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It is hardly possible to overrate the value [...] of placing human

beings in contact with persons dissimilar to themselves, and with

modes of thought and action unlike those with which they are

familiar. [...] Such communication has always been, and is peculiarly

in the present age, one of the primary sources of progress.

John Stuart Mill

Principles of Political Economy

1 Introduction

At least since John Stuart Mill (1871), scholars from various disciplines have posited

that social interactions among diverse individuals stimulate innovation and creativity,

primarily because such interactions foster the exchange and recombination of ideas, ap-

proaches, practices and perspectives (e.g., Jacobs, 1969; Glaeser et al., 1992; Weitzman,

1998; Muthukrishna and Henrich, 2016; Jones, 2023). However, a wide range of evi-

dence suggests that people tend to structure their communities in ways that may limit

the frequency of interactions and information flows among diverse individuals, usually

by clustering both geographically and relationally along lines of kinship, ethnicity, and

cultural similarity (Ghosh et al., 2023; Moscona et al., 2017; Kerr, 2008; Agrawal et al.,

2008; AlShebli et al., 2018). This paper investigates whether such homophilic clustering

significantly influences innovation by examining the link between social structure and

patenting in U.S. history.1 We approach this in three steps. First, we develop a measure of

social structure based on the diversity of surnames in U.S. counties from 1850 to 1940. Sec-

ond, using quasi-random variation in surname compositions based on immigration flows,

we find evidence that our surname proxy for social structure substantially increased the

quantity and impact of patents. Finally, investigating the mechanisms at play, we discover

that a more diverse social structure indeed loosened relational clusters, as evidenced by

(1) reduced street-level residential segregation, (2) weaker family ties and (3) more diverse

interactions among inventors. Additionally, we find that higher surname diversity at the

patent level is associated with more impactful patents that involve more recombinative

elements.

More specifically, hypotheses about recombinative innovation propose that many

innovations emerge from the integration of ideas, approaches and techniques that connect

1By ‘social structure,’ we refer to how people cluster or group themselves geographically and relationally
based on familial, ethnic, and cultural similarities. These groupings need not imply social stratification or
class formation, which specifically refers to clustering based on wealth or status.
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during social interactions among diverse minds (Muthukrishna and Henrich, 2016). At

the population level, the meeting and merging of people and ideas involve both an

informational component—different people must possess distinct ideas, skills, approaches

and perspectives—and a social-behavioral component—individuals must be willing to

interact and share their thoughts. Both elements are required since neither a population

of diverse minds that never interact nor a group of cognitive clones who freely interact but

all share the same mentality will generate recombinations (Schimmelpfennig et al., 2022).

In this paper, we show that a surname-based measure of social structure—surname

entropy—is a crucial determinant of recombinative innovation, influencing both its in-

formational and social-behavioral components. To obtain this measure, we collect all

surnames reported in the full-count U.S. Census data from 1850 to 1940 and compute the

entropic diversity of surnames across U.S. counties, which are presumed to be the primary

locations of social interaction during this period. While counties might not encapsulate

every social interaction, particularly in today’s highly interconnected world, we will show

that they provide a reasonable approximation in the pre-1950 historical context.

We connect our measure of social structure to the two components of recombinative

innovation in several ways. To start, focusing on the informational component, we demon-

strate that surnames cluster with occupations, ancestry and the technological categories of

inventions (i.e., patent technology codes). This offers prima facie evidence that surnames

capture an important slice of the informational component necessary for the kind of

heterogeneous social interactions thought to foster innovation, as counties with a greater

diversity of surnames will also have more heterogeneity in occupations, expertise, cultural

knowledge and perspectives. As explained in Section 2, there is good reason to believe

that surnames capture additional dimensions of informational diversity (e.g., non-English

linguistic categories, thinking styles, attentional biases, and more)—aspects unobservable

in this context—that can further fuel innovation (e.g., Page et al., 2019).

As the social structure diversifies with the entry of more individuals varying in skills,

expertise, cultural backgrounds, and perspectives, we hypothesize that the rate of het-

erogeneous social interactions will increase. This increase is expected for two reasons:

individuals will be less able to satisfy their needs by interacting solely within their own

diminishing groups, and the proliferation of different groups with distinct skills and exper-

tise will create new avenues for mutually beneficial exchanges. Consistent with research

on contact theory (e.g., Allport, 1954; Bursztyn et al., 2024) and the impact of market

integration on social behavior (Henrich et al., 2010; Enke, 2022; Rustagi, 2023; Agneman

and Chevrot-Bianco, 2023), we expect that increased mutually beneficial engagement with

outsiders will foster greater openness to associating with strangers, thus leading to more
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heterogeneous social interactions.

As an initial step in empirically linking social structure to this social-behavioral com-

ponent, we show that surname entropy is strongly negatively correlated with both a newly

developed measure of residential segregation of surnames (e.g., individuals with the sur-

name ‘Green’ tend to live near other ‘Greens’) and with the strength of family ties (Logan

and Parman, 2017; Alesina and Giuliano, 2011; Raz, 2023). The former indicates that

our proxy effectively captures the physical proximity of people with different surnames

(who we show tend to be informationally homogeneous), while the latter reflects people’s

tendency to form strongly homophilic networks with relatives. As highlighted below, a

growing body of literature already associates such intensive or tight kin networks with

lower trust in strangers and greater moral parochialism (Alesina and Giuliano, 2014;

Schulz et al., 2019; Enke, 2019; Henrich, 2020). Our approach empirically confirms that

informational heterogeneity tends to accompany the formation of broader, more diverse

social connections (at least in this context).

To measure innovation, we rely on two patent indicators. First, we calculate the total

number of patents per capita for each U.S. county for 5 or 10-year periods from the 1850s

to the 1940s, based on the Comprehensive Universe of U.S. Patents (Berkes, 2018). Second,

we use the breakthrough patent indicator created by Kelly et al. (2021) to capture highly

important patents. Breakthrough patents are identified based on their textual similarity

to both previous and subsequent patents. Breakthrough patents have low similarity to

previous patents but high similarity to subsequent ones.

To estimate the effect of social structure, measured by surname entropy, on innovation,

we employ an instrumental variable (IV) strategy, building on and adapting the approach

developed by Burchardi et al. (2019). This strategy leverages historical immigration

patterns as a significant determinant of surname entropy in U.S. counties.

Migration often represents the most important driver of counties’ surname composition

in this historical context. Crucially, immigration does not monotonically increase surname

entropy; its impact varies depending on the preexisting surname distribution within a

county. In other words, the arrival of a particular set of immigrants (e.g., lots of ‘Corleones’)

can either increase or decrease surname entropy in different counties, depending on

whether ‘Corleones’ are initially relatively rare or common. We hypothesize that this

dynamic between immigration and surname entropy affects both the informational and

social-behavioral channels (detailed in Section 2). When individuals carrying locally rare

surnames arrive, they enhance surname diversity, and in turn, may create opportunities

for heterogeneous social interactions, knowledge acquisition, and the cultivation of trust

towards individuals with differing cultural or family backgrounds. Conversely, an inflow of
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individuals bearing locally common surnames decreases surname entropy. This movement

of individuals, who are culturally and genealogically related to the dominant groups

within counties, may limit opportunities for novel knowledge acquisition, strengthen ties

within families or culturally homogeneous groups, and nurture a low-trust orientation

towards outsiders.

Our IV approach isolates quasi-random variation in counties’ surname compositions

stemming from the historical interplay of two forces: (i) the staggered arrival of immigrants

with different surnames and (ii) the temporal variation in the relative attractiveness

of different destination counties for the average immigrant arriving at the time. This

interaction between historical forces enables us to isolate plausibly exogenous variation in

surname distributions across counties arising from historical migration shocks that date

back to the 19th century.

Using data from counties between 1900 and 1940, our IV estimates show that a one

standard deviation increase in surname entropy results in a 139% and 121% increase

in patents and breakthrough patents (per 1,000 residents), respectively, relative to their

means. In 1940, a one standard deviation change in surname entropy was equivalent to

the approximate 100-mile distance from Manhattan (New York County) to Northampton

County, Pennsylvania, which encompasses the small cities of Easton and Bethlehem.

These results hold across a broad battery of robustness checks, Here, we list the most

important of our checks:

1. To scrutinize the potential for reverse causality (i.e., an increase in a county’s innova-

tion leading to increased surname entropy), we perform a falsification exercise by

regressing past patents on future surname entropy. The coefficients from this exercise

are near zero and statistically insignificant, providing strong evidence against the

concern that reverse causality might confound our results.

2. To address the potential influence of scale effects, including through immigration, we

control for quasi-random variation in population size isolated by the IV procedure.

The estimates align with our primary findings.

3. To confront the concern that a direct effect of immigration, which is not channeled

through social structure, confounds our estimates, we control for exogenous variation

in the number of recent immigrants, which we construct following the approach

pioneered by Burchardi et al. (2021). We find that controlling for immigration has

minimal impact on the estimates for surname entropy, reinforcing the interpretation

that it is social structure, rather than immigration per se, that drives our results.
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4. To consider the possibility that our results are region-specific, especially in light

of regional variation in factors such as racial discrimination (Cook, 2014; Coluccia

et al., 2023), we re-estimate our analyses for each of the United States’ major census

regions: the Northeast, Midwest, South and West. We find consistently positive

coefficients.

5. The literature on social mobility (e.g., Clark, 2014; Barone and Mocetti, 2021) raise

the concern that unobserved characteristics embedded in specific (rare) surnames,

such as abilities, interests or knowledge, drive the results rather than the social struc-

ture per se. To explore this, we change the unit of observation from county-period

to surname-county-period and include surname-fixed effects in our specifications

to absorb any surname-specific traits. We find that our estimates remain stable and

highly significant across all specifications.

6. To consider the impact that formal schooling might have on our results, we conduct

a set of OLS regressions for the 1940 cross-section, incorporating data on years of

formal schooling across counties (formal schooling measures are not available before

this). The results reveal that adding formal schooling to the regression has little

impact on the size or significance of the coefficient for our primary explanatory

variable, surname entropy. Of course, more formal schooling is indeed associated

with more innovation, on both our measures. Interestingly, education interacts

significantly with surname entropy (increasing R2 by 5 percentile points), suggesting

that the impact of education is influenced by the social structure, with a more diverse

social structure potentially amplifying the impact of formal schooling.

We conclude our analysis by substantiating our proposed mechanism—that social struc-

ture influences heterogeneous social interactions in ways that catalyze the recombination

of ideas, technologies and techniques.

1. Using our IV setup, we find that greater surname entropy leads to less residential

segregation of surnames, weaker family ties and greater occupational diversity.

This shows how more diverse social structure fosters both more heterogeneous

social interactions (as seen in segregation and family ties) and greater informational

diversity (occupations).

2. Similarly, we find that greater surname entropy at the county level results in greater

surname entropy at the patent level and a larger number of technology codes per

patent. The former indicates how a more diverse social structure promotes more
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heterogeneous interactions among inventors, while the latter suggests that more

diverse social structures encourage more complex recombinations. We supplement

these IV analyses with OLS regressions that link greater patent-level surname entropy

to both more breakthroughs and greater patent complexity (as measured by the

number of technology codes per patent). These analyses support the view that social

interactions among diverse inventors spur inventions that are both more complex

and impactful.

3. Using our IV setup, we confirm that the effects of surname entropy on innovation

are geographically localized, largely impacting the focal county but not spilling over

into nearby counties. This finding is consistent with the notion that innovation is

driven by people meeting and interacting face-to-face on a day-to-day basis.

4. To assess the relative importance of the informational versus the social-behavioral

components intertwined in surname entropy, we run OLS regressions controlling

for the number of distinct surnames contributing to our entropy calculations. We

find that both components are associated with the impact of social structure on

innovation.

Taken together, our results suggest that social structure, as proxied by surname diver-

sity within counties, plays an important role in explaining the patterns of innovation as

captured by the U.S. patents from the mid-19th to the mid-20th century. These findings

support the hypothesis that social interactions among heterogeneous individuals foster

innovation through the process of recombination.

1.1 Contributions and Related Literature

Understanding the drivers of innovation is central to many streams of research in eco-

nomics, from endogenous growth (Romer, 1990; Galor and Weil, 2000) to the origins of the

industrial revolution (Mokyr, 2002). In this section, we focus on those research avenues

most closely aligned with our study, discussing how innovation is shaped by factors such

as urbanization, geography, kin networks, social proximity, diversity, and immigration.

Several longstanding lines of interrelated research have linked innovation to cities,

population density, agglomeration and geographic proximity (Carlino and Kerr, 2015;

Akcigit et al., 2017; Glaeser, 2011; Agrawal et al., 2008; Jacobs, 1985; Packalen and

Bhattacharya, 2015; Feldman and Audretsch, 1999; Carlino et al., 2007). This body of

work highlights the significance of skill complementarities, localized knowledge spillovers,

and information transfers. Consistent with our approach, several studies have linked
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innovation to the formation of immigrant clusters and more diverse social interactions

(Kerr, 2010, 2008; AlShebli et al., 2018). Our research extends these insights across the

entire United States and back to the mid-19th century, while presenting a novel approach

to measuring social structure and heterogeneous social interactions in various contexts.

Our focus on social structure based on surnames naturally connects our work with

efforts to understand the impact of nuclear family ties, cousin marriage and kin-based

institutions on economic outcomes. Both measures of family ties and kinship intensity,

or ‘tightness’, have been linked to key aspects of psychology (e.g., impersonal trust and

moral universalism) that may influence interactions among strangers and offer the kind

of psychological differences (e.g., in cognitive styles) that are conducive to creating novel

recombinations (Henrich, 2020; Schulz et al., 2019; Alesina and Giuliano, 2014, 2015).

Furthermore, evidence connects family ties, kinship intensity and cousin marriage prac-

tices to income, economic prosperity and innovation (Bahrami-Rad et al., 2022; Alesina

and Giuliano, 2010; Enke, 2019; Ghosh et al., 2023).

A related but nascent literature examines how particular social institutions and organi-

zations, by facilitating heterogeneous social interactions, propel more rapid innovation.

For example, the closure of saloons during Prohibition reduced patenting rates (Andrews,

2023), suggesting that environments and organizations conducive to social interactions

among strangers or acquaintances may inadvertently spur innovation. SThis dynamic

persists in contemporary settings, as illustrated by evidence suggesting that the spread

of coffee shops has caffeinated innovation (Andrews and Lensing, 2020). Similarly, the

historical emergence of economic societies in Germany, by reducing the costs of accessing

information, helped spur innovation (Cinnirella et al., 2022). Furthermore, de la Croix

et al. (2018) highlight the role of pre-industrial apprenticeship institutions in Western

Europe, including journeymanship, which facilitated knowledge exchange and contributed

to Europe’s growth. These studies, along with others (Atkin et al., 2022), underscore the

premise that social interactions stimulate informational diffusion, thereby contributing to

human capital and innovation-based growth (Akcigit et al., 2018).

Our efforts also intersect with studies exploring how various forms of diversity shape

economic prosperity. For example, the seminal work by Ashraf and Galor (2013) shows

that genetic diversity fosters innovation while reducing trust, resulting in an inverse

U-shaped relationship between genetic diversity and economic prosperity across countries.

Subsequent work corroborates these findings across ethnic groups and among second-

generation immigrants (Arbatli et al., 2020; Ashraf et al., 2021). Our work complements

this line of research. Conceptually, our measure of surname entropy is related to genetic

diversity because surnames, like genes, are typically transmitted from parents to offspring.
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Research in population genetics has shown that under certain conditions, genetic hetero-

geneity can be approximated using surname entropy (Barrai et al., 1996). Diverging from

Ashraf and Galor (2013)’s broad historical and global perspective, we focus on a specific

historical episode within the context of a single country: the United States from 1850

to 1940. This narrower scope allows us to investigate regionally fine-grained changes in

surname entropy over time in a panel setting. Using surname-fixed effects, we empiri-

cally establish that our results are not confounded by specific surnames, making genetic

influences unlikely to play a substantial role. That is, when comparing people with the

same surnames, those located in counties with more diverse social structures are more

innovative.

In a context paralleling our own, Fiszbein (2022) links economic development across

counties from 1860 to 1940 with agricultural diversity. Here, a greater diversity in

agricultural products resulted in greater economic prosperity, including more patents per

capita, more technology classes per patent and more new manufacturing skills.2

Finally, our paper contributes to the literature connecting migration to innovation

and economic prosperity (Abramitzky and Boustan, 2017; Lissoni and Miguelez, 2024;

Tabellini, 2020). Drawing on historical data from 1850 to 1920, Sequeira et al. (2020)

show how rising flows of immigrants into U.S. counties resulted in faster patenting rates.

Their analysis, aligning with our hypothesis, suggests that much of this effect occurred

through making native-born Americans more creative—or at least more likely to patent.

Similarly, focusing on the period from the mid-1920s to the mid-1960s in the U.S., Moser

and San (2020) show how anti-immigration policies in the form of quotas seeking to

preserve ethnic homogeneity reduced the inflow of migrants from Eastern and Southern

Europe, which in turn stifled the production of innovations in the scientific fields favored

by such immigrants prior to the quotas. Revealing the importance of social structure, their

work finds a 62% decline in patenting in these particular fields by native-born scientists.

The authors argue that resident scientists lost the mentorship and fresh approaches that

inevitably flow in with those trained elsewhere. Additionally, Abramitzky et al. (2023)

show that quotas did not benefit US-born workers. On the flip side, after the U.S.’s broad

immigration quotas were lifted in 1964, Burchardi et al. (2021) show that by the mid-

1970s, American innovation was again powerfully fueled by immigrants arriving from

places such as Mexico, China, India, the Philippines, and Vietnam. Leveraging America’s

2Beyond innovation, previous studies have also highlighted the positive effects of birthplace or country-
of-ancestry diversity on local economic growth or wages, both within the U.S. (Ottaviano and Peri, 2006;
Ager and Brückner, 2013; Docquier et al., 2020; Fulford et al., 2020) and across countries (Alesina et al.,
2016). Our use of surname entropy complements Buonanno and Vanin (2017) who, using it as a measure of
social closure, focus on crime.

