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Abstract

This paper studies competing sources of declining dynamism. Evidence shows that an important component

of this decline is accounted for by the reduction in the response of employment to shocks in US establishments.

Using a plant level dynamic optimization problem as a framework for analysis, four leading reasons for this

decline are studied: (i) a change in exogenous processes for profits, (ii) an increase in impatience, (iii) increased

market power and (iv) increased adjustment costs. We identify and quantify the contribution of each of these

factors building on a simulated method of moments estimation of our structural model. Our results indicate

that the reduction in responsiveness largely reflects increased costs of employment adjustment. Changes in

market power, as captured by changes in the curvature of the revenue function, play a minimal role. But, in

the presence of rising adjustment costs, measured sales-weighted markups using the recently popular indirect

production approach rise substantially, along with rising dispersion and skewness of such measured markups.
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1 MOTIVATION

1 Motivation

The decline in dynamism in US establishments is well documented. In the 1980s, the pace of job reallocation across

establishments in the US private non-farm sector averaged 33.3 percent on an annual basis; in the post 2000 period,

job reallocation averaged only 27.3 percent.1 This reflects a decline of 20 percent in the pace of reallocation. A

related indicator of the decline in dynamism is that the responsiveness of incumbent establishments to profitability

shocks has declined over this period. This decline in responsiveness has both intensive and extensive margin

components. A continuing establishment with a positive innovation to profitability grows less and the relationship

between productivity and survival has weakened.2 This decline in the responsiveness of establishments to shocks

can have quantitatively important implications for productivity. If establishments are less responsive to changes in

fundamentals, then the reallocation of factors across plants may be impeded, thus reducing aggregate productivity.3

Building on this evidence, this paper studies four leading hypothesized sources of the reduction in responsiveness.

First, an increase in the costs of factor adjustment will naturally lead, through the plant-level policy function, to a

muted response to shocks. Second, changes in the stochastic process can induce establishments to be less responsive

to innovations to profitability. A reduction in the volatility of shocks or less serially correlated shocks can yield

less responsiveness in the presence of adjustment costs. Third, as factor demand is a forward looking decision, a

change in the discount factor will impact the response to shocks. Finally, if establishments have increased market

power, reflected through a change in the curvature of the revenue function, then the marginal return to adjusting

factor inputs is reduced and thus so is responsiveness. Put differently, an increase in the average markup yields a

larger change in prices in response to an innovation in productivity relative to quantities.4

Our contribution to this literature is to estimate a structural dynamic labor choice model at the plant level to

identify and quantify the contribution of these alternative sources of the reduction in dynamism. In the model,

variations in profitability induce job creation and destruction as well as exit. The magnitude of these responses is

influenced by the costs of labor adjustment, the impatience of the decision-maker, market power and the stochastic

process for the underlying profitability shocks.

The dynamic optimization problem is brought to the data through simulated method of moments estimation.

The measure of responsiveness comes from regression coefficients linking employment growth at the plant level to

1These statistics are drawn from the public domain Business Dynamic Statistics (https://www.census.gov/programs-
surveys/bds/data.html) and reflect the average annual rates from 1980-89 and 2000-2019 respectively. The job reallocation rate is
the sum of job creation and destruction rates. Our micro data analysis only focuses on the 1980-2010 period but the decline in
dynamism persists post 2010. The job reallocation rate over the 2001-10 period averages 29.7 percent.

2Key citations underlying this evidence and discussion include Davis, Haltiwanger, Jarmin, and Miranda (2007),Decker, Haltiwanger,
Jarmin, and Miranda (2014), Decker, Haltiwanger, Jarmin, and Miranda (2016) and Decker, Haltiwanger, Jarmin, and Miranda (2020).

3Another important component of the decline in accounted for by the decline in business startups and an accompanying shift in
activity towards older firms. The decline in startups has been the focus of much research (see,e.g.,Decker, Haltiwanger, Jarmin, and
Miranda (2014), Hopenhayn, Neira, and Singhania (2018), and Karahan, Pugsley, and Sahin (2018)). While the decline in startups is of
considerable interest, the evidence from Decker, Haltiwanger, Jarmin, and Miranda (2020) suggests that the changing age distribution
of firms accounts for less than 30 percent of the overall decline in the pace of job reallocation. We abstract from the declining pace of
startups in our analysis.

4For market power, we focus on the average markup as reflected in the curvature of the revenue function. With variable markups that
are increasing in productivity and size, an increase in the dispersion and skewness of markups can yield a reduction in responsiveness
as in De Loecker, Eeckhout, and Mongey (2021). While our modeling approach does not consider this approach, we show that evidence
on rising dispersion and skewness in measured markups may be due to rising adjustment costs even without any dispersion in actual
markups.
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1 MOTIVATION

these shocks and is among the moments matched. The estimation is undertaken for two sample decades: the (i)

1980s and (ii) the 2000s. The analysis focuses on manufacturing plants.

A main finding of the paper is that the reduction in responsiveness is largely a consequence of increased costs

of adjusting labor. This is shown through a series of counter-factual exercises. In one, adjustment costs are kept

at their estimated values from the 1980s period, with other parameters set at their estimated 2000s level. In this

case, the fit of the model is reduced dramatically indicating the importance of changes in adjustment costs over

time as an explanation for the reduced responsiveness. There are also estimated changes in impatience and the

stochastic process over the two decades. But, for the stochastic process, these changes led to an increase rather than

a dampening of responsiveness. For the discount factor, when it is re-estimated to match the 2000s responsiveness,

leaving other parameters at their 1980s values, its change alone is not sufficient to generate the observed reduction

in responsiveness. Finally, variations in market power, seen through the curvature of the revenue function, are also

not able to generate the observed reduction in responsiveness.

A change in responsiveness has consequences for reallocation and thus for aggregate productivity. Based upon

these estimates, the increase in labor adjustment costs implies that the growth in aggregate productivity in the

manufacturing sector is about 8 percentage points lower in the 2000s than it would have been in the absence of

the increase. Additional related consequences of the increase in adjustment costs are an increase in the dispersion

in revenue labor productivity across plants and a decline in the covariance between the plant-level revenue labor

productivity and the employment labor share.

The increase in labor productivity dispersion has additional implications related to evidence of an increase

in the revenue-weighted measured markup of firms as found in De Loecker, Eeckhout, and Unger (2020). This

literature measures the markup indirectly as the ratio of the output elasticity of a variable factor to the cost share

of revenue of that factor. This indirect-measure approach is based on using first order conditions for variable factors

of production that don’t face adjustment costs. One of the factors De Loecker, Eeckhout, and Unger (2020) include

as variable is labor. Our findings highlight the presence of adjustment costs of labor that are increasing over time,

such as adjustment costs, will be reflected in indirectly measured markups. We show that, even in the absence of

actual dispersion in markups, the rising adjustment costs we identify yield an increased revenue-weighted mean

and dispersion in these indirectly measured markups. While we can only account for about half of the measured

increase in markups with the rise in adjustment costs, our findings suggest that the connection that De Loecker,

Eeckhout, and Mongey (2021) make between rising markups and declining responsiveness may reflect in part the

rise in adjustment costs that reduces responsiveness and increases measured markups.

The paper proceeds as following. Section 2 provides motivating evidence of declining responsiveness closely

linked to the recent literature. The model is specified in section 3. Estimation of the structural model via the

method of simulated moments is presented in section 4. The data moments include the responsiveness moments

from section 2 as well as estimates of the revenue function curvature and the standard deviation and persistence

of the shock processes. Based on this estimation, we evaluate explanations of the decline in dynamism in section

5. Productivity and markup implications are explored in section 6 Concluding comments are in section 7.
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2 MOTIVATING EVIDENCE

2 Motivating Evidence

A starting point for our analysis is that the decline in measures of business dynamism (e.g., the pace of job re-

allocation) have been accompanied by declines in measured responsiveness. As discussed, Decker, Haltiwanger,

Jarmin, and Miranda (2020) present evidence that the marginal response of establishment and firm-level employ-

ment growth to realizations of measured productivity have declined. The evidence most relevant for our analysis

is for U.S. manufacturing establishments. They find a decline in responsiveness of manufacturing establishments

to productivity shocks that includes both an intensive (lower responsiveness for continuing establishments) and

extensive (the marginal effect of productivity on exit declines) component. Using an accounting exercise, they find

that lower responsiveness accounts for virtually all of the measured decline in job reallocation. In contrast, they find

that the dispersion of measured productivity across establishments in the same industry is rising. Digging further,

the persistence of measured productivity shocks has changed little but the innovations to measured productivity

within industries has increased. This work is primarily an empirical exploration of different alternative measures

of productivity and variation in declining of responsiveness across different types of firms and establishments. The

mechanisms underlying the decline in reallocation, the decline in responsiveness and the increase in measured

productivity dispersion are not investigated.5

In related work, Ilut, Kehrig, and Schneider (2018) also estimate the response of job growth to productivity

innovations. Their focus is on the concavity of this relationship, which they verify using plant-level data, and

its implications for the cyclicality of volatility. Building on this, Kehrig and Vincent (2017) find that the con-

cave relationship has changed over the decades in a manner consistent with the reduced responsiveness discussed

above. Additional research that implies that taking into account nonlinearities is likely important is found in Cairo

(2013). She documents that accompanying the decline in dynamism is an increase in the fraction of employment

at establishments that make no change in employment.

