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Abstract

We develop theoretical foundations for widely used falsification tests for instrumen-
tal variable (IV) designs. We characterize these tests as conditional independence tests
between negative control variables — proxies for potential threats — and either the
IV or the outcome. We find that conventional applications of these falsification tests
would flag problems in exogenous IV designs, and propose simple solutions to avoid this.
We also propose new falsification tests that incorporate new types of negative control
variables or alternative statistical tests. Finally, we illustrate that under stronger as-
sumptions, negative control variables can also be used for bias correction.
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The identification assumptions in instrumental variable (IV) designs cannot be tested
directly. To assess these assumptions indirectly, researchers often use falsification (“placebo”)
tests. Surveying the most highly cited papers published in five leading economics journals
over the past decade, we find that 51% of the papers using IV have implemented such
falsification tests. The large majority of falsification tests fall into two categories. Among
the studies that conducted falsification testing, 72% tested that the IV is not associated with
certain variables, which we call negative control outcomes (NCOs). For example, they tested
that the IV is not correlated with the lagged outcome. Similarly, 25% tested that the outcome
is not associated with other variables, which we call negative control instruments (NCIs).
For example, they tested that the outcome is not correlated with variables resembling the
IV but not affecting the treatment. Despite widespread use in IV designs, these negative
control tests lack a comprehensive theoretical foundation.1

In this paper, we develop a theory of negative control testing for IV designs. We introduce
a formal definition for threats to IV exogeneity. Building on this definition, we characterize
the conditions that proxy variables for such unobserved threats must meet to qualify as
negative controls. The theory concludes that negative control variables can test IV exogeneity
using (conditional) independence tests. Our theory highlights two pitfalls prevalent in current
practice. First, NCI tests often (but not always) require conditioning on the IV. This crucial
step is frequently overlooked in empirical implementations, potentially leading researchers
to find false problems in valid IV designs. Second, prevalent negative control tests may
flag problems in exogenous IV designs due to violations of functional form assumptions.
We propose ways to test IV exogeneity distinctly from functional form assumptions, which
are often either unnecessary or replaceable. Further, our theoretical framework suggests
novel negative control variables and testing methods underutilized in current empirical work.
Finally, we illustrate that when a bias is detected, NCOs can also be used for bias correction,
albeit under stricter assumptions.

We distinguish between two categories of negative control tests. The first category, NCO
tests, examines whether NCO variables are independent of the IV. Figure 1 provides two
examples of such tests.2 Panel A illustrates a case of a potential violation of the independence
assumption (see, e.g., Abadie, 2003). For concreteness, consider the context of Martin and
Yurukoglu (2017), who evaluated the impact of Fox News viewership (X) on Republican vote
shares (Y ), using cable channel positions (Z) as an IV for viewership. A possible concern
is that the unobserved level of conservativeness of the local population (U1) may affect the
cable networks’ channel positioning strategies. In such a case, there is an alternative path

1In epidemiology and bio-medical settings, researchers use similar terminology for falsification tests for
potential confounding of an exposure–outcome relationship (Lipsitch et al., 2010; Shi et al., 2020).

2Throughout the paper, we use directed acyclic graphs (DAGs) to visualize complex structures, as advo-
cated by Imbens (2020). We do not use DAG theory (e.g., Pearl, 2009) in our theoretical framework.
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between the channel position and Republican voting, rendering the design invalid. Because
the level of conservativeness is not directly observed, Martin and Yurukoglu indirectly test
if it is associated with channel position by using an observed proxy. Specifically, they use
local Republican vote share in 1996 as an NCO (denoted by NC1 in Figure 1). If voting
in 1996 is associated with channel position, an alternative path exists between the IV and
the outcome, violating the independence assumption. Panel B of Figure 1 illustrates how a
different NCO could test the exclusion restriction assumption. Panel A of Table 1 describes
further examples of applications of NCO tests in economic research.

The second category of negative control tests, NCI tests, evaluates conditional associ-
ations between NCI variables and the outcome. Panel C of Figure 1 provides an example
of an NCI test for potential violation of the independence assumption. For concreteness,
consider the context of Nunn and Qian (2014), who study the effect of US food aid (X) on
conflicts in the recipient country (Y ), using US wheat production (Z) as an IV for aid. In
this example, the threat to identification could be unobserved weather conditions (U3). Here,
it is known that the threat, weather, affects the IV. The question is whether it also affects
the outcome (not through the treatment). Since weather conditions are not fully observed,
Nunn and Qian indirectly test for their association with the outcome by using an observed
proxy. Specifically, the US production of other crops that are also affected by similar weather
conditions but are not used for food aid (e.g., oranges) serves as an NCI (NC3): if orange
production is associated with conflicts, conditional on wheat production, then there exists an
alternative path between the IV and the outcome, violating the independence assumption.
Panel D of Figure 1 illustrates how NCIs can also help evaluate the exclusion restriction
assumption. Panel B of Table 1 lists additional examples of NCI tests in economic research.

We develop a theoretical framework that formalizes these tests. To this end, we intro-
duce the concept of an alternative path variable, which represents a potential threat to the
identification (such as the U variables in Figure 1). These variables potentially establish
a path from the IV to the outcome. If such a path exists (e.g., if the dashed red lines in
Figure 1 are present), IV exogeneity does not hold.

Building on this definition, we define a negative control variable as a proxy for an al-
ternative path variable. This proxy is defined such that it can indicate the existence of the
alternative path using a (conditional) independence test between the NCO and the IV or be-
tween the NCI and the outcome. In particular, the definition of the NCO rules out variables
that are uninformative of the design validity because they are associated with the IV not
through the alternative path variable (e.g., variables directly affected by the IV). Similarly,
the definition of the NCI rules out variables associated with the outcome not through the
alternative path variable or the IV (e.g., variables directly affecting the outcome).

Our theory exposes two potential pitfalls that are prevalent in current practice. First, the
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common implementation of NCI tests in applied economics studies is expected to find false
problems in exogenous IV designs (with a large enough sample size). In 94% of the papers
that implemented an NCI test, the NCI was a pseudo-IV, i.e., a variable similar to the IV,
but that does not affect the treatment (e.g., orange production instead of wheat production).
In 92% of these papers, the original IV is substituted with the pseudo-IV (the NCI) in the
reduced form equation. The NCI test assesses whether the pseudo-IV is correlated with the
outcome. This approach neglects the potential correlation between the pseudo-IV and the
original IV. Since the original IV affects the outcome through the treatment, the pseudo-
IV might also correlate with the outcome, even if the IV design is exogenous.3 Using the
previous example, depicted in Panel C of Figure 1, orange production (NC3) and wheat
production (Z) are strongly correlated, as both are affected by similar weather conditions
(U3). As a result, the production of oranges would be correlated with conflict levels (Y )
even if the IV is exogenous (i.e., the dashed red line does not exist). This is because orange
production is correlated with wheat production, and wheat production is affecting conflicts
(through its effect on food aid).

This problem can be solved by controlling for the original IV in the NCI test. In the pre-
vious example, conditional on wheat production (Z), orange production (NC3) and conflict
levels (Y ) would only be correlated if the IV is not exogenous (i.e., the dashed red line in
Panel C of Figure 1 exists). Replicating NCI tests from recent economics papers, we show
that once we condition on the IV, false problems in the IV designs are no longer detected. If
NCI tests are conducted correctly, they would find fewer false problems in exogenous designs,
and could potentially be used more frequently.

Our theory also shows that in some NCI settings, conditioning on the IV is unnecessary.
Conditioning on the IV is not required if the IV and the NCI are independent. Such inde-
pendence is possible when the NCI tests a violation of the exclusion restriction. However,
it is not satisfied in pseudo-IV settings, which are substantially more prevalent. In these
settings, the NCI is intentionally similar to the original IV (as in the examples in Table 1).

The second pitfall is that both NCO and NCI tests could flag problems in exogenous IV
designs due to misspecified functional form. In 2SLS specifications, researchers must choose
a functional form for the IV and the control variables in the reduced form equation, typically
assuming a simple linear-additive model. This structure often carries over into the execution
of negative control tests. Consequently, even exogenous IV designs could fail these tests due
to violations of functional form assumptions. However, unlike exogeneity, these functional
form assumptions are often replaceable and, in some cases, even unnecessary for identifying
causal effects.

To address this problem, we propose using alternative negative control tests that do not
3A related problem is common in certain negative control tests in epidemiology (Shi et al., 2020).
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rely on these functional form assumptions. However, since these tests make fewer parametric
assumptions, they typically require more data to achieve desirable power. We use simulations
to demonstrate that in contrast to commonly used methods, alternative tests can test IV
exogeneity without testing the functional form assumptions.4

We also explore ways to broaden the application of negative control tests, drawing from
our theory. We identify new types of negative control variables, some of which have yet to be
commonly employed in empirical research. For example, variables that cause the IV could
serve as valid NCIs (e.g., observed weather conditions can serve as NCIs when the IV is
wheat production). We also propose additional diagnostic tools that may assist in detecting
the problem in the IV design when the negative control test rejects the null hypothesis.

Finally, we show that under stronger assumptions, NCOs can also be used for bias correc-
tion in IV designs. We focus on a scenario where outcome measurements from a period prior
to the initiation of the IV and treatment serve as an NCO. In this scenario, the NCO can also
be used for bias correction using a difference-in-Wald estimator. This estimator replaces the
outcome variable with the difference in outcomes between the two periods. This estimator is
consistent for the treatment effect under additional assumptions, including treatment effect
homogeneity and an IV version of parallel trends. In more rare scenarios, NCOs can be used
for bias correction even in the presence of a heterogeneous treatment effect.

This paper adds to prior econometrics work on tests for IV design validity and, more
generally, the validity of causal designs. Recent work has suggested novel tests to examine
the validity of IV designs (Kitagawa, 2015; Huber and Mellace, 2015; Mourifié and Wan,
2017; Frandsen et al., 2023; Chyn et al., 2024). Previous work has also discussed robustness
tests, not specific to IV, based on varying the set of controls (Altonji et al., 2005; Oster, 2019;
Diegert et al., 2022). Eggers et al. (2023) discuss the usage of placebo tests in the social
sciences more broadly. We contribute to this literature by providing a theoretical foundation
for the most common type of falsification test for IV designs.

This paper also contributes to the growing literature on negative controls by extending
their theory to IV designs. Davies et al. (2017) use negative control in IV contexts with-
out developing a theoretical framework for such an approach. We find several important
differences in the theoretical framework of negative controls in IV settings compared to non-
IV settings. In particular, tests for unconditional independence between a negative control
and the outcome are unique to IV settings. Furthermore, a rapidly growing literature also
discusses how negative control variables can be used for bias correction in non-IV settings
(Sofer et al., 2016; Shi et al., 2020; Tchetgen Tchetgen et al., 2020). When extending bias
correction to IV designs, we show that it requires stronger assumptions. We also contribute

4R code implementing these methods and examples for their usage in our simulation is available from
https://github.com/barwein/NC_for_IV.
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to this literature by formally defining alternative path variables, which are central to neg-
ative control theory. Moreover, we extend this definition to cases of multiple identification
threats.

The rest of this paper proceeds as follows. Section 1 surveys the current practice of falsi-
fication tests for IV designs. Section 2 develops the theory underlying negative control tests.
Section 3 discusses commonly used as well as underutilized testing procedures. Section 4
provides guidance for practitioners on implementing and interpreting negative control tests.
It also demonstrates the key findings of the paper on recent empirical studies and shows that
they affect the results. Section 5 discusses bias correction. Section 6 concludes.

1 Survey of Current Practice

In this section, we provide an overview of current practices in falsification testing for IV
designs. We surveyed the most highly cited articles with an IV analysis published between
2013 and 2023 in top economics journals. We then classified the characteristics of the falsi-
fication tests used. Appendix B provides additional details on the survey construction. The
results are summarized in Table 2. We highlight six key findings from this survey.

First, falsification tests are widely used in IV analyses. Approximately half (51%) of all
surveyed articles employ some form of falsification test (Column (2) of Table 2).

Second, most falsification tests fall within the negative control framework outlined in this
paper. We categorize negative control tests into two types: negative control outcome (NCO)
tests, which examine associations of the IV with variables it should not be associated with
(e.g., lagged outcomes). NCO tests were used in 72% of papers with some falsification tests
(Column (3)). The second type is negative control instrument (NCI) tests, which examine
the association of the outcome variables with variables it should not be associated with. Such
tests were used in 25% of papers that included some falsification tests (Column (4)). All other
types of falsification tests combined were implemented in 21% of the papers (Column (5)).
A list of these less common falsification test types is given in Appendix B.

Third, current applied work usually restricts itself to two simple types of negative control
tests, which rely on the 2SLS functional form assumptions. Most NCO tests implement
pseudo-outcome tests (Athey and Imbens, 2017). These tests involve estimating a revised
reduced form equation by using an alternative outcome (e.g., a lagged outcome) and testing
if it is unrelated to the IV. Pseudo-outcome tests account for 56% of all NCO tests. The
remaining NCO tests often follow a similar logic.5

For NCI tests, applied work predominantly uses pseudo-IV tests. These tests replace
5For example, balance tables often regress various NCOs on the IV. Most balance tables are not classified

as pseudo-outcome tests in our analysis since they do not use the same specification as the reduced form.

5



the original IV with a similar variable that does not affect the treatment (the pseudo-IV)
in the reduced form equation. Out of all the papers with NCI tests surveyed, 94% used a
pseudo-IV test.

Fourth, most reported NCI tests are implemented incorrectly. As we later discuss, pseudo-
IV tests should always control for the original IV. In practice, only 19% of the papers surveyed
reported doing this. With sufficient statistical power, this error leads to finding false problems
in valid IV designs. Presumably, more NCI tests were conducted incorrectly, finding false
problems in valid designs, and therefore were not reported.

Fifth, papers using falsification tests usually utilize only a few negative control variables.
The median number of negative control variables used in the surveyed papers is 3.5 (Col-
umn (9)), and 35% of the papers used only one negative control variable. These findings
suggest that researchers use only a subset of the valid and relevant negative controls available
in their data. As we demonstrate in Section 4, our theory can guide a more systematic search
for negative control variables in existing data and suggest novel types of negative control
variables researchers can use to evaluate their IV designs.

Finally, none of the surveyed papers used negative controls for bias correction. However,
negative control test failures often prompted authors to discuss the sign and magnitude
of the association. This suggests that authors view sign and magnitude as meaningful for
evaluating the bias direction and size. In Section 5, we outline additional assumptions that
are required for such an interpretation.

2 Theory of Negative Controls in IV Settings

In this section, we present the theory of negative control tests for IV designs. We start with
formal definitions of an IV setting and IV exogeneity in particular. Subsequently, we discuss
NCO tests and how they can examine exogeneity. Then, we discuss NCI tests and show that
they typically require conditioning on the IV. Finally, we discuss the inclusion of control
variables and show that both types of tests can depend on functional form assumptions that
are modifiable and sometimes unnecessary.

2.1 Setup

Consider i.i.d. units indexed by i = 1, . . . , n. Denote the observed (endogenous) treatment
status by Xi, and the candidate IV by Zi. Let Yi(z, x) be the potential outcome for unit i had
Zi and Xi been set to the values z and x, respectively.6 We make the standard assumption
that the observed outcome Yi is given by Yi = Yi(Zi, Xi). Because the units are assumed

6This formulation implicitly assumes the stable unit treatment value assumption (SUTVA).
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to be i.i.d., we omit the subscript i when it improves clarity. Unless stated otherwise, all
variables may be discrete or continuous.

A valid IV design relies on several assumptions. The negative control tests we discuss in
this paper focus on a subset of these assumptions. The first assumption, outcome indepen-
dence, maintains that IV assignment is independent of the potential outcomes.

Assumption 1 (Outcome independence). For all z, x, Z ⊥⊥ Y (z, x).

This assumption is usually written as part of a more general independence assumption (e.g.,
Abadie, 2003). Here, we distinguish between outcome independence and treatment indepen-
dence, which requires Z ⊥⊥ X(z) for every value of z. Only outcome independence is tested
in the negative control tests we discuss in this paper. The examples in Panels A and C of
Figure 1 illustrate a potential violation of outcome independence.

The second assumption, exclusion restriction, maintains that the IV has no direct effect
on the outcome.

Assumption 2 (Exclusion restriction). For all z, x, Y (z, x) = Y (x).

The examples in Panels B and D of Figure 1 illustrate potential violations of this assumption.
Together, outcome independence and exclusion restriction imply IV exogeneity, that is,

Z ⊥⊥ Y (x) for all x. (1)

In loose terms, IV exogeneity requires that there be no alternative paths between the IV and
the outcome except through the treatment. Because potential outcomes are never observed,
neither these two assumptions nor the ensuing IV exogeneity can be tested directly.

To identify a causal effect using an IV design, additional assumptions are also necessary.
Depending on the specific design, such assumptions may include treatment independence,
relevance, and monotonicity. However, the negative control tests presented in this paper do
not test these other assumptions.