8



relative openness to immigrants fleeing Germany and Austria prior to World War II, Moser

et al. (2014) also demonstrate the impact of Jewish immigrants on U.S. patents. Their

analysis reveals not only how refugee chemists stimulated innovation and interest among

native-born individuals, but also how their impact reverberated through social networks to

impact the patenting of collaborators of the immigrants’ collaborators. Our work supports

these findings by highlighting an important channel through which immigration affects

innovation, via increasing the diversity of social interactions.

2 Concepts and Measurement

In this section, we begin by conceptually describing how social structure influences

innovation through its impact on social interactions among diverse minds. Next, we detail

our method for operationalizing and measuring social structure, using the distribution

of surnames from the U.S. Census data from 1850 to 1940. Subsequently, we empirically

demonstrate the crucial conceptual connections, drawing on census information about

occupations and ancestral regions, along with data on patent technologies, measures

of residential segregation by surname groups, and family ties. Finally, we explain our

methodology for calculating two patent-based indicators of innovation.

2.1 From Social Structure to Innovation

Here, we conceptually lay out the pathway from social structure—the fundamental re-

lational networks or social groupings within a population—to innovation. First, we will

discuss how and why heterogeneous social interactions foster innovation, briefly reviewing

existing evidence that supports this connection. Second, we will explain how and why

social structure affects the frequency and intensity of heterogeneous social interactions,

again referencing empirical evidence that bolsters this argument.

2.1.1 How Heterogeneous Social Interactions Drive Innovation

In 1933, marking an important step on the road to modern radar, three men in Washington

D.C.—Taylor, Young and Hyland—filed a patent for a “system for detecting objects by

radio” (US patent number 1981884). This initial step toward radar began three years earlier

when the Canadian-born immigrant, Lawrence “Pat” Hyland, was testing a directional

radio receiver in an aircraft. While tuning the receiver to a transmitter two miles away, he

was frustrated by the fact that his signal seemed to randomly grow louder and quieter as

he was testing it. He noticed that this occurred whenever a plane flew overhead. Puzzled
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by the phenomena, he asked a fellow radio engineer, Leo Young, about it. Young, an avid

ham radio hobbyist from a farming family in Ohio, recalled an experience from eight years

earlier when he worked for the Aircraft Radio Laboratory. For fun, he and a physicist

named Albert “Hoyt” Taylor had set up a high-frequency transmitter and receiver on

opposite sides of the Potomac River at the mouth of the Anacostia River. Young, following

an article he had found in an engineering magazine, had managed to jack up the frequency

of his transmitter by a factor of 20. After some tuning, he had a crystal-clear tone from

across the Potomac. Then, unexpectedly, the tone doubled in volume. Young looked up

and saw a ship, the Dorchester, passing between himself and their receiver across the

river. After discussing the event, the duo realized what had happened: their signal had

bounced off the Dorchester’s hull and, just for a millisecond, synchronized. They wrote

a report about the possibility of using radio signals to detect passing ships, which the

U.S. Navy promptly ignored. Hyland had bumbled across what appeared to be the same

phenomenon, but now with aircraft. Using these insights, the trio developed a means

of using continuous wave radio signals to detect passing ships and planes. Despite now

having a working prototype, the U.S. Navy rejected their request for $5,000 to continue

their research, explaining that this was “a wild dream with practically no chance of real

success” (Bahcall, 2019; DeGering, 2018; Page, 1962).

This patent represents a conceptual recombination—putting existing radio technologies

to use in a fresh application, detecting ships and planes at a distance. Of course, people

have been trying to extend the reach of our detection abilities for a long time, often using

tools like towers or spyglasses. Here, both serendipity and social interactions were central,

while top-down problem-solving and forward-looking insight were limited. In particular,

at the time, many engineers and physicists understood the Doppler effect, but no one

had used that understanding to create radar. Instead, these inventors had encountered

a phenomenon—they accidentally detected ships or planes—and then applied the era’s

science to interpret it. After explaining the potential value of their discovery to the U.S.

Navy, the true potential of their insights went unrecognized until the attack on Pearl

Harbor in 1941. Interestingly, the patent office assigned two previously used technology

codes (‘342/27’ and ‘367/128’) and two novel codes to this conceptual recombination

(‘340/991’ and ‘342/453’). The latter essentially became the code for radar.

The idea illustrated by this patent, that innovation emerges from the recombination of

ideas propelled by social interaction, has venerable lineages in both economics (Schum-

peter, 1983) and history (Usher, 2013), and has received persistent attention ever since

(Jacobs, 1969; Glaeser et al., 1992; Henrich, 2009; Ridley, 2020; Johnson, 2011; Mokyr,

2015; Olsson and Frey, 2002; Lucas Jr and Moll, 2014; Akcigit et al., 2018; Jones, 2023).
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We propose that recombinative innovation, driven by social interactions, depends on

both informational and social-behavioral components. Informationally, recombinative

innovation depends on the diversity of a population’s skills, knowledge, and perspectives

to foster novel idea combinations. Social-behaviorally, individuals must engage and share

ideas; without such exchanges, even a diverse group cannot innovate. Therefore, concep-

tually, the ability of local populations to innovate should hinge on heterogeneous social

interactions—the extent to which diverse individuals freely exchange ideas.

The plausibility of this hypothesis is supported by three distinct strands of research.

First, a significant body of work posits a central role for recombination in innovation.

Second, a broad range of research emphasizes the impact of cultural, genetic, disciplinary,

and occupational diversity on innovation. Finally, a growing body of evidence illustrates

the influence of social dynamics on innovation, focusing either on the institutions that

facilitate social interaction, or the role of trust and other psychological factors that foster

social interaction and exchange. We will briefly delve into each of these research areas.

Empirically, the concept that most innovations result from recombinations has been

explored in economics and related fields. Acemoglu et al. (2016) analyze the connections

among 1.8 million U.S. patents, showing how the production of new patents depends

on progress in other associated technological areas. In other words, advancements in

linked technological domains provide crucial elements or insights for new patents, fueling

recombination. Augmenting this work with the complete U.S. patent database, Youn

et al. (2015), Strumsky et al. (2011) and Akcigit et al. (2013) use detailed patent class

codes to demonstrate that most patents are, indeed, recombinations, drawing from various

technological categories. Pushing this idea further, Clancy (2018a,b) tests a recombinative

model of innovation that accounts for both the ‘fishing out’ of obvious recombinations and

the innovation-generating impact of each new recombinative idea (patent). The model’s

predictions align with the patterns observed in U.S. Patents.3

Alongside evidence for the centrality of recombination for innovation, many researchers

have studied the connections between innovation and diversity, including measures of

3Work on patents converges with efforts in other domains. Consider three examples. First, using scientific
citations to assess recombination, Uzzi et al. (2013) find that the highest-impact scientific papers drew on
journals rarely referenced by others in the same journal but were, in the main, otherwise highly conventional
in their referencing patterns. Second, using detailed analyses of 21,745,538 lines of computer code based
on entries in programming competitions over 14 years, Miu et al. (2018) shows that entries largely copied
prior leading entries, which were publicly available, and then added novelty by recombining code drawn
from other prior entries. Recombination was, by far, the key element that led to the gradual improvement of
these algorithms over time. Finally, Thagard (2012) coded lists of the top 100 most important inventions
and scientific discoveries of all time and found them all to involve conceptual recombinations. Based on
work in cognitive science, he argues that all creativity arises from recombination based on neuroscientific
models of how brains actually form new ideas.
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genetic, birthplace, academic discipline, and ethnic diversity (Ashraf and Galor, 2013;

Alesina et al., 2016; Page et al., 2019; Docquier et al., 2020; Fulford et al., 2020). In general,

greater diversity generates more rapid innovation.4 Conceptually, our approach suggests

that a particular kind of diversity fuels innovation because these factors are associated

with individuals possessing different skills, techniques, knowledge (explicit beliefs), tacit

know-how, intuitions and perspectives.

Finally, both social institutions and psychological traits that facilitate the exchange

of ideas have been linked to innovation. As noted above, saloons, cafés and knowledge

societies have all been linked to innovation (Mokyr, 1995; Andrews, 2023; Andrews and

Lensing, 2020; Cinnirella et al., 2022; Henrich, 2020). Similarly, psychological traits that

motivate people to (1) tolerate, trust and cooperate with strangers and (2) express non-

conforming ideas, views and perspectives have been linked to innovation. For example,

focusing on trust at the levels of countries and U.S. states, Algan and Cahuc (2014) reveal

positive correlations between impersonal trust and three measures of innovation. Similarly,

using U.S. firm-level data, Nguyen (2021) shows that more trusting CEOs generate an

uptick in innovation upon their arrival. Conceptually, these social institutions and aspects

of psychology foster the flow of ideas among diverse minds, increasing the likelihood of

useful recombinations.

These considerations highlight the importance of social interactional diversity for

recombinative innovation. We now detail how the social structure, captured by surname

distributions, influences key aspects of the social interactional diversity in local popula-

tions.

2.1.2 Social Structure Shapes Heterogeneous Interactions

Societies are not undifferentiated masses of individuals interacting purely strategically or

at random. Instead, each new generation is born into a world in which people have already

clustered into geographic, residential and relational groupings. These groupings, or social

structures, are heavily influenced by familial, genealogical, ethnic and cultural connections

and affinities. Here, we capture social structure using surnames. Individuals sharing the

same surname are more likely to be related, either through their genealogies or via broader

cultural or ethnic ties. Thus, the distribution of surnames may be well-suited to capture

key aspects of social structure relevant to both the informational and social-behavioral

dimensions of interactional diversity.

Informationally, we propose—and provide evidence in Section 2.3.1—that surnames,

4AlShebli et al. (2018), for example, show how both the ethnic and disciplinary diversity of coauthors are
linked to scientific impact.
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typically patrilineally inherited in the U.S., serve as markers of different kinds of skills,

knowledge, experiences and ways of thinking. These attributes originate from learning

within familial, regional, or professional networks and persist across generations because

of intergenerational cultural transmission (Cavalli-Sforza and Feldman, 1981; Boyd and

Richerson, 1985; Bisin and Verdier, 1998). Three types of evidence support this proposal.

First, across populations, people rely on different languages, thinking styles, decision

heuristics, reading preferences, metaphors, attentional biases and ritual practices (Henrich,

2020; Nisbett, 2003). Work in cognitive science, for example, indicates that speaking and

thinking in different languages has consequences for people’s perceptions, attention and

reasoning (Blasi et al., 2022). Second, research in social mobility indicates that surnames

reflect unique skills and socialization (Clark, 2014; Güell et al., 2015; Barone and Mocetti,

2021). Third, analyses of U.S. patents and Swedish entrepreneurship reveal the significance

of cultural transmission from parents and local communities. For patents, children tend

to patent within the same narrow technology classes as their parents and those in the

neighborhoods where they grew up (Bell et al., 2019). For entrepreneurship, children tend

to start businesses in the same industry as their same-sex parent, an effect that holds even if

they were adopted, confirming a central role for cultural over genetic influences (Lindquist

et al., 2015). Other studies suggest this is relevant for other occupations (Morgan et al.,

2022).

Socially and behaviorally, we hypothesize—and test empirically in Section 2.3.2 and

again in Section 6—that social structures dominated by large and powerful families,

indicated by low surname entropy, result in fewer interactions and collaborations among

diverse individuals. The family is perhaps the most fundamental of human institutions

and a key source of social structure, shaping the socialization process, the transmission of

information, and even individuals’ psychologies (Henrich, 2020). Previous work on the

impact of kinship on sociality has shown that weaker ties are associated with increased

openness towards strangers based on survey and behavioral measures of trust, cooperation

and nepotism as well as in anonymous blood donations, civil participation and the presence

of family businesses (Enke, 2019; Alesina and Giuliano, 2014; Schulz et al., 2019; Schulz,

2022; Bahrami-Rad et al., 2022).

2.2 Operationalizing Social Structure with Surnames

We capture the social structure represented by surnames using an entropic diversity mea-

sure. To motivate this measure and conceptually link it to recombinative innovations,

consider a subpopulation consisting of N individuals partitioned into K surname groups,
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each of size Nk such that
∑k=K
k=1 Nk =N . Each group carries unique information (e.g., skills,

know-how, metaphors), labeled as sk ∈ {a,b,c,d, ...} and sk , sh for all k , h. When indi-

viduals from different surname groups meet, the likelihood of recombinative innovation

increases. Information theory (Shannon, 1948) tells us that the average informational

content (or the innovation potential) of such a population in which people randomly meet

is

E = −
∑

pk log2pk (1)

where pk = nk
N is the probability that a person with group affiliation k is drawn and log2pk

is the informational content embedded in this individual (expressed in bits). This is a

version of Shannon entropy.

Shannon entropy is a central concept in information theory and is widely used in many

scientific disciplines. The term − log2pk is the self-information of subgroup k and captures

the level of surprise (or the informational content of a specific outcome). The negative

log reflects that rarely-encountered groups carry more surprise (or more information)

compared to more frequent encounters. To arrive at Shannon entropy, the self-information

is weighted by the probability of its occurrence and summed over all possible outcomes.

For example, if the population only consists of one group k, the outcome of a draw is

entirely predictable, resulting in an entropy of 0, and thus, no recombinations can arise

through social interaction. In contrast, entropy for a population with a fixed number of

groups is maximized if all groups are of equal size. In such a population, individuals

engaging in a random social interactions are most likely to observe someone different from

themselves. A random draw will thus have more informational content (in expectation),

which is reflected by higher entropy.5

From an informational perspective, the link between surname entropy and recombi-

native innovation is evident. Surname entropy reveals the innovative potential of local

populations, provided that people interact randomly and surnames capture distinct in-

formation (e.g., knowledge, perspectives, etc.). Below, we test whether surnames in U.S.

history indeed capture distinct information. However, this focus overlooks the role of

social-behavioral factors: people do not interact randomly but tend to preferentially en-

5In economics, a Herfindahl measure, which population geneticists call Isonymy, is frequently used to
capture diversity. For our purposes, however, Shannon’s entropy has several advantages to conceptualize
informational diversity and has favorable mathematical properties (Carcassi et al., 2021). In particular,
a Herfindahl approach underweights the importance of rare surnames (pk vs. log2pk), i.e., under the
assumption that surnames carry unique pieces of information, rare surnames are more “valuable”—they
carry a higher expected surprise. Empirically, the two measures are highly correlated in our setting (ρ = 0.83,
Table B1).
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gage with those who share familial, relational, ethnic, and cultural affinities. To account

for this, we explore the linkage between social structure, as indicated by surname entropy,

and the strength of these affinities, also known as homophily.

2.2.1 U.S. Surname Entropy 1850-1940

To calculate surname entropy, we draw on the full-count Integrated Public Use Microdata

Series (Ruggles et al., 2021). We use the nine waves from 1850 to 1940 which contain the

variable namelast of all individuals and county identifiers. Appendix A details how we

clean the surname variable and harmonize county boundaries.

To address potential biases in surnames from misspellings and Anglicization, we apply

the metaphone phonetic algorithm, as outlined by Philips (1990), to standardize name

strings. This method reduces the risk that our analysis is biased by such variations. For in-

stance, the algorithm treats phonetically similar names—like “Heinrich” and its Anglicized

form “Henrich”—as identical (“HNRX”), thus countering concerns that discrimination-

induced name changes in less innovative regions could spuriously suggest a link between

low surname entropy and lack of innovation.

Following Burchardi et al. (2021), we also obtain the variables age and yrimmig (the

year of immigration) to estimate surname entropy for the mid-decades 1895, 1905, 1915,

and 1925 by removing all individuals who were born or immigrated after the mid-decade.

Figure B1 maps surname entropy across U.S. counties in the year 1940. It shows both

the raw data and the residual variation that is orthogonal to log population size.6 Clear

geographical patterns emerge. While counties in California and most of the Northeast

score high on surname entropy, Utah and the Southern states score substantially lower,

i.e., they are more homogeneous with regard to surnames.

2.3 Surnames Capture Both Components of Heterogeneous Interactions

In this section, we confirm that social structure, proxied using surnames, captures both

an important slice of the informational diversity within populations and potentially

influences the social-behavioral component, affecting the potential for heterogeneous

interactions. Regarding the latter, our goal at this stage is only to show the strong relation-

ship between surname entropy and both surname segregation at the street level and the

strength of family ties, both of which likely influence social interactions among diverse

individuals. Later, in Section 6, when we explore the mechanisms underlying the causal

6Figure B2 displays the variation in surname entropy conditional on log county population from 1850 to
1930.
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Table 1: Surnames cluster in occupations, birthplaces, and patent technology categories

Occupation
Country
of origin

Region
of origin

USPO tech
category

Sample: All Immigrants Germans Inventors

Year: 1880 1940 1880 1940 1880 1940 1880 1880-9 1940-9

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Surname 0.117 0.045 0.097 0.065 0.393 0.227 0.189 0.092 0.068
U.S. county of residence 0.171 0.071 0.153 0.080 0.288 0.130 0.159 0.014 0.017
Country of origin 0.120 0.043 0.096 0.060
Age 0.154 0.049 0.101 0.048

Notes: This table reports normalized Herfindahl indices, where larger values indicate greater concen-
tration. The indices are calculated as the average Herfindahl indices of the variable in the header
computed for each value of the variables on the left. For example, we calculate the normalized Herfind-
ahl index of occupations for each surname and then average over all surnames using the number of
individuals with a given surname as weights. Column 1 (2) includes all individuals in the 1880 (1940)
census. Columns 3 and 5 (4 and 6) include all immigrants in the 1880 (1940) census. Column 7 restricts
the sample to German immigrants in 1880. We use the 31 subnational regional origins for German
immigrants recorded by the Census (the variable bpld with codes 45301 to 45361). Column 8 (9)
includes all inventors of patents issued from 1880 to 1889 (1940 to 1949). We use the main technology
class on the patent.

relationship between surname entropy and innovation, we will apply our IV strategy to

these and other relevant outcomes.