Another important and relevant line of research is De Loecker, Eeckhout, and Unger (2020). They argue that

markups have risen dramatically in the US since the 1980s, particularly among the largest firms. Though their

analysis does not focus on responsiveness per se, they do argue that the higher markups might explain the reduction

in responsiveness that motivates our analysis. De Loecker, Eeckhout, and Mongey (2021) explore the implications

of rising markups for declining responsiveness. As we noted in the introduction and will discuss in detail below, the

connection between declining responsiveness and rising measured markups may reflect the role of rising adjustment

frictions.

With this discussion as background, Table 1 makes clear our perspective on the fall in responsiveness through

5Kehrig and Vincent (2021) also present evidence of declining responsiveness in the US. Bartelsman, Lopez-Garcia, and Presidente
(2019) study the effects of reallocation on productivity across 9 European countries. In doing so, they run responsiveness regressions
similar to (1), adding in cyclical effects. The focus is not on the reduction in responsiveness across decades but rather a comparison across
countries. They find both differences in responsiveness across countries and in response to aggregate fluctuations. They attribute these
differences to variations in market power and employment protection across countries. In terms of the cyclical changes in responsiveness,
they discuss adjustment costs, financial stress and the effects of a global reduction in trade flows. Cooper, Horn, and Indraccolo (2023)
use a similar model and estimation approach to this paper to study variation in responsiveness across European countries with a focus
on the impact of COVID policies. They highlight the importance of variation in adjustment costs in accounting for cross country
variation.
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2 MOTIVATING EVIDENCE

recent decades. These results and those that follow rely on the establishment-level Annual Survey of Manufactures

(ASM) data from 1980-2010 (essentially the same data as Decker, Haltiwanger, Jarmin, and Miranda (2018))

integrated with the Longitudinal Business Database (LBD).6 We use the ASM to generate measures of idiosyncratic

profitability shocks and we use the LBD to construct measures of employment growth for continuing and exiting

manufacturing establishments.7 We construct decade averages of key moments shown in Table 1. It is important

to emphasize that all of the moments stem from the annual data from the ASM and the LBD. In the structural

estimation below we take time aggregation issues into account.

Table 1: Responsiveness Moments

Inact xrat ζ1 ζ2 ξ1
1980s

0.197 0.100 0.113 -0.054 -0.081
2000s

0.243 0.083 0.064 -0.035 -0.059

The moments here are: Fraction of employment at inactive establishments = 0.025 > ∆e
e

> −0.025, xrat = exit rate
for establishments, (ζ1, ζ2) are linear and quadratic response of establishment employment growth to profitability shock
innovation calculated as the average value by year for each decade from (1). ξ1 is the response of plant-level exit to
profitability shock calculated as the average value by year for each decade from (2).

The inaction and establishment exit rate moments are computed from the LBD manufacturing establishments.

The intensive margin responsiveness moments are estimated coefficients from the following regression:

git = ζ0 + ζ1tεit + ζ2tε
2
it + ζ3log(empi,t−1) + ζ4Xit + ηit (1)

where git is the employment growth rate at establishment i in period t using the Davis, Haltiwanger, and Schuh

(1998) measure given by git = (empi,t−empi,t−1)/(0.5∗ (empit+empi,t−1) for continuing establishments, εit is the

innovation to the within industry-year (log) profitability (we describe that estimation below), empit is employment

and Xit is a set of controls.8 We include a quadratic on the innovation in this specification permitting responsiveness

to vary with the magnitude of the innovation in shocks. As noted above, nonlinear response to innovations in a

similar specification is found in Ilut, Kehrig, and Schneider (2018).9

We permit the responsiveness coefficients (ζ1t and ζ2t) to vary across decades. To implement this we specify

these coefficients as a quadratic in a time trend (e.g., ζ1t = β1 + β1btr + β1ctr
2 and the equivalent for ζ2t). We

then compute the estimated coefficient for each year using the quadratic trend and take the average value of the

estimated coefficients for each year by decade, reported as (ζ1, ζ2), in Table 1.10

6See the data appendix for more discussion of the data and measurement.
7We follow Decker, Haltiwanger, Jarmin, and Miranda (2018) in sweeping out industry by year effects from our profitability shocks.
8We follow Foster, Grim, and Haltiwanger (2016), Decker, Haltiwanger, Jarmin, and Miranda (2018) and Decker, Haltiwanger,

Jarmin, and Miranda (2020) in our specification of controls. Specifically, we include state and year effects, firm size controls, a
state-level cyclical control and the interaction of the state-level cyclical control with the innovation to profitability.

9Looking at Germany, France, Italy and Spain, Cooper, Horn, and Indraccolo (2023) use moments that capture both the state
dependent choices on the extensive (to adjust employment or not) as well as the intensive margins (job creation or destruction).

10The responsiveness coefficient estimates are robust to using simple decade dummies instead of a quadratic trend. The responsiveness
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2 MOTIVATING EVIDENCE

For the innovations to measured profitability we first estimate the revenue function as a function of inputs

(capital, labor, materials and energy) using the control function approach of Wooldridge (2009). This permits us to

estimate the revenue elasticities for the inputs in a consistent manner. Using these revenue elasticities, we compute

the revenue function residuals as profitability shocks, denoted as Ait. We specify an AR(1) process for profitability

and compute the innovations to these residuals which yields the εit.
11 Our approach of using the revenue function

residuals as the profitability shock is consistent with Cooper and Haltiwanger (2006) and Decker, Haltiwanger,

Jarmin, and Miranda (2020).12

The exit responsiveness equation is similar, given by:

exitit = ξ0 + ξ1tlog(Ait−1) + ξ2log(empi,t−1) + ξ3Xi,t + µit (2)

where exitit is a dummy variable equal to one of the establishment exits in period t, Ait−1 is the lagged profitability

shock. We allow for ξ1t to vary across decades in the same manner as the responsiveness coefficients for the intensive

margin13 For the exit responsiveness equation we follow the literature that relates exit between the prior and the

current period to the relevant state vector in the prior period (i.e., the lagged profitability shock and lagged

employment).

The moments in Table 1 highlight that the decline in dynamism and responsiveness have a number of distinct

features. We find that accompanying the decline in dynamism is a substantial increase in the fraction of employment

at inactive establishments. Exit declines by almost 20 percent from the 1980s to the 2000s. Employment growth

for continuing establishments is increasing but concave with respect to innovations in profitability shocks. This

responsiveness declines from the 1980s to the 2000s.14 We also find that the relationship between exit and the

realization of profitability has weakened over time.

As we have highlighted, the specifications we consider for the intensive margin of growth and the extensive

margin of exit draw from the existing literature (e.g., Decker, Haltiwanger, Jarmin, and Miranda (2020) and Ilut,

Kehrig, and Schneider (2018)). As we will see below these moments are informative about the structural parameters

of the model we develop and estimate via the simulated method of moments.

estimates are also robust to permitting the lagged employment estimated coefficients to change over time.
11In our analysis, we assume all factors of production other than labor are variable. This enables us to use these revenue elasticities

to compute the curvature of the revenue function with respect to labor after substituting for the optimal variable other factors. The
estimated curvature of the revenue function with respect to labor is 0.721.

12As noted, the revenue function residual we use is similar to the TFPP measure in Decker, Haltiwanger, Jarmin, and Miranda
(2020) and Decker, Haltiwanger, Jarmin, and Miranda (2018). Ilut, Kehrig, and Schneider (2018) in contrast use a TFPR measure
of profitability. In principle this distinction could be important since the revenue residual is under the assumptions of our model (see
below) a measure of fundamentals while TFPR will reflect fundamentals and endogenous prices. However, Decker, Haltiwanger, Jarmin,
and Miranda (2020) show that declining responsiveness is robust to using either a revenue function residual measure or TFPR. We also
note that Decker, Haltiwanger, Jarmin, and Miranda (2020) show declining responsiveness to the profitability shock Ait−1, the first
difference of the profitablity shock and the innovation εit. We focus on the innovation based specification which is also the approach
of Ilut, Kehrig, and Schneider (2018).

13The ξ1 in Table 1 is computed by taking the average value of the estimated coefficients for each year by decade.
14Both the linear and quadratic terms decline. As shown in Figure 1 over the range of range of innovations to shocks from negative

100 log points to positive log points that there is a decline in responsiveness. Also, if one compares Figure 10 of Ilut, Kehrig, and
Schneider (2018) to our Figure 1 below for the 1980s and 2000s the patterns are quite similar.
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3 MODEL: DYNAMIC OPTIMIZATION AND RESPONSE

3 Model: Dynamic Optimization and Response

This section accomplishes two goals. First, it states the formal optimization problem that forms the basis of the

parameter estimation and ultimately our study of the causes of the decline in responsiveness. Second, drawing on

the previous discussion, the model is used to illustrate the candidate explanations for the decline in responsiveness.

