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ments made by the least emissions-intensive industries can drastically reduce environmental

damages. The green investment incentives that were included in the recent Inflation Reduction

Act of 2022 provide examples of such targeted policies. Third, policymakers should anticipate

and account for interactions between fiscal stimulus and environmental regulations, which may

unintentionally sharpen or blunt the effects of either instrument.

Ultimately, our findings represent a cautionary tale. Investment stimulus policies, which are

used around the world to promote capital formation and macroeconomic stability in times of

crisis, can have large environmental consequences. Policy makers considering investment stim-

ulus options must directly incorporate such environmental damage estimates into their decision

making processes. Failing to do so may result in the adoption of policies whose true social costs

far outpace their benefits.
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Figures

Figure 1: Bonus Depreciation Policy Details

(A) Effect of 50% Bonus, 5-year MACRS
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(B) Effect of 50% Bonus, 7-year MACRS
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(C) Bonus Depreciation Rates During Sample Period

0
.2

.4
.6

.8
1

1997 1999 2001 2003 2005 2007 2009 2011

Notes: Figure 1 describes the bonus depreciation investment incentive. Panel (A) displays the effect of 50% bonus
depreciation on annual tax deductions for investment in a new 5-year MACRS asset. Panel (B) shows the same
series for a new 7-year MACRS asset. Panel (C) displays statutory bonus depreciation rates during the sample
period. Source: Authors’ calculations based on annual versions of IRS Publication 946.
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Figure 2: Effects of Bonus Depreciation on Total Chemical Releases

(A) Dynamic DD Estimates; Preferred Specification
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Notes: Panel (A) of Figure 2 displays Dynamic DD estimates and 95% confidence intervals describing the effect
of bonus depreciation on Log(Total Chemical Releases) from Specification (2). Estimates include plant, county-
year, and sector-year fixed effects. Standard errors are clustered at the NAICS 4-digit industry level. The 2001
coefficient is normalized to zero. The corresponding DD estimate is presented in Panel (A), Column (4) of Table
2. In Panel (B), the 0.5 × the DD estiamtes are added to the annual average Log(Total Chemical Releases).
Source: Authors’ calculations based on TRI and Zwick and Mahon (2017) data.
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Figure 3: Effects of Bonus Depreciation; Compustat Matched Sample

(A) Total Chemical Releases
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Notes: Figure 3 displays Dynamic DD estimates and 95% confidence intervals based on equation (2) describing the
effect of bonus depreciation on outcomes for the sample of TRI plants that we match to Compustat firms. Standard
errors are clustered at the 4-digit industry level. The outcome in Panel (A) is the Log of Total Chemical Releases.
Panel (A) estimates include plant, county-year, and sector-year fixed effects. DD estimates corresponding to Panel
(A) are presented in Column (4) of Table A4. The outcome variables in Panels (B), (C), and (D) are log capital
stock, log emissions intensity (total emissions per unit of capital), and log capital intensity (capital per unit of
total assets). Panel (B), (C), and (D) estimates include firm fixed effects and pre-period firm-size bins interacted
with year fixed effects. Regressions in Panels (B), (C), and (D) are weighted by pre-period capital stock. DD
estimates corresponding to Panels (B), (C), and (D) are presented in Specification (2) of Table 4. Consistent with
the timing of capital investment responses documented in Zwick and Mahon (2017), we normalize differences in
outcomes in the year 2000 in the analyses presented in Panels (B) and (D). Source: Authors’ calculations based
on the data from TRI, COMPUSTAT and Zwick and Mahon (2017).
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Figure 4: Effects of Bonus Depreciation on CAA Releases

(A) Log(CAA Releases)
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Notes: Figure 4 displays dynamic DD estimates and 95% confidence intervals describing the effect of bonus
depreciation on Log(CAA Releases) in Panel (A) and on Log(CAA Releases) separately for plants in counties in
nonattainment status or not following CAA reforms in 2004 and 2005 in Panel (B). All specifications include plant,
county-by-year, and sector-by-year fixed effects. Standard errors are presented in parentheses and clustered at
the 4-digit NAICS level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’
calculations based on TRI and Zwick and Mahon (2017) data.
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Figure 5: Effect of Bonus Depreciation on NEI Criteria Air-Pollution Emissions
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Notes: Figure 5 displays dynamic DD estimates and 95% confidence intervals describing the effect of bonus
depreciation on county-industry criteria air pollutants from the NEI. All specifications include fixed effects by
industry, county by year, and sector by year. Source: Authors’ calculations based on NEI and Zwick and Mahon
(2017) data.
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Figure 6: Geographic Distribution of Economic Damages Per Capita
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Notes: Figure 6 displays county-level per-capita economic damages. Economic damages are calculated using the
lower concentration-response parameter of 4% from Kewski et al. (2009), and a Value of Statistical Life (VSL) of
9 million USD. To calculate county-level damages, we sum InMAP damages across all computational grids within
a given county. Source: Authors’ calculations based on NEI and Zwick and Mahon (2017) data using InMAP.
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Figure 7: Per-Capita Economic Damages by Socioeconomic Status and Racial Group

(A) Median Household Income

40
60

80
10

0
12

0
Pe

r-C
ap

ita
 D

am
ag

es

20000 40000 60000 80000 100000
Median Household Income

(B) Poverty Rate

40
60

80
10

0
Pe

r-C
ap

ita
 D

am
ag

es

5 10 15 20 25 30
Poverty Rate

(C) Share Non-White

40
60

80
10

0
12

0
14

0
Pe

r-C
ap

ita
 D

am
ag

es

0 .2 .4 .6 .8
Share Non-White Population

(D) Share Black

20
40

60
80

10
0

12
0

Pe
r-C

ap
ita

 D
am

ag
es

0 .1 .2 .3 .4 .5
Share Black Population

Notes: Figure 7 presents binscatter plots relating county-level per-capita economic damages to county-level median
household income, poverty rate, share non-white and share Black in Panels (A), (B), (C) and (D), respectively.
Economic damages assume a concentration-response parameter of 4% and a VSL of 9 million USD. Source:
Authors’ calculations based on NEI, SAIPE, and Zwick and Mahon (2017) data using InMAP.
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Figure 8: Economic Damages and Job Creation

(A) Panel A

20
40

60
80

10
0

D
am

ag
es

 (p
er

-c
ap

ita
)

0 1000 2000 3000 4000
Additional Jobs (per 100k pop)

(B) Panel B

-5
00

0
50

0
10

00
D

am
ag

es
 p

er
 1

00
k 

Jo
bs

20000 40000 60000 80000 100000
Median Household Income

(C) Panel C

-5
00

0
50

0
10

00
D

am
ag

es
 p

er
 1

00
k 

Jo
bs

0 .1 .2 .3 .4 .5
Share Black Population

Notes: Panel A of Figure 8 presents binscatter plots relating county-level per-capita economic damages to county-
level per-capita employment gains from Garrett, Ohrn, and Suarez Serrato (2020). Panels B and C provide bin-
scatters showing the relationship between damages per 100k industrial jobs created, median household income, and
Share Black respectively. Because bonus generates benefits and costs, damages per 100k jobs generated provides a
measure of the relative net costs a county incurs from bonus. Economic damages assume a concentration-response
parameter of 4% and a VSL of 9 million USD. Source: Authors’ calculations based on NEI, SAIPE, Garrett,
Ohrn, and Suarez Serrato (2020) and Zwick and Mahon (2017) data using InMAP.
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Figure 9: Environmental Costs of Alternative Investment Stimulus Policies

(A) Emissions Intensity and Bonus Depreciation Generosity
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Notes: Panel (A) displays the relative bonus depreciation benefit, measured as the log(1 − z0), and emissions
damages per dollar of investment for each industrial sector NAICS 4-digit industry. z0 is the present of depreciation
allowances per dollar of investment in the absence of bonus depreciation. We define industries to the right of the
green dashed line as treated in our emissions analysis. Industries to the left of the blue dashed line are treated
under the hypothetical “anti-bonus depreciation” policy that generates the same amount of investment as bonus
depreciation, but targets the industries that benefit least from bonus. Industries below the black dashed line
are treated under an alternative “low emissions intensity targeting” policy that stimulates the same amount of
investment, but targets the least emissions intensive industries. Panel (B) displays the economic damages per
capita for each of these three alternative investment stimulus polices on average and for different demographic
groups. The green bars correspond to bonus depreciation. The blue bars correspond to the anti-bonus policy.
The black bars (which are not visible due to their tiny magnitude) correspond to damages from the policy that
targets the least emissions intensive industries. Source: Authors’ calculations based on NEI, NBER-CES, BEA,
and Zwick and Mahon (2017) data using InMAP.
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Tables

Table 1: Descriptive Statistics

Treated Plants Controls Plants

Mean Std.Dev. Obs Mean Std.Dev. Obs

Outcomes

Total Releases 250.76 690.22 5795 71.56 325.67 12190

Total On-Site Releases 218.55 622.04 5416 65.93 303.47 10977

Air Releases 129.32 360.68 5231 42.27 154.25 10676

Water Releases 62.35 212.58 1587 25.18 122.45 1534

Land Releases 34.75 146.02 5795 5.20 58.38 12190

Clean Air Act (CAA) Releases 119.03 331.55 4352 32.57 122.27 9316

Other

Non-attainment County 0.39 0.49 5795 0.40 0.49 12190

In Compustat Sample 0.26 0.44 5795 0.24 0.43 12190

Compustat Variables

Capital Stock 6.63 11.36 1283 4.38 13.28 2621

Notes: Table 1 presents descriptive statistics separately for treated and non-treated plants for both the TRI
analysis sample and Compustat-matched subsample of plants in 2001. Total Chemicals is the total unweighted
sum of all on- and off-site releases. Total On-Site Chemicals is the unweighted sum of all on-site releases. Air
Releases is the total unweighted sum of all on-site releases to air. Water Releases is the weighted sum of all on-
and off-site releases to water. Land Releases is the unweighted sum of all on- and off-site releases to land. Clean
Air Act (CAA) Releases is the unweighted sum of all on-site releases of chemicals covered under the Clean Air
Act and present in the TRI data. Nonattainment county is a time invariant indicator equal to one for plants
located in counties that went into nonattainment for the presence of particulate matter and/or sulfur dioxide in
2004 or 2005. In Compustat Sample is an indicator equal to one for plants we can connect to a COMPUSTAT
firm. Capital Stock is the capital stock of a plant’s Compustat firm owner. TRI outcomes are measures in 1,000s.
Capital stock is measured in millions of dollars. Sources: Authors’ calculations based on TRI, Compustat, and
Zwick and Mahon (2017) data.
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Table 2: Effect of Bonus Depreciation on Total Chemical Releases

