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Abstract

We study how performance metrics affect the allocation of talent by exploiting the

introduction of the first citation database in science. For technical reasons, it only

covered citations from certain journals and years, creating quasi-random variation: some

citations became visible, while others remained invisible. We identify the effects of citation

metrics by comparing the predictiveness of visible to invisible citations. Citation metrics

increased assortative matching between scientists and departments by reducing information

frictions over geographic and intellectual distance. Highly-cited scientists from lower-ranked

departments (“hidden stars”) and from minorities benefited more. Citation metrics also

affected promotions and NSF-grants, suggesting Matthew effects.
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The allocation of talent to productive positions in society is of utmost importance

for the creation of new ideas, technological progress, and economic growth (e.g., Murphy

et al., 1991; Jones, 1995; Weitzman, 1998; Romer, 1986, 1990; Hsieh et al., 2019). As talent

is scarce, private sector firms and universities increasingly rely on performance metrics

to identify talented individuals (e.g., Hoffman et al., 2018; Forbes, 2013). In academia,

performance metrics based on citations and publications affect hiring, promotions, wages,

research funding, and the prestige of academics (e.g., Hamermesh and Schmidt, 2003;

Ellison, 2013). Due to their increasing use, concerns have been raised about a potential

overreliance on performance metrics in science (DORA, 2013; CoARA, 2022). Despite the

importance of such metrics, as well as the recent discussions, there is virtually no evidence

that quantifies how performance metrics affect the organization of science.

In this article, we provide the first systematic evidence of the impact of performance

metrics on the allocation of talent and on scientific careers. Specifically, we study how

citation metrics affect the assortative matching between scientists and universities, which

groups benefit most from citation metrics, and how citation metrics affect career outcomes,

such as promotions and research funding.

Our empirical strategy exploits the introduction of the Science Citation Index (SCI),

which led to quasi-random variation in the visibility of individual scientists’ citation

counts. While researchers always had a rough sense of the influence of scientific work,

it was impossible to systematically measure citations until the 1960s. This changed

fundamentally in 1963 when Eugene Garfield published the first Science Citation Index

(SCI). For the first time, it became possible to identify the highest-cited papers and

researchers. The Nobel laureate and molecular biologist Joshua Lederberg lauded the

invention of the SCI with the words: “I think you’re making history, Gene!” (Wouters,

2017). Scientists, funding bodies, and university administrators immediately started to

use citation counts in hiring, promotion, and funding decisions. The sociologist Harriet

Zuckerman remarked in the New York Times that there are “cases of people who have

been asked to go count their own citations, and also of deans and administrations who

have asked for citation counts” (Charlton, 1981).

In the first part of the article, we investigate how the availability of citation metrics

affects the assortative matching between scientists and departments. We document that the

correlation between scientists’ citation counts and the rank of their department increased

by 61%. At the same time, scientists’ publication counts became 46% less predictive of

their department rank. These over-time changes suggest that hiring committees started to

attach more weight to citation counts and less weight to other observable characteristics

such as publications when evaluating candidates. The increased correlation between

scientists’ citations and the ranking of their departments may be spurious for various

reasons. For example, the increasing importance of expensive research labs and of federal

research funding (e.g., Kantor and Whalley, 2022) could disproportionately favor leading

departments and allow them to attract star scientists, who turn out to be highly cited.
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Similarly, increases in team production (e.g., Wuchty et al., 2007; Jones, 2009) may have

spurred collaborations within departments and, hence, made department quality more

critical for citations of individual scientists.

We estimate the causal effect of citation metrics by exploiting that, for technical

reasons, the SCI only covered citations in a subset of years and journals. Only these

citations became visible to the scientific community. In contrast, other citations remained

invisible to contemporaries, yet are observable in modern citation data. The variation in the

visibility of citations stems from two sources: variation in the coverage of citations (1) over

time and (2) across journals. First, citations appearing in citing articles until 1960 were

invisible. With the first edition of the SCI, citations from citing articles in 1961 became

visible. Due to technological constraints, the coverage of the SCI was interrupted for two

years. Hence, citations appearing in citing articles in 1962 and 1963 remained invisible at

the time. After 1964, the SCI was published yearly, and thus citations appearing in citing

articles after 1964 became visible. Second, due to a lack of computing power, the SCI

only covered citations in certain journals. As a result, some citations appearing in covered

years (1961 and from 1964 onwards) remained invisible if they came from citing articles

published in journals not indexed by the SCI. Crucially, in the early years, the selection

of citing journals was somewhat arbitrary because the lack of citation data meant that

journal rankings did not exist.1

Importantly, our empirical strategy exploits when and where a scientist’s papers were

cited, not when and where they were published. The cited papers could be published in

any journal and in any earlier year. The following example of two hypothetical scientists

illustrates our identification strategy: suppose that both scientists published a paper in

1957 (in any journal). One of the papers was cited in Nature in 1961, while the other one

was cited in Nature in 1962. As the SCI covered citations in 1961 but not in 1962, the

first citation became visible to contemporaries, while the second remained invisible. Using

modern citation data, we can, however, observe both visible and invisible citations.

For our analysis, we combine new data on historical faculty rosters of U.S. universities

from the World of Academia Database (Iaria et al., 2022) with extensive publication and

citation data from Clarivate Web of Science. These data enable us to construct the most

comprehensive individual and department-level rankings for the 1960s. In addition, we

digitize lists from historical volumes of the SCI, which specify the exact citing journals

that were indexed in each volume of the SCI. This allows us to measure which citations

were visible and, thus, to reconstruct the information set available to scientists in the

1960s.

We estimate the effect of citation metrics on the match between scientists and depart-

ments by comparing the relative importance of visible to invisible citations. We find that

visible citations are four times as predictive of scientists’ department rank than invisible

1In fact, the impact factor, which nowadays is used to rank academic journals, was invented by the
creators of the SCI (Garfield, 1979, p. 150).
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citations. Specifically, scientists with a 10 percentile higher visible citation count were,

on average, placed at a 2.5 percentiles higher ranked department in 1969. For instance,

a mathematician would be placed at Princeton or Chicago as opposed to Columbia or

Brandeis. In contrast, scientists with a 10 percentile higher invisible citation count were

on average only placed at a 0.6 percentiles higher ranked department. This pattern holds

even if we control for detailed publication records, i.e., for the number of publications in

each journal (e.g., two Nature, one Science, and one PNAS publication) and in each year

(e.g., one publication in 1956, two in 1960, and one in 1964). Note that it is not surprising

that even invisible citations affect the matching between scientists and departments since

the academic community always had some knowledge of the quality of scientists’ research,

even if precise citation counts were not available.

Despite the somewhat arbitrary nature of the SCI coverage, two main concerns could

potentially invalidate this identification strategy. First, visible citations may come from

articles in higher-quality journals. Second, as the SCI was introduced in 1961, visible

citations occur in later years, on average, and may have a larger impact on career outcomes

in 1969. As a consequence, the impact of visible citations on scientists’ careers would be

overestimated.

To address the quality concern, we compute measures of the quality of citing journals.

We find that visible and invisible citations come from journals of similar quality. We also

provide further evidence that differences in the quality of citing journals do not bias our

results. For this test, we estimate regressions that only consider citations from the set of

citing journals that were indexed in the first edition of the SCI. This analysis compares

scientists whose paper was cited, for example, in Science in 1961, and was therefore visible,

to scientists whose paper was cited in Science in 1963, and was therefore invisible.

To address the timing concern, we confirm that the results hold in specifications that

exclusively rely on across-journal variation in the visibility of citations. This analysis

compares scientists whose paper was cited in the same year (e.g., 1961), but one citation

occurred in the Journal of the American Chemical Society, and was thus visible in the

SCI, while the other citation occurred in Chemical Reviews, and was thus invisible.

The quality of citing journals and the timing of citations could interact to make

visible citations more predictive for assortative matching. To address this concern, we

introduce an additional specification. For this test, we partition the citation space into

four mutually exclusive sets depending on where and when a scientist was cited: (1) visible

citations : citations from journals that were indexed in the SCI in years when the SCI was

published; (2) pseudo-visible citations: citations from journals that were indexed in the

SCI in 1961 but from years when the SCI was not published; (3) invisible citations (SCI

years): citations from journals that were not indexed in the SCI in years when the SCI

was published; and (4) invisible citations (non-SCI years): citations from journals that

were not indexed in the SCI in 1961 and from years when the SCI was not published.

We find that the coefficient on visible citations is almost identical to the baseline

3



specification. Moreover, the coefficient on pseudo-visible citations is considerably smaller

and very similar to the two coefficients on invisible citations in SCI years and in non-SCI

years. This indicates that citations in journals that were indexed by the SCI only had a

differential impact in years in which the SCI was actually available. These results support

the validity of our identification strategy.

Next, we shed light on two potential mechanisms that could underlie the increase

in assortative matching based on citation metrics. First, scientists with few citations

may have disproportionately left academia. We find that scientists with a 10 percentile

higher visible citation count were 3.4 percentage points (or 5.0 percent) less likely to

leave academia between 1956 and 1969. In contrast, invisible citations did not affect the

probability of leaving academia. Second, highly cited scientists may have moved to higher-

ranked departments. We show that scientists with a 10 percentile higher visible citation

count were 0.8 percentage points (or 17.5 percent) more likely to move to a higher-ranked

department between 1956 and 1969. Invisible citations had no effect on moving to a

higher-ranked department. Overall, these results indicate that both mechanisms increased

assortative matching.

Citation metrics may matter more in situations where peers did not have good

information on the quality of a potential hire. We, therefore, explore whether citation

metrics reduced information frictions across geographic and intellectual distance. We

find that citation metrics only impacted moves to higher-ranked departments that were

geographically far but not to departments that were geographically close. Similarly, we

find that citation metrics only impacted moves to higher-ranked departments where the

moving scientist had not been cited before the move. These results suggest that citation

metrics helped overcome information frictions. Reducing these frictions may have enabled

departments to discover scientists in lower-ranked departments, even if they had not

interacted before.

