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Abstract

Globally, migrant workers often cluster with hometown peers in the same sectors and locations.

This paper quantifies two countervailing effects of clustering: learning benefits and labor

market congestion costs, using data on millions of migrant workers from a large food delivery

platform in China. First, I provide direct evidence of knowledge spillovers. New workers

learn from their peers’ past delivery experiences, decreasing search time by 10%. Using quasi-

random variation in workers’ location choices induced by entry bonuses, I show that having

one hometown peer nearby increases new workers’ productivity and earnings by 2%. Second,

I quantify a cost of clustering due to correlated shocks. Migrant workers supply six additional

hours weekly during adverse hometown shocks (floods and pandemic lockdowns). Due to

inelastic consumer demand, clustering causes workers to compete for deliveries, and real

wages decrease by 10% on average. Third, I build an equilibrium model to quantify the trade-

off between the learning benefits and congestion costs. I discuss the impacts of clustering on

worker utility, quantify externalities, and simulate policy counterfactuals. Providing insurance

for hometown shocks doubles equilibrium clustering and increases productivity.
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1 Introduction

Throughout the world, migrant workers often cluster in the same sectors and locations
with peers from the same region. For example, Indian migrants operated over 60% of
motels in Los Angeles (Light et al., 1994). 24% of hairdressers in Houston were Vietnamese
migrants (Patel and Vella, 2013), and 14% of taxi drivers in New York City came from
Pakistan (Schaller, 2006). In China, around 30% of migrant workers from the same county
clustered in the same sector and province (Chen et al., 2010).

What are the benefits and costs of such clustering? On the one hand, clustering with
same-origin peers may provide advantages, such as job opportunities and social support
(see Munshi (2020) for a comprehensive review).1 On the other hand, a large cluster can
heighten competition within the network (e.g., Beaman, 2012). However, few studies
have jointly examined the agglomeration and dispersion forces of clustering in the same
context and analyzed how they interact to impact workers’ location choices.

In this paper, I provide a unified theoretical and empirical analysis of two countervail-
ing effects of clustering through five quasi-experiments and a model. First, I study how
clustering facilitates knowledge spillovers through the migrant network, leading to higher
productivity and earnings. Second, I explore a new channel of cost: clustering results in
hometown workers competing with one another during adverse hometown shocks when
their labor supply surges simultaneously, leading to higher income risks. Third, I analyze
how the two forces interact to impact workers’ location decisions and utility.

I estimate these effects using data from a large food delivery platform in China with
over 1 million delivery workers. 98% of delivery workers in large cities are domestic
seasonal migrants. This is a particularly good setting for studying the effects of migrant
clustering. First, the industry’s exceptionally detailed data enables empirical analyses that
have been difficult to conduct. For example, the granular GPS coordinates, recorded every
20 seconds and providing over 1 billion observations, enable very precise measurements
of worker productivity and knowledge spillovers, a substantial challenge in prior research.

Second, the gig economy has grown rapidly and has 435 million workers worldwide
in 2023 (Datta et al., 2023). Over 50% of migrants now work in the gig economy (Pew,
2021; McKinsey, 2022), yet we know little about their choices and trade-offs under this
new economic form. Furthermore, the learning and congestion network effects are highly

1For example, migrant networks can increase employment rates (e.g., Edin et al., 2003; Munshi, 2003),
wages (e.g., Damm, 2009; Egger et al., 2021), and provide social support (e.g., Biavaschi et al., 2021;
Blumenstock et al., 2021).
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relevant to these delivery workers’ utility and work location choices. For example, the
GPS data indicates that same-origin migrant workers often cluster residentially on the
city outskirts but commute to different, self-selected work locations. In this project, I
focus on work location choices and separate them from residential choices, making these
two network effects more salient.2

The delivery platform divides each large city into approximately 150 districts, each
covering a 5km × 5km area. Delivery workers typically only operate within a single
district in their destination city.3 I thus compute the clustering level based on the share
of workers who come from the same hometown and work in the same district.4 If
workers were randomly allocated across districts, fewer than 1% of people from the same
hometown would work in the same district. Instead, the observed clustering level is 30%.
Consequently, the largest cluster of same-origin workers within a district makes up 15%
of the district’s labor force on the platform.

The main analysis consists of three steps. In Step 1, I analyze how clustering enables
knowledge spillovers and increases productivity, measured by the delivery speed.5 The
descriptive results show that new workers’ productivity rises over time, especially in the
first three months. Furthermore, new workers in districts with at least one same-origin
peer demonstrate higher and steeper productivity growth. However, directly comparing
clustered and non-clustered workers may raise endogeneity concerns, such as inherent
differences between the two groups. To address this, I exploit three quasi-experiments
to provide direct evidence of knowledge spillovers and estimate the overall impact of
clustering on productivity.

The first quasi-experiment is based on the platform’s order allocation algorithm.
Because the algorithm exogenously assigns workers to visit different locations, this quasi-
random allocation results in workers possessing varying prior knowledge across locations
and time.6 I assess how the various levels of prior knowledge affect workers’ productivity.
Specifically, I analyze whether workers can deliver food more rapidly when (1) they have

2Additionally, while past studies have extensively documented migrant networks providing new workers
with job information and increasing employment rates, such information on job vacancies is more widely
accessible, and hiring is more transparent in the gig economy.

3The GPS data shows that workers complete 85% of their daily deliveries within a 3km × 3km area
on average. In addition, most workers select a single district as their primary work location, where they
complete 70% of their daily deliveries.

4Hometown is defined as a worker’s county of birth. There are 2,843 counties in China, of which 2,805
are represented by at least one active delivery worker in the analysis sample.

5Delivery speed is calculated as the delivery distance (meters) divided by duration (minutes). A higher
delivery speed allows workers to complete more deliveries within the same unit of time, increasing real
wages. I thus use this as a proxy for productivity.

6The algorithm takes each worker’s real-time GPS location as the most crucial factor for allocation.
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personally visited a location before and (2) their peers have visited a location before.

I also exploit the fact that 60% of new workers have a referrer upon entry.7 Referrers
are incumbent delivery workers on the platform. This referral information confirms
social connections between workers. I thus estimate knowledge transmission within each
new worker-referrer pair by treating referrers as peers from whom new workers learn.
Furthermore, using granular GPS data, I decompose each delivery into three parts: (a)
restaurant search time, (b) driving speed on the road, and (c) consumer location search
time. This decomposition provides insight into where learning occurs.

The results reveal that both learning by doing and peer learning play important roles.
A worker’s prior visit to a location reduces search time by 20% when they travel to the
same restaurant or consumer location the second time.8 A referrer’s prior visit decreases
a new worker’s search time by around 10%. Conversely, travel speed on the road does
not display the same patterns.

The preceding analysis provides direct evidence of knowledge spillovers through net-
works. Another question relates to the overall impact of clustering on worker productivity.
Estimating this has been difficult in prior studies, as directly regressing productivity on
clustering raises two endogeneity concerns: (1) new workers’ choices of work districts
may be endogenous;9 (2) new workers are more productive in districts with more home-
town peers, but for reasons unrelated to migrant networks.10 I construct an instrumental
variable induced by entry bonuses to address the first concern and use data to examine
the second concern.

First, the instrumental variable exploits the quasi-random variation in new workers’
choices of districts induced by entry bonuses. The entry bonuses are fixed monetary
transfers awarded to new workers who complete a certain number of deliveries in
targeted districts.11 They thus function as natural experiments that exogenously nudge

7For new workers in Shanghai in 2021, around 41% of new workers had referrers, and around 54% of
new workers came from the same county as their referrers. Restricting the sample to delivery workers who
finished at least 50 deliveries, around 60% of the new workers had referrers, and around 65% of the pairs
came from the same county.

8A further heterogeneity analysis shows that the estimated search time decreases are most pronounced
in old, dense, and crowded neighborhoods, where it is hard to find exact locations. These findings highlight
the importance of learning in the city despite the availability of advanced GPS tools.

9For example, more competent workers can learn faster based on their own experiences and thus cluster
less.

10For example, Cantonese workers work in districts with more restaurants speaking Cantonese, and their
productivity is higher due to better communication with restaurants instead of more Cantonese workers
around.

11The platform occasionally imposes entry bonuses in different districts and weeks to balance labor
demand and supply. In Shanghai in 2021, 72% of entry bonuses were active for only one week, and 87% of

4



new workers to enter different districts. In addition, I only use bonuses active the next
week after new workers’ entries. This timeline avoids bonuses abstracting different types
of new workers joining.

In summary, the endogenous variable is the share of hometown workers in a worker’s
work district. For the IV, I also leverage the network data as the last analysis. Specifically,
90% of new workers choose to work in districts within 6km of their referrers’ districts. I
thus define the set of districts adjacent to the referrer as a new worker’s choice set. The IV
is the hometown-worker share in a district that offers entry bonuses within this choice set.
The intuition is that entry bonuses exogenously assign new workers to work in different
districts within the choice set. The main variation of the IV comes from the quasi-random
assignment of entry bonuses across time and districts.

The IV regressions of new workers’ labor market performances on clustering levels
indicate that clustering significantly increases new workers’ productivity. On average,
one additional hometown peer increases productivity by 0.4% in the first three months.
Working in a district with an average level of clustering increases new workers’ produc-
tivity by 5%. While I do not find that clustering impacts working hours, workers’ total
earnings rise with higher clustering due to greater productivity.

I also estimate the entire shape of the clustering-productivity relationship by running
the IV regression with indicators for different clustering levels. The results show an
increasing, concave curve, highlighting the diminishing marginal productivity gains from
clustering.

In Step 2, I examine the cost of clustering during adverse hometown shocks. I construct
two sets of shocks: (1) severe floods that occurred between June and August 2020, which
were the worst since 1998, and (2) the pandemic lockdowns in 2021, for which I collect
the numbers of daily COVID cases from government websites and identify lockdowns in
each county and week by consumer orders below half of normal medians.

Both shocks exhibit similar results. First, delivery workers from affected counties
increase their weekly working hours by six hours on average during these crises. This
increased labor supply allows them to earn an extra 200 RMB weekly, which can be
remitted to support affected family members back home.

Second, I construct a district-level aggregate shock share based on the predicted
percentage of workers facing hometown shocks in each district and week from June to
August 2020. I compute this predicted share by the hometown-district composition in

districts offered at least one week of entry bonuses each year.
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May 2020.12 Regressions of district outcomes on these aggregate shock shares show that
labor supply surges in districts where more workers face hometown shocks. For example,
in districts with over 15% of workers experiencing hometown shocks, total hours increase
by 10% that week. However, I find no significant change in consumer demand based on
the total order volume.13

Third, I regress worker performance on the hometown-shock indicator, the district-
aggregate-shock indicator, and their interaction terms. The results show that during
adverse hometown shocks, clustered and non-clustered workers supply similar additional
hours; affected workers remain on the platform six more hours that week. However,
clustered workers only complete 11 extra deliveries, far below the 20 additional deliveries
completed by non-clustered workers in a week. On average, clustered workers experience
a 10% decrease in their real wages compared to non-clustered workers. The intuition is
that large hometown clusters cause local labor supply surges when workers want to work
longer. This congestion results in workers competing for deliveries and fewer deliveries
being assigned to each worker per unit of time.14

In Step 3, I build a model to quantify the trade-off of these two impacts of clustering:
first-moment learning benefits and second-moment congestion costs. A model is essential
here since trading off the two effects requires a credible estimation of workers’ risk
aversion coefficient and other parameters governing the utility function. Moreover, the
model enables analyzing the whole shape of worker utility with clustering, estimating
externalities, and running counterfactuals for policy implications.

The model proceeds in two stages. In stage 1, new migrant workers form expectations
about working in different districts and choose to work in a district with the highest
expected utility. In stage 2, conditional on their selected work districts and whether there
are adverse hometown shocks, workers decide on working hours and remittances to
maximize utility. I solve the model in reverse order: first, I derive the utility as a function
of clustering in stage 2, and then I integrate it into stage 1, where workers choose districts

12I use the predicted shock share instead of the actual share of shock-affected workers in each district
and week to avoid the endogenous changes in hometown-district composition due to hometown shocks.
Therefore, the variation in the district-level aggregate shock share comes from the geographic and time
differences in hometown shocks.

13Though more active delivery workers potentially lead to faster delivery, I do not find consumers
respond, at least in the short run.

14I also estimate the effect of clustering on workers’ relocation rate during adverse hometown shocks. I
find weakly significant but small effects. This suggests that some workers may relocate to another district
after the aggregate shock, but not all workers relocate. One explanation is the location-specific knowledge
as identified in Step 1. I show that workers’ delivery speed decreases and the timeout rate increases after
relocation.
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based on the expected utility and their idiosyncratic preferences across districts. The
model also explicitly assumes that workers are aware of the learning and congestion
effects of clustering and consider both when choosing work districts.

When workers choose labor supply in stage 2, they care about their own consumption,
family consumption, and leisure time. Clustering with same-origin peers affects workers’
utility through two main channels: (1) the learning effect, where more same-origin
workers increase new workers’ productivity, and (2) the congestion effect, where a higher
clustering level increases workers’ income variance by reducing their real wages during
adverse hometown shocks. I also assume workers are risk averse and form expected
utility based on the probability of experiencing adverse hometown shocks.

I estimate the model using (1) empirical results from Steps 1 and 2, (2) an additional
quasi-experiment, and (3) moments derived from model predictions. Specifically, the
productivity increase as a function of clustering comes directly from the IV regression of
delivery speed on clustering in Step 1. Hometown income levels during the regular and
shock periods are identified from workers’ labor supply responses to hometown shocks
in Step 2. I also leverage a quasi-experiment based on semi-annual platform festivals to
estimate workers’ labor supply elasticity to income. Specifically, the platform randomly
selects workers to receive 50-1000 RMB cash prizes during the festival. I regress workers’
working hours on prize amounts to estimate the elasticity.

Two other key parameters are workers’ risk aversion coefficient and the scale of work-
ers’ idiosyncratic preferences across districts. First, I recover risk aversion by comparing
the clustering levels of workers from high (risky) versus low (safe) shock-probability
hometowns. The model predicts that workers from risky hometowns will cluster less due
to greater exposure to the congestion cost of clustering. Furthermore, the more risk-averse
workers are, the larger the gap is. I thus exploit the gaps in clustering levels between
risky and safe hometowns to estimate the risk aversion coefficient. Second, I run a gravity
regression of new workers’ entry choices on the entry bonuses to estimate the scale of
workers’ idiosyncratic preferences across work districts.

Using the estimated parameters, I quantify worker utility as a function of clustering
in a district. The function displays an inverted U shape, which first increases (due
to learning benefits) and then falls (due to congestion costs). Moreover, the model
predicts two sources of externalities: (1) a positive learning externality as workers do not
internalize their role as teachers for same-origin workers, and (2) a negative congestion
externality as the congestion leads to longer idle waiting time during aggregate shocks.
I show that the cumulative externality is negative since the congestion costs impact all
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workers in the district, while the learning benefits decay quickly.

Finally, I run counterfactuals examining various policies by accounting for the two
clustering forces. First, I compare the equilibrium where workers maximize individual
utility to one where they are charged for the social externality of entry decisions. The
results show that the externality-accounting equilibrium has significantly lower clustering
levels and encourages the formation of many small clusters. In another counterfactual, I
explore the provision of insurance to mitigate adverse hometown shocks. By eliminating
congestion costs through insurance, the equilibrium clustering level nearly doubles, and
workers’ average productivity increases by 30%.

This paper joins a large body of literature analyzing the value of migrant networks.
Existing studies provide extensive evidence that migrant networks can impact migrant
workers’ performances in the destination’s labor market, such as by increasing employ-
ment rates and income (e.g., Borjas, 1995; Munshi, 2003; Antoninis, 2006; Woodruff and
Zenteno, 2007; Bayer et al., 2008; McKenzie and Rapoport, 2010; Beaman, 2012; Patel and
Vella, 2013; Munshi and Rosenzweig, 2016; Giulietti et al., 2018; Egger et al., 2021).

This project contributes to this body of work in several ways. First, the granular GPS
data enables me to provide direct evidence of knowledge spillovers among hometown
workers. These results establish a vital micro-foundation for understanding the positive
network effects on worker performance. Second, I highlight a new cost of clustering:
clustering results in labor market congestion during hometown shocks and leads to higher
income risks. Third, I propose a new framework to estimate workers’ utility as a function
of clustering and measure its externality to other non-clustered workers.

The findings on migrant workers’ responses to hometown shocks also relate to ex-
tensive studies analyzing rural-urban migration and migrants as insurance for rural
shocks.15 These studies analyze the impacts of adverse shocks on migrants’ labor supply
and remittances (e.g., Lucas, 2004; Yang, 2006; Yang, 2011; McKenzie et al., 2014; Gröger
and Zylberberg, 2016; Joseph et al., 2018), general equilibrium effects of agricultural
shocks (e.g. Jayachandran, 2006; Akram et al., 2017), and how migrants function as
insurance (e.g., Munshi and Rosenzweig, 2016; Morten, 2019). A closely related study
is Michuda (2021), which uses Uber driver’s data from Uganda and finds that adverse
agricultural shocks are associated with longer working hours.

15Rural-urban migration has significantly shaped China’s economy over the past three decades, with 300
million rural migrant workers employed in urban areas by 2022. This study contributes to the examination
of this phenomenon by focusing on the unique migration patterns in the emerging era of the platform
economy alongside existing research (e.g., Kinnan et al., 2018; Chen et al., 2010; Dai et al., 2019).

8



This project shows that migrant workers adapt their labor supply in response to
shocks in their hometowns.16 I also expand on existing studies by quantifying this new
general equilibrium channel through which clustered migrant workers compete with one
another during adverse hometown shocks. This GE effect reduces the effectiveness of
their role as rural insurance.

Third, examining how agglomeration enhances learning and its associated costs
aligns with a comprehensive urban literature that analyzes the determinants and impacts
of urban agglomeration.17 Learning emerges as a key mechanism to explain urban
agglomeration (e.g. Marshall, 1890; Jaffe et al., 1993; Glaeser, 1999; Graham and Marvin,
2002; Peri, 2002; Roca and Puga, 2017; Davis and Dingel, 2019; Atkin et al., 2022). This
study contributes by providing crucial empirical support for learning from peers in urban
settings. Furthermore, I show that workers share location-specific knowledge with each
other, which confines knowledge spillovers to specific areas. 18

Finally, my analysis of new workers learning from past delivery experiences adds
to studies estimating the impacts of on-the-job learning on worker productivity (e.g.,
Thompson, 2010; Levitt et al., 2013; Haggag et al., 2017; Mao et al., 2019; Papay et al.,
2020; Cook et al., 2021). Moreover, the finding that new workers learn from referrers’
experiences highlights additional values of referrers in the labor market: they can transmit
productive knowledge and increase new worker productivity (e.g., Antoninis, 2006;
Beaman and Magruder, 2012; Burks et al., 2015; Dustmann et al., 2016; Friebel et al., 2023).

The paper proceeds as follows. Section II describes the context. Section III builds a
district choice model indicating how learning benefits and congestion costs of cluster-
ing interact to impact location choices. Section IV shows clustering enables knowledge
spillovers and increases new worker productivity. Section V presents the general equi-
librium effects of clustering during adverse hometown shocks. In Sections VI and VII, I
estimate the model, measure worker utility with clustering, and discuss counterfactuals.
Section VII presents conclusions.

16Given the rapid growth of gig economy, an expanding body of literature is investigating the flexibility
it offers (e.g., Mas and Pallais, 2017; Chen et al., 2019; Angrist et al., 2021; Michuda, 2021). This study
highlights that the flexibility inherent in gig economy jobs enables workers to adjust their labor supply
during hometown shocks, thereby contributing to mitigating geographical aggregate shocks.