Total Releases

(1) (2) (3) (4) (5) (6)

Bonus × Post 0.314∗∗∗ 0.323∗∗∗ 0.345∗∗∗ 0.349∗∗∗ 0.329∗∗∗ 0.316∗∗∗

(0.0703) (0.0683) (0.0692) (0.0678) (0.0678) (0.0583)

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓
County × Year FE ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓
County × Sector × Year FE ✓
Additional Controls ✓
Obs. 212,368 212,368 212,368 212,368 210,620 192,981

Notes: Table 2 presents estimates of the effect of bonus depreciation on total chemical releases based on Equation
(1). The outcome variables in all specifications is Log(Total Releases). Specification (1) includes plant and
year fixed effects. Specification (2) includes plant and county-by-year fixed effects. Specification (3) includes
plant and sector-by-year fixed effects. Specification (4) includes plant, county-by-year and sector-by-year fixed
effects. Specification (5) includes plant and county-by-sector-by-year fixed effects. Specification (6) includes
county-by-year and sector-by-year fixed effects as well as controls for import competition from China and the
Domestic Production Activities Deduction federal tax policy. Standard errors are presented in parentheses and
are clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and
1% level. Source: Authors’ calculations based on TRI and Zwick and Mahon (2017) data.
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Table 3: Effect of Bonus Depreciation on Different Toxic Release Categories

(1) (2) (3) (4) (5)

On-Site Releases Air Releases Water Releases Land Releases Air CAA

Bonus × Post 0.366∗∗∗ 0.342∗∗∗ 0.362∗∗∗ 0.165 0.239∗∗∗

(0.0728) (0.0706) (0.0760) (0.157) (0.0724)

Plant FE ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓ ✓ ✓
Obs. 192,332 186,555 35,807 18,053 157,597

Notes: Table 3 presents DD estimates based on Equation (1). The outcome variable in Column (1) is Log(On-Site Releases). The outcome variable in
Column (2) is Log(Air Releases). The outcome variable in Column (3) is Log(Water Releases). The outcome variable in Column (4) is Log(Land Releases).
The outcome variable in Column (5) is Log(CAA Releases). Standard errors are clustered at the 4-digit NAICS level and are presented in parentheses. ∗,
∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’ calculations based on TRI and Zwick and Mahon (2017) data.

57



Table 4: Effects of Bonus Depreciation; Compustat Matched Sample

(A): Capital Stock

(1) (2) (3) (4)

Bonus × Post 0.310∗∗∗ 0.308∗∗∗ 0.347∗∗∗ 0.305∗∗∗

(0.109) (0.109) (0.0952) (0.0918)

(B): Emissions Intensity

(1) (2) (3) (4)

Bonus × Post 0.132 0.143 0.258 0.0947

(0.312) (0.320) (0.324) (0.345)

(C): Capital Intensity

(1) (2) (3) (4)

Bonus × Post 0.195∗∗ 0.192∗∗ 0.206∗∗∗ 0.203∗∗

(0.0752) (0.0738) (0.0570) (0.0912)

Firm FE ✓ ✓ ✓ ✓

Year FE ✓

Firm Size × Year FE ✓ ✓ ✓

Debt Ratio × Year FE ✓ ✓

Cap. Intensity × Year FE ✓

Obs. 6,181 6,181 6,181 6,181

Notes: Table 4 displays difference-in-differences estimates describing the effect of bonus depreciation on log capital
stock, log emissions intensity (total emissions per unit of capital), and log capital intensity (capital per unit of
total assets). for the TRI-Compustat matched sample of firms. Column (1) estimates include firm and year
fixed effects. Column (2) estimates include firm and pre-period firm-size bins interacted with year fixed effects.
Columns (3) and (4) progressively add pre-period debt ratio bins interacted with fixed effects and pre-period
capital intensity bins interacted with year fixed effects. All regressions are weighted by pre-period capital stock.
Column (2) estimates correspond to the events dynamic difference-in-differences plaots presented in Figure 3.
Standard errors are presented in parentheses and clustered at the 4-digit NAICS level. ∗, ∗∗, and ∗∗∗ denote
statistical significance at the 10, 5, and 1% level. Source: Authors’ calculations based on the data from TRI,
COMPUSTAT and Zwick and Mahon (2017).
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Table 5: Heterogeneous Effects of Bonus Depreciation by County-Level Attainment Status

(1) (2)

CAA Releases On-Site Releases

Bonus × Post 0.482∗∗∗ 0.631∗∗∗

(0.0786) (0.0872)

Bonus × Post × NonAttainment -0.138∗∗ -0.144∗∗

(0.0592) (0.0551)

Plant FE ✓ ✓
County × Year FE ✓ ✓
Sector × Year FE ✓ ✓
Obs. 157,597 192,332

Notes: Table 5 presents specifications similar to Equation (1) that also include an interaction between the DD
term and an indicator for counties in nonattainment status following CAA reforms in 2004 and 2005. The outcome
variables across the two specifications are Log(CAA Releases) and Log(Total On-Site Chemical Releases). All
specifications include plant, county-by-year, and sector-by-year fixed effects. Standard errors are presented in
parentheses and clustered at the 4-digit NAICS level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5,
and 1% level. Source: Authors’ calculations based on TRI and Zwick and Mahon (2017) data.
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Table 6: Effect of Bonus Depreciation on NEI Criteria Air-Pollution Emissions

PM2.5 SO2 NOx VOC

Bonus × Post 0.299∗∗ 0.360∗∗∗ 0.347∗ 0.195

(0.138) (0.135) (0.210) (0.128)

County × Industry FE ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓ ✓
Obs. 148,398 173,338 111,522 137,307

Notes: Table 6 presents estimates of the effect of bonus depreciation on county-industry criteria air pollutant
emissions. The outcomes include are particulate matter 2.5 (particles less than 2.5 microns in width), sulfur
dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOC). All specifications include county-
by-industry, county-by-year, and sector-by-year fixed effects. Standard errors are presented in parentheses and
are clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and
1% level. Source: Authors’ calculations based on NEI and Zwick and Mahon (2017) data.
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Table 7: Baseline Emissions Levels and Estimated Changes due to Bonus Depreciation

PM2.5 SO2 NOx VOC

Total Emissions 101,817 1,769,140 896,019 180,396

∆ Emissions (Average) 20,205 583,708 229,784 0

∆ Emissions (Actual Nonattainment) 21,145 589,909 259,009 28,951

∆ Emissions (All Attainment) 25,881 768,549 344,344 19,641

∆ Emissions (All Nonattainment) 13,245 426,431 94,032 7,086

Notes: Table 7 presents total pollution emissions (in metric tonnes) of criteria air pollutants from the 2008
NEI data used for calculating aggregate economic damages. ∆ Emissions (Average) is emissions changes due to
bonus depreciation (see Table 6), calculated by multiplying baseline emissions (i) by a dummy for BONUS (ii)
by the coefficients for Bonus × Post (0.299, 0.360, 0.347, and 0, for PM2.5, SO2, NOx, and VOC, respectively).
∆ Emissions (Actual Nonattainment) is emissions changes associated due to bonus depreciation accounting for
heterogeneous effects by attainment status (see Table 10), calculated by multiplying baseline emissions (i) by a
dummy for BONUS (ii) by the coefficients for Bonus × Post (0.383, 0.474, 0.520 and 0.316, for PM2.5, SO2,
NOx, and VOC, respectively) (iii) by a dummy for NonAttainment (iv) by the cofficients for Bonus × Post ×
NonAttainment (-0.187, -0.211, -0.378 and -0.202, for PM2.5, SO2, NOx, and VOC, respectively). ∆ Emissions
(Actual Nonattainment) is emissions changes due to bonus depreciation accounting for heterogeneous effects by
attainment status, calculated by multiplying baseline emissions (i) by a dummy for BONUS (ii) by the coefficients
for Bonus × Post (iii) by a dummy for NonAttainment (iv) by the cofficients for Bonus × Post × NonAttainment.
∆ Emissions (All Attainment) is emissions changes associated due to bonus depreciation assuming that all plants
are subject to Attainment, calculated by multiplying baseline emissions (i) by a dummy for BONUS (ii) by
the coefficients for Bonus × Post. ∆ Emissions (All Nonattainment) is emissions changes associated with the
BONUS assuming that all plants are subject to NonAttainment, calculated by multiplying baseline emissions (i)
by a dummy for BONUS (ii) by the coefficients for Bonus × Post (iii) by the cofficients for Bonus × Post ×
NonAttainment. Source: Authors’ calculations based on NEI and Zwick and Mahon (2017) data.
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Table 8: Economic Damages from Bonus Depreciation

Million $ $/pop

Demographic Low High Low High

All 20,164 45,393 66 148
White 13,583 30,578 69 156
Black 4,188 9,428 111 250
Latino 1,880 4,232 37 84
Asian 408 918 29 65
Native 79 178 41 91

Notes: Table 8 presents economic damages using the InMAP model. The two columns on the left-hand-side
present aggregate total economic damages for the United States, expressed in million USD. The two columns
on the right-hand-side present total economic damages per capita, expressed in USD divided by corresponding
population. The Low columns use a concentration-response parameter of 4% from Kewski et al. (2009) and the
High columns use a concentration-response parameter of 14% from Lepuele et al. (2012). Economic damages are
calculated by multiplying number of deaths by the VSL value of 9 million USD. Source: Authors’ calculations
based on NEI and Zwick and Mahon (2017) data using the InMAP model.
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Table 9: Determinants of Per-Capita Economic Damages