In the second part of the article, we investigate the heterogeneous effects of citation

metrics. First, we show that scientists in higher percentiles of the individual-level citation

distribution, and especially those above the 90th percentile, benefited disproportionately

from the availability of citation metrics. Second, we find that the availability of citation

metrics particularly benefited highly cited academics who were originally placed in lower-

ranked departments. Thus, citation metrics enabled the discovery of these “hidden stars.”

This suggests that the introduction of the SCI helped to overcome misallocation by helping

the highest-cited scientists move to higher-ranked departments. We also investigate

the characteristics of these hidden stars. We provide evidence that these scientists, on

average, obtained their Ph.D. from worse universities and that they were more likely to

be female. Third, we investigate whether minority scientists (female, Jewish, Hispanic

or Asian) differentially benefited from the introduction of the SCI. While we do not find

evidence that minority scientists, on average, benefited more from citation metrics than

majority scientists, we find evidence that among star scientists, minority scientists benefit
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slightly more. Overall, these results suggest that the availability of more “objective”

performance metrics helped highly cited scientists in lower-ranked departments and highly

cited scientists from minority groups.

In the last part of the article, we study the impact of citation metrics on other career

outcomes: promotions and receiving research grants. In particular, we analyze whether

scientists who were assistant or associate professors in 1956 were promoted to full professors

by 1969. The probability of promotion increased by 4.1 percentage points (or 5.8 percent)

for scientists with a 10 percentile higher visible citation rank. In contrast, invisible citations

did not affect promotions. Similarly, we find that scientists with a 10 percentile higher

visible citation rank were 19.0 percent more likely to receive an NSF grant. These results

indicate that citation metrics not only affected assortative matching but also had direct

impacts on the careers of scientists and changed the allocation of resources. Scientists

with many visible citations accrued additional rewards and recognition, suggesting the

presence of Matthew effects (Merton, 1968).

This paper contributes to three different strands of the literature. First, our paper

contributes to the body of literature on the economics of science and the creation of

knowledge. The existing literature has shown that scientists have to process increasing

amounts of knowledge to advance the scientific frontier (Jones, 2009) and that access to

the knowledge frontier is crucial for producing science (Iaria et al., 2018). Additional

contributions have studied the importance of superstar scientists (Azoulay et al., 2010),

peer-effects and scientific productivity (e.g., Waldinger, 2010, 2012; Borjas and Doran,

2012), and the role of editors (e.g., Card and DellaVigna, 2020). More recently, increased

attention has been paid to inefficiencies in the scientific process such as the Matthew Effect

(Azoulay et al., 2014; Jin et al., 2019), gatekeepers (Azoulay et al., 2019), or discrimination

(e.g., Card et al., 2020, 2022; Iaria et al., 2022; Koffi, 2021; Hengel, 2022).

Despite all these papers making use of publication and citation data, and a long-

standing sociological debate on this fundamental aspect of modern science (e.g., Lotka,

1926; Merton, 1968; Zuckerman and Merton, 1971; Wouters, 1999a, 2014; Muller and Peres,

2019; Biagioli and Lippman, 2020; Pardo-Guerra, 2022), there is no causal evidence on

how performance metrics affect scientific careers.2 Our paper is the first to provide causal

evidence that citation metrics fundamentally impact the organization of science.

Second, our findings contribute to the literature on performance metrics in the labor

market. As highlighted by the theoretical models of Holmstrom and Milgrom (1991) and

Feltham and Xie (1994), the use of performance metrics shapes incentives of agents in the

labor market. The key empirical challenge to estimating the impact of performance metrics

is that, in most cases, it is impossible to measure performance before the introduction of

a specific performance metric. As a result, researchers often lack a valid counterfactual.

This makes empirical evidence on how performance metrics affect the allocation of talent

2Some papers document that citation metrics, such as the h-index or citation counts, are correlated
with career outcomes (e.g., Ellison, 2013; Jensen et al., 2009; Hilmer et al., 2015).
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exceedingly rare. A few notable exceptions study the effect of performance metrics in the

teacher labor market (Rockoff et al., 2012) and on first placements of MBA graduates

(Floyd et al., 2022). The unique advantage of our setting is that we observe the information

set available at the time and, importantly, what was not part of that information set.3

Last, we contribute to research on assortative matching in labor markets (e.g., Abowd

et al., 1999; Andrews et al., 2008; Card et al., 2013; Song et al., 2019). We show that

performance metrics can increase assortative matching by lowering information frictions.

I The Science Citation Index: Background and Data

I.A The Creation of the Science Citation Index

The SCI was the first systematic international and interdisciplinary citation index. During

the 1950s, Eugene Garfield and his newly founded Institute for Scientific Information (ISI)

developed the technology to construct a citation index. By the early 1960s, this endeavor

was supported by grants from the National Institutes of Health and the National Science

Foundation. In November 1963, these efforts came to fruition, and the first edition of

the SCI was published, covering citations in 1961 (Garfield, 1963b, see Figure A.1 for a

picture of the first SCI). The SCI quickly became the “most widely used and authoritative

database of research publications and citations” (Birkle et al., 2020).4

To construct the SCI, Garfield and his team selected 613 citing journals from the

physical and life sciences and collected all citations appearing in articles in these journals

in 1961 (Garfield, 1963a). This enabled them to identify all papers that were cited by

these articles in 1961. The cited papers could have been published in any previous year

(i.e., not only in 1961) and in any journal (i.e., not only in the set of citing journals but in

any journal or book).

This information was stored on punch cards and converted to magnetic tapes, which

were processed by IBM computers (Garfield, 1963b, p. x (sic)). Entries were ordered by

last names and initials of scientists (see Figure A.1). Figure 1 shows the 1961 entry for

the medical scientist Murray Abell. His entry covers five cited papers: a 1950 paper in

Archives of Pathology (vol. 50, p. 1), another 1950 paper in Archives of Pathology (vol.

50, p. 23), a 1956 paper in Archives of Pathology (vol. 61, p. 360), a 1957 paper in the

American Journal of Clinical Pathology (vol. 28, p. 272), and a 1961 paper in Cancer

3Since we measure the information set of contemporaries in the 1960s, our analysis allows us to identify
the effects of revealing new information on labor market outcomes. In this, we add to the literature on
how information disclosure and new information technologies affect market efficiency (e.g., Jensen, 2007;
Koudijs, 2015; Tadelis and Zettelmeyer, 2015; Steinwender, 2018; Bernstein et al., 2023).

4The SCI was revolutionary because it created a novel metric of scientific productivity that individuals
were unable to compile for themselves. No scientist would have had the capacity to count citations to
their own work, because it would have required sifting through hundreds of thousands of potentially citing
articles. In contrast, earlier metrics of scientific productivity, such as publication catalogs, aggregated
information that was already individually available (for example, the Catalogue of Scientific Papers
(Csiszar, 2017)).
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(vol. 14, p. 318). Each of these papers was cited at least once in 1961; e.g., the 1956

Archives of Pathology paper was cited by one article in 1961 in the Journal of Pathology

and Bacteriology (vol. 82, p. 281). Overall, these five papers received six citations in 1961.

Figure 1: Entry in the Science Citation Index

Notes: This figure shows a sample entry of the 1961 volume of the SCI. It lists five cited papers for “Abell
MR”. Murray R. Abell was Professor of Pathology (Medicine) at the University of Michigan. The cited
papers could have been published in any year until 1961 (here: 1950 (twice), 1956, 1957, and 1961). The
five papers are cited by six citing articles. Because this example is from the 1961 volume of the SCI, all
citations are from 1961.

For technical reasons, the SCI did not collect citations for 1962 and 1963. As “[t]he

1961 SCI was the result of an experimental research program,” its preparation took more

than two years (Garfield, 1965). After releasing the 1961 SCI in November 1963, the ISI

moved on to preparing the 1964 SCI.5 From then on, the SCI was published quarterly.

The set of indexed citing journals quickly expanded from 613 in 1961 to 2,180 in 1969.

The SCI was an immediate success. By the late 1960s, every major university had a

subscription (Garfield, 1972, p. 4). For example, in 1965 chemists at Ohio State University

lobbied the library administration to subscribe to a second copy of the SCI, in addition to

the copy that was already available in the medical library (see Appendix Figure A.3).6

I.B Data

Reconstructing SCI Coverage from the Web of Science

For contemporaries, citations were only visible if they came from citing articles in journals

that were indexed by the SCI. This means that only an incomplete set of citations was

visible at the time. Citations before the SCI’s introduction in 1961, as well as those from

1962 and 1963, and from journals that were not indexed by the SCI remained invisible.

In the 1970s and 1980s, the SCI was backward expanded to cover additional years and

journals, and later became part of the Web of Science. As a result, the Web of Science

5The 1962 and 1963 SCIs were released only in 1972 (Garfield, 1972). For this reason, we measure
outcomes in 1969 and, hence, before the ISI had begun to fill in gaps in coverage.

6By 1966, the SCI was not only available as printed volumes, but could also be purchased on magnetic
tapes. The magnetic tapes provided the raw data for constructing citation counts and for conducting
quantitative citation analyses (Garfield, 1966). Furthermore, the ISI published five-year cumulations of
the SCI. For example, the 1965-1969 compilation included all citations between 1965 and 1969 (Garfield,
1971).
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covers both citations that were visible to contemporaries and citations that were invisible

at the time, but became available during the backward expansions.

We reconstruct the sets of citations that were visible and invisible to contemporaries.

For this purpose, we hand-collect yearly lists of citing journals from the printed historical

SCI volumes. We digitize these lists and hand-link them to the Web of Science. Appendix

Figure A.2 shows a sample journal list. Using this linking procedure, we can identify which

citations were part of the information set of the 1960s, and which ones were not.