17Urban economics literature has documented various factors leading to the agglomeration of workers,
firms, and industries in urban contexts (e.g., Rosenthal and Strange, 2001; Duranton and Puga, 2004;
Giuliano et al., 2007; Glaeser, 2010; Glaeser et al., 2010; Kukalis, 2010; Krugman, 2011; Moretti, 2012;
Giulietti et al., 2018; Duranton and Puga, 2020; Fajgelbaum and Gaubert, 2020).

18Moreover, the labor market congestion cost of clustering also relates to studies highlighting labor
pooling in urban contexts (Rauch, 1993; Overman and Puga, 2010; Kerr and Robert-Nicoud, 2020). While
labor pooling can mitigate sector-specific volatility by creating a larger labor market, this project shows that
when workers face friction of moving across locations, they may still face correlated shocks.
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2 Context

I use data from a large food delivery platform in China with over 1 million workers and
operating in more than 100 cities nationwide. The platform operates very similarly to
platforms, such as UberEats and DoorDash in the United States. Once consumers place
orders on the platform, an algorithm matches each order with nearby delivery workers.
To complete a delivery, workers first travel to the restaurant to pick up the food. They
then drive to the consumer’s address to drop it off, as illustrated in Figure B.1.

Workers earn a per-delivery commission fee ranging from $0.5 to $1.5. Their monthly
earnings typically fall between $300 and $1,000, depending on the number of deliveries
completed and the commission fee set by the platform. The majority of these delivery
workers are domestic seasonal migrant workers. For example, in major cities like Beijing
and Shanghai, around 98% of delivery workers are not local residents. As shown in Figure
B.2 and Table B.2, most workers come from central and western parts of China (with
lower GDP) and work in several large cities (with higher GDP). Table B.1 provides details
on workers’ demographic characteristics.19 Details on data construction and sample
selection are provided in Appendix C.

2.1 Clustering of Migrant Workers

The food delivery platform divides each large city into around 100∼200 comparable
districts.20 Each district spans roughly 5km × 5km and hosts about 100∼200 workers. GPS
data show that most workers operate within a single district and complete around 70% of
their daily deliveries there.21 I thus compute the clustering level based on the share of
workers from the same hometown who work in the same district.22

Similar to other contexts, migrant workers in this industry tend to cluster with peers
from the same hometown. If workers were allocated to these districts randomly, fewer
than 1% of people from the same hometown would work in the same district. However,
the observed clustering level is 30%. Figure B.3 provides examples of clusters formed by

19The entry barriers to becoming a delivery worker are low. Workers first download the platform’s app
and register by verifying their identity cards. They rent or purchase a motorcycle for around $400, and a
helmet and work clothes for around $100.

20data show that 85% of deliveries are within 3 km.
21The platform typically defines districts by drawing circles around shopping malls with many restaurants

to minimize the number of cross-district deliveries.
22Hometown is defined at the county level. There are 2,844 counties in China. I use GPS data to define

each worker’s work district in a given week. Specifically, I identify the district where each worker has the
most GPS coordinates that week as their primary work district.
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workers from different hometowns. I plot the histogram of the clustering levels in Figure
1. In turn, the largest cluster of same-origin workers in each district comprises 15% of the
labor force in each district on the platform (figure 2).23

The GPS data also allows me to distinguish between individuals’ work locations
and residences. Taking workers in Shanghai as an example (figure B.5), I find most
migrant workers live on the outskirts or in lower-rent compounds.24 Typically, migrants
of the same origin cluster residentially on the city’s outskirts but commute to different,
self-selected work districts.25 In this project, I focus on workers’ trade-offs when selecting
their work locations.

2.2 Scope for Learning: Optimal Delivery Routes

Each delivery involves three phases: 1) searching for the restaurant, 2) traveling on the
road, and 3) searching for the consumer’s address, as shown in Figure B.1. Although
with GPS tools, delivery workers face substantial on-the-job learning challenges. These
include dealing with GPS inaccuracies and unexpected gate closures, requiring workers
to search for optimal routes and adapt to real-time road changes.

In Figure 3(a), I provide one example of workers deviating from the fastest delivery
routes. The black line represents a worker who initially went to a closed gate of a
residential compound and then took a detour to another open gate, resulting in a four-
minute delay. Following this, I identified 20 compounds in Shanghai that unexpectedly
closed one of their entrances in 2021. As Figure 3(b) shows, nearly 40% of workers
attempted to use the closed entrance on the following day. However, this proportion
diminished over time, highlighting workers’ ability to learn and adapt to changes in the
urban environment.26

This example highlights the importance of location-specific knowledge for delivery
workers. There are also other potential learning channels, such as how to interact with
the delivery platform. I examine these in detail in Section 4.

23I have also calculated clustering levels based on the share of deliveries completed by workers from
each hometown across districts, as shown in Figure B.4. These delivery-based clustering levels are very
similar to the worker share-based levels described here.

24I infer residential locations from GPS coordinates before 7 am or after 11 pm daily. Work locations are
based on average latitudes/longitudes of daily deliveries.

25These migrant workers rarely own property in their work cities. Based on a platform-wide survey
in 2021, around 0% of migrant workers owned an apartment in their destination city, and less than 3%
planned a future purchase. Thus, their residential locations are not tied to owned properties.

26Larcom et al. (2017) also provided evidence in London that people search for optimal navigation routes.
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3 Theoretical Framework

I establish a model to analyze the trade-off between two countervailing effects of migrant
networks: the first-moment learning benefits and the second-moment congestion costs.
A model is essential because trading off the two forces requires a credible estimation of
workers’ risk aversion coefficient and additional parameters governing the utility function.
The model also guides the empirical analysis and allows counterfactual policy analysis.

The model has two stages: (1) In stage 1, new workers form expectations about
working in different districts and choose the district with the highest expected utility;27

(2) Between stages 1 and 2, adverse shocks occur in some hometowns; and (3) In stage 2,
given workers’ choices of work districts and realized hometown shocks, workers decide
on labor supply and remittances to maximize utility.

The main trade-off is that clustering with hometown workers can enhance peer
learning and increase productivity, but it also increases income risks due to labor market
congestion during adverse hometown shocks. The model also explicitly assumes that
workers are aware of the learning benefits and congestion costs of clustering, and they
take these factors into account when selecting their work locations.28

3.1 Choices of Work Districts

Consider a new worker i from hometown h. The utility of worker i working in district d,
as denoted by Vihd, is expressed as

Vihd = EUhd + εihd (1)

where EUhd is the expected utility of working in district d for any worker from home-
town h, and εihd is the idiosyncratic preference shock, following a type-1 extreme value
distribution with scale, 1/σ. The probability of workers from hometown h working in
district d, πhd|h, is as follows.

πhd|h =
exp(σEUhd)

∑d′ exp(σEUhd′)
(2)

27Migrant workers first decide to work in the food delivery sector and choose their destination city. I
take these decisions as given and focus on their choices of work districts.

28In Section 6, I provide empirical evidence that workers consider congestion costs by exploring hometown
heterogeneity. Other studies have also shown the existence of dispersion forces in migrant workers’ location
choices(e.g., Card and Lewis, 2007; Monras, 2020)

12



3.2 Labor Supply Decision

After worker i chooses to work in a district d, the worker decides on labor supply, Li, and
the amount of remittances sent back to their families, T, to maximize utility as follows.

max
L,T

(Cown
i )α(Cfamily

i )β(L̄ − Li)
1−α−β

s.t. Cown
i + Ti = w̃iLi

Cfamily
i = Sh + Ti

where Cown is the worker’s own consumption, Cfamily is the left-behind family’s con-
sumption, L̄ − Li is the workers’ leisure time, and w̃i is the real wage, which I solve for
by the market clearing condition.

The two budget constraints are (1) workers allocate their total earnings, w̃iL, between
their own consumption and remittances sent back to families, as denoted by T; and (2) the
left-behind family’s consumption depends on the remittance received and the agricultural
income, S, which is assumed to be stochastic with the following distribution:

S =

Slow with probability Pshock

Shigh with probability 1 − Pshock

where Shigh > Slow. Workers from the same hometown face identical hometown shocks
Sh. Shocks for workers from different hometowns are independently and identically
distributed.

Market Clearing Condition

Assume that each delivery worker completes Bi deliveries per unit of time. In the
equilibrium, the number of deliveries workers complete shall equal the number of
consumer orders. The market clearing condition is expressed as:

∑
i

BiLi = Dd

where Dd is the total consumer demand.
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Learning from Peers

New workers can learn how to navigate local neighborhoods from hometown workers in
the same district. This enables new workers to deliver food more rapidly and complete
more deliveries per hour. I thus assume each worker’s delivery speed as a function of the
number of same-origin peers in the district, δ(Nhd).

Specifically, for a worker without peers (Nhd = 0), he finishes Bd number of deliveries
per unit of time, where Bd can also be treated as the average productivity. For a worker i
with Nhd peers nearby, he finishes Bi = δ(Nhd)Bd number of deliveries per unit of time. I
further assume that δ(Nhd) has the following properties.

δ(Nhd = 0) = 1 ; δ′(Nhd) ≥ 0 ; δ
′′
(Nhd) ≤ 0

These properties ensure that workers’ productivity increases with the clustering level, but
the marginal gain from clustering decreases.

Real Wage

With Bi = δ(Nhd)Bd, I rewrite the market clearing condition as follows.

∑
h

δ(Nhd)BdLhdNhd = Dd

A delivery worker’s real wage equals the number of deliveries completed per hour times
the per-delivery commission fee, A.29 I can solve the real wage as follows.

w̃i = w̃hd = A × δ(Nhd)Bd = A × δ(Nhd)
Dd

∑h′ δ(Nh′ j)Lih′ jNh′ j

3.3 Model Predictions

From the utility maximization problem and market clearing conditions, I obtain the real
wage and optimal labor supply:

29The platform does not adjust this fixed fee frequently for stability reasons. I assume this commission
fee as fixed.
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w̃∗

hd = 1
α+β

δ(Nhd)
∑h′ δ(Nh′ j)Nh′ j

ADd+(1−α−β)∑h′ Sh′ j Nh′ j
L̄

L∗
i

L̄ = (α + β)

(
1 − ∑h′ δ(Nh′ j)Nh′ j

δ(Nhd)
(1−α−β)Sihd

ADd+(1−α−β)∑h′ Sh′ j Nh′ j

) (3)

The indirect utility for worker i from working in the district d, as denoted by uihd,
depends on the hometown composition in the district and realizations of hometown
shocks, ({Nihd}, {Sihd}).

uihd = Constant ×
((

δ(Nihd)w∗
d
)α+β

+ Sihd
L̄

(
δ(Nihd)w∗

d
)α+β−1

)
where w∗

d =
ADd+(1−α−β)∑h′ Sh′ j Nh′ j
(α+β)L̄ ∑h′ δ(Nh′ j)Nh′ j

(4)

From the solutions above, I derive the following comparative statistics.

1. ∂w̃∗
hd(Sh = Shigh)/∂Nhd > 0: when there is no hometown shock, a higher clustering

level leads to higher real wage due to the learning effect.

2. ∂L∗
i /∂Sihd < 0: workers who face hometown shocks, Slow, increase labor supply.

3. ∂w̃∗
hd/∂(∑h′ Sh′ jNh′ j) > 0: When more workers experience hometown shocks, the

real wage in the district decreases.

4. ∂uihd/∂Sihd > 0: workers’ utility decreases as they experience hometown shocks.

5. ∂uihd/∂(∑h′ Sh′ jNh′ j) > 0: workers’ utility decreases as more workers experience
hometown shocks in their work districts.

Clustering Effect

Clustering can significantly impact workers’ utility for two main reasons: (1) a worker’s
productivity, δ(Nihd), directly depends on the number of same-origin workers in their
district; (2) due to the independently and identically distributed hometown shocks, the
aggregate shock in a district, S̃d, is a function of the clustering level, Nhd, as follows.

S̃d =∑
h′

Sh′ jNh′ j = NhdSh + ∑
h′ ̸=h

Sh′ jNh′ j ≃ NhdSh + (Nd − Nhd)S̄

where S̄ = PshockSlow + (1 − Pshock)Shigh
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The covariance between individual and aggregate shocks, Cov(S̃d, Sihd) = NhdVar(Sh),
increases as the clustering level, Nhd, increases.

Proposition 1. When δ(Nd) < η1 and δ′(Nd) < η2
30, uihd(Sihd = Shigh) increases with Nhd.

uihd(Sihd = Slow) first increases but then decreases with Nhd.
The proof and the choice of the threshold, η1 and η2, can be found in the appendix.31

This proposition highlights the main trade-off of clustering. On the one hand, clus-
tering with same-origin workers enables new workers to learn from peers and achieve
higher productivity. As dδ(Nihd)/dNihd > 0, workers’ income and utility increase as Nihd

increases when Sh = Shigh. However, during bad times, a high clustering level leads to
larger aggregate shocks, S̃d; drives down the real wage, w̃∗

d; and offsets the benefits of
higher productivity.

Since workers choose work districts before their hometown shocks are realized, new
workers form expectations based on the probability of hometown shocks. I also assume
that workers are risk averse, with a relative risk-aversion ratio γ. I derive the expected
utility of working in district d, as denoted by EUshock

ihd (ch) in the previous district choice
section, as follows:

EUihd = 1
1−γ

(
(1 − Pshock)(unoshock

ihd )1−γ + Pshock(ushock
ihd )1−γ

)
(5)

Proposition 2. When δ′(Nd) < η3, the expected utility, EUihd, first increases with Nhd, and
then decreases. There exists an optimal clustering level, N∗

ihd(γ) = max EUihd

The proof and the choice of the threshold, η3, can be found in the appendix.32

For a risk-averse worker under a low level of clustering, the productivity effect of
clustering dominates the congestion effect. Conversely, under the high level of clustering,
the congestion effect dominates. In addition, the risk aversion coefficient governs the
exact magnitude of this trade-off between the higher average and higher utility variance.

30Nd is the total number of workers in the district
31In a later empirical analysis, I estimate δ(Nd) ≃ 5% and δ′(Nd) ≃ 0. Along with other estimated

parameters, such as estimated Shigh and Slow, I find these two thresholds are satisfied.
32In a later empirical analysis, I estimate δ′(Nd) ≃ 0. Along with other estimated parameters, I find this

threshold is satisfied.
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Equilibrium

I define the equilibrium as the fixed point where each worker’s choice of work district
is optimal given the randomly drawn preference and other workers’ choices. In other
words, the probability of new workers entering different districts will be consistent with
the distribution of existing workers across districts, which new workers use to form
expectations. This is formulated as a fixed point of the best response mapping.33

E[
Nhd
Nh

] =
exp(σEU({Nh′d}h′)

∑d′ exp(σEU({Nh′d′}h′)
(6)

Externality

Workers’ choices of work location change clustering levels across districts and can in-
herently impact the utilities of other workers. For a worker i from hometown h, the
entry into district d increases the clustering level by △Nhd > 0. I decompose externalities
associated with this entry decision into two types.

1. Learning externality: worker i can share knowledge with other workers from
hometown h, leading to higher productivity.

Φlearn(Nhd) = △EUlearn(Nhd)× Nhd

where EUlearn(Nhd), which is the expected utility with only the learning benefits.

2. Congestion externality: worker i increases every worker’s income variance because
of the possibility of a bigger aggregate shock.

Φcost(Nhd) = △EUcost(Nhd)× Nhd +△EUcost-other(Nhd)× (Nd − Nhd)

where EUcost(Nhd) is the expected utility with only the congestion costs for workers
from hometown h, and EUcost(Nhd) is the one for the rest of workers in district d.

Proposition 3. When δ′(Nhd = 0) < η4, the overall externality, Φ(Nhd) = Φlearn(Nhd) +

Φcost(Nhd) is negative for any clustering level Nhd.
The proof and the choice of the threshold, η4, can be found in the appendix.34

33{Nh′d}h′) represents the entire hometown composition in the district d since worker i’s utility not only
depends on one’s hometown peers but is also affected by other hometown clusters.

34In a later empirical analysis, I estimate δ′(Nhd = 0) ≃ 2. Along with other estimated parameters, I find
this threshold is satisfied.
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Proposition 3 highlights that when workers select work districts to maximize indi-
vidual utilities, the equilibrium clustering may not be optimal after accounting for these
two types of externalities. I discuss these magnitudes in more detail in section 7 after
showing the empirical results and estimating key parameters.

4 The Impact of Clustering on Learning and Productivity

In this section, I analyze how clustering enables knowledge spillovers through the migrant
networks, leading to higher productivity and average earnings.

4.1 Descriptive Findings

In the food delivery sector, faster delivery speed allows workers to complete more
deliveries per hour, leading to higher real wages.35 I thus calculate each worker’s delivery
speed as a measure of their productivity.36 I first show that new workers’ productivity
rises over time. In Figure 4(a), the x-axis displays the number of weeks since new workers
joined the platforms, and the y-axis is the workers’ average speed. Workers’ productivity
displays a concave shape: it grows initially and stabilizes after the first three months.

Furthermore, new workers who cluster with hometown peers appear to learn faster.
In Figure 4(b), I classify new workers into two groups: those working in a district with
same-origin workers and those without. The average delivery speed of new workers in
districts with at least one same-origin peer (red line) is significantly higher than those
without (blue line). This pattern highlights that new workers may learn faster by working
alongside hometown peers in the same district.37

However, directly comparing clustered and non-clustered workers can be biased,
for example, due to the potential inherent differences between the two groups. I next
explore three quasi-experiments to provide direct evidence on knowledge spillovers.

35The platform’s algorithm tracks each worker’s delivery status and assigns new orders from consumers
to available nearby workers. As a result, the faster a worker completes deliveries, the more assignments
they receive. Their hourly wage is the product of the number of deliveries they complete per hour times
the per-delivery commission fee.

36Delivery speed is computed as the delivery distance (meter) to be divided by the delivery duration
(minute).

37I also plot the trend of new workers’ hourly wage, as shown in Figure B.7. It exhibits a similar trend
that new workers can earn higher wages per hour, mainly driven by finishing a higher number of deliveries
per hour. Furthermore, I plot the productivity trends for migrant workers versus local residents, as shown
in Figure B.8. Local residents present a flatter trend, whose initial productivity is significantly higher than
migrant workers.
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I also estimate the overall impact of clustering on productivity using an instrumental
variable induced by entry bonuses.

4.2 Direct Evidence of Learning

4.2.1 What Do Workers Learn from Peers?

First, I use a quasi-experiment based on the platform’s order allocation algorithm to
understand how and what new workers learn from peers. Because the algorithm exoge-
nously assigns workers to visit different locations, this quasi-random allocation results in
workers possessing varying prior knowledge across locations and time.38 I thus assess
how the various levels of prior knowledge affect workers’ productivity. Specifically, I
analyze whether workers can deliver food more rapidly when (1) they have personally
visited a location before, and (2) their peers have visited a location before.

I also exploit the fact that 60% of new workers have a referrer upon entry.39 Referrers
are existing delivery workers on the platform. This referral information confirms social
connections between individuals, enabling me to estimate knowledge transmission within
such pairs by treating referrers as peers from whom new workers learn.

Furthermore, using granular GPS data, I decompose each delivery process into three
parts: (1) time spent searching for restaurants, (2) time spent driving on the road, and (3)
time spent searching for consumers.40 This decomposition sheds light on where learning
occurs. When running regressions at the delivery level, I thus have three dependent
variables: one productivity proxy for each delivery part. The corresponding regression
function is as follows.

Yita =α OwnVisitit(a=1) + β RefVisitit(a=1) + α OwnVisitit(a=3) + β RefVisitit(a=3)+ (7)

γit + δa + AveVisitOwn
it(a=1) + AveVisitOwn

it(a=3) + AveVisitRef
it(a=1) + AveVisitRef

it(a=3) + ϵita

(8)

where for each delivery, I construct the four independent variables: whether a worker i has
ever visited the exact same restaurant in the past four weeks before time t, OwnVisitit(a=1),

38The algorithm takes each worker’s real-time GPS location as the most crucial factor when allocating
orders.

39Among new workers in Shanghai in 2021, 41% had referrers, and 54% of those were from the same
county. Restricting the sample to workers who finished more than 50 deliveries, 60% had referrers, and
65% of those pairs came from the same counties.

