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Abstract

We study how performance metrics affect the allocation of talent by exploiting the
introduction of the first citation database in science. For technical reasons, it only
covered citations from certain journals and years, creating quasi-random variation: some
citations became visible, while others remained invisible. We identify the effects of citation
metrics by comparing the predictiveness of visible to invisible citations. Citation metrics
increased assortative matching between scientists and departments by reducing information
frictions over geographic and intellectual distance. Highly-cited scientists from lower-ranked
departments (“hidden stars”) and from minorities benefited more. Citation metrics also

affected promotions and NSF-grants, suggesting Matthew effects.
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The allocation of talent to productive positions in society is of utmost importance
for the creation of new ideas, technological progress, and economic growth (e.g., Murphy
et al., 1991; Jones, 1995; Weitzman, 1998; Romer, 1986, 1990; Hsieh et al., 2019). As talent
is scarce, private sector firms and universities increasingly rely on performance metrics
to identify talented individuals (e.g., Hoffman et al., 2018; Forbes, 2013). In academia,
performance metrics based on citations and publications affect hiring, promotions, wages,
research funding, and the prestige of academics (e.g., Hamermesh and Schmidt, 2003;
Ellison, 2013). Due to their increasing use, concerns have been raised about a potential
overreliance on performance metrics in science (DORA, 2013; CoARA, 2022). Despite the
importance of such metrics, as well as the recent discussions, there is virtually no evidence
that quantifies how performance metrics affect the organization of science.

In this article, we provide the first systematic evidence of the impact of performance
metrics on the allocation of talent and on scientific careers. Specifically, we study how
citation metrics affect the assortative matching between scientists and universities, which
groups benefit most from citation metrics, and how citation metrics affect career outcomes,
such as promotions and research funding.

Our empirical strategy exploits the introduction of the Science Citation Index (SCI),
which led to quasi-random variation in the visibility of individual scientists’ citation
counts. While researchers always had a rough sense of the influence of scientific work,
it was impossible to systematically measure citations until the 1960s. This changed
fundamentally in 1963 when Eugene Garfield published the first Science Citation Index
(SCI). For the first time, it became possible to identify the highest-cited papers and
researchers. The Nobel laureate and molecular biologist Joshua Lederberg lauded the
invention of the SCI with the words: “I think you're making history, Gene!” (Wouters,
2017). Scientists, funding bodies, and university administrators immediately started to
use citation counts in hiring, promotion, and funding decisions. The sociologist Harriet
Zuckerman remarked in the New York Times that there are “cases of people who have
been asked to go count their own citations, and also of deans and administrations who
have asked for citation counts” (Charlton, 1981).

In the first part of the article, we investigate how the availability of citation metrics
affects the assortative matching between scientists and departments. We document that the
correlation between scientists’ citation counts and the rank of their department increased
by 61%. At the same time, scientists’ publication counts became 46% less predictive of
their department rank. These over-time changes suggest that hiring committees started to
attach more weight to citation counts and less weight to other observable characteristics
such as publications when evaluating candidates. The increased correlation between
scientists’ citations and the ranking of their departments may be spurious for various
reasons. For example, the increasing importance of expensive research labs and of federal
research funding (e.g., Kantor and Whalley, 2022) could disproportionately favor leading

departments and allow them to attract star scientists, who turn out to be highly cited.



Similarly, increases in team production (e.g., Wuchty et al., 2007; Jones, 2009) may have
spurred collaborations within departments and, hence, made department quality more
critical for citations of individual scientists.

We estimate the causal effect of citation metrics by exploiting that, for technical
reasons, the SCI only covered citations in a subset of years and journals. Only these
citations became visible to the scientific community. In contrast, other citations remained
inwisible to contemporaries, yet are observable in modern citation data. The variation in the
visibility of citations stems from two sources: variation in the coverage of citations (1) over
time and (2) across journals. First, citations appearing in citing articles until 1960 were
invisible. With the first edition of the SCI, citations from citing articles in 1961 became
visible. Due to technological constraints, the coverage of the SCI was interrupted for two
years. Hence, citations appearing in citing articles in 1962 and 1963 remained invisible at
the time. After 1964, the SCI was published yearly, and thus citations appearing in citing
articles after 1964 became visible. Second, due to a lack of computing power, the SCI
only covered citations in certain journals. As a result, some citations appearing in covered
years (1961 and from 1964 onwards) remained invisible if they came from citing articles
published in journals not indexed by the SCI. Crucially, in the early years, the selection
of citing journals was somewhat arbitrary because the lack of citation data meant that
journal rankings did not exist.!

Importantly, our empirical strategy exploits when and where a scientist’s papers were
cited, not when and where they were published. The cited papers could be published in
any journal and in any earlier year. The following example of two hypothetical scientists
illustrates our identification strategy: suppose that both scientists published a paper in
1957 (in any journal). One of the papers was cited in Nature in 1961, while the other one
was cited in Nature in 1962. As the SCI covered citations in 1961 but not in 1962, the
first citation became visible to contemporaries, while the second remained invisible. Using
modern citation data, we can, however, observe both visible and invisible citations.

For our analysis, we combine new data on historical faculty rosters of U.S. universities
from the World of Academia Database (laria et al., 2022) with extensive publication and
citation data from Clarivate Web of Science. These data enable us to construct the most
comprehensive individual and department-level rankings for the 1960s. In addition, we
digitize lists from historical volumes of the SCI, which specify the exact citing journals
that were indexed in each volume of the SCI. This allows us to measure which citations
were visible and, thus, to reconstruct the information set available to scientists in the
1960s.

We estimate the effect of citation metrics on the match between scientists and depart-
ments by comparing the relative importance of visible to invisible citations. We find that

visible citations are four times as predictive of scientists’ department rank than invisible

In fact, the impact factor, which nowadays is used to rank academic journals, was invented by the
creators of the SCI (Garfield, 1979, p. 150).



citations. Specifically, scientists with a 10 percentile higher visible citation count were,
on average, placed at a 2.5 percentiles higher ranked department in 1969. For instance,
a mathematician would be placed at Princeton or Chicago as opposed to Columbia or
Brandeis. In contrast, scientists with a 10 percentile higher invisible citation count were
on average only placed at a 0.6 percentiles higher ranked department. This pattern holds
even if we control for detailed publication records, i.e., for the number of publications in
each journal (e.g., two Nature, one Science, and one PNAS publication) and in each year
(e.g., one publication in 1956, two in 1960, and one in 1964). Note that it is not surprising
that even invisible citations affect the matching between scientists and departments since
the academic community always had some knowledge of the quality of scientists’ research,
even if precise citation counts were not available.

Despite the somewhat arbitrary nature of the SCI coverage, two main concerns could
potentially invalidate this identification strategy. First, visible citations may come from
articles in higher-quality journals. Second, as the SCI was introduced in 1961, visible
citations occur in later years, on average, and may have a larger impact on career outcomes
in 1969. As a consequence, the impact of visible citations on scientists’ careers would be
overestimated.

To address the quality concern, we compute measures of the quality of citing journals.
We find that visible and invisible citations come from journals of similar quality. We also
provide further evidence that differences in the quality of citing journals do not bias our
results. For this test, we estimate regressions that only consider citations from the set of
citing journals that were indexed in the first edition of the SCI. This analysis compares
scientists whose paper was cited, for example, in Science in 1961, and was therefore visible,
to scientists whose paper was cited in Science in 1963, and was therefore invisible.

To address the timing concern, we confirm that the results hold in specifications that
exclusively rely on across-journal variation in the visibility of citations. This analysis
compares scientists whose paper was cited in the same year (e.g., 1961), but one citation
occurred in the Journal of the American Chemical Society, and was thus visible in the
SCI, while the other citation occurred in Chemical Reviews, and was thus invisible.

