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Abstract

The integration of algorithmic trading with reinforcement learning, known as AI-powered
trading, has significantly impacted capital markets. This study employs a theoretical labo-
ratory characterized by information asymmetry and imperfect competition, where informed
AI speculators serve as the subjects of our simulation experiments. It explores how AI tech-
nology impacts market power, information rents, price informativeness, market liquidity,
and mispricing. Our findings show that informed AI speculators can autonomously learn
to sustain collusive supra-competitive profits without any form of agreement, communica-
tion, intention, or any interactions that might violate traditional antitrust regulations. AI
collusion robustly emerges from two distinct mechanisms: one through price-trigger strate-
gies (“artificial intelligence”) when price efficiency and noise trading risk are both low, and
the other through self-confirming bias in learning (“artificial stupidity”) under other conditions.
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1 Introduction

The integration of algorithmic trading with reinforcement learning (RL) algorithms, often termed

AI-powered trading, poses new regulatory challenges and has the potential to fundamentally

reshape capital markets.1 With Nasdaq receiving SEC approval for an RL-based, AI-driven order

type, the momentum for AI integration in trading continues to build. Leading digital trading

platforms are endorsing RL-based AI trading bots, and major hedge funds, along with investment

powerhouses, are adopting AI technologies. This trend has led policymakers, regulators, and

financial market supervisors worldwide to make AI a regulatory priority.2

The U.S. Securities and Exchange Commission (SEC) has recently issued warnings about the

potential for AI collusion that could undermine competition and market efficiency. The concern

is that AI algorithms might autonomously optimize themselves to cooperatively benefit a select

few sophisticated speculators at the expense of other investors. SEC Chair Gary Gensler has

emphasized this concern, noting that there is evidence of machines in high-frequency trading

starting to exhibit cooperative behavior independently of human intervention or interaction.

Promoting competition in financial markets is a primary objective of the SEC and similar

regulatory bodies worldwide. As such, the potential for collusion among AI trading algorithms is

a significant concern for these organizations. However, the underlying scientific and economic

principles of such “cooperation” among autonomous AI algorithms remain unclear, not to mention

how it might affect the price formation process and overall market efficiency. In this paper, we

demonstrate that “AI collusion” – where autonomous, self-interested algorithms independently

learn to coordinate without any form of agreement, communication, or intention – can robustly

occur via one of two distinct mechanisms: collusion through price-trigger strategies or self-

confirming bias in learning. The emergence of these mechanisms depends on the conditions of the

trading environment. We find that AI collusion impairs competition and thereby market efficiency,

leading to reduced liquidity, less informative pricing, and increased mispricing.

The economics of AI collusion in trading can be intuitively understood as follows. On one hand,

consider a trading environment where subgame perfect collusive Nash equilibria theoretically

1Traditional algorithmic trading is based on rigid, human-defined trading protocols that are hardcoded.
2For example, the SEC proposed novel rules concerning the application of AI technologies (SEC, 2023). Additionally,

the European Securities and Markets Authority (ESMA) published a report on AI utilization within EU securities
markets (Bagattini, Benetti and Guagliano, 2023).
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exist for rational-expectations agents, supported by price-trigger strategies as introduced by Green

and Porter (1984). In this environment, even without direct monitoring of trading behaviors,

agents can develop collusive incentives. This is achieved by allowing non-collusive competition to

occur when market prices diverge from the expected collusive level beyond a certain threshold. If

the trading environment is not overly disrupted by noise trading flows, AI algorithms have the

capacity to interact and learn, ultimately achieving a steady state, within which they engage in

collusive trading based on a price-trigger strategy. On the other hand, in a trading environment

where subgame perfect collusive Nash equilibria do not theoretically exist, AI algorithms cannot

learn to sustain collusion through price-trigger strategies. Instead, they may converge to a steady

state characterized by an experience-based equilibrium, as introduced by Fershtman and Pakes

(2012), or a self-confirming equilibrium, as introduced by Fudenberg and Levine (1993). These

equilibrium concepts are fundamentally connected and are weaker than Nash equilibrium. They

allow for potentially incorrect or biased off-equilibrium valuations or beliefs, which align tightly

with the learning and trading behaviors of AI algorithms. Valuations and beliefs may be accurate

along the equilibrium path, as this is more commonly observed, but can be inaccurate off the

equilibrium path, unless there is sufficient exploration of non-optimal actions (e.g., Fudenberg and

Kreps, 1988, 1995; Cho and Sargent, 2008). Crucially, these incorrect off-equilibrium valuations or

beliefs are not necessarily inconsistent with observed outcomes along the equilibrium path.

Notably, AI algorithms are distinct from human traders in that they do not simply mimic

human behavior. Traditional theories and experimental studies about human behavior are

insufficient for understanding AI traders’ behavior and the equilibria they might form. This is

because AI possesses a fundamentally different form of intelligence. Unlike humans, AI decision-

making is not influenced by emotions or logical thinking; rather, it is driven primarily by pattern

recognition and is not affected by higher-order beliefs. Therefore, understanding the dynamics

of capital markets with the prevalence of AI-powered trading algorithms requires insights into

algorithmic behavior akin to the “psychology” of machines (Goldstein, Spatt and Ye, 2021), in

a similar vein to how decision theory and psychology literature have provided insights into

modeling human behavior in an economic context. In this paper, we conduct an experimental

study to examine the behavior of AI algorithms endowed with private information. Following the

tradition of experimental research, our study is qualitative and intended as a proof-of-concept
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demonstration.

In this paper, we adopt a streamlined theoretical framework as our laboratory. Building

upon the seminal work of Kyle (1985), we extend this framework in two novel ways. First, our

model incorporates multiple informed speculators within a repeated-trading context. Second,

we introduce a continuum of atomistic, information-insensitive investors who collectively create

a downward-sloping demand curve, along with the inventory cost concerns of market makers.

These factors together introduce price inefficiency, in contrast to the efficient pricing in the Kyle

(1985) baseline. Within each trading period, agents execute a single transaction. The sequence

of events for each period unfolds as follows: Initially, the fundamental value of the asset is

determined. Subsequently, a continuum of noise traders collectively places an order flow, which is

independent of the asset’s fundamental value. The variance of such an aggregate noise trading

flow encapsulates the noise trading risk (Long et al., 1990). This noise trading risk is a crucial

characteristic of the trading environment. Each oligopolistic informed speculator is aware of the

fundamental value but remains uninformed about the noise trading flow when determining his

or her optimal trading strategy. The market maker, in turn, sets the market price with the goal of

minimizing the weighted average of inventory costs and pricing errors. In doing so, the market

maker also takes into account the price elasticity of the information-insensitive investors’ demand.

This price elasticity represents another critical characteristic of the trading environment.

In our experimental study, we position our subjects – AI algorithms – within the laboratory

framework we have established. Specifically, we substitute the rational-expectations informed

speculators and market maker as in Kyle (1985)’s model with Q-learning algorithms. These

algorithms are tasked with learning and guiding the real-time trading decisions. Known for

their simplicity, transparency, and economic interpretability, Q-learning algorithms provide a

foundational basis for various RL procedures that have significantly advanced the AI domain.

Our theoretical framework, coupled with simulation-based experiments that blend theoretical

rigor with practical relevance, serves as a laboratory for examining the impact of AI-powered

trading strategies. Specifically, it allows us to investigate their influence on the market power of

informed AI speculators, as well as on the price formation process, including implications for

market liquidity, price informativeness, and mispricing within financial markets.

To ascertain whether informed AI speculators’ behavior exhibits collusion sustained by price-
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trigger strategies due to the intelligence of the algorithms, our analysis starts with examining the

theoretical properties of tacit collusion that can be maintained through price-trigger strategies.

This analysis is based on the assumption that both the informed speculators and the market maker

operate under rational expectations and have a thorough understanding of the demand curve of

information-insensitive investors. We examine how tacit collusion varies across different trading

environments. This includes variations in the price elasticity of information-insensitive investors

and noise trading risk levels, as well as variations in the number of informed speculators and their

time discount rates. This theoretical investigation enables us to establish a baseline understanding

of collusive behavior in the presence of asymmetric information and the endogenous strategic

pricing rules of the market maker. Importantly, it lays the groundwork for our experimental study

on the AI trading behavior, wherein we assess whether the observed collusion of informed AI

speculators aligns with the theoretical predictions under the assumption of rational expectations

and perfect knowledge of the demand curve of information-insensitive investors.

As a noteworthy theoretical contribution, we establish a novel result on the impossibility of

collusion under information asymmetry. We demonstrate that informed speculators are unable to

achieve collusive outcomes through price-trigger strategies in certain conditions. This includes

scenarios where market prices are already efficient, accurately reflecting the asset’s fundamental

value, especially when information-insensitive investors have high price elasticity of demand,

thereby playing a minimal role in price formation. Another scenario precluding collusion is when

the noise trading risk is excessively high. This novel result illuminates a mechanism distinct from

existing theories on the impossibility of collusion under information asymmetry in the context of

product market competition (Abreu, Milgrom and Pearce, 1991; Sannikov and Skrzypacz, 2007).

Intuitively, sustaining price-trigger collusion requires two conditions: first, monitoring necessitates

high price informativeness, and second, maintaining informational rents requires a low price

impact of informed trading. These two conditions cannot be simultaneously met when price

efficiency or noise trading risk is high.

Furthermore, as an additional theoretical contribution, we illustrate that in scenarios where

information-insensitive investors, exhibiting low price elasticity of demand, significantly influences

price formation, market prices can become inefficient. In such cases, tacit collusion among

informed speculators can be sustained through price-trigger strategies. The success of these
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strategies is contingent on the degree of price efficiency and the level of noise trading risk in

the market. We find that price-trigger strategies can only sustain collusion in markets with both

low price efficiency and low noise trading risk. Additionally, we show that collusion capacity

increases, market liquidity decreases, price informativeness decreases, and mispricing increases,

when the number of informed speculators drops, the level of noise trading risk decreases, or the

subjective discount rate factor increases.

Having established the baseline theoretical results, we now turn back to our simulation experi-

ments, which involve informed AI speculators using Q-learning algorithms. These simulations

provide compelling evidence that these AI speculators can robustly collude and secure supra-

competitive profits by strategically manipulating excessively low order flows relative to their

information about the asset’s fundamental value. This occurs without any form of agreement

or communication that would typically be seen as an antitrust infringement. The cruciality, and

even necessity, of communication in collusion among humans is well-documented in the literature

of experimental economics. To underscore the concept of AI collusion in our simulations, we

deliberately employ relatively simple Q-learning algorithms that base their decisions solely on

one-period-lagged asset values and prices as state variables. This approach is intentional, omitting

more extensive lagged data, such as information on lagged self-order flows or multiple-period-

lagged asset prices. Although the trading environment is excessively complex relative to the simple

AI algorithms used, our simulation results remarkably indicate that informed AI speculators can

intelligently form collusion across diverse trading environments. Specifically, in environments

characterized by low price efficiency and low noise trading risk, the behavior of algorithmic

collusion aligns with the predictions of our rational-expectations model, where informed AI

speculators are capable of learning price-trigger strategies to sustain collusion. Conversely, in

environments with high price efficiency or high noise trading risk, informed AI speculators are

unable to learn price-trigger strategies, consistent with our rational-expectations model predic-

tions. However, strikingly, going beyond the rational-expectations model, our simulation results

demonstrate that informed AI speculators can still collude and achieve supra-competitive profits

by manipulating excessively low order flows, even without relying on traditional price-trigger

strategies, provided they use equally naive algorithms. These findings suggest the existence of two

distinct mechanisms underpinning algorithmic collusion, depending on the trading environment.
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Finally, we elaborate further on the two distinct mechanisms behind AI collusion across various

trading environments. The first mechanism, known as “algorithmic collusion through price-

trigger strategies,” involves a form of collusion driven by “artificial intelligence.” In this scenario,

informed AI speculators have the capability to learn and implement price-trigger strategies

effectively. This price-trigger strategy enables the AI speculators to sustain collusion and reach

a steady state resembling a subgame perfect Nash equilibrium, despite not following it exactly.

Such a scenario can only occur if both price efficiency and noise trading risk are low. Leveraging

simulation experiments, we provide direct evidence that sizable price deviations trigger aggressive

trading flows similar to those in a non-collusive Nash equilibrium, which diminishes the trading

profits of all informed AI speculators. While the underlying mechanisms through which AI

speculators learn to conduct the price-trigger trading strategy, thereby achieving algorithmic

collusion, may differ from those behind how humans would learn to coordinate using price-

trigger trading strategies, the resulting patterns exhibit notable similarities. At the heart of these

mechanisms, whether involving AI or human speculators, the threat of punishment effectively acts

as a deterrent, discouraging individual speculators from violating the collusive agreement. Closely

aligned with the theoretical predictions of a collusive Nash equilibrium sustained by price-trigger

strategies with rational-expectations agents, as the number or impatience of speculators decreases,

the extent of achievable collusion increases. This leads to reduced market liquidity, diminished

price informativeness, and increased mispricing.

Importantly, algorithmic collusion through price-trigger strategies introduces a paradoxical

situation concerning price informativeness. This paradox arises because such collusion relies on

the informativeness of prices – specifically, the ability of an informed AI speculator to infer the

order flows of other informed AI speculators from observed prices. High price informativeness

typically characterizes environments where prices are sensitive to new information about the

fundamental value of the asset and are not predominantly driven by noise trading flows. However,

in such environments, the heightened price informativeness actually facilitates informed AI

speculators in discerning each other’s order flows, thereby strengthening collusion among them.

This stronger collusion, in turn, endogenously compromises price informativeness by distorting

the information content of prices – specifically, it reduces the responsiveness of prices to new

information about the fundamental value of the asset. Consequently, in a capital market dominated
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by AI-powered trading, where algorithmic collusion through price-trigger strategies is prevalent,

achieving perfect price informativeness becomes unattainable.

