Bank Runs, Fragility, and Regulation

Manuel Amador Javier Bianchi

July 2024

NBER Summer Institute

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Banking regulation proposals:

 \blacktriangleright Higher equity buffers to make banks less vulnerable to runs

Banking regulation proposals:

 \blacktriangleright Higher equity buffers to make banks less vulnerable to runs

 \bullet Why banks choose not to hold more equity and make themselves less vulnerable?

Banking regulation proposals:

 \blacktriangleright Higher equity buffers to make banks less vulnerable to runs

 \bullet Why banks choose not to hold more equity and make themselves less vulnerable?

▶ Popular rationale: moral hazard due to bailouts

Banking regulation proposals:

 \blacktriangleright Higher equity buffers to make banks less vulnerable to runs

• Why banks choose not to hold more equity and make themselves less vulnerable?

▶ Popular rationale: moral hazard due to bailouts

Today: risk of bank runs induce banks to over-leverage even absent bailouts

▶ General equilibrium model of banks runs (Amador-Bianchi 2024)

▶ Analyze efficiency of ex-ante leverage decisions

▶ General equilibrium model of banks runs (Amador-Bianchi 2024)

▶ Analyze efficiency of ex-ante leverage decisions

▶ General equilibrium model of banks runs (Amador-Bianchi 2024)

 \blacktriangleright Analyze efficiency of ex-ante leverage decisions

In the absence of runs:

 \triangleright Competitive equilibrium is constrained efficient

▶ General equilibrium model of banks runs (Amador-Bianchi 2024)

▶ Analyze efficiency of ex-ante leverage decisions

In the absence of runs:

 \triangleright Competitive equilibrium is constrained efficient

With self-fulfilling runs:

 \triangleright Competitive equilibrium exhibits excessive leverage

▶ General equilibrium model of banks runs (Amador-Bianchi 2024)

▶ Analyze efficiency of ex-ante leverage decisions

In the absence of runs:

 \triangleright Competitive equilibrium is constrained efficient

With self-fulfilling runs:

 \triangleright Competitive equilibrium exhibits excessive leverage

Mechanism:

 \blacktriangleright Higher equity buffers induce higher asset prices \Rightarrow banks more "liquid" \Rightarrow less prone to (inefficient) runs

Environment

- \blacktriangleright Three periods $t = 0, 1, 2$
	- \blacktriangleright Idiosyncratic risk only realized at $t = 1$
- ▶ Technology
	- ▶ Production linear in capital
	- \blacktriangleright Capital in fixed supply K

Environment

- \blacktriangleright Three periods t = 0, 1, 2
	- \blacktriangleright Idiosyncratic risk only realized at $t = 1$
- ▶ Technology
	- ▶ Production linear in capital
	- \blacktriangleright Capital in fixed supply K
- Continuum of banks with concave utility
	- \blacktriangleright Identical initial deposits and capital $b_0 = B_0, k_0 = K$
	- \triangleright Constant productivity z under repayment
	- \triangleright Can default at t = 1, 2 outside option shock at t = 1
- ▶ Creditors: linear utility and discount rate R

Individual Bank Problem

Preferences and budget constraints

▶ Preferences

$$
u(c_0)+\beta\mathbb{E}u(c_1)+\beta^2\mathbb{E}u(c_2),
$$

where $u = \log$

Preferences and budget constraints

▶ Preferences

$$
u(c_0) + \beta \mathbb{E} u(c_1) + \beta^2 \mathbb{E} u(c_2),
$$

where $u = \log$

▶ Budget constraints under repayment

$$
c_0 = (z + p_0)k_0 - Rb_0 + q_0(b_1, k_1)b_1 - p_0k_1,
$$

\n
$$
c_1 = (z + p_1)k_1 - Rb_1 + q_1(b_2, k_2)b_2 - p_1k_2,
$$

\n
$$
c_2 = zk_2 - Rb_2.
$$

where q_t is the bond price schedule and p_t the price of capital

Preferences and budget constraints

▶ Preferences

$$
u(c_0) + \beta \mathbb{E} u(c_1) + \beta^2 \mathbb{E} u(c_2),
$$

where $u = \log$

▶ Budget constraints under repayment

$$
c_0 = \overbrace{(z + p_0)k_0 - Rb_0}^{n_0} + q_0(b_1, k_1)b_1 - p_0k_1,
$$

\n
$$
c_1 = (z + p_1)k_1 - Rb_1 + q_1(b_2, k_2)b_2 - p_1k_2,
$$

\n
$$
c_2 = zk_2 - Rb_2.
$$

where q_t is the bond price schedule and p_t the price of capital

▶ Default triggers

- ▶ Loss in productivity or capital
- ▶ Exclusion from borrowing and capital markets

▶ Period 2 value

$$
V_2^D(\boldsymbol{k}_2)=\boldsymbol{u}(z_2^D\boldsymbol{k}_2)
$$

 \blacktriangleright z_2^D is predetermined and common across banks.