The quality of citing journals and the timing of citations could interact to make
visible citations more predictive for assortative matching. To address this concern, we
introduce an additional specification. For this test, we partition the citation space into
four mutually exclusive sets depending on where and when a scientist was cited: (1) wvisible
citations: citations from journals that were indexed in the SCI in years when the SCI was
published; (2) pseudo-visible citations: citations from journals that were indexed in the
SCI in 1961 but from years when the SCI was not published; (3) invisible citations (SCI
years): citations from journals that were not indexed in the SCI in years when the SCI
was published; and (4) invisible citations (non-SCI years): citations from journals that
were not indexed in the SCI in 1961 and from years when the SCI was not published.

We find that the coefficient on visible citations is almost identical to the baseline



specification. Moreover, the coefficient on pseudo-visible citations is considerably smaller
and very similar to the two coefficients on invisible citations in SCI years and in non-SCI
years. This indicates that citations in journals that were indexed by the SCI only had a
differential impact in years in which the SCI was actually available. These results support
the validity of our identification strategy.

Next, we shed light on two potential mechanisms that could underlie the increase
in assortative matching based on citation metrics. First, scientists with few citations
may have disproportionately left academia. We find that scientists with a 10 percentile
higher visible citation count were 3.4 percentage points (or 5.0 percent) less likely to
leave academia between 1956 and 1969. In contrast, invisible citations did not affect the
probability of leaving academia. Second, highly cited scientists may have moved to higher-
ranked departments. We show that scientists with a 10 percentile higher visible citation
count were 0.8 percentage points (or 17.5 percent) more likely to move to a higher-ranked
department between 1956 and 1969. Invisible citations had no effect on moving to a
higher-ranked department. Overall, these results indicate that both mechanisms increased
assortative matching.

Citation metrics may matter more in situations where peers did not have good
information on the quality of a potential hire. We, therefore, explore whether citation
metrics reduced information frictions across geographic and intellectual distance. We
find that citation metrics only impacted moves to higher-ranked departments that were
geographically far but not to departments that were geographically close. Similarly, we
find that citation metrics only impacted moves to higher-ranked departments where the
moving scientist had not been cited before the move. These results suggest that citation
metrics helped overcome information frictions. Reducing these frictions may have enabled
departments to discover scientists in lower-ranked departments, even if they had not
interacted before.

In the second part of the article, we investigate the heterogeneous effects of citation
metrics. First, we show that scientists in higher percentiles of the individual-level citation
distribution, and especially those above the 90th percentile, benefited disproportionately
from the availability of citation metrics. Second, we find that the availability of citation
metrics particularly benefited highly cited academics who were originally placed in lower-
ranked departments. Thus, citation metrics enabled the discovery of these “hidden stars.”
This suggests that the introduction of the SCI helped to overcome misallocation by helping
the highest-cited scientists move to higher-ranked departments. We also investigate
the characteristics of these hidden stars. We provide evidence that these scientists, on
average, obtained their Ph.D. from worse universities and that they were more likely to
be female. Third, we investigate whether minority scientists (female, Jewish, Hispanic
or Asian) differentially benefited from the introduction of the SCI. While we do not find
evidence that minority scientists, on average, benefited more from citation metrics than

majority scientists, we find evidence that among star scientists, minority scientists benefit
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slightly more. Overall, these results suggest that the availability of more “objective’
performance metrics helped highly cited scientists in lower-ranked departments and highly
cited scientists from minority groups.

In the last part of the article, we study the impact of citation metrics on other career
outcomes: promotions and receiving research grants. In particular, we analyze whether
scientists who were assistant or associate professors in 1956 were promoted to full professors
by 1969. The probability of promotion increased by 4.1 percentage points (or 5.8 percent)
for scientists with a 10 percentile higher visible citation rank. In contrast, invisible citations
did not affect promotions. Similarly, we find that scientists with a 10 percentile higher
visible citation rank were 19.0 percent more likely to receive an NSF grant. These results
indicate that citation metrics not only affected assortative matching but also had direct
impacts on the careers of scientists and changed the allocation of resources. Scientists
with many visible citations accrued additional rewards and recognition, suggesting the
presence of Matthew effects (Merton, 1968).

This paper contributes to three different strands of the literature. First, our paper
contributes to the body of literature on the economics of science and the creation of
knowledge. The existing literature has shown that scientists have to process increasing
amounts of knowledge to advance the scientific frontier (Jones, 2009) and that access to
the knowledge frontier is crucial for producing science (laria et al., 2018). Additional
contributions have studied the importance of superstar scientists (Azoulay et al., 2010),
peer-effects and scientific productivity (e.g., Waldinger, 2010, 2012; Borjas and Doran,
2012), and the role of editors (e.g., Card and DellaVigna, 2020). More recently, increased
attention has been paid to inefficiencies in the scientific process such as the Matthew Effect
(Azoulay et al., 2014; Jin et al., 2019), gatekeepers (Azoulay et al., 2019), or discrimination
(e.g., Card et al., 2020, 2022; laria et al., 2022; Koffi, 2021; Hengel, 2022).

Despite all these papers making use of publication and citation data, and a long-
standing sociological debate on this fundamental aspect of modern science (e.g., Lotka,
1926; Merton, 1968; Zuckerman and Merton, 1971; Wouters, 1999a, 2014; Muller and Peres,
2019; Biagioli and Lippman, 2020; Pardo-Guerra, 2022), there is no causal evidence on
how performance metrics affect scientific careers.? Our paper is the first to provide causal
evidence that citation metrics fundamentally impact the organization of science.

Second, our findings contribute to the literature on performance metrics in the labor
market. As highlighted by the theoretical models of Holmstrom and Milgrom (1991) and
Feltham and Xie (1994), the use of performance metrics shapes incentives of agents in the
labor market. The key empirical challenge to estimating the impact of performance metrics
is that, in most cases, it is impossible to measure performance before the introduction of
a specific performance metric. As a result, researchers often lack a valid counterfactual.

This makes empirical evidence on how performance metrics affect the allocation of talent

2Some papers document that citation metrics, such as the h-index or citation counts, are correlated
with career outcomes (e.g., Ellison, 2013; Jensen et al., 2009; Hilmer et al., 2015).



exceedingly rare. A few notable exceptions study the effect of performance metrics in the
teacher labor market (Rockoff et al., 2012) and on first placements of MBA graduates
(Floyd et al., 2022). The unique advantage of our setting is that we observe the information
set available at the time and, importantly, what was not part of that information set.?
Last, we contribute to research on assortative matching in labor markets (e.g., Abowd
et al., 1999; Andrews et al., 2008; Card et al., 2013; Song et al., 2019). We show that

performance metrics can increase assortative matching by lowering information frictions.

I The Science Citation Index: Background and Data

I.A  The Creation of the Science Citation Index

The SCI was the first systematic international and interdisciplinary citation index. During
the 1950s, Eugene Garfield and his newly founded Institute for Scientific Information (ISI)
developed the technology to construct a citation index. By the early 1960s, this endeavor
was supported by grants from the National Institutes of Health and the National Science
Foundation. In November 1963, these efforts came to fruition, and the first edition of
the SCI was published, covering citations in 1961 (Garfield, 1963b, see Figure A.1 for a
picture of the first SCI). The SCI quickly became the “most widely used and authoritative
database of research publications and citations” (Birkle et al., 2020).*

To construct the SCI, Garfield and his team selected 613 citing journals from the
physical and life sciences and collected all citations appearing in articles in these journals
in 1961 (Garfield, 1963a). This enabled them to identify all papers that were cited by
these articles in 1961. The cited papers could have been published in any previous year
(i.e., not only in 1961) and in any journal (i.e., not only in the set of citing journals but in
any journal or book).