2.2 Negative Control Outcomes

2.2.1 Alternative Path Outcome Variables

Our theory characterizes negative controls as proxies for threats to the IV design’s validity.
To formalize the notion of a threat, we introduce the concept of an alternative path variable.
This is a variable that is part of a suspected alternative path between the IV and the outcome
that, should such a path exist, would violate IV exogeneity. We begin by formalizing the
first type of identification threat by defining alternative path outcome (APO) variables.

7



Single Violation. For simplicity, we begin by assuming that only one potential threat to
IV exogeneity exists. Figure 1 illustrates such a threat to outcome independence (Panel A)
and exclusion restriction (Panel B). In these examples, the APO variable is represented by
U . We later provide a more general definition of an APO variable, allowing for multiple
potential threats, for which the following definition is a special case.

Definition 1 (Alternative path outcome variable with a single violation ). A random variable
U is an APO variable if the following two conditions hold.

1. Latent IV exogeneity. Z ⊥⊥ Y (x)|U .

2. Path indication. If Z ⊥⊥ Y (x) then Z ⊥⊥ U .

The first condition, latent IV exogeneity, posits that had we observed and conditioned on
the APO variable, the IV design would have been valid. Under this condition, imperfect
proxies for identification threats cannot be APO variables, as controlling for an imperfect
proxy does not make the IV and the potential outcome conditionally independent. Using
the previous example of Martin and Yurukoglu (2017), Republican vote share in 1996 is only
a proxy for the threat to IV validity (latent conservativeness), and hence controlling for it
does not eliminate the threat. Therefore, the Republican vote share in 1996 is not an APO
variable as it does not satisfy the latent IV exogeneity condition. Latent IV exogeneity is
analogous to the latent exchangeability assumption appearing in recent literature on negative
controls in epidemiology (Shi et al., 2020) and statistics (Tchetgen Tchetgen et al., 2020).

The second condition, path indication, states that an exogenous IV is not associated
with the APO variable. Its contrapositive ensures that an association between the IV and
the APO variable implies an alternative path between the IV and the potential outcome.
Path indication guarantees that if there is a path from the IV to the APO variable, the path
continues from the APO variable to the outcome. Therefore, it excludes variables unrelated
to the outcome, as they can be associated with the IV without implying anything about the
design validity. While APO variables often causally affect the outcome, it is not mandatory
(as demonstrated in Appendix C.1).

Path indication also rules out variables that could be related to both the IV and the
outcome without generating a correlation between them. For example, this would occur if a
variable is correlated with the outcome for some subpopulation, but potentially correlated
with the IV only for a separate subpopulation. Two examples are provided in Appendix C.2
and Appendix C.3.

Multiple Violations. In some applications, multiple potential alternative paths can ex-
ist between the IV and the outcome. Appendix C.4 presents an example of two distinct
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variables that affect the outcome, and could potentially affect the IV as well, and thus may
violate outcome independence. To accommodate the possibility of multiple violations of IV
exogeneity, we extend Definition 1. We introduce a random variable V , which represents
other potential threats in addition to the threat posed by the APO variable U .

Definition 2 (Alternative path outcome variable). A random variable U is an APO variable
if there exists a random variable V such that the following conditions hold.

1. Latent IV exogeneity. Z ⊥⊥ Y (x)|U, V.

2. Path indication. If Z ⊥⊥ Y (x)|V then Z ⊥⊥ U |V.

3. Direct IV link. If Z ⊥⊥ U |V then Z ⊥⊥ U.

4. V-validity. If Z⊥⊥Y (x) then Z⊥⊥Y (x)|V .

Under this definition, latent IV exogeneity states that IV exogeneity holds conditional not
only on the APO variable U , but also on the additional threat(s) V . In contrast to Defini-
tion 1, this more general version of latent IV exogeneity also holds for U even if V is the
actual threat to the identification and U is only an imperfect proxy for it.

Therefore, to maintain the same interpretation of an APO variable as a threat to IV
exogeneity, we replace the condition of path indication from Definition 1, and include two
additional conditions. Combining Conditions 2–4 yields Condition 2 of Definition 1. How-
ever, the three separate conditions ensure that the APO is the threat itself and not a proxy.
Specifically, path indication and direct IV link each rule out a different type of proxy; see
Appendix C.5 and C.6 for counterexamples. The final property, V-validity, is a more techni-
cal requirement for the variable V that ensures V represents other threats. It states that an
exogenous IV remains exogenous conditional on V . See Appendix C.7 for a counterexample.
If there are no additional threats other than U , Definition 2 is equivalent to Definition 1.

2.2.2 Negative Control Outcome Assumption

Building on the definition of an APO variable, we are now ready to formalize the assumption
required for a random variable to serve as a negative control outcome.

Definition 3 (Negative control outcome). A random variable NC is an NCO if it satisfies
the NCO assumption: There exists an APO variable U such that

Z ⊥⊥ NC|U.

This assumption guarantees that any association between the IV and the NCO is through
the APO variable U . Panels A and B of Figure 1 depict two examples of NCOs that satisfy
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this assumption. The NCO assumption is violated for variables that are directly related to
the IV, not through an APO variable. Appendix C.8 shows two examples of such violations.

The NCO assumption formalizes ad hoc discussions about the validity of NCOs. For
example, Guidetti et al. (2021) investigate the use of non-respiratory hospital admissions as
NCOs in IV studies on the impact of air pollution exposure. One might expect that these
admissions would only correlate with flawed IVs for air pollution. However, Guidetti et
al. demonstrate otherwise. They find that air pollution indirectly increases non-respiratory
admissions through hospital congestion caused by a surge in respiratory admissions. There-
fore, non-respiratory admissions are not informative about IV exogeneity as they correlate
with both flawed and valid IVs. Formally, non-respiratory admissions correlate with the IV,
not through any APO variable but due to the unrelated mechanism of congestion. Hence,
non-respiratory admission rates violate the NCO assumption.

The NCO assumption can be weakened to include more variables that are informative
about the exogeneity of the IV design. In Appendix D we offer a more general definition of
NCO that allows for direction associations with the IV, not through the APO variable, if
the design is not exogenous.

2.2.3 Negative Control Outcome Test

A negative control outcome test (NCO test, for short) is any statistical test of independence
between the IV and an NCO. The null hypothesis is H0 : Z ⊥⊥ NC. Statistical testing
procedures are reviewed and compared in Section 3. The following theorem states that
rejecting this null implies a violation of IV exogeneity.

Theorem 1. Assume that a random variable NC satisfies the NCO assumption. If Z��⊥⊥NC,
then either outcome independence or exclusion restriction is violated. That is, the IV design
is not exogenous.

The proof is given in Appendix D.1.1 for the more general case, discussed in Section 2.4,
which also includes control variables in the design. For the case without controls and a single
violation, the sketch of the proof is as follows. By the NCO assumption, the dependence
between the IV and the NCO implies an association between the IV and an APO variable
(Z��⊥⊥U). By path indication, Z��⊥⊥U indicates an alternative path between the IV and the
outcome (Z��⊥⊥Y (x)); i.e., IV exogeneity does not hold.

Although a failed NCO test indicates that the IV design is not exogenous, the converse
is not always true. An IV design that is not exogenous might still pass an NCO test. This
would happen if there are other alternative paths from the IV to the outcome that are not
captured by the NCO, or due to lack of statistical power. The same logic would apply to
NCI tests, which we now turn to discuss.
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2.3 Negative Control Instruments

2.3.1 Alternative Path Instrument Variables

As with NCOs, NCIs are typically proxies for threats to identification. We define such
threats as alternative path instrument (API) variables. Much like an APO variable, an API
variable is also part of a suspected alternative path between the IV and the outcome that
could violate IV exogeneity. However, API variables are known to be associated with the
IV and researchers are concerned about an association they might have with the outcome.
This is in contrast to APO variables, which are known to be associated with the outcome,
and researchers are concerned about their possible association with the IV.

Figure 1 demonstrates two such cases. In Panel C, the IV is known to be non-random,
as it is affected by an unobserved API variable U3. In Panel D, the IV is known to affect
another API variable, U4, in addition to its effect on the treatment. In these examples, IV
exogeneity depends on whether these API variables directly affect the outcome Y .

Formally, in the case of a single violation, an API variable satisfies the following definition.

Definition 4 (Alternative path instrument variable with a single violation). A random
variable U is an API variable if the following two conditions hold.

1. Latent IV exogeneity. Z ⊥⊥ Y (x)|U .

2. Path indication. If Z ⊥⊥ Y (x) then U ⊥⊥ Y |Z.

This definition resembles the definition of APO variables (Definition 1). The first condition,
latent IV exogeneity, is exactly as before. The difference between API and APO variables
is encapsulated in the path indication condition. For API variables, this condition requires
that if IV exogeneity is satisfied (Z ⊥⊥ Y (x)), then the API variable must be independent
of the observed outcome conditional on the IV (U ⊥⊥ Y |Z). This condition implies that an
association between the API variable and the outcome, not through the IV, indicates that
the IV is not exogenous. Typically, path indication is satisfied when the API variable is
associated with the IV. Therefore, if the API variable is also directly associated with the
outcome, an alternative path between the IV and the outcome exists.

Path indication also rules out variables that are associated with the outcome through the
treatment (conditional on the IV). Such variables are not informative about the validity of
the IV design as they are associated with the outcome through the treatment even when IV
exogeneity is satisfied. This is different from APO variables that could be associated with
the treatment (even conditional on the IV). See Appendix C.9 for an example and further
discussion of this issue.

The definition of an API variable with a single violation (Definition 4) can be extended
to settings where additional violations are potentially present. As with APO variables, this
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extension requires more nuanced assumptions. The API definition also generalizes to an IV
design that includes control variables. Both extensions are presented in Appendix D.1.2.

2.3.2 Negative Control Instrument Assumption

A negative control instrument is a variable satisfying the following NCI assumption.

Definition 5 (Negative control instrument). A random variable NC is an NCI if it satisfies
the NCI assumption: There exists an API variable U such that

Y ⊥⊥ NC|Z,U.

While similar, the NCI assumption and the NCO assumption (Definition 3) differ in three
key aspects. First, the alternative path variable U is an API variable instead of an APO
variable. Second, the conditional independence is between the NCI and the outcome, instead
of the IV. These two differences reflect that NCI tests, defined below, test for an association
with the outcome, and not with the IV. The third difference is that the independence is
conditional on the IV as well. This is because in exogenous IV designs the NCI can be
associated with the outcome through the IV, as we discuss in the next section.

In many applications, the NCI assumption rules out a large class of variables that ap-
pear in the data because of their association with the outcome. For example, demographic
variables often exhibit an association with the outcome, conditional on the IV, and therefore
cannot serve as NCIs. Variables that are associated with the treatment are also not NCIs as
they are associated with the outcome, even conditional on the IV. Moreover, in cases where
the IV effect on the outcome is heterogeneous, any variable associated with the source of
heterogeneity cannot serve as an NCI. Generally, the NCI assumption is more restrictive than
the NCO assumption. The reason is that the NCO assumption requires conditional indepen-
dence between the NCO and the IV, which is more plausible than conditional independence
between the NCI and the outcome, as IVs are typically quasi-random.

As with NCOs, in Appendix D.1.2 we provide a more general definition of NCI that
allows for direct associations with the outcome if the design is not exogenous.

2.3.3 Negative Control Instrument Test

A negative control instrument test examines whether the outcome and the NCI are inde-
pendent, conditional on the IV. Formally, the statistical test is for the null hypothesis
H0 : Y ⊥⊥ NC|Z. If the NCI is associated with the outcome conditional on the IV, this
necessarily implies that the IV design is not valid, as stated in the following theorem.
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Theorem 2. Assume that a random variable NC satisfies the NCI assumption. If Y��⊥⊥NC|Z,
then either outcome independence or exclusion restriction is violated. That is, the IV design
is not exogenous.

The proof is given in Appendix D.1.2 for the more general case that includes control variables
and multiple threats.

Conditioning on the IV is typically required, as the NCI may be associated with the
outcome even in valid IV designs. This association arises because the NCI is often associated
with the IV, which in turn influences the outcome through the treatment. For example, in
Panels C and D of Figure 1, the NCI and the outcome are associated through the IV even
if the IV design is valid. In the previously discussed example of Nunn and Qian (2014),
the production of oranges (the NCI) is associated with conflicts (the outcome), as both are
associated with the production of wheat (the IV).

However, in some cases, conditioning on the IV is not required. When Z ⊥⊥ NC, re-
searcher can use an unconditional independence test for the null H0 : Y ⊥⊥ NC, as formalized
in the next theorem.

Theorem 3. Assume that a random variable NC satisfies the NCI assumption. If in ad-
dition Z ⊥⊥ NC, then if Y��⊥⊥NC, either outcome independence or exclusion restriction is
violated. That is, the IV design is not exogenous.

The proof is given in Appendix D.1.2.
Unconditional NCI tests may be valid mostly when considering violations of the exclusion

restriction assumption. Panel A of Figure 2 shows an example of such a case. The IV (Z)
is known to affect an API variable (U), potentially violating the exclusion restriction. Any
other independent variable (NC) that affects this API variable as well can serve as an NCI.
In this example, the IV is independent of the NCI (Z ⊥⊥ NC). Therefore an unconditional
test can be utilized. By contrast, when a violation of outcome independence is suspected,
the IV and the NCI are typically associated as well (as in Panel C of Figure 1). Therefore,
the NCI test should condition on the IV.

As a result, unconditional independence tests between a negative control and the outcome
are unique to IV settings. Previous literature on negative control tests has mostly focused
on causal analysis without an IV, which we do not discuss in this paper. In non-IV settings,
there is no exclusion restriction and therefore independence tests between a negative control
and the outcome are always done conditionally.7

7The analog of NCI in non-IV settings is negative control exposure (NCE). NCE tests are always conducted
conditional on the exposure.
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2.4 Control Variables and Functional Forms

In many cases, the IV is believed to be exogenous only conditional on certain control variables
(e.g., assignment of judges is quasi-random only within time and location; Kling, 2006). Let
C be the vector of controls. Similar to the case without controls, outcome independence and
exclusion restriction together imply Z ⊥⊥ Y (x)| C. In Appendix D, we present the theory of
alternative path variables and negative controls when controls are included. When the IV is
presumably valid only conditional on a vector of control variables C, an NCO test is a test
for the null hypothesis

H0 : Z ⊥⊥ NC|C. (2)

Similarly, for NCIs the null hypothesis is

H0 : Y ⊥⊥ NC|C,Z. (3)

While accounting for controls in an IV analysis can be done in a variety of ways (e.g., Abadie,
2003), the large majority of applications use a two-stage least squares (2SLS) specification.
This specification makes additional functional form assumptions. Most negative control tests
used in practice adopt the same functional form assumptions.

NCO tests typically adopt the functional form assumption on how the IV depends on
the control variables. With some abuse of notation to avoid clutter, let C also denote the
set of controls in a 2SLS specification.8 Blandhol et al. (2022) show that 2SLS requires the
following linearity assumption to satisfy their definition of a causal estimand.9

Assumption 3 (Rich covariates). The conditional expectation of the IV is linear in the
control specification. Namely, E[Z|C] = γ′

CC, for some vector γC.

Combining the null hypothesis of NCO tests (2) and rich covariates we expect that

E[Z|C,NC] = γ′
CC. (4)

This equation provides a more specific null hypothesis for conditional independence testing.
This hypothesis can be tested by regressing the IV on the vector of controls and the NCO.
The following corollary formalizes this argument.

Corollary 1. Assume that the random variable NC satisfies the NCO assumption. Let

γ = (γ′
C , γNC) = argmin

bc,bNC

E[Z − b′CC − bNCNC]2

8The vector C may include, for example, a quadratic function of one of the original controls or interactions.
For ease of notation, C would always include the intercept.

9A causal estimand is a positively weighted average of subgroup-specific treatment effects.
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be the population-level OLS coefficient of regressing Z on C,NC. If γNC ̸= 0 then either
outcome independence, exclusion restriction, or rich covariates is violated.

The proof is given in Appendix D.2.
Turning to the NCI tests, such tests typically adopt the functional form assumptions on

the relationship between the outcome and the IV and the control variables. Specifically, NCI
tests often use the same structure as the reduced form equation. Therefore, they implicitly
make the following assumption.

Assumption 4 (Correctly Specified Reduced Form (CSRF)). The conditional expectation
of the outcome is linear in the IV and the control variables. Namely, E[Y |Z,C] = θZZ+θ′CC.

Combining the null hypothesis (3) with the CSRF assumption, we expect that

E[Y |Z,C,NC] = θZZ + θ′CC. (5)

This equation also provides a more specific null hypothesis, which can be tested with OLS.
The following corollary shows that such an OLS jointly tests IV exogeneity and CSRF.

Corollary 2. Assume that the random variable NC satisfies the NCI assumption. Let

θ = (θZ , θ
′
C , θNC) = argmin

bZ ,bc,bNC

E[Y − bZZ − b′CC − bNCNC]2

be the population-level OLS coefficient of regressing Y on Z,C,NC. If θNC ̸= 0 then either
outcome independence, exclusion restriction, or CSRF is violated.