The second mechanism, known as “algorithmic collusion through self-confirming bias in

learning,” involves a form of collusion driven by “artificial stupidity.” Despite the learning biases

originating from intrinsic features of the RL algorithms, informed AI speculators might still

achieve and sustain supra-competitive profits. In the context of RL learning, the emergence of

a learning bias is directly linked to inconsistencies in statistical learning. These inconsistencies

often stem from an asymmetric effect of exploitation on learning, especially when noise trading

risk is excessive. This inherently asymmetric effect of exploitation leads informed speculators

to under-react to their private information in their learned trading strategies, compared to the

optimal strategy in a non-collusive equilibrium setting. Consider a scenario in which an RL-based

AI speculator explores a trading strategy that aggressively responds to private information and

receives a positive signal about the asset’s fundamental value. If a substantial and positive noise

trading flow occurs, this could result in significant losses for the AI speculator. Consequently,

the RL algorithm is unlikely to revisit and update its understanding of this state-strategy pair

sufficiently, consistently deeming this strategy as suboptimal for the given state. This means the

initial adverse effect on the Q-function at the state-strategy pair due to such a shock is unlikely

to be mitigated in subsequent iterations. Conversely, if a substantial and negative noise trading

flow occurs, it could lead to significant gains for the AI speculator. In this fortunate case, the

RL algorithm is more likely to revisit and thoroughly understand the performance of this state-

strategy pair, adequately exploiting it, and thus, the initial beneficial effect on the Q-function at

this pair may be averaged out, which even leads to accurate estimations of Q-function at this

state-strategy pair. Such severe asymmetric learning outcomes from large positive and negative

noise trading flows can lead AI speculators to generally under-react to their private information

in their learned trading strategies.

This learning bias steers informed AI speculators toward a steady state where trading behaviors

can be accurately characterized by an experience-based equilibrium, as introduced by Fershtman

and Pakes (2012), or a self-conforming equilibrium, as introduced by Fudenberg and Levine

(1993). In contrast to the Nash equilibrium, these equilibrium concepts are weaker because they

permit players to hold incorrect (or biased) off-equilibrium valuations or beliefs. This concept
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of equilibrium is motivated by the idea that noncooperative equilibria should be interpreted as

outcomes of a learning process, where players form beliefs based on their past experiences. While

beliefs can generally be correct along the equilibrium path of play due to its frequent observation,

they are not necessarily correct off the equilibrium path. Correct beliefs off the equilibrium path

require players to engage in sufficient experimentation with non-optimal actions, as suggested in

works by Fudenberg and Kreps (1988), Fudenberg and Kreps (1995), and Cho and Sargent (2008).

These two types of AI collusion, while both generating supra-competitive trading profits, can

exhibit opposite collusive behaviors as trading environments vary. In AI collusion through price-

trigger strategies, a decrease in noise trading risk or an increase in the subjective discount rate

factor leads to increased collusion capacity. This results in reduced market liquidity, diminished

price informativeness, and increased mispricing. In contrast, AI collusion through self-confirming

bias in learning shows that an increase in the subjective discount rate factor has little impact on

the collusive experience-based equilibrium. Moreover, unlike price-trigger strategies, an elevation

in noise trading risk enhances the potential for collusion due to a more pronounced learning bias,

leading to reduced market liquidity, diminished price informativeness, and increased mispricing.

Notably, in the scenario with price-trigger strategies, the collusive, supra-competitive trading

profit of informed AI speculators primarily comes from trading against information-insensitive

investors. Conversely, in the case of AI collusion through self-confirming bias in learning, these

profits are significantly, if not entirely, derived from trading against noise traders.

Homogenization is instrumental, though not necessary, for AI collusion to be achieved, regard-

less of the mechanism through which it occurs. Homogenization can emerge when speculators

use similar foundational models, effectively forming a type of hub-and-spoke conspiracy.3 John-

son and Sokol (2021) emphasize the prevalence of this type of AI collusion in the context of

e-commerce platforms, observing that many retailers adopt similar or even identical AI pricing

algorithms. Specifically, anti-competitive effects may emerge when multiple competitors use the

same AI pricing algorithm supplied by a common service provider, who serves as the hub. In

the financial markets, informed speculators often rely on similar foundational models for their

AI-powered trading systems. This practice, whether intentional or not, can result in a significant
3In the context of product market competition, the term “hub-and-spoke conspiracy” is a metaphor used to describe

a cartel that includes a firm at one level of a supply chain, typically a supplier, acting as the “hub” of a wheel. Vertical
agreements down the supply chain represent the “spokes.” This common supplier facilitates the implicit coordination
among its customers.
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degree of homogenization, a phenomenon documented by Bommasani et al. (2022), among others.

Furthermore, homogenization can also emerge due to the autonomous learning of two-layer

AI-powered trading systems. Although adopting superior algorithms can disrupt the collusion

created by self-confirming bias in learning, it is likely that no AI speculator would choose to

gain an advantage by using superior algorithms due to the nature of AI collusion. Intuitively,

if one speculator adopts a superior algorithm, it could render the trading strategies of other AI

speculators unprofitable, thereby compelling them to adopt equally or more advanced algorithms.

This could spark a race towards algorithmic advancement, ultimately leading to an equilibrium

where trading profitability is minimal for every AI speculator. Consequently, AI speculators

autonomously learn to adopt similarly basic algorithms in equilibrium. To illustrate this point,

we consider a simple extension of the baseline Q-learning algorithms, wherein informed AI

speculators are able to learn both the key parameter that governs the sophistication of their

Q-learning algorithms and their trading strategies based on the AI-chosen Q-learning algorithm.

Our simulation experiments robustly demonstrate that informed AI speculators may collectively

opt for less advanced algorithms. This occurs despite the potential for increased self-profit that

could come from unilaterally choosing a more advanced algorithm while others’ algorithms

remain fixed.

Related Literature. The topic of autonomous cooperation among multiple Q-learning agents in

repeated games has garnered significant attention from researchers in the artificial intelligence

and computer science community over the past decades (e.g., Sandholm and Crites, 1996; Tesauro

and Kephart, 2002). Given the widespread adoption of AI technologies in pricing decisions

across various marketplaces, Waltman and Kaymak (2008) demonstrate that Q-learning firms

typically learn to attain supra-competitive profits in repeated Cournot oligopoly games with

homogeneous products, even though a perfect cartel is usually unattainable. Klein (2021) also

examines the strategies employed by algorithms in a context where firms selling homogeneous

products alternate in adjusting prices to support supra-competitive profits. Recently, in a note-

worthy contribution, Calvano et al. (2020) study collusion by AI algorithms in a logit model

of differentiated products, not only uncovering the existence of supra-competitive profits but

also pinpointing how algorithms might learn to sustain collusive outcomes through grim-trigger
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strategies. Expanding upon this, our paper extensively broadens the AI experimental framework,

moving from a scenario of perfect information and a static demand curve to one imbued with

asymmetric information and a strategically-determined demand scheme. We characterize the

various types of AI algorithmic collusion, whether occurring through price-trigger strategies or

through self-confirming bias in learning, across diverse market environments.

Inspired by the simulation-based studies on AI algorithmic collusion, empirical research has

also emerged, demonstrating that the use of AI algorithms in setting product prices can lead to

collusion, resulting in heightened supra-competitive prices (e.g., Assad et al., 2023). Additionally,

recent studies have started to focus on policy interventions aiming to obstruct the ability of

algorithms to collude, thereby ensuring the maintenance of competitive prices. Specially, based on

simulation-based studies, Johnson, Rhodes and Wildenbeest (2023) show that platform design can

benefit consumers and the platform. However, achieving these gains may require policies that

condition on past behavior and treat sellers in a non-neutral fashion. Harrington (2018) delves into

critical policy issues surrounding the definition of collusion, such as whether collusion should

necessarily entail an explicit agreement among conspirators, or if it might be more aptly defined

as the maintenance of elevated prices, sustained by a reward-and-punishment scheme.

Our paper is among the first to investigate how the widespread adoption of AI-powered

trading strategies might affect capital markets. The work of Colliard, Foucault and Lovo (2022) is

closely related to our research, as it also explores the implications of interactions among Q-learning

algorithms in capital markets. However, there are notable differences in focus between their work

and ours. Specifically, Colliard, Foucault and Lovo (2022) focus on AI-powered oligopolistic

market makers, while our study concentrates on AI-powered oligopolistic informed speculators

who face perfectly competitive market makers. Their research illuminates the strategies that AI

market makers would adopt by leveraging their market power. In contrast, our paper explores

the dynamics and implications of algorithmic collusion among AI-powered informed speculators,

particularly in the context of information-insensitive investors and perfectly competitive market

makers. We provide novel insights into the strategies of informed AI speculators on how they

leverage private information and maximize profits through autonomously forming collusion via

distinct mechanisms.
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2 AI-Powered Trading Algorithms

The traditional rule-based algorithmic trading system executes orders rigidly according to pro-

tocols predefined by human quantitative strategists. These rules are typically derived from

technical analysis and statistical models. In contrast, AI-powered trading employs RL algorithms

to dynamically adjust and autonomously optimize trading strategies in real-time.

The RL algorithm, a pivotal technique in AI, forms the foundation of numerous successful

AI algorithms, like “AlphaGo,” demonstrating the superiority of RL-backed AI over human

cognitive abilities in areas such as securities trading and other complex tasks. RL algorithms

are model-free machine learning techniques that learn autonomously through trial-and-error

experimentation, without relying on typical assumptions, such as the multi-agent system being

on an equilibrium path or agents having knowledge of the true state and payoff distributions

at equilibrium. The basic rationale behind RL algorithms centers on the principle that actions

yielding higher rewards historically are more likely to be selected in the future, compared to

those that have led to lesser rewards. By interacting with its environment and experimenting with

different actions, the agent incrementally learns an optimal policy. Through continuous rounds

of exploration and experimentation, it refines its strategy to prefer actions that offer the greatest

long-term benefits, even without any knowledge of the environment beforehand. This iterative

process enables the agent to progressively enhance its decision-making approach, consistently

steering towards actions that maximize the cumulative rewards based on its gathered experiences.

While RL encompasses different variants (e.g., Watkins and Dayan, 1992; Sutton and Barto,

2018), we choose to focus on Q-learning for several reasons. First, Q-learning serves as a

foundational framework for numerous dynamically sophisticated RL algorithms, upon which

many recent AI breakthroughs are built.4 However, it is important to note that AI trading

algorithms currently in use may not exclusively rely on Q-learning principles. Second, Q-learning

holds substantial popularity among computer scientists in practical applications. Third, Q-learning

algorithms possess simplicity and transparency, offering clear economic interpretations, in contrast

to the black-box nature of many machine learning and AI algorithms.

4Q-learning and these dynamically sophisticated RL algorithms are typically employed in complex scenarios,
where actions lead to state transitions, and each action taken in a state affects future states and rewards. In contrast,
multi-armed bandit algorithms, which represent another category of RL algorithms, are employed in simpler settings
where actions do not depend on previous ones and do not prompt state transitions based on the actions taken.
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In the remainder of this section, we will concentrate on a multi-agent system of RL algorithms,

detailing the Bellman equation for each agent, and describe the Q-learning algorithm that an

agent employs. This discussion will cover how each agent iteratively updates its Q-function and

strategy based on the received rewards, thereby optimizing its long-term outcomes through the

Q-learning algorithm.

2.1 Bellman Equation and Q-Function

In a multi-agent Markov decision process environment, there are I agents, indexed by i = 1, · · · , I.

The state of the environment is represented by a Markov process, denoted by s. Each agent makes

decisions based on the current state, which in turn evolves partly due to the collective actions of

all agents within the system. Agent i’s intertemporal optimization is characterized by the Bellman

equation and solved recursively via dynamic programming:

Vi(s) = max
xi∈X

{
E [πi|s, xi] + ρE

[
Vi(s′)|s, xi

]}
, (2.1)

where xi ∈ X is action of agent i, with X denoting the set of available actions, πi is the payoff

received by agent i, which may be influenced by the actions of other agents, and s, s′ ∈ S represent

the states in the current and the next period, respectively, with S denoting the set of states. In

general, s and s′ can depend on agent i’s individual characteristics and private information.

However, for our purpose of illustration, it is sufficient to concentrate on the simple setting where

the same state applies uniformly to all agents in the system. The first term on the right-hand side,

E [πi|s, xi], is agent i’s expected payoff in the current period, and the second term, ρE [Vi(s′)|s, xi],

is agent i’s continuation value, with ρ capturing the subjective discount rate factor.

The Bellman equation (2.1) represents the recursive formulation of dynamic control problems

(e.g., Bellman, 1954; Ljungqvist and Sargent, 2012). It focuses on the equilibrium path, and thus

the optimal value function Vi(s) depends solely on the state variable s. In contrast to focusing

solely on the equilibrium path, the Q function, denoted by Qi(s, xi), extends the optimal value

function to include the values of each state-action pair. This captures scenarios (or counterfactuals)

that occur off the equilibrium path. By definition, the value of Qi(s, xi) is the same as that in the
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curly brackets of the Bellman equation (2.1):

Qi(s, xi) = E [πi|s, xi] + ρE
[
Vi(s′)|s, xi

]
. (2.2)

Intuitively, the Q-function value, Qi(s, xi), can be interpreted as the quality of action xi in state s.

The optimal value of a state, Vi(s), is the maximum of all the possible Q-function values of state s.

That is, Vi(s) ≡ maxx′∈X Qi(s, x′). By substituting Vi(s′) with maxx′∈X Qi(s′, x′) in equation (2.2),

we can establish a recursive formula for the Q-function as follows:

Qi(s, xi) = E

[
πi + ρ max

x′∈X
Qi(s′, x′)

∣∣∣∣s, xi

]
. (2.3)

When both |S| and |X| are finite, the Q-function can be represented as an |S| × |X| matrix,

which is often referred to as the Q-matrix.

2.2 Q-Learning Algorithm

If agent i possessed knowledge of its Q-matrix, determining the optimal actions for any given

state s would be straightforward. In essence, the Q-learning algorithm is a method to estimate

the Q-matrix in environments where the underlying distribution E [·|s, xi] is unknown and there

are limited observations for off-equilibrium pairs (s, xi) in the data. The Q-learning algorithm

addresses both challenges concurrently: it estimates the underlying distribution E[·|s, xi] based on

the law of large numbers, while at the same time, conducts trial-and-error experiments to produce

off-equilibrium counterfactuals.

The iterative experimentation of agent i starts from an arbitrary initial agent-i Q-matrix,

denoted by Q̂i,0, and updates its estimated Q-matrix Q̂i,t recursively as follows:

Q̂i,t+1(st, xi,t) = (1 − α) Q̂i,t(st, xi,t)︸ ︷︷ ︸
Past knowledge

+ α

[
πi,t + ρ max

x′∈X
Q̂i,t(st+1, x′)

]
,︸ ︷︷ ︸

Present learning based on a new experiment

(2.4)

where α ∈ [0, 1] captures the forgetting rate, st is the state that the iteration t concentrates on, st+1

is randomly drawn from the Markovian transition probabilities conditional on the current state st,

the chosen action xi of agent i, and the collective actions of all other agents within the system.
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Here, Q̂i,t(s, x) is the estimated Q-matrix of agent i in the t-th iteration, and πi,t is the payoff in

the t-th iteration, corresponding to agent i’s choice of action xi,t and all other agents’ actions.