40I calculate search times by counting GPS coordinates within 150-meter radii of restaurants and
consumers. Road travel time is the rest of the delivery time divided by distances.

19



whether worker i has visited the exact same consumer building, OwnVisitit(a=3), and
whether i’s referrer has ever visited either the restaurant or the consumer building,
RefVisitit(a=1) and RefVisitit(a=3).

I also include the location fixed effect, δa, to control for inherent location characteristics.
A location is defined as (1) the exact restaurant, (2) the exact consumer building, or (3) the
exact route, which follows the same definition as the delivery decomposition above. The
worker × date × hour fixed effect, γit, helps eliminate both worker and time heterogeneity.
I thus compare the productivity across deliveries that a worker completes in the same
hour but with differing prior knowledge.

Since the identification of this regression relies on the quasi-random order allocation
algorithm, there are potential concerns that the algorithm might consider endogenous
worker characteristics when assigning orders. Discussions with the algorithm team
confirmed that the most influential factor for order allocation is a worker’s real-time GPS
location. Among the worker attributes, only tenure was cited as potentially affecting the
algorithm’s decisions.

Informed by the insight, I construct an expected experience metric for each worker and
referrer following the intuition from Borusyak and Hull (2023). Specifically, I randomly
assign orders within each hour, each 2km × 2km grid, and each tenure group. I repeat this
shuffling 100 times and calculate the average likelihood of a worker and a referrer visiting
a location based on these counterfactual order assignments.41 Adding these expected
experiences as additional controls can help recenter the independent variable and extract
the random variation from the order assignment algorithm.

I also conduct balance checks, where I compare the characteristics of deliveries: (1)
allocated to workers who visit a location for the first time versus those on repeat visits, (2)
allocated to workers with varying tenures, and (3) accepted versus rejected by workers.
I find no significant differences for these comparisons in Figure B.9 and Figure B.10,
suggesting that inherent worker attributes do not seem to influence order allocation
endogenously.

Table 1 presents the regression findings, which show that both learning by doing and
peer learning play essential roles. A worker’s own prior visit to a location reduces search
time by approximately 20% when they visit the same restaurant and the same consumer

41As a robustness check, I try another method to calculate the probability of visiting a location given
workers’ characteristics. Specifically, I run a logit regression of visiting a location on a worker’s tenure, age,
gender, historical performances, whether they have a referrer, and the referrers’ characteristics. The results
are similar.
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building again. A referrer’s prior visit decreases a new worker’s search time by around
10%, indicating knowledge transmission within this pair of workers. Conversely, travel
speed on the road does not display the same patterns. These results are consistent with
field insights: GPS tools help workers navigate main roads, but learning is crucial when
workers search for specific addresses.

4.2.2 Where do workers learn?

The coefficients from this delivery-level regression also reveal valuable information about
each location: the amount of learning needed in each location. I thus divide Shanghai into
approximately 200 grids that are a 2km × 2km each. I run the delivery-level regressions
for each grid separately and compute a grid learning index based on the coefficients in
front of the "OwnVisit" and "RefVisit" variables.

In Figure 5 and Table 2, I examine the correlation between these learning indexes
and grid attributes, such as average building age and housing density. The estimated
learning magnitudes are most pronounced in old, dense, and crowded neighborhoods,
highlighting the importance of learning despite GPS availability in areas, where it is hard
to find exact locations.

4.2.3 Other Channels of Learning

I provide additional evidence on other channels of peer learning. First, I explore a
quasi-experiment based on unexpected entrance closure and analyze how information
spreads through the network. As discussed in section 2, I identify 20 compounds that
unexpectedly shut one of their entrances in 2021. The following day, nearly 40% of
workers still tried the locked entrance (figure 3). Interestingly, workers with referrers who
previously visited the locked entrance were much less likely to make this error (figure
B.12). This suggests that workers share their daily experiences about the ever-changing
urban landscape with each other.

Second, Figure B.16 shows that new workers tend to turn out for work around the
same time as their referrers. Specifically, I find that hourly wages usually peak at lunch
(11:30 a.m.-1 p.m.) and dinner (5:30-6:30 p.m.). Locating in the same district with
one’s referrer significantly increases new workers’ probability of working during these
high-earning hours versus afternoons.

These findings highlight two main channels of peer learning: (1) gaining insights from
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peers’ location-specific experiences and (2) emulating peers’ behaviors. Thus, having
more peers within a district expands new workers’ accessible local knowledge pool.

4.3 IV Estimates of Clustering on Productivity

The preceding analysis provides direct evidence of knowledge spillovers through net-
works. Another question is the overall impact of clustering on new workers’ productivity.

Answering this question has been difficult in prior studies as regressing productivity
on clustering is subject to two endogeneity concerns. First, new workers’ choices of work
districts are endogenous. For example, more competent workers may learn faster based
on their own experiences and thus cluster less. Second, new workers are more productive
in districts with more hometown peers, but for reasons unrelated to community networks.
For example, if Cantonese restaurants cluster in one district, Cantonese workers may
also work there. Their productivity may be higher due to better communication with
restaurants rather than the presence of more Cantonese workers.

The first endogeneity can affect the estimated coefficient when regressing productivity
on clustering. Though the second endogeneity issue does not directly bias the estimation,
it does influence the interpretation of the results. To address them, I construct an
instrumental variable based on entry bonuses for the first concern and use restaurant
location data to examine the second concern.

4.3.1 IV: bonus-predicted clustering level

The instrumental variable explores the quasi-random variation in new workers’ choices
of districts as induced by entry bonuses. The entry bonuses are fixed monetary transfers
awarded to new workers who complete a certain number of deliveries in targeted
districts.42 They thus function as natural experiments that exogenously nudge new
workers to enter different districts.43 In addition, I only use bonuses active in the
subsequent week following a new worker’s entry. This timeline avoids the situation that
the bonuses may attract different types of new workers to join. I plot the timeline in
Figure B.13.

42The platform introduces entry bonuses targeted at various districts in different weeks. These bonuses
serve to balance the labor supply and demand across districts. In Shanghai in 2021, 72% of entry bonuses
are active for only one week. 87% of districts experience at least one week of entry bonuses each year.

43The specific terms can vary across different bonuses. In most cases, new workers are required to
operate within the targeted districts for approximately a month or complete around 200 deliveries within
the district.
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To Formalize the IV, consider a new worker i, who comes from hometown h, enters
the platform in week Te, and has a referrer j who works in district dj. The data show
that around 90% of new workers choose to work in districts within a 6-km radius of their
referrers’ districts, as further detailed in Table B.3. Therefore, I regard districts adjacent to
each new worker’s referrer’s district as the worker’s potential choice set, dP. The entry
bonuses exogenously assign new workers to one of the districts within dP.

The endogenous variable, the actual clustering level, Shareihdt, is the share of home-
town workers in a worker’s work district.

Shareihdt =
Nhdt
Ndt

where Nhdt is the number of workers from hometown h in district d in week t, and Ndt is
the total number of workers in district d in week t.

The IV (bonus-predicted clustering levels), PredictShareihdPt, is the share of hometown
workers in a district that provides entry bonuses, within the set of districts that are
adjacent to one’s referrer’s district.

PredictShareihdPt = max
d∈dP

{NhdTe

NdTe
× 1{bonusd,Te+1}}

The intuition is that given each new worker’s choice set, dP, entry bonuses exogenously
assign new workers to work in different districts. The main variation of the IV comes
from the quasi-random assignment of entry bonuses across time and districts.

4.3.2 Results: Average Effect of Clustering on Productivity

The IV regression is at the worker-week level as below.

Yihdt = α Sharehdt + γdt + γht + γTe + AveShareihdpt + ϵihdt (9)

The independent variable is the share of hometown workers in each new worker’s work
district. The instrumental variable is the bonus-predicted share, as constructed above.
I include (1) the district-week fixed effect to control for any district-level labor market
fluctuations, (2) the hometown-week fixed effect to adjust for any hometown shocks that
might influence workers’ labor supply, and (3) entry cohort fixed effects to only compare
the productivity of workers who enter around the same time.
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Furthermore, since both the independent variable, Sharehdt, and the instrument,
PredictSharehdt, reply on the distribution of existing clustering levels across districts, I
follow the intuition from Borusyak and Hull (2023) and construct an average predicted
share based on bonus counterfactuals. Specifically, I shuffle entry bonuses based on the
distribution of bonuses that are within three months before and after each worker’s entry
week. Given each random allocation bonus, I calculate a counterfactual bonus-predicted
clustering level. I then calculate an average predicted clustering level, AveShareihdpt, by
averaging all counterfactuals. Controlling for average predicted clustering level helps
recenter the independent variable and extract the exogenous variation from entry bonus
implementation.

The IV results are presented in Table 3. Column 5 reports the first-stage results, where
the predicted clustering level strongly correlates with the actual clustering level. Columns
6-9 present the IV results. They indicate that new workers operating in districts with
a higher share of hometown peers tend to deliver food more rapidly, complete more
deliveries per hour, and have higher weekly earnings. Conversely, the clustering level
does not significantly affect new workers’ hours. In terms of magnitude, compared to
the average delivery speed, the presence of one additional same-origin peer in the same
district corresponds to a 0.4% increase in new workers’ productivity. Working in a district
with an average clustering level results in a 5% productivity increase for new workers.

I also present a set of robustness checks. Table B.5 reports additional measurements
of workers’ labor market performances. Workers are less likely to be late for deliveries
and slightly less likely to relocate to other districts when they work in districts with
more hometown peers. Table B.6 reports the effects of clustering on delivery speed under
different IV specifications. Column (1) uses entry bonuses with a take-up time window
of less than one week; column (2) uses all entry bonuses in the destination city without
restricting the entry bonuses near the referrer’s district; column (3) focuses on workers
with only one bonus-predicted district; column (4) constructs the instrument based on
time-varying clustering levels across districts, and column (5) construct the predicted
clustering level to be weighed by the size of the entry bonuses. All columns report similar
results: a higher clustering leads to higher productivity.

Table B.7 reports results based on different independent variable specifications. Col-
umn (1) uses the number of hometown workers instead of the hometown-worker share
in the baseline specification; column (2) reports the effect on productivity of locating in
the same district as one’s referrer; column (3) constructs the clustering level adjusted by
tenure; column (4) explore the share of deliveries completed by hometown peers as the
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proxy for clustering levels; and column (5) expands hometown peers to workers from
the same birth city. These results also report patterns similar to those of the baseline
specification.

4.3.3 Diminishing Marginal Gain from Clustering

To recover the full shape of productivity improvements across clustering levels, I rerun
the IV regression with indicators, 1{Shareihdt = c}c=1,..,20 and corresponding instru-
mental variables, 1{PredictShareihdt = c}c=1,..,20, each representing the distinct share of
hometown workers in the district.

Yihdt = ∑
c=1,..,20

αc1{Shareihdt = c}+ γdt + γht + γTe + AveShareihdpt + ϵihdt (10)

I visualize these coefficients αcc=1,..,20 in Figure 6. New workers achieve higher productiv-
ity as the clustering level rises, but the marginal gain decreases. Specifically, when the
clustering level reaches around 10%, adding one more same-origin peer does not lead to
a further increase in productivity.

4.3.4 Additional Validity Test: Restaurant Clusters and Worker Clusters

I conduct an additional validity test to help interpret the results. The IV regression
establishes that higher clustering increases new workers’ productivity. One concern is
that new workers are more productive in high-clustering districts due to factors unrelated
to migrant networks. For example, suppose Cantonese restaurants were all located in one
district. In that case, Cantonese workers might also work in that district and become more
productive than other workers because they could communicate more efficiently with
these Cantonese restaurant owners, but not because they have a large migrant cluster.

I thus directly compare the geographic distributions of restaurants and workers from
the same origins. Specifically, I infer the origins of restaurants based on their brands and
cuisines, such as "Cantonese food" or "Sichuan food." As shown in Figure 7, I find no
significant correlations between restaurant clusters and workers clusters from the same
origins. This test helps confirm that the migrant network increases productivity through
the knowledge spillover channel.
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5 The Impact of Clustering on Income Variance

In this section, I analyze the cost of clustering: labor market congestion costs.

5.1 Individual Labor Supply Responses to Shocks

Prior research has extensively documented that migrant workers can provide insurance
against adverse shocks in rural areas. As the model predicts, since migrant workers care
about left-behind family members, they tend to work longer and send more remittances
when adverse shocks occur in their hometowns.44

To estimate the magnitudes of migrant workers’ labor supply responses to adverse
hometown shocks, I construct two types of shocks: floods and pandemic lockdowns. First,
I use floods that occurred between June and August 2020, which were the worst since
at least 1998 (Wall Street Journal, 2020).45 I identify floods based on daily precipitation
data. Specifically, I create a proxy for floods by identifying instances where accumulated
rainfall over two days exceeds 160mm in each county and week, doubling the threshold
for heavy rain.46 Of 2,423 counties with precipitation data, 8% experienced flood shocks
at least once during the period. Among counties with at least one active delivery worker
in the sample, 11% counties experienced flood shocks at least once. Figure B.17 presents
the distribution of floods across regions and time.

Second, between 2020 and 2022, many places in China occasionally experienced strict
pandemic lockdowns. Lockdowns in worker’s hometowns restricted left-behind family
members from working outside, incentivizing migrant workers to work longer and send
remittances to support their families. I compile two data sources: (1) daily records of
confirmed COVID-19 cases by city and (2) lockdowns in each county and week, indicated
by consumer orders on the platform falling below half of normal medians. I implement a
difference-in-difference design comparing the affected versus unaffected workers’ labor

44Migrant delivery workers in this context are usually the main sources of income in the household
and are expected to function as insurance against rural weather shocks (Yang, 2011). The flexibility of the
gig economy further allows delivery workers to easily adapt their labor supply in response to hometown
shocks (Michuda, 2021).

45According to the Ministry of Emergency Management, the floods have affected 63.46 million people and
caused a direct economic loss of 178.96 billion RMB, which are 12.7% and 15.5% higher than the 2015-2019
average (Post, 2020).

46In most countries, the threshold for heavy rain and above is experiencing 80 millimeters per 24 hours. I
also run robustness checks using different rainfall thresholds.
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supply post-shock. The specification is as follows.

Yihdt = β Shockht + γi + γpt + γd + ϵihdt (11)

where Shockht indicates if worker i’s hometown h experienced any adverse shock in
the past month.47 I include workers’ origin province-week fixed effect, γpt, to absorb
origin region-related time fluctuations, individual fixed effect, γi, to control for worker
heterogeneity and district fixed effect γd, to control for district heterogeneity.48

Table 4 presents the hometown flood results. Migrant delivery workers increase weekly
labor supply by around six hours. By working longer, workers complete 16 additional
deliveries, raising weekly income by around 150 RMB. The extensive margin also shifts,
where the share of workers completing at least one delivery increases slightly among
workers from affected counties.49 Regressions examining the impacts of hometown
pandemic lockdowns show similar patterns. As Table B.9 shows, both COVID cases and
pandemic lockdowns in workers’ hometowns increase migrant workers’ labor supply.
Magnitudes are slightly smaller but more precise, given more accurate identification of
the pandemic shocks.

I also plot the event study analysis of workers’ labor supply dynamics around home-
town shocks in Figure 8. The x-axis displays the number of weeks before and after the
hometown shock, and the y-axis shows the changes in weekly working hours. Labor
supply increases substantially in the first week after the shock and diminishes over time.50

Additional robustness checks in which I vary the flood threshold can be found in Table
B.8, suggesting similar results.

5.2 District Responses to Aggregate Shocks

I next estimate the aggregate impacts of migrant workers’ hometown shocks in the
destination labor market. The intuition is that consider a district with a large share of
delivery workers coming from the same hometown, hc. If an adverse shock occurs in

47Changes over time can be found in the event study analysis in Figure 8. It shows that workers still
work longer, around four weeks after the shock, compared to the normal period.

48Specifically, I add origin province-week fixed effects to capture different work habits for workers from
different regions across the year. For example, workers from northern China may prefer to work longer
during summer.

49Based on conversations with workers, this is partly due to the widely available digital cash transfer
system in China. Workers can send money back without traveling back in person.

50This extended impact is likely due to the sector’s relatively low wages, requiring long-term efforts to
accumulate savings.
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hometown hc, these migrant workers may increase working hours around the same time,
surging labor supply in the destination market.

I first construct the predicted share of workers experiencing adverse hometown shocks
in each district and week:

ShockSharedt = ∑
h

Nhdt0

Ndt0
Shockht

where
Nhdt0
Ndt0

is the hometown composition in each district in May 2020, which I set as fixed
when computing the shock share to control for the endogenous changes in hometown
compositions due to hometown shocks. Therefore, the variation of ShockSharedt comes
from two sources: (1) different hometown compositions across districts and (2) different
hometown shocks that occur across time. I plot the histogram of district shocks in B.19(a).
Figure B.19(b) plots the correlation between hometown clustering levels and shock shares
across districts: as the clustering level increases, it is more likely to observe large shock
shares across districts.51

I next construct an aggregate district shock indicator as follows.

AggShockdt = 1{ShockSharedt > 15%}

where I identify an aggregate shock when the predicted share of workers facing adverse
hometown shocks exceeds 15% in a district. I choose this threshold for two reasons:
(1) 15% is the average clustering level across districts. As discussed above, with i.i.d.
hometown shocks, the shock share is highly correlated with clustering levels; (2) the
model predicts concave impacts of aggregate shocks on labor supply. Adopting a binary
shock indicator facilitates interpretation and comparison to the previous estimates of
individual hometown shock impacts in section 5.1.

I use a DID regression to analyze the impacts of aggregate shocks on district outcomes.

Ydt = δ AggShockdt + γd + γt + ϵdt (12)

where I add district fixed effect and week fixed effect to control for district heterogeneity
and labor supply fluctuations across time. For the dependent variables, I calculate the
total number of orders placed by consumers each week, the total number of active workers,

51By assuming that shocks are i.i.d. across hometowns, the upper bound of Shockdt depends on the

highest level of clustering level in the district: maxt Shockdt ≃ maxh
Nhdt0

dt0 .
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and the total number of working hours.52

Table 5 presents the results. On the labor supply side, the total working hours rise
substantially during aggregate hometown shocks, though the number of active workers
remains stable. This implies that workers with hometown shocks tend to work longer
instead of attracting more workers to come and work. On the demand side, the total
number of consumer orders shows no significant response.53 The results indicate large
aggregate shocks result in labor supply surges without corresponding demand increases.
As a robustness check, I present the results using continuous shock shares in Table B.10,
which displays the same pattern.

Furthermore, column (4) in Table 5 shows per-delivery commission fees do not
change significantly during aggregate shocks, as the platform does not frequently adjust
commission fees for stability.54 With invariant per-delivery fees, the congestion effect
on workers’ real wages and income stems from fewer deliveries being assigned to each
worker per hour during an aggregate shock, not lower per-delivery fees.

5.3 Effect of Clustering on Equilibrium Income

This section analyzes the equilibrium effects after examining individual and aggregate
shock impacts in the previous two sections. As noted, during aggregate hometown shocks,
labor supply rises, but consumer demand remains constant. This results in workers being
assigned fewer deliveries per hour. In equilibrium, though the per-delivery commission
fee paid to workers stays constant (as shown in Table 5), workers’ real wage decreases
due to the labor market congestion.

This effect can be more pronounced for clustered workers who face individual and
aggregate shocks simultaneously. Labor supply surges precisely when they desire to
work longer. I use the following specification to analyze this general equilibrium effect of
clustering.

Yihdt = β Shockht + δ AggShockdt + α Shockht × AggShockdt + γi + γpt + γd + ϵihdt (13)

52Working hours add up all hours workers engage with the platform’s application by opening it and
taking some actions without necessarily delivering orders at that moment.

53This outcome is partly due to the low delivery fee in the context. Though the increases in labor supply
potentially lead to faster delivery, I do not find consumers respond, at least in the short run.