The proof is given in Appendix D.2. Corollaries 1 and 2 imply that in the tests discussed,
the null hypothesis can be rejected in exogenous IV designs. For NCO tests, the null can be
rejected because the rich covariates assumption is not satisfied. In such cases, researchers
can still estimate a causal effect by modifying the functional form, or by using methods other
than 2SLS (Blandhol et al., 2022). For NCI tests, the null can be rejected because CSRF
is violated. However, CSRF is not a necessary assumption for 2SLS analysis, implying that
testing this assumption could reject perfectly valid IV designs.

For example, an NCI test can reject a design where the IV is randomly assigned due
to CSRF violation. Random assignment guarantees that outcome independence and rich
covariates hold. Assume that the exclusion restriction holds as well and therefore the design
is valid. CSRF could still be violated if the IV has a nonlinear effect on the outcome or a
heterogeneous effect across control vector values. In such a case, an NCI test could reject
the null hypothesis in (5), even though the design is valid.
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3 Negative Control Test Procedures

This section discusses conditional independence tests, which our theory shows are essential
for many negative control tests in IV designs.10 We first review the methods currently em-
ployed in economics research for conducting conditional independence tests with negative
controls. We then introduce and evaluate several underutilized testing methods that can
enrich the toolkit available to researchers. Conditional independence, especially with contin-
uous controls, has no established one-size-fits-all solution (Shah and Peters, 2020). We use
simulations to demonstrate the trade-offs between tests that rely on strong functional form
assumptions and more flexible tests that require large sample sizes. Practical recommenda-
tions for selecting appropriate statistical tests are provided in Section 4.

3.1 Pseudo-Outcome and Pseudo-IV Tests

As discussed in Section 1, the most commonly employed falsification tests in practice are
pseudo-outcome tests. These tests estimate the original reduced form equation while replac-
ing the outcome with a pseudo-outcome (e.g., past outcomes). That is, a pseudo-outcome
analysis estimates the model

NC = βZZ + β′
CC + ϵNC , (6)

and examines the estimated coefficient of the IV in this model (e.g., by testing H0 : βZ = 0).11

The following result establishes that when the pseudo-outcome is a valid NCO, this
practice can be used to jointly examine IV exogeneity and rich covariates.

Corollary 3. Assume that NC satisfies the NCO assumption. Let

β = (βZ , β
′
C) = argmin

bZ ,bC

E[NC − bZZ − b′CC]2

be the population-level OLS coefficient when regressing NC on Z,C. If βZ ̸= 0 then either
outcome independence, exclusion restriction, or rich covariates is violated.

The proof is given in Appendix D.2.
Unlike pseudo-outcome analysis, pseudo-IV analysis, which is the common approach for

NCI tests, is not always a valid test for IV exogeneity. In its simplest form, pseudo-IV analysis
10Whenever control variables are included in the design, negative control tests examine conditional in-

dependence (Equations (2) and (3)). Moreover, NCI tests typically require conditional independence tests
even without control variables. NCO tests without controls and some NCI tests without controls require
unconditional independence testing (Theorems 1 and 3). Such independence is testable using various estab-
lished statistical tests (e.g., Székely et al., 2007; Heller et al., 2013).

11The chosen testing procedure for H0 may vary according to the assumptions on ϵNC .
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substitutes the original IV with a similar but ostensibly unrelated variable (the pseudo-IV)
in the reduced form regression and assesses the independence between the pseudo-IV and
the outcome. Such a test is not informative about IV exogeneity as the pseudo-IV is not
independent of the original IV. Therefore, the original IV must be controlled for (Theorem
2). Notably, this is not consistently done in empirical studies, as discussed in Section 1.

A pseudo-IV analysis that adjusts for the IV and the controls may use the linear regression

Y = θZZ + θ′CC + θNCNC + ϵY , (7)

where NC is an NCI. The pseudo-IV test then examines the null hypothesis H0 : θNC = 0.12

Despite the adjustment, this pseudo-IV analysis could still reject the null hypothesis for
valid IV designs. Corollary 2 implies that even when the IV is exogenous, the null could still
be rejected due to a violation of CSRF. As discussed in Section 2.4, the CSRF assumption
is not necessary for causal identification. Therefore, it is possible that an adjusted pseudo-
IV test would reject the null hypothesis, even though the IV design can identify a causal
estimand with 2SLS. In Sections 3.3 and 3.4, we discuss tests for IV exogeneity that do not
rely on or test additional functional form assumptions.

When multiple negative controls are available, multiple pseudo-outcome or pseudo-IV
analyses can be conducted separately for each negative control. This procedure requires
multiple hypothesis-testing corrections, such as Bonferroni correction. Alternatively, we
now turn to discuss procedures that perform a joint test for multiple negative controls. A
comparison between the different approaches is part of our simulation study (Section 3.5).

3.2 Parametric Conditional Independence Tests

When multiple negative controls are available, one may use a joint test to combine infor-
mation from multiple negative controls.13 Let NC be a vector of NCOs, and consider the
following linear model for Z:

Z = γ′C + γ′
NCNC + ϵZ . (8)

An F-test can test the null hypothesis H0 : γ′
NC = 0′ (under the standard assumptions).

Alternatively, a Wald test might be preferred when robust or clustered standard errors are
used. This procedure jointly tests IV exogeneity and rich covariates (Corollary 1).

Similarly, with multiple NCIs, an F-test (or other tests for a vector of parameters) can be
used in an adjusted pseudo-IV analysis. Using a vector of NCIs in Equation (7), researchers

12The testing procedure is determined according to additional assumptions on ϵY , as before.
13In most applications, an association with a vector of negative controls implies an association with at

least one of its components. Appendix C.10 provides a knife-edge counterexample of a case where a vector
of negative controls is not a negative control. However, a small perturbation to the parameter values in this
example would reverse the conclusion.
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can carry out a valid statistical test for the hypothesis that the coefficient vector of the NCIs
is zero (H0 : θ

′
NC = 0′). This procedure jointly tests IV exogeneity and the CSRF assumption

(Corollary 2). Therefore, it could reject valid IV designs as well.

3.3 Semi-Parametric Conditional Independence Tests

In order to test IV exogeneity without testing functional form assumptions, researchers may
opt for semi- or non-parametric tests. As an alternative to the parametric tests we have
discussed so far, consider, for example, the use of general additive models (GAMs) (Wood,
2006). For NCO tests, one such specification assumes that

Z = ϕ(C,NC) + ϵZ =
∑
j

fj(Cj) +
∑
k

gk(NCk) + ϵZ , (9)

where C,NC are vectors of controls and NCOs indexed by j and k, respectively; fj, gk are
smooth functions allowed to be different for different variables; and ϵZ is an independent
normally distributed error term. Under this model, Z is composed of additive smooth
functions that are typically estimated using splines. A Wald test for the spline coefficients
can be used to test the null hypothesis that gk = 0 for all k.14 A GAM test can be similarly
implemented for NCI tests, by adding smooth functions to Equation (7). Interactions can
be accommodated by including additional smooth functions of product terms.

A GAM model can also be used to test the rich covariates assumptions, while still allowing
for a nonlinear association between the NCOs and the IV. Such a model is useful when one
uses 2SLS (which requires rich covariates) while suspecting a strong nonlinear association
between the NCO and the IV. In such cases, the following model can be used:

Z = ϕ(C,NC) + ϵZ = γ′C +
∑
k

gk(NCk) + ϵZ . (10)

As with model (9), the NCO test is for the hypothesis that gk = 0 for all k. When the
hypothesis is rejected, gk may capture a residual nonlinear association between C and Z,
not captured by γ, which violates rich covariates (due to an association between C and NC).

3.4 Non-Parametric Conditional Independence Tests

With a large number of negative controls or a large dataset that allows one to estimate
flexible non-parametric models, researchers can implement a conditional independence test
using invariant target prediction (Heinze-Deml et al., 2018). In the context of an NCO test,

14See Section 6.12.1 in Wood (2006) for technical details and conditions for test validity.

18



this method involves using a prediction algorithm to predict the IV twice: once using only
the control variables and once using both the NCOs and the control variables. Under the
null hypotheis (Z ⊥⊥ NC|C), the out-of-sample performance of both predictions should be
similar, as the NCOs should not have any additional predictive power if they are conditionally
independent of the IV. A similar approach can be constructed for NCI tests (while using
the IV in both prediction algorithms). For a large enough sample size, various prediction
algorithms, including machine-learning methods, can be employed in this procedure.15

Similar to the other methods we have discussed so far, invariant target prediction typ-
ically focuses on mean independence. However, more general approaches go beyond mean
independence by using kernel measures of conditional independence (Fukumizu et al., 2007;
Zhang et al., 2011; Strobl et al., 2019).

3.5 Simulations

This section summarizes two simulation studies comparing the negative control tests dis-
cussed earlier. For simplicity, we focus on NCO tests. See Appendix E for details about the
data-generating processes (DGP) and specific parameter values for each study.

In each simulated sample, we test the null hypothesis H0 : E[Z|C,NC] = E[Z|C] using
the following tests: multiple pseudo-outcome regressions (Equation (6)) with Bonferroni
correction for multiple hypotheses, a single (multivariate) linear regression with an F-test
(Equation (8)), and Wald tests from GAMs with and without smooth terms for the control
variables (Equations (9) and (10)).16 We set the desired type-I error to 5%.

In the first study, we simulate a violation of outcome independence. Panel A of Figure 3
summarizes the results. We separately examine a scenario with a linear association between
the IV and the NCOs (left panel) and a highly nonlinear scenario. For each scenario, we
report the null rejection rate across simulated datasets as a function of the IV–NCO rela-
tionship. In the linear scenario, the F-test outperformed other methods, especially when
the relationship between the NCOs and the IV was weak. The multiple pseudo-outcome re-
gressions surpassed GAMs under a linear relationship but had lower power than the F-test.
Conversely, under strong nonlinearity, only the GAM tests had satisfactory power.

In the second study, we consider test performances when IV exogeneity holds but rich
covariates is violated. That is, the conditional expectation of the IV is not linear in the
control variables. We report the rejection rate as a function of the strength of this non-
linear relationship (Panel B). Tests assuming a linear association between the IV and the
control variables rejected the null when the nonlinearity in the IV–controls association was

15For example, Abramitzky et al. (2023) use LASSO to predict the IV with the controls and NCOs.
16We also considered a Wald test from the single linear regression; the results were nearly identical to

those obtained by the F-test and hence are not reported.
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substantial (i.e., a substantial violation of rich covariates). The flexible GAM rarely rejected
the null, indicating that it is not testing the rich covariates assumption. Therefore, as ex-
pected from the theory, linear tests assess both functional form and IV exogeneity, whereas
nonlinear tests primarily evaluate IV exogeneity.

These simulations suggest that linear tests are preferred when the associations are closer
to linear, the sample size is small, or when examining functional form assumptions is desired.
Conversely, nonlinear tests are preferred when nonlinear associations are suspected, the
sample size is large, or when the researcher wants to focus solely on IV exogeneity.

4 Practical Guidance

This section offers guidelines for implementing negative control tests. We recommend that
researchers follow three steps, summarized in Appendix Figure A1. First, use domain knowl-
edge to identify suitable negative controls. Examples are discussed in Section 4.1. Second,
choose an appropriate statistical test based on sample size and functional form assumptions,
as detailed in Section 4.2. Third, interpret the result and conduct further diagnostics if the
test rejects the null, as discussed in Section 4.3.

To illustrate these recommendations, we apply them to IV designs used in prior work.
We chose four widely cited papers published in the American Economic Review (AER) with
publicly posted replication data. We use Autor et al. (2013) and Deming (2014) to discuss
NCO tests and Ashraf and Galor (2013) and Nunn and Qian (2014) to discuss NCI tests.17

Appendix Table A1 summarizes these papers’ IV designs and the negative controls they used
in falsification tests. Appendix F provides additional details on our analyses.

4.1 Choosing Negative Controls

In our survey of recent literature in Section 1, we found that researchers often use only
one, or very few negative controls. This may raise the concern that valid and informative
negative controls are sometimes left unused. Guided by our theory, we found additional
negative controls in the replication data of some of the papers we analyzed (Column 6 of
Appendix Table A1).

We now discuss different types of negative controls, both commonly used in practice and
novel ones suggested by our theoretical framework.

17Ashraf and Galor (2013) and Nunn and Qian (2014) are the two most cited AER papers published since
2013 that use an NCI test. Similarly, Autor et al. (2013) is the most cited AER paper published after 2013
that uses an NCO test. Deming (2014) was selected to demonstrate how our proposed follow-up analysis
can be used to diagnose and correct problems with the IV design in Section 4.3.
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4.1.1 Common Types of Negative Control Outcomes

Predetermined Variables. Predetermined variables are frequently used in NCO tests.
Common examples include lagged outcomes and demographic factors such as gender, race,
and age. Autor et al. (2013) used predetermined local labor market manufacturing employ-
ment to evaluate a shift-share IV for commute-zone exposure to imports. Following the same
logic, we found many additional predetermined variables in the original paper’s replication
data that could serve as NCOs (e.g., past unemployment in the local labor market). Simi-
larly, we found multiple predetermined variables in the replication data from Deming (2014).
These are all NCOs as the IV is based on a random school lottery.

Predetermined variables can proxy for APO variables that violate outcome independence
if they affect the IV. In many cases, researchers choose to use predetermined variables as
NCOs while only vaguely knowing which APO variable they proxy for. The NCO assumption
requires that if the NCO is associated with the IV, the association with the IV is through
some APO variable.

However, not every predetermined variable is a valid NCO. Certain predetermined vari-
ables may influence the IV, even if the IV is exogenous, thus violating the NCO assumption.
For example, when the IV is the child’s quarter of birth (Angrist and Krueger, 1991), the
parents’ quarter of marriage is not a valid NCO as it is likely affecting it. Such concerns are
less relevant when the IV is based on an alleged randomization (e.g., school lotteries).

IV Leads and Lags. Certain IVs are predicated on serendipitous or chance occurrences
(“strokes of luck”). In these cases, the IV should not be correlated with future or past
measurements of the IV, which can serve as NCOs. For example, Jäger and Heining (2022)
use a worker’s premature death as an IV for employee turnover, under the assumption that
such deaths are random across firms. One potential concern in this example is that premature
deaths may result from riskier conditions in the firm, which could directly impact wages (the
outcome). To rule this out, Jäger and Heining use subsequent premature deaths in the same
firm as an NCO that proxies for the APO variable (riskier conditions). A recurring pattern
of premature deaths could cast doubt on the assumption that such deaths are random across
firms. They find no correlation of premature deaths within a firm over time. The NCO
assumption here stipulates that subsequent IV measurements should not be autocorrelated.

Alternative Outcomes. Unrelated or alternative outcomes can also serve as NCOs for
two different types of APO variables. First, when the APO variable is potentially violat-
ing outcome independence (potentially affecting the IV), alternative outcomes can serve
as NCOs, provided they are unaffected by the IV. Chetty et al. (2014) evaluate middle-
school teacher value-added measures using a movers design, leveraging teachers’ movements
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between schools. Here, the APO variable of concern is the unobserved changes in school
quality. For example, high-quality teachers may tend to move to schools experiencing simul-
taneous improvements in student quality. To evaluate this threat, Chetty et al. use as NCOs
test scores from subjects not taught by the teacher in question. If the NCO test finds that
teacher quality is associated with better outcomes in subjects they do not teach, it would
cast doubt on the movers design’s validity.

The second type of APO variable potentially violates the exclusion restriction. The con-
cern is that the IV affects an additional factor (the APO variable), which in turn affects the
outcome (as in Figure 1B). For example, Angrist and Evans (1998) use the sex composition
of the first two children as an IV for the total number of children. One potential concern is
that same-sex sibship could reduce housing expenditures because of hand-me-downs, which
could then affect female labor supply decisions (the outcome). To test this, Rosenzweig
and Wolpin (2000) show that same-sex sibship also affects an alternative outcome, clothing
expenditures. Clothing expenditures is an NCO, which proxies for overall expenditures (the
APO variable). In this case, the NCO assumption does not hold if the IV affects the can-
didate NCO through the outcome, i.e. if female labor supply affects household expenditure
on clothing.

4.1.2 Common Types of Negative Control Instruments

Pseudo-IVs. Researchers often choose NCIs that are similar to the IV but are presumed
not to influence the treatment variable. These pseudo-IVs usually share many similarities to
the IV and are thus likely to be correlated with the API variable. For example, as discussed
in the introduction (and illustrated in Panel C of Figure 1), Nunn and Qian (2014) use US
wheat production as their IV for US aid, and consider the US production of other crops
unrelated to US aid as NCIs. These variables are similar, as they are both affected by the
same API variables such as weather conditions.

IV Leads. Future instances of the IV (IV leads) can often serve as effective NCIs. For
example, Moretti (2021) studies the effect of the size of high-tech clusters on productivity.
As an IV, he uses predicted cluster size, based on the expansion of local firms outside the
cluster. Moretti (2021) then ascertains that predicted future cluster size is not additionally
correlated with productivity. This relies on the fact that IV leads, which are based on
events that occur after the outcome, cannot influence it. As with pseudo-IVs, IV leads share
similarities with the IV and are therefore likely to be associated with the API variable. To
satisfy the NCI assumption, the outcome must not influence future realizations of the IV.
In the example of Moretti (2021), regional productivity cannot affect the expansion of local
firms in other locations.
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When practitioners observe IV leads they need to consider whether they expect the IV to
be autocorrelated. When the IVs are expected to be autocorrelated (as in Moretti, 2021) an
NCI strategy can be used. When the IVs are presumably uncorrelated, and NCO strategy
can be applied, as discussed in the previous section.