2.3.1 The Informational Component

To gain a more systematic sense of the degree to which surnames reflect unique knowledge

in the U.S., we calculate Herfindahl concentration measures that capture how strongly

surnames cluster in several domains, including occupations, country or region of origin,

and technology categories of patents. The construction of the concentration measure for

each domain proceeds in two steps. First, using occupation as an example, we calculate

a normalized Herfindahl index for each surname across all occupations. This gives us

a measure of how strongly a specific surname clusters in occupations. We normalize

this measure such that a value of zero implies a uniform distribution of a surname

across occupations, and a value of one implies that a surname only occurs within a

single occupation. Second, we average the surname-specific Herfindahl indices across all

surnames, weighted by the number of people with a given surname. This averaged index

reveals the overall surname concentration in occupations based on the U.S. population.

Similarly, we construct the concentration measures for the other informational domains.

Table 1 reports the surname concentration indices for the different domains, samples,

and years in the first row. All surname concentration indices are well above zero, indicating
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that surnames are concentrated in occupations (columns 1 to 4), originating countries

(columns 5 and 6), originating regions within Germany (column 7)7, and patent technology

categories (columns 8 and 9).8 For example, in 1880, two people with the same surname

have a roughly 12% (above chance) probability of holding the same occupation out of

249 possible occupations (column 1), or two same-surname immigrants have about a 39%

probability of being from the same country of origin (column 5). Moreover, column 7

reports that surnames even indicate the sub-national origin region of immigrants. Same-

surname immigrants from Germany have a 19% probability of being from the same

inner-German region (out of 31 regions). Finally, columns 8 and 9 show that surnames

cluster on the fine-grained technology categories on patents. This is consistent with Bell

et al.’s 2019 analysis of father-son patenting patterns in the U.S. at the dawn of the 21st

century.

Having established that certain surnames concentrate in occupations, originating

countries, regions, and patent categories, we can put the concentration indices into context

by comparing them to measures of residence-county (row 2), country of origin (row 3), and

age (row 4) concentration. In the year 1880, occupations are relatively more concentrated

in counties compared to surnames, though this difference markedly narrows in the year

1940 (row 2). Surnames are substantially more indicative of originating countries and

regions compared to immigrants’ residence counties. Compared to country of origin and

age, surnames are about equally indicative of occupation (rows 3 and 4).9

Although very frequent surnames may capture family- or profession-specific tradi-

tions to a lesser extent than rarer surnames, they nevertheless still encapsulate unique

7This domain is restricted to German regions because fine-grained subregional birthplace data are
available for this country only.

8The patent data set does not allow us to uniquely identify inventors. Hence, we cannot detect inventors
who file multiple patents in the same technology category, which could bias the concentration upwards. We
still report this statistic because this bias is likely small, given the low level of regional clustering in this
variable (row 2), where we would expect a similar upward bias if regional mobility among inventors is not
very high.

9A potential concern is that, although surnames may often be nested within coarser categories like country
of origin, regional birthplace, and race, there have been historical processes that muddy this hierarchical
nesting. For example, many formerly enslaved Africans carry the European surnames of their enslavers
(Cook et al., 2022). Surname entropy may thus underestimate the diversity stemming from African cultural
heritage. To address this, we construct a more finely-grained measure and check how it relates to our main
indicator. This measure creates additional ’surname categories’ based on race-surname combinations. For
example, the number of white ’Jacksons’ enters the diversity indicator as a separate category from the
number of black ’Jacksons’. Similarly, we calculate a surname entropy indicator that further differentiates
along country of birth. Table B1 shows that the main surname entropy indicator in 1940 is almost perfectly
correlated with those more finely-grained diversity measures. Furthermore, we obtain similarly high
correlation coefficients between the main surname entropy indicator and indicators that are based on (i)
phonetically uncorrected surnames, (ii) surnames of men only, (iii) surnames of household heads only, and
(iv) surnames of whites only.
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knowledge. For example, “Smith” and “Johnson”, the most frequent surnames in the 1880

census, show a distinct pattern. The Smiths outnumber the Johnsons by a factor of about

1.65 times. Yet, among individuals who reported blacksmith as their occupation, there

are 2.46 times more Smiths than Johnsons. This correlation suggests that the surname

“Smith” has a long-standing association with metalworking and blacksmithing, a trend

that persisted in 1880, when metalworkers were still relatively more likely to be Smiths.

2.3.2 The Social-Behavioral Component

Shifting our focus to the social-behavioral linkage, we establish a correlation between

surname entropy and two variables likely to influence heterogeneous social interactions:

(i) the residential segregation of surnames within countries and (ii) the strength of family

ties in 1940.

Our first measure of residential segregation captures the cluster of same-surname pairs

at the street-level, indicating segregation beyond what would be expected from random

choices of residence. We construct a measure of next-door neighbor segregation closely

following the methodology of Logan and Parman (2017), except that we focus on surname-

based segregation rather than racial segregation. This measure’s construction involves two

steps: first, quantifying the segregation degree for each surname in each county during

specific periods; second, averaging these degrees across all surnames within a county to

obtain a county-level measure of surname segregation. Appendix A provides detailed

calculations and showcases the geographic distribution of surname-based residential

segregation in 1940 (see Figure B3).

Crucially, this indicator is constructed to account for the surname distribution at the

county level. Positive values signify segregation beyond what would occur by chance,

while negative values imply that neighbors are more diverse than what chance alone would

predict, indicating a preference for diversity. Assessing the degree of segregation in relation

to a county’s surname pattern against that expected by chance allows us to capture people’s

settlement preferences. Thus, an association between surname entropy and segregation is

not merely driven by more diverse counties being also less segregated. Rather, it reflects

differences in fine-grained settlement preferences while holding background diversity

constant.

As depicted in Figure 1, this variation is highly negatively correlated with surname

entropy (ρ < −0.68), indicating that individuals with the same surname in counties with

low surname entropy tend to live in closer geographic proximity.

The second measure, the strength of family ties (Raz, 2023), captures the size, ho-

mogeneity, and stability of households as social units. It represents the first principal

18



−2

−1

0

1

2

−2 −1 0 1 2
Surname entropy (in 1940)

Residential segregation of surname groups (in 1940)

Correlation coef.: −0.73

−2

−1

0

1

2

−2 −1 0 1 2
Surname entropy (in 1940)

Strength of family ties (in 1940)

Correlation coef.: −0.495

−1

0

1

2

−1 0 1 2
Surname entropy (in 1940)

Residential segregation of surname groups (in 1940)

Correlation coef.: −0.681 
Variables residualized by log population

−1

0

1

−1 0 1
Surname entropy (in 1940)

Strength of family ties (in 1940)

Correlation coef.: −0.697 
Variables residualized by log population

Figure 1: Relationships between surname entropy and two measures of homophily
Notes: The figures show binscatter plots of the relationships between surname entropy and surname
residential segregation (left plots) and strength of family ties (right plots). Top: Raw data; bottom:
residualized by log county population. An observation is a county in 1940. The segregation
measure is constructed by adapting the Logan and Parman (2017) procedure to surnames. The
segregation measure is constructed following Raz (2023). The sources and construction of all
variables are explained in Appendix Section A. The binscatter plot was created using the R package
written by Cattaneo et al. (2019).
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component of four underlying county-level time-period variables: (i) the divorce-to-

marriage ratio, (ii) the share of elderly people living without a relative, (iii) the share of

people living with at least one person who is not their relative, and (iv) the mean size of

families. Higher values for the strength of family ties indicate a preference for surrounding

oneself with relatives (see Appendix A for details).

Appendix Figure B4 illustrates the geographic distribution of the strength of family

ties in 1940, and Figure 1 demonstrates that this variation is highly negatively correlated

with surname entropy, particularly when controlling for log population size (ρ ≈ −0.70).

This suggests that individuals in counties with low surname entropy tend to have strongly

homophilic networks with relatives.

2.4 Measuring Innovation

To measure innovation, we rely on patent data. Our first measure is the total number

of patents normalized by the 1900 county population (in 1,000s). We calculate this

measure for each U.S. county for 5 and 10-year periods from 1850 to 1940, based on the

Comprehensive Universe of U.S. Patents (CUSP) data set compiled by Berkes (2018). The

primary source of this data set is Google Patents supplemented with information from

other sources.

Although patents have been widely used in economics and other disciplines to study

innovation, important concerns remain (Griliches, 1990; Moser, 2013; Lerner and Seru,

2022). These include the fact that many innovations are not be patented, industries have

variable patenting tendencies, types of inventions have different patentability, and in-

creased patenting in a specific technology category could inhibit innovation rates. Seeking

to address these concerns, prior work has demonstrated that results using patents per

capita parallel those using alternative measures, including using patent citations (Bur-

chardi et al., 2021; Acemoglu et al., 2016), patents with novel technology codes (Lerner

and Wulf, 2007), the presence of ’creative’ (Gomez-Lievano et al., 2017) or ’supercreative’

(Bettencourt et al., 2007) occupations, exhibits and prizes at World Fairs (Dowey, 2017;

Moser, 2013; Squicciarini and Voigtländer, 2015) and economic productivity (e.g., Alesina

et al., 2016; Sequeira et al., 2020; Burchardi et al., 2021). Overall, while far from perfect,

current evidence suggests that patents offer a valuable proxy for innovative activity.

Nevertheless, we also deploy a second measure of innovation based on breakthrough

patents (per 1,000 people). Developed by Kelly et al. (2021), this approach analyzes

the text accompanying each patent by comparing it with the text from both past and

future patents. Assessments of breakthroughs are based on each patent’s (1) Novelty: how
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distinct is it from prior patents? and (2) Impact: how similar is it to future patents? This

measure aims to capture patents that meaningfully advance knowledge by filtering out

minor patents, often filed for strategic reasons, that add noise to the creative signal we

seek. Details on our patent-based measures can be found in Appendix A.10

3 Empirical Strategy

To estimate the causal effect of surname entropy on innovation, we examine the following

equation:

Y ti = β Surname entropyti +αs(i),t +αi + εti (2)

where Surname entropyti denotes the surname entropy in county i in period t (years: 1900,

1905, 1910, 1915, 1920, 1925, 1930, 1940). Y ti represents the outcome of interest, typically

the number of patents or breakthrough patents filed in county i in the five-year period

starting in year t, normalized by the county’s population in 1900. The coefficient β is our

main interest. αs(i),t and αi are state-period and county fixed effects, respectively. These

fixed effects enable the estimation of β from changes within the same county over time,

while controlling for both persistent and time-varying differences across states. The error

term is denoted by εti . In our most restrictive model specifications, we include county-

specific linear time trends, represented by αi × t. These trends control for any inherent

county-specific trend in Y ti , allowing us to utilize only the variation in the growth rate of

patenting over time within each county.

The main concern with the OLS estimate of β is that reverse causality or unobserved

factors that co-determine surname entropy and innovation might induce a spurious

correlation. For instance, a highly innovative county may attract a more diverse set of

migrants, which increases surname entropy. Similarly, highly-skilled individuals, more

prone to innovation, might prefer more diverse counties. In both instances, a correlation

between surname entropy and innovation could be observed even if no causal relationship

exists.

We observe that migration, along with births, deaths and marriages, plays a significant

role in changing counties’ surname entropy. This observation allows us to isolate variations

in surname entropy that are independent of any determinants of innovation, by leveraging

methodological advances in immigration studies. We adapt the instrumental variable (IV)

10Moreover, in Appendix Section B.1, we will estimate specifications that include patent technology class
fixed effects, which absorb any patent class-specific factors. These specifications address the concern that
systematic variation in patenting practices across technologies may bias our results.
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approach of Burchardi et al. (2019) to isolate quasi-random variation in surname stocks

across counties, and use these stocks to compute an instrument for surname entropy. This

approach enables us to estimate the local average treatment effect (LATE) of changes in

surname entropy on innovation, specifically those induced by immigration to the U.S., as

opposed to changes stemming from births, deaths, marriage, or domestic migration.

It is important to note that our IV strategy, which relies on immigration-induced

changes in surname composition, does not imply a simple, monotonically increasing

relationship between immigration and surname entropy. Immigration can both decrease

and increase surname entropy, depending on the existing local surname distribution.

For example, if the ‘Smiths’ immigrate to a county with few or no ‘Smiths’, surname

entropy increases. Conversely, if they move to a county where the ‘Smiths’ are already

common, entropy decreases. Consistent with this distinction, our estimates remain almost

unchanged when controlling for immigration (see Section 5.3). Essentially, our strategy

capitalizes on how immigration affects surname composition, using quasi-random varia-

tion in immigration as an instrument for surname entropy (see Section 3.3 for identification

details).

We hypothesize that the relationship between immigration and surname entropy influ-

ences both the informational and social-behavioral dimensions of diverse interactions. The

arrival of individuals with locally rare surnames increases surname entropy, potentially

fostering opportunities for diverse social interactions, knowledge acquisition, and trust-

building with people from different cultural and familial backgrounds. This may occur

because a rise in surname entropy not only limits individuals’ ability to fulfill their needs

within their own (shrinking) group but also opens up avenues for valuable interactions

outside their immediate circle.

Conversely, an influx of individuals with locally common surnames, who are culturally

and genealogically related to the dominant groups within counties, reduces surname

entropy. This reduction potentially reinforces knowledge within culturally homogeneous

groups, strengthens intra-group ties, and fosters a low-trust mentality towards outsiders.

This hypothesis aligns with previous work showing that high fragmentation fosters trust,

whereas polarization creates intergroup antagonism (Bazzi et al., 2019). We will examine

this hypothesis in more detail in the mechanisms section 6.

3.1 Construction of the Instrument

The construction of the instrument requires two steps. First, we isolate quasi-random

variation in the stock N t
k,i of each surname k residing in county i in period t. This isolation
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is based on specific historical migration patterns, which influence the distribution of

surnames across counties. Second, we compute the instrument for surname entropy by

calculating entropy based on these (predicted) quasi-random stocks of surnames, denoted

as N̂ t
k,i . We will now delve into the details of these two steps.

Step 1: Isolating Quasi-random Variation in Counties’ Surname Stocks We adopt Bur-

chardi et al. (2019)’s historical push-pull approach to isolate quasi-random variation in the

composition of surnames in U.S. counties. This approach posits that a combination of push

factors (such as economic or political conditions in the immigrants’ origin countries) and

pull factors (like economic opportunities in the destination counties) jointly determines

the allocation of immigrants with specific surnames to counties. The historical interactions

of these two factors arguably create quasi-random variation in surname stocks that persists

over time.

Empirically, the push factor is represented by the total number of immigrants with a

particular surname entering the U.S. during a specific period. The pull factor, meanwhile,

is indicated by the attractiveness of a county in the same period, operationalized as the

proportion of immigrants choosing to settle in that county out of all immigrants entering

the U.S. These factors, and their interaction, have varied over time, and we can trace their

impact back to 1880, leading to quasi-random variation in a county’s surname distribution.

Formally, we predict the stock of people N t
k,i (in thousands) with surname k residing in

county i in year t by estimating the following zero-stage equation:

N t
k,i = δi + δk,r(i) +

t−1∑
τ=1880

bτ Iτk,−r(i)︸   ︷︷   ︸
Push

Iτi,−k
Iτ−k︸ ︷︷ ︸
Pull

+
t−1∑

τ=1880

dτ
Iτi,−k
Iτ−k

+ui,k , (3)

where i indexes counties, k denotes surnames, t indexes census years from 1900 to 1940,

including the midyears, and r(i) denotes the census region containing county i. The

variable Iτk,−r(i) is the push factor in the period ending in year τ (1880, 1895, 1900, 1905,

1910, 1915, 1920, 1925, 1930). It is given by the total number of migrants (in thousands)

with surname k who arrive in the U.S. during this period and settle outside the region

containing county i. The pull factor captures the relative attractiveness of a specific county

i during the period ending in τ . It is given by the share of migrants a county attracts
Iτi,−k
Iτ−k

,

where Iτi,−k is the total number of migrants who settle in county i during this period and

who do not have surname k, and Iτ−k =
∑
i I
τ
i,−k is the total number of migrants who settled

in the U.S. during the same period and who do not have surname k.11

11We follow Burchardi et al. (2019) and estimate equation (3) using a leave-out approach. That is, we
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Core to the identification strategy are the historical interactions between the push

and pull factors in each period τ (up to period t − 1). We estimate a coefficient for this

interaction, bτ , for each period stretching back to the year 1880 (the earliest period for

which we have data on immigrants or their parents). That is, equation (3) attributes the

stock of each name in a county (in a given year t) to the past inflow of migrants who are

allocated according to the push-pull factors over the course of several decades.

In addition to the push-pull factors, equation (3) also includes the term
∑t−1
τ=1880d

τ I
τ
i,−k
Iτ−k

,

i.e., the relative share of migrants who settle in a county in each period τ . This term

captures the time-varying relative attractiveness of a county in the past. It isolates the

push-pull instruments from county-level conditions that drew migrants in each period τ

up to t−1, which may still affect innovation in period t. Moreover, δi , denotes county fixed

effects, removing any time-invariant factors that make specific counties more attractive to

all migrants. δk,r(i) are name-region fixed effects. They remove time-invariant unobserved

factors that may make specific census regions more attractive to migrants with certain

surnames.