Equation (2.4) indicates that for agent i in the t-th iteration, only the value of the estimated

Q-matrix Q̂i,t(s, x) corresponding to the state-action pair (st, xi,t) is updated to Q̂i,t+1(st, xi,t). All

other state-action pairs remain unchanged. In other words, Q̂i,t+1(s, x) = Q̂i,t(s, x) for cases

where s ̸= st or x ̸= xi,t. The updated value Q̂i,t+1(st, xi,t) is computed as a weighted average of

accumulated knowledge based on the previous experiments, Q̂i,t(st, xi,t), and learning based on a

new experiment, πi,t + ρ maxx′∈X Q̂i,t(st+1, x′). A key distinction between the Q-learning recursive

algorithm (2.4) and the Bellman recursive equation (2.1) lies in how they handle expectations.

Q-learning algorithm (2.4) does not form expectations about the continuation value because the

Markovian transition probabilities from st to st+1 are unknown. Instead, it directly discounts the

continuation value associated with the randomly realized state st+1 in the (t + 1)-th iteration.

It is crucial to note that the forgetting rate α plays a significant role in the Q-learning algorithm,

balancing past knowledge against present learning based on a new experiment. A higher α not

only indicates a greater impact of present learning on the Q-value update but also implies that

the algorithm forgets past knowledge more quickly, potentially leading to biased learning. To

elaborate intuitively, let τ be the number of times that the Q-value of the state-action pair (s, x)

has been updated in the past. As τ → ∞, the estimated Q-value of (s, x) is approximately equal to

Q̂i,tτ
(s, x) ≈

τ−1

∑
h=0

α(1 − α)h
[

πi,tτ−h + ρ max
x′∈X

Q̂i,tτ−h

(
stτ−h+1, x′

)]
, (2.5)

where th represents the period in which the estimated Q-value of (s, x) receives the h-th update.

Clearly, when α is not close to 0, the weights given by α(1 − α)h decay so rapidly with τ that it

jeopardizes the applicability of the law of large number. When the underlying environment has

randomness, a sufficiently small value of α is crucial for ensuring small learning biases. Otherwise,

the law of large numbers may fail, leading to biased estimation for the underlying distribution

E[·|s, xi]. However, a smaller value of α requires more iterations for the algorithm to converge,

and thus greater computational costs.
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2.3 Experimentation

Conditional on the state variable st, agent i chooses its action xi,t in two experimentation modes,

exploitation and exploration, as follows:

xi,t =

 argmaxx∈X Q̂i,t(st, x), with prob. 1 − εt, (exploitation)

x̃ ∼ uniform distribution on X, with prob. εt. (exploration)
(2.6)

To determine the mode, we employ the simple ε-greedy method. As outlined in equation

(2.6), during the t-th iteration, agent i engages in the exploration and exploitation modes with

exogenous probabilities εt and 1 − εt, respectively. In the exploitation mode, agent i chooses

its action to maximize the current state’s Q-value based on past experience, given by xi,t =

argmaxx∈X Q̂i,t(st, x). Conversely, in the exploration mode, agent i randomly chooses its action x̃

from the set of all possible values in X, each with equal probability.5 Essentially, the exploration

mode guides the Q-learning algorithm to experiment with suboptimal actions based on the current

Q-matrix estimation, Q̂i,t. As t approaches infinity, the pre-specified exploration probability εt

monotonically decreases to zero. Sufficient exploration is crucial for accurately approximating

the true Q-matrix, requiring many attempts of all actions in all states, especially in complex

environments. However, this comes with a tradeoff: extensive exploration not only increases

computational costs but can also introduce noise, impeding learning when multiple agents interact.

3 Model and Laboratory Design

To set up the laboratory for our simulation experiments, we develop a model that incorporates

only the minimal set of ingredients necessary to capture the economic context of securities trading

and elucidate key novel insights. Our model extends the influential framework of Kyle (1985),

emphasizing the financial market as an information-aggregating mechanism, where information

asymmetry and strategic trading with endogenous asset demand are crucial in price formation.

Specifically, we introduce two minimal deviations from the standard Kyle (1985) model.

First, we shift our focus to oligopolistic informed speculators in a repeated trading environment,

5For simplicity, we adopt a uniform distribution. However, a more intelligent distribution choice could make
exploration more efficient and less costly.
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instead of a monopolistic informed speculator in a one-period trading environment. Second, we

incorporate information-insensitive investors (e.g., Kyle and Xiong, 2001; Vayanos and Vila, 2021)

and the inventory cost concerns of market makers, which together introduce price inefficiency,

as opposed to the efficient pricing in the Kyle (1985) baseline. We emphasize that information-

insensitive investors in our model do not need to be subject to behavioral bias; instead, they can

be entirely rational but simply unresponsive to short-term information.

Merging theoretical rigor with practical relevance, this model acts as a laboratory for exploring

the effects of AI-powered trading on price formation, focusing on its implications for market

liquidity, price informativeness, and mispricing due to algorithmic collusion. The model’s

theoretical findings serve as a benchmark for characterizing AI collusion in the experiments.

3.1 Economic Environment

Model Setup. Time is discrete, indexed by t = 1, 2, ..., and runs forever. There are I ≥ 2

risk-neutral informed speculators, indexed by i ∈ {1, · · · , I}, a representative noise trader, a

representative information-insensitive investor, and a market maker. The environment is stationary,

and all exogenous shocks are independent and identically distributed across periods.

In each period t, an asset trades with its fundamental value vt realized at period’s end,

distributed as N(v, σ2
v ), where we set v ≡ σv ≡ 1 for simplicity.6 Trading profits are calculated

after vt is known. The noise trader’s order flow ut follows N(0, σ2
u), with σu capturing noise

trading risk. Noise traders are needed to incorporate meaningful information asymmetry. Each

informed speculator i knows vt perfectly but does not observe ut when submitting their orders;

they understand that their order flow xi,t impacts the asset’s market price pt by shifting the

market-clearing condition and revealing information. Specifically, informed speculator i solves:

Vi(st) = max
xi,t

E [(vt − pt)xi,t + ρVi(st+1)|st, xi,t] , (3.1)

where the state variable st encapsulates the relevant information necessary for informed speculator

i’s trading strategy xi,t, with st including variables such as {vt, vt−1, pt−1, yt−1, zt−1}, along with

other historical variables as needed, Vi(s) is the optimal value function of speculator i, ρ ∈ (0, 1)

6For conciseness, the notations v and σv will be omitted in this manuscript when not needed for comprehension.
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is the subjective discount rate factor, and yt = ∑I
i=1 xi,t + ut is the total order flow from both

informed speculators and the noise trader.

The quantity zt in (3.1) is the demand of information-insensitive investors, who have a collective

demand curve:

zt = −ξ(pt − v), with ξ > 0. (3.2)

The same specification is adopted by Kyle and Xiong (2001), who justify it through the optimal

portfolio choice made by a rational yet information-insensitive investor under certain assumptions.7

Similarly, in our model, information-insensitive investors do not need to be subject to behavioral

bias; instead, they can be entirely rational but simply unresponsive to short-term information. The

logic behind specification (3.2) is straightforward: the information-insensitive investor, focusing on

the ex-ante expected fundamental value v, buys more as pt − v becomes more negative, interpreting

this as the asset being undervalued. The fundamental idea of introducing information-insensitive

investors with exogenous net demand curves in the framework of a noisy rational expectations

equilibrium is to efficiently capture relevant institutional frictions and preferences. This approach

has been commonly adopted in the literature (e.g., Hellwig, Mukherji and Tsyvinski, 2006;

Goldstein, Ozdenoren and Yuan, 2013).

Trading occurs through the market maker, whose role is to absorb the order flow while

minimizing pricing errors. The market maker observes the combined order flow from informed

speculators and the noise trader, represented by yt, as well as the order flow schedule zt of

information-insensitive investors for any selected market price pt. However, the market maker

cannot distinguish between order flows from informed speculators and the noise trader. The

market maker sets the market price pt to jointly minimize inventory and pricing errors according

to the following objective function:

min
pt

E

[
(yt + zt)

2 + θ(pt − vt)
2
∣∣∣∣yt

]
, (3.3)

7To derive the functional-form of the aggregate demand curve of information-insensitive investors, one approach
is to assume CARA utility maximization without any learning or strategic trading, as detailed in Online Appendix
2.1. Studies indicate that information-insensitive investors with low price elasticity of demand play an important
role in shaping asset prices (e.g., Greenwood and Vayanos, 2014; Vayanos and Vila, 2021; Greenwood et al., 2023).
These investors can be rational, although they do not learn fundamental information through market price pt as
rational-expectations uninformed investors in Grossman and Stiglitz (1980) and Kyle (1989) do.
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where θ > 0 represents the weight that the market maker places on minimizing pricing errors.

Here, E [·|yt] denotes the market maker’s expectation over vt, conditioned on the observed com-

bined order flow yt and its understanding of the behavior of informed speculators in equilibrium.

The market maker’s objective function, detailed in (3.3), accounts for both inventory costs and

challenges related to asymmetric information. To clear the market, the market maker assumes the

position −(yt + zt), incurring inventory costs represented by (yt + zt)2. This quadratic formulation,

chosen for its simplicity, is consistent with established literature, such as Mildenstein and Schleef

(1983). The term θ(pt − vt)2 captures the market maker’s efforts to reduce pricing errors arising

from asymmetric information. The weight θ serves as a reduced-form way to capture the various

benefits of reducing pricing errors, such as increased trading flows from a growing client base or

enhanced competitive advantages over other trading platforms. The first-order condition leads to

pt =
ξ

ξ2 + θ
yt +

ξ2

ξ2 + θ
v +

θ

ξ2 + θ
E [vt|yt] . (3.4)

The impact of the pricing error term is minimal in practice, and our results remain unchanged

with θ = 0. However, we choose to treat θ as a tiny, universally fixed positive constant in both our

theoretical and simulation analyses. By fixing θ, we do not subject it to comparative-static variation

as an environmental parameter in our theoretical and experimental frameworks. With θ > 0, our

theoretical framework or laboratory setup becomes more conceptually coherent, providing two

meaningful extreme benchmarks, unlike when θ = 0. Specifically, when θ > 0, as ξ approaches

infinity, the price pt converges to v + ξ−1yt, set by the market clearing condition yt + zt = 0, as

in Kyle and Xiong (2001). Conversely, as ξ decreases towards zero, pt shifts to the efficient price

E[vt|yt], as in Kyle (1985).8

Model Interpretation. Here, we provide a specific interpretation of the model, offering an

economic context for the simulation experiments involving AI-powered trading algorithms,

although other interpretations are possible. At the beginning of each period, a different asset,

such as a short-lived derivative contract that expires at the end of the period, is traded. The

short-lived derivatives are typically close-to-maturity options and futures. The fundamental value

vt represents the intrinsic value of the short-lived derivative contract, which is realized at the end

8More discussions are detailed in Online Appendix 2.1.1.
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of period t (i.e., at maturity).

Informed speculators, typically quant-based hedge funds and quantitative trading firms,

specialize in privately extracting valuable trading signals about intrinsic value using their advanced

data and technological advantages. These traders are usually the leading quantitative players in

the derivatives market, equipped with the necessary advanced trading infrastructure to establish

AI-powered trading systems and exploit information rents through complex strategic trading

strategies.

Information-insensitive investors are those who remain unresponsive to short-term funda-

mental information in the market of close-to-maturity derivatives and make trading decisions

based solely on market price patterns. These investors are typically retail investors who employ

technical analysis, which aims to trade based on patterns of market prices (e.g., Lo and MacKinlay,

1999; Lo, Mamaysky and Wang, 2000; Chen, Peng and Zhou, 2024). The demand specification (3.2)

captures the essence of certain technical analysis strategies, assuming that a positive spread pt − v

indicates overbought conditions with prices likely to fall, whereas a negative spread pt − v indi-

cates oversold conditions with prices likely to rise. These investors can also include institutional

entities such as pension funds, insurance companies, and mutual funds. They might purchase

close-to-maturity derivatives and hold them until expiration to hedge existing positions or adjust

their exposure to specific near-term event risks without having to buy or sell the underlying assets.

Noise traders are market participants who make trading decisions based on factors unrelated

to the fundamental information or any private signals about the intrinsic value of derivative

securities. Their decisions stem from reasons beyond fundamental or technical analysis, including

liquidity needs, portfolio rebalancing, psychological factors, or random speculation.

3.2 Theoretical Benchmarks

Non-Collusive Nash Equilibrium. Informed speculators do not internalize the impact of their

trading on others’ profits. In the non-collusive Nash equilibrium (N), each informed speculator i

seeks to maximize expected profit by solving xN(vt) = argmaxxi∈X E[(vt − pN(yt))xi|vt], taking

into account their private information vt, assuming that other informed speculators follow trading

strategy xN(vt), and understanding and internalizing their own price impact on the equilibrium

price pN(yt) as pN(yt) = v + λNyt, where yt = xi + (I − 1)xN(vt) + ut and λN is dependent on
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market parameters and the equilibrium trading strategy xN(vt). Here, we focus on linear trading

strategies xN(vt) ≡ χN(vt − v) in the equilibrium. Details are in Online Appendix 2.1.

Perfect Cartel Benchmark. Informed speculators operate collectively as a monopoly, strategically

coordinating their total order flow before allocating trades among themselves according to

predetermined agreements. In the perfect cartel equilibrium (M), the cartel seeks to maximize

expected profit by solving xM(vt) = argmaxx∈X E[(vt − pM(yt))x|vt], taking into account the

private information vt, and understanding and internalizing its price impact on the equilibrium

price pM(yt) as pM(yt) = v+λMyt, where yt = Ix+ ut and λM is dependent on market parameters

and the equilibrium trading strategy xM(vt). Here, we focus on linear trading strategies xM(vt) ≡

χM(vt − v). Details are in Online Appendix 2.1.