Faculty Rosters

To study how the introduction of citation metrics affects the careers of academics, we

use data containing faculty rosters for nearly all universities in the United States from

the World of Academia Database (see Iaria et al., 2022). The data contain almost

comprehensive cross-sections of all U.S. academics for the years 1956 and 1969. Because

the SCI only counted citations for the natural and biomedical sciences, we focus on all

academics who worked in either biology, biochemistry, chemistry, physics, mathematics, or

medicine. For the period of our analysis, the database provides the most comprehensive

data on academics in the United States (see Iaria et al. (2022) for details). For the 1969

cross-section, the data contain 27,315 scientists at 1,477 departments in 384 universities

(Table 1, Panel B).

The World of Academia Database has two unique advantages for our purpose. First,

it enables us to identify the department (e.g., physics at Berkeley) of each academic.

Second, it contains complete faculty rosters, which allows us to observe both academics

who received citations and, importantly, academics who did not receive any citations. This

enables us to construct comprehensive individual and department rankings based on all

academics and not only based on those who published and were cited.

Linking Scientists with Publications and Citations

To count scientists’ publications and citations, we link the World of Academia Database

with publication and citation data from the Web of Science. We use the cascading linking

algorithm developed in Iaria et al. (2022) (see Appendix B.1.1 for details).

For the 1969 cohort of scientists, we link their publications and citations from 1956

to 1969. This enables us to measure the number of papers that each scientist published

in this period and to count the citations that these papers received from the time they

were published until 1969. Importantly, for our identification strategy, we observe the

complete citation network and thus the exact journal in which a certain paper was cited.

This allows us to measure whether the citations were covered in the SCI and were thus

visible to contemporaries.

The average scientist in our data published 8.75 papers between 1956 and 1969 (Table 1,

Panel A). These papers received 47 citations that were visible to contemporaries and 19
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citations that were invisible to contemporaries but can be observed today.7 As has been

documented by a large literature in the sociology of science, citations of academics are

highly skewed (e.g., Lotka, 1926). The most highly cited scientists in our data received

more than 3,000 visible and more than 2,000 invisible citations between 1956 and 1969.

Table 1: Descriptive Statistics

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max

Publications 8.75 16.65 0 405
Visible Citations 46.99 128.05 0 3,346
Invisible Citations 18.93 57.95 0 2,010
Full Professor Share 0.40 0.49
Female Share 0.10 0.30

Panel B: Number of Observations

Dataset includes: Observations

Citations 1,800,669
Publications 239,124
Scientists 27,315
Departments 1,477
Universities 384

Notes: Panel A reports summary statistics at the scientist-level for the cross-section of
scientists observed in 1969. Publications are the number of papers a scientist published
between 1956 and 1969; visible citations are the number of citations these papers re-
ceived between 1956 and 1969 that were visible in the SCI; invisible citations are the
number of citations these papers received between 1956 and 1969 that were not visible
in the SCI. Panel B reports the number of observations at the citation, publication,
scientist, department, and university level.

Constructing Scientist Rankings

Using our scientist-publication-citation-linked data, we can construct rankings based on

citations and publications. Within each subject, we rank scientists according to their

citation (or publication) counts between 1956 and 1969. We then calculate each scientist’s

percentile rank in the subject-specific distribution of citations (or publications), assigning

100 to the best and 1 to the worst scientist. This variable transformation allows us

to compare the scientists’ relative positions in the citation distributions, even if these

distributions differ across subjects. For example, the median biologist received 2 citations,

while the median chemist received 9 citations. If percentiles cannot be uniquely assigned

because too many scientists have the same number of citations or publications, we assign

the mid-point of the corresponding percentiles.8 This is particularly important for scientists

with zero citations. Alternative assignments of percentile ranks to scientists with zero

citations do not affect our findings (see Appendix C.2.3).

7We show below that the different distributions of visible and invisible citations do not drive our
results.

8For example, in physics 30.37% of observations have zero citations. For the main results, we assign
the mid-point between the 1st percentile and the 31st percentile, i.e., a percentile rank of 15.5, to each of
these observations.
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Constructing Department Rankings

Our data also enable us to construct the most comprehensive department rankings for this

time period. These are the first rankings for this period that are based on scientific output,

as opposed to reputational surveys. In addition, our rankings cover a much larger number

of departments than previously available survey-based rankings. In fact, the practice

of ranking departments by their research output only developed as a result of citation

indexing.

We rank all 1,477 departments in 384 universities on the basis of the average total

citations received by scientists in each department. As outlined above, the rankings avoid

systematic error because the World of Academia database also lists all scientists who have

not published and/or were not cited in our study period. In our main department ranking,

we construct the leave-out mean of the number of citations received by scientists in a given

department, i.e., the average citation count of scientist i’s colleagues. We then assign

the percentile rank in the subject-specific distribution of leave-out mean citation counts,

assigning 100 to the best and 1 to the worst department. We use the percentile rank

because it allows us to compare the relative position of departments in different subjects

(physics, chemistry, and so on), which have different numbers of departments, scientists,

and average citations per scientist.

In robustness checks, we show that our findings are robust to using several alternative

department rankings. First, we construct analogous department percentile ranks based on

publications. Second, we construct department percentile ranks using reputation-based

rankings from Roose and Andersen (1970) and Cartter (1966). As highlighted above, the

reputation-based rankings cover far fewer universities.9 In Appendix B.2, we list the top

20 departments in each subject, as measured by the various rankings.

I.C How Was the SCI Used in Hiring and Promotions?

While the SCI was predominantly designed to facilitate literature research, it was immedi-

ately used to evaluate scientists. For example, Eugene Garfield remembered:

“The SCI’s success did not stem from its primary function as a search en-

gine, but from its use as an instrument for measuring scientific productivity.”

(Garfield, 2007, p. 65)

The eminent biologist Richard Dawkins described the SCI as a publication that:

“is intended as an aid to tracking down the literature on a given topic. Univer-

sity appointments committees have picked up the habit of using it as a rough

9The Cartter ranking contains 106 universities, and the Roose-Andersen ranking contains 130, while
our baseline ranking contains 384 universities. The alternative rankings strongly correlate with our main
citation-based ranking. The correlation between the Cartter ranking and our citation-based ranking is
0.68, while the correlation between the Roose-Andersen ranking and our citation-based ranking is 0.70.
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and ready (too rough and ready) way of comparing the scientific achievements

of applicants for jobs.” (Dawkins, 1986, p. 427)

The SCI made scientists’ citations visible and readily accessible for the first time. Because

the SCI was organized by cited authors, it was easy to measure and compare the citation

counts of scientists. Figure 2 shows one such comparison for two scientists working at

Caltech. The box on the left shows citations of the physicist Charles Archambeau. The

box on the right shows the citations of the 1965 physics Nobel laureate Richard Feynman.

As one contemporary remarked, “[a]n early form of research evaluation of individuals made

use of a ruler to measure column inches of citations!” (Birkle et al., 2020, p. 364).

Figure 2: Comparison of SCI Entries

Notes: This figure compares the entries in the 1965-1969 cumulation of the SCI (Garfield, 1971) for two
physicists at Caltech: Charles Archambeau on the left, and Nobel laureate Richard Feynman on the right.

Very quickly, scientists, funding bodies, and university administrators started to use

citation counts in hiring, promotion, and funding decisions. Some universities even made

citations a mandatory metric in the evaluation of applicants’ portfolios (Wade, 1975, p.

429). The importance of newly available citation metrics is exemplified in the court case

Johnson v. University of Pittsburgh.10 In 1973, Sharon Johnson sued the biochemistry

department at the University of Pittsburgh for sex discrimination. Her legal case argued

that she was overlooked for tenure even though her papers had received more citations (as

measured in the SCI) than those of two recently tenured male colleagues.

The SCI’s Impact on Assortative Matching: Suggestive Evidence

We first provide suggestive evidence of the impact of the citation metrics on the assortative

matching of academics and departments. If departments began to use the SCI to evaluate

scientists, we would expect that the correlation between a scientist’s citations and their

department rank increased after the introduction of the SCI. We find that the correlation

10Dr. Sharon Johnson v. The University of Pittsburgh, W.Da. PA., 1977.
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between a scientist’s individual citation rank and their department rank increased by 61%

between 1956 and 1969 (Figure 3, panels (a) and (b)). In contrast, the correlation between

the individual publication rank and the department rank decreased by 46% (Figure 3,

panels (c) and (d)).

Figure 3: Assortative Matching Before and After Citation Metrics

Assortative Matching by Citations

Assortative Matching by Publications

Notes: Panels (a) and (b) show the correlation of scientists’ citation rank and their department rank
for two cross-sections: 1956 and 1969. Panel (a) shows a binned scatter plot for 1956 and, thus, before
the introduction of the SCI. While we can now measure these citations, they were not observable at the
time. Panel (b) shows a binned scatter plot for 1969 and, thus, after the introduction of the SCI. The
regression coefficient in both panels is conditional on an individual’s publication rank. The p-value of
the test that the slope coefficients in panels (a) and (b) are equal is 0.008. Panels (c) and (d) show the
correlation between scientists’ publication rank and their department rank. Publications were observable
to contemporaries in both 1956 and 1969. The regression coefficient in both panels is conditional on an
individual’s citation rank. The p-value of the test that the slope coefficients in panels (c) and (d) are
equal is 0.007.