54Based on conversations with the wage setting team, they only adjust per-delivery commission fee,
especially lowering the commission fee, at most twice a year to avoid angering workers and damaging
reputation.
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where the interaction terms, Shockht × AggShockdt, captures the general equilibrium
impacts of experiencing the individual and aggregate shocks at the same time. Similar to
the previous two regressions, I include workers’ origin province-week fixed effect, γpt, to
absorb origin region-related time fluctuations, individual fixed effect, γi, to control for
worker heterogeneity, and district fixed effect γd, to control for district heterogeneity.

Table 6 presents the findings. In column (3), workers increase weekly hours by
around six hours on average after adverse hometown shocks, regardless of whether they
experience any aggregate district shocks. The positive coefficient on Shockht in column
(2) shows that affected workers complete more deliveries by working longer. However,
the interaction term in column (2) reveals that when experiencing individual hometown
shocks and aggregate shocks simultaneously, clustered workers complete fewer deliveries
despite working similar additional hours as non-clustered workers.

When adverse shocks occur in their hometown, non-clustered workers complete
20 additional deliveries, earning 200 RMB extra. On the contrary, clustered workers
complete around ten more deliveries, earning 100 RMB extra by working similar hours as
non-clustered workers. A back-of-the-envelope calculation shows that during adverse
hometown shocks, clustered workers’ real wages are 10% lower than non-clustered
workers.

5.4 Negative Externality of Clustering: Peak v.s. Off-peak hour

This clustering equilibrium effect is relevant for both clustered workers and other non-
clustered workers in the district, albeit to varying degrees. Evaluating the negative
externality of clustering requires examining delivery patterns.

Specifically, due to the food delivery sector’s characteristics, 80% of workers attend
during lunch and dinner hours, as shown in Figure B.20. As a result, there is limited room
to expand their labor supply further during these periods. Instead, shocked workers are
more likely to work in the afternoon and late evening (Figure B.21), when they typically
take a break without the hometown shocks. With fewer consumer orders during these
non-peak hours, the supply surge intensifies competition further.

In Table B.11, I separate worker performance into peak (11 am-2 pm, 6 pm-8 pm)
versus non-peak hours. Aligning with illustrated work patterns, the congestion effects
occur mainly during non-peak times. In particular, workers who do not experience
hometown shocks themselves but operate in districts with aggregate shocks also receive
lower real wages during these periods. As a result, they work for fewer hours, complete
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fewer deliveries, and earn less income weekly.

In summary, I analyze the cost of clustering in this section. Adverse hometown shocks
increase weekly labor supply by six hours on average for migrant delivery workers. For
clustered workers, individual shocks translate into aggregate shocks. This intensifies
competition for consumer orders and lowers real wages in the equilibrium. The congestion
cost becomes more pronounced with higher clustering. As each hometown has some
probability of adverse shocks, clustering raises income risks.

6 Estimation

Drawing on empirical results from sections 4 and 5, I structurally estimate the model in
section 3. A model is essential here since trading off the learning benefits and congestion
costs of clustering requires a credible estimation of workers’ risk aversion coefficients
and additional parameters governing worker utility function. Estimation also enables
further discussion of the whole shape of worker utility with clustering, externality, and
counterfactuals for policy implications.

6.1 Estimation

The main parameters are as follows.

1. δ(N): productivity as a function of the clustering level

2. Pshock: probability of hometown shocks

3. α + β: Cobb-Douglas utility function parameter

4. (Shigh, Slow): household agricultural income with and without adverse shocks

5. γ: workers’ risk aversion coefficient

6. σ: the scale of idiosyncratic preference for working in different districts

I discuss the estimation approach in three steps. First, I outline the identification strategy
for parameters (δ(N), Pshock, α + β, Shigh, Slow), which quantifies workers’ utility function.
Second, I turn to γ, which governs the concavity of workers’ expected utility with
clustering and the relative importance of learning versus the congestion effect. Third, I
discuss σ, which determines workers’ choices of districts.
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Part 1: Utility Function

α + β. This Cobb-Douglas parameter represents worker’s labor supply elasticity to
income. I explore a quasi-experiment based on semi-annual worker festivals organized by
the food delivery platform. During the festival, the platform randomly selects workers to
receive cash prizes ranging from 50 to 1000 RMB.55 I thus regress workers’ working hours
on prize amounts won in these lotteries to estimate α + β. Table 7 reports the results. I
divide each worker’s prize amount by the average hourly wage in their work district
as the independent variable. The coefficient in front of this adjusted prize amount then
maps directly to the parameter (1 − α − β).

(Shigh, Slow). As the model predicts, hometown income levels affect migrant work-
ers’ labor supply. Specifically, during adverse hometown shocks (Slow), workers tend to
work longer. I thus identify the two hometown income levels by comparing workers’ av-
erage hours in normal periods versus during hometown shocks. The empirical moments
are estimated by regressing workers’ labor supply on shock indicators, as shown in Table
4 in section 5. The identification intuition is that by comparing workers’ labor supply in
normal periods, responses to shocks, and responses to lottery prizes as described above, I
can recover these two hometown income levels.

(δ(c), Pshock). The productivity function, δ(c), is directly identified from the IV re-
gression in section 4 (figure 6). I calibrate Pshock as the annual flood probability for each
county based on 2000-2020 precipitation data.

Part 2: Risk Aversion Coefficient

I identify γ based on the model prediction that workers with a higher probability of
facing hometown adverse shocks will cluster less, since they are more exposed to the
congestion effect. Table B.13 confirms this pattern, where I regress the average clustering
level on the flood probability for each hometown. It shows that hometowns with a higher
shock probability cluster less.56 This result also provides evidence that workers are aware
of this labor market congestion cost of clustering when choosing work locations, as the

55All delivery workers can participate by submitting their phone numbers associated with their accounts
on the platform. The number of workers winning any prize is usually around 500-1000 people. The process
of drawing the lottery prize is completely random.

56I also conduct robustness checks on whether the shock probability affects workers’ behaviors in other
dimensions, such as delivery speed. Table B.14 shows no significant differences, except for weakly positive
effects on the number of active workers.
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model assumes.

Furthermore, the extent to which risky-hometown workers cluster less, relative to
safe-hometown workers, depends on their degree of risk aversion. The more risk-averse
workers are, the bigger the difference is.

I thus divide workers into two groups based on whether their hometowns’ shock
probabilities are above (risky) or below (safe) the median. I compute clustering levels
separately for workers from risky versus safe hometowns. With log-normalization and
triple differences, I construct a moment to recover the concavity of workers’ expected
utility function as below.

△log(π(N1))−△log(π(N2))

△log(π(N3))−△log(π(N2))
=

△u(N1)−△u(N2)

△u(N3)−△u(N2)
(14)

where π(N) is the new worker’s entry probability at each clustering level, N, and △u(N)

is the utility difference between periods with and without hometown shocks at clustering
level N, △u(N) = u(N, Shigh)1−γ − u(N, Slow)1−γ.

It can be proven that this moment only depends on the risk aversion coefficient and
utility-related parameters in part 1, where I cancel out the idiosyncratic preference scale,
σ, in the process. The intuition is that while the difference of entry probability between
two clustering levels, △log(π(N1)) −△log(π(N2)), depends on the joint product of
utility difference (△u) and σ, adding a third clustering level and comparing the relative
difference across all three levels cancel out σ and recover the concavity of the utility
function. Calculation details are in the appendix A.5. I thus compute the entry probability
across clustering levels from 0% to 15% for both risky and safe hometowns as the empirical
moments.

Part 3: Scale of Idiosyncratic Preferences

Following the model in section 3 (equation 1), for a new worker i who comes from
hometown h joining the platform at time t − 1, the utility of worker i working in district
d, Vihdt, consists of (1) the estimated expected utility, EU(Nhdt), which depends on
the clustering level of hometown h in district d, Nhdt, and (2) workers’ idiosyncratic
preferences εihdt. Building on this baseline model, I add a third utility component, entry
bonuses in the district, Bdt, if any. With εihdt following a type-1 extreme value distribution
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with scale, 1/σ, I derive the gravity equation as follows:

E[
Nnew

hdt−1
Nnew

ht−1
] =

exp(σEU(Nhdt , Bdt))

∑d′ exp(σEU(Nhd′t , Bdt))
(15)

Furthermore, I split the utility into two parts, quantify the increases in the utility driven
by entry bonuses, and rewrite the gravity equation.57

EU(Nhdt, Bdt) = EU(Nhdt) +△EU(Bdt) (16)

E[
Nnew

hdt−1
Nnew

ht−1
] =

exp(σEU(Nhdt) + σ△EU(Bdt))

∑d′ exp(σEU(Nhd′t) + σ△EU(Bd′t))
(17)

Since entry bonuses are exogenous, I run the gravity regression with the entry bonuses
as the independent variables.58 As in Table 8, the coefficient in front of △EU(Bdt), is the
estimate for the scale of the idiosyncratic preferences, σ.

Implementation. I estimate parameters, {Shigh, Slow, γ} together using two-step GMM.
The values α + β and σ are estimated by separate regressions, as discussed above.

6.2 Estimates and Model Fit

Table 9 presents the estimation results. The estimated parameters are in the expected
range. The Cobb-Douglas parameter falls between 0 and 1 as restricted. The risk aversion
coefficient aligns with estimates from most literature with a range between 1 and 10 (e.g.,
Swanson, 2012). The hometown income during adverse shocks is significantly lower than
in normal periods, consistent with the empirical findings.

I validate the model estimates by plotting the percentage of new workers who choose
districts at different clustering levels from the data and the estimated model in Figure
9. Overall, the two distributions follow the same pattern, where the entry probability
first increases with the clustering level and then decreases. This is consistent with the
learning-congestion trade-off predicted by the model. The two curves also peak around
the same clustering level.

The exact magnitude of entry probability differs slightly between the two distributions
for several potential reasons. For example, some new workers may face information
friction and do not know where their hometown peers work. Following this intuition,

57Simulates confirm that △EU(Nhdt, Bdt) at any level of Nhdt is very similar to △EU(Bdt) where I set
Nhdt = 0.

58I run the gravity regression using Poisson Pseudo MLE (Sotelo, 2019; Dingel and Tintelnot, 2020).
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I assume that some new workers do not know anyone in the city and choose districts
solely based on their idiosyncratic preferences. I infer this number by the share of new
workers who do not have a referrer. After adding this information friction to the model, I
find that the existing estimation does not need to be changed much. Figure 9(c) shows
that model predictions align even closer to the data distribution after adding this fix.

7 Utility, Externality, and Counterfactuals

In the last section, I discuss the implication of these two clustering forces for workers’
utility, market externalities, and policies. I begin by quantifying the utility level and
externality under different clustering levels. I simulate and compare equilibria with versus
without accounting for externality. Lastly, I evaluate a counterfactual where providing
workers with insurance turns off the congestion channel of clustering.

7.1 Inverted-U-shaped Utility

I next quantify workers’ expected utility with clustering following the specification 5.
To clearly illustrate different forces, I assume that in each district, there exists only one
same-origin cluster at level Nc. The rest of the workers come from different hometowns.
I plot the utility of workers from this clustered hometown, EU(Nc), in Figure 10. It
indicates a clear inverted-U shape where the expected utility first increases with the
clustering level, reaches its peak around 10% clustering level, and decreases afterward.

This inverted U shape arises because worker utility first increases due to the learning
benefits and falls due to the congestion costs as the clustering level increases. To quantify
the two effects separately, I decompose EU(Nc) ∼ EUlearn(Nc) +EUcost(Nc).

EUlearn(Nc) is defined as the utility function with only the learning effect, without
congestion effect during hometown shocks.

EUlearn(Nc) =
1

1 − γ

(
(1 − Pshock)(u(Nc, Shigh))1−γ + Pshock(u(0, Slow))1−γ

)
(18)

EUcost(Nc) is the utility function with only the congestion effect, without learning
effect during normal periods.

EUcost(Nc) =
1

1 − γ

(
(1 − Pshock)(u(0, Shigh))1−γ + Pshock(u(Nc, Slow))1−γ

)
(19)
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I plot both functions in Figure 10. EUlearn(Nc) is an increasing and concave curve,
following the same pattern as the productivity function, δ(N). The intuition is that the
additional productivity gain from higher clustering fades away quickly after the clustering
level reaches 10%. EUcost(N) strictly decreases as the clustering level increases since a
bigger cluster results in stronger congestion effects during hometown shocks.

I also quantify the utility curve for the rest of the non-clustered workers in the district.

EUother(Nc) =
1

1 − γ

(
(1 − Pshock)

2(u(0, Shigh))1−γ + (1 − Pshock)Pshock(u(Nc, Shigh))1−γ

(20)

+Pshock(1 − Pshock)(u(0, Slow))1−γ + P2
shock(u(Nc, Slow))1−γ

)
(21)

I plot the curve in Figure 10, which also strictly decreases. These non-clustered
workers do not enjoy any knowledge spillovers but only experience the congestion
effect. Furthermore, with i.i.d. hometown shocks, non-clustered workers usually do not
experience their hometown shocks and the aggregate district shocks around the same
time. As a result, their utility decreases less due to the congestion costs |EUother(Nc)| <
|EUcost(Nc)|

7.2 Externality of Clustering

Both the learning and congestion effects of clustering generate market externalities.
On the one hand, knowledge spillovers have a positive externality as workers do not
internalize teaching value. On the other hand, congestion effects result in workers waiting
and wasting time during shocks, producing a negative externality. A central planner may
improve the total welfare by realizing the full potential of knowledge spillovers and more
efficiently allocating labor supply to avoid wasted time.

Following the definition in section 3, I first quantify the positive learning and negative
congestion externality across clustering levels.

1. Learning externality: Φlearn(Nc) = △EUlearn(Nc)× Nc

2. Congestion externality: Φcost(Nc) = △EUcost(Nc)× Nc +△EUother(Nc)× (N − Nc)

I plot these curves in Figure 11. The learning externality is positive but decreases
rapidly as the clustering level increases, consistent with the concavity of the productivity
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function δ(N) where marginal teaching values diminish quickly. The congestion external-
ity is negative and decreases since a larger cluster leads to more severe congestion during
hometown shocks.

I also plot the total externality, Φ(Nc) = Φlearn(Nc) + Φcost(Nc), in Figure 11. It is
negative and strictly decreases, differing from the inverted U-shape of individual expected
utility, EU(N). These results suggest that accounting for the externalities may lead to an
equilibrium with lower clustering levels than observed.59

7.3 Counterfactual: Equilibrium with Externality

In the first counterfactual, I simulate the equilibrium incorporating externalities in workers’
district choice. I compute the total externality associated with each entry decision without
allowing other workers to adjust and follow the definition of externality in section 7.3. I
solve for the equilibrium with the Pigouvian tax equal to the externality. I compare it
with the decentralized equilibrium, where workers choose where to work to maximize
individual expected utility, EU(Nhdt).

Implementation. I simulate hometown numbers and size distributions based on the data.
I start with a random allocation of workers across districts for each simulation. At each
step, a small share of workers arrives proportional to the distribution, and they optimally
choose districts following specification 1. I use an iterative procedure to solve for the
fixed point, where the distributions of existing workers and new entries converge. Given
the estimated parameters, the procedure is robust to varying starting conditions and
identifies the same equilibrium. Notice that the equilibrium is defined as the distribution
of clustering levels instead of specific hometown-district mappings contingent on starting
conditions. This equilibrium can also be interpreted as a stable distribution in the long
run.

I plot the average cumulative distributions of clustering levels in Figure 12. Compared
to the decentralized equilibrium, accounting for externalities significantly reduces cluster
size but creates many more small clusters.

59If multiple clusters exist in one district, interactions exist across different clusters. The externality
analysis follows the same logic but is more complicated to derive an analytical solution.
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7.4 Counterfactual: Eliminate Congestion Costs through Insurance

In the second counterfactual, I consider the provision of insurance, which turns off
the congestion effect of clustering. Insuring workers against adverse hometown shocks
eliminates correlated labor supply responses among same-origin workers. I use the same
iterative procedure as before.

I plot the average cumulative distributions of clustering levels in Figure 13. The average
clustering level almost doubles relative to the decentralized equilibrium. Furthermore,
the average productivity of new workers in this counterfactual increases by around 30%
due to the higher clustering level.

7.5 Counterfactual: Replace Network-based Learning with Technology

In the third counterfactual, I simulate equilibrium where technologies provided by the
platform can substitute for network-based learning. For example, the platform may collect
local knowledge from experienced workers and distribute the information to all new
workers through a centralized system. I consider two scenarios in Figure B.22, where
100% of the current network-based learning is replaced by technology in Figure (a) and
50% of peer learning is covered by technology in Figure (b). Workers cluster much less
in both scenarios, but average productivity increases substantially since non-clustered
workers can also benefit from technology-based learning.

8 Discussion

Through five quasi-experiments and a model, I provide novel evidence of two counter-
vailing effects of clustering: learning benefits and labor market congestion costs. I further
examine how the two forces interact to affect workers’ utility. I show that a worker’s
utility displays an inverted U shape with clustering, where utility first increases (due to
learning) and then falls (due to congestion).

These results establish a crucial micro-foundation for knowledge spillovers through
social networks. Second, the congestion cost highlights a new general equilibrium channel
in which clustered migrants compete with each other amid adverse hometown shocks,
reducing the effectiveness of their role as rural insurance. Third, quantifying the trade-off
between the learning benefits and congestion costs offers valuable insights into migrant
networks.

38



References

Akram, Agha Ali, Shyamal Chowdhury, and Ahmed Mushfiq Mobarak, “Effects of
emigration on rural labor markets,” Technical Report, National Bureau of Economic
Research 2017.

Angrist, Joshua D, Sydnee Caldwell, and Jonathan V Hall, “Uber versus taxi: A driver’s
eye view,” American Economic Journal: Applied Economics, 2021, 13 (3), 272–308.

Antoninis, Manos, “The wage effects from the use of personal contacts as hiring channels,”
Journal of Economic Behavior & Organization, 2006, 59 (1), 133–146.

Atkin, David, M Keith Chen, and Anton Popov, “The returns to face-to-face interactions:
Knowledge spillovers in Silicon Valley,” Technical Report, National Bureau of Economic
Research 2022.

Bayer, Patrick, Stephen L Ross, and Giorgio Topa, “Place of work and place of residence:
Informal hiring networks and labor market outcomes,” Journal of political Economy, 2008,
116 (6), 1150–1196.

Beaman, Lori A, “Social networks and the dynamics of labour market outcomes: Evidence
from refugees resettled in the US,” The Review of Economic Studies, 2012, 79 (1), 128–161.

Beaman, Lori and Jeremy Magruder, “Who gets the job referral? Evidence from a social
networks experiment,” American Economic Review, 2012, 102 (7), 3574–93.

Biavaschi, Costanza, Corrado Giulietti, and Yves Zenou, “Social networks and (political)
assimilation in the Age of Mass Migration,” 2021.

Blumenstock, Joshua Evan, Guanghua Chi, and Xu Tan, “Migration and the value of
social networks,” 2021.

Borjas, George J, “Ethnicity, Neighborhoods, and Human-Capital Externalities,” The
American Economic Review, 1995, pp. 365–390.

Borusyak, Kirill and Peter Hull, “Non-random exposure to exogenous shocks: Theory
and applications,” Technical Report 2023.

Bureau, National Statistics, “Migrant Worker Monitoring and Survey Report,” The
Government Report, April 2020.

Burks, Stephen V, Bo Cowgill, Mitchell Hoffman, and Michael Housman, “The value
of hiring through employee referrals,” The Quarterly Journal of Economics, 2015, 130 (2),
805–839.

Card, David and Ethan G Lewis, “The diffusion of Mexican immigrants during the 1990s:
Explanations and impacts,” in “Mexican immigration to the United States” University
of Chicago Press 2007, pp. 193–228.

39



Chen, M Keith, Peter E Rossi, Judith A Chevalier, and Emily Oehlsen, “The value of
flexible work: Evidence from Uber drivers,” Journal of political economy, 2019, 127 (6),
2735–2794.