Collusive Equilibrium. A collusive equilibrium is descriptively categorized by examining the

behavior of agents both on and off the equilibrium path, rather than focusing on the mechanisms

through which it is achieved. These mechanisms may include punishment-based trigger strategies,

agreed upon by agents either explicitly or implicitly, as well as other mechanisms that sustain

collusion without requiring agreement or communication among agents. Below, we define the

notion of collusive equilibrium.

Definition 3.1. A collusive equilibrium is generically defined by two key properties: (i) all agents achieve

supra-competitive profits, and (ii) there are short-term gains for agents who deviate from on-path equilibrium

actions at the expense of others.

Collusive Nash Equilibrium Sustained by Price-Trigger Strategies. Tacit collusion can arise

in a subgame perfect Nash equilibrium, sustained by punishment-based trigger strategies. In

securities trading, information asymmetry and noise trading risk complicate tacit collusion,

primarily due to challenges in monitoring each other’s trading actions. Nonetheless, under certain

circumstances, collusion can be sustained through the so-called “price-trigger strategies,” which

allow informed speculators to infer others’ order flows from market prices, thereby upholding

collusive incentives.9

9The study of tacit collusion through grim-trigger strategies, initiated by Fudenberg and Maskin (1986) and
Rotemberg and Saloner (1986), has been significantly advanced in recent research. This includes studies on its impact
on asset pricing (e.g., Opp, Parlour and Walden, 2014; Dou, Ji and Wu, 2021a,b; Dou, Wang and Wang, 2023).
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The concept of tacit collusion sustained by price-trigger strategies was first introduced by

Green and Porter (1984). Even with imperfect monitoring, agents can establish collusive incentives

by allowing noncollusive competition to occur with positive probabilities. Abreu, Pearce and

Stacchetti (1986) further characterize optimal symmetric equilibria in this context, revealing two

extreme regimes: a collusive regime and a punishment regime featuring a noncollusive reversion.

Within our framework, in the collusive regime, informed speculators implicitly coordinate on

submitting order flows in a less aggressive manner than what they would do in the noncollusive

Nash equilibrium. If the price breaches a critical level, suspicion of cheating arises, leading to a

noncollusion reversion. In the punishment regime, informed speculators trade noncollusively and

obtain low profits.

We now formally describe the collusive Nash equilibrium, sustained through price-trigger

strategies, as a subgame perfect Nash equilibrium in repeated games. Our focus narrows to

the symmetric linear collusive Nash equilibrium scenario. Consider a situation where, at time

t, informed speculators are within a collusion regime. In coordination, they adopt an identical

trading strategy denoted by xC(v) ≡ χC(v − v), understanding and internalizing that the equi-

librium market price, pC(yt), will be pC(yt) = v + λCyt, with yt = IxC(vt) + ut. This reflects

their understanding of the dependence of λC on market parameters and the equilibrium trading

strategy xC(v). Once vt > v and the observed market price pt is above the price-trigger strategy

threshold q+(vt) ≡ E
[
pC(yt)|vt

]
+ λCσuω, that is, pt > q+(vt), they revert to the non-collusive

Nash equilibrium at t + 1 with a probability η. Once in the non-collusive regime, they will remain

in this regime with the same probability η in each subsequent period up to period t + T. Simi-

larly, once vt < v and the observed market price pt is below the price-trigger strategy threshold

q−(vt) ≡ E
[
pC(yt)|vt

]
− λCσuω, that is, pt < q−(vt), they may revert to the non-collusive Nash

equilibrium at t + 1 with probability η, following the same probabilistic rule up to period t + T

as described above. Here, the constants η ∈ [0, 1], ω > 0, and T ≥ 1 are part of the implicit

agreement among informed speculators. The rationale behind these price-trigger strategies in

capital markets is straightforward: excessive deviations of market prices from the anticipated

collusive equilibrium price level suggest potential cheating by other informed speculators. More

details about the collusive price-trigger strategy are in Online Appendix 2.1.

The following proposition highlights the impossibility of achieving a collusive Nash equilib-

21



rium through price-trigger strategies in an environment that closely resembles the standard Kyle

(1985) benchmark (when ξ is small), where efficient prices prevail, or the noise trading risk is

excessive (when σu is large). The proof is in Online Appendix 2.3.

Proposition 3.1 (Impossibility of Collusion Through Price-Trigger Strategies). When ξ is small or

σu is large, sustaining a collusive Nash equilibrium through price-trigger strategies becomes impossible.

Sustaining coordination through price-trigger strategies hinges on two critical conditions: (i)

the informativeness of prices must be high enough to allow for adequate monitoring, a point

underscored by both Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz (2007);

and (ii) the price impact of the informed speculators’ order flows must be sufficiently low to

permit the attainment of significant informational rents. However, in environments where σu is

large, price informativeness is low, making adequate monitoring for collusion impossible. More

importantly, the environments with small ξ closely resemble the standard Kyle benchmark (Kyle,

1985), where efficient prices prevail. In this environment, when price informativeness is high, the

price impact of the informed speculators’ order flows must also be high. As a result, the two

necessary conditions (i) and (ii) cannot hold simultaneously. We underscore the intrinsic value

of this theoretical result, offering novel economic insights that distinguish it from established

theories on the impossibility of collusion under information asymmetry, as posited by Abreu,

Milgrom and Pearce (1991) and Sannikov and Skrzypacz (2007). By illustrating the challenges of

achieving collusion in environments with efficient prices, our findings enhance the understanding

of market dynamics and the impact of information asymmetry on collusion strategies.

The proposition presented below demonstrates that collusion sustained by price-trigger

strategies is feasible when information-insensitive investors significantly influence price formation

– that is, when ξ is large, resulting in less efficient prices – and the noise trading risk, σu, is low.

The proof is in Online Appendix 2.4.

Proposition 3.2 (Existence of Collusion Through Price-Trigger Strategies). When ξ is large and σu is

small, a collusive Nash equilibrium sustained by price-trigger strategies exists.

If ξ is large and σu is small, the market maker primarily sets prices to minimize inventory costs,

not pricing errors. This leads to a low price impact from informed trading, even in environments

with low noise trading risks. The reduced price impact encourages informed speculators to place

22



large orders, enhancing price informativeness. Consequently, conditions (i) and (ii) required for

sustaining collusion through price-trigger strategies can be met simultaneously.

To discern whether informed speculators trade in a tacitly collusive manner based on observ-

able outcomes, we derive testable properties of collusion. The proof of the following proposition

is in Online Appendix 2.6.

Proposition 3.3 (Supra-Competitive Nature of Collusion). Let πC, πN , and πM represent the expected

profits of informed speculators in the price-trigger collusive, non-collusive, and perfect cartel equilibria,

respectively. It holds that

∆C ≡ πC − πN

πM − πN ∈ (0, 1].10 (3.5)

The price informativeness, market liquidity, and mispricing are measured, respectively, by

I = log
[

var(xt)

var(ut)

]
, L =

[
∂|mt|
∂ut

]−1

, and E =

∣∣∣∣ pt − E[vt|yt]

E[vt|yt]− v

∣∣∣∣ , (3.6)

where xt, zt, ut, and mt ≡ −(yt + zt) are the total order flow of informed speculators, information-

insensitive investors, noise traders, and market makers, respectively, and pt is the market price

of the asset. In the following proposition, we examine how ∆C, πC, IC, LC, and EC vary across

various market structures and information environments in the collusive Nash equilibrium

sustained by price-trigger strategies. The proof is in Online Appendix 2.6.

Proposition 3.4 (Effects of Market Structures and Information Environments). If the price-trigger

collusive Nash equilibrium exists and ξ is sufficiently large, the following properties hold:

σu ↑, ρ ↓, or ξ ↓ =⇒ ∆C ↓, IC/IM ↑, LC/LM ↑, and EC ↓,

where C and M represent the price-trigger collusive Nash and the perfect cartel equilibrium, respectively.

Furthermore, when I is sufficiently large, ∆C and EC are monotonically decreasing in I, and thus IC/IM

and LC/LM are monotonically increasing in I.

Collusive Experience-Based Equilibrium. Proposition 3.1 shows that achieving a collusive Nash

equilibrium through price-trigger strategies is impossible when ξ is small or σu is large. However,

10Clearly, a greater ∆C signifies higher collusion capacity. We adopt ∆C as a measure for collusion capacity, following
Calvano et al. (2020). Similar measures are also used in empirical studies like Dou, Wang and Wang (2023).
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in these cases, a form of collusive trading behavior may still emerge as an observed outcome of an

experience-based equilibrium, as conceptualized by Fershtman and Pakes (2012), which is closely

related to the notion of self-confirming equilibrium (e.g., Fudenberg and Levine, 1993; Battigalli

et al., 2015). Compared to the Nash equilibrium, these alternative notions of equilibrium are

considered weaker because they allow players to hold incorrect (or biased) beliefs or evaluations

about outcomes off the equilibrium path. Unlike the Nash equilibrium, in these weaker equilibria,

players’ actions are shaped by what they have learned from past experiences. While beliefs or

evaluations along the equilibrium path of play are correct (i.e., consistent with the evidence gener-

ated by equilibrium strategies) due to frequent and recurrent observation, beliefs or evaluations

off the path are not necessarily correct unless players engage in sufficient experimentation with

non-optimal actions (e.g., Fudenberg and Kreps, 1988, 1995; Cho and Sargent, 2008).

Specifically, an experience-based equilibrium features (i) a recurrent Markovian state process,

(ii) strategies optimized for potentially incorrect outcome evaluations, and (iii) behaviors that

yield expected discounted future net cash flows, which are consistent with the evaluations of their

outcomes on the equilibrium path. Crucially, the conditions of this equilibrium do not require that

players’ evaluations of outcomes from off-equilibrium strategies align with the actual distribution

of outcomes, meaning that off-equilibrium evaluations of outcomes can be significantly biased.

Instead, the sole restriction is that players’ beliefs and consequent evaluations of outcomes must

be consistent with the evidence derived from strategies employed within the equilibrium. In our

next proposition, we illustrate that a collusive equilibrium, with self-confirming bias in learning,

can consistently arise as an experience-based equilibrium. The proof of the proposition is in

Online Appendix 2.7.

Proposition 3.5 (Existence of Collusion Through Homogenized Self-Confirming Bias). A collusive

experience-based equilibrium, where supra-competitive trading profits (∆C > 0) are achieved, can be sus-

tained for all ξ > 0 and σu > 0. In this equilibrium, informed speculators uniformly undervalue aggressive

trading strategies, perpetuating an incorrect system of outcome evaluation that remains uncorrected. As a

result, they employ the trading strategy xC(vt) ≡ χC(vt − v), with χC < χN , indicating a lower level of

trading aggressiveness based on private information compared to that in the non-collusive Nash equilibrium.

Experience-based equilibrium offers a more flexible framework than Nash equilibrium. While

our focus is on equilibria with homogenized self-confirming bias in learning, there are numerous
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experience-based equilibria characterized by heterogeneous learning biases among informed

speculators. Our emphasis on an experience-based equilibrium with homogeneous learning biases

in Proposition 3.5 is driven by the following consideration: homogenization is a key feature of AI

technologies in financial markets, as emphasized by many regulatory entities. Homogenization

of AI applications may occur through collusion in trading algorithm selection among multi-tier

AIs or through the adoption of common foundational machine learning models. Furthermore,

our simulation experiments, discussed in Sections 4 through 6, demonstrate that a certain level of

homogenization in self-confirming bias in learning – though not requiring strong homogenization

– is critical for enabling AI-powered trading algorithms to converge to a collusive experience-based

equilibrium, thereby sustaining supra-competitive trading profits.

4 Simulation Experiments on AI Trading Algorithms

Theoretical benchmarks discussed in Section 3 detail the conditions necessary for a collusive Nash

equilibrium, sustained by price-trigger strategies, to emerge. They also outline when a collusive

experience-based equilibrium, sustained by self-confirming bias in learning, exists. Despite this,

it remains uncertain whether autonomous, model-free AI algorithms can learn to maintain tacit

collusion during trading, thereby achieving supra-competitive trading profits in alignment with

these theoretical benchmarks. Furthermore, it is unclear which type of collusive equilibrium these

AI trading algorithms will ultimately reach and maintain in a steady state.

As a proof-of-concept illustration, in this section, we design simulation experiments to investi-

gate the capability of Q-learning algorithms to attain tacit collusion under asymmetric information

and the endogenous strategic asset demand curve of a market maker, without the overt acts of

communication or agreements typically seen in competition law infringements (Harrington, 2018).

4.1 Algorithms as Experimental Subjects

Informed AI Speculators. We now examine the behavior of algorithms as subjects in the experi-

mental lab, as detailed in Section 3.1. Specifically, in these experiments, we replace the theoretical

agents known as “informed speculators” in the model with Q-learning algorithms, as outlined in

Section 2. To reinforce the key qualitative message derived from these experiments, we employ
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the simplest and most naive Q-learning algorithm. The dimensionality of the vector of state

variables, st, is particularly crucial for determining the capacity of Q-learning algorithms, with the

high-dimensionality challenge typically tackled by using deep learning techniques.11 To highlight

the key insight, maintain numerical tractability, and ensure transparency, we intentionally choose

the smallest possible set of state variables in st ≡ {pt−1, vt−1, vt} that can theoretically capture the

information advantage of informed speculators and facilitate tacit collusion sustained by price-

trigger strategies.12 Put simply, we equip the informed AI speculator with private information

vt for trading in period t and a one-period memory of the historical market price pt−1 and asset

value vt−1, which enables the tracking of historical data for decision making in period t. We could

expand informed AI speculator i’s state variables in st with its own lagged order flow xi,t−1 and a

longer memory for lagged asset prices, values, and order flows. In our simulation experiments, we

observe that enlarging the state variable st augments the degree of tacit collusion among informed

AI speculators, leading to higher trading profits. Thus, our deliberate choice to solely incorporate

pt−1, vt−1, and vt as state variables sets a stringent bar for the Q-learning algorithms to reach tacit

collusion within our economic environment. We discuss the implications of alternative choices of

state variables in Online Appendix 1.4.