Based on equation (3) we estimate the coefficients b̂τ for each period τ and then

calculate the predicted stocks of name k in county i at time t as

N̂ t
k,i =

t−1∑
τ=1880

b̂τ
Ç
Iτk,−r(i)

Iτi,−k
Iτ−k

å⊥
where b̂τ is the estimate of bτ from equation (3), and

(
Iτk,−r(i)

Iτi,−k
Iτ−k

)⊥
are residuals of a

regression of the push-pull interaction, Iτk,−r(i)
Iτi,−k
Iτ−k

, on δi , δk,r(i) and
Iτi,−k
Iτ−k

. This residualization

ensures that the predicted stock of each name N̂ t
k,i relies on the component of the push-

pull factors that is orthogonal to the control variables included in equation (3). This

orthogonalization is particularly useful with regard to
Iτi,−k
Iτ−k

, because it ensures that the

instrument is orthogonal to the past attractiveness of a county, which could be driven by

an underlying factor that also determines innovation decades later.

Step 2: Calculating the Instrument for Surname Entropy In step 2, we compute the

instrument for surname entropy by applying the entropy formula on the predicted stock

exclude migrants with surname n from the pull factor (denoted by −k), and we exclude the census regions r
that county i is located in from the push factor (denoted by −r(i)). This leave-out approach ensures that
our estimates are not driven by the settlement outcomes of migrants with surname k who settled in region
r(i). We note, though, that at the level of surnames, this is likely less of a concern because the fractions of
surnames relative to all migrants are small.
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of each surname N̂ t
k,i : ¤�Surname entropyti = −

∑
k

(
N̂ t
k,i∑

k N̂
t
k,i

log

(
N̂ t
k,i∑

k N̂
t
k,i

))

We repeat steps 1 and 2 eight times to obtain an instrument for diversity in each of the

eight periods (ranging from t = 1900 to t = 1940) that form part of our panel analysis.

3.2 IV Estimating Equations

We implement our IV procedure using 2SLS. The second-stage equation is given by

equation (2). The first-stage equation is given by:

Surname entropyti = γ ¤�Surname entropyti +µs(i),t +µi + vti (4)

where i indexes counties, s states, and t periods. Surname entropyti is county i’s surname

entropy in t; and ¤�Surname entropyti is county i’s predicted surname entropy in t, as

described above. State-period fixed effects are denoted by µs(i),t, and µi are county fixed

effects.

In addition, our most demanding specifications include county-specific linear time

trends, such that β in equation (2) captures the relationship between deviations in the

changes in surname entropy and innovation within counties over time relative to their

overall trend. Comparing the estimates of these specifications to the baseline estimates

provides another exogeneity check of the instrument. If the estimates remain similar, this

suggests that the instrument is orthogonal to persistent or gradually growing county-level

confounding factors.

3.3 Identification

Our identification strategy is valid if ¤�Surname entropyti is truly exogenous in the specifica-

tion of equation (4). A sufficient condition for this to hold isÇ
Iτk,−r(i)

Iτi,−k
Iτ−k

å⊥
⊥ εti .

It requires that any factor affecting a county’s innovation in t is independent of the

interaction between the orthogonalized historical push-pull factors. If this condition

holds, the predicted stocks of surnames are exogenous to innovation (Step 1), and so is the
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instrument for surname entropy (Step 2). Here we detail threats to identification and how

we address them.

Reverse causality. An important question regarding the validity of this empirical

strategy is whether past push-pull factors are independent of a county’s future innovative

capacity. It is possible, for example, that migrants preferred to settle in counties that were

more innovative in the past, likely increasing their diversity, and those same counties are

subsequently still more innovative. More generally, persistent unobserved factors may

determine both the past pull factors and future innovation, which may create a correlation

between the push-pull instrument and the error term.

Burchardi et al. (2019) argue that substantial variation in push-pull factors over time

and space makes this unlikely. Focusing on surname groups rather than country of origin,

this concern is further reduced, as idiosyncratic factors are likely even more important at

this finer level of aggregation. Empirically, we address this concern in three ways: First,

we orthogonalize our push-pull instrument with regard to the historical attractiveness of a

county as captured by the fraction of immigrants who settled there over time (see our zero-

stage equation (3)). Consequently, the IV estimates do not reflect unobserved persistent

factors that had already manifested themselves in immigrants’ past settlement decisions.

Additionally, in robustness checks, we control for the number of recent immigrants,

ensuring that our estimates do not capture counties’ current attractiveness as a destination

for immigrants (see Section 5.3). Second, in our preferred specification, we control for

county-specific linear time trends. To the degree that these linear time-trends capture

county-specific persistent unobserved factors, they will mitigate concerns of estimation

bias. Lastly, and most importantly, we conduct a falsification exercise and regress previous-

period innovation on subsequent surname entropy. We do not find any evidence for reverse

causality, i.e., a shock to surname entropy is statistically unrelated to previous-period

innovation (see Section 5.1). Therefore, it is unlikely that our estimates are driven by

persistent unobserved confounders.

Settlement preferences. Another concern is that unobserved individual characteristics

co-determine settlement patterns and innovation. For example, people with a high (un-

observed) propensity to innovate may prefer to settle in relatively more diverse counties.

In this case, the observed relationship between surname entropy and innovation would

be due to the settlement preferences of individuals with high innovative capacity and

not due to surname entropy per se. The IV approach addresses this concern because

the predicted surname stocks in a county are solely determined by the interaction of the

historical push and pull factors, i.e., the allocation of immigrants to counties does not
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rest on individual preferences.12 This push-pull instrument is orthogonal to county fixed

effects and surname-region fixed effects. Thus, our estimates cannot be biased by the

unobserved stable settlement preferences of people with a certain surname. In addition,

in Section 5.5, we further address this concern by devising a specification with surname-

county-fixed-effects. This specification absorbs any genetic, environmental, or acquired

characteristics embodied in surnames and, thus, it captures the pure diversity effect, which

is independent of the type of information embedded in surnames. Taken together, it is

unlikely that our results are biased due to individual characteristics that co-determine

settlement patterns and innovation.

Immigration. A major source of variation in surname entropy stems from immigration.

This raises the concern that immigration confounds our estimates through channels

other than surname entropy. We address this potential issue by orthogonalizing our

instrument to counties’ immigration history. As a sensitivity check, in Section 5.3, we

directly control for the number of immigrants (applying an IV strategy to address the

endogeneity in immigration). The results exhibit remarkable stability. Controlling for

immigration is feasible because, even though we confirm that immigration influences the

surname composition of counties, there is no straightforward, monotonically increasing

relationship between immigration and surname entropy conceptually. The degree to

which immigrants influence surname entropy is contingent upon the specific surname

composition of immigrants compared to the local (county) population.

3.4 Zero-stage Estimates

We report the zero-stage estimates of equation (3) in Table B2. These estimates allow us to

obtain predicted stocks for each surname in each county for each time period, which we

will use to compute the instrument for surname entropy. In total, we estimate equation (3)

eight times, once for each period from 1900 to 1940.

The results indicate that we identify variation in the stock of surnames based on the

push-pull factors stretching across the full range of periods in our sample. For example,

the estimates reported in column 8 suggest that push-pull factors as far back as 1880 and

all the way up to 1930 are significant predictors of the stock of surnames in 1940. 13

12The exclusion restrictions could be violated if the push-pull factors primarily reflect the migration
decisions (= preferences) of people with a specific surname. Yet, this is unlikely because any specific surname
makes up only a tiny fraction of all people entering the U.S. in a given period (the push factor) and a small
fraction of immigrants settling in a county (the pull factor). Nevertheless, we follow Burchardi et al. (2019)
and report leave-out estimators such that the push factor does not contain individuals with surname n and
the pull factor does not contain regions in which a county is located in r(i).

13Qualitatively, our results parallel those of Burchardi et al. (2019), who estimate the push-pull factor at
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Using the estimated models shown in Table B2, we calculate the predicted (and or-

thogonalized) stock of each surname in each county for each of the eight periods. Finally,

we compute the instrument for surname entropy by applying the entropy formula to the

predicted surname stocks.

The predicted values of surname entropy for each period from 1900 to 1940, net of

county and state-period fixed effects, are depicted in Figure 2. The maps demonstrate that

our instrument picks up substantial variation both over time and across counties.

4 Results

Table 2 reports OLS, reduced-form, second-stage and first-stage estimates. Starting with

the first-stage estimates reported in Panel D, we find that the instrument is strongly

correlated with actual surname entropy, with a Kleibergen-Paap F-statistic of around 104

in our baseline specification in columns 2 and 5. The F-statistic shrinks to roughly 92

when we add county-specific linear time trends (columns 3 and 6). Across specifications,

the point estimates imply that a one standard deviation increase in the instrument is

associated with roughly 0.65 to 0.67 standard deviation greater surname entropy. Taken

together, the first-stage relationship of the instrument with surname entropy is highly

significant, and the F-statistics of the excluded instrument in all specifications exceed

conventional thresholds commonly used in the literature.

Figure B6 shows binscatter plots that show the first-stage relationship between the

instrument and actual surname entropy, both with and without controls for county-specific

time trends. They demonstrate that the relationship is strong, linear and not driven by a

small set of observations.

We next turn to the estimates relating surname entropy to innovation. Table 2 presents

the estimates for both main outcome variables—patents per 1,000 people (columns 1 to

3) and breakthrough patents per 1,000 people (columns 4 to 6). For comparison, Panel A

reports OLS estimates, Panel B reports reduced-form estimates and Panel C reports the IV

estimates. All specifications control for county fixed effects and either period fixed effects

(column 1 and 4) or state-period fixed effects (columns 2 to 3 and 5 to 6). In addition,

specifications reported in columns 3 and 6 control for county-specific linear time trends.

The reported standard errors are clustered at the state level.

The OLS estimates reveal a significantly positive relationship between surname entropy

and both patents and breakthrough patents. In columns 2 and 5, a one standard deviation

the level of originating countries (not surnames). They, for example, likewise obtain a negative coefficient
for the interaction for the period ending in 1930, a period with a high degree of out-migration.
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(a) 1900 (b) 1905

(c) 1910 (d) 1915

(e) 1920 (f) 1925

(g) 1930 (h) 1940

Figure 2: Predicted surname entropy (residuals)
Notes: This figure maps residualized instrumented surname entropy for each of the eight periods.
We regress the instrument for surname entropy on county and state-year fixed effects, and calculate
the residuals. This visualization depicts the instrument used in the regressions reported in Table 2.
The color coding depicts 7 intervals across counties and within census periods, with darker colors
indicating higher values. Grey indicates a lack of data in 1900.
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Table 2: Panel estimates of the effect of surname entropy on innovation

Patents
per 1,000 people

(mean = 1.05, sd = 1.73)

Breakthrough patents
per 1,000 people

(mean = 0.13, sd = 0.28)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname entropy 1.370∗∗∗ 1.303∗∗∗ 1.461∗∗∗ 0.157∗∗∗ 0.140∗∗∗ 0.117∗∗∗

(0.166) (0.232) (0.170) (0.019) (0.017) (0.020)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) 0.955∗∗∗ 0.921∗∗∗ 0.993∗∗∗ 0.113∗∗∗ 0.104∗∗∗ 0.077∗∗∗

(0.180) (0.223) (0.193) (0.014) (0.017) (0.015)

Panel C: Instrumental-variable estimates

Surname entropy 1.423∗∗∗ 1.388∗∗∗ 1.519∗∗∗ 0.168∗∗∗ 0.157∗∗∗ 0.118∗∗∗

(0.174) (0.234) (0.183) (0.019) (0.019) (0.019)

Kleibergen-Paap F-statistic 119.613 104.522 91.652 119.613 104.522 91.652

Panel D: First-stage estimates Surname entropy

Surname entropy (push-pull IV) 0.671∗∗∗ 0.663∗∗∗ 0.654∗∗∗ 0.671∗∗∗ 0.663∗∗∗ 0.654∗∗∗

(0.061) (0.065) (0.068) (0.061) (0.065) (0.068)

Within R2 0.706 0.688 0.682 0.706 0.688 0.682

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 22,073 22,073 22,073 22,073 22,073 22,073

Notes: The table reports OLS, reduced-form, and instrumental-variable (IV) estimates for the spec-
ifications described in equation (2) and first-stage estimates for equation (4). An observation is a
county in a period from 1900 to 1940. The endogenous variable is county-level surname entropy in t.
In columns 1 to 3, the dependent variable is number of patents filed in the county in the five-year
period starting in t divided by county population size in 1900. In columns 4 to 6, it is number
of breakthrough patents filed in the county in the five-year period starting in t divided by county
population size in 1900. Standard errors are clustered at the state level. All independent variables
are standardized to mean zero and unit variance. The sources and construction of all variables are
explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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increase in a county’s entropy is associated with approximately 1.3 more patents (per

1,000 people), and about 0.14 more breakthrough patents.

To explore the stability of this relationship over time, we extend our analysis to earlier

periods. In Appendix Figure B7, we present OLS estimates back to the earliest census wave

for which surname data is available. In our main analysis, we cannot extend beyond the

year 1900 due to the limitations of our push-pull IV approach, which relies on immigration

data not available before 1880. Appendix Figure B7 presents coefficients of regressions

of (breakthrough) patents per capita on surname entropy interacted with period dum-

mies, controlling for county and state-period effects. We find consistently positive—and

remarkably stable—coefficients after 1860 (or even after 1850 for breakthrough patents).

Focusing on the IV specifications, Panel B shows statistically significant reduced-form

relationships between the dependent variables and our historical push-pull instrument

(predicted surname entropy based on the zero stage). To visualize these relationships,

Figure B8 shows partial correlation plots. Finally, Panel C presents the IV estimates. The

coefficients for surname entropy are all positive and highly significant for both innovation

outcomes. The estimates in the baseline specifications (columns 2 and 5) suggest that

a one standard deviation increase in a county’s surname entropy increases the number

of patents (per 1,000 inhabitants) by about 1.39 and breakthrough patents by about

0.16. These increases correspond to approximately 139% and 121% relative to their

sample means, respectively.14 The coefficients are similar when we additionally control

for linear time trends (columns 3 and 6). This stability bolsters our confidence that

the instrument for surname entropy is orthogonal to persistent or gradually growing

county-level confounding factors.15

Overall, the estimates indicate that surname entropy significantly boosts both inno-

vation quantity and quality. The notable similarity between the OLS estimates in Panel

A and the IV estimates in Panel C could imply that the former are potentially unbiased,

suggesting that surname entropy might be relatively exogenous within our empirical

14We obtain similar magnitudes when estimating Poisson regressions. For patents, the estimated coefficient
is 0.8475, which implies a treatment effect of exp(0.8475) − 1 = 1.33, suggesting a 133% increase; for
breakthrough patents, the estimated coefficient is 0.8873, implying a treatment effect of exp(0.8873)−1 = 1.43,
or a 143% increase.

15If innovation is propelled by recombination, as many have suggested (Weitzman, 1998; Jones, 2023),
then we might have expected a concave relationship between surname entropy and innovation because a
tradeoff could exist between the informational and social-behavioral effects of more diverse social groupings
(Schimmelpfennig et al., 2022). That is, at a certain point, people might have very different skills, perspectives
and expertise but refuse to interact or share what they know. Populations that get ‘too diverse’ might end up
with less innovation due to declining social interactions and restricted informational flows. However, as
suggested by Figure B8, when we include a squared term for surname entropy into our specifications, we do
not observe a negative coefficient. Thus, from the point of view of innovation, U.S. counties were never ‘too
diverse.’
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framework. This exogeneity could stem from the unique, granular nature of surname

changes, which are often influenced by unique historical events at the individual surname

level. Specifically, the complex and nonlinear effects of immigration on surname entropy,

coupled with the pre-existing surname distribution, underscore this point. Given that

other factors affecting surname entropy, such as birth and death rates, change too gradually

to significantly impact our results, it reinforces the idea that our variation source is highly

detailed and specific. To examine the validity of these findings, we will now proceed with

a series of sensitivity analyses and robustness checks.

5 Robustness and Sensitivity Checks

We test the robustness of our estimates using eight different approaches: (1) a placebo test

that regresses past innovation on surname entropy; (2) models controlling for population

size to address potential scale effects; (3) regressions with immigration controls to assess

the role of immigrants in our estimates; (4) analysis of heterogeneity across the four major

census regions; (5) the use of surname fixed effects to determine the impact of surname-

specific characteristics; (6) controlling for years of schooling to explore whether the results

are confounded by education; and (7) employing log-transformed dependent variables.

5.1 Placebo Tests and Reverse Causality

A potential concern with our results is a form of reverse causality, i.e., that innovative

counties attract relatively more immigrants which then potentially may increase surname

entropy (in case those migrants are sufficiently different from the existing population).

This possibility is unlikely, because our instrument is orthogonal to a county’s past attrac-

tiveness as captured by the (time-varying) shares of immigrants who settled in a county

over the course of several decades (see Section 3.1 for details). Moreover, we have examined

specifications that include county-specific linear time trends, which absorb the effects of

trending unobserved factors associated with innovation and migration.