3.1 Plant-Level Optimization

The model of establishment labor demand builds on Cooper, Haltiwanger, and Willis (2015) and Cooper, Gong, and

Yan (2015). Let the state of the plant be (A, e−1) where A denotes current profitability and e−1 is the employment

level from the previous period. We model the profitability shock process as an AR(1) in logs: log(A) = ρ log(A−1)+ε

where the standard deviation of ε is given by σ. The parameters ρ and σ are structural parameters of the stochastic

process for profitability.

At the start of a period, where periods in the model are defined as quarters, the plant has an option to continue

operating or exit. That choice is given by:

V (A, e−1) = max(V c(A, e−1), 0) (3)

so that, by assumption, there is no cost associated with exit. There is a fixed cost of operating each period given

by Γ. If the plant continues in operation, its value is given by

V c(A, e−1) = max
e
R(A, e)− Γ− eω − C(e, e−1) + βEA′|AV (A′, e) ∀(A, e−1). (4)

In the continuation problem, the control is the number of workers, e.15 Note that by assumption there is no time

to build: workers hired in the current period provide labor services immediately.

In (4), R(A, e) is a revenue function. Other factors of production like hours, capital and materials have been

optimized out leaving an expression of revenue as a function only of state and control variables. The variable A is

interpreted as a shock to profitability as it encompasses both variations in total factor productivity and variations

in product demand. Assume R(A, e) = Aeα so that α parameterizes the curvature of the revenue function.16

Finally, the adjustment cost function, C(e, e−1), is given by

C (e, e−1) =
ν

2

(
e− e−1

e−1

)2

e−1 + [γP (e− e−1) + Fp]I(e− e−1 > 0)

− [γM (e− e−1)− Fm]I(e− e−1 < 0) (5)

for e 6= e−1. There are no adjustment costs when there is no change in the number of workers.17

15Given our moments are annual, we abstract from variation in hours per worker. Decker, Haltiwanger, Jarmin, and Miranda (2020)
explore quarterly production hours and find limited changes in responsiveness of hours per worker.

16This is a common specification in the dynamic factor demand literature. It can be generated by a constant returns to scale
technology combined with a constant elasticity of demand function where α captures both factor shares and the elasticity of demand.

17Our data is not rich enough to allow us to match gross hires and fires at the plant-level.
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3.2 From Parameters to Responsiveness 3 MODEL: DYNAMIC OPTIMIZATION AND RESPONSE

This function includes multiple costs. One is the traditional quadratic adjustment cost, parameterized by γ.

The next two are linear adjustment costs. Here γP is a linear hiring cost and γM is a linear firing cost. When

γP and γM are different this implies kinked adjustment costs that will generate an inaction region. These may

be thought of as recruiting and severance costs respectively. Finally, there are fixed adjustment costs, (Fp, Fm),

which also depend on whether the plant is hiring or firing. In the estimation, we will distinguish the two cases of

piece-wise linear and fixed costs.18

The resulting policy functions are given by: ZΘ(A, e−1) ∈ {0, 1} and e = φΘ(A, e−1). Here Z(·) is the exit

decision where Z(A, e−1) = 0 means exit and Z(A, e−1) = 1 denotes the continuation of the establishment. In the

event of continuation, e = φΘ(A, e−1) represent the state contingent choice over employees.

The exit of plants is offset by an exogenous entry process that maintains the population of plants. Entering

plants do so with median employment and a draw from the profitability distribution. We also assume that the

plants take the wage (ω) as given. In the estimation, the wage helps pin down the median size of plants.

Note that these policy functions depend on the underlying structural processes and parameters of the revenue,

compensation and adjustment cost functions as well as the discount factor. All of these influences are captured by

the vector of parameters, denoted Θ. Our goal is to estimate Θ through a simulated method of moments approach

for different sample periods to determine which elements of this vector are responsible for observed changes in

responsiveness.

3.2 From Parameters to Responsiveness

Our results rest on the mapping from key model parameters to moments, including the responsiveness of employment

growth to profitability innovations and the extensive margin, both in terms of inaction in employment adjustment

and in the continuation of operations. For a given vector of parameters, the plant-level dynamic optimization model

is solved to produce decision rules. A panel is simulated and versions of the regression models given in (6) and (7)

are estimated to produce the responsiveness moments.

To capture the response on the intensive margin, consider a version of (1):

git = ζ0 + ζ1log(εit) + ζ2log(εit)
2 + ζ3lempi,t−1 + ηit. (6)

This is a linear quadratic empirical model linking annual net employment growth, git, to the (log) innovation

to profitability, εit, lempi,t−1 is the log of lagged employment and ηit is the error term. This specification is

essentially the same as (1) in that is uses annualized measures of the dependent and independent variables (time

aggregating the quarterly simulated data). The specification differs from the actual data specification that address

issues in the actual data not present in the model. First, this specification does not have the additional controls

Xit that control for factors that are not present in the model. Second, this specification should be considered

as identifying responsiveness in the simulated data for a particular sub-period.19 On the extensive margin of

18Cooper, Haltiwanger, and Willis (2015) also estimates a model with an opportunity cost of adjustment, λR(A, e). That model was
considered here too but did not match the 1980s moments as well as the other specifications.

19It is also useful to note that the εit used here is based on using the curvature parameter estimated via the control function approach

8



4 ESTIMATION

employment adjustment, the fraction of observations in which employment growth is sufficiently close to zero is

recorded as “inaction.” Here, as in the estimation that follows, inaction is employment growth less than 2.5 percent

in absolute value.

Finally, also on the extensive margin, a simplified version of (2) (again omitting controls relevant in the actual

data but not present in the model) links the exit decision to lagged profitability:

exitit = ξ0 + ξ1log(Ai,t−1) + ξ2lempi,t−1 + µit. (7)

The focus is on the coefficient on profitability, termed ξ1, as this captures the responsiveness of the exit decision

to the log of lagged profitability, Ai,t−1.20 Again, this specification is estimated at the annual frequency in the

simulated data matching the approach with the actual data.

From the perspective of these moments, a reduction in responsiveness means that employment growth is less

sensitive to shocks in (6), inaction is more frequent, and the exit decision is less responsive to profitability. The

point of the empirical exercise is to determine which structural parameters can generate these forms of a reduction

in responsiveness. Given our simulated method of moments approach, we use parsimonious specifications that

yield moments that can be estimated in both the actual and simulated data that are informative for our structural

model.

We interpret the parameters estimated from the actual data on responsiveness of growth and exit as equivalent

to those estimated from the simulated data. The differences in specifications reflect controls in the actual data

estimation for factors not present in the model.

4 Estimation

The first step in the quantitative analysis is to estimate the parameters of the plant-level optimization problem.

The estimation is conduced for two sample decades, the 1980s and the 2000s, to reflect the underlying theme of

the reduced responsiveness of plants across these two periods. Once the parameter estimates are obtained, we will

explore the factors that contribute to the reduced responsiveness as well as the productivity implications.

4.1 Approach

The estimation relies on a simulated method of moments approach. The model parameters are selected to minimize

the distance between actual and simulated moments, given by:

£ =
(Md −Ms(Θ))

Md

′

W
(Md −Ms(Θ))

Md
. (8)

described in section 2. This curvature parameter is 0.721. By using this curvature parameter, we insure that the innovation process we
use in the simulated data is consistent with what we measure in the actual data. Note that we still permit the curvature of the revenue
function to be an estimated parameter in the simulated method of moments.

20Since there is no data for a plant that exits in period t, there are necessarily lagged variables in this regression.
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4.1 Approach 4 ESTIMATION

In this expression, Md are the data moments, Ms(Θ) are the simulated moments that, of course, depend on the

parameters and W is a weighting matrix, here set as the identify matrix.

4.1.1 Moments

The full set of moments appear as the first row of Table 2. In addition to the responsiveness moments in Table 1, we

bring together multiple moments that have been emphasized in different papers in order to facilitate identification

of the different potential mechanisms at work. We include the median plant size which has fallen slightly over

the two sample periods. Including this moment insures that the employment state space in the model (roughly)

conforms to that in the data. Among other things, this size is influenced by the wage, ω.