Adaptive Market Maker. The market maker does not know the distributions of randomness. It

stores and analyzes historical data on the asset’s value and price, the order flows from information-

insensitive investors, and the combined order flows from informed AI speculators and the noise

trader, i.e., Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1, where Tm is a large integer. The market maker

estimates the demand curve of information-insensitive investors and the conditional expectation

of the asset’s value, E [vt|yt], using the following linear regression models:

zt−τ = ξ0 − ξ1 pt−τ, and vt−τ = γ0 + γ1yt−τ + ϵt−τ, (4.1)

where τ = 1, · · · , Tm. The estimated coefficients ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t are based on the rolling-

window dataset Dt in period t. The pricing rule adaptively adheres to the theoretical optimal

11Reinforcement learning algorithms, enhanced by deep learning techniques to address the challenge of high
dimensionality, form the backbone of many successful real-world AI applications, such as “AlphaGo.”

12Intuitively, by tracking both pt−1 and vt−1, rather than just pt−1, informed AI speculators can better assess the
likelihood of deviation by other informed speculators in period t − 1 by comparing pt−1 against vt−1.
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policy using a plug-in procedure:

p̂t(y) = γ̂0,t + λ̂ty with λ̂t =
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

, (4.2)

where θ is defined in (3.3). Thus, the market maker is adaptive using simple statistical models. To

show robustness of our results, we also consider the economic environment where the market

maker determines the pricing rule with rational expectations or adopts Q-learning algorithms

to learn the trading strategy of informed AI speculators (see Online Appendix 1.11). Across all

scenarios, the results are consistently similar.

Simulation-Based Experimental Studies. The interactions of informed AI speculators and an

adaptive market maker, together with the randomness caused by the noise trader and stochastic

asset values in the background, make the stationary equilibrium difficult to achieve. The economic

environment in our study is substantially more complex than that of Calvano et al. (2020) whose

setting does not have randomness, information asymmetry, or endogenous pricing rules. The

player’s optimization problem is inherently nonstationary when its rivals vary their actions over

time due to experimentation or learning. Theoretical analysis of the multi-agent system with

Q-learning algorithms playing repeated games is generally not tractable. Rather than applying

stochastic approximation techniques to AI agents, we follow Calvano et al. (2020) by simulating

the exact stochastic dynamic system a large number of times to smooth out uncertainty. There is

no theoretical guarantee that Q-learning agents will settle on a stable outcome, nor that they will

correctly learn an optimal policy. However, we can always verify this in our simulations ex post to

ensure that our analyses are conducted based on a stationary equilibrium.

We summarize the experimental protocol as follows. At t = 0, each informed AI speculator

i ∈ {1, · · · , I} is assigned with an arbitrary initial Q-matrix Q̂i,0 and state s0. Then, the economy

evolves from t to t + 1 according to the following steps:

(1) In period t, each informed AI speculator i independently enters exploration mode with a

probability of εt or exploitation mode with a probability of 1 − εt. Then, based on the mode

it is in, each informed AI speculator i submits its own order flow xi,t, as specified in (2.6).

(2) The noise trader submits its order flow ut, which is randomly drawn from N(0, σ2
u).
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(3) The market maker analyzes the historical data Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1 and estimates

the optimal pricing rule p̂t(y) according to (4.2). Upon observing yt = ∑I
i=1 xi,t + ut, the

market price is set at pt = p̂t(yt).

(4) Observing pt, information-insensitive investors submit their aggregate order flow zt in

accordance with (3.2). Each informed AI speculator i realizes its profits πi,t = (vt − pt)xi,t.

(5) At the beginning of period t+ 1, the state variable for each informed AI speculator transitions

from st = {pt−1, vt−1, vt} to st+1 = {pt, vt, vt+1}, where vt+1 is randomly drawn from

N(v, σ2
v ) and is independent of any other variables. Following this, each informed AI

speculator i updates its Q-matrix for the specific state-action pair (st, xi,t) in accordance with

the recursive update of Q̂i,t+1(st, xi,t) outlined in (2.4).

4.2 Numerical Specifications

We now detail the numerical specifications for our simulation experiments. This includes the

discretization of the state and action spaces, the initialization of Q-matrices, the selection of

parameters, and the criteria for convergence.

Discretization of State and Action Spaces. We approximate the normal distribution N(v, σv)

using a sufficiently larger number of nv grid points, V = {v1, · · · , vnv}, with equal probabilities

across the grids. Specifically, the probability of each grid point is Pk = 1/nv. The locations of grid

points are chosen based on vk = v + σvΦ−1((2k − 1)/(2nv)) for k = 1, · · · , nv, where Φ−1 is the

inverse cumulative density function of a standard normal distribution.13

We construct the discrete grid points for informed AI speculators’ order flow xi,t based on

their optimal actions in the noncollusive Nash and perfect cartel equilibria. According to our

model in Section 3, the order values in the two equilibria are given by xN = (v − v)/((I + 1)λ)

and xM = (v − v)/(2Iλ). We specify informed AI speculators’ action space by discretizing the

interval [xM − ι(xN − xM), xN + ι(xN − xM)] for v > v and [xN − ι(xM − xN), xM + ι(xM − xN)]

for v < v into nx equally spaced grid points, i.e., X = {x1, · · · , xnx}. The parameter ι > 0 ensures

that informed AI speculators can choose order flows beyond the theoretical levels corresponding

to the noncollusive Nash and perfect cartel equilibria.
13All results remain robust when alternative methods are used to discretize the state variable vt.
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The grid points of price pt are similarly chosen as those of xi,t, except for considering the noise

trader’s impact on prices. Specifically, in our numerical experiments, the noise trader’s order flow

is randomly drawn from the normal distribution N(0, σu), without imposing any discretization or

truncation. In the theoretical benchmark presented in Section 3, the market maker sets the price

according to the total order flow yt = ∑I
i=1 xi,t + ut. Because ut follows an unbounded normal

distribution, the theoretical range of the price pt is unbounded. To maintain tractability, in our

numerical experiments, we set the upper bound at pH = v + λN(I max(xM, xN) + 1.96σu) and

the lower bound at pL = v + λN(I min(xM, xN)− 1.96σu), corresponding to the 95% confidence

interval of the noise trader’s order flow distribution, N(0, σu). The grid points of pt are chosen by

discretizing the interval [pL − ι(pH − pL), pH + ι(pH − pL)] into np grids, i.e., P = {p1, · · · , pnp}.

Initial Q-Matrix and States. We initialize the Q-matrix at t = 0 using the discounted payoff that

would accrue to informed AI speculator i if the other informed AI speculators randomize their

actions uniformly over the grid points defined by X.14 Moreover, we consider a zero order flow

from the noise trader, corresponding to the expected value of the distribution N(0, σ2
u). Specifically,

for each informed AI speculator i = 1, · · · , I, we set its initial Q-matrix Q̂i,0 at t = 0 as follows:

Q̂i,0(s, x) =
1

(1 − ρ)nx
∑

x−i∈X

[
v − (v + λN(x + (I − 1)x−i))

]
x,

for s = (p, v, v) ∈ P×V×V and x ∈ X. The initial states of our simulation, s0 = {p−1, v−1, v0},

are randomized uniformly over P×V×V.

Specification of Exploration Rates. We adopt an exponentially time-declining state-dependent

exploration rate for informed AI speculators,

εt(v) = e−βt(v), (4.3)

14Using different initial values for the Q-matrix does not significantly alter the results. For example, another
strategy is to use optimistic initial values, initializing the Q-matrix with high values that subsequent iterations tend to
reduce. This approach helps Q-learning algorithms to explore all actions multiple times early on, resulting in early
improvement in estimated action values. Thus, setting optimistic initial values is roughly equivalent to promoting
thorough exploration early in the learning phase and exploitation later.
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where the parameter β > 0 governs the speed that informed AI speculators’ exploration rate

diminishes over time and the variable t(v) captures the number of times that the exogenous

state v ∈ V has occurred in the past. The specification (4.3) implies that initially, Q-learning

algorithms are almost always in the exploration mode, choosing actions randomly. However, as

time passes, Q-learning algorithms gradually switch to the exploitation mode. The variable t(v)

implies that the exploration rate is state dependent, which ensures that informed AI speculators

can sufficiently explore their actions for all grid points in V.

Parameter Choice. The parameters used in our numerical experiments are categorized into

four groups based on their roles. “Environment parameters” describe the underlying economic

environment and, importantly, none of these values is known to the informed AI speculators

and the market maker. “Preference parameters” encompass the discount rate for informed AI

speculators and the weight assigned to the pricing error term by the adaptive market maker.

“Discretization parameters” detail the methods used to discretize the system for numerical

simulation, such as the number of discrete grid points and parallel simulation sessions. The

“hyperparameters” are crucial for controlling the machine learning process. Below, we describe

the choices of parameter values for the baseline experiments.

We begin with the environment parameters. We normalize v = 1 and σv = 1 across all

experiments, without loss of generality. In the baseline economic environment, we set I = 2 and

ξ = 500, and consider two values of σu, with σu = 10−1 and σu = 102 representing environments

with low and high noise trading risk, respectively. In Section 5 and Online Appendix 1.9, we

extensively study the implications of different values for these parameters.

The preference parameters are chosen to make the experiments relevant to the high-frequency

trading settings in reality. We fix the value of θ at 0.1 throughout our simulation experiments to

capture the primary concern of market makers with inventory cost management in these settings.

Additionally, we set ρ at a relatively high level, ρ = 0.95, to reflect the high trading frequency. We

explore the implications of varying ρ values in Section 5.

We now turn to the discretization parameters. We use nv = 10 grid points to approximate

the normal distribution of vt. Under our discretization, the standard deviation of vt is σ̂v =
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√
∑N

k=1 P(vk)(vk − v)2 = 0.938, which is close to the theoretical value σv = 1.15 We set ι = 0.1 so

that informed AI speculators can go beyond the theoretical bounds of order flows by 10%. We

choose nx = 15 and np = 31. These grid points are sufficiently dense to capture the economic

mechanism we are interested in.16 All results remain robust when choosing larger values for

nv, nx, np, or ι, provided that the hyperparameters, α and β, are adjusted accordingly to ensure

sufficiently good learning outcomes. However, the use of denser grids increases the time required

for Q-learning algorithms to fully converge. We set Tm = 10, 000 to allow market makers to

accumulate enough time-series data to estimate their optimal pricing rules effectively. While

increasing Tm does not alter any quantitative results, it does increase the computational burden.

Finally, we discuss our choice of the hyperparameters α and β. The hyperparameters that

control the learning process of Q-learning algorithms are set at α = 0.01 and β = 5 × 10−7. All

results are robust to choosing different values of α and β so long as they are in the reasonable range

that ensures sufficiently good learning outcomes. Our baseline choice of β = 5 × 10−7 implies that

any action x ∈ X is visited purely by random exploration by nv
nx

1
1 − exp(−5 × 10−7)

≈ 1, 333, 333

times on average before exploration completes. In Sections 5.6 and 6.1, we conduct experiments

with varying values of α and β. We also explore scenarios where informed AI speculators adopt

different values of α. In Section 6.2, we develop a two-tier Q-learning algorithm that enables

informed AI speculators to learn and optimally choose α.

Convergence. We adopt a stringent criterion for convergence, requiring that all informed AI

speculators’ optimal strategies remain unchanged for 1, 000, 000 consecutive periods in a single

session. Additionally, all Nsim = 1, 000 independent parallel simulation sessions must continue

running until every session meets this convergence criterion. The number of periods required to

reach convergence varies considerably across experiments, influenced by the specific choices of

environment parameters and hyperparameters. Additionally, even within the same experiment,

the number of periods needed can differ significantly across the Nsim = 1, 000 simulation sessions

due to the path of realized values of random variables. Across all experiments we conducted, the

15In the remainder of this paper, the non-collusive Nash equilibrium and perfect cartel equilibrium are computed
using σ̂v, to ensure consistency with the discretization scheme of vt used in the simulation experiments.

16Our choice of np ≈ 2nx ensures that, all else equal, a one-grid point change in one informed AI speculator’s
order will result in a change in price pt over the grid defined by P. If the grid defined by P is coarser, informed AI
speculators will not be able to detect small deviations of peers even in the absence of noise, which in turn lowers the
possibility of algorithmic collusion through price-trigger strategies.
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range of periods needed to achieve convergence spans from approximately 20 million to about 50

billion.17

5 Impact of AI on Trading Equilibrium: Experimental Outcomes

In this section, we present the outcomes of simulation experiments that explore the behavior

of AI-powered trading algorithms within the theoretical laboratory framework established in

Sections 3 and 4. In Subsection 5.1, we vary the level of noise trading risk to demonstrate its

U-shaped relation with the equilibrium supra-competitive trading profitability of informed AI

speculators. In Subsection 5.2, we demonstrate that in environments characterized by low price

efficiency and low noise trading risk, informed AI speculators can learn to employ price-trigger

strategies to achieve and maintain collusive, supra-competitive trading profits, aligned with the

theoretical benchmark set forth by Proposition 3.2. Conversely, in the same subsection, we show

that in environments with high noise trading risk—even with low price efficiency—informed

AI speculators struggle to sustain collusive supra-competitive trading profits using price-trigger

strategies. Instead, they consistently achieve supra-competitive profits through their homogenized

learning bias, a steady state best described by an experience-based equilibrium as in Proposition

3.2. In Subsection 5.3, we elaborate on the intuition behind AI collusion through these two

distinct mechanisms. In Subsections 5.4, 5.5, and 5.6, we explore how the number of informed AI

speculators, the subjective discount rate, and the hyperparameters impact the trading profitability

of AI speculators and market efficiency. Each analysis is conducted under both scenarios: one

involving AI collusion through price-trigger strategies and the other involving self-confirming

bias in learning.

5.1 U-Shaped Profitability in AI-Driven Collusive Trading

The theoretical benchmarks established in Section 3.2 indicate that an AI-driven collusive trading

equilibrium can robustly emerge through two different mechanisms. The dominant mechanism is

contingent upon the risk of noise trading, captured by σu, and the efficiency of prices, governed

17To accelerate computations, our programs are written in C++, using −O2 to optimize the compiling process.
The C++ program operates on a high-powered computing server cluster equipped with a total of 400 CPU cores.
Depending on the total number of iterations required to reach convergence, completing all Nsim simulation sessions in
one experiment can take anywhere from 1 minute to 6 hours.
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The red dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive Nash and perfect
cartel equilibria, respectively. The other parameters are set according to the baseline economic environment described
in Section 4.2.