This information was stored on punch cards and converted to magnetic tapes, which
were processed by IBM computers (Garfield, 1963b, p. x (sic)). Entries were ordered by
last names and initials of scientists (see Figure A.1). Figure 1 shows the 1961 entry for
the medical scientist Murray Abell. His entry covers five cited papers: a 1950 paper in
Archives of Pathology (vol. 50, p. 1), another 1950 paper in Archives of Pathology (vol.
50, p. 23), a 1956 paper in Archives of Pathology (vol. 61, p. 360), a 1957 paper in the
American Journal of Clinical Pathology (vol. 28, p. 272), and a 1961 paper in Cancer

3Since we measure the information set of contemporaries in the 1960s, our analysis allows us to identify
the effects of revealing new information on labor market outcomes. In this, we add to the literature on
how information disclosure and new information technologies affect market efficiency (e.g., Jensen, 2007;
Koudijs, 2015; Tadelis and Zettelmeyer, 2015; Steinwender, 2018; Bernstein et al., 2023).

4The SCI was revolutionary because it created a novel metric of scientific productivity that individuals
were unable to compile for themselves. No scientist would have had the capacity to count citations to
their own work, because it would have required sifting through hundreds of thousands of potentially citing
articles. In contrast, earlier metrics of scientific productivity, such as publication catalogs, aggregated
information that was already individually available (for example, the Catalogue of Scientific Papers
(Csiszar, 2017)).



(vol. 14, p. 318). Each of these papers was cited at least once in 1961; e.g., the 1956
Archives of Pathology paper was cited by one article in 1961 in the Journal of Pathology
and Bacteriology (vol. 82, p. 281). Overall, these five papers received six citations in 1961.

Figure 1: Entry in the Science Citation Index

ABELL HMR—————————=~#50#ARCH PATHOL--=—=——==- 50 1
EMERY GN CAN J DIOCH 6l 39 977
------------- S0-ARCH PATH==—m====——— §0 23
HRSTKA V¥V ARCH 1 PHAR 61 130 304&
------------- 56~ARCH PATH-——=====—=— 61 360
wILLIAMS GE J PATH BACT 61 B2 2al
———————————e- S7-AMER J CLIN PATH---- 28 272
INKLEY SR ARCH IN MED 61 108 903
LAUFER A PATH MICROB 61 24 T2
61~CANCER==== == wom=aoww-- ia 318

GOSLING JR CANCER 61 14 330

Notes: This figure shows a sample entry of the 1961 volume of the SCI. It lists five cited papers for “Abell
MR”. Murray R. Abell was Professor of Pathology (Medicine) at the University of Michigan. The cited
papers could have been published in any year until 1961 (here: 1950 (twice), 1956, 1957, and 1961). The
five papers are cited by six citing articles. Because this example is from the 1961 volume of the SCI, all
citations are from 1961.

For technical reasons, the SCI did not collect citations for 1962 and 1963. As “[t]he
1961 SCI was the result of an experimental research program,” its preparation took more
than two years (Garfield, 1965). After releasing the 1961 SCI in November 1963, the ISI
moved on to preparing the 1964 SCI.® From then on, the SCI was published quarterly.
The set of indexed citing journals quickly expanded from 613 in 1961 to 2,180 in 1969.

The SCI was an immediate success. By the late 1960s, every major university had a
subscription (Garfield, 1972, p. 4). For example, in 1965 chemists at Ohio State University
lobbied the library administration to subscribe to a second copy of the SCI, in addition to
the copy that was already available in the medical library (see Appendix Figure A.3).°

I.B Data
Reconstructing SCI Coverage from the Web of Science

For contemporaries, citations were only visible if they came from citing articles in journals
that were indexed by the SCI. This means that only an incomplete set of citations was
visible at the time. Citations before the SCI’s introduction in 1961, as well as those from
1962 and 1963, and from journals that were not indexed by the SCI remained invisible.
In the 1970s and 1980s, the SCI was backward expanded to cover additional years and

journals, and later became part of the Web of Science. As a result, the Web of Science

5The 1962 and 1963 SCIs were released only in 1972 (Garfield, 1972). For this reason, we measure
outcomes in 1969 and, hence, before the ISI had begun to fill in gaps in coverage.

5By 1966, the SCI was not only available as printed volumes, but could also be purchased on magnetic
tapes. The magnetic tapes provided the raw data for constructing citation counts and for conducting
quantitative citation analyses (Garfield, 1966). Furthermore, the ISI published five-year cumulations of
the SCI. For example, the 1965-1969 compilation included all citations between 1965 and 1969 (Garfield,
1971).



covers both citations that were visible to contemporaries and citations that were invisible
at the time, but became available during the backward expansions.

We reconstruct the sets of citations that were visible and invisible to contemporaries.
For this purpose, we hand-collect yearly lists of citing journals from the printed historical
SCI volumes. We digitize these lists and hand-link them to the Web of Science. Appendix
Figure A.2 shows a sample journal list. Using this linking procedure, we can identify which

citations were part of the information set of the 1960s, and which ones were not.

Faculty Rosters

To study how the introduction of citation metrics affects the careers of academics, we
use data containing faculty rosters for nearly all universities in the United States from
the World of Academia Database (see laria et al., 2022). The data contain almost
comprehensive cross-sections of all U.S. academics for the years 1956 and 1969. Because
the SCI only counted citations for the natural and biomedical sciences, we focus on all
academics who worked in either biology, biochemistry, chemistry, physics, mathematics, or
medicine. For the period of our analysis, the database provides the most comprehensive
data on academics in the United States (see laria et al. (2022) for details). For the 1969
cross-section, the data contain 27,315 scientists at 1,477 departments in 384 universities
(Table 1, Panel B).

The World of Academia Database has two unique advantages for our purpose. First,
it enables us to identify the department (e.g., physics at Berkeley) of each academic.
Second, it contains complete faculty rosters, which allows us to observe both academics
who received citations and, importantly, academics who did not receive any citations. This
enables us to construct comprehensive individual and department rankings based on all

academics and not only based on those who published and were cited.

Linking Scientists with Publications and Citations

To count scientists’ publications and citations, we link the World of Academia Database
with publication and citation data from the Web of Science. We use the cascading linking
algorithm developed in Iaria et al. (2022) (see Appendix B.1.1 for details).

For the 1969 cohort of scientists, we link their publications and citations from 1956
to 1969. This enables us to measure the number of papers that each scientist published
in this period and to count the citations that these papers received from the time they
were published until 1969. Importantly, for our identification strategy, we observe the
complete citation network and thus the exact journal in which a certain paper was cited.
This allows us to measure whether the citations were covered in the SCI and were thus
visible to contemporaries.

The average scientist in our data published 8.75 papers between 1956 and 1969 (Table 1,

Panel A). These papers received 47 citations that were visible to contemporaries and 19



citations that were invisible to contemporaries but can be observed today.” As has been
documented by a large literature in the sociology of science, citations of academics are
highly skewed (e.g., Lotka, 1926). The most highly cited scientists in our data received
more than 3,000 visible and more than 2,000 invisible citations between 1956 and 1969.

Table 1: Descriptive Statistics

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max
Publications 8.75 16.65 0 405
Visible Citations 46.99 128.05 0 3,346
Invisible Citations 18.93 57.95 0 2,010
Full Professor Share  0.40 0.49
Female Share 0.10 0.30

Panel B: Number of Observations

Dataset includes: Observations
Citations 1,800,669
Publications 239,124
Scientists 27,315
Departments 1,477
Universities 384

Notes: Panel A reports summary statistics at the scientist-level for the cross-section of
scientists observed in 1969. Publications are the number of papers a scientist published
between 1956 and 1969; visible citations are the number of citations these papers re-
ceived between 1956 and 1969 that were visible in the SCI; invisible citations are the
number of citations these papers received between 1956 and 1969 that were not visible
in the SCI. Panel B reports the number of observations at the citation, publication,
scientist, department, and university level.

Constructing Scientist Rankings

Using our scientist-publication-citation-linked data, we can construct rankings based on
citations and publications. Within each subject, we rank scientists according to their
citation (or publication) counts between 1956 and 1969. We then calculate each scientist’s
percentile rank in the subject-specific distribution of citations (or publications), assigning
100 to the best and 1 to the worst scientist. This variable transformation allows us
to compare the scientists’ relative positions in the citation distributions, even if these
distributions differ across subjects. For example, the median biologist received 2 citations,
while the median chemist received 9 citations. If percentiles cannot be uniquely assigned
because too many scientists have the same number of citations or publications, we assign
the mid-point of the corresponding percentiles.® This is particularly important for scientists
with zero citations. Alternative assignments of percentile ranks to scientists with zero

citations do not affect our findings (see Appendix C.2.3).