As in Cooper, Gong, and Yan (2015), the estimation includes the parameters of the revenue function as well as

the driving processes for profitability. By including as moments the reduced form estimates of the revenue curvature

and the stochastic process for the profitability shocks, the structural counterparts can be identified through the

simulated method of moments approach.21

Table 2: Moments

Inact xrat ζ1 ζ2 ξ1 emp α̂ ρ̂ σ̂ £
1980s

Data 0.197 0.100 0.113 -0.054 -0.081 10.100 0.977 0.687 0.368 na
Linear 0.201 0.053 0.149 -0.061 -0.140 10.064 0.937 0.394 0.336 1.050
Fixed 0.384 0.054 0.165 -0.056 -0.119 9.658 0.949 0.461 0.342 1.664

2000s
Data 0.243 0.083 0.064 -0.035 -0.059 8.900 0.959 0.682 0.408 na
Linear 0.214 0.053 0.065 -0.036 -0.108 8.759 0.918 0.350 0.369 1.089
Fixed 0.420 0.054 0.065 -0.033 -0.106 8.823 0.933 0.419 0.354 1.453

The moments here are: Inact = 0.025 > ∆e
e

> −0.025; xrat = exit rate; (ζ1, ζ2) = linear and quadratic response of
employment growth to profitability shock; ξ1= response of plant-level exit to profitability shock innovation; emp is median
plant size. (α̂, ρ̂, σ̂) are the OLS estimate of revenue curvature as well as the serial correlation and standard deviation of
the profitability shock. £ is the fit measured as percent deviation of simulated and data moments. All moments are from
annual data.

Specifically, the curvature parameter in Table 2 is from an OLS regression of log revenue on the log labor input

using annual data for each sample period. It is not used as a direct estimate of the curvature of the revenue

function. Instead it is use to infer the curvature of the structural model through an indirect inference exercise.

That is, for our structural estimation, this OLS estimate, denoted α̂, is treated as a moment. The same regression

is run on the simulated data. This is informative about the underlying curvature of the revenue function, α, in the

vector of estimated parameters.

The moments also include the serial correlation and standard deviation of the innovation to the profitability

shock process, denoted (ρ̂, σ̂) in Table 2. These data moments come from the control function approach described

21This step is needed also as we are studying an optimization problem at the quarterly frequency and do not have access to quarterly
data on revenues and labor input.
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in section 2. Their simulated counterpart come from the simulated revenue and employment choices at the plant

level along with the estimated revenue curvature parameter based upon the estimation of the revenue function in

section 2. We are effectively treating the revenue curvature estimate from section 2 as a parameter that is used

with the actual and simulated data to compute profitability shocks. We note that the ε series used to compute the

moments of the stochastic processes is also used in the responsiveness regressions. This implies that the simulated

and data moments are calculated in the same manner on all dimensions.

Interestingly, these estimates of the curvature of revenue and the underlying stochastic process might interact

with the responsiveness moments. If, for example, the reduction in responsiveness is due to larger adjustment

costs, then the omitted variable bias in the OLS regression of revenue on employment will be reduced as well. This

interaction is fully taken into account in our methodology. The process for the shocks is also impacted here since

it depends on the relationship between revenue and employment.

In using these moments, there are a few key points. First, though the moments are measured on an annual

basis, we model the decision period as a quarter which we think of as closer to the frequency of choices made at

the plant level. Thus matching the annual moments involves time aggregation of quarterly choices.

Second, as made clear, the model includes exit in order to match various moments associated with plant closings.

As discussed above, the exit is offset by an exogenous entry process.

Third, the data moments in Table 2 are for both the 1980s and 2000s decades. Thus, we conduct a separate

estimation for the two time periods.

4.1.2 Parameters

The parameter vector is given by: Θ = (β, ν, γP , γM , fP , fM ,Γ, ω, α, ρ, σ). All of these parameters were discussed

in section 3. Here α is the structural parameter characterizing the curvature of the revenue function and (ρ, σ)

characterize the stochastic (quarterly) profitability shock process. These are distinct from the OLS annual coun-

terpart of curvature (α̂) and the parameters of the shock process computed from annual revenue and employment

(ρ̂, σ̂)) that are included in the moments. Importantly, this implies that differences between the ρ̂ and σ̂ moments

and structural parameters ρ and σ in the estimation do not reflect a poor fit. A poor fit arises when the moments

in the actual and simulated data differ.

There are two parameterizations of the problem. One assumes linear adjustment costs and the second assumes

fixed adjustment costs. For each of the two parameterizations, there are 9 parameters and 9 moments. The model

is just identified.

4.2 Estimates

Table 2 presents the moments (data and simulated) and Table 3 the parameters estimates. There are two sample

periods and, for each, two specifications of adjustment costs.22

22Our approach is to estimate the two types of adjustment costs individually to better understand the nature of adjustment costs in
a sample as well as the changes over the periods.
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From the last column of Table 2, the models with piece-wise linear adjustment costs match the data moments

considerably better than do the models with fixed adjustment costs. This is true for both sample periods. We

find that γP < γM in both periods with the gap widening in the second period. Given this finding, most of our

subsequent analysis focuses on the piece-wise linear adjustment cost specification.

Table 3: Parameter Estimates

β ν γP γM fP fM Γ ω α ρ σ
1980s

Linear 0.9871 4.3716 4.7281 6.7756 na na 0.8652 0.1424 0.5399 0.8785 0.5887
Fixed 0.9811 5.6742 na na 0.0003 3.9959 0.7412 0.2772 0.6030 0.8753 0.5436

2000s
Linear 0.9826 5.2215 4.7473 7.4113 na na 0.8543 0.1257 0.5231 0.8564 0.6288
Fixed 0.9798 7.2333 na na 0.0007 4.3685 0.7238 0.2355 0.5867 0.8626 0.5641

The parameters here are: β = discount factor, ν= quadratic adjustment cost, (γP , γM ) =linear hiring and firing
costs,(FP , FM )=are the fractions of revenue lost from fixed hiring and firing costs, Γ = fixed production cost as a fraction
of average revenue, ω=base wage, (α, ρ, σ)=curvature of revenue functions, serial correlation of profitability shocks and the
standard deviation of the innovation to profitability shocks.

Looking first at the moments, the linear model matches quite well the inaction in labor adjustment while the

fixed cost model misses this moment by a considerable margin. This is the main reason the piece-wise linear model

fits better. Of course this does not mean the fixed cost model cannot create less inaction. But, to do so it would have

to miss matching other moments. Both models capture the linear and quadratic coefficients from the responsiveness

regressions, in both samples. And both overstate the responsiveness of exit to variations in profitability. The fixed

cost model matches the OLS curvature moment as well as the stochastic process of the shocks a bit better than the

piece-wise linear specification. Neither matches the serial correlation very well. Interestingly, the OLS curvature

estimates exceed the actual estimated curvature, see Table 3, indicating the presence of omitted variable bias in

both models.

In terms of the parameters, the quarterly discount factor ranges between 0.9798 to 0.9871 across specifications

and samples. This translates to a range of annual discount rates of 0.9216 to 0.9494 (with the highest in the

linear case for the 1980s). These are much lower than the rate normally assumed in dynamic choice models. Both

specifications exhibit relatively large quadratic adjustment costs, and firing costs are much larger than hiring costs,

particularly in the linear cost case.23 As discussed in Cooper, Gong, and Yan (2015), the relatively low discount

factor aides in identifying hiring from firing costs.

Our main interest is in understanding differences across the samples. This is explored in detail in the following

sections. Here we comment on some key moment and parameter differences.

There are, of course, changes in all moments across these time periods. As made clear in the motivation, the

responsiveness is lower in the later sample. This is indeed captured by both models, both for continuers and those

23Cooper, Haltiwanger, and Willis (2015) did not estimate the discount factor and did not consider linear adjustment costs. Cooper,
Gong, and Yan (2015) estimated an annual discount factor for private plants of 0.929 and found that firing costs exceeded hiring costs.
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(a) Data (b) Baseline Model

Figure 1: Employment Growth Response To Innovations: Data and Model
The left (right) panel is based upon coefficients from the responsiveness regression on actual
(simulated) data, the latter from the model with linear adjustment costs.

who exit. The higher inaction rate is also present though the increase in the linear model is not as large as in the

data. Also, both models match the lower exit rate.

The estimated curvature of the revenue function is lower in the 2000s relative to the 1980s. This may be

consistent with the findings of an increase in market power reported in De Loecker, Eeckhout, and Unger (2020).

However, as explored in sub-section 6.2 below, De Loecker, Eeckhout, and Unger (2020) measure market power

in a manner quite differently than us. We utilize their approach to inferring market power and this allows us to

compare our findings with theirs.

The close fit of the model relative to the data is shown through the top row of Figure 1 which isolates the

responses to profitability for the two decades in both the data (left panel) and the estimated models (right panel).

The reduction in responsiveness in the simulated data matches the patterns in the data closely both qualitatively

and quantitatively.

We interpret Table 2 and Figure 1 as providing strong support for our simulated data matching the key properties

of the actual data – especially in terms of responsiveness. The strong fit of the model to the data gives us confidence

to proceed to use the simulated data as a platform for investigating the sources of the decline in dynamism and

implications for productivity and markups.24

Using the simulated data, we further decompose the growth and innovation relationship for continuing establish-

ments in Figure 1 into the relationship between the probability of adjustment to innovation, the extensive margin,

and the relationship between growth and innovation for establishments that adjust, the intensive margin. Table 4

reports this decomposition.