To further test the validity of our instrument, we conduct a placebo exercise to deter-

mine whether contemporaneous surname entropy affects past innovation activity. This

analysis aims to identify any evidence of reverse causality, such as innovative counties

attracting immigrants and thus increasing surname entropy. In Table 3, columns 1-2 and

6-7, we regress innovation measures from two periods prior (t − 2) and one period prior

(t − 1) against current period (t) surname entropy. Columns 3 and 8 revisit our original

specification, regressing innovation with same-period surname entropy (as reported in
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Table 3: Robustness I: Placebo test and persistence

Patents per 1,000 people Breakthrough patents per 1,000 people

t − 2 t − 1 t t + 1 t + 2 t − 2 t − 1 t t + 1 t + 2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Least-squares estimates

Surname entropy -0.025 0.161 1.461∗∗∗ 0.806∗∗∗ 0.109 -0.011 -0.006 0.117∗∗∗ 0.137∗∗∗ -0.006
(0.380) (0.129) (0.170) (0.119) (0.214) (0.048) (0.023) (0.020) (0.024) (0.031)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) -0.010 0.113 0.993∗∗∗ 0.517∗∗∗ 0.059 -0.012 -0.014 0.077∗∗∗ 0.103∗∗∗ 0.007
(0.230) (0.102) (0.193) (0.107) (0.113) (0.035) (0.020) (0.015) (0.019) (0.014)

Panel C: Instrumental-variable estimates

Surname entropy -0.016 0.197 1.519∗∗∗ 0.815∗∗∗ 0.092 -0.019 -0.025 0.118∗∗∗ 0.162∗∗∗ 0.010
(0.381) (0.191) (0.183) (0.134) (0.183) (0.056) (0.033) (0.019) (0.026) (0.022)

Observations 16,489 16,489 22,073 16,489 16,489 16,489 16,489 22,073 16,489 16,489

Kleibergen-Paap F-statistic 71.454 61.534 91.652 73.921 83.840 71.454 61.534 91.652 73.921 83.840

County fixed effects X X X X X X X X X X
State-Period fixed effects X X X X X X X X X X
County-specific linear time trends X X X X X X X X X X
Observations 16,489 16,489 22,073 16,489 16,489 16,489 16,489 22,073 16,489 16,489

Notes: The table reports OLS, reduced-form, and instrumental-variable (IV) estimates of the leads and lags of innovation outcomes
on surname entropy for the specifications described in equation (2). Columns 1–2 and 6–7 use the two-period and one-period lag of
the dependent variables, respectively. Columns 3 and 8 repeat the baseline specification (contemporaneous values of the dependent
variables). Columns 4–5 and 9–10 use the one-period and two-period lead of the dependent variables, respectively. An observation is a
county in a period. Standard errors are clustered on states and reported in parentheses. All independent variables are standardized to
mean zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

Table 2, column 5).

Our results, spanning least-square (Panel A), reduced-form (Panel B), and IV estimates

(Panel C), consistently show no significant positive relationship between earlier innovation

and subsequent surname entropy, both for patents (columns 1 and 2) and breakthrough

patents (columns 6 and 7). However, when patenting in period t is regressed on surname

entropy in the same period, the coefficients grow in size and become significantly positive

(columns 3 and 8). This lack of evidence for reverse causality strengthens our confidence

in the identification strategy.

Additionally, we explore the lasting effects of surname entropy on innovation by

analyzing one-period (innovation in t + 1, columns 4 and 9) and two-period leads (t + 2,

columns 5 and 10) in relation to surname entropy in period t. The results indicate a

sustained impact of entropy on patenting in the subsequent period (t+1), but no significant

relationship is found for the following period (t + 2).
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5.2 Sensitivity to Scale Effects

In our baseline analysis, we base our per capita dependent variables on the population

size in 1900, following the approach in the literature (e.g., Burchardi et al., 2021). This

choice accounts for the likelihood that population growth, potentially endogenous due

to innovative regions attracting more people, could impact the results. However, this

approach may not fully capture the scale effects associated with an increasing population

(Romer, 1990). To address this, we explore the robustness of our estimates by including

population size in our specification.

The results of this analysis are reported in Appendix Table B3. To address endogeneity

concerns, our reduced-form and IV specifications use predicted population, constructed

similarly to our instrument for surname entropy. By leveraging the historical push-pull

interactions from the zero stage analysis (as discussed in Section 3), we estimate the

predicted surname stocks in each county for a given period. Aggregating these stocks

provides us with quasi-random estimates of county populations at specific points in time.

Comparing these findings with our baseline results, as presented in Table 2, we find

that our results are robust to controlling for predicted population. The estimates are very

similar, reinforcing that our baseline findings are not driven by scale effects.

5.3 Sensitivity to Immigration

Another concern is the potential confounding effect of immigration on our estimates,

beyond its impact on surname entropy. Previous research indicates that immigrants can

significantly fuel innovation due to factors like higher skills, entrepreneurial spirit, or

unique patentable knowledge (Moser et al., 2014; Abramitzky and Boustan, 2017; Sequeira

et al., 2020; Burchardi et al., 2021). However, our analysis addresses this concern by using

an instrument that is orthogonal to counties’ historical immigration patterns, ensuring

that our estimates are not biased by past immigration trends (details on the instrument’s

construction are in Section 3.1). Additionally, our IV estimates are robust to controlling

for changes in population due to migration (see Section 5.2).

In our further analysis, we control directly for the number of recent immigrants. While

our instrument is based on changes in surname entropy induced by recent immigration, we

can separate the effects of recent immigration from those of surname entropy, as they vary

independently. The change in entropy due to immigration also depends on the existing

surname distribution in a region (see Section 3).

To address the endogeneity of immigration, we adopt a shift-share approach, which

utilizes patterns where immigrants tend to settle near individuals from their country
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of origin (Altonji and Card, 1991; Card, 2001). Adapting this to our study, we predict

the migration inflow for each surname into each county between t and t − 1, based on

the proportion of people with that surname already residing there in t − 1. This method

gives us an estimate of each surname’s migration inflow into a county by the end of the

t. A concern with this approach is that previous-period surname stocks are endogenous.

Following Burchardi et al. (2021), we therefore use predicted, not actual, previous-period

surname stocks to mitigate endogeneity concerns. These predicted stocks are derived

from the historical push-pull approach. We sum these predicted inflows to estimate total

migration into a county, excluding data from the period ending in 1940 due to the absence

of immigration year information, which is essential for calculating predicted immigration.

Table 4 presents the results. In line with previous work, we find a positive effect of

immigration on innovation in all specification. We also find that controlling for immi-

gration has minimal impact on the estimates for surname entropy. This holds true when

actual immigration numbers are included in the least-square regressions (Panel A) and

when predicted immigration is used in the reduced-form and IV regressions (Panel B and

C, respectively). For example, the IV estimate for patents per 1,000 people in column 1 of

Panel C is 1.38 without the immigration control, compared to 1.28 with the immigration

control in column 2. The estimates for breakthrough patents are similarly consistent, being

0.14 and 0.12 in columns 5 and 6 of Panel C, without and with the immigration control,

respectively. These findings suggest that the influence of immigration on our measures of

innovation is not significantly confounded by factors other than surname entropy.

5.4 Estimates for Major U.S. Regions

To further understand how the relationship between surname entropy and innovation

varies across U.S. regions, we analyze data by region—specifically, the Midwest, Northeast,

South, and West. This analysis, presented in Table B4, is also insightful for examining

the influence of immigration. Notably, the South experienced relatively low immigration

during this period. Therefore, finding similar effects in the South would provide additional

evidence that our results reflect broader dynamics beyond just immigration patterns.

Across all OLS, reduced-form and IV specifications, we observe that the region-specific

estimates are uniformly positive and statistically significant. The range of IV coefficients

for patents (Panel C, column 3) spans from 1.09 to 3.8, and for breakthrough patents (col-

umn 6), from 0.13 to 0.38. The larger coefficients for the West are particularly interesting,

possibly reflecting the region’s unique historical and immigration context. However, the

precision of these estimates is not sufficient to conclusively assert regional differences.
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Table 4: Robustness II: Controlling for immigration

Patents
per 1,000 people

(mean = 1.08, sd = 1.68)

Breakthrough patents
per 1,000 people

(mean = 0.12, sd = 0.27)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname entropy 1.350∗∗∗ 1.348∗∗∗ 1.291∗∗∗ 1.289∗∗∗ 0.136∗∗∗ 0.136∗∗∗ 0.119∗∗∗ 0.135∗∗∗

(0.125) (0.125) (0.172) (0.191) (0.021) (0.021) (0.017) (0.019)
Immigration 0.012∗ 0.013∗∗ 0.004∗∗ 0.001 0.001 0.000

(0.006) (0.006) (0.002) (0.001) (0.001) (0.001)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) 0.931∗∗∗ 0.857∗∗∗ 0.853∗∗∗ 0.818∗∗∗ 0.097∗∗∗ 0.081∗∗∗ 0.075∗∗∗ 0.079∗∗∗

(0.145) (0.153) (0.186) (0.187) (0.012) (0.012) (0.013) (0.017)
Immigrants (shift-share IV) 0.331∗∗∗ 0.290∗∗∗ 0.140∗∗∗ 0.075∗∗∗ 0.058∗∗∗ 0.050∗∗∗

(0.090) (0.080) (0.051) (0.014) (0.010) (0.011)

Panel C: Instrumental-variable estimates

Surname entropy 1.377∗∗∗ 1.275∗∗∗ 1.272∗∗∗ 1.302∗∗∗ 0.144∗∗∗ 0.120∗∗∗ 0.112∗∗∗ 0.125∗∗∗

(0.143) (0.151) (0.191) (0.199) (0.020) (0.018) (0.016) (0.020)
Immigrants (shift-share IV) 0.309∗∗∗ 0.286∗∗∗ 0.119∗∗∗ 0.073∗∗∗ 0.058∗∗∗ 0.048∗∗∗

(0.081) (0.071) (0.041) (0.014) (0.010) (0.010)

Kleibergen-Paap F-statistic 130.836 120.095 112.618 78.022 130.836 120.095 112.618 78.022

County fixed effects X X X X X X X X
Period fixed effects X X X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 19,324 19,324 19,324 19,324 19,324 19,324 19,324 19,324

Notes: The table reports OLS, reduced-form, and instrumental-variable (IV) estimates for the specifications described in
equation (2). Columns 2− 4 and 6− 8 control for the actual (Panel A) and predicted (Panel B and C) number of recent
immigrants (between t − 1 and t). Predicted number of immigrants is based on the shift-share approach described in
section 5.3. An observation is a county in a period from 1900 to 1930. The endogenous variable is county-level surname
entropy in t. In columns 1 to 3, the dependent variable is the number of patents filed in the county in the five-year period
starting in t divided by county population size in 1900. In columns 4 to 6, the dependent variable is the number of
breakthrough patents filed in the county in the five-year period starting in t divided by county population size in 1900.
Standard errors are clustered at the state level. All independent variables are standardized to mean zero and unit variance.
The sources and construction of all variables are explained in Appendix A. ***, **, and * indicate significance at the 1%,
5%, and 10% levels.
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5.5 Surname-level analysis

Another potential concern with the interpretation of our findings is that surname-specific

traits, such as abilities, interests, or knowledge, drive innovation rather than the diversity

of these traits. For example, Clark (2014) and Barone and Mocetti (2021) find that rare

surnames are proxies for the vertical transmission of traits, and these traits might affect

innovation. We assess this concern by estimating specifications that include surname fixed

effects, which absorb any surname-specific traits. This requires us to change the unit of

observation from county-period to surname-county-period. The estimating equations are

given by (5) and (6), where (5) is the first stage and (6) is the second stage.

Surname entropyti = γ ¤�Surname entropyti +µs(i),t +µi,k +µk,t + vti,k (5)

Y ti,k = β Surname entropyti +αs(i),t +αi,k +αk,t + εti,k (6)

where i indexes counties, s states, t census years (including the midyears), and k surnames.

As before, Surname entropyti is county i’s surname entropy in t, and ¤�Surname entropyti
is county i’s predicted surname entropy in t. Y ti,k is now the number of (breakthrough)

patents filed by people with surname k residing in county i in the five-year period starting

in t (in terms of 1,000 residents with the same surname in the year 1900). For example,

18,351 individuals with the surname ‘Johnson’ resided in Cook County (IL) in 1900 and

filed about 69 patents and 1 breakthrough patent between 1900 and 1904. Therefore,

while the surname entropy remains defined at the county-period level, the innovation

outcomes vary at the surname-county-period level.16 Crucially, this shift allows us to

include county-surname fixed effects and surname-period fixed effects (denoted by αi,k and

αk,t, respectively), thus non-parametrically controlling for any traits specific to individuals

with a particular surname in a given county or time period (i.e., traits specific to all

‘Johnson’ in Cook County or in 1940). The remaining parameters and variables are as

in equations (5) and (6). As before, the coefficient of interest is β. Standard errors are

clustered in two ways, on states and surnames.

The results reported in Table 5 show that the estimates are large, highly significant

and comparable to those reported in Table 2 across all specifications, despite changing

the unit of observation. Crucially, the surname fixed effects ensure that the estimates are

16Consequently, the number of observations increases because they are now determined by the total
number of unique surnames in a given county. Consistent with the county-level specification, we normalize
the number of patents and breakthrough patents by the surname population in the year 1900. If a surname
does not exist in a given county in 1900, we drop it from the sample. See Appendix A for all the details on
how we construct the sample.
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Table 5: Robustness III: Surname fixed effects

Patents per 1,000 people
(mean = 1.17, sd = 31.37)

Breakthrough patents per 1,000 people
(mean = 0.16, sd = 11.02)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname entropy 1.421∗∗∗ 1.443∗∗∗ 1.539∗∗∗ 0.222∗∗∗ 0.224∗∗∗ 0.095∗∗

(0.250) (0.253) (0.297) (0.062) (0.062) (0.044)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) 0.904∗∗∗ 0.913∗∗∗ 0.919∗∗∗ 0.152∗∗∗ 0.153∗∗∗ 0.084∗∗

(0.198) (0.201) (0.190) (0.042) (0.042) (0.037)

Panel C: Instrumental-variable estimates

Surname entropy 1.719∗∗∗ 1.738∗∗∗ 1.815∗∗∗ 0.290∗∗∗ 0.291∗∗∗ 0.166∗∗

(0.333) (0.339) (0.335) (0.078) (0.079) (0.075)

Kleibergen-Paap F-statistic 172.726 173.776 129.807 172.726 173.776 129.807

County-Surname fixed effects X X X X X X
State-Period fixed effects X X X X X X
Surname-Period fixed effects X X X X
County-specific linear time trends X X
Observations 28,236,803 28,236,803 28,236,803 28,236,803 28,236,803 28,236,803

Notes: The table reports least squares, reduced-form, and instrumental-variable (IV) estimates for the specifications
described in equation (6). An observation is a surname in a given county in a period from 1900 to 1940. Observations
are weighted based on their population shares within counties. In columns 1 to 3, the dependent variable is number of
patents filed by individuals with surname n residing in county in i in the five-year period starting in t divded by surname
population size in 1900. In columns 4 to 6, the dependent variable is number of breakthrough patents filed by individuals
with surname n residing in county in i in the five-year period starting in t divded by surname population size in 1900.
Standard errors are clustered two-way clustered at the state and surname level. All independent variables are standardized
to mean zero and unit variance. The sources and construction of all variables are explained in Appendix A. ***, **, and *
indicate significance at the 1%, 5%, and 10% levels.

independent of any unobserved surname-specific characteristics.

Using a similar approach, we estimate specifications that include patent technology

class fixed effects, which absorb any patent class-specific factors. These specifications

address the concern that systematic variation in patenting practices across technologies

may bias our results. As reported in Table B8 in Appendix Section B.1, we find that all

results hold with this patent class fixed effects specification.

5.6 Education

Given that Americans experienced rising levels of formal schooling over our study period,

we considered how including education in our analysis impacts the results. While the

diversity of knowledge, customs, and traditions captured by surname entropy provides a

rich source of ideas, more schooling may facilitate the transformation of these ideas into

patentable innovations. Notably, both Alesina et al. (2016) and Burchardi et al. (2021)
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show that skill levels of immigrants influence rates of innovation.

To assess the impact of formal education, we estimate simple OLS specifications based

on the cross-section of U.S counties in the year 1940, the only census wave in our sample

that reports years of schooling. Appendix Table B5 presents the estimates. As a benchmark,

we first regress our two dependent variables on surname entropy (columns 1 and 4). Then,

in columns 2 and 5, we control for the average years of schooling in counties, and in

columns 3 and 6, we examine the interaction between surname entropy and years of

schooling.

Across all specifications, we find a significant association between surname entropy

and patenting. Schooling is also related to patenting, however, its inclusion hardly affects

the coefficients on surname entropy. Notably, the interaction between the two independent

variables is highly significant. These findings support the idea that a more diverse social

structure may fuel patenting, especially among more highly educated individuals. Indeed,

the magnitude of the relationship between schooling and innovation almost doubles with

an increase in surname entropy by one standard deviation.

5.7 Log-transformed Dependent Variables

Our findings are robust to using log-transformed innovation outcomes. Since right skew-

ness is present in per-capita patents and breakthrough patents, we also take the log of

these measures as our dependent variables. We add one to the (breakthrough) patents to

avoid dropping counties with no patents. The estimates using transformed outcomes are

reported in Appendix Table B6.

6 Mechanisms

Conceptually, our hypothesis posits that greater surname entropy leads to the production

of both more patents and breakthrough patents. This is because innovation often emerges

from the recombination of ideas, insights and techniques that arise from social interactions

among people with diverse skills, expertise, cultural backgrounds and perspectives. If

true, in addition to the causal link between surname entropy and innovation established

above, surname entropy should also be associated with:

1. More diverse social interactions at the county level: Using our instrumental vari-

able setup for the period 1900 to 1940, we show that greater surname entropy results

in (1) less residential segregation of surnames (i.e., geographically more diverse mix-

ing), (2) weaker family ties, and (3) greater occupational diversity. This establishes
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a relationship between our primary independent variable and three outcomes that

likely all contribute to more diverse social interaction.

2. More diverse social interactions at the patent level, greater patent complexity,
and more breakthrough patents: We demonstrate that (1) county-level surname

entropy increases surname entropy at the individual patent level (IV analysis), (2)

greater patent-level surname entropy is associated with more breakthrough patents

(OLS analysis), (3) greater county-level surname entropy leads to more technology

classes per patent (IV analysis), suggesting greater complexity, and (4) greater patent-

level surname entropy is associated with more technology classes per patent (OLS

analysis). The first result suggests that county-level heterogeneity actually does result

in more diverse interactions at the patent level. The latter three results support the

idea that greater surname heterogeneity leads to greater innovativeness.

3. Geographically localized effects on patenting, without much spillover to neigh-
boring counties. Using our IV setup, we demonstrate that greater surname entropy

in a county shows little spillover to neighboring counties, suggesting the localized

impacts of social interactions.