 \blacktriangleright Period 1 value

$$
V^D_1(k_1,z^D_1) = u(z^D_1 k_1) + \beta u(z^D_2 k_1)
$$

 \blacktriangleright z_1^D i.i.d. across banks – F is the CDF

▶ Period 2 value

$$
V_2^D(\boldsymbol{k}_2)=\boldsymbol{u}(z_2^D\boldsymbol{k}_2)
$$

 \blacktriangleright z_2^D is predetermined and common across banks.

▶ Period 1 value

$$
V^D_1(k_1,z^D_1) = u(z^D_1 k_1) + \beta u(z^D_2 k_1)
$$

 \blacktriangleright z_1^D i.i.d. across banks – F is the CDF

 $V^{\rm D}$ independent of prices (and increasing in k)

 \triangleright Generates a standard endogenous borrowing limit

Period 2: Bank Problem

$$
V_2(b_2,k_2)=\max_{d_2\in\{0,1\}}\Big\{(1-d_2)u(zk_2-Rb_2)+d_2u(z_2^Dk_2)\Big\}
$$

Default choice:

$$
d_2(b_2,k_2)=\begin{cases} 1 & \text{if }Rb_2>\varphi k_2\text{, where }\varphi\equiv z-z_2^D\\ 0 & \text{otherwise,}\end{cases}
$$

$$
V_1^R(n_1) = \sup_{c_1, k_2 \ge 0, b_2} \left\{ u(c_1) + \beta u(zk_2 - Rb_2) \right\}
$$
 Without a run
s.t.
$$
c_1 = n_1 + b_2 - p_1k_2
$$

$$
Rb_2 \le \phi k_2
$$

$$
V_1^R(n_1) = \sup_{c_1, k_2 \ge 0, b_2} \left\{ u(c_1) + \beta u(zk_2 - Rb_2) \right\}
$$
 Without a run
s.t. $c_1 = n_1 + b_2 - p_1k_2$
 $Rb_2 \le \phi k_2$

$$
V_1^{Run}(n_1) = \sup_{c_1, k_2 \ge 0, b_2} \left\{ u(c_1) + \beta u(zk_2 - Rb_2) \right\}
$$
 With a run
s.t. $c_1 = n_1 + b_2 - p_1k_2$
 $b_2 \le 0$ can save But not borrow

$$
V_1^R(n_1) = \sup_{c_1, k_2 \ge 0, b_2} \left\{ u(c_1) + \beta u(zk_2 - Rb_2) \right\}
$$
 Without a run
s.t. $c_1 = n_1 + b_2 - p_1k_2$
 $Rb_2 \le \phi k_2$

$$
V_1^{Run}(n_1) = \sup_{c_1, k_2 \ge 0, b_2} \left\{ u(c_1) + \beta u(zk_2 - Rb_2) \right\}
$$
 With a run
s.t. $c_1 = n_1 + b_2 - p_1k_2$
 $b_2 \le 0$ can save But not borrow

Vulnerable to self-fulfilling runs when $V_1^{Run}(n_1) < V_1^D(k_1, z_1^D) \leq V_1^R(n_1)$

 \blacktriangleright Given portfolio (k_1, n_1) and p_1

▶ Two default thresholds

$$
\xrightarrow{\qquad \qquad }\frac{1}{\hat{z}^{\text{Run}}(k_1, n_1)} \qquad \qquad \overrightarrow{z}^{\text{F}}(k_1, n_1) \qquad \qquad \overrightarrow{z}^{\text{D}}_1
$$

[Run $\&$ repay is off-equilibrium event]

Given portfolio (k_1, n_1) and p_1

▶ Two default thresholds

[Run $&$ repay is off-equilibrium event]

Given portfolio (k_1, n_1) and p_1

▶ Two default thresholds

Runs occur despite assets being liquid (Amador-Bianchi 2024)