4.1.3 Novel Types of Negative Control Instruments

Our theory can highlight potential new types of NCIs beyond those commonly used today.

Causes of the IV. Variables that causally affect the IV can serve as effective NCIs for
assessing possible violations of outcome independence. Moreover, these NCIs do not require
the researcher to take a stand on what is the potential violation. Panel B of Figure 2
illustrates how such NCIs works. For example, if the IV is wheat production (Nunn and
Qian, 2014), then observed weather conditions that affect wheat production qualify as a
valid NCI. In such scenarios, both the API variable and the NCI influence the IV, leading to
a correlation between the API variable and the NCI, conditional on the IV. The IV is what
is known in the literature of DAGs as a collider (Pearl, 2009). If the NCI is correlated with
the outcome conditional on the IV, this implies that there is a path between the NCI and
the outcome, through the IV and the API variable. Therefore, the API affects the outcome,
and the IV design is not exogenous.

IV Side Effect Proxies. An IV that affects an API variable in addition to its effect on the
treatment may violate the exclusion restriction if this API variable also affects the outcome.
Therefore, proxies for such API variables can serve as NCIs. Panel D of Figure 1 illustrates
a scenario where the IV influences the NCI through the API variable, and therefore the NCI
is an alternative outcome. Panel A of Figure 2 presents another case where the NCI and the
IV both affect the API variable. These “side effect” proxy variables must not be associated
with the outcome other than through the IV and the API variable, as any other association
would violate the NCI assumption.

For example, some papers use a regression discontinuity to identify an effect of a policy
that only applies above a certain cutoff (e.g., municipalities above a certain population size).
However, the same cutoff is sometimes used for more than one policy. If the additional policy
does not affect the outcome, the design is still valid. To test this, any proxy for participation
in the additional policy can be used as an NCI.

4.1.4 Power Considerations

Power considerations suggest excluding variables that meet a negative control assumption
but have weak associations with the alternative path variables, as they can lower test power.
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This mirrors the effect of irrelevant control variables in OLS. This issue is especially acute in
pseudo-IV NCI tests, as pseudo-IVs can be strongly correlated with the IV but only weakly
correlated with the API variable conditional on the IV.

4.2 Choosing a Statistical Test

When implementing negative control tests, researchers can choose from a variety of statis-
tical tests for (conditional) independence between the negative control and the IV or the
outcome. Different testing methods were discussed in Section 3. The appropriate statisti-
cal test depends on three primary considerations: the design assumptions under scrutiny,
the expected functional relationship between the negative control and either the IV or the
outcome, and statistical power.

NCO Tests. When a 2SLS specification with controls is used for estimation, an NCO test
that is linear in the controls is a leading option. Specifically, we recommend estimating (8)
and using an F-test or a Wald test for the hypothesis that the NCO coefficients equal zero.
Such tests evaluate not only IV exogeneity but also the necessary rich covariates assumption
(Assumption 3). Moreover, this test can aggregate information from multiple NCOs jointly.
For a large enough sample size, a GAM model as in (10) can allow for nonlinear associations
with the NCO while still testing the rich covariates assumption.

Alternatively, researchers might opt for a pseudo-outcome test based on (6). This test
uses the same inferential framework as the original study. Therefore, it can expose errors
in the inference method as well (Eggers et al., 2023). However, it demands accounting for
multiple hypothesis testing when multiple NCOs are available.

When the main analysis does not use 2SLS (e.g., in quantile regressions as in Cher-
nozhukov and Hansen, 2008), and the sample size is sufficiently large, nonlinear tests are
preferred. This includes semi-parametric methods like the GAM in (9), or other methods dis-
cussed in Sections 3.3 and 3.4. These tests can capture more complex associations that would
be missed in linear tests. However, their flexibility implies larger sample size requirements,
as demonstrated in our simulations (Section 3.5).

NCI Tests. For NCI tests, researchers should first consider whether they need to control
for the IV in their test according to whether the NCI is independent of the IV (Section
2.3.3). In most cases, controlling for the IV is required. One notable exception is when the
API variable represents a violation of the exclusion restriction, and the NCI affects the API
variable (Panel A of Figure 2).

Researchers should then determine which statistical test to use. The commonly used
approach that adds the NCIs to the reduced form equation is often problematic, as its validity
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depends on the CSRF assumption (Assumption 4). At face value, this strong parametric
assumption is attractive as it improves the statistical power when the sample size is small.
However, this assumption is not necessary and is often violated, which could lead to the
rejection of valid IV designs. With a sufficiently large sample size, researchers should instead
use a semi- or non-parametric test, as discussed above.

Examples of Applications. Table 3 presents the results of all the above-discussed NCO
tests using the data from Autor et al. (2013) and Deming (2014). Column (2) shows that in
both papers, the null hypothesis is not rejected when only one NCO is used.18 By contrast,
Column (3) shows that the null hypothesis is rejected when multiple NCOs are used (with
Bonferroni correction for multiple hypothesis-testing). Column (4) shows that the null is also
rejected when a joint F-test is used. These results underscore that adding additional NCOs—
using existing data and guided by theory—can yield more powerful tests.19 In Columns
(5) and (6) we implement a GAM test with and without assuming linearity of the control
variables. As expected, the GAM test is less effective in smaller samples.

Table 4 presents results from the above NCI tests using data from Nunn and Qian (2014)
and Ashraf and Galor (2013). Columns (1) and (2) show the results of a pseudo-IV test with
and without conditioning on the IV, using one of the NCIs from the above-cited papers. In
both contexts, conditioning on the IV is required as the NCI is likely associated with the
outcome through the IV.20 For Nunn and Qian, we find that the null hypothesis is only
rejected when conditioning on the IV is omitted, indicating that neglecting to control for the
IV would have led to a false rejection of their IV design. Using data from Ashraf and Galor,
the null is not rejected, even without controlling for the IV, potentially due to insufficient
statistical power. In Columns (3) and (4) we show the null is not rejected when using the full
set of NCIs from the above-cited papers in either multiple pseudo-IV tests with Bonferroni
correction or in a joint F-test. The small sample size compared to the large number of control
variables does not allow proper estimation of GAM models in either paper.21

4.3 Interpreting the Test Results

Rejection of the Null. Rejecting the null hypothesis in a parametric linear negative
control test, such as an F-test, could suggest violations of either IV exogeneity or linearity

18In Column (1) we show the results from a replication of the original NCO test conducted by Autor et al.
(2013). They find a significant association between the IV and the lagged outcome, with a sign that is the
opposite of the sign in the main analysis. This association becomes insignificant when all control variables
are included.

19In Section 4.3 we use additional analysis to detect a fixable problem in the IV design in Deming (2014).
20While not explicitly stated in Nunn and Qian (2014), their code reveals conditioning on the IV. Ashraf

and Galor (2013) did not condition on the IV.
21We estimate a GAM model with linear controls for Nunn and Qian (2014). See Appendix F.3 for details.
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(rich covariates for NCO, CSRF for NCI). In such cases, researchers can further explore the
reason for the rejection by testing the linearity assumption directly.22 For a large enough
sample size, researchers can also use semi- or non-parametric tests, which rely on fewer or
no functional form assumptions and focus on IV exogeneity.

When multiple negative controls are used, researchers may want to explore which negative
controls are driving the rejection of the null. To do so, researchers can plot the strengths of
the correlations for each negative control with the IV and the outcome on a two-dimensional
scatter plot. This exercise can help identify negative controls with high predictive power
with regard to both the IV and outcome, which may suggest the existence of a related
alternative path. Appendix Figure A2 displays such diagnostics for Deming (2014) who uses
school lotteries to evaluate school value-added measures (see Appendix Table A1 for details).
We plot each NCO’s correlation with the IV (vertical axis) against its correlation with the
outcome (horizontal axis). The NCO with the strongest correlation with the IV is the value
added of the neighborhood school. This is because the IV is constructed from interactions
of the lottery results with neighborhood school VA. In this case, the post-analysis exercise
identifies a fixable problem in the construction of the IV. Using the original lottery results,
we get noisier estimates, however, we cannot rule out that the main results are unchanged.

One caveat for this exercise is that the correlation with negative control may not always
reflect how strong the alternative path is. Since negative controls are just proxies for alter-
native path variables, their correlation with the IV or the outcome depends on the strength
of their correlation to the alternative path variable. Therefore, a negative control might
have a weak correlation with the IV or outcome, even if the association between the IV and
outcome through the alternative path is strong, or vice versa.

Non-Rejection of the Null. As discussed in Section 2, if the null hypothesis is not re-
jected, the IV might still not be exogenous. First, IV exogeneity may be invalidated by
alternative path variables not captured by the NCO or NCI used for the test. For example,
a quasi-random allocation to teachers that is found to be uncorrelated with students’ neigh-
borhoods could still be associated with students’ abilities within neighborhoods. Second,
invalid IVs could pass the test due to lack of power.

5 Bias Correction

So far we have only discussed negative controls in the context of bias detection. In this
section, we turn to discuss the possibility of using negative controls for bias correction.

22E.g., by using a RESET test with control variables only, without negative controls (Ramsey, 1969).
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One common, albeit imperfect, approach to bias correction is to use the negative controls
as control variables. For example, Autor et al. (2013) show that their results are robust for
controlling for lagged commuting zones characteristics, which could also serve as NCOs.
However, as discussed in Section 2, negative controls are often only imperfect proxies for the
threat to the identification. Controlling for an imperfect proxy may lower the bias but does
not eliminate it.

In non-IV settings, negative controls are frequently used for bias correction. For example,
the difference-in-differences (DiD) estimator can be seen as a form of bias correction using
an NCO. In a two-period DiD, the NCO is the preperiod outcome (Sofer et al., 2016). The
average difference in the NCO between treated and untreated units is an estimate of the
confounding bias. Hence, by subtracting this difference, the bias is corrected (under the
standard DiD assumptions; Roth et al., 2023). Moreover, when the NCO does not directly
quantify the bias, another type of negative control can be used to scale the coefficient on
the NCO such that it can be subtracted (Shi et al., 2020).23 In this section, we consider a
simple case where the bias can be directly subtracted, making scaling unnecessary.

For this section, we assume the following simple IV setting. Let Z1, X1, and Y1 be the
IV, treatment, and outcome, respectively, measured in a period indexed by 1. Assume that
an NCO, Y0, is also observed. We refer to Y0 as the lagged outcome (indexed here by 0);
however, it could also represent any alternative pseudo-outcome.24 In this section, we focus
on the simple case where both the IV (Z1) and the treatment (X1) are binary.

Similar to the canonical DiD model (without an IV), we assume that neither the treatment
nor the IV has been initiated in the preperiod (Z0 = X0 = 0). This is a typical scenario in
analyses of new policies. In Appendix D.3, we discuss alternative preperiod scenarios, which
are less likely to occur in practice but require more plausible assumptions for bias correction.

Suppose that a pseudo-outcome test reveals a correlation between the IV and the NCO.
We refer to the pseudo-effect as the difference in the average NCO between IV-treated and
IV-untreated units, E[Y0|Z1 = 1] − E[Y0|Z1 = 0]. We assume that outcome independence
(Assumption 1) does not hold and, therefore, the pseudo-effect is different from zero. We
investigate whether the pseudo-effect on the NCO can be informative on the bias.

Specifically, we study under what conditions the pseudo-effect can be simply subtracted
to correct the bias. To this end, consider the following difference-in-Wald (DiW) estimator.

Definition 6 (Difference in Wald).

τDiW =
E [Y1 − Y0|Z1 = 1]− E [Y1 − Y0|Z1 = 0]

E [X1|Z1 = 1]− E [X1|Z1 = 0]
.

23The double-negative control design is part of a more general approach to use proxies to study causal
effects. This approach has recently been termed “causal proximal learning” (Tchetgen Tchetgen et al., 2020).

24For example, if Y1 is test scores in some subject, Y0 could denote test scores in an alternative subject.
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Additional assumptions are needed for τDiW to identify a causal effect. First, assume that
treatment independence (Z1 ⊥⊥ X1(z)) and relevance (E[X1(1) − X1(0)] ̸= 0) both hold.25

Assume also that the exclusion restriction (Assumption 2) holds.
Second, we make assumptions analogous to DiD assumptions. Since the IV and the

treatment have not been initiated in period 0, we can write Yt(z1, x1) for the potential
outcomes at time t = 0, 1 when intervening on the IV or the treatment in period 1.26

Assumption 5 (DiD assumptions for IV).

1. No Anticipation. For all z1, x1, z̃1, x̃1, Y0(z1, x1) = Y0(z̃1, x̃1).

2. Parallel Trends. E[Y1(0, 0)− Y0(0, 0)|Z1 = 1] = E[Y1(0, 0)− Y0(0, 0)|Z1 = 0].

The first condition implies that the lagged outcome Y0 is not affected by the future
treatment or IV (as in the canonical DiD model; Roth et al., 2023). A violation of this
condition might imply that Y0 does not satisfy the NCO assumption. The second condition
generalizes the DiD parallel-trends assumption for the IV setting. It is the counterfactual
statement that in the absence of the IV and the treatment, the trend in the mean outcome
would have been the same for the IV-treated and IV-untreated observations.

The DiW estimator requires an additional assumption to identify a causal effect. One
option is to assume a homogeneous treatment effect. Since we assumed that the exclusion
restriction holds, we can write the treatment effect as Y1(z1, 1)− Y1(z1, 0) = Y1(1)− Y1(0).

Assumption 6 (Homogeneous treatment effect). Assume that for every observation, Y1(1)−
Y1(0) = τ, for some constant τ .

The following theorem establishes that τ is identified by the DiW estimator under the
above assumptions. Hence, the pseudo-effect on the NCO can be used for bias correction.

Theorem 4. Assume that treatment independence, exclusion restriction, Assumptions 5 and
6 hold. The difference-in-Wald estimator identifies the causal effect. Namely, τDiW = τ.

When the heterogeneity in the treatment effect is substantial, the bias in τDiW can be
arbitrarily large. In Appendix D.3 we show that in cases where the treatment can be received
together only with the IV (X1(0) = 0), the homogeneous treatment effect assumption is not
required. An example is when the IV is a voucher to participate in the treatment, and
participation is impossible without the voucher. In these cases, τDiW equals the average
treatment effect for the treated compliers (Angrist et al., 1996).

25In some contexts, bias in the reduced form implies that treatment independence is also violated. Without
treatment independence, the first-stage estimates would require correction as well.

26Similar to Roth et al. (2023), we write Yt(z1, x1) = Yt(0, 0, z1, x1), where the first two arguments in
Yt(z0, x0, z1, x1) denote the IV and the treatment in period 0.
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In Appendix D.3, we discuss two alternative and less common scenarios in which the
DiW estimator is unbiased under more plausible assumptions. We show that under different
preperiod regimes (i.e., different assignments of Z0, X0), treatment effect homogeneity is not
required, and violation of the exclusion restriction can also be corrected. However, such
scenarios are less frequent in practical applications.

6 Conclusion

This paper develops a theoretical framework for negative control tests for IV designs. Our
results uncover the underlying assumptions behind practices that are frequently applied and
give formal justifications for common intuitions. Moreover, we highlight four key findings
that, in our view, are not commonly known, and could have practical implications on how
negative control tests are used in practice.

First, most NCI tests are implemented incorrectly as they do not control for the orig-
inal IV. This could lead to the rejection of valid IV designs. Second, common negative
control tests are not only testing the exogeneity of the IV but also testing functional form
assumptions, which are replaceable and sometimes unnecessary. Third, our theory clarifies
what variables can serve as negative controls. These include variables that are rarely used
in practice such as variables that causally affect the IV. Moreover, we believe that in many
cases, negative control variables are readily available in researchers’ data and should be used
to construct more powerful negative control tests. Finally, we find that under stronger as-
sumptions, negative controls can be used not only to detect but also to correct biases in IV
designs. Ultimately, we believe this work will contribute to a more systematic and effective
use of negative control falsification tests for evaluating and amending IV designs.
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Figure 1: Negative Control Falsification Tests: Graphical Illustrations
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(A) NC1��⊥⊥Z implies that the dashed red ar-
row exists, thus violating the outcome inde-
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(B) NC2��⊥⊥Z implies that the dashed red ar-
row exists, thus violating the exclusion re-
striction.
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(C) NC3��⊥⊥Y |Z implies that the dashed red
arrow exists, thus violating the outcome in-
dependence.
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(D) NC4��⊥⊥Y |Z implies that the dashed red
arrow exists, thus violating the exclusion re-
striction.

