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Motivation

Banking regulation proposals:

▶ Higher equity bu�ers to make banks less vulnerable to runs

• Why banks choose not to hold more equity and make themselves

less vulnerable?

▶ Popular rationale: moral hazard due to bailouts

Today: risk of bank runs induce banks to over-leverage even absent bailouts
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A Theory of Banking Regulation

▶ General equilibrium model of banks runs (Amador-Bianchi 2024)

▶ Analyze e�ciency of ex-ante leverage decisions

In the absence of runs:

▶ Competitive equilibrium is constrained e�cient

With self-ful�lling runs:

▶ Competitive equilibrium exhibits excessive leverage

Mechanism:

▶ Higher equity bu�ers induce higher asset prices⇒ banks more \liquid" ⇒ less prone to (ine�cient) runs
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Environment

▶ Three periods t = 0, 1, 2

▶ Idiosyncratic risk only { realized at t = 1

▶ Technology

▶ Production linear in capital

▶ Capital in �xed supply K

▶ Continuum of banks with concave utility

▶ Identical initial deposits and capital b0 = B0, k0 = K

▶ Constant productivity z under repayment

▶ Can default at t = 1, 2 { outside option shock at t = 1

▶ Creditors: linear utility and discount rate R
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Individual Bank Problem



Preferences and budget constraints

▶ Preferences

u(c0) + βEu(c1) + β2Eu(c2),

where u = log

▶ Budget constraints under repayment

c0 = (z+ p0)k0 − Rb0 + q0(b1, k1)b1 − p0k1,

c1 = (z+ p1)k1 − Rb1 + q1(b2, k2)b2 − p1k2,

c2 = zk2 − Rb2.

where qt is the bond price schedule and pt the price of capital
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Banks Outside Options: Default Values

▶ Default triggers

▶ Loss in productivity or capital

▶ Exclusion from borrowing and capital markets
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Banks Outside Options: Default Values

▶ Period 2 value

VD
2 (k2) = u(zD2 k2)

▶ zD2 is predetermined and common across banks.

▶ Period 1 value

VD
1 (k1, z

D
1 ) = u(zD1 k1) + βu(zD2 k1)

▶ zD1 i.i.d. across banks { F is the CDF

VD independent of prices (and increasing in k)

▶ Generates a standard endogenous borrowing limit
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Period 2: Bank Problem

V2(b2, k2) = max
d2∈{0,1}

{
(1− d2)u(zk2 − Rb2) + d2u(z

D
2 k2)

}

Default choice:

d2(b2, k2) =

{
1 if Rb2 > ϕk2,where ϕ ≡ z− zD2

0 otherwise,
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Period 1: Repayment Values

VR
1 (n1) = sup

c1,k2≥0,b2

{
u(c1) + βu(zk2 − Rb2)

}
Without a run

s.t. c1 = n1 + b2 − p1k2

Rb2 ≤ ϕk2

VRun
1 (n1) = sup

c1,k2≥0,b2

{
u(c1) + βu(zk2 − Rb2)

}
With a run

s.t. c1 = n1 + b2 − p1k2

b2 ≤ 0

can save but not borrow

Bank can save but not borrowBank can borrow but not save

Vulnerable to self-ful�lling runs when VRun
1 (n1) < VD

1 (k1, z
D
1 ) ≤ VR

1 (n1)
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Period 1: Multiplicity of Equilibria

▶ Given portfolio (k1, n1) and p1

▶ Two default thresholds

VRun
1 (n1) ≥ VD

1 (k1, z
D
1 ) VRun

1 (n1) < VD
1 (k1, z

D
1 ) ≤ VR

1 (n1) VD
1 (k1, z

D
1 ) > VR

1 (n1)

Safe Vulnerable Default

ẑRun(k1, n1) ẑF(k1, n1)
zD1

[Run & repay is o�-equilibrium event]
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ẑRun(k1, n1) ẑF(k1, n1)
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Runs occur despite assets being liquid (Amador-Bianchi 2024)

▶ When RK > R, leverage raises expected pro�ts

• A run prevents bank from leveraging ⇒ reduces pro�ts and value of

repayment ⇒ run may become self-ful�lling, ẑRun < ẑF

▶ Instead, if RK = R, defaults only occur due to fundamentals ẑRun = ẑF.
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▶ Sunspot: If vulnerable, we assume a bank faces run with probability λ.
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Period 0: Value and Leverage Choice

V0(n0) = max
c0≥0,k1≥0,b1

u(c0)

+ β

∫ z
z

[
d1(n1, k1, ~z)V

D
1 (k1, ~z) + (1− d1(n1, k1, ~z))V

R
1 (n1)

]
dF(~z)

subject to

c0 = n0 + q0(n1, k1)b1 − p0k1,

n1 = (z+ p1)k1 − Rb1.

where the bond price is given by

q0(n1, k1) = (1− λ)F(ẑF(n1, k1)) + λF(ẑRun(n1, k1))

Deposits allow for higher portfolio returns and c0, but raises exposure to default
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Competitive Equilibrium

De�nition

Given B0, and a run probability, λ, a symmetric competitive equilibrium consists

of
{
p0, p1, q0, ẑ

F, ẑRun, d1, d2, V
R
1 , V

D
1 , b1, k1, b2, k2

}
such that:

(a) Banks optimize

(b) Investors break even

q0(n1, k1) = (1− λ)F(ẑF(n1, k1)) + λF(ẑRun(n1, k1))

(d) The market for capital clears

▶ Aggregate demand for capital equals K at t = 0, 1.
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Equilibrium at t = 1

▶ Characterization in terms of leverage l1 = b1/k1

▶ Rede�ne thresholds as ẑF(l1|p1), ẑ
Run(l1|p1)