"We show below that the different distributions of visible and invisible citations do not drive our
results.

8For example, in physics 30.37% of observations have zero citations. For the main results, we assign
the mid-point between the 1st percentile and the 31st percentile, i.e., a percentile rank of 15.5, to each of
these observations.



Constructing Department Rankings

Our data also enable us to construct the most comprehensive department rankings for this
time period. These are the first rankings for this period that are based on scientific output,
as opposed to reputational surveys. In addition, our rankings cover a much larger number
of departments than previously available survey-based rankings. In fact, the practice
of ranking departments by their research output only developed as a result of citation
indexing.

We rank all 1,477 departments in 384 universities on the basis of the average total
citations received by scientists in each department. As outlined above, the rankings avoid
systematic error because the World of Academia database also lists all scientists who have
not published and/or were not cited in our study period. In our main department ranking,
we construct the leave-out mean of the number of citations received by scientists in a given
department, i.e., the average citation count of scientist i’s colleagues. We then assign
the percentile rank in the subject-specific distribution of leave-out mean citation counts,
assigning 100 to the best and 1 to the worst department. We use the percentile rank
because it allows us to compare the relative position of departments in different subjects
(physics, chemistry, and so on), which have different numbers of departments, scientists,
and average citations per scientist.

In robustness checks, we show that our findings are robust to using several alternative
department rankings. First, we construct analogous department percentile ranks based on
publications. Second, we construct department percentile ranks using reputation-based
rankings from Roose and Andersen (1970) and Cartter (1966). As highlighted above, the
reputation-based rankings cover far fewer universities.” In Appendix B.2, we list the top

20 departments in each subject, as measured by the various rankings.

I.C How Was the SCI Used in Hiring and Promotions?

While the SCI was predominantly designed to facilitate literature research, it was immedi-

ately used to evaluate scientists. For example, Eugene Garfield remembered:

“The SCI’s success did not stem from its primary function as a search en-

2

gine, but from its use as an instrument for measuring scientific productivity.

(Garfield, 2007, p. 65)
The eminent biologist Richard Dawkins described the SCI as a publication that:

“is intended as an aid to tracking down the literature on a given topic. Univer-

sity appointments committees have picked up the habit of using it as a rough

9The Cartter ranking contains 106 universities, and the Roose-Andersen ranking contains 130, while
our baseline ranking contains 384 universities. The alternative rankings strongly correlate with our main
citation-based ranking. The correlation between the Cartter ranking and our citation-based ranking is
0.68, while the correlation between the Roose-Andersen ranking and our citation-based ranking is 0.70.

10



and ready (too rough and ready) way of comparing the scientific achievements
of applicants for jobs.” (Dawkins, 1986, p. 427)

The SCI made scientists’ citations visible and readily accessible for the first time. Because
the SCI was organized by cited authors, it was easy to measure and compare the citation
counts of scientists. Figure 2 shows one such comparison for two scientists working at
Caltech. The box on the left shows citations of the physicist Charles Archambeau. The
box on the right shows the citations of the 1965 physics Nobel laureate Richard Feynman.
As one contemporary remarked, “[a]n early form of research evaluation of individuals made

use of a ruler to measure column inches of citations!” (Birkle et al., 2020, p. 364).

Figure 2: Comparison of SCI Entries

Notes: This figure compares the entries in the 1965-1969 cumulation of the SCI (Garfield, 1971) for two
physicists at Caltech: Charles Archambeau on the left, and Nobel laureate Richard Feynman on the right.

Very quickly, scientists, funding bodies, and university administrators started to use
citation counts in hiring, promotion, and funding decisions. Some universities even made
citations a mandatory metric in the evaluation of applicants’ portfolios (Wade, 1975, p.
429). The importance of newly available citation metrics is exemplified in the court case
Johnson v. University of Pittsburgh.'’ In 1973, Sharon Johnson sued the biochemistry
department at the University of Pittsburgh for sex discrimination. Her legal case argued
that she was overlooked for tenure even though her papers had received more citations (as

measured in the SCI) than those of two recently tenured male colleagues.

The SCI’s Impact on Assortative Matching: Suggestive Evidence

We first provide suggestive evidence of the impact of the citation metrics on the assortative
matching of academics and departments. If departments began to use the SCI to evaluate
scientists, we would expect that the correlation between a scientist’s citations and their

department rank increased after the introduction of the SCI. We find that the correlation

0Dy, Sharon Johnson v. The University of Pittsburgh, W.Da. PA., 1977,
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between a scientist’s individual citation rank and their department rank increased by 61%
between 1956 and 1969 (Figure 3, panels (a) and (b)). In contrast, the correlation between
the individual publication rank and the department rank decreased by 46% (Figure 3,
panels (¢) and (d)).

Figure 3: Assortative Matching Before and After Citation Metrics
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Notes: Panels (a) and (b) show the correlation of scientists’ citation rank and their department rank
for two cross-sections: 1956 and 1969. Panel (a) shows a binned scatter plot for 1956 and, thus, before
the introduction of the SCI. While we can now measure these citations, they were not observable at the
time. Panel (b) shows a binned scatter plot for 1969 and, thus, after the introduction of the SCI. The
regression coefficient in both panels is conditional on an individual’s publication rank. The p-value of
the test that the slope coefficients in panels (a) and (b) are equal is 0.008. Panels (c¢) and (d) show the
correlation between scientists’ publication rank and their department rank. Publications were observable
to contemporaries in both 1956 and 1969. The regression coefficient in both panels is conditional on an
individual’s citation rank. The p-value of the test that the slope coefficients in panels (c¢) and (d) are
equal is 0.007.

This evidence is in line with the hypothesis that the introduction of citation metrics

increased the reliance of hiring decisions on citations, and decreased the reliance on
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other observable characteristics such as publications. However, the increasing correlation
between scientists’ citation rank and their department rank may have been caused by
other factors. For example, the increasing importance of expensive research labs or federal
research funding (e.g., Kantor and Whalley, 2022) could disproportionately favor leading
departments and allow them to attract highly cited scientists. Similarly, increases in team
production (e.g., Wuchty et al., 2007; Jones, 2009) may have spurred within-department
collaborations and, hence, may have made department quality more important for scientists’
citations. To overcome these challenges, we introduce a novel identification strategy that

allows us to isolate the causal effect of citation metrics on assortative matching in academia.

II The Effect of Citation Metrics on Assortative Match-
ing
II.A  Empirical Strategy

We identify the causal effect of citation metrics by comparing the effect of citations that
were wvisible in the SCI to the effect of citations that remained inwvisible. For technical
reasons, the SCI only covered citations from citing articles in a subset of journals and
years. Hence, only citations from citing articles in this subset were visible to the scientific
community. In contrast, other citations remained invisible because they were not covered
in the SCI. Importantly, the cited papers could have been published in any journal and in
any previous year. Therefore, scientists’ visible citation counts were not determined by
the journals in which their papers were published but only by the journals in which their
papers were cited.

As described above, the first volume of the SCI covered citations from 1961 in any
of the 613 citing journals. As a result, all 1961 citations in those 613 journals became
visible in the SCI, while citations before 1961 and in other journals remained invisible.
Due to limited computing power, the collection of citation data was interrupted in 1962
and 1963. By 1964, data collection resumed. The set of indexed citing journals quickly
expanded from 613 in 1961 to 2,180 in 1969. As a result, the visibility of citations was
affected by two sources of variation: first, in which year a paper was cited, and second, in
which journal it was cited.!!

Our data enable us to reconstruct which citations were part of the information set
of the 1960s, i.e., we measure citations that were wvisible in the SCI. Crucially, we can
also reconstruct which citations were not part of that information set, i.e., citations that
were tnvisible. Invisible citations can be measured today because citation databases were

expanded to include citations for additional years and for a larger set of citing journals.