24Of the nine moments, the one we match the least well is the annual serial correlation of the profitability shocks. Even for this
moment the simulated estimates yield a larger decline in serial correlation than is present in the data. This would favor this mechanism
as being important as a decline in serial correlation can reduce responsiveness. However, as we show below, the rise in dispersion in
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Table 4: Decompositions: Intensive and Extensive Margins

Targeted
Case ζ1 ζ2

1980s
Baseline 1980s 0.149 -0.061
Adj. 0.135 -0.041
Prob of Adj. 0.070 0.256

2000s
Baseline 2000s 0.065 -0.036
Adj. 0.0445 -0.0085
Prob of Adj. 0.058 0.220

The moments here are: for baseline and adjusters, (ζ1, ζ2) = linear and quadratic response of employment
growth to innovation to profitability shock; for prob of adj. we estimate an auxiliary regression using a linear
probability model of adjustment for continuers regressed on log(lagged employment) and the profitability
shock both linear and quadratic. Reported are the linear and quadratic responses. All moments are from
simulated data.

On the intensive margin, it is evident there is a decline in the responsiveness of growth for plants that adjust as

both the linear and quadratic coefficients are lower for the 1980s estimates compared to the 2000s estimates. This

is seen in the left panel of Figure 2 where the responsiveness in the 2000s is both less sensitive and exhibits less

curvature.

On the extensive margin, the regression coefficients are lower in the 2000s simulation results but the differences

are not as large as on the intensive margin. From Figure 2, the decline in the likelihood of adjusting is mostly in

the tails of the innovation shock distribution. Still, an interesting feature of the probability of adjustment is that

it is strongly increasing in the absolute value of the innovation shock.

both the simulated data (that is matched in the actual data) more than offsets this effect.
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(b) Probability of Adjustment in Response to Innovations

Figure 2: Extensive and Intensive Margins
These figures shows the response to shocks on the intensive and extensive margins.

4.3 Relationship Between Parameters and Moments

Before proceeding to the decomposition of the driving forces of declining dynamism exercises, we provide further

guidance about identification, with emphasis on the distinct contributions of each of the adjustment cost parameters

to matching the moments. There are two exercises: (i) quantifying the response of moments to parameter variations

and (ii) selectively setting parameters to zero to study their individuals effects on moments, particularly those

representing responsiveness.

Table 5 depicts the elasticities of the moments with respect to parameters evaluated at the 1980s baseline

estimates Many of the patterns are straightforward. Increases in all of the adjustment cost parameters decrease

the linear term in intensive responsiveness. Increases in the convex component of adjustment costs, ν, increases

the quadratic term of the responsiveness while the opposite is true for the nonconvex components.

Key parameters for other mechanisms work in expected ways. An increase in the curvature of the revenue

function increases the linear and quadratic terms of intensive margin responsiveness. An increase in the discount

factor increases the linear term but decreases the quadratic term. Notable is how sensitive the moments are to

small changes in the discount factor. Increases in the persistence and dispersion of shocks increases the linear and

quadratic terms of the intensive responsiveness.

From this evidence, all four mechanisms are potential candidates for accounting for the declining responsiveness.

However, as is also evident from Table 5, the key parameters also change many other moments. Increases in the

convex component of adjustment costs reduces inaction while increases in the nonconvex moments increase inaction.

Increases in the curvature of the revenue function, the discount factor and shock dispersion reduce inaction while

an increase in persistence increases inaction. The method of simulated moments by construction takes all of these
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relationships into account.

Table 5: Elasticities

Parameter Inact xrat ζ1 ζ2 ξ1 emp α̂ ρ̂ σ̂
β -9.336 -33.484 390.897 -223.358 -26.645 -17.028 9.861 17.934 5.574
ν -0.136 0.002 -1.027 1.799 -0.102 0.000 -0.047 -0.036 0.025
γP 0.157 0.031 -0.505 -2.449 -0.020 -0.101 -0.018 -0.003 0.009
γM 0.943 0.056 -1.536 -3.913 -0.112 0.202 -0.035 0.023 0.047
Γ 2.636 7.789 -6.213 -9.204 9.310 1.131 -0.795 -3.026 -0.621
ω -1.519 -2.658 3.108 -13.434 -3.504 -2.994 0.262 1.468 -0.149
α -0.163 0.234 1.005 3.395 -0.659 13.456 0.100 1.014 0.532
ρ 0.707 -19.904 6.268 7.364 -1.456 0.228 0.811 3.761 -0.011
σ -3.429 -8.317 14.603 36.604 -10.355 -1.407 1.234 4.136 1.825

Footnotes

As will become clear, it is especially instructive to explore the contribution of each of the adjustment cost

parameters to responsiveness. The top part of Table 6 offers an alternative but related perspective showing

simulation results starting from the baseline of the 1980s estimate and setting different adjustment costs (indicated

in the row) to zero. The bottom part of the table has only those costs.

Table 6: Simulated Moments: Sources of Nonlinearity

Inact xrat ζ1 ζ2 ξ1 emp α̂ ρ̂ σ̂ £
1980s Baseline 0.201 0.053 0.149 -0.061 -0.140 10.064 0.937 0.394 0.336 1.050

Eliminate adjustment cost component
ν 0.261 0.043 0.571 0.134 -0.136 8.555 1.085 0.457 0.334 29.603
γP 0.094 0.040 0.403 -0.353 -0.121 9.037 0.996 0.431 0.334 38.217
γM 0.054 0.027 0.706 -0.575 -0.103 7.952 1.020 0.470 0.327 129.949

Retain only this adjustment cost component
ν 0.023 0.009 1.273 -0.831 -0.049 6.898 1.045 0.584 0.333 314.263
γP 0.153 0.025 1.229 -0.171 -0.120 7.666 1.045 0.520 0.308 103.317
γM 0.149 0.027 0.903 -0.063 -0.111 7.653 1.091 0.511 0.329 49.761

The moments here are: Inact = 0.025 > ∆e
e

> −0.025 xrat = exit rate, (ζ1, ζ2) = linear and quadratic
response of employment growth to innovation to profitability shock; ξ1= response of plant-level exit to
profitability shock; emp is median plant size. (α̂, ρ̂, σ̂) are the OLS estimates of revenue curvature as well as
the serial correlation and standard deviation of the profitability shock. All moments are from annual data.

From the top panel, eliminating the quadratic adjustment cost increases the curvature of the response, going

from concave to convex. Likewise, if the quadratic adjustment cost is the only friction, then the response is

convex not concave. From this exercise, it seems that the nonconvex adjustment costs are needed to capture the

concavity of the response. However, looking at the bottom panel which treats each adjustment cost in isolation,

the relationship is concave if there is only one form of adjustment costs including convex adjustment costs. Also,

if there is a single adjustment cost, then the linear part of the response is much higher than the baseline.

A related but distinct inference from Table 6 is that each of the components of the adjustment costs is important
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as the overall fit worsens considerably relative to the baseline in all cases. The worst fit emerges from keeping only the

convex component (bottom panel). The best fit emerges from eliminating only the convex component (top panel).

However, this is a relative statement as the fit is much worse than the baseline in this case. Moreover, as noted above,

eliminating the convex component makes the intensive responsiveness relationship between growth and innovations

convex rather than concave – inconsistent with the data. In contrast, eliminating either nonconvex component makes

the intensive responsiveness relationship too concave relative to the baseline. Getting the right magnitudes and

curvature of the intensive responsiveness relationship apparently requires both convex and nonconvex components.

These findings relate to the discussion in Ilut, Kehrig, and Schneider (2018) about the source of the concavity

of the growth and innovation relationship. Ilut, Kehrig, and Schneider (2018) are agnostic about the source of this

observed concavity but indicate it may reflect the pattern of adjustment costs. Table 6 highlights that a mixture of

convex and nonconvex adjustment cost components is important for capturing the observed concave relationship.

5 Decomposing the Decline in Dynamism

This section decomposes the changes in parameter estimates between the 1980s and the 2000s to detect the rel-

ative importance of the four explanations (adjustment costs, impatience, market power and expectations) for the

reduction in responsiveness. There are two approaches taken. The first is simulation based. For this exercise, we

take a subset of parameters and set them at their 1980s estimates, allowing other parameters to remain at their

estimated values for the 2000s sample moments. We use this to determine which parameter changes mattered most

across the two samples in terms of matching both the responsiveness moments and all other moments. The second

involves re-estimation of key parameters. In this case, a subset of the parameters are re-estimated to fit the 2000s

responsiveness moments, holding the others fixed at their estimated values for the 1980s. The model fit is evaluated

both in terms of matching the targeted moments as well as the untargeted ones.

5.0.1 Simulation Based Decomposition

Table 7 reports the results for the simulation based decomposition, where the top panel reports the data moments

and the simulated moments from the best-fitting model with piece-wise linear adjustment costs, all for the 2000s.