Chen, Yuyu, Ginger Zhe Jin, and Yang Yue, “Peer migration in China,” Technical Report,
National Bureau of Economic Research 2010.

Cook, Cody, Rebecca Diamond, Jonathan V Hall, John A List, and Paul Oyer, “The
gender earnings gap in the gig economy: Evidence from over a million rideshare
drivers,” The Review of Economic Studies, 2021, 88 (5), 2210–2238.

Dai, Ruochen, Dilip Mookherjee, Kaivan Munshi, Xiaobo Zhang et al., “The community
origins of private enterprise in China,” Technical Report, Boston University-Department
of Economics 2019.

Damm, Anna Piil, “Ethnic enclaves and immigrant labor market outcomes: Quasi-
experimental evidence,” Journal of Labor Economics, 2009, 27 (2), 281–314.

Datta, Namita, Chen Rong, Sunamika Singh, Clara Stinshoff, Nadina Iacob, Nat-
nael Simachew Nigatu, Mpumelelo Nxumalo, and Luka Klimaviciute, “Working
Without Borders: The Promise and Peril of Online Gig Work,” 2023.

Davis, Donald R and Jonathan I Dingel, “A spatial knowledge economy,” American
Economic Review, 2019, 109 (1), 153–170.

Dingel, Jonathan I and Felix Tintelnot, “Spatial economics for granular settings,” Tech-
nical Report, National Bureau of Economic Research 2020.

Duranton, Gilles and Diego Puga, “Micro-foundations of urban agglomeration
economies,” in “Handbook of regional and urban economics,” Vol. 4, Elsevier, 2004,
pp. 2063–2117.

and , “The economics of urban density,” Journal of economic perspectives, 2020, 34 (3),
3–26.

Dustmann, Christian, Albrecht Glitz, Uta Schönberg, and Herbert Brücker, “Referral-
based job search networks,” The Review of Economic Studies, 2016, 83 (2), 514–546.

Edin, Per-Anders, Peter Fredriksson, and Olof Åslund, “Ethnic enclaves and the eco-
nomic success of immigrants—Evidence from a natural experiment,” The quarterly
journal of economics, 2003, 118 (1), 329–357.

Egger, Dennis, Daniel Auer, and Johannes Kunz, “Effects of Migrant Networks on Labor
Market Integration, Local Firms and Employees,” 2021.

Fajgelbaum, Pablo D and Cecile Gaubert, “Optimal spatial policies, geography, and
sorting,” The Quarterly Journal of Economics, 2020, 135 (2), 959–1036.

40



Friebel, Guido, Matthias Heinz, Mitchell Hoffman, and Nick Zubanov, “What do em-
ployee referral programs do? Measuring the direct and overall effects of a management
practice,” Journal of Political Economy, 2023, 131 (3), 633–686.

Giuliano, Genevieve, Christian Redfearn, Ajay Agarwal, Chen Li, and Duan Zhuang,
“Employment concentrations in Los Angeles, 1980–2000,” Environment and planning A,
2007, 39 (12), 2935–2957.

Giulietti, Corrado, Jackline Wahba, and Yves Zenou, “Strong versus weak ties in
migration,” European Economic Review, 2018, 104, 111–137.

Glaeser, Edward L, “Learning in cities,” Journal of urban Economics, 1999, 46 (2), 254–277.

, Agglomeration economics, University of Chicago Press, 2010.

, William R Kerr, and Giacomo AM Ponzetto, “Clusters of entrepreneurship,” Journal
of urban economics, 2010, 67 (1), 150–168.

Graham, Steve and Simon Marvin, Telecommunications and the city: Electronic spaces, urban
places, Routledge, 2002.

Gröger, André and Yanos Zylberberg, “Internal labor migration as a shock coping
strategy: Evidence from a typhoon,” American Economic Journal: Applied Economics, 2016,
8 (2), 123–53.

Haggag, Kareem, Brian McManus, and Giovanni Paci, “Learning by driving: Productiv-
ity improvements by new york city taxi drivers,” American Economic Journal: Applied
Economics, 2017, 9 (1), 70–95.

Jaffe, Adam B, Manuel Trajtenberg, and Rebecca Henderson, “Geographic localization
of knowledge spillovers as evidenced by patent citations,” the Quarterly journal of
Economics, 1993, 108 (3), 577–598.

Jayachandran, Seema, “Selling labor low: Wage responses to productivity shocks in
developing countries,” Journal of political Economy, 2006, 114 (3), 538–575.

Joseph, Thomas, Yaw Nyarko, and Shing-Yi Wang, “Asymmetric information and
remittances: Evidence from matched administrative data,” American Economic Journal:
Applied Economics, 2018, 10 (2), 58–100.

Journal, The Wall Street, “China’s Mighty Yangtze Is Heaving From Rain and the Three
Gorges Will Be Tested,” The Wall Street Journal Magazine, July 2020.

Jr, Robert E Lucas, “Life earnings and rural-urban migration,” Journal of political economy,
2004, 112 (S1), S29–S59.

Kerr, William R and Frederic Robert-Nicoud, “Tech clusters,” Journal of Economic Perspec-
tives, 2020, 34 (3), 50–76.

41



Kinnan, Cynthia, Shing-Yi Wang, and Yongxiang Wang, “Access to migration for rural
households,” American Economic Journal: Applied Economics, 2018, 10 (4), 79–119.

Krugman, Paul, “The new economic geography, now middle-aged,” Regional studies, 2011,
45 (1), 1–7.

Kukalis, Sal, “Agglomeration economies and firm performance: the case of industry
clusters,” Journal of Management, 2010, 36 (2), 453–481.

Larcom, Shaun, Ferdinand Rauch, and Tim Willems, “The benefits of forced experimen-
tation: striking evidence from the London underground network,” The Quarterly Journal
of Economics, 2017, 132 (4), 2019–2055.

Levitt, Steven D, John A List, and Chad Syverson, “Toward an understanding of learning
by doing: Evidence from an automobile assembly plant,” Journal of political Economy,
2013, 121 (4), 643–681.

Light, Ivan, Georges Sabagh, Mehdi Bozorgmehr, and Claudia Der-Martirosian, “Be-
yond the ethnic enclave economy,” Social Problems, 1994, 41 (1), 65–80.

Mao, Wenzheng, Liu Ming, Ying Rong, Christopher S Tang, and Huan Zheng, “Faster
deliveries and smarter order assignments for an on-demand meal delivery platform,”
Available at SSRN 3469015, 2019.

Marshall, Alfred, Principles of economics, by Alfred Marshall, Macmillan and Company,
1890.

Mas, Alexandre and Amanda Pallais, “Valuing alternative work arrangements,” American
Economic Review, 2017, 107 (12), 3722–59.

McKenzie, David and Hillel Rapoport, “Self-selection patterns in Mexico-US migration:
the role of migration networks,” the Review of Economics and Statistics, 2010, 92 (4),
811–821.

, Caroline Theoharides, and Dean Yang, “Distortions in the international migrant labor
market: evidence from Filipino migration and wage responses to destination country
economic shocks,” American Economic Journal: Applied Economics, 2014, 6 (2), 49–75.

McKinsey, “Independent work is booming,” 2022.

Michuda, Aleksandr, “Urban Labor Supply Responses to Adverse Weather Shocks on
Rideshare Platforms.” PhD dissertation, University of California, Davis 2021.

Monras, Joan, “Immigration and wage dynamics: Evidence from the mexican peso crisis,”
Journal of Political Economy, 2020, 128 (8), 3017–3089.

Moretti, Enrico, The new geography of jobs, Houghton Mifflin Harcourt, 2012.

Morten, Melanie, “Temporary migration and endogenous risk sharing in village india,”
Journal of Political Economy, 2019, 127 (1), 1–46.

42



Munshi, Kaivan, “Networks in the modern economy: Mexican migrants in the US labor
market,” The Quarterly Journal of Economics, 2003, 118 (2), 549–599.

, “Social networks and migration,” Annual Review of Economics, 2020, 12, 503–524.

and Mark Rosenzweig, “Networks and misallocation: Insurance, migration, and the
rural-urban wage gap,” American Economic Review, 2016, 106 (1), 46–98.

Overman, Henry G and Diego Puga, “Labor pooling as a source of agglomeration: An
empirical investigation,” in “Agglomeration economics,” University of Chicago Press,
2010, pp. 133–150.

Papay, John P, Eric S Taylor, John H Tyler, and Mary E Laski, “Learning job skills from
colleagues at work: Evidence from a field experiment using teacher performance data,”
American Economic Journal: Economic Policy, 2020, 12 (1), 359–388.

Patel, Krishna and Francis Vella, “Immigrant networks and their implications for occu-
pational choice and wages,” Review of Economics and Statistics, 2013, 95 (4), 1249–1277.

Peri, Giovanni, “Young workers, learning, and agglomerations,” Journal of urban Eco-
nomics, 2002, 52 (3), 582–607.

Pew, “The State of Gig Work in 2021,” 2021.

Post, South China Morning, “After coronavirus, flooding hits southern China with 14
million affected,” South China Morning Post, July 2020.

Rauch, James E, “Productivity gains from geographic concentration of human capital:
evidence from the cities,” Journal of urban economics, 1993, 34 (3), 380–400.

Roca, Jorge De La and Diego Puga, “Learning by working in big cities,” The Review of
Economic Studies, 2017, 84 (1), 106–142.

Rosenthal, Stuart S and William C Strange, “The determinants of agglomeration,” Journal
of urban economics, 2001, 50 (2), 191–229.

Schaller, Bruce, “The New York City taxicab fact book,” Schaller Consulting, March 2006.

Sotelo, Sebastian, “Practical aspects of implementing the multinomial pml estimator,”
Ann Arbor: University of Michigan, mimeo, 2019.

Swanson, Eric T, “Risk aversion and the labor margin in dynamic equilibrium models,”
American Economic Review, 2012, 102 (4), 1663–1691.

Thompson, Peter, “Learning by doing,” Handbook of the Economics of Innovation, 2010, 1,
429–476.

Woodruff, Christopher and Rene Zenteno, “Migration networks and microenterprises in
Mexico,” Journal of development economics, 2007, 82 (2), 509–528.

43



Yang, Dean, “Why do migrants return to poor countries? Evidence from Philippine
migrants’ responses to exchange rate shocks,” The Review of Economics and Statistics,
2006, 88 (4), 715–735.

, “Migrant remittances,” Journal of Economic perspectives, 2011, 25 (3), 129–52.

44



9 Figures

Figure 1: Average Clustering Level by Sending Hometowns

Note: This Figure shows the distribution of clustering levels by workers’ hometowns. I include all
active workers between 2020 and 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.1. For each hometown h, I calculate the share of workers in each district
d: Phd = Nhd

Nh
= Nhd

∑d∈D Nhd
. I rank districts for each hometown based on this worker share, Phd. I

plot the average Ph,d by the rank of districts for each hometown. The first bar shows that 30% of
workers from the same hometown cluster in one district. The red line is the simulated average
share of workers in each district if workers were randomly allocated across districts.

Figure 2: Average Clustering Level by Receiving District

Note: This Figure plots the distribution of clustering levels by receiving districts. I include all
active workers between 2020 and 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.1. For each district d, I calculate the share of workers from each hometown
d: Shd = Nhd

Nd
= Nhd

∑h∈H Nhd
. I rank hometowns for each district based on this share, Sh,d. I plot the

average Sh,d by the rank of hometowns for each district. The first bar shows that 15% of workers
in one district come from the same hometown. The red line is the simulated average percentage
of workers from each hometown if workers are randomly allocated across districts.
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Figure 3: Example of Deviating from Optimal Delivery Routes

(a) Examples of Going to Wrong Gates (b) % of Workers Going to Locked Gates

Note: This Figure provides one specific example of workers deviating from optimal delivery
routes. In Figure (a), the red line represents the delivery route of a worker who knew the correct
gate of a compound. The black line represents the route of a worker who first went to the locked
gate and took the detour. In Figure (b), I identify twenty compounds that suddenly closed one of
their gates in Shanghai in 2021. I calculate the percentage of delivery workers who still went to
that locked gate the following days. This decreasing trend demonstrates that workers take time to
learn about how to navigate in the city.

Figure 4: Productivity Trend of New Workers

(a) All New Workers (b) With Hometown Workers v.s. No Hometown

Note: This Figure plots the productivity curve of new workers. I include all new active workers
in 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.3.
Productivity is measured by delivery speed, where I divide traveling distances (meters) by the
duration (minutes). In Figure (a), I plot the productivity curve for all new workers. In Figure
(b), I classify these new workers into two groups based on whether they work in a district with
same-origin workers: the red line represents those with at least one same-origin worker in the
same work district, and the blue line represents those without. The x-axis is the number of weeks
since new workers joined the platform, and the y-axis is the average delivery speed.
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Figure 5: Heterogeneous Analysis: Learning Magnitudes across Grids in Shanghai

(a) Learning Magnitude (b) Average Year of Construction (c) Number of Apartments

Note: This Figure plots the estimated learning magnitude in each grid and additional grid characteristics to understand where learning
occurs in Shanghai. I first divide Shanghai into around 200 grids, where a grid represents a 2km × 2km area. I include all new active
workers between March and June 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.2. Figure (a) plots
the coefficient from regressing new workers’ search time for a location on an indicator of whether they have visited the exact location
before or not, following the specification in section 4.2. I run these regressions for each grid separately and plot the coefficient in front of
the indicator in Figure (a). I also obtain additional data from Lianjia.com on the average year of construction (figure (b)) and the number
of available apartments (figure (c)) in each grid in Shanghai.
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Figure 6: The Productivity Gain as a Function of Clustering

Note: This Figure plots new workers’ productivity increases as a function of clustering. I include
all new active workers in 2021 in five large cities. Details of the sample selection can be found
in Appendix C.2.3. I run an IV regression following the specification in section 4.3, where the
dependent variable is new workers’ average delivery speed, and the independent variables are a
set of indicators for each different clustering level in the work districts. IVs are indicators for each
different clustering level in the bonus-predicted districts. I plot the coefficients of these indicators
in this Figure. The y-axis is the delivery speed (meter/minute). The x-axis represents clustering
levels from 0% to 20%, which means the share of hometown workers in a district.
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Figure 7: Correlation between Clustering of Restaurant and Workers from Same Origins

(a) Number of Restaurant and Workers (b) Market Share of Restaurant and Workers

Note: This Figure plots the correlation between the share of restaurants and workers
from the same origins in each district. I include all active workers between 2020 and
2021 in five large cities. Details of the sample selection can be found in Appendix C.2.1.
I first infer the hometown origins of restaurants based on their brands and flavors, such
as Shanghai food, Sichuan food, and so on. In Figure (a), the x-axis is the share of
hometown workers in each district. The y-axis is the share of restaurants from that same
hometown in each district. In Figure (b), I plot the same correlation but construct the
share of hometown workers and restaurants based on their sales or number of deliveries
completed instead of absolute numbers in Figure (a).

Figure 8: The Impact of Hometown Floods

(a) Labor Supply (b) Earnings (Number of Orders)

Note: This Figure plots the impact of hometown floods on workers’ labor market performances. I
include all active workers between May and August 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.4. I conduct an event study analysis. The x-axis is the
number of weeks before and after hometown shocks. In Figure (a), the y-axis is the workers’
weekly working hours. In Figure (b), the y-axis is the number of deliveries workers completed
weekly.
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Figure 9: Model Fit

(a) Data
(b) Model Estimates (c) Model Estimates with Information Friction

Note: This Figure plots the model fit. I plot new workers’ entry probabilities across clustering levels. The x-axis is the clustering level
from 0% to 20%, which is measured by the share of hometown workers in each district. The y-axis is the percentage of new workers
entering districts at different clustering levels. In Figure (a), I compute entry probabilities from the data, which uses the same sample as
Figure 1. In Figure (b), I simulate the entry probabilities from the estimated model. Figure (c) plots the simulated probabilities after
adding information frictions to the model. Specifically, I assume 40% of new workers who do not have a referrer do not have any
information on existing clustering levels in the city. They thus choose districts based on their idiosyncratic preferences.
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Figure 10: Utility as a Function of Clustering

Note: This Figure plots the estimated utility with respect to clustering. The x-axis is the clustering
level from 0% to 50%, meaning the share of hometown workers in each district. The y-axis is the
change in utility relative to the benchmark where there is no migrant clustering. The red line
represents a clustered worker’s overall utility. I also decompose it into two parts: (1) the blue
dashed line represents utility with only the learning benefits from clustering; (2) the black dotted
line represents utility with only the congestion cost of clustering. The gray line represents the
utility of non-clustered workers, who are exposed to the congestion cost of clustering.

Figure 11: Externality of Clustering
(a) Decompose Externality (b) Total Externality

Note: This Figure plots the externality with respect to clustering. The x-axis is the clustering
level from 0% to 50%, meaning the share of hometown workers in each district. The y-axis is the
externality, measured by the sum of other workers’ utility changes induced by a worker entry
at each clustering level. In Figure (a), the red line represents the learning externality since a
worker can share knowledge with other same-origin workers; (2) the dark blue line represents
the congestion externality that a worker imposes on other same-origin workers; (3) the light blue
line represents the congestion externality that a worker imposes on the rest of workers from other
origins. I add all three externalities together, as shown by the black line in Figure (b). The gray
represents the total externality of an entry for same-origin workers.
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Figure 12: CDF of Clustering Level: Individual Equilibrium versus Equilibrium with Externality

Note: This Figure plots the distribution of clustering levels under two equi-
libria: (1) the black represents the equilibrium where workers choose work
districts to maximize individual utility, (2) the red line represents the equi-
librium where workers receive the Pigouvian tax equal to the externality of
their choices when they deice where to work. The externality is the sum of the
learning benefit a worker brings to the same-origin workers and the congestion
costs for everyone in the district. The x-axis and y-axis are defined similarly to
Figure 2: the x-axis is the hometown rank in each district by the worker share,
and the y-axis is the accumulative hometown-worker share.
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Figure 13: CDF of Clustering Level: Individual Equilibrium versus Equilibrium without Congestion Effect

Note: This Figure plots the distribution of clustering levels under two equilibria
based on the estimated parameters. The black represents the equilibrium
where workers choose work districts to maximize individual utility. The red
line represents the distribution where I turn off the congestion effect through
insurance. Workers still enjoy the learning benefits of clustering. The x-axis
and y-axis are defined similarly to Figure 2: the x-axis is the hometown rank in
each district by the worker share, and the y-axis is the accumulative hometown-
worker share.
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10 Tables

Table 1: Effects of Own and Peers’ Experiences on Productivity

Restaurant Road Consumer

Search Time (min) Driving Speed (min/km) Search Time (min)

(1) (2) (3)

Own Visit to Restaurant -1.43∗∗∗ -0.08 -0.12

(0.09) (0.16) (0.10)

Referrer’s Visit to Restaurant -0.51∗∗∗ -0.06 -0.10

(0.14) (0.15) (0.09)

Own Visit to Consumer -0.21 -0.15 -1.25∗∗∗

(0.15) (0.10) (0.05)

Referrer’s Visit to Consumer -0.10 0.03 -0.58∗∗∗

(0.16) (0.12) (0.09)

Date X Hour X Worker FE Y Y Y

Location FE Y Y Y

BH Control Y Y Y

Ave. Dep. Var. 6.22 10.86 5.93

Observations 5,837,304 5,837,304 5,837,304

R2 0.43 0.39 0.44

Notes: This Table shows regressions of productivity on four indicators: (1) whether the new worker
has visited the restaurant or consumer building before; (2) whether the new worker’s referrer has
visited the restaurant or consumer building in the last month, following the specification in section
4.2. I include all new active workers between March and June 2021 in five large cities. Details of the
sample selection can be found in Appendix C.2.2. Dependent variables in columns (1) and (3) are
searching time (minutes) for the restaurant or the consumer building. I measure them by counting
the number of GPS coordinates within a location’s 150-meter radius. The dependent variable in
column (2) is the average driving speed (minute/min) between the restaurant and the consumer
building. These are proxies for workers’ productivity for different parts of a delivery. Expected
for fixed effects illustrated in the Table, I control for the expected probability of a worker visiting a
location by randomly re-allocating orders that are put in within the same hour, grid (2km × 2km),
and worker tenure group (every six months), following the intuition of Borusyak and Hull (2023).
Standard errors are clustered two-way at the district level and the date level.
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Table 2: Learning Magnitudes across Grids in Shanghai