HBelow, we provide evidence that the quality of citing journals or differences in the timing of citations
does not drive our findings.
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Table 2 illustrates the identifying variation for a hypothetical scientist. It reports
citations to the scientist’s papers, which were published in any journal and in any year.
These papers were cited in articles from journals A, B, and C between 1956 and 1969.
Journal A was in the initial set of 613 citing journals indexed by the SCI in 1961. Journal
B was added to the SCI in 1966, whereas journal C was not indexed in the 1960s. The
dark blue cells indicate citations that were visible to contemporaries because the SCI
collected citations for these years and citing journals. The light blue cells indicate citations
that were invisible because the SCI did not collect data for these years and citing journals.
In other words, citations in dark blue cells were part of contemporaries’ information set,

while citations in light blue cells were not.

Table 2: Identifying Variation for Specification 1

Citations in Journal A | Citations in Journal B | Citations in Journal C

1956
1957 1
1958
1959 1 1
1960

1962 1
1963 1

Notes: This table reports citations of a hypothetical scientist’s papers. Numbers in dark blue cells show
citations that were visible in the SCI because the citation occurred in a journal and year (1961, or 1964-69)
that was covered by the SCI. Numbers in light blue cells show citations that were invisible in the SCI, but
are observable today.

In the example, the hypothetical scientist’s papers were cited in articles published in
journal A in 1959, in 1961, in 1963, and twice in 1967. The citations in 1959 and 1963
were invisible because the SCI did not exist for those years. In contrast, the citations
in 1961 and 1967 were visible in the SCI. Similarly, the scientist’s papers were cited in
articles in journal B in 1957, 1961, 1965, and three times in 1966. Because journal B was
added to the SCI only in 1966, the citations in 1957, 1961, and 1964 were invisible. In
contrast, the three citations in 1966 were visible. Finally, the scientist’s papers were cited
in articles in journal C in 1959, 1961, and 1969. As journal C was not indexed in our
study period, all of these citations were invisible to contemporaries.

Hence, if contemporaries had looked up the scientist’s total citations in the SCI in
1969, they would have observed six citations, i.e., the scientist had six visible citations. In
addition, the scientist had eight citations that were invisible at the time. Using modern

citation data, we can observe both visible and invisible citations. For each scientist i, we
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separately count the number of visible and invisible citations between 1956 and 1969 to
1’s papers published between 1956 and 1969.

II.B Specification 1: Visible vs. Invisible Citations

Our identification strategy exploits the differential visibility of scientists’ citations. If the
very measurement of citations affects the assortativeness of the match between academics
and universities, visible citations should be more predictive of career outcomes than
invisible ones.'? The identifying assumption underlying this new empirical strategy is that
the effect of visible and invisible citations would be the same if both had been covered in
the SCI. Given the arbitrary timing of the introduction of the SCI and the lack of coverage
for the years 1962 and 1963, this seems plausible. Nonetheless, there may be concerns that
any effect might be driven by differences in the quality of the citing journals or the timing
of citations, i.e., by the two sources of variation in the visibility of citations. We address

these concerns with alternative specifications outlined below.
We estimate the following regression:

Dep. Rank; = § - Visible Citations; + 0 - Invisible Citations; (1)
+ 7 - Publications; + Subject FE + ¢;

where Dep. Rank; is the department rank of scientist ¢ in 1969, where 100 is the best

and 1 the worst department.'® Visible Clitations; measure scientist i’s visible citations.
Invisible Citations; measure scientist ¢’s invisible citations. In the baseline specification,
we measure citations as the percentiles in the distributions of visible and invisible cita-
tions.!* Publications; flexibly control for scientists ¢’s publications. Subject F'E control for
differences between academic subjects. To account for potential correlations of regression
residuals in a certain department, e.g., in chemistry at Berkeley, we cluster all standard
errors at the department-level.

To study how citation metrics affect assortative matching, we compare the magnitudes
of the estimated coefficients § and 6. If the visibility of citations in the SCI increased
the assortativeness of the match between scientists and departments, we would expect
that 0 > 6. For example, the difference between o and 6 captures whether citations that
occurred in 1961 instead of 1962 had a larger impact on the match between scientists and

departments. Note that we would not expect 6 to be zero because, even in the absence

PTnvisible citations may still correlate with outcomes, because scientists have always had a rough idea
of the quality, and thus citation potential, of their peers’ papers.

13In the main specification, we use the department ranking based on the leave-out mean of citations. All
results are robust to using different measures of the department rank, e.g., based on citations, publications,
or alternative department rankings based on contemporaneous reputation-based surveys (Table C.1 and
Table C.2).

14We explore alternative transformations of citation counts in Table C.3, e.g., standardizing citation
counts or using the inverse hyperbolic sine of citations.
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of the SCI, scientists will have an approximate idea about the importance and quality of

other scientists’ papers.

Table 3: Citations and Assortative Matching

Dependent Variable: Department Rank

1 2) ®3) (4) ©)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.299 0.320 0.280 0.247 0.237
(0.034)  (0.031) (0.035) (0.035) (0.035)
Invisible Citations 0.103 0.068 0.062 0.061 0.060
(0.023)  (0.020) (0.021) (0.023) (0.024)
P-value (Visible = Invisible) <0.001 <0.001 <0.001 <0.001 <0.001
R? 0.138 0.140 0.153 0.232 0.261

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.305 0.327 0.284 0.252 0.243
(0.035) (0.032) (0.036) (0.035) (0.036)
Pseudo-Visible Citations 0.033 0.012 0.013 0.028 0.022
(0.021)  (0.020) (0.020) (0.022) (0.023)
Invisible Citations (SCI years) 0.030 0.029 0.030 0.020 0.023
(0.014)  (0.014) (0.014) (0.014) (0.014)
Invisible Citations (non-SCI years) 0.057 0.044 0.037 0.025 0.029
(0.017)  (0.016) (0.016) (0.016) (0.017)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (SCI years)) < 0.001 <0.001 <0.001 <0.001 < 0.001
P-value (Visible = Invisible (non-SCI years)) < 0.001 <0.001 <0.001 <0.001 <0.001
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.451 0.551 0.676 0.941 0.956
R? 0.138  0.141  0.154 0232  0.261
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 27315 27,315 27315 27,315 27,315
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1) in the first panel and of Equation (21 in the second panel. The dependent
variable is the department rank in 1969, based on the leave-out mean of citations in the department of scientist ¢ The explanatory
variable Visible Citations measures scientist #’s individual rank in the distribution of visible citations. Invisible Citations measures
scientist 4’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures scientist ¢’s individual rank in
the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not covered in the SCI, i.e.,
1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist ¢’s individual rank in the distribution of invisible citations
in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist 4’s individual rank in the distribution of
invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered, i.e., 1956-
1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst department/scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

We report estimates of Equation (1) in the first panel of Table 3. In column (1), we
report a specification that controls for subject fixed effects. The coefficient for visible
citations is around three times larger than the coefficient for invisible citations. Scientists
with a 10 percentiles higher visible citation count were, on average, placed at a 3.0
percentiles higher-ranked department in 1969. For example, a chemist would be placed at
Harvard or Stanford as opposed to Northwestern University or the University of Southern
California. In contrast, scientists with a 10 percentiles higher invisible citation count were,

on average, only placed at a 1.0 percentiles higher-ranked department.®> We also report

15 As discussed above, it is not surprising that invisible citations are positively correlated with the
department rank because they proxy for wider recognition by the scientific community.
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the p-value of a two-sided t-test for the equality of the two citation coefficients. We reject
the equality of the two coefficients at the 0.1%-level.

To rule out that these differences could potentially be explained by scientists’ publica-
tion records, we include fine-grained controls for publications in columns (2)-(5). In column
(2), we show that the results are robust to controlling for the number of publications by
year, i.e., controlling separately for the number of publications in 1956, 1957, and so on.'6
One might be concerned that differences in publication and citation patterns across the
sciences could explain our findings. For example, mathematicians publish fewer papers
and receive fewer citations than chemists or medical researchers. To address this concern,
we show that the results are robust to separately controlling for the number of publications
by year and subject (column (3)).