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Median Income (log) -0.864∗∗∗ -0.323 -0.124

(0.0914) (0.215) (0.206)

Poverty Percent, All Ages 0.0218∗∗∗ 0.0238∗∗ 0.00206

(0.00448) (0.0108) (0.00960)

Share Black 3.334∗∗∗ 2.783∗∗∗

(0.188) (0.199)

Share Latino -3.748∗∗∗ -3.092∗∗∗

(0.152) (0.171)

Share Asian -7.949∗∗∗ -4.017∗∗∗

(0.520) (0.631)

Share Native American -8.121∗∗∗ -8.184∗∗∗

(0.833) (0.743)

Share Non-White -1.383∗∗∗ -1.506∗∗∗

(0.117) (0.156)

Obs. 3,107 3,107 3,108 3,108 3,108 3,108 3,108 3,107 3,107

Notes: Table 9 presents county-level cross-sectional regressions, where the dependent variable is log county-level economic damages. The Median Income
and Poverty Rate (all ages) are from the US Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program. The population shares are
calculated using the InMAP model population data by aggregating the computational grid to the county-level. All specifications are weighted by county
population, and include a constant term (omitted from table) ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’
calculations based on NEI, SAIPE, and Zwick and Mahon (2017) data using the InMAP model.
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Table 10: Heterogeneous Effects of Bonus Depreciation on Criteria Air-Pollution Emissions by
County-Level Attainment Status

PM2.5 SO2 NOx VOC

Bonus × Post 0.383∗∗∗ 0.474∗∗∗ 0.520∗∗ 0.316∗∗

(0.146) (0.146) (0.233) (0.140)

Bonus × Post × NonAttainment -0.187∗ -0.211∗∗ -0.378∗∗ -0.202∗

(0.103) (0.102) (0.170) (0.107)

County × Industry FE ✓ ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓ ✓
Obs. 149,421 174,318 112,547 138,343

Notes: Table 10 presents estimates of the effect of bonus depreciation on county-industry emissions of criteria
air pollutants. The outcomes are particulate matter 2.5 (particles less than 2.5 microns in width), sulfur dioxide
(SO2), nitrogen oxides (NOx), and volatile organic compounds (VOC). All specifications include county-by-
industry, county-by-year, and sector-by-year fixed effects. Standard errors are presented in parentheses and are
clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and
1% level. Source: Authors’ calculations based on NEI and Zwick and Mahon (2017) data.
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Table 11: Economic Damages under Actual and Hypothetical Environmental Regulation

Actual Non-Attainment All Attainment All Non-Attainment

Demographic Low High Low High Low High
All 19,257 43,345 27,076 60,976 13,850 31,168
White 13,059 29,395 18,263 41,130 9,282 20,888
Black 3,929 8,844 5,605 12,624 2,907 6,543
Latino 1,798 4,046 2,518 5,672 1,308 2,943
Asian 363 816 545 1,227 285 641
Native 87 196 107 242 53 118

Notes: Table 11 presents economic damages using the InMAP model. Economic damages are expressed in million
USD. The two columns under the Actual Nonattainment header are aggregate economic damages under Actual
Nonattainment designations. The two columns under the All Attainment header are aggregate economic damages
under the assumption that all counties are in Attainment. The two columns under the All Nonattainment header
are aggregate economic damages under the assumption that all counties are in Nonattainment. The Low columns
use a concentration-response parameter of 4% from Kewski et al. (2009) and the High columns use a concentration-
response parameter of 14% from Lepuele et al. (2012). Economic damages are calculated by multiplying number
of deaths by the VSL value of 9 million USD. textitSource: Authors’ calculations based on NEI and Zwick and
Mahon (2017) data using the InMAP model.
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Table 12: Welfare Analysis: Marginal Value of Public Funds

SVPF EBPF EBPF/SVPF MVPF

Scenario Low High Low High Low High

Bonus 1.30 0.51 1.14 0.39 0.88 0.79 0.15

Anti-Bonus 1.30 0.04 0.12 0.03 0.09 1.27 1.19

Low Emissions-Intensity Targeting 1.30 0.003 0.007 0.002 0.005 1.30 1.29

Notes: Table 12 presents estimates of the marginal value of public funds (MVPF). See Section K for details
regarding the calculation of MVPF. The Bonus scenario refers to incorporating pollution damgages from the actual
Bonus Depreciation Policy, whereas the Anti-Bonus and Low Emissions-Intensity Targeting scenarios incorporate
pollution damages from various hypothetical policy scenarios described in Section 7. The Low columns use a
concentration-response parameter of 4% from Kewski et al. (2009) and the High columns use a concentration-
response parameter of 14% from Lepuele et al. (2012). Source: Authors’ calculations based on NEI and Zwick
and Mahon (2017) data using the InMAP model.
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Online Appendix: Not for Publication

This appendix includes several sections of supplemental information. Appendix 8 presents definitions of all
the variables used in the paper. Appendix B provides additional details on the TRI and data quality robustness
checks. Appendix C gives information on the TRI - Compustat matched sample. Appendix D presents analysis
of heterogenous capital investment responses by CAA nonattainment status. Appendix E shows that potentially
correlated data in the NEI does not have significant effects on our results. Appendix F gives details on the
MECS sample and regression results. Appendix G presents additional details on the InMAP model. Appendix
H provides information on our estimates of industrial job creation. Appendix I discusses the scope for alternate
stimulus policies that would target different industries. Appendix J provides detail on the county-level pollution
analysis we perform using the EPA’s AQS data. Appendix A provides details on how regulated utilities benefit
from bonus depreciation. Appendix K provides discusses details and sensitivity checks of our welfare analysis.

Variable Definitions

Variable Name Description
Bonus Indicator equal to one for plants in the bottom tercile of the NPV of

MACRS tax depreciation allowances. Source: Authors’ calculations
based on TRI and Zwick and Mahon (2017) data.

Post Indicator equal to one in years after 2001, after bonus depreciation was
implemented.

Total Releases Natural logarithm of the sum of all on-site and off-site chemical releases
to all disposal media (air, water, land). Source: TRI.

On-Site Releases Natural logarithm of the sum of all on-site chemical releases to all
disposal media (air, water, land). Source: TRI.

Air Releases Natural logarithm of the sum of all on-site and off-site chemical releases
to air. Source: TRI.

Water Releases Natural logarithm of the sum of all on-site and off-site chemical releases
to water. Source: TRI.

Land Releases Natural logarithm of the sum of all on-site and off-site chemical releases
to land. Source: TRI.

Air CAA Natural logarithm of the sum of all on-site and off-site chemical releases
covered under the Clean Air Act that were released to air. Source:
TRI.

Nonattainment County A time-invariant indicator equal to one for counties that were in nonat-
tainment status following the CAA reforms on 2004 and 2005. Source:
EPA Greenbook

Capital Stock The log of firm-level net property, plant, and equipment. Source: Com-
pustat

Log Releases per unit of Capital The log of firm-level aggregate emissions divided by firm-level net prop-
erty, plant, and equipment. Source: TRI and Compustat

Log Releases per unit of Revenue The log of firm-level aggregate emissions divided by firm-level sales.
Source: TRI and Compustat

PM2.5 Log of county-industry aggregate particulate matter 2.5 releases.
Source: NEI

VOC Log of county-industry aggregate volatile organic compound releases.
Source: NEI

SO2 Log of county-industry aggregate sulfur dioxide releases.Source: NEI
NOx Log of county-industry aggregate nitrous oxide releases.Source: NEI
Economic Damages Per Capita Dollar value of economics damages caused by bonus depreciation.

Source: Author’s calculations using the InMAP model based on NEI
and Zwick and Mahon (2017) data.

Median Household Income County-level median household income. Source: Census Small Area
Income and Poverty Estimates.

Continued on next page
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Table A1 – Continued from previous page
Variable Description
Median Household Income County-level percentage of households with incomes below the poverty

line. Source: Census Small Area Income and Poverty Estimates.
Share Non-White County-level percentage of non-white residents. Source: Census Small

Area Income and Poverty Estimates.
Share Black County-level percentage of Black residents. Source: Census Small Area

Income and Poverty Estimates.
Compr. Air System Percent (0-100) of establishments in an industry that installed or

retrofitted their Compressed Air Systems. Source: MECS
Lighting System Percent (0-100) of establishments in an industry that installed or

retrofitted their Lighting System.Source: MECS
HVAC System Percent (0-100) of establishments in an industry that installed or

retrofitted their HVAC System. Source: MECS
Machine Drive Syst Percent (0-100) of establishments in an industry that installed or

retrofitted their Machine Drive System.Source: MECS
Proc. Cooling System Percent (0-100) of establishments in an industry that installed or

retrofitted their Process Cooling System. Source: MECS
Dir/Indir Heat Syst Percent (0-100) of establishments in an industry that installed or

retrofitted their Direct / Indirect Heating System.Source: MECS
Steam Prod. System Percent (0-100) of establishments in an industry that installed or

retrofitted their Steam Production System. Source: MECS
Energy Audit Percent (0-100) of establishments in an industry that undertook an

energy audit. Source: MECS
Install/Retro New Energy Source Percent (0-100) of establishments in an industry that installed a new

energy source or retrofitted an existing energy source. Source: MECS

A Bonus and Regulated Utilities

This section provides evidence that regulated utilities benefit from bonus depreciation. First, we reference the
relevant tax code pertaining to capital investment for regulated firms, describing how bonus depreciation lowers
capital costs. Second, we describe our communication with senior management at a major regulated electric
utility confirming that regulated firms take advantage of bonus depreciation and that it bears on their capital
investment decisions. Third, we empirically investigate whether bonus influences pollution emissions among
regulated utilities. Because all utilities are defined as treated, we explore this question by excluding all (i)
utilities and all (ii) regulated utilities, demonstrating that the results are nearly identical.