Figure 1: ∆C for log σu ∈ [−5, 5].

by ξ−1. According to Propositions 3.1 through 3.4, we expect the AI-driven collusive trading

profitability ∆C to lie between 0 and 1, displaying a U-shaped relationship with noise trading

risk. Panel A of Figure 1 illustrates this by plotting the average ∆C as log σu varies from −5 to 5

along the x-axis. The black dotted line represents the theoretical benchmark for the perfect cartel

(∆M ≡ 1), and the red dash-dotted line represents the benchmark for the non-collusive Nash

equilibrium (∆N ≡ 0). The blue solid line represents the steady-state collusive capacity ∆C reached

by AI trading algorithms considered in Section 4.1. It is shown that a collusive equilibrium

with significant supra-competitive profits arises when noise trading risk σu is either low or high.

Notably, when the noise trading risk is low, collusion capacity ∆C decreases with σu, whereas

when the noise trading risk is high, collusion capacity ∆C increases with σu. This suggests that

two different mechanisms drive the collusive equilibrium at high and low levels of noise trading

risk. Specifically, when the noise trading risk is low (i.e., log σu ≤ 2), informed AI speculators use

price-trigger strategies to maintain collusion and achieve supra-competitive profits. The inverse

relationship between the average ∆C and σu is consistent with the theoretical benchmark for a

collusive Nash equilibrium sustained through price-trigger strategies, as described in Proposition

3.4. This situation is referred to as “collusion through artificial intelligence.” Conversely, when
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the noise trading risk is high (i.e., log σu ≥ 3), informed AI speculators achieve supra-competitive

profits through self-confirming bias in learning. The positive relationship between the average

∆C and σu reflects a fundamental property of RL algorithms: the self-confirming bias in learning

becomes more pronounced as the noise trading risk σu increases (see the discussion in Section 5.2

and Online Appendix 3.1). This situation is referred to as “collusion through artificial stupidity.”

Panel B of Figure 1 demonstrates that the U-shaped relationship between the average ∆C and

log σu is robust across different values of ξ. In our baseline calibration, ξ = 500, the sensitivity of

order flow zt to price level pt may seem large. information-insensitive investors typically hold a

substantial amount of the asset already, so ξ = 500 can reflect a very low price elasticity of asset

demand, consistent with the estimation by Koijen and Yogo (2019).

5.2 Impulse Response Evidence of Two Mechanisms for AI Collusion

In this subsection, we use impulse response analyses to provide direct evidence on the two

mechanisms for AI collusion across different trading environments, as suggested by the theo-

retical benchmarks and the consistent U-shaped relationship between ∆C and log σu in Figure 1.

Furthermore, we elaborate on how RL algorithms reach and sustain these two different forms of

collusive equilibrium.

We begin by showing that, in scenarios with low noise trading risk, informed AI speculators

can learn to sustain collusive, supra-competitive trading profits through price-trigger strategies

without any form of agreement, communication, or even intent. This equilibrium resembles the

collusive Nash equilibrium sustained by price-trigger strategies, described in Propositions 3.1 and

3.2, although it does not fully adhere to subgame perfect Nash requirements.18 Conversely, in

scenarios with high noise trading risk, informed AI speculators still manage to maintain collusive,

supra-competitive trading profits, but through a different mechanism, which is referred to as

self-confirming bias in learning, as described in Proposition 3.5.19

To assess if informed AI speculators learn to employ price-trigger strategies similar to those of

rational-expectations agents in the collusive Nash equilibrium, as described in Propositions 3.1

18Our tests indicate that this equilibrium is approximately Nash, meaning that no local deviation is preferred.
19In both scenarios, the equilibrium is proven to be an experience-based equilibrium, based on the formal tests

proposed by Fershtman and Pakes (2012). Details of these tests are provided in Online Appendix 1.2. This is
unsurprising, as experience-based equilibrium is a broader concept that includes subgame perfect Nash equilibrium as
a special case.
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and 3.2, we analyze the impulse response function in the steady state. Specifically, we evaluate

how the trained informed AI speculators respond to an exogenous shock to the noise order flow,

which directly impacts the market price of the asset through the endogenous pricing rule of the

market maker. At t = 0, every single one of the Nsim = 1, 000 simulation paths has converged.

Simultaneously, the market price of the asset, pt, is determined by the market maker’s adaptive

pricing rule, which responds to the random variables vt and ut along each simulation path,

independently across Nsim different parallel simulation paths.

By our design, at t = 3, an unexpected exogenous shock ushock is introduced to the noise

order flow ut, affecting all Nsim simulation paths simultaneously and uniformly. This shock is

intended to adversely impact the trading profits of informed AI speculators, with ushock > 0 if

vt > v and ushock < 0 if vt < v. Consequently, the market price pt unexpectedly rises if vt > v

and unexpectedly decreases if vt < v, with the extent of the price change determined by the

magnitude of the noise trading risk shock ushock.

Panels A through C of Figure 3 illustrate the impulse response dynamics in a scenario with

low noise trading risk (σu = 10−1), while panels D through F of the same figure depict those

in a scenario with high noise trading risk (σu = 102). Each impulse-response curve in a panel

represents the average impulse response dynamics across Nsim independent simulation paths.20

The confidence band of path-by-path impulse response dynamics across Nsim simulation paths is

presented in Online Appendix 1.6.

Low Noise Trading Risk (σu = 10−1). In environments with low noise trading risk, specifically

with σu = 10−1, across Nsim parallel simulation paths, the average value of ∆C is about 0.75,

and the average trading profit of informed AI speculators is about 10% higher than that in the

non-collusive equilibrium.

We consider exogenous shocks of different magnitudes. In the scenario with “small deviation,”

|ushock| is roughly 0.25% of the average magnitude of informed AI speculators’ order flow |xi,t|,

generating a small impact on the asset’s price pt at t = 3. In the scenario with “medium deviation,”

“large deviation,” and “ultra large deviation,” |ushock| is about 2.5%, 11.5%, and 15.0% of the

20Each of the Nsim simulation paths averages 10,000 simulations to smooth out the randomness of vt and ut, ensuring
a reasonable comparison with the impulse response analysis based on the deterministic model of Calvano et al. (2020),
which has no information asymmetry and focuses on a non-stochastic economic environment.
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Note: All the plots are for the scenario of low noise trading risk with σu = 10−1. Panels A through C show the IRF
following a uniform exogenous shock ushock in simulation experiments using Q-learning algorithms. Panels D through
F present the corresponding IRFs based on the theoretical benchmark, where rational-expectations speculators achieve
a subgame perfect Nash equilibrium characterized by collusion sustained through price-trigger strategies.

Figure 2: IRF following uniform exogenous shock ushock for σu = 10−1 under Q-learning (left) or
theoretical benchmark (right).

average magnitude of informed AI speculators’ order flow |xi,t|, respectively, resulting in much

larger changes in pt. These larger deviations may trigger the non-collusive reversion punishment,

whereas the small deviation may not.

Panel A of Figure 2 illustrates the percentage deviation of the asset’s price from its long-run

mean, defined as ( p̃t − E[ p̃t])/E[ p̃t], where p̃t = (pt − v)× sgn(vt − v) and sgn(·) is the sign

function. The sign function ensures that p̃t > 0. Due to the exogenous shock, the asset’s price
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deviates from its long-run mean at t = 3, with the size of the deviation increasing with the

magnitude of the exogenous shock ushock. Panel B of Figure 2 shows the percentage deviation

of average profits from their long-run mean for each informed AI speculator, defined as (πi,t −

E[πi,t])/E[πi,t]. This plot demonstrates that at t = 3, the price deviation reduces the informed

AI speculator’s profits, with the impact increasing with the magnitude of the percentage price

deviation shown in Panel A. Panel C of Figure 2 shows the percentage deviation of order flow

from its long-run mean for each informed AI speculator, defined as (x̃i,t − E[x̃i,t])/E[x̃i,t], where

x̃i,t = xi,t × sgn(vt − v). The sign function ensures that x̃i,t > 0. The deviation of order flows is

zero at t = 3 because price deviation only occurs until t = 3.

We now shift our focus to the response of informed AI speculators following the price deviation

at t = 3. Starting with t = 4, the responses exhibit two defining features of price-trigger strategies,

as outlined in the theoretical benchmark: (i) there is, on average, no response if the price deviation

at t = 3 is small (i.e., “small deviation” captured by the black solid curve), and (ii) if the price

deviation at t = 3 is sufficiently large, AI speculators respond with roughly the same aggressive

trading strategies, regardless of the deviation’s magnitude (i.e., “medium deviation,” “large

deviation,” and “ultra large deviation,” captured by the blue dotted, red dashed, and purple

dot-dashed curves, respectively).

Interestingly, Panel A of Figure 2 shows that for the cases of large and ultra large price

deviations, the percentage deviations of the asset’s price at t = 4 decrease relative to the previous

period but remain substantially higher than the long-run mean. For the case of medium deviation,

the percentage deviation of the asset’s price at t = 4 is higher than in the previous period.

Crucially, the price deviations have similar magnitudes in the cases of medium, large, and ultra

large deviations due to the similar magnitude of order flow deviations at t = 4, as shown in Panel

C. In contrast, for the case of small deviation, both the asset’s price and informed AI speculators’

profits revert to the long-run mean at t = 4.

Although the Q-learning algorithms only trace the one-period lagged market price pt−1 and

fundamental value vt−1 for their decisions at period t, the punishment can last more than one

period. Panels A through C of Figure 2 show that informed AI speculators continue exerting

punishment at t = 5, though it is significantly weaker on average than at t = 4. By t = 6, they

typically stop punishing, and trading behavior along with the market price begins reverting to
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the long-run mean. This pattern indicates that informed AI speculators sustain the collusive

equilibrium through price-trigger strategies with a punishment scheme that usually lasts two

periods.

To provide further direct evidence that the behavior of informed AI speculators in equilibrium

closely resembles a subgame perfect Nash equilibrium characterized by collusion sustained by

price-trigger strategies, we plot the impulse responses for AI-powered trading in the left column

of Figure 2 alongside the corresponding theoretical benchmarks, as described in Propositions 3.1

and 3.2, in the right column of the same figure. Specifically, in Panels D through F of Figure 2,

we plot the impulse response of an exact price-trigger strategy to the same exogenous shock to

noise trading risk, ushock. For a meaningful and informative comparison, when plotting Panels D

through F, we choose the same magnitudes of price deviations at t = 3 as those in the simulation

experiments in Panels A to C. Moreover, all overlapping parameters take the same values as in

the simulation experiments. The parameters (T, ω, η) are unique to the price-trigger strategy

punishment scheme and do not apply to the Q-learning simulations. We set T = 2 to match the

two-period punishment observed in the Q-learning experiments, ω = 2.826 to achieve an average

profitability ∆C around 0.75, and η = 0.327 to match the average order flow deviation of the “Ultra

large deviation” case at t = 4 in the Q-learning simulations. This side-by-side comparison reveals

a strong similarity between AI-powered trading and the corresponding theoretical benchmarks in

collusion through price-trigger strategies: (i) with a small price deviation at t = 3 (the black solid

line), informed speculators do not change their order flows in subsequent periods, in both the

model and simulations; (ii) with medium, large, and ultra large deviations (represented by the

other three lines), informed speculators increase their order flows by roughly the same magnitude

at t = 4, regardless of the different magnitudes of price deviations at t = 3; and, (iii) the average

strength of the punishment decays at roughly the same rate in both the model and simulation

experiments.

To determine if the price-trigger strategy by informed AI speculators in Panels A through C of

Figure 2 is responsible for the collusive, supra-competitive trading profitability observed in Figure

1 for low noise trading risk, we need to disable the AI speculators’ ability to use market prices

as a monitoring tool. This can be achieved by removing the lagged market price pt−1 from the

state variable st for decisions at period t. Indeed, we find that even in environments with both
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Note: All the plots are from simulation experiments using Q-learning algorithms. Panels A through C show the IRF
following a uniform exogenous order flow deviation xi,shock for the scenario of low noise trading risk (σu = 10−1).
Panels D through F present the corresponding IRFs for the scenario of high noise trading risk (σu = 102).

Figure 3: IRF following uniform exogenous shock ushock for scenarios σu = 10−1 (left) and σu = 102

(right).

low price efficiency and noise trading risk, the collusion capacity, captured by ∆C, is roughly zero,

regardless of the price efficiency level (ξ−1) and noise trading risk level (σu).

High Noise Trading Risk (σu = 102). We now examine whether the collusive, supra-competitive

trading profitability observed when the noise trading risk σu is large in Figure 1 is also attributable

to price-trigger strategies, as it is in the scenario where the noise trading risk σu is low. The setup

of simulation experiments in Figure 3 is the same as that in Figure 2 with Panels A through
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C exactly identical for a straightforward comparison. In Panels D through F of Figure 3, we

investigate the average IRF over the Nsim = 1, 000 simulation paths in the environment with

high noise trading risk (i.e., σu = 102). This side-by-side comparison, particularly contrasting

Panel C with Panel F of Figure 3, reveals that informed AI speculators do not respond at all

to the exogenous shock to noise trading flow (ushock) when noise trading risk is high, let alone

respond according to price-trigger strategies. This finding is consistent with the theoretical result

of Proposition 3.1, which states that a collusive Nash equilibrium sustained through price-trigger

strategies does not exist in an environment with high noise trading risk.

How do informed AI speculators still achieve and sustain supra-competitive profits, despite

being unable to learn and use price-trigger strategies? We demonstrate that informed AI spec-

ulators can still establish a collusive equilibrium as described in Definition 3.1, particularly a

collusive experience-based equilibrium sustained by self-confirming bias in learning. To illustrate

this, we study the IRF following a unilateral deviation of one informed AI speculator in both

scenarios of low (σu = 10−1) and high (σu = 102) noise trading risk in Figure 4. Specifically, we

exogenously force one informed AI speculator, labeled as i, to make a one-period deviation from

its learned optimal strategy at t = 3, uniformly across all of the Nsim = 1, 000 simulation paths.

This one-period deviation at t = 3 is directed to increase the contemporaneous trading profit of

the deviating speculator. Specifically, we exogenously increase the order flow of the deviating

speculator by xi,shock if vt > v and reduce its order flow by xi,shock if vt < v.

Panels A through C of Figure 4 show the IRF following the unilateral deviation of AI speculator

i (blue solid curve) at t = 3 for the scenario of low noise trading risk with σu = 10−1. Panel

C illustrates the exogenous forcing of AI speculator i to deviate by trading more aggressively,

while the other AI speculator (black dashed curve) maintains their trading behavior. As shown

in Panel A, this aggressive trading by AI speculator i pushes up the market price pt at t = 3.