Notes: The figure illustrates how negative control tests assess the exogeneity of IV designs. In all the panels,
X represents the endogenous treatment variable, Y the outcome, Z the IV, and W a potential confounder
that motivates the use of IV. The variables Ui are unobserved variables that threaten identification when
the dashed red arrows exist. The top panels (A and B) depict negative control outcome tests. IV exogeneity
is threatened by the concern that U1 or U2 (alternative path outcome (APO) variables) are related to the
IV, thus violating the outcome independence (Panel A) or exclusion restriction (Panel B) assumptions. An
observed negative control outcome (NC1 or NC2) related to each APO variable can be used to evaluate the
presence of the problematic association by testing whether Z is independent of NCi. The bottom panels
(C and D) depict negative control instrument tests, addressing concerns that U3 or U4 (alternative path
instrument (API) variables) might be related to the outcome, thus violating the outcome independence
(Panel C) or exclusion restriction (Panel D) assumptions. An observed negative control instrument (NC3

or NC4) related to each API variable can examine these concerns by testing whether NC ⊥⊥ Y |Z.
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Figure 2: Illustration of Scenarios Related to Negative Control Instrument Tests
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(A) An unconditional NCI test

Z

W

X YU

NC

(B) NCI causally affecting the IV

Notes: Each panel represents a different scenario related to negative control instrument (NCI) tests. In both
scenarios, X is the endogenous treatment variable, Y is the outcome, Z is the IV, and W is a potential
confounder that motivates the use of the IV. The validity of the IV design is challenged by the potential
alternative paths. Panel A demonstrates an NCI scenario where conditioning on the IV is not necessary.
In this example, U is an unobserved API variable that poses a threat to identification. If it is related to
the outcome (through the dashed red arrow), the exclusion restriction is violated. An observed NCI (NC)
that affects the API variable (U) can be used to evaluate the presence of the problematic association by
implementing an unconditional independence test for the null hypothesis H0 : NC ⊥⊥ Y . Panel B shows that
a variable causally affecting the IV can serve as a valid NCI. The variable U is an unobserved API variable
that poses a threat to identification, in the sense that if it is related to the outcome (through the dashed
red arrow), outcome independence is violated. The square around Z symbolizes the conditioning on the
IV. An observed NCI (NC) that affects the IV (Z) can be used to evaluate the presence of the suspected
association by testing NC ⊥⊥ Y |Z. Specifically, if NC��⊥⊥Y |Z, then the path NC → Z ← U → Y exists and
hence U��⊥⊥Y |Z.
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Figure 3: Simulations of NCO Tests with Violations of Independence and Rich Covariates
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Notes: This figure presents the results of simulation studies of NCO tests. Panel A (top) shows the H0

rejection rate of different negative control tests with varying degrees of outcome independence violation.
The x-axis shows the IV and APO variable relationship strength (γU from Appendix Equation (A8)),
which also determines the IV and NCO relationship strength. In the left plot, the association between
the APO variable and the IV is linear. In the right plot, it is highly nonlinear. Panel B (bottom)
shows rejection rates in a scenario where the IV is exogenous but the rich covariates assumption
is violated. The x-axis shows the level of nonlinearity of the IV in the controls (η from Appendix
Equation (A9)). The data-generating process for each panel is detailed in Appendix E. Different NCO
tests are represented by each line, including multiple pseudo-outcome regressions (Equation (6)) with
Bonferroni correction, a single multivariate linear regression (Equation (8)) with an F-test, and a GAM
with Wald test, both with and without smooth terms for continuous controls (Equations (9) and (10)).
See Section 3 for detailed descriptions of the testing methods. Each simulation scenario comprised
1,000 sampled datasets of 10,000 observations.
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Table 1: Examples of Negative Control Tests for IV in Economics

A. Negative Control Outcome Tests

Paper Treatment Outcome IV Threat NCO (IV should not be
correlated with it)

Martin and
Yurukoglu (2017)

Fox News
viewership

Republican vote
share in 2008

Channel position: Lower channel
numbers induce larger viewership

Cable companies might place Fox
News in lower channels in more
conservative locations

Republican vote share in 1996

Angrist and
Evans (1998)

Number of
children

Female labor
supply

Same-sex sibship: Families with
same-sex sibship for the first two
children are more likely to have
more children

Same-sex sibship may increase
hand-me-downs, reducing
expenditures and potentially labor
supply

Clothing expenditure (Rosenzweig
and Wolpin, 2000)

Autor et al.
(2013)

Shift-share based
on import
penetration in US

Manufacturing
employment

Shift-share based on import
penetration in non-US developed
countries

Commuting zones with importing
industries might be declining for
other reasons

Manufacturing employment trends
before large Chinese import
competition

Doyle et al.
(2015); Chan et
al. (2023)

Hospital
assignment

Health outcomes Ambulance company assignment,
which strongly predicts hospital
assignment

Patient ambulance assignment may
depend on their health

Patient demographics

Kirkeboen et al.
(2016)

Admission to
field/institution

Log wages Admission cutoff: RD design Some students might be able to
manipulate position relative to
cutoff

Predicted wage based on
predetermined covariates

B. Negative Control Instrument Tests

Paper Treatment Outcome IV Threat NCI (conditional on IV,
outcome should not be
correlated with it)

Nunn and Qian
(2014)

US food aid Conflict in
recipient
countries

Wheat production: US food aid
increases when it booms

Wheat production is affected by
weather conditions, which could
also have other impacts on conflicts

Production of crops not used for aid
(e.g., oranges)

Acemoglu et al.
(2020)

Socialist
organization
(Peasant Fasci)

Sicilian Mafia
presence

The 1893 drought: Led to increase
in support for socialist
organizations

Weather conditions might generate
convenient economic conditions for
Mafia emergence

Rainfall in previous years

Ashraf and Galor
(2013)

Genetic diversity Economic
development

Distance from Addis Ababa, which
predicts genetic diversity due to the
human origin hypothesis

Other economic factors have
geographical dispersion

Distance from other cities (e.g.,
London, Mexico City)

De Giorgi et al.
(2020)

Peer consumption Own
consumption

Shocks in firms of distant peers:
Negative shocks in firms of distant
peers are less likely to be correlated
with self economic shocks

Shocks to larger firms are
statistically more likely to affect
distant peers, and might also affect
consumption in other ways

Placebo shocks: Calculate same IV
based on permutated
employer-employee relationship
(keeping employer size unchanged)

Madestam et al.
(2013)

Tea Party protest
participation

Republican vote Rain on April 15, 2009, which
affected local participation in one of
the first large Tea Party protests

Probability of rain is driven by local
climate conditions, which could
relate to voting in various ways

Rain on other dates
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Table 2: Current Use of Falsification Tests for IV in Economics

Falsification Test Characteristics
(Share of Papers that Included Falsification Tests)

Type of Test Test Specification

Papers
Reviewed

Share with
Falsification

Tests

Negative
Control
Outcome

Negative
Control

Instrument
Other Pseudo-

Outcome Pseudo-IV
Pseudo-IV,
Controlling

for IV

# Negative
Controls

Used
(median)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

All 140 0.51 0.72 0.25 0.21 0.40 0.24 0.02 3.50
by Journal:
REStud 48 0.42 0.75 0.40 0.10 0.65 0.40 0.02 4.00
AER 42 0.50 0.81 0.29 0.05 0.52 0.29 0.00 4.00
JPE 21 0.62 0.54 0.15 0.31 0.15 0.08 0.05 3.50
QJE 19 0.68 0.77 0.15 0.46 0.15 0.15 0.05 2.00
ECMA 10 0.50 0.60 0.00 0.40 0.20 0.00 0.00 4.50

Notes: The table shows the results of our survey of highly cited articles employing instrumental variable (IV) designs published in leading
economics journals from 2013 to 2023. The sample includes all articles from this period in the Review of Economic Studies (REStud), American
Economic Review (AER), Journal of Political Economy (JPE), Quarterly Journal of Economics (QJE), and Econometrica (ECMA) that used
IV designs and had significant citation counts on Google Scholar (over 300 citations for papers until 2020, and over 100 for those published after
2020). We examined these papers for their use of falsification tests. Column (2) shows the proportion of papers employing any falsification
test. Columns (3)–(8) report the fraction of papers that implemented different types of falsification tests, out of all papers that implemented
any falsification test. Columns (3)–(5) categorize the tests into negative control outcome, negative control instrument, and other types of
falsification tests, respectively. The fractions do not sum to one, as some papers employed multiple test types. Columns (6)–(8) give the share
of papers using pseudo-outcome designs, pseudo-IV designs, and pseudo-IV designs that also condition on the original IV. Column (9) reports
the median number of negative control variables used. Appendix B provides additional details on the survey construction.
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Table 3: Illustrative Applications of Negative Control Outcome Tests

Original
Analysis Alternative Analyses

Type of Test:
Pseudo-
Outcome
(single)

Pseudo-
Outcome
(single)

Pseudo-
Outcome
(multiple)

F-Test
GAM,
Linear

Controls

GAM,
Nonlinear
Controls

Number of
Observations

(1) (2) (3) (4) (5) (6) (7)

Autor et al. (2013) 0.004 0.593 <0.001 <0.001 1.000 1.000 722
Deming (2014) - 0.686 <0.001 <0.001 <0.001 <0.001 2343

Notes: This table presents p-values from different NCO tests using data from Autor et al. (2013) and
Deming (2014). Column (1) replicates one of the original falsification analyses, in which Autor et al.
used a pseudo-outcome and the same 2SLS specification as their main analysis (ibid., Table 2, Part II).
Deming conducted no falsification tests. Columns 2–6 report p-values obtained from additional tests
that include the same controls as in the most exhaustive specification of the original analyses. Column
(2) reports a single pseudo-outcome test using one NCO. For Autor et al. the single pseudo-outcome is
the lagged outcome (in 1970), which is the same NCO reported in Column (1); for Deming this is lagged
test scores (2002). Column (3) presents a Bonferroni-corrected p-value for multiple pseudo-outcome
tests using all the NCOs. Column (4) uses an F-test (Equation (8)) with all NCOs jointly. Columns
(5) and (6) use GAM tests with linear and smoothed controls, respectively (Equations (9) and (10)).

Table 4: Illustrative Applications of Negative Control Instrument Tests

Without Conditioning
on the IV

With Conditioning
on the IV

Pseudo IV
(single)

Pseudo IV
(single)

Pseudo IV
(multiple) F-Test Number of

Observations

(1) (2) (3) (4) (5)

Nunn and Qian (2014) 0.007 0.123 0.636 0.138 4572
Ashraf and Galor (2013) 0.234 0.778 1.000 0.994 145

Notes: This table presents p-values from different NCI tests using data from Nunn and Qian (2014)
and Ashraf and Galor (2013), applying their original sets of NCIs (three and ten NCIs, respectively).
Column (1) shows a single pseudo-IV test that, inappropriately, does not condition on the IV. The NCI
with the lowest p-value is shown (grape production for Nunn and Qian and distance from Mexico City
for Ashraf and Galor). Columns (2)–(4) condition on the IV: Column (2) implements a proper pseudo-
IV test (Equation (7)) using the same NCI as Column (1); Column (3) applies Bonferroni correction
for multiple pseudo-IV tests; Column (4) uses an F-test for all NCIs.
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Online Supplementary Appendices

A Additional Figures and Table

Appendix Figure A1: Steps for Implementing Negative Control Tests

1. Select Negative Control Variables

• Consider all candidate NCOs or NCIs in the data that can serve as proxies
for identification threats (APO or API variables).

• Evaluate whether each candidate satisfies a negative control assumption
(based on Definition 3 for NCO or Definition 5 for NCI).

• Note that including “weak” negative controls that are unlikely to be informa-
tive may reduce test power.

◦ See Section 4.1 for examples of negative control variables.

2. Design the Negative Control Test

• Select the test specification: when using 2SLS and when multiple NCOs are
available, consider using an F-test, which tests both IV exogeneity and rich
covariates.

• When the sample size is large, consider nonlinear methods.

• In an NCI test, remember to condition on the IV when appropriate.

◦ See Section 4.2 for discussion.

3. Interpret Results

• Null rejected:

– Test functional form and IV exogeneity separately (e.g., use Ramsey’s
RESET test for functional form, and a nonlinear negative control test for
exogeneity).

– Check which negative control is most related to both the outcome and
the IV.

• Null not rejected:

– Consider statistical power.
– Acknowledge that untested threats may still exist.

◦ See Section 4.3 for discussion.
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Appendix Figure A2: Correlations of NCOs with the IV and the Outcome in Deming (2014)
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This figure shows a scatter plot of the absolute value of the correlation of different NCOs with the IV
(on the y-axis) and the outcome (on the x-axis). Correlations are calculated using data from Deming
(2014). The NCOs, the IV, and the outcome were first residualized by regressing them on all control
variables and lottery fixed effects. Each observation is one NCO. For presentation purposes, NCOs
are grouped into categories denoted by marker shape. The different year markers refer to groups of
students’ test scores from that year. The VA marker denotes the value added of the schools listed by
students as their 1st, 2nd, and 3rd submitted preferences, as well as their neighborhood school’s VA
(labeled Neighborhood School). See Section F.2 for details.
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Appendix Table A1: Papers Used to Illustrate Applications of Negative Control Tests

Original Variable Description # of Negative Controls

Outcome Treatment IV Negative
Controls

Original
Paper

Our
Analyses

(1) (2) (3) (4) (5) (6)

A. Negative Control Outcome Tests

Autor et al. (2013) Local labor
market
outcomes

Import
competition
from China

Other
countries’
import
competition
from China

Lagged local
labor market
manufacturing
employment

3 52

Deming (2014) Student test
scores

Value added of
the school

School
assignment
lottery,
interacted with
school VA

No negative
control
analysis in the
original paper

- 37

B. Negative Control Instrument Tests

Ashraf and Galor (2013) Level of
economic
development

Population
genetic
diversity

Migratory
distance from
East Africa

Migratory
distance from
alternative
locations not
associated
with genetic
diversity (e.g.,
London)

3 3

Nunn and Qian (2014) Level of civil
conflict

Receipt of U.S.
food aid

Variation in
U.S. wheat
production

Variation in
U.S.
production of
crops not
associated
with aid (e.g.,
grapes)

10 10

Notes: This table provides contextual details on the papers we use for our negative control application
examples in Table 3 and Table 4. Columns (1)–(3) specify which outcome, treatment, and IV were used
in these papers, respectively. Column (4) depicts the negative controls used in the original analysis,
and Column (5) presents the number of negative controls used. Column (6) presents the number of
negative controls used in the analysis for Table 3 and Table 4, including the original negative controls,
as well as additional valid negative controls we found in the original data.
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B Details on Survey of Common Practices

Sample Construction. We Used Google Scholar in November 2023 to assemble the list
of relevant papers. We searched the terms “instrumental variable,” “instrument,” “2SLS,”
and “IV.” We restricted the sample to articles with over 300 citations or, if published after
2020, over 100 citations. We examined all articles satisfying these criteria, published in five
top-ranked economics journals: Review of Economic Studies, American Economic Review,
Journal of Political Economy, Quarterly Journal of Economics, and Econometrica. Overall,
our survey includes 140 papers.

We then searched the papers for strings related to falsification testing. This included
“falsification,” “negative control,” “balance,” “balancing,” “valid,” and “validity.” Papers that
did not include any of these strings were marked as not having any falsification test. We
manually coded the type of falsification test for papers that included one of these strings.
The results are summarized in Table 2 and discussed in Section 1.

Other Falsification Tests. As discussed in Section 1, we categorized all falsification tests
used in surveyed papers into NCO tests, NCI tests, and other falsification tests. Other
falsification tests include the following: negative control tests in non-IV settings, which
examine only the first or second stage in a 2SLS estimation; “placebo population” analyses
(Eggers et al., 2023; Glymour et al., 2012; Keele et al., 2019), which involve repeating the
analysis using a different population where the IV is not expected to affect the outcome;
validating that the results are robust to including additional control variables; and using an
over-identification test when more than one IV is available.

C Examples and Counterexamples

C.1 Non-Causal APO Variable

U1 U2

NC

Z X Y

W

Figure C1: An illustration of causal and non-causal APO variables
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In the example presented in Figure C1, U2 is a valid APO variable, satisfying path
indication, even though it has no direct causal effect on Y (other than the possible effect
through the IV). For example, assume that Z is a teacher assignment that is claimed to be
quasi-random, X is the value added of the actual teacher, and Y is test scores. The variable
W represents the concern that some students can switch classrooms and end up with different
teachers. In this example, U1 is unobserved ability, which directly affects test scores. U2

represents detailed test scores in some previous exams that are also unobserved. The dashed
red arrow represents a concern that principals allocate students to teachers based on the
detailed test score (e.g., students with low math scores are assigned to a specific teacher).

In this example, the detailed test scores in past exams satisfy path indication even though
the detailed past test scores do not directly affect future test scores. However, there is a
path between the previous detailed test scores and the current test scores, because both are
affected by ability (U1).

The variable NC is aggregated previous test scores, which averages past scores in math
with other subjects. In this setting, NC is an NCO, with U2 as an APO variable. An
association between the IV and the aggregated lagged test scores would imply an alternative
path from the IV to the outcome. Specifically, the presence of this path would violate
outcome independence as students with different abilities would sort into different teachers
based on their previous math scores.

Note that in this scenario, U1 is also an APO variable. However, NC is a valid NCO
with respect to U2 but not with respect to U1 alone, as, conditional on the unobserved
ability, there is still a correlation between the NCO and the IV (Z��⊥⊥NC|U1), i.e, the teacher
assignment is not conditionally independent of the aggregated test scores.