Within the middle panel, each row corresponds to one of the four leading explanations for the reduction in respon-

siveness. For each of these, the associated parameters are kept at their estimated 1980s values, else parameters are

at their 2000s estimated values. So, for example, in the third row of the second block, α is set at its 1980s estimated

value of 0.5399 rather than its 2000s estimated value of 0.5231. With all other parameters at their estimated 2000s

values, we evaluate the effect on the moments and therefore the fit of the small change in α. This exercise is

repeated for the other cases.

The rows of Figure 3 illustrate responsiveness implications for these experiments. The dark curve is the 2000s

baseline and consistent with the middle panel of Table 7 the “treatment” comes from holding a particular set of

parameters at their 1980s values. If a mechanism is an important part of the change in responsiveness then the
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Table 7: Simulated Moments: Sources of Changes

Inact xrat ζ1 ζ2 ξ1 emp α̂ ρ̂ σ̂ £
2000s Data 0.243 0.083 0.064 -0.035 -0.059 8.900 0.959 0.682 0.408 na
1980s Baseline 0.201 0.053 0.149 -0.061 -0.140 10.064 0.937 0.394 0.336 1.050
2000s Baseline 0.214 0.053 0.065 -0.036 -0.108 8.759 0.918 0.350 0.369 1.089

β 0.212 0.040 0.134 -0.099 -0.093 8.295 0.975 0.381 0.379 5.334
C(·) 0.202 0.048 0.140 -0.092 -0.109 8.435 0.948 0.363 0.369 5.262
α 0.219 0.056 0.052 -0.014 -0.109 14.630 0.914 0.356 0.373 1.894
(ρ, σ) 0.250 0.067 -0.024 -0.014 -0.158 9.902 0.863 0.343 0.333 5.420
β,C(·) 0.187 0.035 0.212 -0.138 -0.085 8.123 1.007 0.404 0.380 14.667
(β, ρ, σ) 0.252 0.056 0.037 -0.065 -0.144 9.729 0.905 0.367 0.341 3.327
(C(·), ρ, σ) 0.236 0.063 0.050 -0.051 -0.160 9.559 0.889 0.354 0.332 3.521
ν 0.217 0.051 0.098 -0.038 -0.108 8.632 0.931 0.356 0.369 1.378
γP 0.213 0.053 0.065 -0.037 -0.108 8.759 0.918 0.350 0.369 1.091
γM 0.198 0.050 0.104 -0.075 -0.108 8.453 0.928 0.354 0.369 2.820

The moments here are: Inact = 0.025 > ∆e
e

> −0.025 xrat = exit rate, (ζ1, ζ2) = linear and quadratic
response of employment growth to innovation to profitability shock; ξ1= response of plant-level exit to
profitability shock; emp is median plant size. (α̂, ρ̂, σ̂) are the OLS estimates of revenue curvature as well as
the serial correlation and standard deviation of the profitability shock. All moments are from annual data.

treatment relationship should move in the direction of the 1980s responsiveness relationship in the right panel of

Figure 1.

From Table 3, the decline in α goes the right way to induce a decline in responsiveness. However, the estimated

decline in α is too small to have much of a quantitative effect. This is evident in the modest change in the fit of

the model in Table 7 and the modest effect of this experiment on the responsiveness relationship in Figure 3. In

combination, the results don’t support changing revenue curvature as a primary source of declining responsiveness.

The experiment for the stochastic processes shows that imposing 1980s values of stochastic processes yields

a noticeably worse fit – showing that getting these parameters right is important. However, imposing the 1980s

stochastic processes goes the wrong way in terms of accounting for changes in responsiveness – the relationship

becomes much flatter (and actually declining) rather than steeper. In principle, the estimated decline in ρ con-

tributes to declining responsiveness. However, the decline in ρ from the 1980s to the 2000s is modest and according

to Table 5, the increase in σ from the 1980s to 2000s works in the opposite direction. Taken together we find

that responsiveness is greater in the 2000s at the baseline than that implied by keeping the stochastic processes

at the 1980s levels. Given these patterns, we rule out changes in the stochastic process as the source of declining

responsiveness.

Both the discount factor and the adjustment costs exhibit patterns that suggest they are candidates for account-

ing for the declining responsiveness. From the upper row of Figure 3, setting the discount factor or the adjustment

costs back to their 1980s values increases responsiveness. The discount factor is lower in the 2000s and choices

are quite sensitive to this parameter. Keeping β at its 1980s value increases the linear part of the responsiveness

regression almost back to the 1980s level and increases (in absolute value) the coefficient on the quadratic term.
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(a) Discount Rate (b) Adjustment Costs

(c) Market Power (d) Stochastic Process

Figure 3: Employment Growth Response To Innovations: Decompositions
The figure illustrates the changes in responsiveness from the experiments in Table 7. Dark
line is baseline 2000s. Light line sets identified parameter(s) at 1980s values.
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The higher β also increases the OLS estimate of the curvature as the higher responsiveness implies more omitted

variable bias. The estimated adjustment costs, particularly the quadratic and firing costs, rise over the two samples.

From Table 7, the deterioration in fit in the treatment comes in large part due to the responsiveness moments. At

the 1980s values of the adjustment costs, the two regression coefficients, (ζ1, ζ2), are much higher than their values

in the estimated model for the 2000s and in the data. These results are similar to those from the experiment with

β.

Holding the discount factor at the 1980s estimated value has little impact on the inaction rate while holding

the adjustment costs at the 1980s values yields a decline in the inaction rate. On this dimension, the results are

more favorable for the adjustment costs mechanism.

The next to bottom panel of the table considers changes in pairs of parameters. Holding both the discount factor

and the adjustment costs at their 1980s estimated values, the fit of the model deteriorates further, almost tripling

the fit measure (14.667) compared to the first set of experiments. This is not the case when the stochastic process

is coupled with either the discount factor or adjustment costs. For these two cases, the fit does not deteriorate as

much, in part because of the offsetting effects on the responsiveness moments.

To shed further light on the contribution of adjustment costs, the bottom panel of Table 7 repeats this exercise

but reverting to 1980s values for each distinct adjustment cost parameter. Reverting to the 1980s value for γP has

little effect while reverting to the lower 1980s value of either ν or γM have more pronounced effects – especially

γM . The inference we draw is that the increase in both ν and γM from the 1980s to the 2000s are the primary

sources of the declining responsiveness from increased adjustment costs.

These experiments, summarized by both the moments and Figure 3, suggest that the main contributors to the

decreased responsiveness across the decades came from either changes in impatience or in adjustment costs. The

analysis in the next subsection provides additional evidence to help distinguish the main source of the reduction in

responsiveness

5.0.2 Reestimation Based Decomposition

A reestimation based decomposition provides evidence that points to adjustment costs as the primary factor

contributing to the reduction in responsiveness – dominating the role of the discount factor. This alternative

perspective on the source of the reduction in responsiveness comes from an estimation exercise in which most

parameters are kept at their 1980s values, allowing only subsets to be re-estimated. Further, the re-estimation itself

focuses solely on the three moments capturing responsiveness: the two regression coefficients from the employment

growth regression and the response of exit to profitability.25 Thus the exercises addresses the question if any of the

four mechanisms we study could explain the reduction in responsiveness alone, leaving aside the other moments.

For this exercise, Table 8 reports the targeted and data moments while Table 9 presents the estimates. The

rows correspond to the leading explanations for the reduction in responsiveness.

Looking at the C(·) row, the estimates for the three adjustment costs are given in Table 9. Relative to their

25For this exercise, we term these targeted moments.
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Table 8: Targeted Moments: Sources of Changes

Targeted
Case ζ1 ζ2 ξ1 £targ

Data 1980s 0.113 -0.054 -0.081 na
Data 2000s 0.064 -0.035 -0.059 na
Baseline 2000s 0.065 -0.036 -0.108 0.691

β 0.097 -0.035 -0.164 3.433
C() 0.055 -0.035 -0.145 2.145
α 0.140 -0.088 -0.144 5.779
(ρ, σ) 0.134 -0.031 -0.123 2.402

The moments here are: (ζ1, ζ2) = linear and quadratic response of employment growth to innovation to
profitability shock; ξ1= response of plant-level exit to profitability shock. £targ measures the fit of the
model to these moments alone. All moments are from annual data.

1980s and 2000s estimated values, both the linear firing and hiring costs are higher but the quadratic cost is

actually lower. Of course, the estimation exercises differ both in terms of the moments matched and in fixing other

parameters at their 1980s baseline. From Table 8 the 2000s responsiveness moments are matched quite well and the

fit is the closest among these experiments. Of course, there are also three parameters that are being reestimated.

As for the impatience experiment, from Table 9 a value of β = 0.9815, slightly lower than the original 2000s

estimates. This lower value of the discount factor reduces the responsiveness as shown in Table 8. This reduction

in β creates larger responses to profitability on the intensive and on the exit margins compared to the 2000s data

response and so the fit is not nearly as good as the adjustment cost case.