Panel B shows that the deviating AI speculator (blue solid curve) gains greater profits, while the

non-deviating AI speculator (black dashed curve) loses profits at t = 3. According to Definition 3.1,

these IRF results reinforce the findings of Figure 1, demonstrating that informed AI speculators

can interact and learn to sustain a collusive equilibrium in environments of low noise trading

risk. More importantly, the responses of informed AI speculators to this unilateral deviation

in the subsequent periods starting from t = 4 further reinforce the findings of Figures 2 and
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Figure 4: IRF following unilateral deviation in trading order flows xi,shock for σu = 10−1 (left) and
σu = 102 (right).

3, demonstrating that the collusive equilibrium is indeed sustained by price-trigger strategies,

resembling the behavior of a subgame perfect Nash equilibrium. Specifically, at t = 4, Panel C

shows that both AI speculators respond with equally aggressive trading behavior, on average, as

punishment for the deviation. As shown in Panel B, this results in both AI speculators losing

profits at t = 4 due to the skyrocketing market price.

In contrast, Panels D through F of Figure 4 show the IRF following the unilateral deviation

of AI speculator i (blue solid curve) at t = 3 for the scenario of high noise trading risk with
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σu = 102. Panel F shows AI speculator i being forced to trade more aggressively, while the other

AI speculator (black dashed curve) maintains their usual trading behavior. Panel D shows that

this aggressive trading by AI speculator i pushes up the market price pt at t = 3. Similar to Panel

B, Panel E shows that the deviating AI speculator (blue solid curve) gains greater profits, while the

non-deviating AI speculator (black dashed curve) loses profits at t = 3. According to Definition 3.1,

these IRF results reinforce the findings of Figure 1, demonstrating that informed AI speculators

robustly reach a collusive equilibrium in environments with high noise trading risk. Although the

immediate reactions at t = 3 mirror those in the low noise trading risk environment shown in

Panels A through C, the subsequent responses of informed AI speculators are completely different.

Specifically, the deviating AI speculator automatically reverts to the mean trading order flow

while the non-deviating AI speculator’s behavior remains unaffected, as shown in Panel F. This

occurs consistently, even though the deviating AI speculator takes advantage of the non-deviating

AI speculator at t = 3, as shown in Panel E. This provides direct evidence that the collusive

equilibrium in the high noise trading risk scenario is not a Nash equilibrium, and the persistent

self-confirming bias in learning cannot be altered by new trial-and-error observations from a

single period. Instead, the equilibrium is shown to be an experience-based equilibrium with

self-confirming bias in learning, according to the formal tests proposed by Fershtman and Pakes

(2012).21

Role of Informative-Insensitive Investors. In Figures 1 through 4, we examine the impact of

different levels of noise trading risk σu on informed AI speculators’ trading equilibrium, including

their collusion capacity and the mechanisms behind AI collusion, with ξ = 500 kept fixed. As

suggested by the theoretical benchmarks, such as Propositions 3.1 and 3.2, collusion through price-

trigger strategies requires inefficient prices caused by strong presence of information-insensitive

investors who absorb the trading order flows of informed AI speculators. Thus, when noise

trading risk is low, the collusive, supra-competitive trading profits of informed AI speculators

through “artificial intelligence” are primarily derived from trading against information-insensitive

investors. Specifically, in our simulation experiments with Q-learning algorithms for the scenario

σu = 10−1, each informed AI speculator gains approximately 54 on average, which is derived

21For detailed information on the tests for experience-based equilibrium, refer to Online Appendix 1.2.
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from the loss of information-insensitive investors, roughly 108, as the average trading profit of

noise traders and market makers is nearly zero. By contrast, when noise trading risk is high,

the collusive, supra-competitive trading profits of informed AI speculators through “artificial

stupidity” are derived not only from trading against information-insensitive investors but also

from trading against noise traders. Specifically, in our simulation experiments with Q-learning

algorithms for the scenario σu = 102, each informed AI speculator gains approximately 54 on

average, which is derived not only from the loss of information-insensitive investors (roughly

88) but also from the loss of noise traders (roughly 20), with the average trading profit of market

makers still nearly zero. Notably, these results are consistent with the recent empirical findings

of Chen, Peng and Zhou (2024), suggesting that the profits of AI-powered trading primarily

arise from trading against the technical analysis sentiment of retail investors, as information-

insensitive investors can be interpreted as retail investors who employ technical analysis in our

model. The contrast between scenarios σu = 10−1 and σu = 102 further demonstrates the distinct

mechanisms behind AI collusion. To highlight this difference, we conducted additional simulation

experiments with Q-learning algorithms for the scenario σu = 2.5 × 102. These experiments show

that information-insensitive investors can trade alongside informed AI speculators in the same

direction when noise traders make substantial order flows in the losing direction. In this case,

each informed AI speculator gains approximately 54.5, and information-insensitive investors gain

roughly 16 on average, derived from the loss of noise traders (roughly 125), with the average

trading profit of market makers remaining nearly zero.

Furthermore, according to the theoretical benchmarks, such as Propositions 3.1 and 3.2, the

existence of collusive equilibrium through price-trigger strategies requires ξ to be sufficiently

large, resulting in sufficiently inefficient prices. Although we focus on examining the role of noise

trading risk σu on AI collusion in Figures 1 through 4, we show in Online Appendix 1.9 that when

ξ is low, collusion through self-confirming bias in learning, rather than through price-trigger

strategies, arises robustly regardless of the level of noise trading risk σu.

5.3 Intuition Behind AI Collusion

Collusion Through Price-Trigger Strategies When σu Is Low. We first elaborate the intuition

behind collusion through price-trigger strategies in the scenario of low noise trading risk. Specifi-
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cally, we provide insight into how RL algorithms learn from their interactions to achieve collusion

sustained by price-trigger strategies. Although this price-trigger strategy appears to be based on

logical thinking and the deviation-and-punishment causal response, it is actually driven by the RL

algorithms autonomously learning to make optimal decisions based solely on pattern recognition.

For illustrative purposes, consider the baseline case with σu = 0 and vt ≡ v. In this scenario,

the state variable is st = pt−1. Intuitively, when at least one AI speculator trades aggressively,

denoted by xH, the price is driven up to a high level, denoted by pH. Conversely, if both AI

speculators trade conservatively, denoted by xL, the price remains low, denoted by pL.

To grasp the key idea, assume that both AI speculators adopt conservative trading behavior,

xL, as their optimal strategy at time t when st = pL. This means the Q-function initially has a

higher value at (pL, xL) than at (pL, xH) for both AI speculators. If there is no exploration at all,

the system will remain in conservative trading, xL, with a consistently low price, pL. Consequently,

aggressive trading, xH, or a high price, pH, will never occur on the equilibrium path. Without

exploration, price-trigger strategies cannot be learned or implemented.

Suppose one exploration occurs at t, causing one AI speculator to deviate from xL to xH,

shifting the state from pL to pH. If another exploration occurs in the subsequent period t + 1,

prompting one AI speculator to choose xH, the state remains at pH at t + 2. The AI speculator

choosing xH gains more profits at the expense of the other, who chooses xL. Exploitation will

ensure that this combination of trading behaviors persists, keeping the state at pH in subsequent

periods, until both AI speculators find it optimal to trade aggressively, xH, in state pH.

As a result, the optimal value function maxx′∈X Q̂i,t(pH, x′) conditional on the state pH is

low. Therefore, if ρ is sufficiently high, the recursive relation (2.4) indicates that conservative

trading behavior xL can be preferred over xH in the state pL, even though deviating to xH leads

to higher one-period trading profits with the other speculator remaining at xL. This is because

AI speculators understand that choosing xH would shift the state to pH and result in a low

continuation value, ρ maxx′∈X Q̂i,t(pH, x′). This, in turn, justifies the initial assumption about the

Q-function.

From the intuition explained above, it is evident that exploration is crucial not only for approx-

imating the true Q-function but also for enabling informed AI speculators to learn and sustain

collusion through price-trigger strategies in low noise trading environments. Exploration allows
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RL algorithms to acquire off-equilibrium-path information sets, facilitating the implementation of

price-trigger strategies. These strategies help maintain collusive, supra-competitive trading profits

through the threat of “punishment.”

Collusion Through Self-Confirming Bias When σu Is High. As σu increases to a high level, the

mechanism behind the price-trigger strategies explained above becomes invalid because the state

variable pt is primarily driven by noise trading flows ut rather than by the trading behavior of

informed AI speculators. However, a distinct mechanism for AI collusion begins to emerge. We

now elaborate on the intuition behind collusion through self-confirming bias in learning in the

scenario of high noise trading risk. Specifically, we provide insight into how RL algorithms learn

from their interactions to achieve collusion sustained by self-confirming bias, where AI speculators

undervalue aggressive trading strategies, perpetuating an incorrect system of outcome evaluation

that remains uncorrected.

Aggressive trading behavior, xH , is prone to disastrous profit outcomes when large noise trad-

ing flows move in the same direction, leading the algorithm to label xH as disastrous. Consequently,

exploitation prevents the algorithm from revisiting xH, resulting in a persistent undervaluation.

Conversely, xH can also yield exceptional profits when noise trading flows move in the opposite

direction, prompting the algorithm to label xH as favorable. This prompts the algorithm to learn

about xH repeatedly, leading to an unbiased valuation. However, the asymmetric effect of exploita-

tion on learning aggressive trading behavior ultimately results in the persistent dominance of the

undervaluation effect. This systematic undervaluation leads informed AI speculators to settle on

conservative trading strategies in the steady state, preventing them from revisiting aggressive

strategies and correcting their evaluation of off-equilibrium-path outcomes.

From the intuition explained above, unlike the mechanism behind collusion through price-

trigger strategies when σu is low, exploration is not as crucial for collusion through self-confirming

bias in learning when σu is high. Instead, exploitation, a defining characteristic of RL algorithms

alongside exploration, alone plays a vital role.
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Figure 5: Implications of the number of informed AI speculators.

5.4 Effect of the Number of Informed AI Speculators (I)

To study how the number of informed AI speculators affects their trading strategies, we increase

I from 2 to 6 in the baseline economic environment. Panels A to D of Figure 5 focus on the

environment with low noise trading risks (i.e., small σu). Panel A shows that as I increases, the

relative profit πC/πM decreases from 0.97 to 0.87, indicating a decline in the extent of collusion

among informed AI speculators. Moreover, panels B to D show that as I increases, the relative

price informativeness IC/IM and market liquidity LC/LM increase whereas the magnitude of

mispricing EC decreases. These patterns are consistent with the prediction of the model, which

suggests that informed speculators are less able to collude through price-trigger strategies when

the number of informed speculators I increases (see Proposition 3.4).

For comparisons, in panels E to H of Figure 5, we focus on the environment with high

noise trading risks (i.e., σu = 102). In this environment, informed AI speculators achieve supra-

competitive profits due to homogenized learning biases, as discussed in Subsection 5.2. We
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show that as I increases, the relative profit πC/πM decreases, the relative price informativeness

IC/IM and market liquidity LC/LM increase whereas the relative mispricing EC decreases.

These patterns are remarkably similar to those in the environment with low noise trading risks

(panels A to D of Figure 5), despite the difference in the underlying mechanisms that result in

collusion. They suggest that the coordination through homogenized learning biases becomes more

difficult to achieve when there are more informed AI speculators in the market. Intuitively, in

the environment with high noise trading risks, the equilibrium degree of collusion is determined

by the interaction of two counterveiling forces. One is the magnitude of learning biases, which

is the mechanism that results in collusion. The other is the deviation gain from the collusive

experience-based equilibrium. A larger deviation gain makes it more difficult for informed AI

speculators to reach the collusive equilibrium because in the process of exploration (which, in

essence, generates deviation behavior), AI speculators will more likely learn noncollusive trading

strategies. As the number of informed AI speculators I increases, the deviation gain becomes

larger, but the magnitude of learning biases remain unchanged,22 reducing the capacity to collude.

5.5 Effect of Subjective Discount Rate (ρ)

To study how the subjective discount rate affects informed AI speculators’ trading strategies, we

vary ρ in the baseline economic environment. Panels A to D of Figure 6 focus on the environment

with low noise trading risks (i.e., σu = 10−1). Panel A shows that as ρ increases, the relative

profit πC/πM increases. Moreover, panels B to D show that as ρ increases, the relative price

informativeness IC/IM and market liquidity LC/LM decline whereas the relative mispricing EC

increases. These patterns are consistent with the prediction of the model, which suggests that

informed speculators are able to collude on higher profits through price-trigger strategies as the

subjective discount rate ρ increases (see Proposition 3.4).

Turning to the environment with high noise trading risks (i.e., σu = 102), panels E to H of

Figure 6 show that as ρ increases, the relative profit πC/πM is roughly unchanged for ρ ≤ 0.65

and increases slightly for ρ > 0.65. The relative price informativeness IC/IM, market liquidity

22As I increases, individual informed AI speculators’ trading flows xi decrease. However, in equation (IA.6) in
Online Appendix 3.1, the trading flow xi proportionally affects every term. Thus, the decrease in xi does not affect the
importance of the term αλxi ∑T

τ=0(1 − α)τut(T−τ), which causes learning biases, relative to other terms in the equation.
This is why the magnitude of learning biases does not depend on I.
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Figure 6: Implications of the subjective discount rate.

LC/LM, and the magnitude of mispricing EC also stay roughly unchanged as ρ increases. The

insignificant impact of ρ in this environment is due to the algorithmic property that ρ does not

significantly affect the magnitude of learning biases (see Online Appendix 3.1). Because collusion

is achieved through homogenized learning biases in this environment, the degree of collusion

would be insensitive to ρ if the magnitude of learning biases does not change much with ρ.

5.6 Hyperparameters

The implementation of Q-learning algorithms is determined by the two key hyperparameters α

and β, where the former determines the forgetting rate and the latter determines the decaying

speed of exploration. We now study how α and β affect informed AI speculators’ trading strategies

in the baseline economic environment.

Panel A of Figure 7 plots the average ∆C in the environment with low noise trading risks (i.e.,

σu = 10−1) for different values of α and β. It is shown that, to make the learning process more
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Note: Panel A plots ∆C in the environment with low noise trading risks (σu = 10−1); panel B plots ∆C in the
environment with high noise trading risks (σu = 102). The other parameters are set according to the baseline economic
environment described in Section 4.2.