In the United States, many electric utilities operate in regulated markets where the retail rates (the prices
customers pay) are set by a government body and based on the regulated rate of return on investments. Retail rates
are established based on a regulated rate of return on investments, designed to mitigate potential exploitation
of market power by utilities while at the same time guaranteeing them a predetermined rate of return. This
arrangement accounts for all associated expenses, including operating costs, depreciation, and taxes. Importantly,
depreciation expenses used in calculating retail rates are distinct from depreciation deductions used for tax
purposes. These rules are determined by the Federal Energy Regulatory Commission (FERC). This pricing
system begs the question whether regulated electric utilities will benefit from bonus depreciation or whether the
tax advantages will simply be passed directly to consumers in the form of lower electricity prices. In the latter
scenario, bonus depreciation would fail to serve as an incentive for further investment.

Recognizing this issue, and wanting to ensure that bonus depreciation would incentivize electric utility in-
vestment, the IRS established a number of rules to ensure that the benefits of bonus would not “flow through”
to customers. In particular, the Internal Revenue Code contains so-called “normalization provisions” for “public
utility property” which ensure that regulated utilities benefit from the policy (IRS PLR-155208, 2007). These
normalization provisions explicitly prevent regulators from using the benefits of bonus depreciation to benefit
ratepayers (referred to as “flow through”), which would undermine the efficacy of the tax incentive. Normaliza-
tion in particular entails that income tax expenses for the purpose of setting retail rates will be determined as if
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deprecation were based on GAAP straight-line depreciation. The immediate income tax deductions from bonus
depreciation would therefore not be offset by corresponding reductions in retail rates. These rules were originally
set out in the Tax Reform Act of 1986 (Section 203e) which limited the rate at which excess tax reserves may flow
through to utilities’ customers in setting rates. As such, electric utilities are required by FERC to take Bonus
Depreciation and provisions are in place to ensure that bonus reduces the effective cost of capital to regulated
utilities. See Federal Energy Regulatory Commission (2016) for a recent ruling on this matter.

To better understand the implications of these rules, we also rely on tax guidance from an accounting firm
PwC (one of the Big Four accounting firms) as well as interviews with the Vice President of Taxation at a major
electric utility. PwC provides a summary of the implications of normalization on stimulating investment among
regulated entities52:

“Normalization is a method of ensuring that regulated utilities benefit from the various tax law pro-
visions that were designed to encourage capital expenditures. For example, accelerated depreciation
and ITCs are intended to encourage capital expenditures, not to subsidize customers’ utility costs.
However, because these deductions and credits reduce cash income taxes, the tax component of the
cost of providing services would be lower, and thus, the rates charged to customers would be lower
if these benefits were immediately provided to customers. This lowers the regulated utility’s rev-
enues in the short term. Normalization protects revenues from the effects of lower rates, and allows
regulated utilities and customers to share the benefits of accelerated depreciation and investment
tax credits.”

Next, to confirm that regulated utilities are aware of the tax benefit of bonus depreciation, we corresponded
with the Vice President of Taxation at a large regulated electric utility. Regarding the question of whether bonus
depreciation would in fact incentivize capital investment at a regulated electric utility, we received the following
response:

“The answer is ‘yes’. It’s effectively an interest-free loan in the form of deferred taxes. In fact,
it’s specifically characterized as such by certain utility commissions. For example, in Indiana,
accumulated deferred income taxes are included in a utility’s capital structure as a zero-cost source
of capital. This has the effect of reducing the utility’s weighted average cost of capital.”

Finally, we demonstrate that the effect of bonus depreciation on pollution emissions is similar among utilities.
To this end, we replicate our baseline results from Table 2 (specifications 1-3) excluding (i) utilities and all
(ii) regulated utilities. Table A2 reports the results when dropping all electric utilities (specifications 1-3) and
dropping all regulated electric utilities. Comparing the results from Table A2 with our baseline results from
Table 2 demonstrates that the results are nearly identical, suggesting that the effect of bonus is similar for electric
utilities and regulated electric utilities.

Based on existing IRS tax provisions and expert advice from industry, as well empirical corroboration, we
conclude that there is ample evidence that bonus depreciation has similar effects on utilities as the rest of the
industrial sector, and we therefore include this sector in our baseline empirical analysis.

B TRI

In this appendix we provide additional details on the Toxic Release Inventory, discuss the data cleaning process,
and test whether results hold for a balanced sample of plants. The TRI is a public database managed by the
United States Environmental Protection Agency (EPA). While it is the most comprehensive annual emissions
data set available for stationary source emitters, it contains important, documented drawbacks which we discuss
here. Established under the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986, the
TRI program mandates that facilities in various sectors report annually on the amount of toxic chemicals released
into the environment. Facilities are required by law to report emissions of approximately 650 chemicals and may
face fines and punishments for failure to report (EPA, 2022). Concerns over the self-reported nature of the data

52The passage is from PwC “Utilities and Power Companies Guide” which provides accounting guid-
ance for reporting entities when preparing financial statements. More information can be found at
https://viewpoint.pwc.com/dt/us/en/pwc/accounting_guides/utilities_and_power_/utilities_and_

power__US/upfm.html#pwc_topic.
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and the reporting requirement thresholds have resulted in a number of papers exploring the reliability of the TRI.
(de Marchi and Hamilton, 2006; Koehler and Spengler, 2007; Bennear, 2008).

Misreporting and under-reporting is found to have occurred particularly when the program began in the early
1990’s during the take-up stage. Reported aggregate emissions jumped between 1990 and 1992 as the number
of firms that complied with the reporting requirements increased. Additionally, de Marchi and Hamilton (2006)
found evidence of rounding errors and only a loose correlation between reported TRI emissions and nearby air
monitor readings for some chemicals. Additionally, chemical release data is generally based on emissions factors
developed by engineering models and not on direct readings from smoke stacks. These models estimate chemical
releases based on the fuel inputs, production process technology and abatement capital used at the facility.

While not perfect, the TRI contains considerable upsides as well and the EPA has taken a number of steps to
ensure accurate reporting. First, as mentioned above, firms are required by law to report. Under the Emergency
Planning and Community Right-to-Know Act (EPCRA), the Environmental Protection Agency (EPA) has the
authority to impose fines of up to $25,000 for each instance of reporting non-compliance. In 2001, the total amount
of these fines reached roughly $3.5 million. Between 1990 and 1999, the EPA initiated 2,309 administrative
proceedings against facilities for violations related to EPCRA (de Marchi and Hamilton, 2006).

Second, they perform a number of quality checks designed to identify misreporting. These checks include:
comparing reported data to information submitted under other EPA programs; evaluating reported stocks against
the releases; and reviewing facilities whose emissions estimates significantly differ relative to prior years (U.S.
Environmental Protection Agency, 2017).

As such, a number of recent papers have used the TRI data as both outcome and explanatory variables
(Banzhaf and Walsh, 2008; Cherniwchan, 2017; Gibson, 2019; Jacqz, 2022). We follow (Gibson, 2019) in many of
the cleaning steps.

The TRI does contain reporting thresholds, which are higher than those of the NEI. Thresholds vary by
chemical but facilities are typically required to report if: they have greater than 10 employees and manufacture
25,000 lb/year, processes 25,000 lb/year, or uses 10,000 lb/year of a TRI-listed chemical. As such, these tend to
be larger facilities. Reporting thresholds could bias our treatment effect estimates if falling above or below the
threshold is correlated with our Bonus exposure variable. To ensure that are results are not driven by entry into
and exit out of the sample, we re-run our model on a balanced sample of plants. These results, reported in Table
A9, do not qualitatively differ from our baseline results. Given these thresholds, Gibson (2019) also provides
analysis of the TRI coverage across industries finding higher coverage for more emissions-intensive industries but
no meaningful changes in coverage over our sample period. The coverage and data reporting should be considered
when interpreting our baseline TRI results. These results may not represent the smallest emitters but the do
represent the most important emitters regardless of industry. Concerns over coverage and reporting are further
alleviated by the fact that our TRI estimates align closely with estimates using National Emissions Inventory
(NEI) emissions data as the outcome variable. As discussed later, the NEI is an entirely separate program with
separate reporting threshold and an entirely different data collection process.

C TRI-Compustat Matched Sample

To construct our TRI-Compustat sample, we rely on the concordance between TRI facility IDs and Compustat firm
identifiers from Andersen (2017). We then aggregate the total releases variable from the TRI at the Compustat
firm-level. We then drop any firms that have missing or negative values of capital stock, emissions per unit of
capital (capital intensity), capital stock per total assets (capital intensity), and debt pre total assets (debt ratio).
To mitigate issues related to TRI sampling and corporate acquisitions, we also trim the sample to exclude firms
that experience a more than 500% increase total releases, capital stock, or total revenue in a given year. Our
analysis sample consists or emissions data for 5,902 TRI plants that we match to 531 Compustat firms.

D Heterogeneous Capital Investment Responses by CAA Exposure

In this appendix, we explore whether environmental regulations that were part of the CAA tempered the capital
investment response to bonus depreciation. To do so, we rely on our matched TRI-Compustat sample of firms.
We regress firm-level log of capital investment on Bonus×(Year=2011) and Bonus× (Year=2011) interacted with
an indicator equal to one for firms that had a plant in a county that was in nonattainment status following the
2004 and 2005 CAA amendments. Results are presented in Table A7. The four specifications differ in the fixed
effects that are included in the regression. Specification (1) includes just firm and year fixed effects. Specifications
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(2)–(4) progressively add pre-period firm-size bins interacted with year FE, pre-period debt-ratio bins interacted
with year FE, pre-period capital intensity bins interacted with year FE.

Focusing on the triple-differences findings, across all four specifications, the coefficient estimates are negative
and fairly stable indicating that the CAA environmental regulations may have tempered the investment response
to bonus depreciation. However, no coefficients are statistically significant at the 5% level and only two coefficient
are statistically significant at the 10% level.

Despite this statistical imprecision, the results presented in Table A7 could explain why we see smaller emis-
sions response to the policy in nonattainment counties: the CAA regulations tempered the investment response
to the policy. Comparing the DDD to the DD coefficients suggests that the capital response for firms with a
plant in a nonattainment country may have been between 25 and 50% smaller than the response of firms with no
plants in nonattainment counties.