This evidence is in line with the hypothesis that the introduction of citation metrics

increased the reliance of hiring decisions on citations, and decreased the reliance on
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other observable characteristics such as publications. However, the increasing correlation

between scientists’ citation rank and their department rank may have been caused by

other factors. For example, the increasing importance of expensive research labs or federal

research funding (e.g., Kantor and Whalley, 2022) could disproportionately favor leading

departments and allow them to attract highly cited scientists. Similarly, increases in team

production (e.g., Wuchty et al., 2007; Jones, 2009) may have spurred within-department

collaborations and, hence, may have made department quality more important for scientists’

citations. To overcome these challenges, we introduce a novel identification strategy that

allows us to isolate the causal effect of citation metrics on assortative matching in academia.

II The Effect of Citation Metrics on Assortative Match-

ing

II.A Empirical Strategy

We identify the causal effect of citation metrics by comparing the effect of citations that

were visible in the SCI to the effect of citations that remained invisible. For technical

reasons, the SCI only covered citations from citing articles in a subset of journals and

years. Hence, only citations from citing articles in this subset were visible to the scientific

community. In contrast, other citations remained invisible because they were not covered

in the SCI. Importantly, the cited papers could have been published in any journal and in

any previous year. Therefore, scientists’ visible citation counts were not determined by

the journals in which their papers were published but only by the journals in which their

papers were cited.

As described above, the first volume of the SCI covered citations from 1961 in any

of the 613 citing journals. As a result, all 1961 citations in those 613 journals became

visible in the SCI, while citations before 1961 and in other journals remained invisible.

Due to limited computing power, the collection of citation data was interrupted in 1962

and 1963. By 1964, data collection resumed. The set of indexed citing journals quickly

expanded from 613 in 1961 to 2,180 in 1969. As a result, the visibility of citations was

affected by two sources of variation: first, in which year a paper was cited, and second, in

which journal it was cited.11

Our data enable us to reconstruct which citations were part of the information set

of the 1960s, i.e., we measure citations that were visible in the SCI. Crucially, we can

also reconstruct which citations were not part of that information set, i.e., citations that

were invisible. Invisible citations can be measured today because citation databases were

expanded to include citations for additional years and for a larger set of citing journals.

11Below, we provide evidence that the quality of citing journals or differences in the timing of citations
does not drive our findings.
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Table 2 illustrates the identifying variation for a hypothetical scientist. It reports

citations to the scientist’s papers, which were published in any journal and in any year.

These papers were cited in articles from journals A, B, and C between 1956 and 1969.

Journal A was in the initial set of 613 citing journals indexed by the SCI in 1961. Journal

B was added to the SCI in 1966, whereas journal C was not indexed in the 1960s. The

dark blue cells indicate citations that were visible to contemporaries because the SCI

collected citations for these years and citing journals. The light blue cells indicate citations

that were invisible because the SCI did not collect data for these years and citing journals.

In other words, citations in dark blue cells were part of contemporaries’ information set,

while citations in light blue cells were not.

Table 2: Identifying Variation for Specification 1

Notes: This table reports citations of a hypothetical scientist’s papers. Numbers in dark blue cells show
citations that were visible in the SCI because the citation occurred in a journal and year (1961, or 1964-69)
that was covered by the SCI. Numbers in light blue cells show citations that were invisible in the SCI, but
are observable today.

In the example, the hypothetical scientist’s papers were cited in articles published in

journal A in 1959, in 1961, in 1963, and twice in 1967. The citations in 1959 and 1963

were invisible because the SCI did not exist for those years. In contrast, the citations

in 1961 and 1967 were visible in the SCI. Similarly, the scientist’s papers were cited in

articles in journal B in 1957, 1961, 1965, and three times in 1966. Because journal B was

added to the SCI only in 1966, the citations in 1957, 1961, and 1964 were invisible. In

contrast, the three citations in 1966 were visible. Finally, the scientist’s papers were cited

in articles in journal C in 1959, 1961, and 1969. As journal C was not indexed in our

study period, all of these citations were invisible to contemporaries.

Hence, if contemporaries had looked up the scientist’s total citations in the SCI in

1969, they would have observed six citations, i.e., the scientist had six visible citations. In

addition, the scientist had eight citations that were invisible at the time. Using modern

citation data, we can observe both visible and invisible citations. For each scientist i, we
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separately count the number of visible and invisible citations between 1956 and 1969 to

i ’s papers published between 1956 and 1969.

II.B Specification 1: Visible vs. Invisible Citations

Our identification strategy exploits the differential visibility of scientists’ citations. If the

very measurement of citations affects the assortativeness of the match between academics

and universities, visible citations should be more predictive of career outcomes than

invisible ones.12 The identifying assumption underlying this new empirical strategy is that

the effect of visible and invisible citations would be the same if both had been covered in

the SCI. Given the arbitrary timing of the introduction of the SCI and the lack of coverage

for the years 1962 and 1963, this seems plausible. Nonetheless, there may be concerns that

any effect might be driven by differences in the quality of the citing journals or the timing

of citations, i.e., by the two sources of variation in the visibility of citations. We address

these concerns with alternative specifications outlined below.
We estimate the following regression:

Dep. Ranki = δ · V isible Citationsi + θ · Invisible Citationsi (1)

+ π · Publicationsi + Subject FE + ϵi

where Dep. Ranki is the department rank of scientist i in 1969, where 100 is the best

and 1 the worst department.13 V isible Citationsi measure scientist i’s visible citations.

Invisible Citationsi measure scientist i’s invisible citations. In the baseline specification,

we measure citations as the percentiles in the distributions of visible and invisible cita-

tions.14 Publicationsi flexibly control for scientists i’s publications. SubjectFE control for

differences between academic subjects. To account for potential correlations of regression

residuals in a certain department, e.g., in chemistry at Berkeley, we cluster all standard

errors at the department-level.

To study how citation metrics affect assortative matching, we compare the magnitudes

of the estimated coefficients δ̂ and θ̂. If the visibility of citations in the SCI increased

the assortativeness of the match between scientists and departments, we would expect

that δ > θ. For example, the difference between δ and θ captures whether citations that

occurred in 1961 instead of 1962 had a larger impact on the match between scientists and

departments. Note that we would not expect θ to be zero because, even in the absence

12Invisible citations may still correlate with outcomes, because scientists have always had a rough idea
of the quality, and thus citation potential, of their peers’ papers.

13In the main specification, we use the department ranking based on the leave-out mean of citations. All
results are robust to using different measures of the department rank, e.g., based on citations, publications,
or alternative department rankings based on contemporaneous reputation-based surveys (Table C.1 and
Table C.2).

14We explore alternative transformations of citation counts in Table C.3, e.g., standardizing citation
counts or using the inverse hyperbolic sine of citations.
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of the SCI, scientists will have an approximate idea about the importance and quality of

other scientists’ papers.

Table 3: Citations and Assortative Matching

Dependent Variable: Department Rank

(1) (2) (3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.299 0.320 0.280 0.247 0.237
(0.034) (0.031) (0.035) (0.035) (0.035)

Invisible Citations 0.103 0.068 0.062 0.061 0.060
(0.023) (0.020) (0.021) (0.023) (0.024)

P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

R2 0.138 0.140 0.153 0.232 0.261

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.305 0.327 0.284 0.252 0.243
(0.035) (0.032) (0.036) (0.035) (0.036)

Pseudo-Visible Citations 0.033 0.012 0.013 0.028 0.022
(0.021) (0.020) (0.020) (0.022) (0.023)

Invisible Citations (SCI years) 0.030 0.029 0.030 0.020 0.023
(0.014) (0.014) (0.014) (0.014) (0.014)

Invisible Citations (non-SCI years) 0.057 0.044 0.037 0.025 0.029
(0.017) (0.016) (0.016) (0.016) (0.017)

P-value (Visible = Pseudo-Visible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
P-value (Visible = Invisible (SCI years)) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
P-value (Visible = Invisible (non-SCI years)) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI)) 0.451 0.551 0.676 0.941 0.956

R2 0.138 0.141 0.154 0.232 0.261

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Observations 27,315 27,315 27,315 27,315 27,315
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1) in the first panel and of Equation (2) in the second panel. The dependent
variable is the department rank in 1969, based on the leave-out mean of citations in the department of scientist i. The explanatory
variable Visible Citations measures scientist i ’s individual rank in the distribution of visible citations. Invisible Citations measures
scientist i ’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures scientist i ’s individual rank in
the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not covered in the SCI, i.e.,
1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i ’s individual rank in the distribution of invisible citations
in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i ’s individual rank in the distribution of
invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered, i.e., 1956-
1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst department/scientist. Publications by
Year separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i ’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

We report estimates of Equation (1) in the first panel of Table 3. In column (1), we

report a specification that controls for subject fixed effects. The coefficient for visible

citations is around three times larger than the coefficient for invisible citations. Scientists

with a 10 percentiles higher visible citation count were, on average, placed at a 3.0

percentiles higher-ranked department in 1969. For example, a chemist would be placed at

Harvard or Stanford as opposed to Northwestern University or the University of Southern

California. In contrast, scientists with a 10 percentiles higher invisible citation count were,

on average, only placed at a 1.0 percentiles higher-ranked department.15 We also report

15As discussed above, it is not surprising that invisible citations are positively correlated with the
department rank because they proxy for wider recognition by the scientific community.
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the p-value of a two-sided t-test for the equality of the two citation coefficients. We reject

the equality of the two coefficients at the 0.1%-level.

To rule out that these differences could potentially be explained by scientists’ publica-

tion records, we include fine-grained controls for publications in columns (2)-(5). In column

(2), we show that the results are robust to controlling for the number of publications by

year, i.e., controlling separately for the number of publications in 1956, 1957, and so on.16

One might be concerned that differences in publication and citation patterns across the

sciences could explain our findings. For example, mathematicians publish fewer papers

and receive fewer citations than chemists or medical researchers. To address this concern,

we show that the results are robust to separately controlling for the number of publications

by year and subject (column (3)).

Naturally, not only the number of publications but also the journal in which a paper

was published may be correlated with citation counts and thus might bias our estimates.