C.2 Heterogeneity-Based Violation of Path Indication

W

Z X Y

U N

(A) Females

W

Z X Y

U N

(B) Males

Figure C2: Violation of path indication (Definition 1) due to heterogeneity

Figure C2 describes a random variable U that is associated with both the IV and the
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potential outcome Y (x). Yet U is not an APO variable since it does not satisfy path indi-
cation. In Figure C2, the IV affects U for males but not for females. On the other hand, U
affects Y for females but not for males. Path indication is not satisfied since even though
the IV is exogenous (Z ⊥⊥ Y (x)), it is still associated with U (Z��⊥⊥U).

Let N be a proxy for the variable U . In this example, for a large enough sample size, we
would conclude that Z��⊥⊥N (due to the effect among males), but from this test one cannot
deduce that the IV is not exogenous since U is not an APO variable.

C.3 Violation of Path Indication: Multivariate Variable

U1

U2

N

Z X Y

WU

Figure C3: Violation of path indication (Definition 1) when U has multiple components

Figure C3 presents an example where U is a multivariate variable. Specifically, assume
that U = (U1, U2) is a bivariate vector of two independent variables. Assume Z is the teacher
assignment, which is claimed to be quasi-random, X is the value added of the actual teacher,
and Y is test scores. The variable W represents the concern that some students can switch
classrooms and end up with different teachers.

Assume that U1 is having basketball as a hobby. Assume also that basketball is correlated
with the IV. For example, one teacher also coaches basketball and so basketball players (who
list basketball as a hobby) are more likely to be assigned to her. However, as seen from
Figure C3, a basketball hobby is independent of test scores (U1 ⊥⊥ Y (x)).

Let U2 indicate having math as a hobby. Assume that students who report math as a
hobby tend to perform better in exams and that math lovers are randomly allocated across
teachers (U2 ⊥⊥ Z). Assume also that the basketball and math hobbies are independent
(U1 ⊥⊥ U2). Finally, assume N is participation in an extracurricular basketball program (a
proxy for U).

In this case, even though the vector U is associated with both the IV and the outcome, it is
not an APO variable as it does not satisfy path indication. The IV is exogenous (Z ⊥⊥ Y (x))
even though the IV is correlated with the list of hobbies (Z��⊥⊥U). We conclude that N is
not a proper NCO. Even though Z ⊥⊥ N |U , it is still not an NCO since U is not an APO
variable.
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C.4 Multiple Threats

Z X

W

Y

U

V

Figure C4: Multiple threats

Figure C4 presents an example of the presence of multiple threats to IV exogeneity. In
this case, the variable U is an APO variable by Definition 2. In this figure, V is an APO
variable as well.

For example, assume that Z is the teacher assignment, which is claimed to be quasi-
random, X is the value added of the actual teacher, and Y is test scores. The variable W

represents the concern that some students can switch classrooms and end up with different
teachers. Assume that U is the student’s unobserved ability. Assume also that V is principal
quality, which is also unobserved. Both U and V might affect the teacher allocation Z, which
would generate an alternative path between the IV and the outcome.

C.5 Direct IV Link Rules out Proxies of V

V

Z X Y

W
U2

U1

Figure C5: Violation of direct IV link (Definition 2)

Figure C5 presents the threat V (violation of outcome independence) as well as two
proxies for V , U1, and U2. Note that latent IV exogeneity, as stated in Definition 2, holds for
either variable (U1 or U2) together with V , as the further conditioning on U1 or U2 does not
invalidate the IV, conditional on V . Note also that for both variables, path indication holds
because if Z ⊥⊥ Y (x)|V then Z ⊥⊥ U1|V (or Z ⊥⊥ U2|V ). However, condition 3 of Definition
2, direct IV link, does not hold. If the IV is not exogenous (the dashed red line exists) then
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Z��⊥⊥U1 while Z ⊥⊥ U1|V (and similarly for U2). Intuitively, we rule out U1 and U2 as APO
variables because they are only proxies for the threat to IV exogeneity.

C.6 Path Indication Rules Out Proxies of V

Z

V

X Y

W

U

Figure C6: Violation of path indication (Definition 2)

Figure C6 presents the threat V (violation of exclusion restriction) as well as a proxy
for V , labeled as U . While V itself is an APO, its proxy U is not. Note that latent IV
exogeneity holds for U, V jointly, as the further conditioning on U does not invalidate the IV
design once we have conditioned on V . Note also that direct IV link holds because Z ⊥⊥ U .
However, U is not an APO variable because it does not represent a threat to IV exogeneity.
Condition 2 of Definition 2, namely, path indication, does not hold. Specifically, if the IV
design is not exogenous (the dashed red line exists), Z��⊥⊥U |V while Z ⊥⊥ Y (x)|V . In the
language of DAG terminology, V is a collider (Pearl, 2009), and conditioning on it creates a
dependence between U and Z.

C.7 Violation of V-validity

U

Z X Y

W

V
N

Figure C7: Violation of V -validity

Figure C7 presents a situation with no valid APO variable. We examine U as a candidate
APO variable, and consider V in the DAG as the potential V in Definition 2. We see that
latent IV validity holds: while Z��⊥⊥Y (x)|V , because V is a common effect (a collider) of

A.8



U and Y , controlling for U in addition to V blocks the flow of association (Pearl, 2009),
resulting in Z ⊥⊥ Y (x)|U, V . Path indication holds trivially because Z��⊥⊥Y (x)|V . Direct IV
link also holds because of the effect of U on Z. However, it is clear U should not be an
APO variable. An association between Z and U does not imply that the IV design is invalid.
This is where V−validity comes to the rescue. The IV is exogenous (Z ⊥⊥ Y (x)), but, as
previously noted Z��⊥⊥Y (x)|V , due to V being a common effect of both variables. In this case,
no other alternative to V exists to satisfy Definition 2. Therefore U is not an APO variable,
and the random variable N is not an NCO.

C.8 Violation of the NCO Assumption

Z

W

X YU1

N

Q Z

W

X Y

U2 N

(B)

Figure C8: Violations of the Negative Control Outcome Assumption

This figure illustrates two violations of the NCO assumption. As in all other examples,
X is the endogenous treatment variable, Y is the outcome, Z is the IV, and W is a potential
confounder that motivates the use of an IV. In these examples, U1, U2 are APO variables.
However, N is not an NCO because it is related to Z in other ways (indicated by the solid
bold blue arrows), making N uninformative about the APO variable. In Panel A, the IV
and N are affected by an additional unobserved factor Q, which is unrelated to the outcome.
In Panel B, the IV directly affects the variable N , violating the NCO assumption.

C.9 Potential Alternative Path Variables and Direct Treatment
Link

Path indication in Definition 4 implies that conditional on the IV (Z), an API variable (U)
cannot be associated with the treatment (X). By contrast, there is no such requirement for
an APO variable. Figure C9 illustrates these points. In Panel A, U is a valid APO variable
and the arrow U → X is allowed: latent IV exogeneity holds, and does path indication.
Therefore, NC is a valid NCO, and an association between NC and Z implies that the
dashed red arrow between U and Z exists, and so IV exogeneity does not hold. Conversely,
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Z

W

X YU

NC

(A) Z��⊥⊥NC implies violation of IV ex-
ogeneity. U is an APO variable. NC
is an NCI.

Z

W

X YU

N

(B) Y��⊥⊥N |Z does not necessarily im-
plies violation of IV exogeneity. U is
not an API variable. N is not an NCO.

Figure C9: Direct association between potential alternative path variables and the treatment

in Panel B, U is not a valid API variable. Path indication is violated because U��⊥⊥Y |Z does
not imply Z ⊥⊥ Y (x). Therefore, N is not an NCI and Y��⊥⊥N |Z does not necessarily imply
violation of IV exogeneity. Intuitively, N��⊥⊥Y |Z even if the IV design is valid, because of the
association between U and Y through X. Conditioning on X would not solve this problem,
because X is a collider. Therefore, N��⊥⊥Y |Z,X because of the path N ← U → X ← W → Y

(Pearl, 2009).

C.10 Counterexample: A Vector of NCOs That is Not an NCO

Let R1, R2 be two independent Bernoulli random variables with probabilities Pr(Rj = 1) = pj

with p1 = p2 = 0.5. Let U be another Bernoulli random variable, independent of {R1, R2}.
Let Z be the IV, and assume that

Z = (R1 ⊕R2) + θU + ϵZ ,

where ⊕ is the XOR operator. Assume that Y (x) = x + U + ϵY , such that U is an APO
variable. The IV design is valid if θ = 0.

Now, assume that there are two observed negative controls NCi = U ⊕ Ri for i =

1, 2. Both NC1 and NC2 are valid negative controls as they satisfy the assumption Z ⊥⊥
NCi|U . This is because for i = 1, 2, Ri ⊥⊥ (R1 ⊕ R2), and therefore Z ⊥⊥ Ri|U . However
Z��⊥⊥(NC1, NC2)|U because, conditional on U , Z is associated with NC1 ⊕NC2 = R1 ⊕ R2.
Therefore (NC1, NC2) does not satisfy the NCO assumption. Indeed, even if the IV is valid,
we could still have Z��⊥⊥(NC1, NC2).

A small change in the data-generating process will break some of the independencies
discussed above. For example, changing the value of p1 to something different from 0.5
would imply that R2��⊥⊥(R1 ⊕ R2). In that case, Z��⊥⊥NC2 and NC2 would no longer satisfy
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the NCO assumption.

C.11 NCO Potentially Affecting IV

Z

W

X YU

NC

(A) Z ⊥⊥ U

Z

W

X YU

NC

(B) Z��⊥⊥U

Figure C10: Direct association between an NCO and the IV

Figure C10 presents a scenario in which if the IV is not exogenous, it could also be
associated with the NCO, not through the APO variable. For concreteness, consider the
case of studying the effect of teacher quality (X) on test scores (Y ). The IV (Z) is claimed
to be a random assignment of teachers. Unobserved ability (U) is the APO variable. In the
case of random assignment, ability has no association with the IV (Panel A). However, there
is a concern that the initial assignment was not random in practice. In Panel B, random
assignment did not take place, and so other considerations could have impacted the IV,
including unobserved ability U . Moreover, it is possible that proxies for unobserved ability,
such as lagged test scores (NC), were used directly in the assignment process as well. In this
case, Z��⊥⊥NC|U , and so the lagged outcome does not satisfy Definition 3. However, when
the design is exogenous, and Z ⊥⊥ U , the condition Z ⊥⊥ NC|U is satisfied. Hence, NC is
an NCO based on the broader Definition A3, defined below in Section D.1.1. Indeed, in this
case, if Z��⊥⊥NC, the design is not exogenous (Z��⊥⊥Y (x)).

D Additional Theory and Proofs

Throughout, we let P (·|·) be the conditional probability or density function. As a shorthand,
we leave the random variables to be understood from the arguments of P . For example, if
Y (x) is discrete, P [y(x)|u] is a shorthand for Pr[Y (x) = y(x)|U = u].

Auxiliary Lemmas

Lemma 1. Let A,B,D,Q be four random variables. If A ⊥⊥ B|D,Q and B ⊥⊥ Q|D then
A ⊥⊥ B|D.
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Proof. Because A ⊥⊥ B|D,Q, it follows that for all a, b, d, q, we have that

P (a, b|d, q) = P (a|d, q)P (b|d, q)
= P (a|d, q)P (b|d),

(A1)

where the last line follows from B ⊥⊥ Q|D. Now,

P (a, b|d) =
∫

P (a, b|d, q)P (q|d)dq =
[∫

P (a|d, q)P (q|d)dq
]
P (b|d) = P (a|d)P (b|d),

where the second equality is by (A1).

Lemma 2. Let A,B,D,Q be four random variables. If A ⊥⊥ B|D,Q and A��⊥⊥B|D then
A��⊥⊥Q|D and B��⊥⊥Q|D.

Proof. Assume by way of contradiction that B ⊥⊥ Q|D. Therefore, by Lemma 1, because A ⊥⊥
B|D,Q it follows that A ⊥⊥ B|D, which contradicts the assumption. A similar contradiction
is received by assuming A ⊥⊥ Q|D.

D.1 Negative Controls for Instrumental Variable Designs When
Control Variables Are Included

This section presents the proofs of the theoretical results from Section 2. We prove versions
of the results that are more general in three different ways. First, we discuss IV designs
that include control variables. Second, we provide more general definitions of NCO and
NCI (under weaker NCO and NCI assumptions, respectively). Third, for API variables we
discuss multiple threats to IV exogeneity (similar to the discussion for APO variables in
Section 2.2.1).

We start by presenting the outcome independence and exclusion restriction assumptions
when controls are included.

Assumption A1 (Outcome independence). Z ⊥⊥ Y (z, x)|C for all possible z, x values.

Assumption A2 (Exclusion restriction). Pr(Y (z, x) = Y (z′, x) = Y (x)|C = c) = 1 for all
possible z, z′, x, c values.

Similar to the case without controls, outcome independence and exclusion restriction
together yield Z ⊥⊥ Y (x)| C.

D.1.1 Negative Control Outcomes When Control Variables Are Included

We adapt the definitions of APO variables and NCOs as follows.
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Definition A2 (Alternative path outcome variable with controls). A random variable U is
an APO variable conditional on a set of controls C if there exists a random variable V such
that the following conditions hold.

1. Latent IV exogeneity. Z ⊥⊥ Y (x)|C,U, V.

2. Path indication. If Z ⊥⊥ Y (x)|C, V then Z ⊥⊥ U |C, V .

3. Direct IV link. If Z ⊥⊥ U |C, V then Z ⊥⊥ U |C.

4. V-validity. If Z⊥⊥Y (x)|C then Z⊥⊥Y (x)|C, V .

Definition A3 (Negative control outcome with controls). A random variable NC is an
NCO if it satisfies the NCO assumption with respect to controls C: There exists an APO
variable U such that if Z ⊥⊥ U |C then Z ⊥⊥ NC| U,C.

Even without controls (C = ∅), this definition is more general than Definition 3. To see
this, note that in the case without controls, if Z��⊥⊥U (and so the design is not exogenous),
Assumption A3 allows for an association Z��⊥⊥NC| U . Such an association between the NCO
and the IV is still informative about the validity of the IV design since this association
exists only if the design is invalid. Appendix C.11 provides an example of such an NCO.
Every variable that satisfies the NCO assumption in Definition 3 trivially satisfies this less
restrictive definition.

We are now ready to state the more general version of Theorem 1 and present its proof.
This theorem also covers the case without controls by letting C be degenerate.

Theorem A1. Assume that a random variable NC satisfies the NCO assumption with
respect to controls C (Definition A3). If Z��⊥⊥NC|C then Z��⊥⊥Y (x)|C. That is, the IV design
is not exogenous.

Proof. We begin by showing that Z��⊥⊥NC|C implies that Z��⊥⊥U |C. Else, if Z ⊥⊥ U |C then by
the NCO assumption (see Definition A3) Z ⊥⊥ NC| U,C. Based on Lemma 2, Z ⊥⊥ NC| U,C
and Z��⊥⊥NC|C imply that Z��⊥⊥U |C, a contradiction.

Next, from direct IV link if follows that Z��⊥⊥U |C implies Z��⊥⊥U |V,C. Then, by path
indication, we get that Z��⊥⊥Y (x)|V,C. Finally, by V-validity we have that Z��⊥⊥Y (x)|C.

D.1.2 Negative Control Instruments When Control Variables Are Included

We first extend Definition 4 to allow for additional threats (similar to Definition 2 for APO
variables) and to include controls C.
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Definition A4 (Alternative path instrument variable with controls). A random variable U

is an API variable conditional on a set of controls C if there exists a random variable V

such that the following conditions hold.

1. Latent IV exogeneity. Z ⊥⊥ Y (x)|C,U, V .

2. Path indication. If Z ⊥⊥ Y (x)|C, V then U ⊥⊥ Y |Z,C, V .

3. Direct outcome link. If U⊥⊥Y |Z,C, V then U⊥⊥Y |Z,C.

4. V-validity. If Z⊥⊥Y (x)|C then Z⊥⊥Y (x)|C, V .

Condition 1 is the same as in Definition A2. Conditions 2–4 together imply a version of
Condition 2 from Definition 4 that includes controls. Similar to the theory of APO variables,
the condition is decomposed into three independent conditions to exclude proxies for threats
and maintain that V is indeed a threat (similar to Definition A2).

Next, we generalize the definition of an NCI to include controls and allow for direct
associations with the outcome if the IV design is not exogenous.

Definition A5 (Negative control instrument with controls). A random variable NC is an
NCI if it satisfies the NCI assumption with respect to controls C: There exists an API
variable U such that if U ⊥⊥ Y |Z,C then

Y ⊥⊥ NC|Z,C, U. (A2)

We are now ready to state the more general version of Theorem 2 and present its proof.
This theorem also covers the case without controls by letting C be degenerate.

Theorem A2. Assume that a random variable NC satisfies the NCI assumption with respect
to controls C (Definition A5). If Y��⊥⊥NC|Z,C, then Z��⊥⊥Y (x)|C. That is, the IV design is
not exogenous.