4. Both the informational and social components of social structure play important
roles. Here, using OLS, we regress our innovation measures on surname entropy

and, additionally, the number of distinct surnames in each county-period (logged),

proxying for the diversity of informational content in a county. This specification

aims to disentangle the informational from the social-behavioral component. We

find that both components play important roles in explaining innovation.

6.1 Diverse Social Interactions at County Level

In our main analysis, we offer evidence supporting a causal link from surname entropy

to a pair of patent-based measures of innovation. We argue that the social structure, as

captured by surname entropy, affects innovation by fostering social interactions among

diverse individuals within counties. To more clearly establish this, we use our instrumental

variable (IV) approach to demonstrate that surname entropy affects (1) residential segrega-

tion, (2) the strength of family ties, and (3) occupational diversity. We described the first

two of these outcome variables in Section 2.3.2, showing their correlations with surname

entropy in Figure 1. The third outcome, occupational entropy, uses the occupational codes

reported in the census at the county level to calculate occupational entropy in a manner

that directly parallels surname entropy. Our analyses suggest that altering the social
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Table 6: Mechanism I: Effects on proxy measures of social interactional diversity

Residential segregation
of surname groups

Strength of family ties
Occupational

entropy

County Surname-county County Surname-county County

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Least-squares estimates

Surname entropy -0.010∗∗∗ -0.007∗∗∗ -0.026 -0.213∗ 0.342∗∗∗ 0.338∗∗∗

(0.001) (0.001) (0.090) (0.109) (0.045) (0.087)
Surname share of county population 0.036∗∗∗ 0.036∗∗∗ 0.250∗∗∗ 0.254∗∗∗

(0.002) (0.002) (0.009) (0.010)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) -0.006∗∗∗ -0.004∗∗∗ -0.083∗ -0.215∗∗∗ 0.217∗∗∗ 0.225∗∗∗

(0.001) (0.001) (0.046) (0.057) (0.034) (0.054)
Surname share of county population (push-pull IV) 0.012∗∗∗ 0.005∗∗∗ 0.039∗∗∗ 0.034∗∗∗

(0.003) (0.002) (0.005) (0.006)

Panel C: Instrumental-variable estimates

Surname entropy -0.011∗∗∗ -0.007∗∗∗ -0.144 -0.377∗∗∗ 0.372∗∗∗ 0.391∗∗∗

(0.001) (0.002) (0.089) (0.112) (0.053) (0.086)
Surname share of county population 0.067∗∗∗ 0.037∗∗∗ 0.351∗∗∗ 0.361∗∗∗

(0.015) (0.011) (0.047) (0.039)

Kleibergen-Paap F-statistic 115.660 92.023 68.272 124.486 110.294 97.720 60.847 78.628 104.602 91.689

County fixed effects X X X X X X
State-Period fixed effects X X X X X X X X X X
County-Surname fixed effects X X X X
Surname-Period fixed effects X X X X
County-specific linear time trends X X X X X
Observations 13,812 13,812 10,578,595 10,578,595 22,056 22,056 10,450,814 10,450,814 22,070 22,070

Notes: The table reports OLS, reduced-form, and instrumental-variable (IV) estimates. Columns 1-2, 5-6 and 9-10 report estimates for the specifications described in
equation (2) with residential segregation of surname groups, the strength of family ties and occupational entropy as the outcome variables. An observation is a county in a
period from 1900 to 1940. The residential segregation of surname groups variable is constructed following Logan and Parman (2017). The strength of family ties variable
is constructed following Raz (2023). Standard errors are clustered at the state level. Columns 3-4 and 7-8 report estimates for the specifications described in equation (8).
Observation are surnames within counties in from 1900 to 1940 and are weighted by their population shares within counties. Residential segregation of surname groups
and strength of family ties are constructed at the surname-county level. Standard errors are two-way clustered on states and surnames and reported in parentheses. All
variables are standardized to mean zero and unit variance. The sources and construction of all variables are explained in Appendix A. ***, **, and * indicate significance at
the 1%, 5%, and 10% levels.

structure to increase surname entropy results in more diverse individuals with different

occupations living in closer proximity to each other. Let’s consider each of these results in

turn.

6.1.1 Greater Surname Entropy, Less Residential Segregation

Here, we further address the question of whether altering the social structure shapes

people’s social-behavioral motivations. Using our IV framework, we first estimate our

baseline instrumental variable (IV) specification presented in equation (2), but with

the dependent variable replaced by our surname residential segregation variable. The

results are reported in columns 1 and 2 of Table 6. We present OLS estimates in Panel A,

reduced-form estimates in Panel B, and IV estimates in Panel C. Across all three panels,

the coefficients on surname entropy indicate that greater surname entropy is associated

with less residential segregation than would be expected by chance alone. These findings

not only hold when comparing counties over time within states (including both county

and state-period fixed effects) but also remain robust to accounting for county-specific

linear time trends (column 2). A one-standard-deviation increase in surname entropy is

41



associated with an approximate 0.01 standard deviation decrease in residential segregation.

While this may be small, remember we are only looking at next-door neighbors.

The structure of the data enables us to complement the county-level analysis with

a specification that directly focuses on the impact of the relative size of surname (or

family) groups within a county on residential segregation. To achieve this, we compute

the population shares of surname groups within counties and their push-pull predicted

counterparts. We refine our surname segregation measure to now specifically capture the

degree of segregation among individuals in a county who share the same surname. We then

analyze this within-surname residential segregation by regressing it on the instrumented

shares of individual surnames within a county. Formally, we estimate the following

equations, where equation (7) represents the first stage and equation (8) constitutes the

second stage:

Surname population shareti,k = γ ¤�Surname population shareti,k +µs(i),t +µi,k + vti,k (7)

Residential segregationti,k = β Surname population shareti,k +αs(i),t +αi,k + εti,k (8)

where i indexes counties, k names, s states, and t census years, excluding the midyears

because we cannot compute residential segregation for those years (see Appendix A).

Surname population shareti,k is surname group k’s population share in county i in t; and¤�Surname population shareti,k surname group k’s push-pull predicted population share in

i and t. Residential segregationti,k is surname group k’s residential segregation in county

i in t. Equations (7) and (8) also include state-period fixed effects, µs(i),t and αs(i),t, and

surname-county fixed effects, µi,k and αi,k. These fixed effects allow us to focus on changes

in counties’ surname shares over time while controlling for persistent surname-county-

specific and time-varying state-specific factors.

In Table 6, columns 3 and 4 report the results. The OLS estimates in Panel A reveal

a positive and highly significant relationship between the surname share of the county

population and residential segregation. As the surname share increases, residential segre-

gation of individuals with that surname also rises, beyond what would be expected based

on the mere presence of more people with that surname under random assortment. In

essence, greater dominance relative to the overall county population results in a dispro-

portionate increase in residential segregation. Panels B and C, featuring reduced-form

and IV estimates, corroborate this association and point to a causal connection. The IV

coefficients indicate that a shift in a surname share by one standard deviation increases

residential segregation by approximately 0.04-0.07 standard deviations. These analyses
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suggest that as counties become more diverse, individuals actually become less inclined

to live next to those who share their surnames—possibly reflecting a change in people’s

in-group preferences.

6.1.2 Greater Surname Entropy, Weaker Family Ties

Next, we address the question of how shifting the social structure influences the strength

of family ties using the Census-based measure of family ties discussed above, mapped in

Appendix Figure B4 and correlated with surname entropy in Figure 1. Here, using the

same approach just described for residential segregation, we study the potential causal

influence of surname entropy on the strength of family ties. In Table 6, columns 5 and 6

deliver the results of the county-level analysis. Broadly, the coefficients reveal the expected

negative relationship between surname entropy and the strength of family ties, though

the effects are poorly estimated if we do not include county-specific linear time trends. In

our strictest IV specification, a one-standard-deviation increase in surname entropy leads

to a decrease in the strength of family ties of 0.38 of a standard deviation, suggesting that

altering the social structure results in weaker family ties.

As above, alongside our county-level analysis, the data structure allows us to include

specifications that directly focus on the impact of the relative size of surname (or family)

groups within a county on the strength of family ties. To accomplish this, we refine

Raz (2023)’s county-level family ties measure to now capture the strength of family ties

among individuals in a county who share the same surname. We then analyze this within-

surname strength of family ties by regressing it on the instrumented shares of individual

surnames within a county. The results strengthen the country-level findings, delivering

highly significant results across the board and coefficients of similar size in our strictest IV

specification.

In sum, these results offer causal evidence suggesting that increasing surname entropy

results in weaker family ties. Weaker family ties imply smaller households, more frequent

family dissolution (spousal fluidity), and more non-relatives living together, all of which

plausibly foster more heterogeneous social interactions.

6.1.3 Greater Surname Entropy, Greater Occupational Diversity

In Section 2.3.1, we established that surname entropy captures at least some important

aspects of the informational heterogeneity of a county’s population. Here, we provide

additional evidence underscoring the role of surname entropy in capturing informational

diversity. Specifically, our findings suggest that surname entropy influences the occupa-
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tional composition within a county. We hypothesize that the heightened informational

diversity in counties with high surname entropy will manifest in increased occupational

entropy. As a population diversifies its social structure, we anticipate a corresponding

increase in the diversity of occupations.

Table 6 reports the results of regressions examining the relationship between sur-

name and occupational entropy. Panels A, B, and C all present positive, significant, and

substantial coefficients. In our strictest IV specification, presented in column 10, the

analysis reveals that a one-standard-deviation increase in surname entropy causes a 0.39

standard deviation increase in occupational entropy. Of course, as we have shown in Sec-

tion 2.3.1, occupational diversity is only one aspect of information heterogeneity captured

by surnames.

6.2 Diverse Social Interactions at the Patent Level

To further establish the mechanisms underlying our main result—the relationship between

county-level surname entropy and patents per capita—we conduct four analyses of patent-

level outcomes. First, using our instrumental variable (IV) setup, we demonstrate that

greater surname entropy at the county level is associated with greater surname entropy

at the patent level. This establishes that higher surname entropy in a county generates

more diverse interactions among inventors (patentees). Second, using an OLS approach,

we show that greater patent-level surname entropy is associated with more breakthrough

patents. We have already demonstrated that higher surname entropy at the county level

leads to more breakthrough patents per capita. Third, returning to our IV approach,

we find that greater surname entropy at the county level predicts a higher number of

technology classes per patent, suggesting greater complexity (Akcigit et al., 2013). Fourth,

we document a correlation between patent-level surname entropy and the number of

technology classes per patent. These latter three results support the view that diverse

social interactions foster greater innovativeness. We now consider each set of analyses in

turn.

In Table 7, columns 1 and 2 report the estimates from the second stage of IV regressions

that use our instrument for county-level surname entropy and, as the dependent variable,

surname entropy at the individual patent level. Our strictest specification, which includes

fixed effects for each county, state-period, and each patent technology class-period, sug-

gests that a one-standard deviation increase in county-level entropy results in an increase

in surname entropy at the patent level of 0.06 standard deviations. The relatively small

size of this effect likely results from the fact that most patents over this period have only a
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Table 7: Mechanism II: Patent-level results

Surname entropy
of patent

Breakthrough patent
indicator (×100)

Technology classes per patent

IV OLS IV OLS

(1) (2) (3) (4) (5) (6) (7) (8)

Surname entropy 0.104∗∗ 0.063∗ 0.204∗∗ 0.124∗

(0.047) (0.036) (0.080) (0.070)
Surname entropy of patents 0.908∗∗∗ 0.165∗∗∗ 0.042∗∗∗ 0.021∗∗∗

(0.133) (0.048) (0.004) (0.003)

Kleibergen-Paap F-statistic 11.453 11.717 11.453 11.717

County fixed effects X X X X
State-Period fixed effects X X X X
Patent technology class-Period fixed effects X X X X
County-Period fixed effects X X X X
Observations 1,451,459 1,451,459 1,451,459 1,451,459 1,451,459 1,451,459 1,451,459 1,451,459

Notes: An observation corresponds to a patent from 1900 to 1944. Columns 1-2 and 5-6 report IV estimates for a specification similar to
equation (6), but with two patent-level dependent variables: surname entropy of the patent and the number of patent technology classes.
Columns 3-4 and 7-8 report OLS estimates with surname entropy of patents as the independent variable and two dependent variables: the
breakthrough patent indicator multiplied by 100, and the number of technology classes per patent. Columns 2, 4, 6, and 8 additionally include
patent technology class fixed effects interacted with period fixed effects. Observations are weighted by the inverse of the number of authors
multiplied by the weight used to assign patents to counties within their 1900 borders. Standard errors are clustered two-ways by states and
patent technology class and are reported in parentheses. All entropy variables are standardized to have a mean of zero and a unit variance.
The means of the breakthrough patent indicator and the number of tech classes per patent are 17.12 and 2.49, respectively. The sources and
construction of all variables are detailed in Appendix A. * p < 0.1, ** p < 0.05, *** p < 0.01.

single inventor.

Next, columns 3 and 4 regress our measure of breakthrough patents on patent-level

surname entropy using OLS. The coefficients indicate a positive relationship between

patent-level surname entropy and the likelihood of a patent being classified as a break-

through. In column 4, which includes controls for patent technology class fixed effects

interacted with time fixed effects, a one-standard-deviation increase in patent entropy is

associated with a 0.17 standard deviation increase in the likelihood of a patent being a

breakthrough.

To measure the complexity of each patent, we follow other authors (Strumsky et al.,

2011; Akcigit et al., 2013; Fiszbein, 2022) by counting the number of technology classes

assigned to each patent. There are 408 patent classes in our sample from 1900 to 1944.

Examples are “Geometrical Instruments”, “Stoves and Furnace”, and “Chemistry: Elec-

trical and Wave Energy.” Then, using our IV setup in columns 5 and 6, we demonstrate

that greater surname entropy at the county level leads to a higher number of technology

classes per patent. The IV estimates suggest that a one-standard-deviation increase in

surname entropy results in a 0.12-0.20 increase in the number of technologies per patent,

signifying a 5-8% enhancement relative to the sample mean.

Finally, in columns 7 and 8, we conclude the patent-level analysis by regressing the

number of technology classes per patent on patent-level surname entropy. The coefficients

reveal a positive relationship. In column 8, a one-standard-deviation increase in patent
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entropy is associated with approximately a 0.02 standard deviation increase in the number

of technologies per patent.

Taken together, the results in Table 7 connect our measure of social structure directly to

more heterogeneous social interactions at the level of the patent and connect this to greater

patent impact and complexity, all of which support the role diverse social interactions in

driving recombinant innovation.

6.3 Localized social interactions

Our approach proposes that people acquire inspiration, knowledge and ideas from others

they frequently observe and interact with in their daily lives. This suggests that physical

proximity and local diversity will play a big role (Jaffe et al., 1993; Carlino and Kerr, 2015).

To explore this, we study the impact of the county-level surname entropy in neighboring

counties. If local social interactions are the most important, the impact of the social

interactional diversity in neighboring counties should have small or negligible impacts.

Thus, we compute surname entropy among individuals residing in surrounding regions

at successively further distances from our focal county. Specifically, for each county i at

time t, we pool the individuals in surrounding counties within 100 miles, compute their

surname entropy and construct a separate instrument for these individuals, excluding i

itself. We repeat this exercise for individuals between 100 and 200 miles and between 200

and 300 miles.17

Table 8 presents the results. For patents per capita, as shown in columns 1 to 4, the

coefficients for surname entropy outside the county are mostly small and positive, but all

are poorly estimated. In contrast, the coefficients for surname entropy within the focal

county remain large and do not decrease in magnitude when considering the surname

entropy of surrounding counties. For breakthrough patents, as detailed in columns 5 to

8, the small and non-significant coefficients display a mix of both positive and negative

values, indicating that the entropy of surrounding counties has no detectable impact on

breakthroughs. Overall, consistent with our theoretical framework, these findings suggest

that the causal link between surname entropy and innovation is geographically localized.

The results also offer empirical support for our choice of the county as our primary unit of

analysis.