To overcome this challenge, we additionally control for the number of publications in each

individual journal. That is, we add a variable that counts the number of papers in Science,

another variable that counts the number of papers in Nature, and so on. In total, we

add 1,745 variables that control for the number of publications in each journal (column

(4)). We also allow the effect of these controls to differ by subject, so that a publication

in Science may have a different effect on the career of a physicist than on the career

of a chemist (column (5)). The results are robust to the inclusion of these fine-grained

controls for scientists’ publication records. In fact, the difference in the impact of visible

and invisible citations increases with the inclusion of additional controls. With all controls

(column (5)), visible citations have a four times larger effect on the department rank than

invisible citations. Appendix Figure C.1 illustrates these results graphically.

We show that these findings are robust to using alternative ways of ranking departments

(Appendix C.2.1), to using alternative transformations of individual citation counts (Ap-

pendix C.2.2 and C.2.3), and to imposing additional sample restrictions (Appendix C.2.4).

Alternative Explanation 1: Quality of Citing Journals

Despite the somewhat arbitrary nature of the SCI coverage, the results would be biased

if the visibility of citations in the SCI were correlated with other characteristics that

impacted a scientist’s department rank in 1969.

The first concern is that visible citations may come from citing articles in higher

quality journals (e.g., Nature or Science) and therefore have a larger impact on a scientist’s

career. It is important to note that this concern is somewhat mitigated because it was

difficult to assess journal quality before the introduction of the SCI. Some of the citing

journals initially indexed in the SCI turned out to be of relatively lower quality. Similarly,

16Since the number of scientists’ publications takes many fewer values than the number of citations (see
Table 1), especially when measuring publications separately by years (columns (2)-(5) in Table 3) and
journals (columns (4)-(5) in Table 3), we do not use the percentile rank transformation of publications.

17



many journals that were, in fact, of high quality were not indexed during the first years of

the SCI.

While it was not possible to quantitatively measure journal quality at the time, we can

retrospectively compute measures of the quality of the citing journal and thereby assess

whether visible citations came from better journals. For this test, we compute the impact

factors for all citing journals in the pre-SCI period.17 Journals which were indexed in the

1961 SCI had an average impact factor of 0.83, while journals which were not indexed had

an average impact factor of 0.86 (p-value of test of equal means: 0.618). We also plot the

distributions of the average impact factors for both types of journal in Figure 4. This

analysis indicates that journals indexed in the 1961 volume of the SCI were not of higher

quality than journals that were not indexed.

Figure 4: Quality of Journals Indexed and Not Indexed in SCI

Notes: The figure shows histograms of impact factors for two sets of journals: journals indexed in the SCI
in 1961 (orange) and journals not indexed in the SCI in 1961 (blue). For each journal, we average the
impact factors over the pre-period (1956-1963).

To provide additional evidence that differences in the quality of citing journals are not

driving the results, we estimate regressions that only consider citations from a fixed set of

journals. For this test, we only rely on over-time variation in the visibility of citations.

This allows us to abstract from potential differences in journal quality. In particular, we

estimate regressions that only use visible and invisible citations from the set of journals

that were included in the first edition of the SCI in 1961 (i.e., only using over-time variation

in citations from type A journals in Table 2).18

17Because the 1961 volume of the SCI was published in November 1963, we define the pre-SCI period
as 1956-1963. The impact factor is calculated as the average number of citations in year t to articles
published in that journal in the years t− 1 and t− 2.

18We visualize the underlying variation of this robustness check in panel (b) of Appendix Figure C.2.
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For example, the test compares scientists who were cited in Nature in 1961 and

therefore these citations were visible in the SCI, to scientists who were cited in Nature in

1962 and therefore these citations were invisible. The hypothetical scientist presented in

Table 2 would have three visible citations: one in 1961 and two in 1967; and two invisible

citations: one in 1959 and one in 1963. For this test, we do not consider citations in type

B or C journals, i.e., journals not indexed in the first SCI in 1961. The results that use

only citations from type A citing journals are almost identical to the main results (see

Appendix Table C.6), indicating that differences in the quality of citing journals do not

drive our findings.

Alternative Explanation 2: Timing of Citations

The second concern stems from the differential timing of visible and invisible citations. As

the SCI was introduced in 1961, visible citations, on average, occurred in later years than

invisible ones. If more recent citations had more predictive power for career outcomes in

1969, the larger effect of visible citations may be spurious.

We address this concern by fixing the timing of citations and exclusively relying on

across-journal variation in visibility. In particular, we estimate regressions that only use

visible and invisible citations from years in which the SCI was available (i.e., 1961 and

1964-1969). This exercise compares scientists with the same publication record who were

cited in similar years but in different journals, only some of which were covered in the

SCI.19

For our hypothetical scientist presented in Table 2, this test considers six visible

citations: one from journal A in 1961, two from journal A in 1967, and three from journal

B in 1966. It also considers three invisible citations: one each from journal B in 1961 and

1965, and one from journal C in 1969.20

The results that use only citations from years in which the SCI was published are

very similar to the main results (Appendix Table C.7). The point estimates are almost

identical, and the p-values for the difference in coefficients remain below the 0.1%-level.

These results strongly suggest that the differential timing of visible and invisible citations

does not drive our findings.21

19As outlined above, in the early years, limited funding and computing power prevented the Institute
for Scientific Information from covering a large number of journals in the SCI (Garfield, 1963b, p. xvii).
As a result, citations in many reputable journals remained invisible.

20See also panel (c) of Appendix Figure C.2.
21As more journals were indexed in later years, even in this test, visible citations may, on average,

come from later years. We address this concern by restricting the years for which we measure visible and
invisible citations to even smaller windows (see Appendix Table C.8).
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II.C Specification 2: Visible vs. Pseudo-Visible vs. Invisible

Citations

The quality of citing journals and the timing of citations might interact to make visible

citations more predictive for assortative matching. To address such concerns, we introduce

a second specification, which includes a placebo test that compares the predictiveness of

different types of invisible citations. For this specification, we partition the citation space

into four mutually exclusive sets depending on where and when a scientist was cited (see

Table 4):

1. Visible citations : citations from journals that were indexed in the SCI in years when

the SCI was published (1961 and 1964-1969),

2. Pseudo-visible citations: citations from journals that were indexed in the SCI in

1961 but from years when the SCI was not published (1956-1960 and 1962-1963),

3. Invisible citations (SCI years): citations from journals that were not indexed in the

SCI in years when the SCI was published (1961 and 1964-1969),

4. Invisible citations (non-SCI years): citations from journals that were not indexed in

the SCI in 1961 and from years when the SCI was not published (1956-1960 and

1962-1963).

Table 4: Identifying Variation for Specification 2

Notes: This table reports citations to a hypothetical scientist’s papers. We partition the citation space
along two dimensions: (i) years covered by the SCI (blue) or not (red) and (ii) journals covered by the
SCI (dark) or not (light). Dark blue cells show citations that were visible in the SCI. Dark red cells show
pseudo-visible citations, i.e., citations that were invisible (because they came from years not covered by
the SCI) but would have been visible had the SCI been published for those years. Light blue cells show
invisible citations for years in which the SCI was published, i.e., citations that came from journals not
covered by the SCI in years when the SCI was published. Light red cells show invisible citations for years
in which the SCI was not published, i.e., citations that came from journals not covered by the SCI in
years when the SCI was not published.
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For our hypothetical scientist, this test considers six visible citations (dark blue in Table 4).

It also considers two pseudo-visible citations (dark red). Furthermore, it considers three

invisible citations in SCI years (light blue). Finally, it considers three invisible citations in

non-SCI years (light red).
For each scientist, we count the number of citations in these four sets and construct

the corresponding percentile ranks. Using these measures, we estimate the following
regression:

Dep. Ranki = δ1 · V isible Citationsi + δ2 · Pseudo-V isible Citationsi

+ θ1 · Invisible Citations (SCI years)i + θ2 · Invisible Citations (non-SCI years)i (2)

+ π · Publicationsi + Subject FE + ϵi

As pseudo-visible citations were not visible to contemporaries, we would expect them

to matter similarly to the invisible ones, i.e., we would expect δ1 ≫ δ2 ≈ θ1 ≈ θ2. Note

that the comparison between visible and pseudo-visible citations allows us to estimate the

causal effect of citation metrics even if journals indexed in the SCI differed in quality from

journals not indexed in the SCI.

We find that the coefficient on visible citations (Table 3, Specification 2) is almost

identical to the baseline specification (Table 3, Specification 1). Strikingly, the coefficient

on pseudo-visible citations is a lot smaller and very similar to the coefficients on invisible

citations. This indicates that citations in journals that were indexed by the SCI only had

a differential impact in years in which the SCI was actually available. The coefficients

on invisible citations from SCI years and non-SCI years are also very similar and not

distinguishable from the coefficient on pseudo-visible citations (p-value of test δ2 = θ1 = θ2:

0.941). Figure 5 visualizes the results of Specification 2. This confirms that citations from

journals indexed by the SCI only mattered in years in which the SCI was available. In

addition, in years when the SCI was not available, citations from journals indexed by the

SCI (pseudo-visible citations) did not differ from other invisible citations.

II.D Mechanisms

In the next subsection, we shed light on two potential mechanisms that could underlie

the increased assortative matching. First, scientists with few citations may have dispro-

portionately left academia. Second, highly cited scientists may have moved up to better

departments. We investigate these explanations in turn by comparing the impact of visible

and invisible citations on these individual-level career outcomes.

Effect on Leaving Academia

We start by estimating the impact of citation metrics on the probability of leaving academia.