Overall, we take the results presented in this Appendix as suggestive evidence that that environmental
regulations influenced the investment response to bonus depreciation.

E Accounting for Correlated Data in the NEI

In this appendix, we test whether our NEI reduced-form estimates are sensitive to potentially correlated data
in the NEI. Careful examination of the dynamic difference-in-differences estimates in Figure 5 shows that (1)
coefficient estimates for 1996-1998 are nearly identical for all pollutants and that (2) the 1999 coefficient is nearly
identical to the omitted year (2000). A possible explanation for these very similar coefficient estimates is that
there is a high degree of correlation in the underlying pollution data between 1996-1998 and 1999-2000. Upon
inspection of the underlying data, we find that plant-level and /or county-level pollution is generally not identical
within the two periods. Nonetheless, we remain concerned that correlated data that are not independent may
bias our results in ways that hamper our analysis.

To combat this concern, we restrict our NEI sample to include only one year from each of the 1996-1998 and
1999-2000 periods. In particular, we use 1997 and 2000 (excluding 1996, 1998, and 1999), although the results are
similar using any one year from each of the two periods. DD estimates using this restricted sample are presented
in Table A8. The DD coefficients are nearly identical to our baseline estimates. We continue to find that bonus
depreciation led to statistically significant increases in PM2.5, SO2, and NOx. Our point estimates suggests the
policy has a large, positive effect on VOCs, but the estimate is not statistically significant. Figure A8 shows
the dynamic DD analysis using the restricted sample. All four panels of the figure show large positive jumps in
criteria emissions for treated units relative to controls units after the policy was implemented in 2001.

In sum, eliminating potentially correlated data from our NEI sample yields very similar estimates describing
the effect of bonus depreciation of criteria air pollutants. Based on this analysis, we conclude the potentially
correlated data in the NEI does not affect our analysis in a meaningful way.

F MECS

In this appendix, we further describe our analysis using the Manufacturing Energy Consumption Survey (MECS).
The MECS is sponsored by the Department of Energy and administered quadrennially by the US Census Bureau.
MECS is the only data source which reports investments in assets that improve the environmental performance of
the plant. It surveys approximately 15,000 establishments and represents 97%–98% of manufacturing energy con-
sumption. Establishments are asked whether they installed or retrofitted seven types of equipment for the purpose
of improving energy efficiency. The seven categories are Compressed Air System, Facility Lighting, Facility HVAC
System, Direct Machine Drive, Direct Process Cooling, Refrigeration, Direct/Indirect Heating System and Steam
Production/System. Publicly available MECS reports data at the industry level for approximately 70 industry
categories. The regressions we report in Table A6 are run at the industry-year level for years 1994, 1998, 2002,
2006 and 2010. The outcome variable is the percent of establishments in the industry that install or retrofit these
equipment categories. We also report results examining the effect of bonus on the percent of establishments in
an industry that undergo an energy audit and the percent of establishments in an industry that install or retrofit
a new energy source. MECS data can be found at https://www.eia.gov/consumption/manufacturing/.

While the investments measured here are specific to energy, they likely are closely tied to the establishment’s
emissions and represent a form of clean investment that cannot be picked up in other datasets. The Pollution
Abatement Cost and Expenditure Survey was performed in 1994, 1999 and 2005 but the survey methodology
changed over time and has not been administered since 2005 (Gallaher, Morgan, and Shadbegian, 2008). The
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MECS results suggest that, while bonus led establishments to increase their overall emissions through scale and
technique effect, there is at least partial evidence that it induced some clean capital investments.

G InMAP

In this appendix we provide additional description of the InMAP model and our implementation of it. The
InMAP model uses the Python programming language with the GeoPandas shapefile library to process spatial
data. General information about the model can be found here: https://www.inmap.run. Information regarding
the use of source-receptor matrices to estimate health impacts can be found here: https://www.inmap.run/

blog/2019/04/20/sr/.
The primary input data required is emissions data including information on the location, amount of emis-

sions, and stack parameters. Specifically, the InMAP model uses information on location of the emissions sources
(coordinates with a spatial references), the short tons per year of emissions (PM2.5, NOx, VOC, SOx, and
NH3,), and relevant stack parameters, including stack height, velocity, diameter, and temperature of the re-
lease. This information is contained in the full-detail data of the National Emissions Inventory (NEI), and we
use the 2008 NEI database, which can be found here: https://www.epa.gov/air-emissions-inventories/

2008-national-emissions-inventory-nei-data.
We use GeoPandas to convert the NEI data into a GeoPandas dataframe, which can then be used to run the

InMAP model.

H Bonus and Industrial Jobs

In this appendix we describe the process for estimating the county-level employment effects of bonus specifically
for the industrial sector. Figure 8 demonstrates the relationship between the jobs benefits provided by bonus and
the environmental damages. It shows that counties experiencing the largest environmental damages did not have
the largest job benefits. That figure uses job estimates from Garrett, Ohrn, and Suarez Serrato (2020) which
estimate the total increase in jobs by comparing total employment in counties with high shares of bonus exposed
industries to those with low shares of bonus exposed industries. We use job estimates from these models because
they are inclusive of all sectors in the economy as well as spillover effects from treated to untreated sectors.

However, one might separately ask whether there is a correlation between county-level pollution damages and
the number of industrial jobs created in a county. Here we define industrial sectors to include the manufacturing
and utility industries that are present in our emissions data. To calculate the direct industrial employment effect
we follow a very similar strategy to our baseline emissions specification. Rather than facility level data, we use
county-4-digit NAICS industry data from the County Business Patterns. These regressions are very similar to
QWI employment regressions found in Curtis et al. (2021) with two important exceptions. First, because we
are particularly interested in the county-level job effects, we employ county-industry rather than state-industry
level data. Second, to be consistent with our emissions estimates we include both manufacturing and utilities
industries. We continue to define treatment industries as the third of industries that benefit most from bonus.

Table A10 presents results of these regressions. Regression models progressively add fixed effects with column
3 including both county-industry and county-year fixed effects. The coefficient on Bonus x Post in this column
is 0.0884 which corresponds to an 8.8% increase in employment in treated, relative to untreated, industries. To
calculate the implied county-level increases in industrial employment we simply multiply 2001 levels of treated
industry employment levels for each county by 1.088. Using these county-level jobs numbers we continue to find
that counties with the highest pollution damages were not the counties that experienced the largest employment
gains. Section 6.4 demonstrates that the job benefits of bonus were less likely to accrue to counties with high
environmental damages. We suggested two reasons why counties may suffer high damages while seeing limited
employment effects. First, bonus creates jobs in many non-industrial industries due to spillovers and the fact that
non-industrial firms also benefit from the policy. The Garrett, Ohrn, and Suarez Serrato (2020) paper measures
county bonus exposure based on all industries in the county and be using total county employment as the outcome
variable, their job creation measure is inclusive of within county spillovers to other industries.

The second reason concerns the nature of pollution transport, whereby a facility’s emissions often incur
damages on counties that are far from their original source. If pollution is blown far distances, then downwind
counties may suffer economic damages from bonus while experiencing little to no economic benefits in the form
of more jobs.
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Our industrial level employment results provide support for the second hypothesis by showing that even if we
isolate the jobs growth occurring in the industrial sector, it is still the case that the communities with the largest
damages do not experience the largest job benefits.

I The Scope for Clean Investment Stimulus

Given the potential to reduce environmental damages for a given amount of stimulus, an important question is
the scope to stimulate investment while maintaining low or acceptable levels of pollution damages. To this end,
we rank all industries according to emissions intensity (pollution damages per investment) and then calculate the
implied effect of treatment in terms of additional pollution damages per additional investment generated. Figure
A5 displays this ranking for all industries based on ascending emissions damages per investment (vertical height
of each block) and the amount of investment generated (horizontal distance of each block). The green shaded
blocks correspond to bonus industries, while the blue blocks correspond to non-bonus (all other) industries. For
a given amount of total investment stimulus, minimizing pollution damages would entail targeting industries to
the left of a given amount of total additional investment. Intuitively, we can think of the curve as a supply of
investment stimulus available where the relative cost is represented by pollution damages per dollar of investment.
Thus, the horizontal distance represents the total amount of additional investment while the area under the
curve represents total pollution damages. The dashed green line corresponds to the total additional investment
generated by bonus depreciation, and the set of industries to the left of the line corresponds to those industries
in the Low Emissions-Intensity Policy that we introduced in Section 7. Recall this policy alternative entails a
similar amount of additional investment. As we see from Figure A5, industries targeted by bonus depreciation
were among the most costly in terms of pollution damages per investment, including industries where the amount
of additional pollution damages exceed the amount of additional investment created (i.e., additional pollution
damages per investment exceeded 1). Moreover, the total green area exceeds the total blue area despite the blue
area representing the majority of total investment. Consistent with our observations from Section 7, pollution
damages are minimal under the targeted policy which are represented by the area under the curve to the left of
the green dashed line.

Figure A5 also demonstrates that potential scope of a targeted policy to stimulate a significant amount of
investment with almost zero corresponding pollution damages. Indeed, compared to the amount of investment
created by bonus depreciation (around $17 billion), a targeted policy could potentially stimulate twice that
amount with very little resultant economic damages. However, significant economic damages are unavoidable
even under a targeted policy when the amount of total investment exceeds $45-55 billion as pollution damages per
investment increase significantly around this range. Figure A5 therefore reinforces our previous conclusions that
bonus depreciation led to substantial economic damages because it inadvertently targeted the highest emissions
industries. Further, intentionally targeted policies could potentially lower economic damages while stimulating
even more additional investment.

J County-Level Bonus Depreciation and Pollution Concentration

This section explores the role of bonus depreciation on ambient pollution concentrations using surface-level pollu-
tion data from EPA’s Air Quality System (AQS) data. The data are public use and can be downloaded from the
EPA’s AQS website (https://aqs.epa.gov/aqsweb/airdata/download_files.html). For consistency with the
aggregate damages estimated from the pollution transport model, we focus on fine particulate matter (PM2.5).
In particular, we estimate the effect of variation in county-level bonus depreciation on annual (mean) PM2.5 at
a pollution monitoring site. For consistency in measurement, we use PM2.5 readings that comply with the 2006
Annual PM2.5 National Ambient Air Quality Standards.