- \blacktriangleright When $R^{K} > R$, leverage raises expected profits
	- A run prevents bank from leveraging \Rightarrow reduces profits and value of repayment \Rightarrow run may become self-fulfilling, $\hat{z}^{\text{Run}} < \hat{z}^{\text{F}}$

Given portfolio (k_1, n_1) and p_1

▶ Two default thresholds

Runs occur despite assets being liquid (Amador-Bianchi 2024)

- \blacktriangleright When $R^{K} > R$, leverage raises expected profits
	- A run prevents bank from leveraging \Rightarrow reduces profits and value of repayment \Rightarrow run may become self-fulfilling, $\hat{z}^{\text{Run}} < \hat{z}^{\text{F}}$

Instead, if $R^K = R$, defaults only occur due to fundamentals $\hat{z}^{Run} = \hat{z}^F$.

 \triangleright Sunspot: If vulnerable, we assume a bank faces run with probability λ .

 \blacktriangleright Given portfolio (k_1, n_1) and p_1 ▶ Two default thresholds

Safe Vulnerable Default $\hat{z}^{\text{Run}}(k_1, n_1)$ \hat{z} $F(k_1, n_1)$ z D 1

 \triangleright Sunspot: If vulnerable, we assume a bank faces run with probability λ .

 \Rightarrow Default probability for individual bank

 \blacktriangleright Given portfolio (k_1, n_1) and p_1 ▶ Two default thresholds

$$
d_1(n_1,k_1,z_1^D) = \begin{cases} 0 & \text{if} \ \ z_1^D \leq \hat{z}^{Run}(n_1,k_1) \\ \lambda & \text{if} \ \ \hat{z}^{Run}(n_1,k_1) < z_1^D \leq \hat{z}^F(n_1,k_1) \\ 1 & \text{if} \ \ z_1^D > \hat{z}^F(n_1,k_1) \end{cases}
$$

Period 0: Value and Leverage Choice

$$
V_0(n_0) = \max_{c_0 \ge 0, k_1 \ge 0, b_1} u(c_0)
$$

+ $\beta \int_{\underline{z}}^{\overline{z}} \left[d_1(n_1, k_1, \tilde{z}) V_1^D(k_1, \tilde{z}) + (1 - d_1(n_1, k_1, \tilde{z})) V_1^R(n_1) \right] dF(\tilde{z})$
subject to

$$
c_0 = n_0 + q_0(n_1, k_1)b_1 - p_0k_1,
$$

$$
\mathfrak{n}_1=(z+\mathfrak{p}_1)k_1-Rb_1.
$$

where the bond price is given by

$$
q_0(n_1,k_1) = (1-\lambda)F(\hat{z}^F(n_1,k_1)) + \lambda F(\hat{z}^{Run}(n_1,k_1))
$$

Period 0: Value and Leverage Choice

$$
V_0(n_0) = \max_{c_0 \ge 0, k_1 \ge 0, b_1} u(c_0)
$$

+ $\beta \int_{\underline{z}}^{\overline{z}} \left[d_1(n_1, k_1, \tilde{z}) V_1^D(k_1, \tilde{z}) + (1 - d_1(n_1, k_1, \tilde{z})) V_1^R(n_1) \right] dF(\tilde{z})$
subject to

$$
c_0 = n_0 + q_0(n_1, k_1)b_1 - p_0k_1,
$$

$$
\mathfrak{n}_1 = (z + \mathfrak{p}_1)k_1 - Rb_1.
$$

where the bond price is given by

$$
q_0(n_1, k_1) = (1 - \lambda)F(\hat{z}^F(n_1, k_1)) + \lambda F(\hat{z}^{Run}(n_1, k_1))
$$

Deposits allow for higher portfolio returns and $c₀$, but raises exposure to default

Competitive Equilibrium

Definition

Given B_0 , and a run probability, λ , a symmetric competitive equilibrium consists of $\{p_0, p_1, q_0, \hat{z}^{\text{F}}, \hat{z}^{\text{Run}}, d_1, d_2, V_1^{\text{R}}, V_1^{\text{D}}, b_1, k_1, b_2, k_2\}$ such that:

- (a) Banks optimize
- (b) Investors break even

$$
q_0(n_1,k_1)=(1-\lambda)F(\hat{z}^F(n_1,k_1))+\lambda F(\hat{z}^{Run}(n_1,k_1))
$$

- (d) The market for capital clears
	- \blacktriangleright Aggregate demand for capital equals K at $t = 0, 1$.