Proof. We divide the proof into two cases with respect to the API variable U for which the
NCI assumption holds for NC.

First, assume that U��⊥⊥Y |Z,C. In this case, from direct outcome link it follows that
U��⊥⊥Y |Z,C, V , and therefore by path indication, Z��⊥⊥Y (x)|C, V . Therefore, by V -validity, we
have that Z��⊥⊥Y (x)|C; i.e., IV exogeneity is violated.

We now turn to the other case, where U⊥⊥Y |Z,C. By the NCI assumption (Defini-
tion A5), we have that Y⊥⊥NC|Z,C, U , and by the condition of the theorem we have that
Y��⊥⊥NC|Z,C. Therefore, by Lemma 2 (with D = {Z,C}, Q = U), we have that U��⊥⊥Y |Z,C,
which contradicts the assumption U⊥⊥Y |Z,C.
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We now turn to state and prove a version of Theorem 3, conditional on controls C.

Theorem A3. Assume that a random variable NC satisfies the NCI assumption with re-
spect to controls C (Definition A5). If, in addition, Z ⊥⊥ NC|C, then if Y��⊥⊥NC|C, then
Z��⊥⊥Y (x)|C.

Proof. Assume by way of contradiction that IV exogeneity Z ⊥⊥ Y (x)|C holds. Because
NC is an NCI, it follows from Theorem A2 that Y ⊥⊥ NC|Z,C. Additionally, based on
the assumption that Z ⊥⊥ NC|C, Lemma 1 implies that Y ⊥⊥ NC|C, which contradicts the
premise.

D.2 Control Variables and Functional Form

Proof of Corollary 1

Proof. The minimized expression can be written as

E[Z − b′CC − bNCNC]2 = E
[
Z − E[Z|C,NC]

]2
+ E

[
E[Z|C,NC]− b′CC − bNCNC

]2
plus a term equaling zero because E[Z−E[Z|C,NC]] is zero by the law of total expectation.
Since E[Z − E[Z|C,NC]]2 does not depend on bC , bNC , we can write

γ = argmin
bc,bNC

E
[
E[Z|C,NC]− b′CC − bNCNC

]2
.

Because outcome independence, exclusion restriction, and rich covariates are assumed, Equa-
tion (4) holds and E[Z|C,NC] = γ′

CC. Hence, we can further write

γ = argmin
bc,bNC

E[γ′
CC − b′CC − bNCNC]2.

The values that minimize this nonnegative expression are b′C = γ′
C and bNC = 0 and so the

OLS population-level coefficient is γ′ = (γ′
C , 0). If γNC ̸= 0, it must be that (4) does not hold.

Therefore, either outcome independence, exclusion restriction, or rich covariates is violated.

Proof of Corollary 2

Proof. Similar to the proof of Corollary 1, we write the equivalent minimization problem as

θ = argmin
bZ ,bc,bNC

E
[
E[Y |Z,C,NC]− bZZ − b′CC − bNCNC

]2
.
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Because outcome independence, exclusion restriction, and CSRF are assumed, Equation (5)
holds and

θ = argmin
bZ ,bc,bNC

E[θZZ + θ′CC − bZZ − b′CC − bNCNC]2.

The values that minimize this expression are bZ = θZ , b
′
C = θ′C and bNC = 0 and so the OLS

population-level coefficient is θ′ = (θZ , θ
′
C , 0). If θNC ̸= 0, it must be that (5) does not hold.

Therefore either outcome independence, exclusion restriction, or CSRF is violated.

Proof of Corollary 3

Proof. Let Z̃ = Z−C ′E[CC ′]−1E[CZ] and ÑC = NC−C ′E[CC ′]−1E[CNC] be the residuals
from the linear regressions of Z and NC on C, respectively. By the Frisch–Waugh–Lovell
theorem, we can write βZ as

βZ =
COV (Z̃, ÑC)

V ar(Z̃)
.

If βZ ̸= 0 then it must be that COV (Z̃, ÑC) ̸= 0. Define (γ′
C , γNC) to be the population-level

solution of the reverse OLS, with Z as the dependent variable (as in Corollary 1). Again, by
the Frisch–Waugh–Lovell theorem, we can write γNC as

γNC =
COV (Z̃, ÑC)

V ar(ÑC)
.

Since COV (Z̃, ÑC) ̸= 0 it follows that γNC ̸= 0 as well. By Corollary 1, we have that either
outcome independence, exclusion restriction, or rich covariates does not hold.

D.3 Bias Correction

In this section, we first present an alternative assumption instead of treatment effect homo-
geneity, under which τDiW identifies a causal effect. Then, we discuss additional scenarios for
the period 0 assignments of the IV and the treatment. Finally, in Section D.3.3, we present
proofs for Theorem 4 in the main text, and for the appendix theorems.

D.3.1 No Treatment without IV

Theorem 4 showed a set of assumptions under which the DiW estimator identifies a causal
effect. An alternative set of assumptions can be invoked when treatment is only available
for observations that receive the IV.
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Assumption A3 (No treatment without IV). X1(0) = 0.

Using terminology from Angrist et al. (1996), this assumption implies that there are
no always-takers and defiers in the population. Therefore, monotonicity (X1(1) ≥ X1(0))
holds as well. For example, Assumption A3 is satisfied if the IV is a voucher for receiving
treatment, and treatment is not available without a voucher.

When this assumption holds, the DiW estimator can be used for bias correction even
without treatment effect homogeneity. Specifically, τDiW identifies the treatment effect for
the treated compliers.

Theorem A4. Assume that treatment independence, exclusion restriction, Assumption 5,
and Assumption A3 hold. The difference-in-Wald estimator identifies the causal effect on
the treated compliers. That is,

τDiW = E[Y1(1)− Y1(0)|X1 = 1, X1(1) > X1(0)].

The proof is given in Section D.3.3.

D.3.2 Additional Scenarios

In Section 5, we discussed the scenario of an NCO Y0, which is a lagged outcome from a
preperiod before the IV and the treatment were initiated (i.e., Z0 = X0 = 0 with probability
one). In this section, we study two additional scenarios for the preperiod.

• No IV: Z0 = 0, X0 = X0(0).

• No IV effect on the treatment: Z0 = Z1, X0 = X0(0).

In the no-IV scenario, the treatment has already started; however, the IV has not been
initiated yet. This corresponds to cases where the IV represents a new policy to encourage
participation in an ongoing treatment. For example, the IV may be a new subsidy for
participation in an already running program.

The no IV effect on the treatment scenario considers the case where the IV has already
been initiated, but the IV does not affect the treatment at the preperiod. Moreover, we
assume that the IV is the same in both periods. The treatment has also already been
initiated. However, the IV still does not have a causal effect on the treatment. For example,
the IV could be a subsidy to encourage participation in the treatment. In contrast to the
no-IV scenario, here the subsidy has already been given at the preperiod. Yet, it still does
not affect the treatment (e.g., there is a delay in joining the treatment, which does not affect
those already treated). While this scenario is most useful for bias correction, it is also quite
seldom observed.
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As before, we assume that outcome independence, relevance, and exclusion restriction
hold. Since we do not have a homogeneous treatment effect, we also need to assume that
monotonicity (X1(1) ≥ X1(0)) holds as well. We also assume that the NCO satisfies similar
assumptions to the assumptions of DiD (Roth et al., 2023). Denote by Yt(z0, x0, z1, x1) the
potential outcomes at time t = 0, 1. For brevity we sometimes write Yt(zs = a, xs = b)

to denote an intervention on zs, xs. In this case zr, xr for r ̸= s are not intervened (zr =

Zr, xr = Xr).

Assumption A4 (DiD for IV assumptions).

1. No Anticipation Y0(z0, x0, z1, x1) = Y0(z0, x0, 0, 0) for every value of z0, x0, z1, x1 ∈
{0, 1}4.

2. Parallel Trends

E
[
Y1(z1 = Z0, x1 = X0(Z0))− Y0(z0 = Z0, x0 = X0(Z0)) | Z1 = 1

]
= E

[
Y1(z1 = Z0, x1 = X0(Z0))− Y0(z0 = Z0, x0 = X0(Z0)) | Z1 = 0

]
.

The first condition implies that the lagged outcome Y0 is not affected by the future
treatment or IV. The second condition generalizes the DiD parallel-trends assumption for
the IV setting. It is a counterfactual statement that in the absence of changes in the IV and
the treatment between periods, the trends in the outcome would be the same in expectation
for observations that are IV-treated and IV-untreated. In the case of no IV and no treatment
(Z0 = X0 = 0), this assumption boils down to Condition 2 in Assumption 5.

Since in these scenarios treatment is defined in the preperiod as well, we need to make
an additional assumption.

Assumption A5 (Same type). For every value of z ∈ {0, 1}, X0(z) = X1(z).

This assumption states that for all observations, the observation type as defined by
Angrist et al. (1996) (always-taker, compiler, never-taker) is the same in both periods. Hence,
always-takers are treated in both periods, never-takers are untreated in both periods, and
compliers are only treated when the IV equals one in period 1.

The following two theorems establish the identification of causal effects by τDiW in each
of the two scenarios.

Theorem A5 (No IV). Assume the no-IV scenario. Under treatment independence, rele-
vance, monotonicity, exclusion restriction, Assumption A4, and same type (Assumption A5),
the difference-in-Wald estimator identifies the causal effect of the treatment on the treated
compliers. That is,

τDiW = E[Y1(1)− Y1(0)|X1 = 1, X1(1) > X1(0)].
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Theorem A6 (No IV effect on the treatment). Assume the no IV effect on the treatment sce-
nario. Under treatment independence, relevance, monotonicity, Assumption A4, and same
type (Assumption A5), the difference-in-Wald estimator identifies the causal effect on the
treated compliers. That is,

τDiW = [Y1(1, 1)− Y1(1, 0)|X1 = 1, X1(1) > X1(0)].

Theorem A5 shows that in the no-IV scenario, DiW can be used for bias correction in
case of a violation of outcome independence. However, a violation of the exclusion restriction
would still bias this estimator. Theorem A6 shows that in the no IV effect on the treatment
scenario, DiW could address violations of both outcome independence and exclusion re-
striction. In both cases, the DiW estimator estimates the causal effect only for the treated
compliers. Note that in Theorem A6 we have not assumed the exclusion restriction, hence
for clarity the value of the IV appears in the definition of the effect.

D.3.3 Proofs

We first prove the following lemma that will be used for the proofs of Theorems 4 and A4.

Lemma 3. Assume Z0 = X0 = 0 and assume that treatment independence, relevance,
exclusion restriction, and Assumption 5 hold. The difference-in-Wald estimator equals

τDiW =
E
[
Y1(1)− Y1(0) | Z1 = 1, X1(1) > X1(0)

]
Pr

[
X1(1) > X1(0)

]
+B1

E[X1|Z1 = 1]− E[X1|Z1 = 0]
, (A3)

where

B1 =Pr
(
X1(0) = 1, X1(1) = 1

)(
E
[
Y1(1)− Y1(0) | Z1 = 1, X1(0) = 1, X1(1) = 1

]
− E

[
Y1(1)− Y1(0) | Z1 = 0, X1(0) = 1, X1(1) = 1]

)
− Pr

(
X1(0) = 1, X1(1) = 0

)(
E
[
Y1(1)− Y1(0) | Z1 = 0, X1(1) < X1(0)]

)
.

Proof. By the no-anticipation condition, Y0(z1, x1) = Y0(0, 0), and hence we can write Y0 =

Y0(0, 0). The numerator of the DiW estimator then equals

E[Y1 − Y0|Z1 = 1]− E[Y1 − Y0|Z1 = 0]

= E
[
Y1(1, X1(1))− Y0(0, 0)|Z1 = 1

]
− E

[
Y1(0, X1(0))− Y0(0, 0)|Z1 = 0

]
. (A4)

By the parallel-trends condition, we can replace Y0(0, 0) with Y1(0, 0) inside both of the
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expectations of (A4) to obtain

E[Y1(1, X(1))− Y1(0, 0)|Z1 = 1]− E[Y1(0, X(0))− Y1(0, 0)|Z1 = 0]. (A5)

By the law of total expectation with respect to the type (compliers, for which X1(1) > X1(0);
never-takers, for which X1(1) = X1(0) = 0; always-takers, for which X1(1) = X1(0) = 1;
and defiers, for which X1(1) < X1(0)), and by treatment independence {X(0), X(1)} ⊥⊥ Z,
we can write Equation (A5) as

Pr
[
X1(1) > X1(0)

](
E
[
Y1(1, 1)− Y1(0, 0)|Z1 = 1, X1(1) > X1(0)

]
− E

[
Y1(0, 0)− Y1(0, 0)|Z1 = 0, X1(1) > X1(0)

])
+ Pr

(
X1(1) = X1(0) = 0

)(
E
[
Y1(1, 0)− Y1(0, 0) | Z1 = 1, X1(1) = X1(0) = 0

]
− E

[
Y1(0, 0)− Y1(0, 0) | Z1 = 0, X1(1) = X1(0) = 0

])
+ Pr

(
X1(1) = X1(0) = 1

)(
E
[
Y1(1, 1)− Y1(0, 0) | Z1 = 1, X1(1) = X1(0) = 1

]
− E[Y1(0, 1)]− Y1(0, 0) | Z1 = 0, X1(1) = X1(0) = 1

])
+ Pr

[
X1(1) < X1(0)

](
E
[
Y1(1, 0)− Y1(0, 0)|Z1 = 1, X1(1) < X1(0)

]
− E

[
Y1(0, 1)− Y1(0, 0)|Z1 = 0, X1(1) < X1(0)

])
= Pr

[
X1(1) > X1(0)

]
E
[
Y1(1, 1)− Y1(0, 0) | Z1 = 1, X1(1) > X1(0)

]
+ Pr

(
X1(1) = X1(0) = 0

)
E
[
Y1(1, 0)− Y1(0, 0) | Z1 = 1, X1(1) = X1(0) = 0

]
+ Pr

[
X1(1) = X1(0) = 1

](
E
[
Y1(1, 1)− Y1(0, 0) | Z1 = 1, X1(1) = X1(0) = 1

]
− E

[
Y1(0, 1)− Y1(0, 0) |Z1 = 0, X1(1) = X1(0) = 1

])
+ Pr

[
X1(1) < X1(0)

](
E
[
Y1(1, 0)− Y1(0, 0)|Z1 = 1, X1(1) < X1(0)

]
− E

[
Y1(0, 1)− Y1(0, 0)|Z1 = 0, X1(1) < X1(0)

])
.

By the exclusion restriction assumption this becomes

Pr
[
X1(1) > X1(0)

]
E
[
Y1(1)− Y1(0) | Z1 = 1, X1(1) > X1(0)

]
+ Pr

[
X1(1) = X1(0) = 1

](
E
[
Y1(1)− Y1(0) | Z1 = 1, X1(1) = X1(0) = 1

]
− E

[
Y1(1)− Y1(0) |Z1 = 0, X1(1) = X1(0) = 1

])
− Pr

[
X1(1) < X1(0)

]
E
[
Y1(1)− Y1(0) | Z1 = 0, X1(1) < X1(0)

]

The denominator equals E[X1|Z1 = 1]− E[X1|Z1 = 0] and hence we have the expression
of Equation (A3).

Proof of Theorem 4

Proof. By Lemma 3 and Assumption 6, the numerator of τDiW is

Pr
[
X1(1) > X1(0)

]
τ − Pr

[
X1(1) < X1(0)

]
τ.

The denominator of τDiW (the first stage) identifies

Pr
[
X1(1) = 1

]
− Pr

[
X1(0) = 1

]
= Pr

[
X1(1) > X1(0)

]
− Pr

[
X1(1) < X1(0)

]
.

Dividing the numerator by the denominator yields τDiW = τ.
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Proof of Theorem A4

Proof. By Lemma 3, the numerator of τDiW equals

E
[
Y1(1)− Y1(0) | Z1 = 1, X1(1) > X1(0)

]
Pr

[
X1(1) > X1(0)

]
+B1.

Since there are no always-takers or defiers (by Assumption A3), we have that Pr(X1(0) =

1) = 0 and therefore B1 = 0. Furthermore, the denominator (the first stage) identifies
Pr

[
X1(1) > X1(0)

]
. Therefore,

τDiW = E
[
Y1(1)− Y1(0) | Z1 = 1, X1(1) > X1(0)

]
.

Proof of Theorem A5

Proof. Under the no-IV scenario, Z0 = 0, X0 = X0(0), and the parallel-trends condition
takes the form

E
[
Y1(z1 = 0, x1 = X0(0))− Y0(z0 = 0, x0 = X0(0)) | Z1 = 1

]
= E

[
Y1(z1 = 0, x1 = X0(0))− Y0(z0 = 0, x0 = X0(0)) | Z1 = 0

]
.