We construct a county-level indicator variable for counties with the highest share of treated emissions based
on NEI emissions of PM2.5 using our definition of Bonus treatment baseline NEI analysis. For each county, we
define the share of treated emissions as the ratio of the sum of PM2.5 emissions among treated plants to the sum of
PM2.5 NEI emissions from all plants in the county. We find that the share of treated emissions follows a bimodal
distribution with peaks around 0 and 1 (i.e., 0 and 100 percent treated emissions, respectively). Consequently,
we use a indicator variable for the top 25% of the treated-emissions distribution, which captures the peak around
1. The results are very similar using both a continuous measure of treatment, as well as other treatment cutoffs.

As a preliminary investigation, we construct a binscatter plot with the change in PM2.5 between the pre
and post-period over the share of treated emissions (Figure A6). The change in PM2.5 is defined as the log
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difference between average PM2.5 concentrations in 1995 to 2000 and the same average between 2002 and 2012.
The clustering of points around 0 and 1 (smaller spacing) reflects the fact that the share of treated emissions
follows a bimodal distribution (as previously mentioned). Based on this preliminary investigation, there appears
to be a positive relationship between the change in PM2.5 concentrations and the share of treated emissions.
Because PM2.5 concentrations generally declined between the pre and post period, the figure demonstrates that
pollution concentrations declined the least in counties that received the most bonus depreciation.

Next, to more rigorously investigate the role of bonus depreciation in pollution concentrations, we use a
difference-in-differences estimation strategy to estimate the effect of county-level bonus depreciation on annual
mean PM2.5 pollution at monitoring sites. Specifically, we interact a dummy variable equal to 1 if the site is
in a treated county and a dummy variable for the post-treatment period (2002-2012). To account for common
national-level trends in pollution, we include year fixed effects, and to account for unobserved differences in
pollution across counties, we include county fixed effects. Additional specifications control for site fixed effects to
control for differences in pollution within counties. For example, some sites might be relatively closer or downwind
from pollution sources compared to other sites within the same county. Finally, we also create dummy variables
for Nonattainment with the two relevant NAAQS amendments during the period (Ozone and Particulate Matter
following reforms implemented in 2004 and 2005, respectively). We interact these two dummy variables with year
dummies, which allows us to control for both the effect of Nonattainment designations after their implementation,
as well as differential pre-trends among sites in Attainment and Nonattainment counties prior to the NAAQS
amendments.

Table A12 presents our DD estimates, which represents the change in PM2.5 concentrations in the most
affected by bonus depreciation relative to counties less affected by bonus depreciation. We find that pollution
concentrations are around 5-6 percent higher in counties treated by bonus depreciation, with DD coefficients
that become slightly larger and more precisely estimated when including additional fixed effects. That the
county-level pollution concentration estimates are smaller in magnitude compared to the plant-level emissions
estimates is exactly as expected for two primary reasons. First, our NEI plant-level emissions estimates are only
among emissions point sources, whereas pollution concentrations reflect all emissions sources, including sources
that we would not expect to be affected by bonus depreciation, such as emissions from non-point sources (e.g.,
automobiles). Second, only a fraction of emissions generated remain within the county in which they are generated,
implying that we would expected a relatively smaller increase in concentrations compared to emissions. These
estimates are subject to a number of concerns, but the investigation of county-level effects are highly consistent
with our plant-level estimations, at least qualitatively.

Table 6 presents estimates of the effect of bonus depreciation on county-industry criteria air pollutant emis-
sions. The outcomes include are particulate matter 2.5 (particles less than 2.5 microns in width), sulfur dioxide
(SO2), nitrogen oxides (NOx), and volatile organic compounds (VOC). All specifications include county-by-
industry, county-by-year, and sector-by-year fixed effects. Standard errors are presented in parentheses and are
clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and
1% level. Source: Authors’ calculations based on NEI and Zwick and Mahon (2017) data.

K Welfare Analysis: Details and Sensitivity

In this section, we provide additional details pertaining to the welfare analysis presented in Section 7.3 and
conduct sensitivity analysis with respect to the assumed rate of capital depreciation. For consistency with our
pollution damage estimates, we convert all nominal dollars to constant 2020 USD.

K.1 Fiscal Cost

A key component of the welfare analysis is the estimation of the fiscal cost of bonus depreciation and the alternative
policies. Recall that we rely on estimates of the fiscal cost of bonus depreciation from Garrett, Ohrn, and
Suarez Serrato (2020). Estimating the fiscal cost of our alternative policies is challenging as these scenarios are
hypothetical and depend on a myriad of factors specific to the actual policy. To fix ideas, we suppose these
alternative policies are in the form of targeted (by industry) corporate tax reductions that generate an equivalent
investment response (in percentage terms) as bonus depreciation. While the government utilizes a range of
instruments to promote business investment, specifying the alternative polices as corporate income tax cuts is
helpful as recent research demonstrates that one present value dollar of tax breaks generated by bonus depreciation
results in the same amount of investment as one dollar of tax breaks generated by corporate income tax cuts
(Ohrn, 2018). Because the hypothetical policies are defined to stimulate an equivalent amount of investment, they
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would have an equivalent fiscal cost. Of course, governments use a range of instruments to stimulate investment,
including some policies that might have potentially higher cost than bonus depreciation. Our emphasis is that the
government could, in practice, stimulate a similar amount of investment at a similar cost using targeted corporate
tax cuts.

We also note that we calculate a pollution-exclusive MVPF for bonus depreciation of 1.3. This is very similar
to the implied MVPF we calculate from Kennedy et al. (2024), which focuses on the TCJA corporate income tax
cuts estimated. Thus, the ratio of investment stimulus to government expenditures is very similar across these
two types of investment stimulus policies. This provides additional, albeit indirect, evidence that corporate tax
cuts, for a given amount of investment stimulus, would have similar fiscal cost to the government.

K.2 GDP effects of bonus

To estimate the effect of bonus depreciation on additional GDP, we start with estimates of the effect of bonus
depreciation on capital investment from Zwick and Mahon (2017). Recall that Zwick and Mahon (2017) estimate
that bonus depreciation increased capital investment by $73.6 billion in the first round (2001-2004) and $135
billion in the second round (2005-2010).

The second step is to translate these changes in investment to changes in aggregate physical capital. We
define additional physical capital in year t (dKt) as the sum of investment in year t (due to bonus) and additional
physical capital in year t− 1 (net of depreciation in year t). That is,

dKt = It + (1− δ)dKt−1

where It is investment from bonus estimated by Zwick and Mahon (2017), and δ is the depreciation rate. Intu-
itively, additional capital in year t is equal to additional capital form year t−1 plus investment from bonus minus
additional depreciation. We use a baseline depreciation rate equal to 0.10 (10%). To assess the sensitivity of the
results to the depreciation rate, we perform a sensitivity analysis where we use 6% and 15% depreciation rates.

Finally, to translate changes in physical capital to changes in GDP, we use a constant capital-output elasticity
equal to 1/3. Specifically, additional output dYt is given by:

dYt = (1/3)Yt
dKt

Kt

where Yt is GDP in year t and Kt is the physical capital stock, which we obtain from the U.S. Bureau of Economic
Analysis and Penn World Tables, respectively.

Vollrath (2021) contends that this one-third elasticity is one of the most common assumptions within eco-
nomics. One key assumption is zero-profits (or no markups). However, incorporating markups would slightly
decrease the capital-output elasticity, implying the marginal benefit of bonus depreciation, in terms of additional
output, would be slightly smaller. We use the larger 1/3 value to ensure we are more likely overstating the benefit
of the policy vis-à-vis pollution damages.

We calculate average annual additional output by summing over the 2001 to 2010 period and dividing by
the number of years in the period. We find that additional annual output due to bonus depreciation was around
51.3 billion (2020 $). Put another way, GDP was around 0.5% higher at the end of period as a consequence of
the policy. While our back-of-the-envelope calculate is highly stylized, our estimates are consistent with studies
estimating GDP effects of comparable policies. For example, Barro and Furman (2018) estimate that including
permanent bonus depreciation (at 50%) to the 2017 TCJA would increase GDP by around 0.3% after 10 years.
Our estimate is similar in magnitude (0.5%), albeit slightly larger, potentially due to a number of differences
between the 2017 Act and the policy we study. For example, the 2002 Act was passed during an economic
downturn and in the context of relatively higher corporate income tax rates, both of which might contribute
to slightly larger effects of bonus depreciation. If our estimate of GDP is slightly overstated then we would be
understating the importance of pollution damages relative to the policy’s benefits.

K.3 Sensitivity Analysis: Depreciation Rate

To assess the sensitivity of the estimates to changes in the depreciation rates, we calculate additional output and
the corresponding MVPF using a range of depreciation rates. In particular, we use a low-end depreciation rate
of 6% and a high-end depreciation rate of 15%.
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Table A13 reports our MVPF estimates based on a 6% depreciation rate (Panel A) and a 15% depreciation
rate (Panel B). Using a low depreciation rate increases the unadjusted MVPF from 1.3 to 1.44, while the high
depreciation rate decreases the unadjusted MVPF to 1.15. Incorporating pollution damages from Bonus signif-
icantly reduces the MVPF under both low and high depreciation rates, ranging between 0.29 to 0.93 under low
depreciation and between 0.64 and 0.00 under high depreciation rates. Similar to our baseline depreciation rate,
the MVPF under the Anti-Bonus and Emissions Intensity Targeting polices are very similar to the unadjusted
MVPF. This section demonstrates that while changes in the depreciation rate shift the unadjusted depreciation
rate, the conclusion that bonus depreciation significantly reduces the MVPF remains unchanged.
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Appendix Figures

Figure A1: Effect of Bonus on Total Releases; Alternative Specifications
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Notes: Figure A1 displays dynamic DD estimates and 95% confidence intervals based on equation (2) describing
the effect of bonus depreciation on Log(Total Chemical Releases) with alternate levels of fixed effects. The first
specification includes only plant and year fixed effects. The second specification includes plant, and county-by-
sector-by-year fixed effects. The third specifications includes plant, county-year, and sector-year fixed effects as
well as fixed effects controls for Chinese import competition, the domestic production activities deduction, and
use of information and communication technology. Standard errors are clustered at the NAICS 4-digit industry
level. The 2001 coefficient is normalized to zero. The corresponding DD estimates are presented in Columns (1),
(5), and (6), of Panel (A), Table 2. Source: Authors’ calculations based on TRI and Zwick and Mahon (2017)
data.