Equilibrium at $t = 1$

- \triangleright Characterization in terms of leverage $l_1 = b_1/k_1$
	- ▶ Redefine thresholds as $\hat{z}^F(l_1|p_1), \hat{z}^{Run}(l_1|p_1)$
	- In the aggregate $L_1 = b_1/K$

 \triangleright Share of banks defaulting is increasing in L_1 :

$$
\underbrace{\left[1-F(\hat{z}^F(L_1|p_1)\right]}_{\text{Fundamentals}} + \underbrace{\lambda\big[F(\hat{z}^F(L_1|p_1) - F(\hat{z}^{Run}(L_1|p_1)\big]}_{\text{Runs}}
$$

 \triangleright Price for capital p_1 decreasing in L_1 when banks are constrained

$$
\mathcal{P}_1(L_1) \equiv \begin{cases} \frac{z}{R} & \text{if } L_1 \leq \hat{L}, \\ \beta z + (1+\beta)\frac{\varphi}{R} - \beta R L_1 & \text{if } L_1 \in (\hat{L},\overline{L}). \end{cases}
$$

Roadmap for Normative Analysis

- ▶ Constrained-efficient planner problem
- \triangleright Evaluate competitive equilibrium vs. constrained-efficient
	- \blacktriangleright Without runs $\lambda = 0$
	- \blacktriangleright With runs $\lambda > 0$

Constrained-Efficient Leverage

 \triangleright Planner chooses L_1 and banks retain all other decisions

- ▶ Market for capital clears competitively in period 1
- \blacktriangleright Banks choose default decisions at $t = 1, 2$

Constrained-Efficient Leverage

 \triangleright Planner chooses L_1 and banks retain all other decisions

- ▶ Market for capital clears competitively in period 1
- \blacktriangleright Banks choose default decisions at $t = 1, 2$

$$
\max_{c_0,L_1}\left\{u(c_0)+\beta\int_{\underline{z}}^{\overline{z}}\left[d_1(L_1,\tilde{z}|p_1)V_1^D(K,\tilde{z})+(1-d_1(L_1,\tilde{z}|p_1))V_1^R(n_1|p_1)\right]dF(\tilde{z})\right\},
$$
subject to:

 $c_0 = zK - RB_0 + q_0(L_1|p_1)L_1K$

and where:

 $n_1 = (z + p_1)K - RL_1K$, $p_1 = \mathcal{P}_1(L_1)$, and d_1 as defined above

Constrained-Efficient Leverage

 \triangleright Planner chooses L_1 and banks retain all other decisions

- ▶ Market for capital clears competitively in period 1
- \blacktriangleright Banks choose default decisions at $t = 1, 2$

$$
\max_{c_0,L_1}\left\{u(c_0)+\beta\int_{\underline{z}}^{\overline{z}}\left[d_1(L_1,\tilde{z}|p_1)V_1^D(K,\tilde{z})+(1-d_1(L_1,\tilde{z}|p_1))V_1^R(n_1|p_1)\right]dF(\tilde{z})\right\},
$$
subject to:

 $c_0 = zK - RB_0 + q_0(L_1|p_1)L_1K$

and where:

 $n_1 = (z + p_1)K - RL_1K$, $p_1 = \mathcal{P}_1(L_1)$, and d_1 as defined above

Creditors remain indifferent

Analysis without Runs

Proposition (Constrained-efficiency)

Suppose $\lambda = 0$. Any competitive equilibrium is constrained efficient.

Prelude for the Proof

Lemma: Consider any aggregate leverage L_1 and its associated price $p_1 = \mathcal{P}_1(L_1)$

- (i) $V_1^R((z+)K RKL_1|p_1) \leq V_1^R((z+\hat{p}_1)K RKL_1|\hat{p}_1);$
- (ii) $q_0(L_1|p_1) \leq q_0(L_1|\hat{p}_1),$

```
with the first inequality is strict if \hat{p}_1 \neq p_1.
```
Key idea:

- In equilibrium, banks are neither net buyers nor net sellers
	- \blacktriangleright If price deviates from eqm. one, value of repayment goes up (for same leverage).