17We use the NBER’s County Distance Database to compute these areas for each county.
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Table 8: Mechanism III: Limited spatial spillovers

Patents
per 1,000 people

(mean = 0.99, sd = 1.60)

Breakthrough patents
per 1,000 people

(mean = 0.12, sd = 0.26)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname entropy 1.151∗∗∗ 1.153∗∗∗ 1.155∗∗∗ 1.239∗∗∗ 0.125∗∗∗ 0.125∗∗∗ 0.126∗∗∗ 0.101∗∗∗

(0.236) (0.237) (0.240) (0.185) (0.016) (0.016) (0.016) (0.016)
Surname entropy (< 100 miles) 0.183 0.139 0.147 0.234 -0.002 -0.016 -0.015 0.014

(0.165) (0.167) (0.163) (0.176) (0.029) (0.028) (0.029) (0.044)
Surname entropy (100 < 200 miles) 0.234 0.228 -0.291 0.073 0.073 0.014

(0.324) (0.322) (0.175) (0.044) (0.045) (0.086)
Surname entropy (200 < 300 miles) 0.113 -0.151 0.013 0.000

(0.191) (0.144) (0.034) (0.039)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) 0.787∗∗∗ 0.786∗∗∗ 0.786∗∗∗ 0.820∗∗∗ 0.091∗∗∗ 0.091∗∗∗ 0.091∗∗∗ 0.069∗∗∗

(0.230) (0.231) (0.231) (0.201) (0.018) (0.018) (0.018) (0.014)
Surname entropy (push-pull IV, < 100 miles) 0.169 0.170 0.170 0.189∗ 0.009 0.009 0.007 -0.005

(0.110) (0.112) (0.108) (0.102) (0.026) (0.027) (0.026) (0.023)
Surname entropy (push-pull IV, 100 < 200 miles) 0.031 0.029 0.015 0.004 -0.002 0.016

(0.140) (0.131) (0.101) (0.020) (0.020) (0.024)
Surname entropy (push-pull IV, 200 < 300 miles) -0.011 0.009 -0.027 -0.022

(0.111) (0.085) (0.024) (0.022)

Panel C: Instrumental-variable estimates

Surname entropy 1.193∗∗∗ 1.191∗∗∗ 1.182∗∗∗ 1.272∗∗∗ 0.141∗∗∗ 0.141∗∗∗ 0.135∗∗∗ 0.108∗∗∗

(0.278) (0.271) (0.289) (0.207) (0.021) (0.021) (0.023) (0.018)
Surname entropy (< 100 miles) 0.160 0.204 0.159 0.264 -0.031 -0.031 -0.064 -0.068

(0.609) (0.511) (0.437) (0.378) (0.125) (0.115) (0.098) (0.082)
Surname entropy (100 < 200 miles) -0.180 -0.001 -0.315 -0.001 0.130 0.087

(0.957) (1.528) (0.486) (0.146) (0.250) (0.112)
Surname entropy (200 < 300 miles) -0.462 0.033 -0.335 -0.121

(1.775) (0.401) (0.365) (0.112)

F-statistic: Surname entropy 56.259 58.415 45.582 39.172 56.259 58.415 45.582 39.172
F-statistic: Surname entropy (< 100 miles) 21.231 16.160 13.308 21.314 21.231 16.160 13.308 21.314
F-statistic: Surname entropy (100 < 200 miles) 7.293 9.698 19.331 7.293 9.698 19.331
F-statistic: Surname entropy (200 < 300 miles) 3.217 3.604 3.217 3.604

County fixed effects X X X X X X X X
State-Period fixed effects X X X X X X X X
County-specific linear time trends X X
Observations 21,430 21,430 21,430 21,430 21,430 21,430 21,430 21,430

Notes: The table reports OLS, reduced-form, and instrumental-variable (IV) estimates of regressions of innovation outcomes on
surname entropy. The unit of observation is a county-period from 1900 to 1940 (including the midyears). The table sequentially
adds surname entropy in areas within 100 miles (excluding i), 100 miles to 200 miles, and 200 miles to 300 miles of county i.
Standard errors are clustered on states and reported in parentheses. All independent variables are standardized to mean zero and
unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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6.4 The Components of Social Structure

We have argued that our main explanatory variable, surname entropy, combines an in-

formational component—the diversity of information embedded in surnames within a

county—with a social-behavioral component—people’s social interactions with diverse

individuals. To assess the relative importance of these two components, we run a battery

of OLS regressions controlling for the number of distinct surnames (logged) that go into

our entropy calculations. The idea is that number of surnames primarily captures the

informational component of surname entropy, leaving our main explanatory variable to

capture mostly the social-behavioral component. Appendix Table B7 reports the OLS

estimates of three specification for each of our innovation measures. The results support

the view that both the informational and social-behavioral components contribute to the

observed effects on innovation, though they suggest the social-behavioral component is

larger than the informational component.

7 Conclusion

Focusing on the historical period when the United States rose to dominate global inno-

vation (1850-1940), we consider the impact of America’s changing social structure on

innovation across space and time. The core idea is that many, if not most, innovations arise

from the recombinations of existing ideas, approaches and techniques that come together

when diverse minds meet, share ideas and sometimes collaborate. The groupings of people

within a population—a society’s social structure—influences the frequency with which

heterogeneous individuals meet, interact and share ideas, insights, challenges, perspec-

tives and techniques. To measure social structure, we use an entropic diversity measure

that exploits a widely available data source, surnames, obtained from the complete U.S.

Census. To measure innovation, we use both patents per capita at the county level and a

text-based measure of breakthrough patents per capita. In our main analysis, we employ

an instrumental variable approach that uses immigrant flows (push-pull interactions)

to extract plausibly exogenous shifts in surname entropy across space and time. Using

this instrument across a battery of specifications, including those that account for county

fixed effect, state-period fixed effects and county-specific linear time trends, we find that a

standard deviation increase in surname entropy leads to 132-144% more patents per capita

and 90-129% more breakthrough patent per capita relative to their respective means. This

analysis suggests that greater surname entropy causes faster innovation. These results

hold up to a battery of robustness and sensitivity checks, including a (1) placebo test for

48



reverse causality, (2) explorations of the impact of population size and immigration, and

(3) surname-level analyses that permit us to compare the impact of differing amounts of

surname entropy on the same surnames across counties.

To illuminate the causal pathway running from our measure of social structure to

innovation, we close our paper with four demonstrations. First, using our IV setup, we

offer evidence indicating that greater surname entropy at the county level leads to less

residential segregation of surnames, weaker family ties and greater occupation diversity.

These analyses confirm that shifts in the local social structures captured by surname

entropy create conditions conducive to more social interactions among heterogeneous

individuals. Second, using our IV analysis, we confirm that greater surname entropy at

the county-level results in both more diverse co-inventors at the patent-level and greater

patent complexity. Using OLS analyses, we also establish that more diverse co-inventors are

associated with patents that are both more complex and more likely to be breakthroughs.

Third, consistent with the notion that innovation is driven by people meeting face-to-face

and interacting day-to-day, we find that the causal link between surname entropy and

innovation is geographically localized, with limited spillovers from neighboring counties.

Fourth, we find evidence suggesting that both the informational and the social-behavioral

component are associated with the impact of social structure on innovation.

Overall, our results highlight the central importance of social structure in driving

innovation and suggest that policies aimed at promoting routine interaction among diverse

individuals may foster more rapid innovation.
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For Online Publication
Appendix to “How Social Structure Drives Innovation:

Surname Diversity and Patents in U.S. History”

Max Posch, Jonathan Schulz, and Joseph Henrich

A Data Sources and Construction

Surname entropy

To construct county-level surname entropy up until the year 1940, we use the 1850, 1860,

1870, 1880, 1900, 1910, 1920, 1930, and 1940 waves of the full-count Integrated Public

Use Microdata Series (IPUMS) compiled by Ruggles et al. (2021) and available on the

NBER servers. For each wave, we obtain county identifiers and the variable namelast of

all individuals. We perform the following steps to clean the surname variable. First, we

transform non-ASCII characters into ASCII characters—e.g., we convert characters with

accents or umlauts to the closest letter in English. Second, we convert all characters to

upper case. Third, we remove all non-alphabetic characters, including all spaces (e.g.,

‘MAC ARTHUR’ becomes ‘MACARTHUR’). Fourth, we drop entries with one or fewer

letters. Last, we apply the Philips (1990) phonetic algorithm metaphone to deal with

misspellings.

We harmonize all historical Census data to the 1900 boundaries of U.S. counties using

the Ferrara et al. (2021) crosswalks. Specifically, we use the M4 weights, which account

for urban and rural areas and topographic suitability. We use 1900 as the reference year

because this is the first year of our panel data set in our main analysis.

Counties harmonized with very few people in a given census year may exhibit very

low surname entropy (notably counties in Texas in 1900), potentially due to small sample

bias. To address this, we winsorize all surname entropy variables at the lower tail at the

1% level.

Following Burchardi et al. (2021), we also obtain individuals’ age and year of immigra-

tion, the variables age and yrimmig, to estimate surname entropy for the midyears 1895,

1905, 1915, and 1925 by removing all individuals who were born or immigrated after the

midyear. Ideally, we would also remove all individuals who moved to the county after

the midyear, but this information is unavailable. We also compute alternative measures

of surname entropy by interacting surnames with a male indicator (sex) or the main
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categories of race (race) or birthplace (bpl). We recode U.S. states and territories (bpl

codes <10000) to a single code.

Construction of the instrumental variable

We build on the Burchardi et al. (2019) approach to construct an instrumental variable

for surname entropy. We identify the number of individuals in a given U.S. county i

at the time of each census who immigrated to the U.S. since the prior census and have

the surname k. For the 1900 to 1930 census waves, we separate this immigration into

five-year periods based on the year each migrant arrived in the U.S. We obtain immigration

flows for the following bins: 1881-1895, 1896-1900, 1901-1905, 1906-1910, 1911-1915,

1916-1920, 1921-1925, and 1926-1930. From the 1880 census wave, we count all first- and

second-generation immigrants, regardless of the date of arrival in the U.S.

When we predict the stock of people N t
i,k in equation (3), we obtain negative values

for some observations. The logarithmic transformation of a negative value is undefined.

To obtain Shannon entropy for counties containing N t
i,k with negative values, we truncate

those negative values at the smallest positive value we observe in the data in a given year.

The resulting variable is highly correlated with the original variable (ρ = 0.965).

Construction of other demographic measures

We collect county-level data on population size and occupational diversity, as well as

immigrant shares for each census year from 1850 to 1940. All data are taken from the

full-count IPUMS available on the NBER servers. To compute occupational diversity,

we draw on the variable occ1950, dropping all observations with value greater or equal

than 979. We transform the data from each period to 1900 U.S. counties using the M4

weights from the Ferrara et al. (2021) cross-walks. We use the variables age and yrimmig

to estimate these variables for the midyears 1895, 1905, 1915, and 1925 by removing all

individuals who were born or immigrated after the midyear.

Following the methodology in Raz (2023), we construct the strength of family ties

measure from the full-count census data for all census waves from 1860 to 1940. The

strength of family ties is determined by the first principal component of four underlying

variables: (i) the divorce-to-marriage ratio, (ii) the share of elderly people living without a

relative, (iii) the share of people living with at least one non-relative, and (iv) the mean

size of families. The variables age and yrimmig are also used to estimate the strength of

family ties for the midyears by removing all individuals who arrived after the midyear.

We also construct the strength of family ties within surname groups across counties.
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This necessitates having a positive number of married and old individuals within the

surname groups of each county. However, many surname groups within counties do not

meet this requirement, which prevents the construction of the principal component for

these groups and subsequently reduces the number of observations.

Additionally, we calculate the strength of family ties within surname groups across

counties, requiring a positive number of married and elderly individuals within the

surname groups of each county. However, some surname groups do not meet this criterion,

preventing the construction of the principal component for these groups and reducing the

number of observations.

We closely follow the methodology of Logan and Parman (2017) to construct a measure

of residential segregation, focusing on surname-based rather than racial segregation. We

identify household heads using the variable relate and sort the dataset using serial. An

indicator is set to one if a neighbor (above or below on the same page, as indicated by

pageno) has a different surname. If the line above (or below) is missing, we only consider

the available line. We then aggregate these indicators to the county-surname level to

determine the number of households with at least one different-surname neighbor for each

surname group in each county. We also tally households for which we observe both, one, or

no neighbors at the county-surname level, as well as the county population with different

surname neighbors. Data transformation to 1900 U.S. counties uses the M4 weights from

the Ferrara et al. (2021) cross-walks. Following Logan and Parman (2017), we compute

segregation estimates under random assignment and complete segregation, calculating

the final county-surname level segregation measure. County-level segregation estimates

are then averaged across all surname groups, weighted by their population size.

The segregation measure is constructed for all census years from 1880 to 1940, ex-

cluding midyears due to the impact of excluding post-midyear arrivals on household

order.

Counties with very few people in a given census year may show anomalously high

segregation values, likely due to small sample bias. To address this, we winsorize all

segregation variables at the upper tail at the 1% level.

Finally, we compute the average years of schooling for each county in 1940 using the

variable higrade and harmonize the data to 1900 county boundaries.

Construction of the innovation measures

We use the Comprehensive Universe of U.S. Patents (CUSP) compiled by Berkes (2018). The

data set contains U.S. patents from 1836-2015 and is primarily constructed from Google

Patents with supplementary information from other sources. For each patent, the data set
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provides inventor names and location of residence (geocoded to 2000 county boundaries),

filing and issuing years of patents, and the U.S. Patent and Trademark Office technology

classifications. We harmonize the data to 1900 U.S. counties.

We also draw on the breakthrough patent indicator created by Kelly et al. (2021). The

authors use the text in patent documents to estimate patent quality. They assign a higher

quality to patents that are novel in terms of cosine similarities. Patents are considered

novel if they have low similarity with the existing stock of patents and are impactful in

that they have high similarity with subsequent patents. We use this measure of patent

quality rather than the number of citations an individual patent has received because the

U.S. Patent and Trademark Office did not consistently begin to record patent citations

until after 1947.

We construct innovation outcome variables at the county-period and surname-county-

period levels. The county-period-level outcomes measure the number of (breakthrough)

patents filed by inventors residing in county i during period t, normalized by the county

population in 1900. For patents filed by multiple inventors possibly from different

counties, we divide the patent count by the number of inventors. We calculate county

population sizes in 1900 using the full-count IPUMS and the Ferrara et al. (2021) border

harmonization procedure.

In our least-squares analysis, depicted in Appendix Figure B7, we use patent issuing

years rather than filing years and normalize patents by the population size in 1850 because

filing years are inconsistently recorded in the CUSP dataset before 1870.

For county-period observations, we winsorize innovation outcome variables at the 99%

level from the upper tail to lessen the impact of outlier counties with an exceptionally

large number of patents. We do not winsorize the surname-county-period-level outcomes,

as the number of breakthrough patents filed by inventors with a specific surname in a

given county during a specified period is typically small. We also present results using

non-winsorized, log-transformed patent counts (see Appendix Table B6).

The surname-county-period-level outcomes count the number of (breakthrough) patents

filed by inventors with surname k residing in county i during period t, normalized by the

1900 surname population within county i. Constructing these variables requires inventor

surnames. The CUSP data includes inventor names as a string variable containing the

surname, first name, and sometimes middle names or initials. Identifying surnames from

this variable can be challenging due to inconsistent name order. We use punctuation marks

such as semicolons, colons, or commas to identify surnames. When the string variable

starts with initials followed by a token of two or more characters, or when it ends with

a whitespace followed by “DE”, “DU”, “DE LA”, “DI”, “DEL”, “DELLA”, “VAN”, “VON”,
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“LE”, “LA”, or “ST”, we identify the surnames accordingly. For the remaining entries,

we tokenize the string based on whitespace, keeping the first and last tokens, typically

representing the first name and surname. To determine the surname, we compare the

frequencies of all name combinations from pooled census years 1900, 1910, 1920, 1930,

and 1940, identifying the surname based on the most common constellation. For example,

for the tokens “JOHN” and “PETER”, we identify the surname based on whether there

were more individuals named “JOHN PETER” or “PETER JOHN”. Finally, we clean the

surname variable following the described steps.
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B Additional Tables and Figures

Table B1: Correlations between baseline surname entropy and alternative surname
entropy measures

HHI
surname

Surname,
uncorrected

Surname,
men

Surname,
household heads

Surname,
whites

Surname-
race

Surname-
country of birth

0.83 0.99 1.00 0.99 0.99 0.98 0.98

Notes: This table reports the correlations between county-level surname entropy and (i) a surname-
based Herfindahl-Hirschman index, (ii) entropy of surnames that are not phonetically corrected,
surname entropy among (iii) men, (iv) household heads, (v) white individuals, and (vi) alternative
entropy measures that interact surnames with race or country of birth. An observation is a county
from 1850 to 1940 (excluding the midyears). The sources and construction of all variables are
explained in Appendix Section A.
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Table B2: Zero-stage panel estimates

No. of people in county i with surname n in year:
1900 1905 1910 1915 1920 1925 1930 1940
(1) (2) (3) (4) (5) (6) (7) (8)

I1880
n,−r(i) ×

I1880
−n,i
I1880
−n

3.177∗∗∗ 3.161∗∗∗ 3.674∗∗∗ 3.696∗∗∗ 4.088∗∗∗ 4.200∗∗∗ 4.610∗∗∗ 4.717∗∗∗

(0.095) (0.104) (0.109) (0.089) (0.097) (0.117) (0.092) (0.089)

I1895
n,−r(i) ×

I1895
−n,i
I1895
−n

0.927∗∗∗ 1.323∗∗∗ 1.719∗∗∗ 2.146∗∗∗ 2.425∗∗∗ 3.394∗∗∗ 3.753∗∗∗ 3.873∗∗∗

(0.242) (0.328) (0.281) (0.162) (0.172) (0.207) (0.253) (0.316)

I1900
n,−r(i) ×

I1900
−n,i
I1900
−n

-5.152∗ -3.206 -5.028∗ -4.033 -9.957∗∗∗ -9.810∗∗∗ -7.854∗∗∗

(3.051) (3.495) (2.594) (2.783) (2.983) (3.225) (2.899)

I1905
n,−r(i) ×

I1905
−n,i
I1905
−n

14.533∗∗∗ 18.658∗∗∗ 21.489∗∗∗ 26.922∗∗∗ 30.084∗∗∗ 32.477∗∗∗

(0.993) (1.150) (1.345) (1.392) (1.240) (1.052)

I1910
n,−r(i) ×

I1910
−n,i
I1910
−n

17.646∗∗∗ 20.004∗∗∗ 27.313∗∗∗ 29.980∗∗∗ 31.991∗∗∗

(2.864) (3.145) (3.264) (3.197) (2.802)

I1915
n,−r(i) ×

I1915
−n,i
I1915
−n

8.868∗∗∗ 15.501∗∗∗ 17.807∗∗∗ 20.289∗∗∗

(1.391) (1.981) (1.460) (1.599)

I1920
n,−r(i) ×

I1920
−n,i
I1920
−n

0.977 2.001∗ 6.371∗∗∗

(2.009) (1.090) (1.460)

I1925
n,−r(i) ×

I1925
−n,i
I1925
−n

26.904∗∗∗ 32.465∗∗∗

(1.237) (1.500)

I1930
n,−r(i) ×

I1930
−n,i
I1930
−n

-34.132∗∗∗

(3.240)

Observations 5,346,601 6,604,833 7,012,154 7,284,327 7,364,850 8,067,190 8,143,606 8,980,212
R2 0.719 0.695 0.706 0.696 0.700 0.660 0.702 0.692

County fixed effects X X X X X X X X
Surname-Region fixed effects X X X X X X X X
Iτ−n,i/I