For these regressions, we study scientists who we observe in the 1956 cross-section of

academics. We exclude scientists who were already full professors in 1956 to avoid picking
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Figure 5: Assortative Matching, Specification 2

Notes: The figure illustrates the results from Equation (2), see Table 3, Specification 2. Panels (a) to
(d) report bin-scatter plots illustrating the relationship between citation ranks and the department rank.
Panel (e) plots the coefficients and 95 percent confidence intervals.

up retirements.22 We then check whether these scientists had left academia by 1969. We

estimate the following regressions:

22The results are very similar if we include full professors in this analysis.
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Specification 1:

1[Leaving Academia]i = δ · V isible Citationsi + θ · Invisible Citationsi (3)

+ π · Publicationsi + Subject FE + ϵi

Specification 2:

1[Leaving Academia]i = δ1 · V isible Citationsi + δ2 · Pseudo-V isible Citationsi (4)

+ θ1 · Invisible Citations (SCI years)i + θ2 · Invisible Citations (non-SCI years)i

+ π · Publicationsi + Subject FE + ϵi

where 1[Leaving Academia]i is an indicator variable equal to one if a scientist left academia

between 1956 and 1969. The remaining variable definitions are identical to the definitions

in Equations (1) and (2).

Table 5: Mechanism 1: Leaving Academia

Dependent Variable: Leaving Academia

(1) (2) (3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Citations Visible -0.0038 -0.0042 -0.0038 -0.0034 -0.0033
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

Citations Invisible 0.0001 0.0008 0.0009 0.0010 0.0009
(0.0004) (0.0004) (0.0004) (0.0004) (0.0005)

P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

R2 0.088 0.092 0.105 0.244 0.297

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations -0.0037 -0.0039 -0.0035 -0.0031 -0.0031
(0.0004) (0.0005) (0.0005) (0.0005) (0.0005)

Pseudo-Visible Citations 0.0002 0.0006 0.0006 0.0004 0.0004
(0.0005) (0.0005) (0.0005) (0.0006) (0.0006)

Invisible Citations (SCI years) -0.0002 -0.0000 0.0000 -0.0000 -0.0001
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

Invisible Citations (non-SCI years) -0.0000 0.0001 0.0001 0.0002 0.0005
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

P-value (Visible = Pseudo-Visible) < 0.001 < 0.001 < 0.001 0.001 0.001
P-value (Visible = Invisible (SCI years)) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
P-value (Visible = Invisible (non-SCI years)) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI)) 0.718 0.510 0.579 0.810 0.521

R2 0.089 0.092 0.105 0.244 0.297

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Observations 12,368 12,368 12,368 12,368 12,368
Dependent Variable Mean 0.691 0.691 0.691 0.691 0.691

Notes : The table reports the estimates of Equation (3) in the first panel and of Equation (4) in the second panel. The dependent variable
is an indicator equal to one if scientist i left academia, i.e., i was observed in 1956, but not in 1969. These regressions use the 1956
cross-section of scientists who were not full professors. The explanatory variable Visible Citations measures scientist i ’s individual rank in
the distribution of visible citations. Invisible Citations measures scientist i ’s individual rank in the distribution of invisible citations.
Pseudo-Visible Citations measures scientist i ’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed
in the SCI in 1961, but for years not covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist
i ’s individual rank in the distribution of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years)
measures scientist i ’s individual rank in the distribution of invisible citations in non-SCI years (citations in journals not indexed in the
SCI in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the
best and 1 the worst scientist. Publications by Year separately measure the number of scientist i ’s publications in each year between 1956
and 1969. Publications by Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature). Standard
errors are clustered at the department level.
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Figure 6: Leaving Academia, Specification 2

Notes: The figure plots the coefficients and 95 percent confidence intervals from Equation (4), see Table 5,
Specification 2.

The probability of leaving academia was lower for academics with a higher visible

citation count (Table 5, Specification 1). Scientists with a 10 percentile higher visible

citation count were around 3.4 percentage points (or 5.0 percent relative to the mean)

less likely to leave academia between 1956 and 1969. Strikingly, invisible citations did not

have a significant impact on the probability of leaving academia. The p-values for the

tests that the coefficients on visible and invisible citations are equal are lower than 0.001.

The estimates from Specification 2 confirm these findings (Table 5, Specification 2; and

Figure 6). These results suggest that the increased assortative matching of academics was,

in part, driven by scientists with fewer visible citations leaving academia.

Effect on Moving to a Higher-Ranked Department

As a second mechanism for increased assortative matching, we investigate the moves of

scientists between departments. More specifically, we estimate variants of Equation (3)

and Equation (4) in which we replace the dependent variable with an indicator that equals

one if a scientist moved to a higher-ranked department between 1956 and 1969.

We find that scientists with a 10 percentile higher visible citation count were around 0.8

percentage points more likely to move to a higher-ranked department (Table 6, Specification

1). This relatively small point estimate nevertheless represents a 17.5 percent increase

relative to the mean. Invisible citations did not affect the probability of moving to a

higher-ranked department. The results are very similar if we estimate Specification 2

(Table 6, Specification 2; and Figure 7).

Only 4.6 percent of academics managed to move to a higher-ranked department

between 1956 and 1969. Hence, some of the differences between the coefficients on visible

and (the various) invisible citations are not significant at conventional levels. However,

the results suggest that assortative matching also increased because scientists with many

visible citations moved to higher-ranked departments.
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Table 6: Mechanism 2: Moving to Higher-Ranked Department

Dep. Var.: Moving to Higher-Ranked Department

(1) (2) (3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0008 0.0007 0.0006 0.0008 0.0007
(0.0003) (0.0003) (0.0003) (0.0003) (0.0004)

Invisible Citations -0.0001 0.0001 0.0000 -0.0003 -0.0003
(0.0003) (0.0003) (0.0003) (0.0003) (0.0004)

P-value (Visible = Invisible) 0.101 0.254 0.238 0.078 0.154

R2 0.014 0.018 0.037 0.336 0.405

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0008 0.0007 0.0006 0.0007 0.0006
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Pseudo-Visible Citations -0.0002 -0.0001 -0.0002 -0.0004 -0.0003
(0.0002) (0.0002) (0.0002) (0.0003) (0.0004)

Invisible Citations (SCI years) 0.0002 0.0002 0.0002 0.0001 0.0001
(0.0002) (0.0002) (0.0002) (0.0003) (0.0003)

Invisible Citations (non-SCI years) -0.0000 0.0000 0.0001 0.0001 0.0001
(0.0002) (0.0002) (0.0002) (0.0002) (0.0003)

P-value (Visible = Pseudo-Visible) 0.027 0.076 0.076 0.059 0.147
P-value (Visible = Invisible (SCI years)) 0.113 0.189 0.252 0.271 0.358
P-value (Visible = Invisible (non-SCI years)) 0.015 0.050 0.102 0.134 0.281
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI)) 0.498 0.625 0.519 0.389 0.564

R2 0.014 0.018 0.037 0.336 0.405

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Observations 6,478 6,478 6,478 6,478 6,478
Dependent Variable Mean 0.046 0.046 0.046 0.046 0.046

Notes : The table reports the estimates of variants of Equations (3) and (4) with a different dependent variable: an indicator equal to one
if scientist i moved to a higher-ranked department between 1956 and 1969. These regressions use the sample of scientists observed in 1956
and 1969. The explanatory variable Visible Citations measures scientist i ’s individual rank in the distribution of visible citations. Invisible
Citations measures scientist i ’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures scientist i ’s
individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not covered
in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i ’s individual rank in the distribution of
invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i ’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i ’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

II.E Overcoming Information Frictions Across Geographic and

Intellectual Distance

The results on scientists who move up the department quality ladder also enable us to

explore how citation metrics reduced information frictions. We would expect that citation

metrics would matter more in situations where peers did not have good information on

the quality of a potential hire.

We first investigate whether citation metrics help to overcome information frictions due

to geographic distance. Specifically, we estimate two regressions with different dependent

variables: (1) an indicator equal to 1 if scientist i moved to a higher-ranked department

that was geographically far, and (2) an indicator equal to 1 if scientist i moved to a

higher-ranked department that was geographically close. We define departments to be
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Figure 7: Moving to Higher-Ranked Department, Specification 2

Notes: The figure plots the coefficients and 95 percent confidence intervals from a variant of Equation (4)
with an alternative dependent variable: an indicator for moving to a higher-ranked department, see
Table 6, Specification 2.

geographically far if they are more than 100km apart.23 The results suggest that citation

metrics only impacted moves to higher-ranked departments that were geographically far but

not to departments that were geographically close (Figure 8, panel (a); and Table C.10).

We also investigate whether citation metrics helped to overcome information frictions due

to intellectual distance. We measure intellectual distance using cross-department citations

before the move of the scientist. Specifically, we measure whether scientist i ’s papers

had been cited in the receiving department before the introduction of the SCI in 1963.

We estimate two regressions with alternative dependent variables: (1) an indicator equal

to 1 if scientist i moved to a higher-ranked department where i ’s research was not cited

before the move, and (2) an indicator equal to one if scientist i moved to a higher-ranked

department where i ’s research was cited at least once before the move.24 The results

suggest that citation metrics only impacted moves to higher-ranked departments where

scientist i had not been cited before the move (Figure 8, Panel B; and Table C.10).

Overall, these findings show that citation metrics helped overcome information frictions

due to geographic and intellectual distance. Reducing these frictions may have enabled

departments to discover scientists in lower-ranked departments, even if they had not

interacted before.

23Results are similar if we define departments as geographically close using alternative cutoffs (see
Figure C.3).

24Around a quarter of all moves to higher-ranked departments were to departments where scientists
were cited before.
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Figure 8: Moving To Higher-Ranked Departments by Geographic and Intellec-
tual Distance

Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (3). Panel
(a) reports results from two regressions with alternative dependent variables: (i) an indicator for moving
to a higher-ranked department that was far from scientist i ’s department; (ii) an indicator for moving to
a higher-ranked department that was close to scientist i ’s department. Panel (b) reports results from two
regressions with alternative dependent variables: (i) an indicator for moving to a higher-ranked department
where scientist i ’s papers were not cited before 1963; (ii) an indicator for moving to a higher-ranked
department where scientist i ’s papers were cited before 1963. For detailed results, see Appendix Tables
C.9 and C.10.