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

In the competitive eqm., banks prefer (L^E, K) rather than (L^P, K) when facing p_1^E :

 $\mu(zK - RB_0 + q_0(L^E|p_1^E)L^EK) + \beta EV_1(L^E, K|p_1^E)$ $\geq u(zK - RB_0 + q_0(L^P | p_1^E)L^P K) + \beta \mathbb{E}V_1(L^P, K | p_1^E).$

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

In the competitive eqm., banks prefer (L^E, K) rather than (L^P, K) when facing p_1^E :

$$
u(zK - RB_0 + q_0(L^E|p_1^E)L^EK) + \beta \mathbb{E}V_1(L^E, K|p_1^E)
$$

\n
$$
\geq u(zK - RB_0 + q_0(L^P|p_1^E)L^PK) + \beta \mathbb{E}V_1(L^P, K|p_1^E).
$$

\n
$$
\geq u(zK - RB_0 + q_0(L^P|p_1^P)L^PK) + \beta \mathbb{E}V_1(L^P, K|p_1^P)
$$

\n
$$
\Rightarrow By \text{ prev. lemma: } \mathbb{E}V_1(L^P, K|p_1^E) \geq \mathbb{E}V_1(L^P, K|p_1^P)
$$

\n
$$
\Rightarrow \text{and } q_0(L^P|p_1^E) \geq q_0(L^P|p_1^P)
$$

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

In the competitive eqm., banks prefer (L^E, K) rather than (L^P, K) when facing p_1^E :

 $\mu(zK - RB_0 + q_0(L^E|p_1^E)L^EK) + \beta EV_1(L^E, K|p_1^E)$

 $\geq u(zK - RB_0 + q_0(L^P|p_1^P)L^PK) + \beta EV_1(L^P, K|p_1^P)$

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

In the competitive eqm., banks prefer (L^E, K) rather than (L^P, K) when facing p_1^E :

 $\mu(zK - RB_0 + q_0(L^E|p_1^E)L^EK) + \beta EV_1(L^E, K|p_1^E)$ $\geq u(zK - RB_0 + q_0(L^P|p_1^P)L^PK) + \beta EV_1(L^P, K|p_1^P)$

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

In the competitive eqm., banks prefer (L^E, K) rather than (L^P, K) when facing p_1^E :

$$
u(zK - RB_0 + q_0(L^E|p_1^E)L^EK) + \beta \mathbb{E}V_1(L^E, K|p_1^E)
$$

\n
$$
\geq u(zK - RB_0 + q_0(L^P|p_1^P)L^PK) + \beta \mathbb{E}V_1(L^P, K|p_1^P)
$$

 \Rightarrow Banks can achieve weakly higher utility than planner.

Let L^E and L^P be the competitive eqm. and planner's leverage Associated prices: $p_1^E = \mathcal{P}(L^E)$ and $p_1^P = \mathcal{P}(L^P)$

In the competitive eqm., banks prefer (L^E, K) rather than (L^P, K) when facing p_1^E :

$$
u(zK - RB_0 + q_0(L^E|p_1^E)L^EK) + \beta \mathbb{E}V_1(L^E, K|p_1^E)
$$

\n
$$
\geq u(zK - RB_0 + q_0(L^P|p_1^P)L^PK) + \beta \mathbb{E}V_1(L^P, K|p_1^P)
$$

 \Rightarrow Banks can achieve weakly higher utility than planner.

But planner can also choose L^E.

 \Rightarrow L^E must solve the planner's problem

Uniqueness and Existence

Proposition (Uniqueness)

Suppose that: (i) there is a unique solution to the planner problem, or (ii) there exists a competitive equilibrium with leverage $L_1 = B_1/K > \hat{L}$.

Then, there is at most one (symmetric pure-strategy) competitive equilibrium.

Proposition (Existence)

Suppose that Assumption 2 holds and

- i) f is continuous and such that $f(z) = f(\overline{z}) = 0$.
- ii) $\frac{1-F(z)}{1+\beta} + \frac{f(z)}{F(z)}$ $\left[\frac{f(z)}{\overline{F}(z)}z\right]$ is decreasing in z for any $z\in[\underline{z},\overline{z}].$

Then, there \exists a competitive equilibrium.