Dependent Variable: Learning Index αd

(1) (2) (3)

Average Construction Year -0.010∗∗ -0.008∗∗

(0.004) (0.004)

Average Apartment Density 0.081∗∗∗ 0.076∗∗∗

(0.023) (0.027)

Ave. Dep. Var. 0.82 0.82 0.82

Observations 204 204 204

R2 0.117 0.136 0.156

Notes: This Table shows regressions of the estimated learning magnitude on grid
characteristics to understand where learning occurs in Shanghai. I include all
new active workers between March and June 2021 in five large cities. Details of
the sample selection can be found in Appendix C.2.2. I first divide Shanghai into
around 200 grids, where a grid represents a 2km × 2km area. I then regress new
workers’ search time for a location on indicators of whether they or their referrers
have visited the exact location in each grid separately, following the specification
in section 4.2. The dependent variables are coefficients from these regressions.
Specifically, I calculate the learning magnitudes, αd = (αOwnvisit + αRefvisit)/2. The
independent variables are scraped from Lianjia.com, including the average year of
construction across all buildings in each grid and the total number of available
apartments in each grid in Shanghai. Standard errors are clustered at the district
level.
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Table 4: Delivery Workers’ Labor Supply Responses to Hometown Shocks

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

1{Hometown Shock } 0.057∗∗∗ 16.381∗∗∗ 5.931∗∗∗

(0.010) (2.582) (1.069)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 638,810 638,810 638,810

R2 0.521 0.530 0.557

Notes: This Table shows regressions of workers’ weekly labor supply
on hometown shocks. I include all active workers between May and
August 2021 in five large cities. Details of the sample selection can
be found in Appendix C.2.4. The dependent variables are workers’
weekly performances on the platform: (1) being active (# of deliveries
> 0),(2) number of deliveries completed, and (3) number of work-
ing hours. The independent variable indicates whether a worker’s
hometown has had flood shock in the last month. I include origin
province × week fixed effect, district fixed effect, and worker fixed
effects. Standard errors are clustered two-way at the district level
and the week level.
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Table 5: District-level Response to Aggregate Shocks

Dep. Var.: Weekly Outcomes at District Level

Number of Number of Total Per-delivery

Workers Orders Working Hours Commission Fee

1{Predicted Shock Share > 15%} 4.925 95.720 148.502∗∗∗ -0.226

(3.259) (104.525) (33.291) (0.309)

Week FE Y Y Y Y

District FE Y Y Y Y

Ave. Dep. Var 132.59 7,233.97 2,408.26 6.41

Observations 14,391 14,391 14,391 14,391

R2 0.884 0.886 0.886 0.903

Notes: This Table shows regressions of district-level market performances on aggregate hometown
shocks. I include all active workers between May and August 2021 in five large cities. Details of the
sample selection can be found in Appendix C.2.4. Dependent variables are (1) the total number
of active workers in the district each week,(2) the total number of deliveries completed, (3) the
total number of working hours, and (4) the average per-delivery commission fee. The independent
variable indicates whether the predicted shock share is higher than 15%. The shock share is the
share of workers experiencing floods, given the hometown composition in the district in May 2020.
I include week and district fixed effects. Standard errors are clustered at the week level.

58



Table 6: Congestion: Impacts of Clustering on Delivery Workers’ Real Wages during Shocks

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

1{ Hometown Shock} 0.072∗∗∗ 19.939∗∗∗ 6.112∗∗∗

(0.014) (3.912) (1.108)

1{District Shock Share > 15%} -0.003 -4.870 -0.648

(0.022) (2.997) (0.455)

Interaction Term -0.009 -8.997∗∗∗ -0.302

(0.010) (2.080) (0.378)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 638,810 638,810 638,810

R2 0.542 0.573 0.582

Notes: This Table shows regressions of workers’ weekly labor supply on
hometown shocks and district shocks. I include all active workers between
May and August 2021 in five large cities. Details of the sample selection
can be found in Appendix C.2.4. Dependent variables are workers’ weekly
performances on the platform: (1) being active (# of deliveries > 0),(2) number
of deliveries completed, and (3) number of working hours. Independent
variables are (1) the indicator of whether a worker’s hometown has any flood
shock in the last month, (2) an indicator of district shock based on whether
the predicted shock share in the district is higher than 15%, and (3) their
interaction term. I include origin province × week fixed effects, worker fixed
effects, and district fixed effects. Standard errors are clustered two-way at the
district level and the week level.
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Table 7: Estimate α + β: Labor Supply to Lottery Prizes

Dep. Var.: Weekly Working Hours

(1) (2) (3)

Lottery/Average Hour Wage -0.57∗∗∗ -0.63∗∗∗ -0.61∗∗∗

(0.01) (0.05) (0.07)

Week FE Y Y

Worker FE Y Y

Week X District FE Y

Week X Hometown FE Y

Observations 48,126 48,126 48,126

R2 0.18 0.41 0.54

Notes: This Table shows regressions of workers’ labor supply on the amount of prizes they
won from the lotteries. The sample includes three lotteries offered by the platform between
2020 and 2021. I include delivery workers who completed at least 50 deliveries within seven
days before the lottery, and worked in a district with at least one worker winning the lottery.
Dependent variables are workers’ weekly working hours. The Independent variable is the prize
amount each worker received. Columns (1)-(3) include different fixed effects. Standard errors
are clustered two-way at the district level and the week level.

Table 8: Gravity Regression

Dep. Var.: 1{ Worker i from Hometown h Choose District d }

(1) (2) (3) (4)

△U(Bdt) 2.95∗∗∗ 2.49∗∗∗ 2.53∗∗∗ 2.18∗∗∗

(%) (0.34) (0.43) (0.47) (0.38)

Month FE Y Y

Hometown FE Y

District FE Y Y

Month X Hometown FE Y

District X Hometown FE Y

Observations 241,190 241,190 241,190 241,190

Notes: This Table shows gravity regressions of new workers’ district choices on entry bonuses.
I include all new active workers in 2021 in five large cities. Details of the sample selection can
be found in Appendix C.2.3. The dependent variable is the share of new workers from each
hometown joining different districts across weeks. The Independent variable is the utility change
caused by the entry bonus in each district across weeks. Columns (1)-(4) include different fixed
effects.
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Table 9: Parameter Estimates

Parameter Estimate Conf. Interval

Labor Supply Elasticity α + β 0.39 [0.26,0.52]

High Hometown Incom Shigh 279.61 [256.21, 340.88]

Low Hometown Income Slow 55.24 [4.83, 99.35]

Risk Aversion Coefficient γ 2.31 [1.87, 3.30]

Scale of Idiosyncratic Preferences σ 2.18 [1.43, 2.93]

Notes: This Table reports the estimated parameters. Coefficients, α + β and
σ are estimated by regressions as specified in section 6. Coefficnets, Shigh,
Slow, and γ, are estimated by two-step GMM. The last column reports the
95% confidence interval estimated via either regression results or a 200-round
bootstrap.
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A Appendix: Proofs and Derivations

A.1 Worker Utility Maximization Problem

For worker i who come from hometown h and work in district d:

max
L,T

(Cown
i )α(Cfamily

i )β(L̄ − Li)
1−α−β

s.t. Cown
i + Ti = whdLi

Cfamily
i = Sh + Ti

Take F.O.C for L and T

Li =
αwL̄ + (1 − β)Ti

(1 − α − β)whd

Ti =
βwhdLi − αSh

α + β

Plug T in the first F.O.C to solve for L:

Li = (α + β)L̄ − (1 − α − β)
Sh

whd

From the delivery market clearing condition

whd =
ADdδ(Nhd)

∑i′ δ(Ni′hj)Li′

Labor supply and wage in the equilibrium are
w∗

hd = 1
α+β

δ(Nhd)
∑i′ δ(Ni′hj)

ADd+(1−α−β)(∑i′ δ(Ni′hj)Si′hj)/δ(Nihd)

L̄

L∗
i

L̄ = (α + β)

(
1 − ∑o∈j δ(Nohj)

δ(Nihd)
(1−α−β)Shd

ADd+(1−α−β)(∑i′ δ(Ni′hj)Si′hj)/δ(Nihd)

)
Take these solutions into the utility:

uihd = αα(1 − α)β(α + β)β

(
1 − α − β

w∗
hd

)1−α−β

(w∗
hd L̄ + Sh)
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Set αα(1 − α)β(α + β)β(1 − α − β)1 − α − βL̄ = Cons

uihd = Cons ×
(

w∗
hd

α+β +
Sh

L̄
(w∗

hd)
α+β−1

)

A.2 Proposition 1

Take the derivative of uihd with respect to w∗
hd

∂uihd
∂w∗

hd
= Const × (w∗

hd)
α+β−2

(
(α + β)w∗

hd − (1 − α − β)
Sh

L̄

)

Since Li = (α + β)L̄ − (1 − α − β) Sh
whd

> 0, ∂uihd
∂w∗

hd
> 0. The core is to derive ∂w∗

hd
∂Nhd

∂w∗
hd

∂Nhd
=

∂

∂Nhd

(
δ(Nhd)× (ADd + (1 − α − β)∑

i′
Si′hj)

)(
∑
i′

δ(Ni′hj)

)−1

Assume that there are Nd workers in district j in total. Consider the case where there
exists only one cluster of workers from the same hometown, h. Without loss of generality,

δ(Nhd) ∈ [δ(0), δ(Nd)]

∑
i′

δ(Ni′hj) = Nhdδ(Nhd) + (Nd − Nhd)

∑i′ Si′hj = NhdSh + (Nd − Nhd)S̄

where S̄ = PshockSlow + (1 − Pshock)Shigh

Given that Slow < S̄ < Shigh, When Sh = Shigh,

whigh
hd = δ(Nhd)×

ADd + (1 − α − β)(∑i′ Si′hj)

(α + β)L̄ ∑i′ δ(Ni′hj)

= δ(Nhd)×
ADd + (1 − α − β)(Nhd(Shigh − S̄) + NdS̄)

(α + β)L̄(Nhd(δ(Nhd)− 1) + Nd)
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It is clear that the numerator increases with Nhd, while the denominator also increases
with Nhd.

whigh
hd =

δ(Nhd)

(α + β)L̄
× ADd + (1 − α − β)(Shigh − S̄)Nhd + (1 − α − β)NdS̄

Nhd(δ(Nhd)− 1) + Nd

Set ADd = K1 , (1 − α − β)(Shigh − S̄) = K2 , (1 − α − β)NdS̄ = K3 and Nd = K4

∼ δ(Nhd)
K1 + K2Nhd + K3

Nhd(δ(Nhd − 1)) + K4

∂whigh
hd

∂Nhd
∼ K2K4δ(Nhd) + (K1 + K2N + K3)δ

′(Nhd)(K4 − N)− (K1 + K3)δ(Nhd)(δ(Nhd)− 1)

∂2whigh
hd

∂2Nhd
=

(
K2K4 + K2(K4 − Nhd)− K2N − 2(K1 + K3)δ(Nhd)

)
δ′(Nhd)

+ (K1 + K2N + K3)(K4 − Nhd)δ
′′(Nhd)

Since δ′′(Nhd) < 0 and K2K4 + K2(K4 − Nhd) < K2N + 2(K1 + K3)δ(Nhd), we have
∂2whigh

hd /∂2Nhd < 0. The sufficient condition to ensure∂whigh
hd /∂Nhd > 0 is

∂whigh
hd

∂Nhd
(Nhd = Nd) > 0

→K2K4δ(Nhd) + (K1 + K2N + K3)δ
′(Nhd)(K4 − N) > (K1 + K3)δ(Nhd)(δ(Nhd)− 1)

Since δ′(Nhd)>0, I further relax the condition to be

→K2K4δ(Nhd) > (K1 + K3)δ(Nhd)(δ(Nhd)− 1)

→δ(Nhd) <
K2K4

K1 + K3
+ 1

On the other hand, when Shd = Slow,

wlow
hd =

ADdδ(Nhd) + (1 − α − β)(−Nhd(S̄ − Slow) + NdS̄)
(α + β)L̄(Nhdδ(Nhd) + (Nd − Nhd))

Given the concavity of δ(Nhd), the numerator first increase and then decrease with Nhd,
while the denominator always increases with Nhd. I consider the upper bound of the
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function,

wlow−upperlimit
hd =

ADdδ(Nhd) + (1 − α − β)(−Nhd(S̄ − Slow) + NdS̄)
(α + β)L̄Nd

=
ADd

(α + β)L̄Nd
δ(Nhd)−

(1 − α − β)(S̄ − Slow)

(α + β)L̄Nd
Nhd +

(1 − α − β)NdS̄
(α + β)L̄Nd

∂wlow−upperlimit
hd

∂Nhd
=

ADd

(α + β)L̄Nd
δ′(Nhd)−

(1 − α − β)(S̄ − Slow)

(α + β)L̄Nd

Since∂2wlow−upperlimit
hd /∂2Nhd < 0, the sufficient condition for wlow

hd decrease with Nhd

when Nhd is large is

∂wlow−upperlimit
hd

∂Nhd
(Nhd = Nd) < 0

→δ′(Nd) <
1 − α − β

ADd
(S̄ − Slow)

Addition notes: Endogeneity of Nd.

For this proof, Nd is independent of Nhd. However, when workers have complete
information on the hometown composition {Nhd}, Nd may be a function of Nhd because
of the negative externality of clustering on other workers. In addition, the degree to
which Nhd influences Nd depends on the labor market clearing conditions. I discuss two
cases here.

Case 1: non-clustering workers enter the districts until the real wage without aggregate
shocks equalizes across districts.

wc =
ADd + (1 − α − β)(Nhd(Shigh − S̄) + NdS̄)

(α + β)L̄(Nhd(δ(Nhd)− 1) + Nd)

Nd =
ADd + (1 − α − β)(Shigh − S̄)Nhd − (α + β)L̄wcNhd(δ(Nhd)− 1)

(α + β)L̄wc − (1 − α − β)S̄

∂Nd
∂Nhd

∼ (1 − α − β)(Shigh − S̄)− (α + β)L̄wc(Nhdδ′(Nhd) + δ(Nhd)− 1)

When (α+ β)L̄wc(Ndδ′(Nd) + δ(Nd)− 1) < (1− α− β)(Shigh − S̄), Nd increases with Nhd,
which makes the competition effect stronger.
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Case 2: non-clustering workers enter the districts until the real wages with and
without aggregate shocks both equalize across districts. This condition assumes that the
non-clustering workers are fully flexible. Their entry and exit decisions are made after
the hometown shocks are realized. In this case, we have

wc =
ADd + (1 − α − β)(Nhd(Shigh − S̄) + Nnoshock

d S̄)
(α + β)L̄(Nhd(δ(Nhd)− 1) + Nnoshock

d )
and

wc =
ADd + (1 − α − β)(Nhd(Shigh − S̄) + Nwithshock

d S̄)
(α + β)L̄(Nhd(δ(Nhd)− 1) + Nwithshock

d )

This means there is no congestion effect since the changes in the labor supply of clus-
tered workers are balanced by the entry and exit of non-clustering workers. With only
productivity gain from clustering, workers’ utility increases with the clustering level.

Considering these two cases, the extent to which Nhd influences Nd becomes more
of an empirical question. From the empirical analysis, I do not find significant effects
of clustering level on the total number of active workers in the districts, both with and
without shocks.
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A.3 Proposition 2

EUihd =
1

1 − γ

(
(1 − Pshock)(unoshock

ihd )1−γ + Pshock(ushock
ihd )1−γ

)

∂EUihd
∂Nhd

= (1 − Pshock)(unoshock
ihd )−γ ∂unoshock

ihd

∂whigh
hd

∂whigh
hd

∂Nhd
+ Pshock(ushock

ihd )−γ ∂ushock
ihd

∂wlow
hd

∂wlow
hd

∂Nhd

= (1 − Pshock)(unoshock
ihd )−γConst(whigh

hd )α+β−2
(
(α + β)whigh

hd − (1 − α − β)
Sh

L̄

)
∂whigh

hd
∂Nhd

+ Pshock(ushock
ihd )−γConst(wlow

hd )α+β−2
(
(α + β)wlow

hd − (1 − α − β)
Sh

L̄

)
∂wlow

hd
∂Nhd

Set Ohigh = (unoshock
ihd )−γConst(whigh

hd )α+β−2
(
(α + β)whigh

hd − (1 − α − β)Sh
L̄

)
and Olow = (ushock

ihd )−γConst(wlow
hd )α+β−2

(
(α + β)wlow

hd − (1 − α − β)Sh
L̄

)
The sufficient condition is

∂EUihd
∂Nhd

(Nhd = Nd) < 0

→(1 − Pshock)Ohigh ∂whigh
hd

∂Nhd
< (1 − Pshock)Ohigh ∂whigh−upperlimit

hd
∂Nhd

< −PshockOlow ∂wlow−upperlimit
hd

∂Nhd
< −PshockOlow ∂wlow

hd
∂Nhd

→δ′(M) <
1 − α − β

ADd((1 − Pshock)Ohigh + PshockOlow)

×
(

S̄((1 − Pshock)Ohigh + PshockOlow)− (1 − Pshock)Ohighδ(Nd)Shigh + PshockOlowδ(Nd)Slow
)

A.4 Proposition 3

Following the definition of externality in section 3,

Φ(Nhd) = Φlearn(Nhd) + Φcost(Nhd)

= △EUlearn(Nhd)× Nhd +△EUcost(Nhd)× Nhd +△EUother(Nhd)× (Nd − Nhd)
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where the three utility functions are defined as below.

• EUlearn(Nhd) =
1

1−γ

(
(1 − Pshock)(u(Nhd, Shigh))1−γ + Pshock(u(0, Slow))1−γ

)

• EUcost(Nhd) =
1

1−γ

(
(1 − Pshock)(u(0, Shigh))1−γ + Pshock(u(Nhd, Slow))1−γ

)

• EUother(Nhd) =
1

1−γ

(
(1− Pshock)

2(u(0, Shigh))1−γ +(1− Pshock)Pshock(u(Nhd, Shigh))1−γ

+ Pshock(1 − Pshock)(u(0, Slow))1−γ + P2
shock(u(Nhd, Slow))1−γ

)
Following the calculation of the utility function as above, these three parts of externality
are as follows:

∂EUlearn(Nhd)

Nhd
Nhd ≃ C1 × (u(Nhd, Shigh))−γ ∂u

w
δ′(Nhd)Nhd > 0

∂EUcost(Nhd)

Nhd
Nhd ≃ C2 × (u(Nhd, Slow))−γ ∂u

w

(
δ(Nhd)Slow − Shigh

)
Nhd < 0

∂EUother(Nhd)

Nhd
(Nd − Nhd) ≃ C3×

(
Pshock(u(Nhd, Slow))−γ + (1 − Pshock)(u(Nhd, Shigh))−γ

)
∂u
w

×
(

δ(Nhd)Slow − Shigh
)
(Nd − Nhd) < 0

where C1, C2, and C3 are constant terms containing the constant terms from u =

Constant ×
(

w∗
hd

α+β + Sh
L̄ (w∗

hd)
α+β−1

)
. Rearrange these three equations; the total ex-

ternality is as follows.

Φ(Nhd) ≃ A1δ′(Nhd)Nhd + A2Nhd + A3(Nd − Nhd)

where A1 > 0, A2 < A3 < 0. Thus, Φ(Nhd = 0) = A3Nd < 0

∂Φ(Nhd)

Nhd
≃ A1δ′(Nhd) + A1δ′′(Nhd)Nhd + (A2 − A3)

With the condition max(δ′(Nhd) + δ′′(Nhd)Nhd) < δ′(Nhd = 0) < A3−A2
A1

, we have
Φ(Nhd) < 0 and Φ(Nhd) decreases with Nhd.