The numerator of the DiW estimator is

E
[
Y1 − Y0 | Z1 = 1

]
− E

[
Y1 − Y0 | Z1 = 0

]
= E

[
Y1

(
z1 = 1, x1 = X1(1)

)
− Y0

(
z0 = 0, x0 = X0(0)

)
| Z1 = 1

]
− E

[
Y1

(
z1 = 0, x1 = X1(0)

)
− Y0

(
z0 = 0, x0 = X0(0)

)
| Z1 = 0

]
= E

[
Y1

(
z1 = 1, x1 = X1(1)

)
− Y1

(
z1 = 0, x1 = X0(0)

)
| Z1 = 1

]
− E

[
Y1

(
z1 = 0, x1 = X1(0)

)
− Y1

(
z1 = 0, x1 = X0(0)

)
| Z1 = 0

]
= E

[
Y1

(
z1 = 1, x1 = X1(1)

)
− Y1

(
z1 = 0, x1 = X1(0)

)
| Z1 = 1

]
,

where the first equality is by definition, the second equality by the parallel-trends condition
and the third equality follows from the fact that under same type X0(0) = X1(0).

As in the proof of Lemma 3, we continue by the law of total expectation with respect to
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the type and use treatment independence to obtain

E
[
Y1(1, X1(1))− Y1(0, X1(0)) | Z1 = 1

]
= Pr[X1(1) > X1(0)]E

[
Y1(1, 1)− Y1(0, 0) | Z1 = 1, X1(1) > X1(0)

]
+ Pr

[
X1(1) = 0

]
E
[
Y1(1, 0)− Y1(0, 0) | Z1 = 1, X1(1) = 0

]
+ Pr

[
X1(0) = 1

]
E
[
Y1(1, 1)− Y1(0, 1) | Z1 = 1, X1(0) = 1

]
.

Because of treatment independence and monotonicity, the denominator equals Pr[X1(1) >

X1(0)]. Dividing the numerator by this denominator, we have that

DiW = E
[
Y1(1, 1)− Y1(0, 0) | Z1 = 1, X1(1) > X1(0)

]
+B2

= E
[
Y1(1, 1)− Y1(0, 0) | X1 = 1, X1(1) > X1(0)

]
+B2,

(A6)

where

B2 =
Pr(X1(1) = 0)

Pr[X1(1) > X1(0)]
E[Y1(1, 0)− Y1(0, 0) | Z1 = 1, X1(1) = 0]

+
Pr(X1(0) = 1)

Pr[X1(1) > X1(0)]
E
[
Y1(1, 1)− Y1(0, 1) | Z1 = 1, X1(0) = 1

]
.

(A7)

By the exclusion restriction assumption, the first term in (A6) becomes

E
[
Y1(1)− Y1(0) | X1 = 1, X1(1) > X1(0)

]
and, furthermore, B2 = 0 because Y1(1, 0) = Y1(0, 0) and Y1(1, 1) = Y1(0, 1).

Proof of Theorem A6

Proof. By the no IV effect on the treatment, Z0 = Z1, X0 = X0(0), so the parallel-trends
condition takes the form

E
[
Y1(z1 = 1, x1 = X0(0))− Y0(z0 = 1, x0 = X0(0)) | Z1 = 1

]
= E

[
Y1(z1 = 0, x1 = X0(0))− Y0(z0 = 0, x0 = X0(0)) | Z1 = 0

]
.
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As before, we start with the numerator:

E
[
Y1 − Y0 | Z1 = 1

]
− E[Y1 − Y0 | Z1 = 0

]
= E

[
Y1(z1 = 1, x1 = X1(1))− Y0(z0 = 1, x0 = X0(0)) | Z1 = 1

]
− E

[
Y1(z1 = 0, x1 = X1(0))− Y0(z0 = 0, x0 = X0(0)) | Z1 = 0]

= E
[
Y1(z1 = 1, x1 = X1(1))− Y1(z0 = 1, x0 = X0(0)) | Z1 = 1

]
− E

[
Y1(z1 = 0, x1 = X1(0))− Y1(z1 = 0, x1 = X0(0)) | Z1 = 0

]
= E

[
Y1(z1 = 1, x1 = X1(1))− Y1(z1 = 0, x1 = X1(0)) | Z1 = 1

]
,

where the first equality is by definition, the second equality by the parallel trends condition,
and the third equality follows the same type assumption, X0(0) = X1(0).

Now, by the law of total expectation the last expression equals

Pr
[
X1(1) > X1(0)

]
E
[
Y1(1, X1(1))− Y1(1, X0(0)) | Z1 = 1, X1(1) > X1(0)

]
,

because for the always-takers and for the never-takers, Y1(1, X1(1)) = Y1(1, X1(0)).
Because of treatment independence and monotonicity, the denominator (the first stage)

identifies Pr[X1(1) > X1(0)]. Dividing the numerator by the first stage yields

E
[
Y1(1, X1(1))− Y1(1, X0(0)) | Z1 = 1, X1(1) > X1(0)

]
.

E Simulation Details

This section provides additional details about the DGPs used for the simulations in Sec-
tion 3.5. In these analyses, we specify the relationships between the IV, the controls, the
alternative path variables, and the negative controls. We do not specify the DGP of the
outcome and exactly how the APO variable is associated with it, as the NCO test perfor-
mance does not depend on this information. For all scenarios described in this section, and
for each unique combination of parameter values, we simulated 1,000 datasets, each with
10,000 observations.
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Violations of Outcome Independence. For the first analysis, the DGPs were parame-
terized as follows.

Z = γ0 + γUg(U) +
5∑

j=1

Cj + ϵZ ,

NCk = βU + ϵNC,k,

(A8)

where Z is the IV, U is an APO variable, C is a vector of five independent control variables
indexed by j, NC is a vector of ten NCOs indexed by k, and ϵZ , ϵNC,k are independent
normally distributed error terms.

The APO variable was simulated from a uniform distribution U ∼ U [−3, 3]. The vector of
the five independent control variables C included C1, C2, C3 ∼ N(1, 3), C4 ∼ Ber(0.3), and
C5 ∼ Ber(0.5). The intercept was taken to be γ0 = 1. For γU (the parameter controlling
the magnitude of the APO variable association with the IV) we took the values γU =

0, 0.1, 0.2, ..., 1. The error term for Z was simulated from ϵZ ∼ N (0, 5), and for each k, ϵNC,k

was simulated independently as ϵNC,k ∼ N (0, σ2).
We consider two alternative scenarios. In the first, “linear” scenario (Panel A of Figure 3),

g(u) = u (the identity) and σ2 = 25. In the second, “nonlinear” scenario (Panel B), g(u) =
8min{u2, 1.5} (a truncated parabolic function) and σ2 = 3.

Violations of Rich Covariates. We use the same DGP and parameter values specified
by Blandhol et al. (2022) in their simulation study. Following Blandhol et al. (2022), the
IV Z is a binary variable with a probability that can be written as a cubic polynomial in
a single control variable, drawn from a uniform distribution C ∼ U(0, 1). That is, Pr(Z =

1|C) = γ0 + γ1C − γ2C
2 + γ3C

3
i , with (γ0, γ1, γ2, γ3) = (0.119, 1.785,−1.534, 0.597).

We augment this DGP with an APO variable U (simulated from a uniform distribution
U ∼ U [−3, 3] as before). We then define ten negative controls associated with this APO. To
that end, each NCO is simulated by

NC = β1C + η(β0 + β2C
2 + β3C

3) + βUU + ϵNC , (A9)

where ϵNC is simulated from a standard normal distribution ϵNC ∼ N(0, 1). We take
(β0, β1, β2, β3) = (0.119, 1.785,−1.534, 0.597) as well and βU = 0.3.

In this DGP, the parameter η is a weight on the nonlinear part of the association between
C and NC. As η increases the association becomes more nonlinear. For this parameter, we
take the values η = 0.0.5, 1, 1.5, ..., 5.
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F Details of the Implementation of Negative Control Tests
Using Data from Prior Studies

This section provides additional details for the analysis in Section 4, which implements our
proposed methods on IV designs used in prior studies. Appendix Table A1 summarizes
information about the key variables in each study. We are grateful to the authors of these
prior studies for publicly posting their data and code. In each case, we first used the publicly
posted data to replicate the related original study’s results (this step is not further discussed
here). We then applied our additional negative control falsification tests.

F.1 Autor, Dorn and Hanson (2013)

Sample Construction. For this analysis, we use the original study’s data from Autor et
al. (2013, henceforth ADH), which is taken from the US Census. The unit of analysis is a
commuting zone. The sample included 722 commuting zones.

Main Variables. For each commuting zone, we observe all variables from the original
study’s replication data, and additional variables not used in the original study, some of
which we use as NCOs in our current analysis. The treatment and IV are built as shift-
share variables, weighting change in Chinese import by industry where weights are the local
industry shares in the commuting zone. The treatment uses Chinese imports in the US and
the IV uses Chinese imports in other developed countries to avoid endogeneity. We focus on
the analysis for the years 2000–2007. The treatment and IV are the shift-share difference
in Chinese imports between the years 2007 and 2000. The control variables are the lagged
year 2000 values. Note that ADH also used another version of the IV, measured between
1990–2000. We do not evaluate this version, because it would not allow us to use the large
set of variables from 1990 as NCOs.

Original Falsification Tests. ADH conducted falsification exercises to evaluate the con-
cern that the decline in US manufacturing employment in commuting zones with high ex-
posure to Chinese imports might occurred for reasons unrelated to Chinese import. They
regress past changes in the manufacturing employment share on future changes in import
exposure (See Columns (4)–(6) of Table 2 in ADH). This relationship was found to be signif-
icant only for 1970–1980, but not for 1980–1990 or 1970–1990. The significant specification
yielded a coefficient with the opposite sign. We replicated this analysis and obtained a simi-
lar result. The p-value is reported in Column (1) of Table 3. This original exercise is similar
in spirit to our proposed approach, although it uses the different negative controls separately
and not jointly. It also uses a 2SLS specification for estimation, not the reduced form.
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The rest of this section discusses additional falsification tests that we performed using
alternative negative control variables sourced from the original replication data.

Additional NCOs. We use 52 NCOs in our falsification analysis. These include the
NCOs that were used originally by ADH (lagged changes in manufacturing employment)
and all variables measuring labor market conditions in 1990. In particular, we include the
share of workers who were employed in manufacturing, employed in non-manufacturing,
unemployed, and not in the labor force, separately for males, females, college educated, non-
college educated, and for three different age groups; the share who received SSDI; average log
weekly wages in manufacturing and in non-manufacturing; average household total income
and average household wage; total population and size of the workforce; levels of transfers
per capita for medical benefits, federal income assistance, unemployment benefits, TAA
benefits, education/training assistance, SSA retirement benefits, SSA disability benefits,
other assistance, and total individual transfers.

Implementation Details. We use the same sampling weights used by ADH in the original
study (timepwt48). We also follow ADH and cluster standard errors by states (statefip).

In Column (1), we use a single NCO that was used in the original analysis, namely the
change in manufacturing employment between 1970–1980. We replicated the ADH analysis,
which regressed past outcomes (1970) on the future treatments (years 1990 and 2000 aver-
aged), instrumented by the future IVs (see Column (4) of Table 2 in ADH). We report the
p-value of the coefficient on the treatment with cluster robust (by state) standard errors. In
Column (2) we perform a similar analysis by regressing the 1970 outcome on the year 2000
IV (e.g., reduced form) including the full set of 16 control variables (as in Column (6) of
Table 3 in ADH).

F.2 Deming (2014)

Sample Construction. We use the original study’s data from a public school choice
lottery in Charlotte-Mecklenburg, North Carolina. The unit of analysis is the individual
student. The sample includes 2,343 students.

Main Variables. We use Deming’s VAM estimates from the mixed-effects specification,
controlling for past test scores.27 Based on the replication code, we can write the IV can as

IVi = LiV AM1
i + (1− Li)V AMN

i (A10)
27The original study included richer specifications (models 3–4 in the original study) that controlled for

individual characteristics, which were not made publicly available due to privacy constraints.
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where L is the binary school lottery outcome, V AM1 is the value added of the first-choice
school, and V AMN is the value added of the default neighborhood school. These variables
are included in the original study’s replication data.

Control variables include lagged test scores from the year 2001–2002 as well as lottery
fixed effects (i.e., a categorical variable for every choice of school ranking). Following Deming
(2014), the test scores include the math and reading test scores in nominal, quadratic, and
cubic values, and an indicator of missing values.

NCOs. The original study did not report any falsification tests. We perform falsification
analysis using lagged test scores from earlier school years (1998–2001) that were included
in the replication data but not included as controls in the study (see the control variables
definition), and lagged outcome (testz2002; i.e., 2002 test scores). We also used the VAM
of the three schools that the student applied to in the lottery and the neighborhood school’s
VAM. In total, we used 37 NCOs.

Implementation Details. Following the original paper, all our analyses are unweighted.
In the F-test and pseudo-outcome with Bonforoeni correction, we perform a fixed-effect
regression with the lottery_FE variable. In the GAM models, fixed effects are accounted
for by taking lottery_FE as a categorical variable without a smooth term. In the pseduo-
outcome analysis with a single NCO, we repeat the analysis with lagged test scores (from
2001–2002) and a linear specification.

Additional Analysis. In Appendix Figure A2 we show the correlation of each NCO with
the outcome and the IV. Before calculating each correlation, we residualized the NCO and
the IV or the outcome by the control variables.

In an unreported analysis, we replicated the main 2SLS results using Li, the raw lot-
tery outcome, as an alternative IV. The point estimates remained statistically unchanged,
although standard errors were larger.

F.3 Nunn and Qian (2014)

Sample Construction. We use the study data, which consists of annual panel data of
125 non-OECD countries over 36 years. The sample includes 4,572 observations.

Main Variables. The IV of the study is the US wheat production from the previous year.
We limit our analysis to the main outcome variable of the study, which is the intrastate
conflict indicator. We utilize the extended set of 238 control variables (as in the “baseline
specification” in Table 2 of Nunn and Qian (2014)).

A.27



NCIs. As in the original study, we used a set of ten NCIs. The NCIs are the lagged US
production of various products that are not sent as foreign aid.

Original Falsification Tests. Nunn and Qian (2014) performed a falsification test (Ta-
ble 5 in Nunn and Qian) with the aforementioned NCIs by estimating the reduced form
equation

Yi = NCIji + IVi + Ci + ϵi

for each of the ten NCIj and the “baseline specification” of the control variables.

Implementation Details. In all analyses, we follow Nunn and Qian (2014) and cluster
standard errors by country.

Additional Analysis. We can also implement a GAM model with linear controls. This
test rejects the null hypothesis. The rejection is driven at least in part by a violation
of the unnecessary CSRF Assumption (Assumption 4). To test the functional form, we
implement Ramsey’s RESET test for misspecification with quadratic and cubic fitted values
for the reduced form equation. This test results in a p-value lower than 1% implying a
misspecification.

However, the large number of control variables does not allow for estimating a GAM
model with smooth controls as well, or for including interactions of the control variables.
Therefore, we cannot assess IV exogeneity separately.

F.4 Ashraf and Galor (2013)

Sample Construction. The study’s data consists of a sample of 145 countries.

Main Variables. The outcome of the study is the historical population density, which is
defined as the log population density in 1500 CE. The main IV is the migratory distance
from Addis Ababa. We use the same set of four control variables included in the study.

NCIs. We use the same three NCIs As in the original study, which are the migratory
distance from London, Tokyo, and Mexico City.

Implementation Details. We follow Ashraf and Galor (2013) and include a quadratic
polynomial for both the IV and the NCIs.

A.28


	Survey of Current Practice
	Theory of Negative Controls in IV Settings
	Setup
	Negative Control Outcomes
	Alternative Path Outcome Variables
	Negative Control Outcome Assumption
	Negative Control Outcome Test

	Negative Control Instruments
	Alternative Path Instrument Variables
	Negative Control Instrument Assumption
	Negative Control Instrument Test

	Control Variables and Functional Forms

	Negative Control Test Procedures
	Pseudo-Outcome and Pseudo-IV Tests
	Parametric Conditional Independence Tests
	Semi-Parametric Conditional Independence Tests
	Non-Parametric Conditional Independence Tests
	Simulations

	Practical Guidance
	Choosing Negative Controls
	Common Types of Negative Control Outcomes
	Common Types of Negative Control Instruments
	Novel Types of Negative Control Instruments
	Power Considerations

	Choosing a Statistical Test
	Interpreting the Test Results

	Bias Correction
	Conclusion
	Additional Figures and Table
	Details on Survey of Common Practices
	Examples and Counterexamples
	Non-Causal APO Variable
	Heterogeneity-Based Violation of Path Indication
	Violation of Path Indication: Multivariate Variable
	Multiple Threats
	Direct IV Link Rules out Proxies of V
	Path Indication Rules Out Proxies of V
	Violation of V-validity
	Violation of the NCO Assumption
	Potential Alternative Path Variables and Direct Treatment Link
	Counterexample: A Vector of NCOs That is Not an NCO
	NCO Potentially Affecting IV

	Additional Theory and Proofs
	Negative Controls for Instrumental Variable Designs When Control Variables Are Included
	Negative Control Outcomes When Control Variables Are Included
	Negative Control Instruments When Control Variables Are Included

	Control Variables and Functional Form
	Bias Correction
	No Treatment without IV
	Additional Scenarios
	Proofs


	Simulation Details
	Details of the Implementation of Negative Control Tests Using Data from Prior Studies
	*autor2013china
	deming2014using
	nunn2014us
	ashraf2013out