Available theorems with default risk only in partial equilibrium

Economy with runs $\lambda > 0$

Start from $l_1 = L_1$ and consider a reduction in L_1

Start from $l_1 = L_1$ and consider a reduction in $L_1 \Rightarrow$ raises p_1

 \blacktriangleright Zero $\hat\pi r$ st-order effects on $\hat z^{\text{\tiny F}}$ (neither net buyer nor net seller)

Start from $l_1 = L_1$ and consider a reduction in $L_1 \Rightarrow$ raises p_1

- \blacktriangleright Zero $\hat\pi r$ st-order effects on $\hat z^{\text{\tiny F}}$ (neither net buyer nor net seller)
- ▶ But $\uparrow \hat{z}^{\text{Run}}$ because banks are net sellers in a run

Start from $l_1 = L_1$ and consider a reduction in $L_1 \Rightarrow$ raises p_1

- \blacktriangleright Zero $\hat\pi r$ st-order effects on $\hat z^{\text{\tiny F}}$ (neither net buyer nor net seller)
- ▶ But $\uparrow \hat{z}^{\text{Run}}$ because banks are net sellers in a run
	- \triangleright Not internalized by individual banks

$$
\frac{1}{c_0}-\frac{\beta R}{c_1}=-\frac{(1-\lambda)f(\hat{z}^F)\frac{\partial \hat{z}^F}{\partial L_1}+\lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0}\frac{L_1}{c_0}
$$

$$
-\frac{\lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0} \frac{\beta}{K} \Big[V_1^R(n_1|p_1) - V_1^D(K,\hat{z}^{Run}))\Big]
$$

$$
-\frac{\lambda f(\hat{z}^{Run})}{q_0}\underbrace{\frac{\partial \hat{z}^{Run}(L_1|p_1)}{\partial p_1}\mathcal{P}_1'(L_1)}_{G.E.}\left[\frac{L_1}{c_0}+\frac{\beta}{K}\Big[V_1^R(n_1|p_1)-V_1^D(K,\hat{z}^{Run})\Big]\right]
$$

$$
\frac{1}{c_0}-\frac{\beta R}{c_1}=-\,\frac{(1-\lambda)f(\hat{z}^F)\frac{\partial \hat{z}^F}{\partial L_1}+\lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0}\frac{L_1}{c_0}
$$

Higher L_1 reduces q_0

$$
\begin{aligned} &\frac{1}{c_0}-\frac{\beta R}{c_1}=-\frac{(1-\lambda)f(\hat{z}^F)\frac{\partial \hat{z}^F}{\partial L_1}+\lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0}\frac{L_1}{c_0}\\ -&\frac{\lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0}\frac{\beta}{K}\Big[V_1^R(n_1|p_1)\!-\!V_1^D(K,\hat{z}^{Run}))\Big] \end{aligned}
$$

Higher L_1 reduces q_0

Higher L_1 raises run prob

$$
\frac{1}{c_0} - \frac{\beta R}{c_1} = -\frac{(1-\lambda)f(\hat{z}^F)\frac{\partial \hat{z}^F}{\partial L_1} + \lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0} \frac{L_1}{c_0}
$$
 Higher L₁ reduces q_0

$$
-\frac{\lambda f(\hat{z}^{Run})\frac{\partial \hat{z}^{Run}}{\partial L_1}}{q_0} \frac{\beta}{K} \Big[V_1^R(n_1|p_1) - V_1^D(K, \hat{z}^{Run}) \Big] \qquad \text{Higher L1 raises run prob}
$$

$$
-\frac{\lambda f(\hat{z}^{Run})}{q_0} \underbrace{\frac{\partial \hat{z}^{Run}(L_1|p_1)}{\partial p_1} \mathcal{P}'_1(L_1)}_{G.E.} \Big[\frac{L_1}{c_0} + \frac{\beta}{K} \Big[V_1^R(n_1|p_1) - V_1^D(K, \hat{z}^{Run}) \Big] \Big]
$$

An increase in p_1 helps $\uparrow V^{\text{Run}}$ because banks facing a run are net sellers $k_1^{Run} < K \Rightarrow$ fewer banks vulnerable

▶ Planner internalizes that \downarrow L₁ leads to \uparrow p₁ and fewer runs

Competitive Eqm. vs. Constrained Efficient

Competitive Eqm. vs. Constrained Efficient

Conclusions

- \triangleright A macroprudential theory of banking regulation under self-fulfilling runs
- \triangleright Banks do not internalize that by raising leverage
	- ▶ they contribute to lower asset prices
	- ▶ making other banks more vulnerable to runs
- \triangleright Higher capital requirements can implement the constrained-efficient allocation