68



A.5 Use hometown heterogeneity to identify risk aversion

For worker i from hometown h, the utility of working in district d at time t:

Ũ(c) = EU(c) + β(c)

wherec is the clustering level. EU(c) is the expected utility derived from the Cobb-

Douglas utility maximization, EU(c) = 1
1−γ

(
(1− Pshock)(ugood(c))1−γ + Pshock(ubad(c))1−γ

)
.

I further relax assumptions by allowing workers to hold unobserved utility with respect
to the clustering level, β(c). The restriction is that β(c) depends only on the clustering
level but not on workers’ risk aversion coefficients.

Consider workers from two types of hometowns. The probability of shocks is lower in
one hometown, Psa f e. Conversely, the shock probability is high in the other hometown,
Prisky.

At the clustering level, c, the difference in workers’ utility from the two hometowns is
below.

△Ũ(c) = Ũsa f e(c)− Ũrisky(c) = (EUsa f e(c) + β(c))− (EUrisky(c) + β(c))

=
(Prisky − Psa f e)

1 − γ
((ugood(c))1−γ − (ubad(c))1−γ)

=
(Prisky − Psa f e)

1 − γ
△u∗(c)

This difference in the utility, △u∗(c), depends on (1) ugood and ubad, which are
estimated from the Cobb-Douglas utility maximization, and (2) the worker’s risk aversion
coefficient, γ. I then estimate γ from new workers’ choices of work districts. πrisky(c) and
πsa f e(c) represent the fraction of new workers, either from a risky hometown or a safe
hometown, choosing to enter a district with a clustering level c. From the gravity model,
there is a mapping between the fraction and workers’ utility.

πrisky(c) =
Nrisky

c

∑c′ Nrisky
c′

=
exp(σŨrisky(c))

∑c′ exp(σŨrisky(c′))

πsa f e(c) =
Nsa f e

c

∑c′ Nsa f e
c′

=
exp(σŨsa f e(c))

∑c′ exp(σŨsa f e(c′))
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πrisky(c)
πsa f e(c)

=
exp(σŨrisky(c))
exp(σŨsa f e(c))

× ∑c′ exp(σŨrisky(c′))
∑c′ exp(σŨsa f e(c′))

= exp
(

σ(Ũrisky(c)− Ũsa f e(c))
)
× ∑c′ exp(σŨrisky(c′))

∑c′ exp(σŨsa f e(c′))

Set ∑c′ exp(σŨrisky(c′))
∑c′ exp(σŨsa f e(c′))

= A

△Ũ(c) = Ũrisky(c)− Ũsa f e(c) =
1
σ
(log(πrisky(c))− log(πpeack(c))− log(A))

=
1
σ
(△log(π)(c)− log(A))

Combining all equations, new workers’ entry decisions can reflect the utility difference
across the two types of hometowns.

△Ũ(c1)−△Ũ(c2)

△Ũ(c2)−△Ũ(c3)
=

△log(π)(c1)−△log(π)(c2)

△log(π)(c2)−△log(π)(c3)
=

△u∗(c1)−△u∗(c2)

△u∗(c2)−△u∗(c3)
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B Appendix: Figures and Tables

B.1 Figures

Figure B.1: Delivery Process

Note: This Figure plots an example of a delivery. It involves three steps: (1) workers first travel to
the restaurant to pick up the food, (2) workers drive on the road, and (3) workers deliver the meal
to consumers.

Figure B.2: Geographic Distribution of Food Delivery Workers

(a) Hometown (b) Destination

Note: This Figure shows the geographic distribution of delivery workers at the city level in China.
I include all active workers between 2020 and 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.1. Figure (a) classifies workers based on their county of
birth, and Figure (b) classifies workers based on their current active working cities. Color from
blue to yellow represents the increase in the number of workers.
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Figure B.3: Distribution of Workers from one Hometown in Shanghai: Examples

(a) Hometown 1 (b) Hometown 2 (c) Hometown 3

(d) Hometown 4 (e) Hometown 5 (f) Hometown 6

Note: This Figure provides examples of hometown clusters in Shanghai. I include all active workers between 2020 and 2021 in five large
cities. Details of the sample selection can be found in Appendix C.2.1. Figure (a)-(f) each represent a different hometown (defined as a
county in China). I first find the average work location for each worker using GPS data and calculate the number of same-origin workers
in each location. The color shift from light red to dark red represents the increase in the number of workers. Gray areas mean no workers
from the hometown work there.
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Figure B.4: Clustering Levels by % of Deliveries

(a) Clustering by Sending Hometowns (b) Clustering by Receiving Districts

Note: This Figure plots the distribution of clustering levels. I include all active workers between
2020 and 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.1.
I calculate the clustering levels across hometowns and districts following the same process as
Figure 1 and 2. Calculations of clustering levels in Figure 1 and 2 are based on the number of
workers. In this Figure, I compute the number of deliveries completed by workers from each
hometown across districts. Figure (a) plots the share of deliveries completed in the same district
by workers from each hometown. Figure (b) plots the share of deliveries completed by workers
from the same origin in each district.
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Figure B.5: Distribution of Workers’ Residential versus Work Location: Shanghai

Note: This figure compares the workers’ residential location versus work location for active
delivery workers in Shanghai in 2021. Residential locations are red dots, inferred based on
workers’ daily GPS coordinates observed before 7 a.m. or after 11 p.m. Work locations are black
dots calculated based on the average locations of daily deliveries. The red dots are further away
from the city center and are more concentrated.

Figure B.6: Geographic Distribution of Deliveries

(a) Standardization across Workers

(b) Overall Geographic Distribution

Note: This Figure shows the overall geographic distribution of deliveries for each worker. I
include all new active workers in 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.3. Figure (a) shows the calculation steps. I first calculate a central point
by their daily deliveries for each worker. I then calculate the distance of each delivery relative to
the central point. Figure (b) plots the overall distribution of the traveling distances. Colors from
gray to blue and to red represent the log of the number of deliveries. It shows most workers only
travel within a 4km × 4km area.
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Figure B.7: Wage Trend of New Workers

(a) All New Workers (b) With Hometown Workers v.s. Without

Note: This Figure plots the average wage of new workers. I include all new active workers in
2021 in five large cities. Details of the sample selection can be found in Appendix C.2.3. In Figure
(a), I plot the productivity curve for all new workers. In Figure (b), I classify these new workers
into two groups based on whether they work in a district with same-origin workers: the red line
represents those with at least one same-origin worker in the district, and the blue line represents
those without. The x-axis is the number of weeks since new workers joined the platform, and the
y-axis is the average hourly wage.

Figure B.8: Performances of New Workers: Locals versus Migrants

(a) Average Travel Speed (b) Average Hourly Wage

Note: This Figure plots the productivity and average wage of new workers. I include all new
active workers in 2021 in five large cities. Details of the sample selection can be found in Appendix
C.2.3. I classify new workers into two groups based on whether they are local residents: the blue
line represents workers born in the destination city, and the red line represents migrant workers.
In Figure (a), I plot the productivity curve, which is measured by delivery speed - traveling
distances (meters) to be divided by the duration (minutes). In Figure (b), I plot the average wage.
The x-axis is the number of weeks since new workers joined the platform.
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Figure B.9: Balance Check: Order Characteristics across Experience and Tenure

(a) Distance (b) Food Price (c) Delivery Fee

(d) Distance (e) Food Price (f) Delivery Fee

Note: These Figures plot characteristics of orders assigned to workers on first-time versus repeat visits to a location and workers with
varying tenure. I include all new active workers between March and June 2021 in five large cities. Details of the sample selection can
be found in Appendix C.2.2. In Figures (a)-(c), I classify orders based on whether the assigned worker has visited the location before.
The light bar represents the first visits, and the dark bar represents subsequent visits. In Figures (d)-(f), I examine how assigned order
characteristics change as workers gain experience. I plot three order characteristics: consumer-restaurant distance, food price, and
delivery fee.
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Figure B.10: Balance Check: Order Characteristics by Rejected versus Accepcted

(a) Distance: New Workers (b) Food Price: New Workers (c) Delivery Fee: New Workers

(d) Distance: Referrers (e) Food Price: Referrers (f) Delivery Fee: Referrers

Note: These Figures plot the characteristics of orders accepted versus rejected by workers. I include all new active workers between
March and June 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.2. In Figures (a)-(c), I plot orders
accepted or rejected by new workers. In Figures (d)-(f), I examine orders accepted or rejected by these new workers’ referrers. I plot three
order characteristics: consumer-restaurant distance, food price, and delivery fee.
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Figure B.11: Distribution of Deliveries by Own and Referrers’ Experience

(a) Own Experience: Consumer Address (b) Own Experience: Restaurant

(c) Referrer’s Experience: Consumer Address (d) Referrer’s Experience: Restaurant

Note: This Figure plots the share of deliveries that a new worker or his referrer has visited
the corresponding locations in the past month. I include all new active workers between
March and June 2021 in five large cities. Details of the sample selection can be found in
Appendix C.2.2. Figure (a) plots the share of deliveries that new workers have not been to
the corresponding locations before. Figure (b) represents the share of deliveries where new
workers’ referrers have visited the corresponding location in the past month.
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Figure B.12: Example of Deviating from Optimal Delivery Routes

(a) Examples of Going to the Wrong Entrance (b) % of Workers Going to Wrong Entrances

Note: This Figure provides one specific example of workers deviating from optimal delivery
routes. In Figure (a), the red line represents the delivery route of a worker who knew the correct
gate of the compound. The black line represents the route of a worker who first went to a locked
gate and took the detour. In Figure (b), I identify twenty compounds that suddenly closed one
of their gates in Shanghai in 2021. I calculate the percentage of delivery workers who still went
to that locked gate the following days. I classify all workers who are assigned to deliver food to
these compounds into two groups by whether their referrers have ever been to the locked gate
during the period. The red line represents those with referrers visiting the locked gate before, and
the blue line represents those without.

Figure B.13: Timeline of instrumental variable

(a) Timeline

(b) Time Difference between Referral being
Made and First Day of Work

Note: This Figure shows the timeline of the instrumental variable. In Figure (b), I plot the
distribution of the number of days between referrals being made and new workers’ first day of
work, using the same sample as 4.
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Figure B.14: Details of Entry Bonuses

(a) Number of Days with Active Bonuses (b) Number of Districts with Active Bonuses

(c) Bonus Amount versus Requirement

Note: This Figure plots the details of entry bonuses in Shanghai between 2020 and 2022. Figure
(a) plots the average time window of entry bonuses. Figure (b) plots the number of active entry
bonuses each week. Figure (c) plots the bonus requirement. The y-axis is the delivery target, and
the x-axis is the bonus size.
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Figure B.15: Event Study: Weekly District-level Outcomes Before and After Bonus Increases

(a) # of Deliveries (b) Earnings

(c) # of Active Workers

Note: This Figure plots changes in districts with entry bonuses. I include all new active workers
in 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.3.
Independent variables indicate the number of weeks before or after the district offers entry
bonuses. Figure (a) plots the total number of deliveries completed at the district-week level. Figure
(b) plots the total delivery fee paid to workers. Figure (c) plots the total number of active workers.
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Figure B.16: New Workers Choices of Working Hours

Note: This Figure plots the distribution of workers’ attendance across hours. I include all new
active workers between March and June 2021 in five large cities. Details of the sample selection
can be found in Appendix C.2.2. New workers are classified into two groups based on whether
they work in the same district as their referral: those who cluster with referrers are represented by
the blue line, and the red line represents those who do not. I also plot the hourly attendance of
these new workers’ referrers, as shown by the dashed line.

Figure B.17: Geographic Distribution of Floods

(a) Geographic Distribution of Floods (b) Weeks with Floods

Note: This Figure plots the distribution of floods across cities and weeks. I use the daily rainfall
data from 2423 stations (counties) in China. I identify a flood by whether two-day accumulated
rainfall is over 160mm in each county and week. (The threshold for heavy rain and above is 80
millimeters per 24 hours.) Among counties with at least one active delivery worker in the sample
during the period, 11% counties experienced floods at least once. Figure (a) plots the geographic
distribution of counties with floods (plotted at the city level). Figure (b) plots the time variation of
floods at the week level. The color from dark to light represents the time from June to August.
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Figure B.18: Distribution of Pandemic Lockdowns

(a) Geographic Distribution of Covid Cases (b) Identification of Lockdowns

Note: This figure plots pandemic lockdown distributions across cities and weeks in 2021. Figure (a)
shows the distribution of cities with COVID-19 cases in 2021. Colors from blue to yellow represent
the first week each city had cases. Figure (b) plots consumer order responses to lockdowns in
each city and week. The x-axis displays weeks before and after lockdowns. The y-axis shows the
number of consumer orders.

Figure B.19: Histogram of District-level Shocks

(a) Histogram of District-level Shocks (b) Histogram of District-level Shocks

Note: This Figure plots the distribution of aggregate hometown shocks at the district level. I
include all active workers between May and August 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.4. Figure (a) plots the histogram of the predicted shock
share, which is the share of workers experiencing hometown floods based on the hometown
composition in each district in May 2020. Figure (b) plots the correlation between the shock share
and the clustering level across districts. The x-axis is the share of workers from the same origin in
each district, and the y-axis is the predicted shock share.

83



Figure B.20: Attendance Rate across Hours

(a) Average Attendance Rate (b) Average Standardized # of Orders

(c) Average # of Orders per Worker

Note: This Figure plots labor market fluctuations across hours. I include all active workers
between May and August 2021 in five large cities. Details of the sample selection can be found in
Appendix C.2.4. The x-axis is the hour within a day. Figure (a) plots workers’ average attendance
rate across hours. Figure (b) plots the (standardized) number of orders put by consumers across
hours. Figure (c) plots the average number of deliveries assigned to each active worker across
hours.
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Figure B.21: Attendance Rate across Hours during District Shocks

(a) Average Attendance Rate (b) Relative Changes in Attendance Rates

Note: This Figure plots the attendance rate during normal periods and shocks. I include all active
workers between May and August 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.4. I classify districts into two groups by whether the district experiences
aggregate shock in the week (defined as shock share > 15%). The blue line represents those with
shocks, and the red line represents those without. Figure (a) plots the share of workers attending
to work among daily active workers in the district. Figure (b) plots the relative changes in the
number of active workers with and without shocks across hours.

85



Figure B.22: Counterfactual: Replace Network-based Learning with Technology

(a) 100% Learning Support (b) 50% Learning Support

Note: This Figure plots the distribution of clustering levels under two equilibria: (1) the black
represents the equilibrium where workers choose work districts to maximize individual utility, and
(2) the red line represents the distribution where I turn off the learning benefits of clustering when
the platform can facilitate learning by providing workers with better technology. Workers still face
the congestion costs of clustering. In Figure (a), I simulate the counterfactual where all network-
based learning can be substituted by technology. In Figure (b), I simulate the counterfactual where
50% of network-based learning can be substituted by technology. The x-axis and y-axis are defined
similarly to Figure 2: the x-axis is the hometown rank in each district by the worker share, and
the y-axis is the accumulative hometown-worker share.
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B.2 Tables

Table B.1: Workers Demographic Characteristics

Mean SD

Age 36.22 9.13

Gender (1=Male,0=Female) 0.972

Number of Delivery Finished per Week 98.43 100.59

Working Hours per Week 24.14 22.26

Income per Week (RMB) 968.17 1071.32

Migrant Worker (1=Local Resident,0=The Rest) 0.983

Notes: This Table reports delivery workers’ demographic characteristics. I include
all active workers between 2020 and 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.1.

Table B.2: Determinants of the Flows of Migrant Workers

Dep. Variable: ln(Number of Delivery Workers)
(1) (2) (3) (4)

Home: ln(Population) 0.042∗∗∗ 0.241∗∗∗

(0.003) (0.005)
Destination: ln(Population) 0.274∗∗∗ 0.744∗∗∗

(0.003) (0.005)
Home: ln(GDPP) -0.144∗∗∗ -0.370∗∗∗

(0.006) (0.007)
Destination: ln(GDPP) 1.051∗∗∗ 1.234∗∗∗

(0.006) (0.007)
ln(Distance) -0.452∗∗∗ -0.409∗∗∗

(0.004) (0.003)
Observations 115,811 115,811 115,811 115,811
R2 0.060 0.201 0.124 0.513

Notes: This Table shows regressions of the number of delivery workers from origin cities on
destination cities’ characteristics. I include all active workers between 2020 and 2021 in five large
cities. Details of the sample selection can be found in Appendix C.2.1. Population and GDP are
from the 2019 economic annual books at the city level. Distances are calculated based on latitude
and longitude in kilometers. Standard errors are clustered at the province level.
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Table B.3: Factors Affecting Workers’ Choices of Districts

Dep. Var.: 1 { New Worker Working in the District }

OLS Logit

1 { Referrer’s Distrct } 0.407∗∗∗ 2.431∗∗∗

(0.040) (0.038)

1 { Having Entry Bonus } 0.294∗∗∗ 1.895∗∗∗

(0.015) (0.103)

Distance to Referrer’s District -0.305∗∗∗

(0.004)

Clustering Level in the District 0.179∗∗∗

(0.005)

District FE Y Y

Hometown FE Y Y

Entry Cohort FE Y Y

Observations 8,589,336 8,589,336

R2 0.325

Notes: This Table shows regressions of new worker’s entry probabilities on district
characteristics. I include all new active workers in 2021 in five large cities. Details of the
sample selection can be found in Appendix C.2.3. The dependent variable is a dummy
indicating whether a new worker works in the district. Three independent variables are
(1) whether the new worker’s referrer works in the district; (2) whether there is an entry
bonus in the district in the subsequent week after the new worker joins the platform;
(3) the clustering level in the districts, which is measured as the share of same-origin
workers. I run a linear regression in column (1) and a logit regression in column (2).
Standard errors are clustered two-way at the hometown level and entry-week level.
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Table B.4: Decompose Local Knowldge

Robustness Check (1): E(Pia) and E(Pija) as controls

Restaurant Road Consumer

Search Time Driving Speed Search Time

(minute) (meter/minute) (minute)

(1) (2) (3)

Own Visit -1.45∗∗∗ -0.13 -1.28∗∗∗

(0.07) (0.10) (0.05)

Referrer Visit -0.64∗∗∗ -0.20 -0.70∗∗∗

(0.10) (0.17) (0.08)

Date X Hour X Worker FE Y Y Y

Location FE Y Y Y

Referrer’s Expected Probability Y Y Y

of Visiting a Location

Ave. Dep. Var. 6.22 10.86 5.93

Observations 5,837,304 5,837,304 5,837,304

R2 0.43 0.38 0.43

Notes: This Table shows regressions of productivity on four indicators: (1) whether
the new worker has visited the restaurant or consumer building before; (2) whether
the new worker’s referrer has visited the restaurant or consumer building in the
last month, following the specification in section 4.2. I include all new active
workers between March and June 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.2. Dependent variables in columns (1)
and (3) are searching time (minutes) for the restaurant or the consumer building.
I measure by counting GPS coordinates within a location’s 150-meter radius. The
dependent variable in column (2) is the average driving speed (minute/min)
between the restaurant and the consumer building. These are proxies for workers’
productivity. Difference from Table 1, I construct the expected probability of a
worker visiting a location by running a logit regression of the probability of visiting
a location on workers’ characteristics, including tenure, age, gender ratings, and
so on (Borusyak and Hull, 2023). Standard errors are clustered two-way at the
worker level and the date level.
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Table B.5: Effect of Clustering on Worker Performance

Robustness Check (1): additional dependent variables

Retention Rate (%) Relocation Rate (%) Timeout Rate (%)

(1) (2) (3)

Actual Clustering Level 0.261 -0.377∗∗ -0.038∗∗∗

(0.229) (0.186) (0.009)