▶ In the aggregate L1 = b1/K

▶ Share of banks defaulting is increasing in L1:[
1− F(ẑF(L1|p1)

]︸ ︷︷ ︸
Fundamentals

+ λ
[
F(ẑF(L1|p1) − F(ẑRun(L1|p1)

]︸ ︷︷ ︸
Runs

▶ Price for capital p1 decreasing in L1 when banks are constrained

P1(L1) ≡

{
z
R if L1 ≤ L̂,

βz+ (1+ β)ϕR − βRL1 if L1 ∈ (L̂, L).
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Roadmap for Normative Analysis

▶ Constrained-e�cient planner problem

▶ Evaluate competitive equilibrium vs. constrained-e�cient

▶ Without runs λ = 0

▶ With runs λ > 0

12



Constrained-E�cient Leverage

▶ Planner chooses L1 and banks retain all other decisions

▶ Market for capital clears competitively in period 1
▶ Banks choose default decisions at t = 1, 2

max
c0,L1

{
u(c0) + β

∫ z
z

[
d1(L1, ~z|p1)V

D
1 (K, ~z) + (1− d1(L1, ~z|p1))V

R
1 (n1|p1)

]
dF(~z)

}
,

subject to:

c0 = zK− RB0 + q0(L1|p1)L1K,

and where:

n1 = (z+ p1)K− RL1K, p1 = P1(L1), and d1 as de�ned above

Creditors remain indi�erent
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Analysis without Runs

Proposition (Constrained-e�ciency)

Suppose λ = 0. Any competitive equilibrium is constrained e�cient.

14



Prelude for the Proof

Lemma: Consider any aggregate leverage L1 and its associated price p1 = P1(L1)

(i) VR
1 ((z+)K− RKL1|p1) ≤ VR

1 ((z+ p̂1)K− RKL1|p̂1);

(ii) q0(L1|p1) ≤ q0(L1|p̂1),

with the �rst inequality is strict if p̂1 ̸= p1.

Key idea:

▶ In equilibrium, banks are neither net buyers nor net sellers

▶ If price deviates from eqm. one, value of repayment goes up (for same leverage).

15



Proof of Constrained-E�ciency with λ = 0

Let LE and LP be the competitive eqm. and planner's leverage

Associated prices: pE
1 = P(LE) and pP

1 = P(LP)

▶ In the competitive eqm., banks prefer (LE, K) rather than (LP, K) when facing pE
1 :

u
(
zK− RB0 + q0(L

E|pE
1 )L

EK
)
+ βEV1(L

E, K|pE
1 )

≥ u
(
zK− RB0 + q0(L

P |pE
1 )L

PK
)
+ βEV1(L

P, K|pE
1 ).

≥ u
(
zK− RB0 + q0(L

P |pP
1 )L

PK
)
+ βEV1(L

P, K|pP
1 )
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Uniqueness and Existence

Proposition (Uniqueness)

Suppose that: (i) there is a unique solution to the planner problem, or

(ii) there exists a competitive equilibrium with leverage L1 = B1/K > L̂.

Then, there is at most one (symmetric pure-strategy) competitive equilibrium.

Proposition (Existence)

Suppose that Assumption 2 holds and

i) f is continuous and such that f(z) = f(z) = 0.

ii)
[
1−F(z)
1+β + f(z)

F(z)z
]
is decreasing in z for any z ∈ [z, z].

Then, there ∃ a competitive equilibrium.

Available theorems with default risk only in partial equilibrium
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Economy with runs λ > 0
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Preview: Thresholds as a Function of Aggregate Leverage

Start from l1 = L1 and consider a reduction in L1

⇒ raises p1

▶ Zero �rst-order e�ects on ẑF (neither net buyer nor net seller)

▶ But ↑ ẑRun because banks are net sellers in a run

▶ Not internalized by individual banks

Safe Vulnerable Default

ẑRun(l1|p1) ẑF(l1|p1)

Safe Vulnerable Default

ẑRun(l1|p1) ẑF(l1|p1)

zD1
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Over-leverage with λ > 0

1

c0
−

βR

c1
= −

(1− λ)f(ẑF) ∂ẑ
F

∂L1
+ λf(ẑRun)∂ẑ

Run

∂L1

q0

L1
c0

Higher L1 reduces q0

−
λf(ẑRun)∂ẑ

Run

∂L1

q0

β

K

[
VR
1 (n1|p1)−VD

1 (K, ẑRun))
]

Higher L1 raises run prob

−
λf(ẑRun)

q0

∂ẑRun(L1|p1)

∂p1
P ′
1(L1)︸ ︷︷ ︸

G.E.

[
L1
c0

+
β

K

[
VR
1 (n1|p1) − VD

1 (K, ẑRun)
]]

▶ An increase in p1 helps ↑ VRun because banks facing a run are net sellers

kRun1 < K ⇒ fewer banks vulnerable

▶ Planner internalizes that ↓ L1 leads to ↑ p1 and fewer runs
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]]

▶ An increase in p1 helps ↑ VRun because banks facing a run are net sellers

kRun1 < K ⇒ fewer banks vulnerable

▶ Planner internalizes that ↓ L1 leads to ↑ p1 and fewer runs

20



Over-leverage with λ > 0

1

c0
−

βR

c1
= −

(1− λ)f(ẑF) ∂ẑ
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Competitive Eqm. vs. Constrained E�cient

Leverage Share of Defaulting Banks
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Conclusions

▶ A macroprudential theory of banking regulation under self-ful�lling runs

▶ Banks do not internalize that by raising leverage
▶ they contribute to lower asset prices
▶ making other banks more vulnerable to runs

▶ Higher capital requirements can implement the constrained-e�cient allocation
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