For the stochastic process, the serial correlation is about at its 2000s baseline estimate but the re-estimated

value of σ is lower. As with the impatience experiment, the linear responses on both the intensive and extensive

margins exceed those of the data. In fact, for this case the linear response on the intensive margin exceeds that of

the 1980s data.

As in the previous exercise, variations in α do not produce the reduction in responsiveness seen in the data.

The point estimate of α is slightly lower than the baseline 2000s estimate but the responsiveness is not close to the

data.

Based on this exercise, the most important contributor to the decline in responsiveness is the rise in adjustment

costs. In combination with the simulated based decomposition in the previous section, the rise in adjustment costs

is the factor that works well in both sets of decompositions. Reverting to 1980s adjustment costs yields an increase

in implied responsiveness, a decline in inaction and a poor fit in the 2000s. Estimating changes in adjustment

costs alone leaving other parameters at their 1980s levels and targeting the responsiveness moments yields the best

match to the responsiveness moments in the 2000s. No other mechanism works as well in combination across these

exercises.
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Table 9: Re-estimated Parameters: Sources of Changes

β ν γP γM Γ ω α ρ σ
Baseline 1980s 0.9871 4.3716 4.7281 6.7756 0.8652 0.1424 0.5399 0.8785 0.5887
Baseline 2000s 0.9826 5.2215 4.7473 7.4113 0.8543 0.1257 0.5231 0.8564 0.6288
β 0.9815 4.3716 4.7281 6.7756 0.8652 0.1424 0.5399 0.8785 0.5887
C() 0.9871 4.1702 4.7826 9.1077 0.8652 0.1424 0.5399 0.8785 0.5887
α 0.9871 4.3716 4.7281 6.7756 0.8652 0.1424 0.5222 0.8785 0.5887
(ρ, σ) 0.9871 4.3716 4.7281 6.7756 0.8652 0.1424 0.5399 0.8565 0.6009

5.1 Possible Sources of Increases in Adjustment Costs

The primary message that emerges is that there has been an increase in adjustment costs with both an increase in

convex costs and the linear cost of firing. A limitation of this inference is that adjustment costs are themselves a

black-box and further guidance is needed about the sources of increases in adjustment costs.

In this section, we consider possible sources of these increases in adjustment costs. Decker, Haltiwanger, Jarmin,

and Miranda (2020) and Davis and Haltiwanger (2014) suggest there are numerous sources of increased frictions

in the adjustment of employment in the U.S. They provide evidence of changes in employment-at-will doctrines

in the U.S. judicial system, rising prevalence of occupational licensing, increasing use of non-compete clauses, and

potential indirect factors (such as zoning) that impair geographic labor mobility. Davis and Haltiwanger (2014)

summarize the literature and offer their own evidence that these factors have contributed to declining labor market

fluidity including indicators of business dynamism. These analyses are reduced form rather than structural. We

leave exploring the connection between these potential sources of increasing adjustment costs and our findings of

structural estimates of the changes in adjustment costs for future research. Our findings provide guidance and

discipline on the nature and magnitude of the increase in adjustment costs that such factors must account for.

For example, our findings suggest that one important component is an increase in firing costs. The changing

employment-at-will doctrines in the US is consistent with this pattern. This mapping is interesting and challenging

since we think that the adjustment costs we identify may reflect broader costs of adjusting the scale of operations of

a plant. For example, Decker, Haltiwanger, Jarmin, and Miranda (2020) find that the responsiveness of investment

declines from the 1980s to the 2000s.

In their analysis of four large European countries, Cooper, Horn, and Indraccolo (2023) estimate a dynamic

model of labor demand. Looking across countries they find that differences in labor market frictions are a major

factor explaining differences in responsiveness to profitability shocks.

6 Implications for Productivity and Markups

This section uses the estimated model to look at productivity and markups over the two samples. One point is to

evaluate the productivity implications of the estimated increase in adjustment costs. The second is to explore the

effects of the increase in adjustment costs on measured markups.
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6.1 Productivity

Here we look at the effects on aggregate productivity of the changes in parameters isolated in the previous discussion.

We do so at the quarterly frequency to highlight productivity implications absent time aggregation.26

Table 10 provides insights into the productivity implications of the increase in adjustment costs. The produc-

tivity measures here are (i) the time series average of aggregate revenue per worker (the sum of revenue across all

firms divided by the sum of employment across all firms), a measure of aggregate productivity, (AggProd), (ii) the

time series mean of the cross sectional (across firms) standard deviation of the average revenue product of labor

(Mstd), (iii) the time series mean of the cross sectional (across firms) covariance between the profitability shock

and employment, c(A, e).

Table 10: Productivity Implications

Sample AggProd Mstd corr(A, e)
1980s 1 7.147 0.768
2000s 0.925 7.868 0.720

The statistics are computed from simulated data with best fit parameters from estimation.
Frequency is quarterly. AggProd=1 in 1980s as a normalization.

Table 10 indicates three dimensions of productivity created from simulating our estimated models for the two

sample periods. From our measure of AggProd, the factors that contributed to the reduction in responsiveness led,

all else the same, to a reduction in productivity of about 8%. The reduction in reallocation is seen through the

increased dispersion in the average revenue product of labor, Mstd, and the lower correlation between profitability

and employment. This translates into a reduction in our measure of aggregate productivity.27

To put these numbers into context, the official statistics from the Bureau of Labor Statistics show an increase in

U.S. manufacturing productivity of 29 percent from the 1980s to the 2000s.28 Our results suggest that without the

estimated increase in labor adjustment costs it would have risen by nearly 37 percent. This implies a non-trivial

drag on the increase in productivity from the reduction in responsiveness.

6.2 Markups

The distribution of markups in our model is, by construction, degenerate. Further, our estimation results find

only modest support for variations in the curvature of the revenue function, as an explanation for the reduction in

responsiveness: our estimate of the curvature is slightly lower for the 2000s vs the 1980s sample. These findings

26Interestingly, the productivity implications are influenced by time aggregation. For example, in the no adjustment cost baseline
case, the correlation between the average revenue product of labor and the employment share is, as it should be, near 0 in the quarterly
data. But time aggregation generates a negative correlation on the annual basis.

27Our analysis abstracts from general equilibrium effects influencing aggregate output and input prices, particularly wages. We
impose some discipline on the real wage by targeting median size and the exit rate. Our focus is on the implications of increased
within-industry misallocation induced by rising adjustment costs. All three of the simulated moments we target reflect this increased
misallocation.

28For this purpose we use the increase in total factor productivity from the BLS for the US manufacturing sector. We use the growth
in TFP from the average of the 1980s and the 2000s. Our model environment only has one factor so this is equivalent to total factor
productivity in our model setting. We have not considered the possible increase in capital adjustment costs over this period.
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contrast with those in relative studies. Prominently, De Loecker, Eeckhout, and Unger (2020) argue that markups,

particularly of large (revenue-based weights) firms, have risen considerably since the 1980s. They suggest that this

may be the source of the observed reduction in responsiveness.

Some aspects of our results are not necessarily inconsistent with the De Loecker, Eeckhout, and Unger (2020)

findings for a couple of reasons. First, the estimated curvature of the revenue function reflects both markups and

factor shares. But, importantly, it is the curvature of the revenue function that matters for responsiveness, not the

markup per se. Second, they report that the unweighted average markup has not changed nearly as much as that

of the revenue-weighted markup.

Relatedly, De Loecker, Eeckhout, and Unger (2020) find that much of the increase in the revenue-weighted

markup reflects reallocation towards large revenue firms that have higher markups. Since our analysis has no

dispersion in actual markups across firms, at first glance it appears we are not capturing this important feature of

their findings and potentially important part of the impact of changing markups on responsiveness. However, while

our model yields no dispersion in actual markups, our model yields dispersion in the measured markups using the

De Loecker, Eeckhout, and Unger (2020) measurement approach.

Specifically, De Loecker, Eeckhout, and Unger (2020) calculate the markup, defined as the ratio of price over

marginal cost, through a first-order condition from cost minimization, without adjustment costs. This yields:

µit = θit/lsit (9)

where µit is the measured markup, θit is the output elasticity of labor and lsit is the share of total revenue that

is paid to labor.29 Throughout, i is a plant and t is time. This measurement approach for estimating markups is

often denoted the production or ratio approach.

In the absence of adjustment costs and with fixed factor and demand elasticities within subperiods, the labor

share will be equalized across firms. However, adjustment costs yield variation in the labor share across firms even

in the presence of fixed factor and demand elasticities. To explore how much variation we obtain in measured

markups using the adjustment costs, we proceed as follows. From our simulated data, we can uncover lsit. We

begin by setting θi,1980s = 0.673 for all i, which is the value required to match the revenue-weighted mean markup

in De Loecker, Eeckhout, and Unger (2020) in the early 1980s (from Figure 6 of their paper). We fix this value and

then simulate the model using the estimated parameters for the 1980s and 2000s decades (including the estimated

variation in α).