District X Week FE Y Y Y

Hometown X Week FE Y Y Y

Entry Cohort FE Y Y Y

BH Control Y Y Y

Ave. Dep. Var. 76.29 9.51 8.45

Observations 417,684 417,684 417,684

Notes: This Table shows regressions of new workers’ productivity on clustering levels. I
include all new active workers in 2021 in five large cities. Details of the sample selection
can be found in Appendix C.2.3. I run IV regressions where the independent variable is
the share of hometown workers in each new worker’s work district, and the instrumental
variable is the predicted clustering level induced by entry bonuses. Dependent variables
are (1) whether a new worker is active on the platform the following week, (2) whether a
new worker relocates to a different district the following week, and (2) the share of late
deliveries. Standard errors are clustered two-way at the district level and the week level.
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Table B.8: Delivery workers’ Responses to Shocks

Robustness Check (1): varying the threshold for hometown floods

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

Using 200 millimeters as threshold for floods

1{Hometown Flood } 0.062∗∗ 19.038∗∗∗ 6.812∗∗

(0.029) (5.274) (3.092)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 638,810 638,810 638,810

R2 0.519 0.488 0.523

Notes: This Table shows regressions of workers’ weekly labor supply
on hometown shocks. I include all active workers between May and
August 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.4. Dependent variables are workers’ weekly
performances on the platform: (1) being active (# of deliveries > 0),(2)
number of deliveries completed, and (3) number of working hours.
The independent variable indicates whether a worker’s hometown
has had flood shock in the last month. Different from Table 4, which
uses 160mm as the threshold for floods, this Table uses 200mm as
the threshold for floods as the independent variable. I include origin
province × week fixed effect, district fixed effect, and worker fixed
effects. Standard errors are clustered two-way at the district level
and the week level.
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Table B.9: Delivery workers’ Responses to Shocks

Robustness Check (2): hometown pandemic lockdowns

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

Panel A: Covid Cases

Number of weekly COVID cases 0.001∗∗∗ 0.173∗∗∗ 0.085∗∗∗

(0.000) (0.041) (0.018)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 2,387,219 2,387,219 2,387,219

R2 0.489 0.498 0.512

Panel B: Identified Pandemic Lockdown

Experiencing Hometown Lockdown 0.076∗∗∗ 12.810∗∗∗ 4.184∗∗∗

(0.018) (2.319) (0.822)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 2,387,219 2,387,219 2,387,219

R2 0.502 0.523 0.527

Notes: This Table shows regressions of workers’ weekly labor supply on hometown
shocks. I include all active workers in 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.5. Dependent variables are workers’ weekly
performances on the platform: (1) being active (# of deliveries > 0),(2) number of
deliveries completed, and (3) number of working hours. The independent variable
indicates whether a worker’s hometown has any pandemic lockdowns. Panel A uses
the number of weekly COVID cases at the city level, as scraped from government
websites. Panel B identifies hometown pandemic lockdown by whether the number
of consumer orders dropped below half of the median of normal periods in workers’
hometowns. I include origin province × week fixed effect, district fixed effect, and
worker fixed effects. Standard errors are clustered two-way at the district level and
the week level.
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Table B.10: delivery workers’ Responses to Shocks

Robustness Check (3): Continuous District-level Shocks

Dep. Var.: Average Weekly Outcomes

Number of Number of Total

Workers Orders Working Hours

Predicted Fraction with Shocks (%) 0.288 3.127 9.683∗∗∗

(0.177) (2.490) (3.018)

Week FE Y Y Y

District FE Y Y Y

Ave. Dep. Var 132.59 7,233.97 2,408.26

Observations 14,391 14,391 14,391

R2 0.781 0.781 0.802

Notes: This Table shows regressions of district-level market performances on
aggregate hometown shocks. I include all active workers between May and August
2021 in five large cities. Details of the sample selection can be found in Appendix
C.2.4. Dependent variables are (1) the total number of active workers in the district
each week,(2) the total number of deliveries completed, (3) the total number of
working hours, and (4) the average per-delivery commission fee. Different from
Table 5, where I use an indicator for the aggregate shock, the independent variable
in this Table is the predicted shock share in the district. The shock share is the share
of workers experiencing floods, given the hometown composition in the district in
May 2020. I include week and district fixed effects. Standard errors are clustered at
the week level.
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Table B.11: delivery workers’ Responses to Shocks

Robustness Check (4): Peak Hour versus Off-peak Hours

Dep. Var.: Average Weekly Outcomes

Attendance Rate Ave. Deliveries Ave. Hours

Panel A: Peak Hours

1{ Hometown Shock} 0.052∗∗∗ 2.559∗∗∗ 0.577∗∗∗

(0.010) (0.511) (0.103)

1{District Shock Share > 15%} 0.012 1.661 0.411

(0.009) (1.307) (0.381)

Interaction Term 0.009 0.418 0.134

(0.006) (0.388) (0.095)

Panel B: Off-peak Hours

1{ Hometown Shock} 0.272∗∗∗ 17.102∗∗∗ 5.898∗∗∗

(0.051) (3.190) (1.121)

1{District Shock Share > 15%} -0.044∗∗ -3.127∗∗ -1.093∗∗

(0.018) (1.546) (0.541)

Interaction Term -0.013 -7.037∗∗∗ -0.700

(0.010) (1.618) (0.567)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Observations 638,810 638,810 638,810

Notes: This Table shows regressions of workers’ weekly labor supply on hometown
shocks and district shocks. I include all active workers between May and August
2021 in five large cities. Details of the sample selection can be found in Appendix
C.2.4. Dependent variables are workers’ weekly performances on the platform:
(1) being active (# of deliveries > 0),(2) number of deliveries completed, and (3)
number of working hours. Independent variables are (1) the indicator of whether
a worker’s hometown has any flood shock in the last month, (2) an indicator of
district shock based on whether the predicted shock share in the district is higher
than 15%, and (3) their interaction term. Different from Table 6, which uses each
worker’s total working hours per week, I separate workers’ performance during
peak versus non-peak hours in this Table. Peak hours are defined as between 11
am and 2 pm or between 6 pm and 8 pm. I include week fixed effects, worker
fixed effects, and district fixed effects. Standard errors are clustered two-way at the
district level and the week level.
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Table B.12: Effect of Relocation on Productivity

Dep. Var.: Average Weekly Outcomes

Relocation Rate Effect of Relocation

Ave. Deliveries Timeout

Speed Per Hour Rate (%)

1{ Hometown Shock} -0.007

(0.012)

1{District Shock Share > 15%} 0.008

(0.016)

Interaction Term 0.033∗∗

(0.014)

Relocation: 1{jt−1 ̸= jt} -1.299∗∗ -0.158∗∗ 0.361∗∗∗

(0.635) (0.070) (0.048)

Province × Week FE Y Y Y Y

Worker FE Y Y Y Y

District FE Y Y Y Y

Ave. Dep. Var. 0.09 46.18 4.58 9.36

Observations 638,810 638,810 638,810 638,810

R2 0.498 0.348 0.339 0.342

Notes: This Table shows regressions of workers’ relocation probability on hometown
shocks. I include all active workers between May and August 2021 in five large cities.
Details of the sample selection can be found in Appendix C.2.4. The dependent
variable in column (1) is whether a worker relocates to a different district the
following week. Independent variables are (1) the indicator of whether a worker’s
hometown has any flood shock in the last month, (2) an indicator of district shock
based on whether the predicted shock share in the district is higher than 15%, and (3)
their interaction term. Columns (2)-(4) report regressions of workers’ labor market
performances on the relocation indicator. Dependent variables are (1) workers’
average delivery speed, (2) the number of deliveries completed per hour, and (3)
the share of late deliveries. The independent variable is whether a worker has just
relocated to the district this week. I include week fixed effects, worker fixed effects,
and district fixed effects. Standard errors are clustered two-way at the district level
and the week level.
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Table B.13: Shock Probability and Clustering Levels

Dep/ Var.: Clustering Level for Each Hometown

(1) (2) (3)

Flood Prob. (0 ∼ 1) -6.59∗∗∗

(1.37)

{Prob. > 10%} -0.56∗∗∗

(0.15)

{Prob. > 15%} -0.76∗∗∗

(0.22)

Week FE Y Y Y

Origin Province FE Y Y Y

Destination City FE Y Y Y

Ave. Dep. Var. 11.36 11.36 11.36

Observations 78,776 78,776 78,776

R2 0.26 0.23 0.21

Notes: This Table shows regressions of clustering levels on flood probability for each hometown.
I include all active workers between 2020 and 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.1. The dependent variable is the average clustering
level for each hometown in each destination city. The clustering level is defined as the highest
share of hometown workers in each district within each city. The independent variable is the
probability of flood shock. I use the rainfall data between 2000 and 2020 to compute each
county’s probability of experiencing floods. In column (1), I use the continuous flood probability.
Columns (2) and (3) use indicators for probabilities over 10% or 15%. Standard errors are
clustered two-way at the origin province level and the destination city level.

98



Table B.14: Hometown Heterogeneity by Shock Probability

Number of Distance to Tenure Delivery

Workers City Center
(km)

(month) Speed
(m/min)

(1) (2) (3) (4)

Flood Prob. (0 ∼ 1) 5.18∗ -1.49 0.59 0.81

(3.11) (2.50) (1.75) (0.66)

Week FE Y Y Y Y

Origin Province FE Y Y Y Y

Destination City FE Y Y Y Y

Ave. Dep. Var. 40.01 6.29 6.97 47.03

Observations 78,776 78,776 78,776 78,776

R2 0.23 0.29 0.27 0.36

Notes: This Table shows regressions of hometown characteristics on flood probability for each
hometown. I include all active workers between 2020 and 2021 in five large cities. Details of
the sample selection can be found in Appendix C.2.1. The variables are (1) the number of active
workers from each hometown, (2) workers’ average distance to city centers, (3) average tenure,
and (4) average delivery speed. The independent variable is the probability of flood shock. I
use the rainfall data between 2000 and 2020 to compute the probability of each county. Standard
errors are clustered two-way at the origin province level and the destination city level.
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C Appendix: Data Construction

C.1 Data Overview

C.1.1 Data Sources

I use data from four main sources: (1) worker performance metrics on the platform, (2)
information on the number of buildings and year of construction across Shanghai, as
scraped from Lianjia.com Website, (3) daily rainfall data from 2,423 stations (counties)
in China, and (4) daily records of confirmed COVID-19 cases by city, as scraped from
government websites.

I use the building characteristics in Shanghai to understand where learning occurs
and the latter two data sources (floods and COVID cases) to identify adverse shocks in
migrant workers’ hometowns. Next, I describe the platform data in detail.

C.1.2 Platform Data

GPS Data. Workers’ GPS coordinates are recorded every twenty seconds when workers
are active on the platform. Each GPS data coordinate includes the latitude, longitude,
and exact timestamp.

Order Information. For each order/delivery, the data set includes the restaurant location
(restaurant name and GPS coordinates), consumer location (building name and GPS
coordinates), the delivery worker ID, total price, delivery fee, and delivery distance. It
also contains six timestamps: (1) when the consumer places the order, (2) when the
delivery worker accepts the order, (3) when the worker arrives at the restaurant, (4) when
the food is ready as confirmed by the restaurant, (5) when the worker arrives at the
consumer drop-off location, and (6) when the consumer confirms receiving the food. All
consumer information and worker IDs are anonymized.

Network Data. The network data records each referral pair of a new worker and the
referrer. Referrers are existing delivery workers on the platform. The data set includes
the anonymized IDs of the two workers and the timestamp when the referral was made.

Platform Bonuses and Lotteries. This data covers all entry bonuses and platform lotteries
conducted through the platform. It includes the timestamp when each bonus was active,
the bonus amount, the requirements, and the geographic eligibility. For workers, the data
shows which anonymized worker ID received a bonus or lottery prize and when.
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Worker Characteristics. Worker characteristics data includes each worker’s county of
birth, gender, age, current work city, start date, and total number of deliveries completed.

C.1.3 Overall Sample Selections

The analysis uses data on all delivery workers on the food delivery platform across five
major Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) between
2020 and 2021. Approximately 1 million people completed at least one delivery in these
five cities during this period. However, as with most gig-economy sectors, this food
delivery industry experiences high turnover. Many workers stay on the platform for less
than a week and complete fewer than ten deliveries. Figure C.1 plots the distribution
of total deliveries completed per worker, the number of weeks worked, and average
weekly deliveries completed per worker. All histograms skew right with peaks near zero.
Specifically, 41% of workers completed fewer than 100 deliveries by the end of 2021, 42%
worked less than five weeks, and 72% completed fewer than 50 deliveries weekly on
average.

Figure C.1: Workers’ Performances on the Platform

(a) All Deliveries (b) Number of Weeks (c) Number of Weekly Deliveries

Note: This Figure plots the histogram of total deliveries completed per worker, the number of
weeks worked, and average weekly deliveries completed per worker. The figure builds on all
delivery workers on the food delivery platform across five major Chinese cities (Shanghai, Beijing,
Guangzhou, Shenzhen, and Hangzhou) between 2020 and 2021.

Using the entire sample of workers for analysis may introduce noise. For instance, the
42% of workers who stayed less than five weeks may not have had enough time to learn.
Also, the 72% who completed fewer than 50 deliveries per week likely did not rely on
this job as their primary income source. Their decisions and choices could differ from
typical migrant workers, who are the primary earners for families back home and rely on
this delivery work as their major income source.
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I thus classify workers into two types: active workers and temporary workers. Active
workers are defined as those who worked for at least four weeks on the platform and
completed at least 50 deliveries per week on average, by the end of 2021.

I choose these thresholds because the average monthly salary for domestic migrant
workers is 4,000 RMB (around $570 USD) in China in 2020 (Bureau, 2020). Completing 50
deliveries weekly over four weeks can generate approximately 2,000 RMB per month as a
delivery worker - about half of the average migrant worker’s salary.

Among all delivery workers across the five cities in 2020-2021, 37% met the criteria
to be classified as active workers. However, these active workers completed 95% of total
deliveries on the platform. Figure C.2 plots the percentage of workers and deliveries
completed by active versus temporary workers each week in 2021. On average, active
workers comprised 75% of the workforce but completed 95% of weekly deliveries.60

Focusing on this active worker sample still captures the majority of platform orders.

Figure C.2: Workers’ Performances on the Platform

(a) Weekly Worker Share (b) Weekly Delivery Share (c) New Worker Share

Note: This Figure shows the percentage of workers and the percentage of deliveries completed by
active vs. temporary workers each week in 2021.

Figure C.2(c) also plots the entry of active and temporary workers by week in 2021. It
shows that the largest entry of active workers occurred in March, the month following the
Chinese New Year. This aligns with typical seasonal migration patterns, where migrant
workers travel to work cities after the festival and remain there working for approximately
one year before returning home for the next New Year celebration.

For most analyses, I use the sample of active workers as defined above rather than the
full worker sample. However, when calculating metrics such as total deliveries or work
hours by district or computing clustering levels by delivery share, I use the full sample.

60The percentage of active workers is 75% weekly but only 37% over the full 2020-2021 sample. This
difference is due to the much higher turnover rate among temporary workers, resulting in a larger share of
the total sample.
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C.2 Sample Selection per Analysis

C.2.1 Distribution of Workers by Hometown and Work District

Sample Selection

The analysis covers active delivery workers on the food delivery platform across five
major Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) in 2020
and 2021. Active workers are defined as those who worked at least four weeks and
completed a minimum of 50 deliveries per week by the end of 2021, as discussed in
Section C.1.3. The final sample contains 402,394 active workers.

Variable Definition

Hometown. A worker’s hometown is defined as their county of birth. There are 2,843
counties in China, of which 2,805 are represented by at least one active delivery worker
in the five cities between 2020 and 2021.

Work District. A worker’s work district is defined weekly based on their GPS coordinates.
For each worker-week, I identify the district with the maximum number of GPS data
points for that worker.

C.2.2 Direct Evidence of Knowledge Spillovers

Sample Selection

The analysis covers all deliveries on the food delivery platform in the five major Chinese
cities from March to June 2021. I include deliveries that were completed by a new active
worker or their referrer. I define new active delivery workers as those who entered after
the Chinese New Year festival (February 12, 2021) and before June 2021, had a referrer
upon entry, and met the active worker criteria defined in Section C.1.3. This comprises
23,846 new workers and 5,837,304 analyzed deliveries.

Variable Definition

Search Time. A worker’s search time for a restaurant or consumer building is measured
based on GPS coordinates within a 150-meter radius of the location. I have the exact
timestamp for each GPS data point. The search time is calculated as the last timestamp
when the worker is within the 150-meter radius minus the first timestamp.

Driving Speed. A worker’s driving speed is measured as the total driving distance
divided by duration, excluding time within 150 meters of restaurants or buildings. When
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a worker picks up food from restaurant A and delivers it to consumer B, they may drive
to other restaurants or consumers along the route. In such cases, I also exclude search
time at those additional stops. Thus, the delivery speed aims to capture the actual driving
speed on main roads between the pickup and drop-off points.

C.2.3 IV Regression of Productivity on Clustering

Sample Selection

The analysis covers new active delivery workers on the food delivery platform across
the five major Chinese cities in 2021. New active workers are defined as those who
joined in 2021, had a referrer at entry, and met the active worker criteria in Section C.1.3.
This comprises 53,498 new workers. I create a panel data set tracking each worker from
platform join date to permanent exit, capped at the first twelve weeks if a worker stays
beyond twelve weeks. The final sample contains 417,684 observations at the worker-week
level.

Variable Definition

Delivery Speed. A worker’s delivery speed per order is measured as the total driving
distance divided by duration. The duration starts when the worker accepts the order and
starts moving. The duration ends at delivery to the consumer. The whole process includes
search time within 150 meters of restaurants and buildings, contrary to the previous
analysis. As mentioned previously, if additional stops are made between pickup at
restaurant A and drop-off at consumer B, I exclude search time at those stops. Therefore,
the delivery speed aims to capture average productivity per delivery.

Total Work Hours A worker’s total weekly work hours are measured by the total time
logged in and active on the platform. This does not require the worker to be actively
delivering food at all times.

Hourly Earning I measure a worker’s average hourly earnings per week by the total
earnings divided by the total work hours in each week.

C.2.4 Hometown Shock Analysis: Floods

Sample Selection

The analysis covers active delivery workers on the food delivery platform across five
major Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) between
May and August 2020. Active workers are defined as those who worked for four weeks

104



and completed at least 50 deliveries per week in May 2020, as discussed in Section C.1.3.
This comprises 80,677 active workers. I create a panel data set tracking each worker from
the first week of June to permanent exit, capped at the end of August if a worker stays
beyond that. The final sample contains 638,810 observations at the worker-week level.

Variable Definition

Floods I use daily rainfall data from 2,423 stations (counties) across China. Floods are
identified when the accumulated rainfall over two days exceeds 160mm in a each county
and week, doubling the threshold for heavy rain. In most countries, heavy rain is defined
as experiencing over 80 millimeters within 24 hours.

Total Work Hours A worker’s total weekly work hours are measured by the total time
logged in and active on the platform. This does not require the worker to be actively
delivering food at all times.

C.2.5 Hometown Shock Analysis: Pandemic Lockdowns

Sample Selection

The analysis covers active delivery workers on the food delivery platform across five major
Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) in 2021. Active
workers are defined as those who worked for at least four weeks and completed at least
50 deliveries per week between January and March 2021, as discussed in Section C.1.3.
This comprises 139,508 active workers. I create a panel data set tracking each worker
from the first week of April to permanent exit, capped at the end of 2021 if a worker stays
beyond that. The final sample contains 2,387,219 observations at the worker-week level.

Variable Definition

Covid Cases I collect daily records of confirmed COVID-19 cases by city from the
government websites.

Pandemic Lockdowns Pandemic lockdowns are identified at the county-week level based
on whether the number of consumer orders dropped below half of the median order
volume during regular periods.

Total Work Hours A worker’s total weekly work hours are measured by the total time
logged in and active on the platform. This does not require the worker to be actively
delivering food at all times.
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