III Heterogeneous Impact of Performance Metrics

As the next step of our analysis, we investigate the heterogeneous impact of the SCI

depending on the scientists’ citation rank and the rank of their department. Furthermore,

we investigate if minorities disproportionately profited from the availability of citation

metrics.

III.A Heterogeneous Effects by Individual-Level Citation Rank

First, we investigate if scientists in different percentiles benefited differentially from the
visibility of their citations. Specifically, we estimate a non-parametric variant of our main
regression:

Dep. Ranki =
∑
q

δq · 1(V isible Cit Decilei = q) +
∑
q

θq · 1(Invisible Cit Decilei = q) (5)

+ π · Publicationsi + Subject FE + ϵi

1(V isible Cit Decilei = q) and 1(Invisible Cit Decilei = q) are indicator variables for

i’s decile in the visible and invisible citation distributions, respectively. We visualize the
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estimates relative to the bottom half of the visible and invisible individual-level citation

distribution (Figure 9).25

Figure 9: Heterogenous Effects by Individual-Level Citation Rank

Notes: The figure plots coefficients δ̂q (dark blue) and θ̂q (light blue) and 95 percent confidence intervals
from Equation (5).

Over the upper half of the citation distribution, an increase in visible citations

increases the assortativeness of the match between the rank of scientist i and the rank

of her department. Furthermore, the gap between visible and invisible citations widens

for higher deciles of the citation distribution. A scientist in the top decile of the visible

citation distribution was, on average, placed in a department that was 22.4 percentiles

higher in the department ranking, compared to scientists in the bottom half of the visible

citation distribution. This is equivalent to a physicist being placed at Harvard as opposed

to Case Western Reserve University. In contrast, a scientist in the top decile of the

invisible citation distribution was, on average, placed in a department that was only seven

percentiles higher ranked, compared to a scientist in the bottom half of the invisible

citation distribution. In Appendix Figure D.1, we further split up the top decile and show

that scientists in the very highest percentiles of the visible citation distribution are placed

in even higher-ranked departments. These results suggest that scientists at the upper end

of the citation distribution had a particularly large benefit from the availability of citation

metrics.

25To save space, we report results for the specification that controls for the number of publications by
year and subject, equivalent to column (3) of Table 3. The results for the other specifications are almost
identical. Because in some subjects, e.g., mathematics, a relatively high fraction of scientists have zero
citations, we do not separately estimate effects for lower deciles.
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III.B Heterogeneous Effects for Peripheral Scientists

Second, we analyze if scientists who were placed in lower-ranked departments (peripheral

scientists) in 1956 differentially benefited from the availability of citation metrics. For this

test, we restrict the sample to scientists who we observe both in 1956 and in 1969. The

outcome variable is their department rank in 1969:

Dep. Ranki =
∑
q

δHq · 1(V isible Cit Decilei = q)×High-Ranked (1956)i

+
∑
q

δLq · 1(V isible Cit Decilei = q)× Low-Ranked (1956)i

+
∑
q

θHq · 1(Invisible Cit Decilei = q)×High-Ranked (1956)i (6)

+
∑
q

θLq · 1(Invisible Cit Decilei = q)× Low-Ranked (1956)i

+ ω · Low-Ranked (1956)i + π · Publicationsi + Subject FE + ϵi

Variable definitions are identical to Equation (5). We add interactions between the deciles

of the individual-level citation distributions with indicator variables that equal one if the

scientist was working in either a high-ranked or a low-ranked department in 1956. We

also control for the main effect of working in a low-ranked department in 1956. We define

low-ranked departments as those below the 75th percentile of the department ranking.26

In physics, for example, low-ranked departments are all departments that were ranked

lower than the University of Wisconsin, Madison.

We show estimates for the deciles of the visible citation distribution for scientists in high-

ranked and low-ranked departments in Figure 10.27 Estimates for scientists in low-ranked

departments are consistently larger than for scientists in high-ranked departments. The

p-values for the tests that coefficients for the top two deciles are the same in low-ranked

and high-ranked departments are below 0.001. This indicates that scientists who were in

lower-ranked departments in 1956 benefited disproportionately from the availability of

citation metrics.28

In other words, citation metrics enabled the discovery of “hidden stars.” This may have

reduced misallocation by helping the highest-cited scientists in low-ranked departments to

move to high-ranked departments. This finding is consistent with anecdotal evidence; for

example, a contemporary scientist remarked that “[t]he SCI was especially useful to find

people who would otherwise be overlooked” (as cited in Wouters, 1999b, p. 138).

26Results are qualitatively similar if we use alternative cutoffs (e.g., 60th, 70th, 80th, or 90th percentile,
see Appendix Figure D.2).

27To improve clarity, the figure does not report the estimates for the invisible citation deciles. As in
Figure 9, the estimates for invisible citations are consistently smaller than for visible citations. We also
find no difference in the impact of invisible citations depending on the department rank.

28These effects may be interpreted as mechanical because scientists in low-ranked departments in 1956
have more scope to move to a higher-ranked department. Nevertheless, it is important to quantify how
“hidden stars” may benefit from the availability of performance metrics.
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Figure 10: Heterogenous Effect of Citation Rank for Peripheral Scientists

Notes: The figure plots coefficients δ̂Hq (orange) and δ̂Lq (blue) and 95 percent confidence intervals from
Equation (6).

One example, of such a “hidden star” is the medical scientist Hans Hecht. Swiss-born,

he obtained his M.D. in Germany in 1936. He escaped the Nazi regime in 1938 and

emigrated to the United States.29 He started his U.S. career as an “Instructor of Medicine

at the Wayne University School of Medicine, following which he moved to the University

of Utah, where, in 1946, he earned a second M.D. degree” (Katz, 1971) and became a

professor there. Arnold Katz of the Mount Sinai School of Medicine described that his:

“breadth of scientific interests [...] was always based on an extraordinarily high level of

scientific excellence [...] he was never taken in by the investigator with a long list of

unoriginal or superficial papers, but saw clearly the essential quality of a man’s work”

(Katz, 1971). In the mid-1960s, Hans Hecht was hired by the University of Chicago.

We explore whether the example of Hans Hecht indeed provides more general insights

into the characteristics of “hidden stars.” That is, we investigate which characteristics

are correlated with being underplaced before the availability of citation metrics. For

this analysis, we define star scientists as scientists whose total citations (both visible

and invisible) place them in the top five percent of the subject-level citation distribution

in 1969. For these 450 scientists we can infer some characteristics from our data, e.g.,

whether they were female, but also whether they were of Asian, Hispanic, or Jewish origin.

We measure these characteristics based on the names of academics (for more details, see

Appendix B.1). In addition, we collect information on where these star scientists obtained

their Ph.D. through an extensive web search.30

We then report the average characteristics of star scientists in high-ranked departments

29See Becker et al. 2023 for the emigration of scientists from Nazi Germany.
30We obtain the Ph.D. university for 400 out of the 450 star scientists.
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and of star scientists who worked in low-ranked departments in 1956 (“hidden stars”).

38% of star scientists in high-ranked departments had received a Ph.D. from a top-10

department in the United States. In contrast, only 18% of “hidden stars” had received a

Ph.D. from a top-10 department (Figure 11). We also find that there were twice as many

women among “hidden stars”. Since there were very few women in academia at the time

(Iaria et al., 2022), the difference is not statistically significant. Overall, this evidence

suggests that “hidden stars” had, on average, obtained their Ph.D. from worse universities

and that they were more likely to be female.

Figure 11: Characteristics of “Hidden Stars” and Other Star Scientists

Notes: The figure reports characteristics of star scientists who were in high-ranked departments (blue)
and low-ranked departments (“hidden stars,” orange) in 1956. As before, low-ranked departments are
those below the 75th percentile of the department ranking in 1956. For this figure, we define star scientists
as all scientists in the top five percent of the subject-level citation distribution.

III.C Heterogeneous Effects for Minority Scientists

In the last part of this section, we investigate the heterogeneous impacts of citation metrics

on minority scientists. Specifically, we analyze whether women, Hispanics, Asians, and

Jews disproportionately benefited from the availability of citation metrics. As outlined

above, we identify these groups based on the names of academics. As the proportion of

minorities among academics was low in the 1960s (e.g., Card et al. 2023, Iaria et al. 2022),

we pool all minorities to gain power. We then estimate the following regression:
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Dep. Ranki =
∑
q

δMq · 1(V isible Cit Decilei = q)×Majorityi

+
∑
q

δmq · 1(V isible Cit Decilei = q)×Minorityi

+
∑
q

θMq · 1(Invisible Cit Decilei = q)×Majorityi (7)

+
∑
q

θmq · 1(Invisible Cit Decilei = q)×Minorityi

+ ω ·Minorityi + π · Publicationsi + Subject FE + ϵi

Variables are defined as before, but we add interactions with indicator variables that equal

one if the scientist belonged either to the majority or to the minority. We also control for

an indicator that equals one if the scientists belonged to a minority.

While we do not find evidence that minority scientists, on average, benefited more from

citation metrics than majority scientists (Appendix Table D.2), the evidence in Figure 12

suggests that among star scientists (top decile) minority scientists benefit slightly more

than majority scientists.31 The p-value for the test that the coefficients for the tenth decile

are the same for minority and majority scientists is 0.051.

Figure 12: Heterogenous Effects for Majority and Minority Scientists

Notes: The figure plots coefficients δ̂Mq (blue) and δ̂mq (orange) and 95 percent confidence intervals from
Equation (7).