77



Figure A2: Effect of Bonus Depreciation on Log Releases per Unit of Revenue
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Notes: Figure A2 displays dynamic DD estimates and 95% confidence intervals describing the effect of bonus
depreciation on Log(Capital Stock per Unit Revenue) for the sample of Compustat firms that have plants in the
TRI. Estimates include firm and firm-size bins-by-year fixed effects. Standard errors are clustered at the NAICS
4-digit industry level. Source: Authors’ calculations based on TRI, Compustat, and Zwick and Mahon (2017)
data.
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Figure A3: Effect of Bonus Depreciation on County-Industry Level NEI Criteria Air-Pollution
Emissions (Restricted Sample)
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Notes: Figure A3 displays dynamic DD estimates and 95% confidence intervals describing the effect of bonus
depreciation on county-industry criteria air pollutants. The 2000 coefficients are normalized to zero. We restrict
the sample by excluding the years 1996, 1998, and 2000. The outcomes include air emissions of the following
criteria air pollution: particulate matter 2.5 (particles less than 2.5 microns in width), sulfur dioxide (SO2),
nitrogen oxides (NOx), and volatile organic compounds (VOC). All specifications include county-by-industry,
county-by-year, and sector-by-year fixed effects. Source: Authors’ calculations based on NEI and Zwick and
Mahon (2017) data.
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Figure A4: Economic Damages and Industrial Job Creation
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(C) Panel C
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Notes: Panel A of Figure A4 presents binscatter plots relating county-level per-capita economic damages to
county-level per-capita industrial employment gains. See Appendix H for details regarding estimation of county-
level industrial employment gains. Panels B and C provide binscatters showing the relationship between damages
per 100k industrial jobs created and median household income and Share Black respectively. Because bonus
generates benefits and costs, damages per 100k industrial jobs generated provides a measure of the net costs a
county incurs from bonus. Economic damages assume a concentration-response parameter of 4% and a VSL of
9 million USD. Source: Authors’ calculations based on NEI, SAIPE, County Business Patterns and Zwick and
Mahon (2017) data using InMAP.
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Figure A5: Ranking Industry-Level Investment Stimulus by Emissions Intensity
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Notes: Figure A5 displays the industry-level additional investment stimulated by a given policy with the same
percentage effects as bonus depreciation. Industries are ranked from lowest to highest in terms of their emissions
intensity (their pollution damages per dollar of investment). This ranking produces a graph akin to a “merit-
order” curve that is common in the electricity literature (e.g. Cicala, 2022). The industries to the left of the black
dashed line represent those that are stimulated under the alternative “Low Emissions Targeting Policy.” Sources:
Authors’ calculations based on NEI, NBER-CES, BEA, and Zwick and Mahon (2017) data.
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Figure A6: County-Level Bonus Depreciation and Change in Surface PM2.5 Pollution
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Notes: Figure A6 presents bin scatter plots relating changes in PM2.5 concentrations between the pre and post-
period and the share of county-level treated emissions. The change in PM2.5 is the log difference between average
PM2.5 concentrations in 1995 to 2000 and the same average between 2002 and 2012. Source: Authors’ calculations
based on the EPA’s AQS data, NEI, and Zwick and Mahon (2017) data.
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Table A2: Effect of Bonus on Total Chemical Releases: Dropping Electric Utilities

Dropping All Elec Utilities Dropping Regulated Elec Utilities

(1) (2) (3) (4) (5) (6)

Bonus × Post 0.331∗∗∗ 0.342∗∗∗ 0.349∗∗∗ 0.311∗∗∗ 0.321∗∗∗ 0.349∗∗∗

(0.0751) (0.0730) (0.0677) (0.0743) (0.0722) (0.0678)

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓
County × Year FE ✓ ✓ ✓ ✓
Sector × Year FE ✓ ✓
Obs. 203,953 203,891 203,891 207,401 207,400 207,400

Notes: Table A2 mirrors Table 2 using two different samples. Columns 1, 2 and 3 drop all electric utilities from the
sample and run specifications from columns 1, 2 and 4 of Table 2. Columns 4, 5 and 6 do the same after dropping
regulated electric utilities from the sample. Columns 3 and 6 include sector-by-year fixed effects. As such, the
results in 3 and 6 are identical and the same as column 4 of Table 2. When controlling for sector-by-year fixed
effects, the identifying variation comes from within 2-digit NAICS, so dropping all electric utilities (NAICS 22)
does not change the results. The outcome variable in all specifications is Log(Total Chemical Releases). Column
(1) and (4) include plant and year fixed effects. Column (2) and (5) include plant and county-by-year fixed effects.
Column (3) and (6) includes plant, county-by-year, and sector-by-year fixed effects. Standard errors are presented
in parentheses and are clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical at the
10, 5 and 1 percent level. Sources: Authors’ calculations based on TRI, and Zwick and Mahon (2017) data.

Appendix Tables
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Table A3: Effect of Bonus Depreciation using Alternative Treatment Definitions

Log(Total Chemical Releases)

(1) (2) (3) (4)

Bonus × Post (33rd percentile) 0.349∗∗∗

(0.0678)

Bonus × Post (25th pctle percentile) 0.387∗∗∗

(0.0701)

Bonus × Post (40th pctle percentile) 0.311∗∗∗

(0.0676)

Bonus × Post (Continuous) 0.809∗∗∗

(0.267)

Plant FE ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓ ✓
Obs. 212,368 212,368 212,368 212,368

Notes: Table A3 presents estimates of the effect of bonus depreciation on total chemical releases using alterna-
tive treatment definitions. All specifications follow the Equation (1) framework. The outcome variables in all
specifications is Log(Total Releases) and all specifications include plant, county-by-year, and sector-by-year fixed
effects. Treatment in Specification (1) follows our standard definition. In Specification (2), treatment is defined
as plants in the bottom quartile of the z0 distribution. In Specification (3), treatment is defined as plants in
the bottom four declies of the z0 distribution. Treatment in Specification (4) uses the continuous measure of z0
interacted with the Post dummy. The Specification (4) treatment definition is scaled so the coefficient represents
the effect of 100% bonus depreciation / 100% expensing. Standard errors are presented in parentheses and are
clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and
1% level. Source: Authors’ calculations based on TRI and Zwick and Mahon (2017) data.
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Table A4: Effect of Bonus on Total Chemical Releases: Compustat Sample

Log(Total Chemical Releases)

(1) (2) (3) (4) (5) (6)

Bonus × Post 0.428∗∗∗ 0.472∗∗∗ 0.524∗∗∗ 0.555∗∗∗ 0.499∗∗∗ 0.706∗∗∗

(0.0797) (0.0808) (0.0981) (0.0792) (0.107) (0.118)

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓
County × Year FE ✓ ✓ ✓
Sector × Year FE ✓ ✓
County × Sector × Year FE ✓
Additional Controls ✓
Obs. 49,142 48,751 49,142 48,751 47,115 42,076

Notes: Table A4 presents estimates of the effect of bonus depreciation on chemicals releases based on Equation
(1) for the sample of plants that we match to Compustat firms. The outcome variable in all specifications is
Log(Total Chemical Releases). Column (1) includes plant and year fixed effects. Column (2) includes plant and
county-by-year fixed effects. Column (3) includes plant and sector-by-year fixed effects. Column (4) includes
plant, county-by-year, and sector-by-year fixed effects. Column (5) specifications include plant and county-by-
sector-by-year fixed effects. Column (6) specifications include county-by-year and sector-by-year fixed effects as
well as controls for import competition from China, the Domestic Production Activities Deduction, and use of
Information and Communications Technologies. Standard errors are presented in parentheses and are clustered
at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical at the 10, 5 and 1 percent level. Sources:
Authors’ calculations based on TRI, Compustat, and Zwick and Mahon (2017) data.

85



Table A5: Effect of Bonus Depreciation on Alternative Measures of Emissions Intensity

(A): Emissions / Capital

(1) (2) (3) (4)

Bonus × Post 0.132 0.143 0.258 0.0947

(0.312) (0.320) (0.324) (0.345)

Obs. 6,181 6,181 6,181 6,181

(B): Emissions / Revenue

(1) (2) (3) (4)

Bonus × Post 0.334 0.335 0.460 0.408

(0.345) (0.353) (0.326) (0.387)

Obs. 6,177 6,177 6,177 6,177

(C): Emissions / Pretax Income

(1) (2) (3) (4)

Bonus × Post 0.115 0.125 0.258 0.246

(0.401) (0.412) (0.371) (0.399)

Obs. 5,012 5,012 5,012 5,012

Firm FE ✓ ✓ ✓ ✓

Year FE ✓

Firm Size × Year FE ✓ ✓ ✓

Debt Ratio × Year FE ✓ ✓

Cap. Intensity × Year FE ✓

Notes: Table A5 displays difference-in-differences estimates describing the effect of bonus depreciation on alter-
native measures of emissions intensity. Emissions intensity in Panel (A) is calculated as the log of total releases
per unit capital stock. Emissions intensity in Panel (B) is calculated as the log of total releases per unit revenue.
Emissions intensity in Panel (C) is calculated as the log of total releases per unit pre-tax income. Column (1)
estimates include firm and year fixed effects. Column (2) estimates include firm and pre-period firm-size bins in-
teracted with year fixed effects. Columns (3) and (4) progressively add pre-period debt ratio bins interacted with
fixed effects and pre-period capital intensity bins interacted with year fixed effects. All regressions are weighted
by pre-period capital stock. Standard errors are presented in parentheses and clustered at the 4-digit NAICS
level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’ calculations based
on the data from TRI, Compustat and Zwick and Mahon (2017).
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Table A6: Effect of Bonus Depreciation on Energy-Efficient Capital Investment from MECS