Figure 7: Implications of hyperparameters α and β on ∆C.

effective, the values of α and β have to be jointly determined. That is, the choice of a smaller β

needs to be matched with a smaller α, and conversely, the choice of a larger β needs to be matched

with a larger α. Intuitively, setting a small β ensures that informed AI speculators will spend a

long time in the exploration mode in which they randomly choose different actions, resulting in

extensive experimentation. Then, setting a small α is necessary to record the value learned in the

past whereas setting a large α will disrupt learning as the algorithm would forget what it has

learned in the past too rapidly. By contrast, setting a large β means that informed AI speculators

only spend a short period of time in the exploration mode. Then, if we still set a small α, the

Q-matrices of informed AI speculators would not be updated significantly compared to their

initial values even after the algorithms fully complete exploration. Thus, when β is large, setting a

small α would backfire, making the initial exploration futile. Instead, setting a large α in this case

would help informed AI speculators to learn price-trigger strategies to achieve more collusive

outcomes.

For comparisons, panel B of Figure 7 plots the average ∆C in the environment with high noise

trading risks (i.e., σu = 102) for different values of α and β. Holding β unchanged at each value of

49



{5 × 10−8, 5 × 10−7, 5 × 10−6, 5 × 10−5}, it is shown that the value of ∆C declines monotonically

as α decreases. This is because, as discussed in Online Appendix 3.1, a lower α reduces learning

biases. As a result, it will be more difficult for informed AI speculators to learn collusive trading

strategies through homogenized learning biases in the environment with high noise trading risks.

6 Coordinated Choice of Q-Learning Algorithms

In this section, we study the trading profits of informed AI speculators when they adopt Q-

learning algorithms with different values of the forgetting rate α. The algorithm with a lower

α has smaller learning biases but its training takes longer time and more computation power.

We can think of α as capturing the “intelligence level” of the algorithm: the algorithm is more

advanced if it has a lower α.

In Subsection 6.1, we conduct simulation experiments in the baseline economic environment

using the standard Q-learning algorithms with a fixed α. In Subsection 6.2, we extend the Q-

learning algorithm to a two-tier Q-learning algorithm with an adaptive α. This algorithm allows

informed AI speculators to learn both the choice of α and the trading strategies associated with

each α. We show that informed AI speculators can learn to coordinately choose the values of their

α for mutual benefits.

6.1 Heterogeneous Forgetting Rates

Focusing on the baseline economic environment, we allow the two informed AI speculators to

adopt Q-learning algorithms with different intelligence levels, as represented by different values of

α. We show that when noise trading risks are low (i.e., σu = 10−1), both informed AI speculators’

profits are maximized when they choose the same value of α that best matches with the value of β,

confirming the result presented in panel A of Figure 7. By contrast, when noise trading risks are

high (i.e., σu = 102), informed AI speculators face a situation resembling the prisoner’s dilemma

when they are allowed to choose their algorithms’ α.

Specifically, each informed AI speculator i adopts an algorithm whose forgetting rate is αi, with

αi = 0.001, 0.01, 0.05 and 0.1 for i = 1, 2. Panels A and B of Figure 8, plot the average ∆C
1 and ∆C

2

for informed AI speculators 1 and 2, respectively, in the environment with low noise trading risks
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(i.e., σu = 10−1). Both informed AI speculators’ profits are maximized when (α1, α2) = (0.01, 0.01),

which result in (∆C
1 , ∆C

2 ) = (0.743, 0.743). Importantly, neither informed AI speculator has the

incentive to choose a different α because it would reduce self-profit. The intuition for this result

follows the discussions for panel A of Figure 7. Given β = 5 × 10−7, setting α = 0.01 helps

informed AI speculators to learn price-trigger strategies to achieve best collusive outcomes in the

environment with low noise trading risks.

By contrast, panels C and D of Figure 8 focus on the environment with high noise trading risks

(i.e., σu = 102). It is shown that for any combination of (α1, α2), the informed AI speculator with a

lower αi attains a higher average ∆C
i than the other informed AI speculator. Moreover, for i = 1, 2

and j ̸= i, holding informed AI speculator i’s αi unchanged at each value of {0.001, 0.01, 0.05, 0.1},

as the other informed AI speculator j’s αj decreases, the average ∆C
i for informed AI speculator i

decreases and the average ∆C
j for informed AI speculator j increases.

These results suggest that if the two informed AI speculators can freely choose their algorithms’

α, the situation facing them resembles a prisoner’s dilemma in the environment with high noise

trading risks. Given the peer’s algorithm choice, upgrading the algorithm by setting a lower α can

increase its own profit while reduces its peer’s profit. Intuitively, because the value of α determines

the magnitude of learning biases, the more advanced algorithm has smaller learning biases than

the less advanced algorithm. As discussed in Section 5.2, learning biases induce informed AI

speculators to adopt more collusive trading strategies with small order flows. Therefore, the

informed AI speculator with a less advanced algorithm would adopt a more collusive trading

strategy than the one with a more advanced algorithm. This means that the informed AI speculator

with a more advanced algorithm tends to choose larger order flows than its peer, enabling it

to obtain more profit than its peer. However, if both informed AI speculators adopt advanced

algorithms with similarly low values of α, the profits for both of them will be very low (e.g.,

(∆C
1 , ∆C

2 ) = (0.308, 0.308) when (α1, α2) = (0.001, 0.001)). On the flip side, both informed AI

speculators can obtain supra-competitive profits if they both adopt unadvanced algorithms with

similarly high values of α (e.g., (∆C
1 , ∆C

2 ) = (0.806, 0.806) when (α1, α2) = (0.1, 0.1)). This confirms

the previous results in panel B of Figure 7 that collusion is achieved through homogenized

learning biases in the environment with high noise trading risks.

The results we observe bear similarity with the general equilibrium effects in active man-
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Note: We allow the two informed AI speculators to adopt Q-learning algorithms with different values of the forgetting
rate, denoted by α1 and α2 for informed AI speculators 1 and 2, respectively. Panels A and B plot ∆C

1 and ∆C
2 in

the baseline economic environment with low noise trading risks (i.e., σu = 10−1). Panels C and D plot those in the
environment with high noise trading risks (i.e., σu = 102). The other parameters are set according to the baseline
economic environment described in Section 4.2.

Figure 8: Profit gains when informed AI speculators use different values of α.

agement characterized by Stambaugh (2020). According to his model, if all managers lack the

ability to select positive-alpha stocks, they can collectively achieve high profits. When a small

fraction of managers gains more skill, it results in increased profits for the skilled ones, while

the less skilled managers experience a decline in their profits. However, if a large proportion

of managers becomes more skilled, the profits for all managers start to diminish. This decline
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is due to a shrinking alpha magnitude, caused by more substantial price corrections in general

equilibrium. Interestingly, the total profit of the active management industry typically decreases

whenever any of the managers become more skilled. In a recent work, Dugast and Foucault (2024)

derive a similar result by showing that improvements in the skills of active asset managers, due to

lower information processing costs or the proliferation of new datasets, can reduce their average

performance as asset prices become more informative.

6.2 Adaptive Forgetting Rates

In this subsection, we extend the Q-learning algorithm to a two-tier Q-learning algorithm whereby

informed AI speculators learn both the choice of α and the trading strategies associated with

each α. Our two-tier Q-learning algorithm essentially allows machines to learn to set an adaptive

forgetting rate.

Based on the two-tier Q-learning algorithm, we show that in the baseline economic environment

with low noise trading risks (i.e., σu = 10−1), informed AI speculators can easily learn the optimal

choice of α, which maximizes their profits. In the environment with high noise trading risks

(i.e., σu = 102), which is inherently a situation resembling the prisoner’s dilemma, informed AI

speculators can learn to choose α for mutual benefits, enabling both to obtain supra-competitive

profits. Specifically, informed AI speculators learn to choose high values of α, as if they are

implicitly coordinating with each other, despite the fact that choosing a low value of α unilaterally

may boost self-profit. This result implies that a collusive equilibrium with unadvanced algorithms

(i.e., high α) may arise endogenously due to the optimal decisions of informed AI speculators.

Two-Tier Q-Learning Algorithm. Each informed AI speculator i adopts a two-tier Q-learning

algorithm. In the lower tier, the informed AI speculator adopts a Q-learning algorithm to learn the

lower-tier Q-matrix Q̂i,t(st, xi,t) for state st = {pt−1, vt−1, vt} and order flow xi,t, given the choice

of αi,t in the upper tier. The lower-tier Q-learning algorithm is identical to the algorithm described

in Section 4.1, except for the use of a time-varying adaptive forgetting rate αi,t. In the upper

tier, the informed AI speculator adopts a Q-learning algorithm to learn the upper-tier Q-matrix

Q̂u
i,t(s

u
i,t, αi,t) for state su

i,t and action αi,t.

For any given choice of αi,t in the upper tier, it is necessary to ensure that the lower tier
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Q-learning algorithm is run for a sufficiently long period of time, so that the profit corresponding

to the choice of αi,t fully stablizes. This means that compared with the choice of xi,t in the lower tier,

the choice of αi,t in the upper tier has to be experimented at a much lower frequency. Therefore,

we specify that each informed AI speculator i adjusts its upper tier’s action αi,t only after the

lower tier finishes a training epoch that lasts for a total of T periods, with T being a large integer.

Specifically, let τ = 1, 2, ... denote all training epochs of the lower-tier Q-learning algorithm.

The training epoch τ represents the period from (τ − 1)T + 1 to τT. Within each training epoch

τ, each informed AI speculator i’s upper-tier Q-matrix Q̂u
i,t(s

u
i,t, αi,t) or action αi,t stay unchanged

from (τ − 1)T + 1 to τT − 1; the values of Q̂u
i,t(s

u
i,t, αi,t) and action αi,t are updated only at the end

of the training epoch, occurring at t = τT. Therefore, without loss of generality, we only specify

the recursive learning equation of the upper-tier Q-learning algorithm at the end of each period,

t = τT, as follows:

Q̂u
i,(τ+1)T(s

u
i,τT, αi,τT) = (1 − αu)Q̂u

i,τT(s
u
i,τT, αi,τT) + αu

[
πu

i,τT + ρu max
α′∈A

Q̂u
i,τT(s

u
i,(τ+1)T, α′)

]
, (6.1)

for τ = 1, 2, ... In equation (6.1), πu
i,τT is the reward in the training epoch τ, given by πu

i,τT =

1
T ∑τT

t=(τ−1)T+1(vt − pt)xi,t, which is the average trading profit over the last T periods, from (τ −

1)T + 1 to τT. The parameters αu and ρu are the forgetting rate and the subjective discount rate for

the upper tier Q-learning algorithm. For tractability, we choose the state variable su
i,τT = {πu

i,(τ−1)T},

which is the reward in the previous training epoch. The choice of αi,τT is made as follows:

αi,τT =

 argmaxα′∈A Q̂h
i,τT(s

u
i,τT, α′), with prob. 1 − εu

τ, (exploitation)

α̃ ∼ uniform distribution on A, with prob. εu
τ. (exploration)

(6.2)

The exploration rate is specified as ετ = e−βuτ, where βu is the parameter governing the decaying

speed of exploration rates across training epochs.

Simulation Results. The two-tier Q-learning algorithm takes a substantially longer time to

converge because there are experimentations on both αi,t and xi,t. For the upper-tier algorithm,

we consider the following parameter values: αu = 0.1, βu = 10−4, and ρu = 0.95. Each training

epoch has a total of T = 10, 000, 000 periods. The convergence criterion requires the decisions of
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Table 1: Adaptive forgetting rates after the convergence of two-tier Q-learning algorithms.

(0.001, 0.001) (0.01, 0.01) (0.1, 0.1) Others

Low noise trading risks (i.e., σu = 10−1) 0 957 2 41

High noise trading risks (i.e., σu = 102) 0 710 272 18

Note: This table reports the number of simulation sessions that converge to each pair of (α1, α2) after the two-tier
Q-learning algorithms converge. We conduct Nsim = 1, 000 independent simulation sessions.

αi,t to stay unchanged for 100, 000 consecutive training epochs. For tractability, we choose three

grids for the choice of αi,t, with A = {0.001, 0.01, 0.1}. The parameters and grids for the lower-tier

Q-learning algorithm are similar to those described in Section 4.

Table 1 summarizes the number of simulation sessions that converge to each pair of (α1, α2)

after algorithms converge. In the environment with low noise trading risks (i.e., σu = 10−1),

across the Nsim = 1, 000 simulations sessions, 957 sessions converge to the best equilibrium with

(α1, α2) = (0.01, 0.01), which maximizes both informed AI speculators’ profits, as shown in panels

A and B of Figure 8. This suggests that our two-tier Q-learning algorithm enables the two informed

AI speculators to learn to play the optimal equilibrium.

Turning to the environment with high noise trading risks (i.e., σu = 102). As shown in panels

C and D of Figure 8, the two informed AI speculators face a situation that resembles the prisoner’s

dilemma. Specifically, given informed AI speculator i’s choice of αi, informed AI speculator j can

gain by adopting the smallest αj = 0.001. However, both informed AI speculators would not make

much profit if they reach the unqiue Nash equilibrium of (α1, α2) = (0.001, 0.001) of a one-shot

game. Instead, both of them would attain supra-competitive profits by coordinately reaching the

equilibrium with (α1, α2) = (0.01, 0.01) or (α1, α2) = (0.1, 0.1), that is, by adopting unadvanced

algorithms to trade. In theory, these two equilibria with high values of α can only be sustained in

a repeated game. In our simulation experiments, we find that across the Nsim = 1, 000 simulations

sessions, 272 sessions converge to the equilibrium with (α1, α2) = (0.1, 0.1), and 710 sessions

converge to the equilibrium with (α1, α2) = (0.01, 0.01). There does not exist a single simulation

session that converges to the equilibrium with (α1, α2) = (0.001, 0.001), even though this is the

unique Nash equilibrium in a one-shot game.23 Our results indicate that in the environment

23Complementary to this result, we also find that if one informed AI speculator’s α is exogenously fixed at 0.001, the
other informed AI speculator will always learn to set its α at 0.001. This implies that although a unilateral deviation
by setting α = 0.001 could boost self-profit in the short run, it will not be profitable in the long run because the peer
informed AI speculator will also learn to set α = 0.001.
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with high noise trading risks, the two informed AI speculators are able to learn to adopt less

advanced algorithms (i.e., high α), as if they are implicitly coordinating with each other. This sort

of coordination allows both informed AI speculators to obtain supra-competitive profits.
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