Naturally, not only the number of publications but also the journal in which a paper
was published may be correlated with citation counts and thus might bias our estimates.
To overcome this challenge, we additionally control for the number of publications in each
individual journal. That is, we add a variable that counts the number of papers in Science,
another variable that counts the number of papers in Nature, and so on. In total, we
add 1,745 variables that control for the number of publications in each journal (column
(4)). We also allow the effect of these controls to differ by subject, so that a publication
in Science may have a different effect on the career of a physicist than on the career
of a chemist (column (5)). The results are robust to the inclusion of these fine-grained
controls for scientists’ publication records. In fact, the difference in the impact of visible
and invisible citations increases with the inclusion of additional controls. With all controls
(column (5)), visible citations have a four times larger effect on the department rank than
invisible citations. Appendix Figure C.1 illustrates these results graphically.

We show that these findings are robust to using alternative ways of ranking departments
(Appendix C.2.1), to using alternative transformations of individual citation counts (Ap-

pendix C.2.2 and C.2.3), and to imposing additional sample restrictions (Appendix C.2.4).

Alternative Explanation 1: Quality of Citing Journals

Despite the somewhat arbitrary nature of the SCI coverage, the results would be biased
if the visibility of citations in the SCI were correlated with other characteristics that
impacted a scientist’s department rank in 1969.

The first concern is that visible citations may come from citing articles in higher
quality journals (e.g., Nature or Science) and therefore have a larger impact on a scientist’s
career. It is important to note that this concern is somewhat mitigated because it was
difficult to assess journal quality before the introduction of the SCI. Some of the citing

journals initially indexed in the SCI turned out to be of relatively lower quality. Similarly,

16Since the number of scientists’ publications takes many fewer values than the number of citations (see
Table 1), especially when measuring publications separately by years (columns (2)-(5) in Table 3) and
journals (columns (4)-(5) in Table 3), we do not use the percentile rank transformation of publications.
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many journals that were, in fact, of high quality were not indexed during the first years of
the SCI.

While it was not possible to quantitatively measure journal quality at the time, we can
retrospectively compute measures of the quality of the citing journal and thereby assess
whether visible citations came from better journals. For this test, we compute the impact
factors for all citing journals in the pre-SCI period.!” Journals which were indexed in the
1961 SCI had an average impact factor of 0.83, while journals which were not indexed had
an average impact factor of 0.86 (p-value of test of equal means: 0.618). We also plot the
distributions of the average impact factors for both types of journal in Figure 4. This
analysis indicates that journals indexed in the 1961 volume of the SCI were not of higher

quality than journals that were not indexed.

Figure 4: Quality of Journals Indexed and Not Indexed in SCI
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Notes: The figure shows histograms of impact factors for two sets of journals: journals indexed in the SCI
in 1961 (orange) and journals not indexed in the SCI in 1961 (blue). For each journal, we average the
impact factors over the pre-period (1956-1963).

To provide additional evidence that differences in the quality of citing journals are not
driving the results, we estimate regressions that only consider citations from a fixed set of
journals. For this test, we only rely on over-time variation in the visibility of citations.
This allows us to abstract from potential differences in journal quality. In particular, we
estimate regressions that only use visible and invisible citations from the set of journals
that were included in the first edition of the SCI in 1961 (i.e., only using over-time variation

in citations from type A journals in Table 2).18

1"Because the 1961 volume of the SCI was published in November 1963, we define the pre-SCI period
as 1956-1963. The impact factor is calculated as the average number of citations in year ¢ to articles
published in that journal in the years t — 1 and ¢ — 2.

18We visualize the underlying variation of this robustness check in panel (b) of Appendix Figure C.2.
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For example, the test compares scientists who were cited in Nature in 1961 and
therefore these citations were visible in the SCI, to scientists who were cited in Nature in
1962 and therefore these citations were invisible. The hypothetical scientist presented in
Table 2 would have three visible citations: one in 1961 and two in 1967; and two invisible
citations: one in 1959 and one in 1963. For this test, we do not consider citations in type
B or C journals, i.e., journals not indexed in the first SCI in 1961. The results that use
only citations from type A citing journals are almost identical to the main results (see
Appendix Table C.6), indicating that differences in the quality of citing journals do not

drive our findings.

Alternative Explanation 2: Timing of Citations

The second concern stems from the differential timing of visible and invisible citations. As
the SCI was introduced in 1961, visible citations, on average, occurred in later years than
invisible ones. If more recent citations had more predictive power for career outcomes in
1969, the larger effect of visible citations may be spurious.

We address this concern by fixing the timing of citations and exclusively relying on
across-journal variation in visibility. In particular, we estimate regressions that only use
visible and invisible citations from years in which the SCI was available (i.e., 1961 and
1964-1969). This exercise compares scientists with the same publication record who were
cited in similar years but in different journals, only some of which were covered in the
SCIL.1

For our hypothetical scientist presented in Table 2, this test considers six visible
citations: one from journal A in 1961, two from journal A in 1967, and three from journal
B in 1966. It also considers three invisible citations: one each from journal B in 1961 and
1965, and one from journal C in 1969.2"

The results that use only citations from years in which the SCI was published are
very similar to the main results (Appendix Table C.7). The point estimates are almost
identical, and the p-values for the difference in coefficients remain below the 0.1%-level.
These results strongly suggest that the differential timing of visible and invisible citations

does not drive our findings.?!

19 As outlined above, in the early years, limited funding and computing power prevented the Institute
for Scientific Information from covering a large number of journals in the SCI (Garfield, 1963b, p. xvii).
As a result, citations in many reputable journals remained invisible.

20See also panel (c) of Appendix Figure C.2.

21 As more journals were indexed in later years, even in this test, visible citations may, on average,
come from later years. We address this concern by restricting the years for which we measure visible and
invisible citations to even smaller windows (see Appendix Table C.8).
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II.C Specification 2: Visible vs. Pseudo-Visible vs. Invisible

Citations

The quality of citing journals and the timing of citations might interact to make visible
citations more predictive for assortative matching. To address such concerns, we introduce
a second specification, which includes a placebo test that compares the predictiveness of
different types of invisible citations. For this specification, we partition the citation space
into four mutually exclusive sets depending on where and when a scientist was cited (see
Table 4):

1. Visible citations: citations from journals that were indexed in the SCI in years when
the SCI was published (1961 and 1964-1969),

2. Pseudo-visible citations: citations from journals that were indexed in the SCI in
1961 but from years when the SCI was not published (1956-1960 and 1962-1963),

3. Invisible citations (SCI years): citations from journals that were not indexed in the
SCI in years when the SCI was published (1961 and 1964-1969),

4. Invisible citations (non-SCI years): citations from journals that were not indexed in
the SCI in 1961 and from years when the SCI was not published (1956-1960 and
1962-1963).

Table 4: Identifying Variation for Specification 2

Citations in Journal A Citations in Journal B Citations in Journal C

1

Notes: This table reports citations to a hypothetical scientist’s papers. We partition the citation space
along two dimensions: (i) years covered by the SCI (blue) or not (red) and (ii) journals covered by the
SCI (dark) or not (light). Dark blue cells show citations that were visible in the SCI. Dark red cells show
pseudo-visible citations, i.e., citations that were invisible (because they came from years not covered by
the SCI) but would have been visible had the SCI been published for those years. Light blue cells show
invisible citations for years in which the SCI was published, i.e., citations that came from journals not
covered by the SCI in years when the SCI was published. Light red cells show invisible citations for years
in which the SCI was not published, i.e., citations that came from journals not covered by the SCI in
years when the SCI was not published.
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For our hypothetical scientist, this test considers six visible citations (dark blue in Table 4).
It also considers two pseudo-visible citations (dark red). Furthermore, it considers three
invisible citations in SCI years (light blue). Finally, it considers three invisible citations in

non-SCI years (light red).