Taken together, these results suggest that the availability of more “objective” perfor-

mance metrics helped disadvantaged high-quality scientists. In particular, highly cited

31The democratizing effect of citation metrics is driven by larger effects of citation metrics for women
and Jews (see Figure D.3). These results are robust to adding a control for the department rank of
scientist i in 1956 (Appendix Figure D.4).

32



scientists in lower-ranked departments (“hidden stars”) and highly cited minority scientists

benefited from the availability of citation metrics.

IV Impact of Performance Metrics on Careers

As shown above, citation metrics increased assortative matching between scientists and

departments. In the last part of the paper, we study whether scientists with more

visible citations also accrued additional benefits. We investigate such benefits by studying

the impact of citation metrics on promotions and receiving NSF grants. This analysis

also speaks to whether citation metrics increased recognition by peers and the wider

scientific community, suggesting Matthew effects (Merton, 1968). We estimate the following

regressions:

Specification 1:

1[CareerOutcome]i = δ · V isible Citationsi + θ · Invisible Citationsi (8)

+ π · Publicationsi + Subject FE + ϵi

Specification 2:

1[CareerOutcome]i = δ1 · V isible Citationsi + δ2 · Pseudo-V isible Citationsi (9)

+ θ1 · Invisible Citations (SCI years)i + θ2 · Invisible Citations (non-SCI years)i

+ π · Publicationsi + Subject FE + ϵi

where 1[CareerOutcome]i is an indicator that equals one if the scientist was promoted or

received an NSF grant. The remaining variable definitions are identical to Equations (1)

and (2).

IV.A Effect on Promotions

We investigate if scientists who we observe as assistant or associate professors in 1956 were

promoted to full professors by 1969. This allows us to directly study how the introduction

of performance metrics influenced academic careers and peer recognition. We estimate

Equations (8) and (9), where the dependent variable equals one if scientist i was promoted

to full professor between 1956 and 1969.

We find that the visible citation rank has a significant positive impact on promotions

(Table 7). The probability of promotion increased by 4.1 percentage points (or 5.8 percent

relative to the mean) for scientists with a 10 percentile higher visible citation rank.32

32The effect of citation metrics on promotions is estimated within the set of academics who we observe
in 1956 and who have not left academia by 1969. Since the probability of leaving academia decreases with
visible citations (see Section II.D), we likely estimate a lower-bound of the effect of citation metrics on
promotions.
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The estimates for invisible citations are close to zero and statistically insignificant. The

estimates from Specification 2 confirm these findings (Table 7 and Figure 13, panel (a)).

Table 7: Promotion to Full Professor

Dependent Variable: Promotion to Full Professor

(1) (2) (3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0042 0.0046 0.0047 0.0041 0.0040
(0.0006) (0.0007) (0.0007) (0.0010) (0.0013)

Invisible Citations 0.0009 0.0003 0.0004 -0.0003 -0.0001
(0.0005) (0.0006) (0.0006) (0.0010) (0.0012)

P-value (Visible = Invisible) 0.002 < 0.001 < 0.001 0.017 0.068

R2 0.140 0.145 0.154 0.366 0.395

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0043 0.0048 0.0048 0.0041 0.0041
(0.0006) (0.0006) (0.0007) (0.0010) (0.0013)

Pseudo-Visible Citations 0.0000 -0.0004 -0.0003 -0.0002 0.0001
(0.0006) (0.0006) (0.0006) (0.0011) (0.0012)

Invisible Citations (SCI years) 0.0006 0.0005 0.0005 0.0006 0.0006
(0.0005) (0.0005) (0.0005) (0.0009) (0.0011)

Invisible Citations (non-SCI years) 0.0003 0.0001 0.0002 -0.0007 -0.0011
(0.0005) (0.0005) (0.0005) (0.0009) (0.0011)

P-value (Visible = Pseudo-Visible) < 0.001 < 0.001 < 0.001 0.017 0.068
P-value (Visible = Invisible (SCI years)) < 0.001 < 0.001 < 0.001 0.015 0.054
P-value (Visible = Invisible (non-SCI years)) < 0.001 < 0.001 < 0.001 < 0.001 0.002
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI)) 0.755 0.541 0.663 0.678 0.655

R2 0.140 0.146 0.154 0.366 0.395

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Observations 3,364 3,364 3,364 3,364 3,364
Dependent Variable Mean 0.707 0.707 0.707 0.707 0.707

Notes: The table reports the estimates of Equation (8) in the first panel and of Equation (9) in the second panel. The dependent variable
is an indicator equal to one if scientist i was promoted to full professor between 1956 and 1969. These regressions use the sample of
scientists observed in 1956 and 1969, who were not full professors in 1956. The explanatory variable Visible Citations measures scientist
i ’s individual rank in the distribution of visible citations. Invisible Citations measures scientist i ’s individual rank in the distribution of
invisible citations. Pseudo-Visible Citations measures scientist i ’s individual rank in the distribution of pseudo-visible citations (citations
in journals indexed in the SCI in 1961, but for years not covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI
years) measures scientist i ’s individual rank in the distribution of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations
(non-SCI years) measures scientist i ’s individual rank in the distribution of invisible citations in non-SCI years (citations in journals not
indexed in the SCI in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where
100 is the best and 1 the worst scientist. Publications by Year separately measure the number of scientist i ’s publications in each year
between 1956 and 1969. Publications by Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature).
Standard errors are clustered at the department level.

The results indicate that departments indeed used citation metrics in promotion

decisions. As full professor positions come with many advantages such as prestige, job

security, and research funds, these findings suggest that citation metrics affected individual

careers and the allocation of resources in the sciences.

IV.B Effect on Research Grants

Finally, we investigate the effect of citation metrics on receiving research grants. This

analysis examines whether citation metrics affect the allocation of resources and recognition

by the wider scientific community. We digitize entries of all grants awarded in 1969 by
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the National Science Foundation (NSF) and match them to the scientists in our faculty

rosters (see Appendix B.1.3). We estimate Equations (8) and (9), where the dependent

variable equals one if scientist i received at least one NSF grant.33

Table 8: Receiving an NSF Grant

Dependent Variable: Receiving NSF Grant

(1) (2) (3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0021 0.0017 0.0015 0.0013 0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Invisible Citations 0.0003 -0.0000 -0.0000 0.0001 0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001 0.001 0.002

R2 0.064 0.070 0.086 0.215 0.249

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0020 0.0017 0.0015 0.0012 0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Pseudo-Visible Citations -0.0004 -0.0005 -0.0005 -0.0002 -0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Invisible Citations (SCI years) 0.0003 0.0001 0.0003 0.0003 0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Invisible Citations (non-SCI years) 0.0007 0.0005 0.0005 0.0004 0.0005
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

P-value (Visible = Pseudo-Visible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
P-value (Visible = Invisible (SCI)) < 0.001 < 0.001 < 0.001 0.001 0.003
P-value (Visible = Invisible (non-SCI)) < 0.001 < 0.001 0.002 0.009 0.022
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI)) 0.005 0.016 0.005 0.200 0.222

R2 0.066 0.071 0.087 0.215 0.249

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Observations 15,582 15,582 15,582 15,582 15,582
Dependent Variable Mean 0.068 0.068 0.068 0.068 0.068

Notes: The table reports the estimates of Equation (8) in the first panel and of Equation (9) in the second panel. The dependent variable
is an indicator equal to one if scientist i received an NSF grant in 1969. These regressions use the sample of scientists observed in 1969,
excluding medicine. The explanatory variable Visible Citations measures scientist i ’s individual rank in the distribution of visible citations.
Invisible Citations measures scientist i ’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures
scientist i ’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not
covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i ’s individual rank in the distribution
of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i ’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i ’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

The visible citation rank has a significant positive impact on receiving NSF grants

(Table 8). The probability of receiving a grant increased by 1.3 percentage points (or 19.0

percent relative to the mean) for scientists with a 10 percentile higher visible citation rank.

The estimates for invisible citations are close to zero and statistically insignificant. The

estimates from Specification 2 confirm these findings (Table 8 and Figure 13, panel (b)).

These results highlight that the effects of citation metrics go beyond the allocation

of talent: they affect whether scientists are promoted and whether they receive research

33We exclude medical scientists from this analysis because the NSF does not fund research in medicine.
If we include medical researchers, the results are very similar (see Appendix Table E.1).
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Figure 13: Effect on Career Outcomes, Specification 2

Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (9), see
Tables 7 and 8, Specification 2.

grants. Thus, recognition through citations enables high-performing scientists to accrue

additional rewards and resources, contributing to Matthew effects in the sciences (Merton,

1968).

V Conclusion

The evaluation of scientists based on performance metrics, and in particular citations, has

become ubiquitous in modern science. Scientists are highly aware of the number of citations

their papers have received, and standard metrics like the impact factor or the h-index are

not only used to evaluate scientists and papers but also influence hiring and promotion

decisions. Equally, departments and scientific journals are frequently ranked based on

citation measures. This widespread reliance on citation metrics has been criticized, as

citations only capture one dimension of an academic’s contribution to knowledge (DORA,

2013; CoARA, 2022). Despite these concerns, little is known about the consequences of

measuring citations for scientific careers, and the allocation of talent and resources.

In this paper, we use the introduction of the Science Citation Index to provide the

first causal estimates of how citation metrics affect the organization of science. We collect

new data and develop a new identification strategy to show that systematically measuring

and revealing citations had a large and immediate impact on the careers of scientists.

First, we show that the introduction of citation metrics increased assortative matching

between scientists and departments based on citations by reducing information frictions.

Second, we show that the effect was particularly pronounced for scientists in the top end

of the citation distribution, and especially for “hidden stars” (highly cited scientists in

lower-ranked departments), as well as for highly cited minority scientists. Finally, we show

that measuring citations increased the reliance on citation metrics in promotion decisions
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and in allocating research grants. Overall, our findings demonstrate that citation metrics

have a profound impact on the organization of modern science.
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