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Compr. Air Lighting HVAC Machine Proc. Cooling Dir/Indir Steam Prod. Energy Install/Retro New
System System System Drive Syst System Heat Syst System Audit Energy Source

Bonus x Post 4.042∗∗ -4.970 5.369∗∗ 5.094∗∗∗ 11.656∗∗∗ -4.180 -1.201 6.089∗∗∗ 9.390∗∗

(1.940) (3.027) (2.606) (1.865) (3.902) (3.568) (4.286) (2.080) (4.496)

Ind FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs. 209 281 311 320 319 293 305 312 282

Avg Ind % Uptake 8.333 9.159 17.979 19.910 47.222 18.680 25.411 15.911 15.343

Notes: Table A6 presents estimates of the effect of bonus depreciation on industry-level variables from the MECS. MECS reports the number of estab-
lishments in approximately 70 industries that “install or retrofit” particular systems for the primary purpose of improving energy efficiency. The outcome
variables in the regressions range from 0-100 and represent the percent of establishments in an industry that install or retrofit a given system. The MECS
is collected every four years. Regressions are run on years 1994, 1998, 2002, 2006 and 2010. The outcome variables are the share of establishments
installing or retrofitting Compressed Air Systems, Facility Lighting Systems, HVAC Systems, Direct Machine Drive Systems, Process Cooling Systems,
Direct/Indirect Heating Systems. We also estimate the effect on the share of establishments that undergo an energy audit and the share of establishments
install or retrofit an energy source. All specifications include industry and year fixed effects. Standard errors are presented in parentheses and clustered at
the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’ calculations based on MECS
and Zwick and Mahon (2017) data.
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Table A7: Effect of Bonus on Capital Investment; Heterogeneity by Attainment Status

Log(Capital Investment)

(1) (2) (3) (4)

Bonus × Post 0.441∗∗∗ 0.439∗∗∗ 0.488∗∗∗ 0.375∗∗∗

(0.115) (0.117) (0.107) (0.121)

Bonus × Post × 1(NA) -0.146 -0.147 -0.178∗ -0.183∗

(0.102) (0.104) (0.0964) (0.0978)

Firm FE ✓ ✓ ✓ ✓
Year FE ✓
Firm Size Bins × Year FE ✓ ✓ ✓
Debt Ratio Bins × Year FE ✓ ✓
Cap. Intensity Bins × Year FE ✓
Obs. 6,135 6,135 6,135 6,135

Notes: Table A7 displays DD estimates describing heterogeneous capital investment responses to bonus de-
preciation due to county-level nonattainment status. The outcome variable in all specifications is Log(Capital
Investment). The Bonus × (Year=2011) coefficient describes the 10-year capital response to bonus depreciation.
The Bonus × (Year=2011) × 1(NA) coefficient describes how much larger/smaller is the 10-year capital response
to bonus depreciation for firms in the TRI-Compustat sample that had a plant located in a nonattainment county
following the 2004 and 2005 CAA Amendments. Column (1) estimates include firm and year fixed effects. Column
(2) estimates include firm and pre-period firm-size bins interacted with year fixed effects. Columns (3) and (4)
progressively add pre-period debt ratio bins interacted with year fixed effects and pre-period capital intensity
bins interacted with year fixed effects. Standard errors are presented in parentheses and clustered at the 4-digit
NAICS level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Authors’ calculations based
on TRI, Compustat and Zwick and Mahon (2017) data.
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Table A8: Effect of Bonus Depreciation on NEI Criteria Air-Pollution Emissions; Restricted
Sample

PM2.5 SO2 NOx VOC

Bonus × Post 0.292∗∗ 0.317∗∗ 0.332∗ 0.182

(0.137) (0.126) (0.192) (0.123)

County × Industry FE ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓ ✓
Obs. 76,803 91,637 60,273 72,434

Notes: Table A8 presents estimates of the effect of bonus depreciation on county-industry-level air-pollution
emissions for criteria air pollutants from the National Emissions Inventory (NEI). We restrict the sample by
excluding the years 1996, 1998, and 2000. The outcomes include air emissions of the following criteria air
pollution: particulate matter 2.5 (particles less than 2.5 microns in width), particulate matter 10 (particles
less than 10 microns in width), sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds
(VOC). The outcomes are aggregated across all plants within a given count-industry (4-digit NAICS code). All
specifications include county-by-industry, county-by-year, and sector-by-year fixed effects. Standard errors are
presented in parentheses and are clustered at the four-digit-NAICS industry level. ∗, ∗∗, and ∗∗∗ denote statistical
significance at the 10, 5, and 1% level. Source: Authors’ calculations based on NEI and Zwick and Mahon (2017)
data.
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Table A9: Effect of Bonus Depreciation on Balanced TRI Sample

Total Releases

(1) (2) (3) (4) (5) (6)

Bonus × Post 0.320∗∗∗ 0.331∗∗∗ 0.324∗∗∗ 0.326∗∗∗ 0.319∗∗∗ 0.356∗∗∗

(0.0833) (0.0804) (0.0726) (0.0697) (0.0694) (0.0648)

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓
County × Year FE ✓ ✓ ✓
Sector × Year FE ✓ ✓ ✓
County × Sector × Year FE ✓
Additional Controls ✓
Obs. 112,043 111,762 112,043 111,762 110,755 106,443

Notes: Table A9 presents estimates of the effect of bonus depreciation on emissions from a balanced TRI panel.
Standard errors are presented in parentheses and are clustered at the four-digit-NAICS industry level. ∗, ∗∗, and
∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’ calculations based on NEI and
Zwick and Mahon (2017) data.
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Table A10: Effect of Bonus Depreciation on Balanced TRI Sample

Log(Total Employment)

(1) (2) (3)

Bonus × Post 0.117∗∗∗ 0.115∗∗∗ 0.0884∗∗∗

(0.0187) (0.0187) (0.0195)

Cnty-Ind FE ✓ ✓ ✓
Year FE ✓
State × Year FE ✓
County × Year FE ✓
Obs. 1,174,889 1,174,889 1,174,889

Notes: Table A10 presents estimates of the effect of bonus depreciation on industrial employment using county-
industry data from the County Business Patterns. Standard errors are presented in parentheses and are clustered
at the county-industry level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source:
Authors’ calculations based on CBP and Zwick and Mahon (2017) data.
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Table A11: Determinants of Economic Damages per Job Created

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Median Income (log) -3.828∗∗∗ -3.889∗∗∗ -3.521∗∗∗

(0.144) (0.335) (0.337)

Poverty Percent, All Ages 0.107∗∗∗ -0.0203 -0.0438∗∗∗

(0.00758) (0.0168) (0.0159)

Share Black 3.128∗∗∗ 1.895∗∗∗

(0.336) (0.323)

Share Latino -7.291∗∗∗ -5.149∗∗∗

(0.263) (0.291)

Share Asian -22.55∗∗∗ -6.482∗∗∗

(0.829) (1.016)

Share Native American -3.058∗∗ -7.135∗∗∗

(1.500) (1.220)

Share Non-White -3.931∗∗∗ -3.183∗∗∗

(0.197) (0.246)

Obs. 2,940 2,940 2,940 2,940 2,940 2,940 2,940 2,940 2,940

Notes: Table A11 presents county-level cross-sectional regressions, where the dependent variable is log county-level economic damages. The Median Income
and Poverty Rate (all ages) are from the US Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program. The population shares are
calculated using the InMAP model population data by aggregating the computational grid to the county-level. All specifications are weighted by county
population, and include a constant term (omitted from table) ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1% level. Source: Authors’
calculations based on NEI, SAIPE, and Zwick and Mahon (2017) data using the InMAP model.
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Table A12: Effect of County-level Bonus Depreciation on Surface-Level PM2.5 Pollution

1 2 3

Bonus County ×Post 0.0483∗ 0.0528∗∗ 0.0592∗∗∗

(0.0260) (0.0235) (0.0209)

Year FE ✓ ✓ ✓
County FE ✓
Site ID FE ✓ ✓
NonAttainment × Year FE ✓
Obs. 13,976 13,894 13,787

Notes: Table A12 presents estimates of the effect of county-level bonus depreciation on PM2.5 pollution con-
centrations using surface-level pollution data from EPA’s Air Quality System (AQS) data. Standard errors are
presented in parentheses and are clustered at the county level. ∗, ∗∗, and ∗∗∗ denote statistical significance at the
10, 5, and 1% level. Source: Authors’ calculations based on the EPA’s AQS data, NEI, and Zwick and Mahon
(2017) data.
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Table A13: Welfare Analysis: Marginal Value of Public Funds

SVPF MVPF

Scenario Low Damages High Damages

Panel A (6% depreciation):

Bonus 1.44 0.93 0.29

Anti-Bonus 1.44 1.41 1.35

Low Emissions-Intensity Targeting 1.44 1.43 1.43

Panel B (15% depreciation):

Bonus 1.15 0.64 0.00

Anti-Bonus 1.15 1.13 1.07

Low Emissions-Intensity Targeting 1.15 1.15 1.15

Notes: Table A13 presents estimates of the marginal value of public funds (MVPF). See Appendix K for details
regarding the calculation of MVPF. Panel A uses a 6% depreciation rate in calculating additional GDP, while Panel
B uses a 15% depreciation rate. The Bonus scenario refers to incorporating pollution damgages from the actual
Bonus Depreciation Policy, whereas the Anti-Bonus and Low Emissions-Intensity Targeting scenarios incorporate
pollution damages from various hypothetical policy scenarios described in Section 7. The Low columns use a
concentration-response parameter of 4% from Kewski et al. (2009) and the High columns use a concentration-
response parameter of 14% from Lepuele et al. (2012). Source: Authors’ calculations based on NEI and Zwick
and Mahon (2017) data using the InMAP model.
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