Results are reported in Table 11. We find that measured markups increase non-trivially between the 1980s and

2000s – about half of the magnitude of the increase in markups in US manufacturing over this period reported

by De Loecker, Eeckhout, and Unger (2020). We also compute a number of additional moments of markups.

Specifically, we compute the revenue-weighted median, revenue-weighted 90th percentile, the correlation of the

markup with the market share in terms of revenue, and the correlation of the markup with productivity. The

29Bond, Hashemi, Kaplan, and Zoch (2021) argue that this revenue based measure of labor share implies, as a matter of theory, that
the resulting markup is 1 regardless of the true markup when there are no labor adjustment costs.
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first three of these moments are reported in De Loecker, Eeckhout, and Unger (2020) and they also report results

that imply a positive relationship between markups and market share as well as productivity. They highlight

that the increase in the gap between the 90th and median is an indicator of rising dispersion and skewness in the

revenue-weighted distribution of markups.

Our simulated model with adjustment costs yields substantial dispersion in measured markups and a positive

relationship between measured markups and market share as well as a positive relationship between measured

markups and productivity. This is true for the cross sections in both the 1980s and 2000s. This is in spite of

there being no cross-sectional variation in actual markups in our framework and only a modest reduction in α

across the two sample periods. The increase in dispersion in markups is not as large as reported by De Loecker,

Eeckhout, and Unger (2020) but there are likely other factors at work beyond adjustment costs that account for

the increase in measured markup dispersion without increases in the actual markup dispersion.30 In terms of

skewness, De Loecker, Eeckhout, and Unger (2020) don’t report the 10th percentile but this is easy to calculate in

our simulated data. Using this calculation we can compute a measure of changing skewness given by the change in

the difference between the 90−50th percentile and the 50th−10th percentile. We find that this difference increases

from 0.07 to 0.15 from the 1980s to 2000s implying an increase in not only dispersion but skewness.

The bottom panel of Table 11 provides some counterfactuals intended to decompose the changes in the markup

distribution over time by setting some parameters back to their 1980s values. From these results, there is no single

mechanism that explains the findings. Holding adjustment costs at their 1980s estimates reduces the mean markup

slightly. The lower estimate of α in the 2000s plays a slightly larger role: setting this curvature at its 1980s value

leads to a larger reduction in the average markup. Coupling these, the mean markup falls to 1.62. Combining this

with setting the stochastic process at its 1980s value almost reproduces the 1980s findings.

We recognize that we have not considered mechanisms that yield a true rise in revenue-weighted markups due to

a combination of heterogeneous true markups and a shift in activity towards high markup firms (as in De Loecker,

Eeckhout, and Mongey (2021)).31 However, the evidence of such a change in revenue-weighted markups due to

reallocation effects to high markup firms is reliant on the indirect production approach. Our point here is that other

mechanisms such as rising adjustment costs can yield an increase in the revenue-weighted dispersion, skewness and

average of measured markups using the production approach.

7 Conclusions

The point of this paper is to assess various explanations for the observed reduced responsiveness in labor demand

to variations in profitable opportunities. The evidence is low frequency, a comparison between the 1980s and the

2000s. This reduction in responsiveness can have adverse aggregate productivity implications insofar as it reflects

30Foster, Haltiwanger, and Tuttle (2020) provide evidence that rising dispersion in factor elasticities accounts for a substantial fraction
of rising dispersion in measured markups and the revenue weighted mean. Relatedly, Bond, Hashemi, Kaplan, and Zoch (2021) highlight
the challenges of estimating factor elasticities using revenue and input data.

31De Loecker, Eeckhout, and Mongey (2021) generate heterogeneous markups in their model using a model with oligopolistic com-
petition that features higher markups for larger, more productive firms.
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Table 11: Moments of Measured Markups

Mean µ Median µ P90 µ Corr(µ, R∑
R ) Corr(µ,A)

1980s
Data 1.55 1.40 2.40 na na

Model 1.55 1.50 2.12 0.18 0.45
2000s

Data 1.80 1.65 3.20 na na
Model 1.69 1.61 2.44 0.20 0.48

set at 1980s est. 2000s Decompositions
C(·) 1.67 1.61 2.39 0.23 0.50
α 1.64 1.57 2.36 0.17 0.47
β 1.67 1.61 2.42 0.27 0.54
ρ, σ 1.64 1.58 2.30 0.13 0.43
C(), α 1.62 1.56 2.32 0.21 0.49

C(), α, ρ, σ 1.57 1.52 2.19 0.14 0.44

The markup measures follow De Loecker, Eeckhout, and Unger (2020) and are revenue
weighted. Here P90 is the 90th percentile. The model moments are computed from sim-
ulated data with best fit parameters from estimation. Frequency is quarterly.

limitation to the process of factor reallocation.

Our approach uses simulated method of moments to estimate parameters of a plant-level optimization problem

to match patterns across these two decades. The moments include the type of responsiveness measures that have

sparked this literature.

Our main findings are easily summarized: much of the reduction in reallocation stems from increased costs in

labor adjustment. While other explanations, such as changes in impatience, market power and the stochastic process

governing revenues could also reduce responsiveness, they were less able to do so while simultaneously matching

other moments. The increase in adjustments costs itself seems to be broad based, including both quadratic as well

as the linear costs of firing workers.

Increased costs of labor adjustment yield aggregate productivity losses. Based on our estimates, aggregate

productivity in U.S. manufacturing would have been 8 percentage points higher in the 2000s if adjustment costs

had remained at their 1980s estimated levels. The increased frictions also imply increased dispersion in revenue

labor productivity across businesses.

The increase in labor productivity dispersion has additional implications for measuring markups using the

production approach, used for example in De Loecker, Eeckhout, and Unger (2020). Our findings imply substantial

and rising dispersion in measured markups from the production approach without any variation in actual markups

across firms. Moreover, we find that the measured markup at the micro level is increasing in productivity and the

revenue share of the business. Looking across decades, the model generates about half of the increased markup

reported in De Loecker, Eeckhout, and Unger (2020), with only a modest reduction in the curvature of the revenue

function. Other factors (e.g., the type of superstar effects highlighted by Autor, Dorn, Katz, Patterson, and

Van Reenan (2020)) that account for rising concentration can also yield an increase in the revenue-weighted mean
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markup in combination with the dispersion in measured markups from the adjustment costs.

Future research should extend this structural analysis in a number of directions. First, we permitted no

structural heterogeneity across firms by observable characteristics such as industry, firm age and firm size. Given

the observed structural changes even within manufacturing on these dimensions, such heterogeneity might be

important for accounting for declining dynamism. Moreover, such structural heterogeneity may be important in

accounting for higher moments of the productivity and in turn measured markup distribution. Second, this type of

structural analysis should be extended beyond manufacturing. While it is more challenging to measure micro level

profit shocks outside of manufacturing, the evidence shows that the declines in the pace of employment reallocation

is even more dramatic. The simulated method of moments approach we use has the potential to overcome these

measurement limitations since it permits using the same restrictions in the simulated moments as in the actual

data moments.
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Data Appendix

Our core moments build on the data infrastructure from Foster, Grim, and Haltiwanger (2016) and Decker, Halti-

wanger, Jarmin, and Miranda (2018) (an an earlier working paper version of Decker, Haltiwanger, Jarmin, and

Miranda (2020)) integrating the ASM and the LBD from from 1980 to 2010. We use the ASM to generate measures

of profitability shocks and we use the LBD to construct measures of employment growth for continuing and exiting

manufacturing establishments. Importantly, we are using the LBD to measure employment growth outcomes and

exit and not the ASM. Using the latter yields spurious exit from ASM panel rotation. Moreover, focusing only on

the plants that are in consecutive years of the ASM to analyze the intensive margin is restrictive since this will be a

non-representative set of plants. Our use of the LBD mitigates this issue which we further address by using inverse

propensity score weights to take into account the probability in any given year that a manufacturing plant in the

LBD is sampled in the ASM. See Decker, Haltiwanger, Jarmin, and Miranda (2018) for more details about the

construction of the inverse propensity score weights. We follow the measurement and timing conventions of Decker,

Haltiwanger, Jarmin, and Miranda (2018). In this respect, the representative sample with propensity score weights

for the analysis of responsiveness with respect to innovations follows the approach in that paper (and the other

cited papers in this discussion). As noted in the text, the reponsivness regressions using the actual data permit

the coefficients to vary by year using a quadratic trend. We use the estimated coefficients from those specifications

to compute responsiveness effects by year and then take decade averages of those annual responsiveness effects.

The LBD is used for the inaction and median moments. The exit rate moments are based on the Business

Dynamic Statistics (BDS) that are in turn based on the LBD. The moments in Table 2 are decade averages of

annual statistics. The annual statistics have been adjusted for time varying cyclicality in a manner similar to the

cyclical adjustments in our responsiveness regression (see the discussion of controls in that specification). This

adjustment does not matter much in practice but the objective is for the differences in decade averages to reflect

low frequency variation that is the focus of this paper.
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