For each scientist, we count the number of citations in these four sets and construct
the corresponding percentile ranks. Using these measures, we estimate the following
regression:

Dep. Rank; = 61 - Visible Clitations; + d2 - Pseudo-Visible Citations;
+ 01 - Invisible Citations (SCI years); + 0o - Invisible Citations (non-SCI years); (2)
+ 7 - Publications; + Subject FE + €;

As pseudo-visible citations were not visible to contemporaries, we would expect them
to matter similarly to the invisible ones, i.e., we would expect §; > 0, = 61 =~ 65. Note
that the comparison between visible and pseudo-visible citations allows us to estimate the
causal effect of citation metrics even if journals indexed in the SCI differed in quality from
journals not indexed in the SCI.

We find that the coefficient on visible citations (Table 3, Specification 2) is almost
identical to the baseline specification (Table 3, Specification 1). Strikingly, the coefficient
on pseudo-visible citations is a lot smaller and very similar to the coefficients on invisible
citations. This indicates that citations in journals that were indexed by the SCI only had
a differential impact in years in which the SCI was actually available. The coefficients
on invisible citations from SCI years and non-SCI years are also very similar and not
distinguishable from the coefficient on pseudo-visible citations (p-value of test do = 6y = 0s:
0.941). Figure 5 visualizes the results of Specification 2. This confirms that citations from
journals indexed by the SCI only mattered in years in which the SCI was available. In
addition, in years when the SCI was not available, citations from journals indexed by the

SCI (pseudo-visible citations) did not differ from other invisible citations.

II.D Mechanisms

In the next subsection, we shed light on two potential mechanisms that could underlie
the increased assortative matching. First, scientists with few citations may have dispro-
portionately left academia. Second, highly cited scientists may have moved up to better
departments. We investigate these explanations in turn by comparing the impact of visible

and invisible citations on these individual-level career outcomes.

Effect on Leaving Academia

We start by estimating the impact of citation metrics on the probability of leaving academia.
For these regressions, we study scientists who we observe in the 1956 cross-section of

academics. We exclude scientists who were already full professors in 1956 to avoid picking
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Figure 5: Assortative Matching, Specification 2
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Notes: The figure illustrates the results from Equation (2), see Table 3, Specification 2. Panels (a) to
(d) report bin-scatter plots illustrating the relationship between citation ranks and the department rank.
Panel (e) plots the coefficients and 95 percent confidence intervals.

up retirements.?> We then check whether these scientists had left academia by 1969. We

estimate the following regressions:

22The results are very similar if we include full professors in this analysis.
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Specification 1:

1[Leaving Academial; = 0 - Visible Citations; + 0 - Invisible Citations; (3)
+ 7 - Publications; + Subject FE + ¢;

Specification 2:

1[Leaving Academial; = 61 - Visible Citations; + do - Pseudo-Visible Citations; (4)
+ 01 - Invisible Citations (SCI years); + 02 - Invisible Citations (non-SCI years);
+ 7 - Publications; + Subject FE + ¢;

where 1[Leaving Academial; is an indicator variable equal to one if a scientist left academia
between 1956 and 1969. The remaining variable definitions are identical to the definitions

in Equations (1) and (2).

Table 5: Mechanism 1: Leaving Academia

Dependent Variable: Leaving Academia

(1 2 3) 4) (5)

Specification 1: Visible vs. Invisible Citations

Citations Visible -0.0038  -0.0042 -0.0038 -0.0034 -0.0033
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Citations Invisible 0.0001  0.0008  0.0009  0.0010  0.0009
(0.0004) (0.0004) (0.0004) (0.0004) (0.0005)
P-value (Visible = Invisible) <0.001 <0.001 <0.001 <0.001 <0.001
R? 0.088 0.092 0.105 0.244 0.297

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations -0.0037  -0.0039  -0.0035 -0.0031 -0.0031
(0.0004) (0.0005) (0.0005) (0.0005) (0.0005)
Pseudo-Visible Citations 0.0002  0.0006  0.0006  0.0004  0.0004
(0.0005) (0.0005) (0.0005) (0.0006) (0.0006)
Invisible Citations (SCI years) -0.0002  -0.0000  0.0000  -0.0000 -0.0001
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)
Invisible Citations (non-SCI years) -0.0000  0.0001  0.0001  0.0002  0.0005
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 0.001 0.001
P-value (Visible = Invisible (SCI years)) <0.001 <0.0001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (non-SCI years)) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.718 0.510 0.579 0.810 0.521
R? 0.089 0.092 0.105 0.244 0.297
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 12,368 12,368 12,368 12,368 12,368
Dependent Variable Mean 0.691 0.691 0.691 0.691 0.691

Notes: The table reports the estimates of Equation (31 in the first panel and of Equation (4 in the second panel. The dependent variable
is an indicator equal to one if scientist i left academia, i.e., ¢ was observed in 1956, but not in 1969. These regressions use the 1956
cross-section of scientists who were not full professors. The explanatory variable Visible Citations measures scientist i’s individual rank in
the distribution of visible citations. Invisible Citations measures scientist ¢’s individual rank in the distribution of invisible citations.
Pseudo-Visible Citations measures scientist ¢’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed
in the SCI in 1961, but for years not covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist
i’s individual rank in the distribution of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years)
measures scientist ¢’s individual rank in the distribution of invisible citations in non-SCI years (citations in journals not indexed in the
SCT in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the
best and 1 the worst scientist. Publications by Year separately measure the number of scientist i’s publications in each year between 1956
and 1969. Publications by Journal separately measure the number of scientist i’s publications in each journal (e.g., Nature). Standard
errors are clustered at the department level.
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Figure 6: Leaving Academia, Specification 2
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Notes: The figure plots the coefficients and 95 percent confidence intervals from Equation (4), see Table 5,
Specification 2.

The probability of leaving academia was lower for academics with a higher visible
citation count (Table 5, Specification 1). Scientists with a 10 percentile higher visible
citation count were around 3.4 percentage points (or 5.0 percent relative to the mean)
less likely to leave academia between 1956 and 1969. Strikingly, invisible citations did not
have a significant impact on the probability of leaving academia. The p-values for the
tests that the coefficients on visible and invisible citations are equal are lower than 0.001.
The estimates from Specification 2 confirm these findings (Table 5, Specification 2; and
Figure 6). These results suggest that the increased assortative matching of academics was,

in part, driven by scientists with fewer visible citations leaving academia.

Effect on Moving to a Higher-Ranked Department

As a second mechanism for increased assortative matching, we investigate the moves of
scientists between departments. More specifically, we estimate variants of Equation (3)
and Equation (4) in which we replace the dependent variable with an indicator that equals
one if a scientist moved to a higher-ranked department between 1956 and 1969.

We find that scientists with a 10 percentile higher visible citation count were around 0.8
percentage points more likely to move to a higher-ranked department (Table 6, Specification
1). This relatively small point estimate nevertheless represents a 17.5 percent increase
relative to the mean. Invisible citations did not affect the probability of moving to a
higher-ranked department. The results are very similar if we estimate Specification 2
(Table 6, Specification 2; and Figure 7).

Only 4.6 percent of academics managed to move to a higher-ranked department
between 1956 and 1969. Hence, some of the differences between the coefficients on visible
and (the various) invisible citations are not significant at conventional levels. However,
the results suggest that assortative matching also increased because scientists with many

visible citations moved to higher-ranked departments.