τ
−n controls X X X X X X X X

Notes: This table reports OLS estimates for the specification described in equation (3), corresponding to step 1 of the instrument
construction. An observation is a surname-county in a period from 1900 to 1940. Standard errors clustered at the surname level.
***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Table B3: Robustness: Controlling for population size

Patents
per 1,000 people

(mean = 1.05, sd = 1.73)

Breakthrough patents
per 1,000 people

(mean = 0.13, sd = 0.28)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname entropy 1.318∗∗∗ 1.261∗∗∗ 1.439∗∗∗ 0.147∗∗∗ 0.133∗∗∗ 0.115∗∗∗

(0.174) (0.237) (0.171) (0.018) (0.017) (0.020)
Population 0.328∗∗∗ 0.307∗∗∗ 0.396∗∗ 0.061∗∗∗ 0.052∗∗∗ 0.033

(0.085) (0.081) (0.166) (0.015) (0.013) (0.031)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) 0.909∗∗∗ 0.883∗∗∗ 0.979∗∗∗ 0.103∗∗∗ 0.097∗∗∗ 0.076∗∗∗

(0.187) (0.228) (0.203) (0.015) (0.018) (0.019)
Population (push-pull IV) 0.226∗∗ 0.179∗ 0.086 0.046∗∗ 0.032∗∗ 0.008

(0.106) (0.099) (0.181) (0.019) (0.015) (0.057)

Panel C: Instrumental-variable estimates

Surname entropy 1.358∗∗∗ 1.326∗∗∗ 1.466∗∗∗ 0.154∗∗∗ 0.146∗∗∗ 0.114∗∗∗

(0.185) (0.243) (0.196) (0.019) (0.020) (0.026)
Population (push-pull IV) 0.215∗∗ 0.194∗∗ 0.215 0.045∗∗ 0.034∗∗ 0.018

(0.094) (0.089) (0.169) (0.018) (0.014) (0.057)

Kleibergen-Paap F-statistic 110.932 100.800 87.534 110.932 100.800 87.534

Panel D: First-stage estimates Surname entropy

Surname entropy (push-pull IV) 0.669∗∗∗ 0.666∗∗∗ 0.668∗∗∗ 0.669∗∗∗ 0.666∗∗∗ 0.668∗∗∗

(0.064) (0.066) (0.071) (0.064) (0.066) (0.071)
Population (push-pull IV) 0.008 -0.012 -0.088 0.008 -0.012 -0.088

(0.017) (0.017) (0.069) (0.017) (0.017) (0.069)

Within R2 0.706 0.688 0.684 0.706 0.688 0.684

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 22,073 22,073 22,073 22,073 22,073 22,073

Notes: The table reports least squares, reduced-form, and instrumental-variable (IV) estimates for the
specifications described in equation (2) and first-stage estimates for equation (4) while additionally
controlling for number of distinct surnames in a county. An observation is a county in a period from
1900 to 1940. The endogenous variable is county-level surname entropy in t. In columns 1 to 3,
the dependent variable is number of patents filed in the county in the five-year period starting in
t divided by county population size in 1900. In columns 4 to 6, the dependent variable is number
of breakthrough patents filed in the county in the five-year period starting in t divided by county
population size in 1900. Standard errors are clustered at the state level. All independent variables
are standardized to mean zero and unit variance. The sources and construction of all variables are
explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Table B4: Robustness: Regional heterogeneity in the effect of surname entropy on
innovation

Patents
per 1,000 people

Breakthrough patents
per 1,000 people

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname entropy × Region = Midwest 1.820∗∗∗ 1.596∗∗∗ 1.749∗∗∗ 0.254∗∗∗ 0.219∗∗∗ 0.151∗∗∗

(0.314) (0.273) (0.291) (0.073) (0.067) (0.056)
Surname entropy × Region = Northeast 2.947∗∗∗ 2.834∗ 0.430 0.862∗∗∗ 0.732 -0.063

(0.867) (1.538) (0.503) (0.297) (0.509) (0.318)
Surname entropy × Region = South 3.349∗∗∗ 3.469∗∗ 1.513∗∗∗ 0.693∗∗ 0.773∗∗ 0.023

(1.103) (1.427) (0.484) (0.260) (0.329) (0.021)
Surname entropy × Region = West 2.592∗∗∗ 2.436∗∗∗ 3.368∗∗∗ 0.399∗∗∗ 0.313∗∗∗ 0.305∗∗

(0.589) (0.716) (1.144) (0.111) (0.104) (0.121)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) × Region = Midwest 1.217∗∗∗ 1.233∗∗∗ 1.246∗∗∗ 0.157∗∗∗ 0.171∗∗∗ 0.094∗

(0.220) (0.206) (0.289) (0.043) (0.049) (0.050)
Surname entropy (push-pull IV) × Region = Northeast 2.007∗∗∗ 1.782∗∗ 0.456∗∗∗ 0.597∗∗ 0.545∗ 0.143∗∗

(0.747) (0.728) (0.124) (0.246) (0.277) (0.055)
Surname entropy (push-pull IV) × Region = South 1.870∗∗ 1.900∗ 1.013∗ 0.411∗ 0.459 0.122∗

(0.899) (1.099) (0.551) (0.226) (0.278) (0.069)
Surname entropy (push-pull IV) × Region = West 1.481∗∗∗ 1.390∗∗∗ 2.098∗∗∗ 0.237∗∗∗ 0.175∗∗∗ 0.208∗∗∗

(0.277) (0.324) (0.512) (0.059) (0.040) (0.054)

Panel C: Instrumental-variable estimates

Surname entropy × Region = Midwest 1.792∗∗∗ 1.750∗∗∗ 1.748∗∗∗ 0.238∗∗∗ 0.243∗∗∗ 0.132∗

(0.305) (0.303) (0.367) (0.060) (0.074) (0.070)
Surname entropy × Region = Northeast 3.129∗∗∗ 3.789∗∗ 1.087∗∗∗ 0.919∗∗∗ 1.158∗ 0.341∗

(0.958) (1.684) (0.307) (0.337) (0.652) (0.172)
Surname entropy × Region = South 3.221∗∗∗ 3.304∗∗ 1.847∗∗∗ 0.707∗∗ 0.798∗∗ 0.222∗∗

(1.066) (1.428) (0.671) (0.282) (0.366) (0.086)
Surname entropy × Region = West 2.667∗∗∗ 2.667∗∗∗ 3.838∗∗∗ 0.433∗∗∗ 0.336∗∗∗ 0.380∗∗

(0.574) (0.785) (1.233) (0.124) (0.107) (0.148)

F-statistic: 1st coefficient 156.129 71.996 69.147 156.129 71.996 69.147
F-statistic: 2nd coefficient 29.185 4.253 3.297 29.185 4.253 3.297
F-statistic: 3rd coefficient 41.699 9.336 6.508 41.699 9.336 6.508
F-statistic: 4th coefficient 40.978 6.952 7.205 40.978 6.952 7.205

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 22,073 22,073 22,073 22,073 22,073 22,073

Notes: The table reports regional heterogeneity in the least-squares, reduced-form, and instrumental-variable (IV)
estimates for the specifications described in equation (2). An observation is a county in a period from 1900 to 1940.
Standard errors are clustered at the state level. All independent variables are standardized to mean zero and unit
variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Table B5: Robustness: Education

Patents
per 1,000 people

(mean = 0.75, sd = 1.28)

Breakthrough patents
per 1,000 people

(mean = 0.15, sd = 0.27)

(1) (2) (3) (4) (5) (6)

Surname entropy 0.510∗∗∗ 0.453∗∗∗ 0.392∗∗∗ 0.099∗∗∗ 0.087∗∗∗ 0.075∗∗∗

(0.076) (0.072) (0.054) (0.016) (0.015) (0.011)
Average years of schooling 0.194∗∗∗ 0.309∗∗∗ 0.039∗∗∗ 0.062∗∗∗

(0.045) (0.079) (0.008) (0.015)
Surname entropy × Average years of schooling 0.308∗∗∗ 0.060∗∗∗

(0.066) (0.013)

R2 0.400 0.408 0.447 0.351 0.359 0.392

State fixed effects X X X X X X
Observations 2,820 2,820 2,820 2,820 2,820 2,820

Notes: The table reports OLS estimates of regressions of number of patents and breakthrough patents
filed between 1940 and 1944 per 1940 population on surname entropy and individuals’ average years of
schooling in 1940. The unit of observation is a county in 1940 harmonized to 1900 borders. Standard errors
are clustered on states and reported in parentheses. All independent variables are standardized to mean
zero and unit variance. The sources and construction of all variables are explained in Appendix A. ***, **,
and * indicate significance at the 1%, 5%, and 10% levels.
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Table B6: Robustness: Log-transformed innovation outcomes (I/II)

Log Patents
per 1,000 people

Log Breakthrough patents
per 1,000 people

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname entropy 0.467∗∗∗ 0.445∗∗∗ 0.430∗∗∗ 0.141∗∗∗ 0.130∗∗∗ 0.083∗∗∗

(0.055) (0.079) (0.056) (0.018) (0.024) (0.013)

Panel B: Reduced-form estimates

Surname entropy (push-pull IV) 0.327∗∗∗ 0.312∗∗∗ 0.290∗∗∗ 0.100∗∗∗ 0.095∗∗∗ 0.060∗∗∗

(0.060) (0.075) (0.063) (0.019) (0.023) (0.011)

Panel C: Instrumental-variable estimates

Surname entropy 0.487∗∗∗ 0.470∗∗∗ 0.443∗∗∗ 0.150∗∗∗ 0.143∗∗∗ 0.092∗∗∗

(0.052) (0.076) (0.059) (0.020) (0.026) (0.013)

Kleibergen-Paap F-statistic 119.613 104.522 91.652 119.613 104.522 91.652

Panel D: First-stage estimates Surname entropy

Surname entropy (push-pull IV) 0.671∗∗∗ 0.663∗∗∗ 0.654∗∗∗ 0.671∗∗∗ 0.663∗∗∗ 0.654∗∗∗

(0.061) (0.065) (0.068) (0.061) (0.065) (0.068)

Within R2 0.706 0.688 0.682 0.706 0.688 0.682

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 22,073 22,073 22,073 22,073 22,073 22,073

Notes: The table reports least squares, reduced-form, and instrumental-variable (IV) estimates for the
specifications described in equation (2) and first-stage estimates for equation (4). An observation is
a county in a period from 1900 to 1940. The endogenous variable is county-level surname entropy
in t. In columns 1 to 3, the dependent variable is log number of patents filed in the county in
the five-year period starting in t divided by county population size in 1900 (plus one, to avoid
dropping observations with zero patents). In columns 4 to 6, the dependent variable is log number
of breakthrough patents filed in the county in the five-year period starting in t divided by county
population size in 1900 (plus one). Standard errors are clustered at the state level. All independent
variables are standardized to mean zero and unit variance. The sources and construction of all
variables are explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels.
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Table B7: Contributions of the informational and social-psychological components

Patents
per 1,000 people

(mean = 1.05, sd = 1.73)

Breakthrough patents
per 1,000 people

(mean = 0.13, sd = 0.28)

(1) (2) (3) (4) (5) (6)

Surname entropy 0.996∗∗∗ 0.896∗∗∗ 1.275∗∗∗ 0.083∗∗∗ 0.063∗∗ 0.097∗∗

(0.200) (0.267) (0.176) (0.031) (0.024) (0.042)
Log Number of distinct surnames 0.393∗∗∗ 0.433∗∗ 0.207∗ 0.077∗∗∗ 0.082∗∗∗ 0.022

(0.144) (0.164) (0.114) (0.028) (0.027) (0.033)

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 22,071 22,071 22,071 22,071 22,071 22,071

Notes: The table reports least squares estimates. An observation is a county in a period from
1900 to 1940. To be consistent with the entropy formula, where we use log to the base of 2,
we transform the number of distinct surname using log to the base of 2. Standard errors are
clustered at the state level. All independent variables are standardized to mean zero and unit
variance. The sources and construction of all variables are explained in Appendix A. ***, **,
and * indicate significance at the 1%, 5%, and 10% levels.
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Figure B1: Surname entropy in 1940
Notes: The figures show the geographic variation in surname entropy in 1940 across counties
harmonized to 1900 borders. Top: Raw data; bottom: residualized by log county population.
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Figure B2: Surname entropy from 1850 to 1930
Notes: The figure shows standardized surname entropy residualized by log county population in
the respective year across counties harmonized to 1900 borders.

73



Figure B3: Residential segregation of surname groups in 1940
Notes: The figures show the geographic variation in residential segregation of surname groups in
1940 across counties harmonized to 1900 borders. Top: Raw data; bottom: residualized by log
county population. The segregation measure is constructed adapting the Logan and Parman (2017)
procedure to surnames. The sources and construction of all variables are explained in Appendix
Section A.
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Figure B4: Strength of family ties in 1940
Notes: The figures show the geographic variation in strength of family ties in 1940 across counties
harmonized to 1900 borders. Top: Raw data; bottom: residualized by log county population. The
segregation measure is constructed following Raz (2023). The sources and construction of all
variables are explained in Appendix Section A.
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(g) 1930 (h) 1940

Figure B5: Predicted surname entropy (residuals)
Notes: This figure maps residualized instrumented surname entropy for each of the eight periods.
We regress the instrument for surname entropy on county and state-year fixed effects, and county
specific linear time trends, and calculate the residuals. This visualization depicts the instrument
used in the regression in Table 2. The color coding depicts 7 intervals across counties and within
census periods, with darker colors indicating higher values. Grey indicates a lack of data in 1900.
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Figure B6: First Stage: Binned scatter plots of surname entropy (pull-push IV) and actual
surname entropy from 1900 to 1940

Notes: County-level data from 1900 to 1940 (including midyears). Observations are residualized by
county fixed effects and state-period fixed effects (left plot) and additionally county-specific time
trends (right plot). Binscatter plot created using the R package written by Cattaneo et al. (2019).
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Figure B7: Least-squares estimates in years 1850-1940
Notes: The top figures display coefficients from a regression analysis of the number of (break-
through) patents normalized by county population in period t on surname entropy, interacted
with period dummies, conditional on county fixed effects and state-period fixed effects. Standard
errors are clustered at the state level. Few patents were issued in 1850 compared to the latter
years. Surname entropy is standardized to have a mean of zero and unit variance. The sources and
construction of all variables are explained in Appendix A. The dependent variables are winsorized
at the 5 per cent level at the upper tail of the distribution. ***, **, and * indicate significance at the
1%, 5%, and 10% levels.
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Figure B8: Reduced-from relationships: Binned scatter plots of surname entropy
(pull-push IV) and innovation outcomes from 1900 to 1940

Notes: County-level data from 1900 to 1940 (including midyears). Observations are residualized by
county fixed effects and state-period fixed effects (top plots), and additionally county-specific time
trends (bottom plots). Binscatter plot created using the R package written by Cattaneo et al. (2019).
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B.1 Patent Technology Class Fixed Effects

Another potential concern with the interpretation of our findings is that patenting practices

vary across industries and technologies (Moser, 2013), and these differences might affect

our results.

Using the fact that the USPTO assigns a technology class to each granted patent, we

assess this concern by estimating specifications that include patent class fixed effects to

absorb any technology-specific traits. Similar to the surname fixed effects specifications in

our main analysis, this requires us to change the unit of observation from county-period

to patent class-county-period. The estimating equations are given by equations (9) and

(10), where equation (9) is the first stage and equation (10) is the second stage.

Surname entropyti = γ ¤�Surname entropyti +µt,s(i) +µi +µt,c + vti,c (9)

Y ti,c = β Surname entropyti +αt,s(i) +αi +αt,c + εti,c (10)

where i indexes counties, s states, t census years (including the midyears), and c patent

class. There are 408 patent classes in our sample from 1900 to 1944. Examples of the

patent class level are “Geometrical Instruments”, “Stoves and Furnace”, and “Chemistry:

Electrical and Wave Energy”. As before, Surname entropyti is county i’s surname entropy

in t, and ¤�Surname entropyti is county i’s predicted surname entropy in t. Y ti,c now is the log

number of (breakthrough) patents in patent class c, filed in county i in the five-year period

starting in t. Therefore, the innovation outcomes vary at the patent class-county-period

level, while surname entropy remains defined at the county-period level. Importantly, we

can now include patent class-period fixed effects, denoted by the parameter αt,c, which

implies we non-parametrically control for patent class-specific confounders across periods,

including differences in patenting practices across industries. The coefficient of interest is

β. Standard errors are clustered in two ways, on states and patent class.

The results are reported in Table B8 and show that estimates are virtually unaffected by

the inclusion of patent class fixed effects (in columns 2 to 4 and 6 to 8). All the estimates

are statistically significant in all specifications. Thus, we conclude that differences across

technological categories do not affect our results.
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Table B8: Robustness: Patent technology class fixed effects

Patents
per 1,000 people

Breakthrough patents
per 1,000 people

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname diversity 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Panel C: Instrumental-variable estimates

Surname diversity 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Kleibergen-Paap F-statistic 114.358 114.358 114.358 113.439 114.358 114.358 114.358 113.439

County fixed effects X X X X
State-Period fixed effects X X X X X X X X
County-Patent class fixed effects X X X X X X
Patent class-Period fixed effects X X X X
County-specific linear time trends X X
Observations 8,405,616 8,405,616 8,405,616 8,405,616 8,405,616 8,405,616 8,405,616 8,405,616

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates for the specifications described in
equation 10. An observation is a patent class in a given county in a period from 1900 to 1940. In columns 1 to 3, the dependent variable
is number of patents with c as the main technological category and filed by individuals in county i in the five-year period starting in
t divided by county population size in 1900. The dependent variable in columns 4 to 6 is the corresponding number of breakthrough
patents. Standard errors are two-way clustered on states and technological category and reported in parentheses. All independent
variables are standardized to mean zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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