24



Table 6: Mechanism 2: Moving to Higher-Ranked Department

Dep. Var.: Moving to Higher-Ranked Department
) 2) ®3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0008  0.0007  0.0006  0.0008  0.0007
(0.0003)  (0.0003) (0.0003) (0.0003) (0.0004)
Invisible Citations -0.0001  0.0001  0.0000 -0.0003 -0.0003
(0.0003) (0.0003) (0.0003) (0.0003) (0.0004)
P-value (Visible = Invisible) 0.101 0.254 0.238 0.078 0.154
R? 0.014 0.018 0.037 0.336 0.405

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0008  0.0007  0.0006  0.0007  0.0006
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Pseudo-Visible Citations -0.0002  -0.0001  -0.0002 -0.0004 -0.0003
(0.0002) (0.0002) (0.0002) (0.0003) (0.0004)
Invisible Citations (SCI years) 0.0002  0.0002  0.0002  0.0001  0.0001
(0.0002) (0.0002) (0.0002) (0.0003) (0.0003)
Invisible Citations (non-SCI years) -0.0000  0.0000  0.0001  0.0001  0.0001
(0.0002) (0.0002) (0.0002) (0.0002) (0.0003)
P-value (Visible = Pseudo-Visible) 0.027 0.076 0.076 0.059 0.147
P-value (Visible = Invisible (SCI years)) 0.113 0.189 0.252 0.271 0.358
P-value (Visible = Invisible (non-SCI years)) 0.015 0.050 0.102 0.134 0.281
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.498 0.625 0.519 0.389 0.564
R? 0.014 0.018 0.037 0.336 0.405
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 6,478 6,478 6,478 6,478 6,478
Dependent Variable Mean 0.046 0.046 0.046 0.046 0.046

Notes: The table reports the estimates of variants of Equations (31 and (41 with a different dependent variable: an indicator equal to one
if scientist ¢ moved to a higher-ranked department between 1956 and 1969. These regressions use the sample of scientists observed in 1956
and 1969. The explanatory variable Visible Citations measures scientist ¢’s individual rank in the distribution of visible citations. Invisible
Clitations measures scientist ¢’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures scientist ¢’s
individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not covered
in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i’s individual rank in the distribution of
invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist ¢’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

II.LE Overcoming Information Frictions Across Geographic and

Intellectual Distance

The results on scientists who move up the department quality ladder also enable us to
explore how citation metrics reduced information frictions. We would expect that citation
metrics would matter more in situations where peers did not have good information on
the quality of a potential hire.

We first investigate whether citation metrics help to overcome information frictions due
to geographic distance. Specifically, we estimate two regressions with different dependent
variables: (1) an indicator equal to 1 if scientist 4 moved to a higher-ranked department
that was geographically far, and (2) an indicator equal to 1 if scientist ¢ moved to a

higher-ranked department that was geographically close. We define departments to be
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Figure 7: Moving to Higher-Ranked Department, Specification 2
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Notes: The figure plots the coefficients and 95 percent confidence intervals from a variant of Equation (4)
with an alternative dependent variable: an indicator for moving to a higher-ranked department, see
Table 6, Specification 2.

geographically far if they are more than 100km apart.?> The results suggest that citation
metrics only impacted moves to higher-ranked departments that were geographically far but
not to departments that were geographically close (Figure 8, panel (a); and Table C.10).
We also investigate whether citation metrics helped to overcome information frictions due
to intellectual distance. We measure intellectual distance using cross-department citations
before the move of the scientist. Specifically, we measure whether scientist i’s papers
had been cited in the receiving department before the introduction of the SCI in 1963.
We estimate two regressions with alternative dependent variables: (1) an indicator equal
to 1 if scientist ¢+ moved to a higher-ranked department where i’s research was not cited
before the move, and (2) an indicator equal to one if scientist ¢ moved to a higher-ranked
department where 4’s research was cited at least once before the move.?* The results
suggest that citation metrics only impacted moves to higher-ranked departments where
scientist ¢ had not been cited before the move (Figure 8, Panel B; and Table C.10).
Overall, these findings show that citation metrics helped overcome information frictions
due to geographic and intellectual distance. Reducing these frictions may have enabled
departments to discover scientists in lower-ranked departments, even if they had not

interacted before.

Z3Results are similar if we define departments as geographically close using alternative cutoffs (see
Figure C.3).

24 Around a quarter of all moves to higher-ranked departments were to departments where scientists
were cited before.
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Figure 8: Moving To Higher-Ranked Departments by Geographic and Intellec-
tual Distance

(a) Geographic Distance of New Department (b) Citation Distance of New Department
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Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (3). Panel
(a) reports results from two regressions with alternative dependent variables: (i) an indicator for moving
to a higher-ranked department that was far from scientist i’s department; (ii) an indicator for moving to
a higher-ranked department that was close to scientist i’s department. Panel (b) reports results from two
regressions with alternative dependent variables: (i) an indicator for moving to a higher-ranked department
where scientist i’s papers were not cited before 1963; (ii) an indicator for moving to a higher-ranked
department where scientist i’s papers were cited before 1963. For detailed results, see Appendix Tables
C.9 and C.10.

IIT1 Heterogeneous Impact of Performance Metrics

As the next step of our analysis, we investigate the heterogeneous impact of the SCI
depending on the scientists’ citation rank and the rank of their department. Furthermore,
we investigate if minorities disproportionately profited from the availability of citation

metrics.

III.A Heterogeneous Effects by Individual-Level Citation Rank

First, we investigate if scientists in different percentiles benefited differentially from the
visibility of their citations. Specifically, we estimate a non-parametric variant of our main
regression:

Dep. Rank; = Z dq - L(Visible Cit Decile; = q) + Z 0, - 1(Invisible Cit Decile; = q) (5)

q q
+ 7 - Publications; + Subject FE + ¢;

1(Visible Cit Decile; = q) and 1(Invisible Cit Decile; = q) are indicator variables for

1’s decile in the visible and invisible citation distributions, respectively. We visualize the
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estimates relative to the bottom half of the visible and invisible individual-level citation
distribution (Figure 9).%

Figure 9: Heterogenous Effects by Individual-Level Citation Rank
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Notes: The figure plots coeflicients 3q (dark blue) and éq (light blue) and 95 percent confidence intervals
from Equation (5).

Over the upper half of the citation distribution, an increase in visible citations
increases the assortativeness of the match between the rank of scientist ¢ and the rank
of her department. Furthermore, the gap between visible and invisible citations widens
for higher deciles of the citation distribution. A scientist in the top decile of the visible
citation distribution was, on average, placed in a department that was 22.4 percentiles
higher in the department ranking, compared to scientists in the bottom half of the visible
citation distribution. This is equivalent to a physicist being placed at Harvard as opposed
to Case Western Reserve University. In contrast, a scientist in the top decile of the
invisible citation distribution was, on average, placed in a department that was only seven
percentiles higher ranked, compared to a scientist in the bottom half of the invisible
citation distribution. In Appendix Figure D.1, we further split up the top decile and show
that scientists in the very highest percentiles of the visible citation distribution are placed
in even higher-ranked departments. These results suggest that scientists at the upper end
of the citation distribution had a particularly large benefit from the availability of citation

metrics.

25To save space, we report results for the specification that controls for the number of publications by
year and subject, equivalent to column (3) of Table 3. The results for the other specifications are almost
identical. Because in some subjects, e.g., mathematics, a relatively high fraction of scientists have zero
citations, we do not separately estimate effects for lower deciles.

28



III.B Heterogeneous Effects for Peripheral Scientists

Second, we analyze if scientists who were placed in lower-ranked departments (peripheral
scientists) in 1956 differentially benefited from the availability of citation metrics. For this
test, we restrict the sample to scientists who we observe both in 1956 and in 1969. The

outcome variable is their department rank in 1969:

Dep. Rank; = Zéf - 1(Visible Cit Decile; = q) x High-Ranked (1956);

q

+ Z 5qL - 1(Visible Cit Decile; = q) X Low-Ranked (1956);
a

+ Z Gf - 1(Invisible Cit Decile; = q) x High-Ranked (1956); (6)
q

+ Z 95 - 1(Invisible Cit Decile; = q) x Low-Ranked (1956);
q

+ w - Low-Ranked (1956); + 7 - Publications; + Subject FE + ¢;

Variable definitions are identical to Equation (5). We add interactions between the deciles
of the individual-level citation distributions with indicator variables that equal one if the
scientist was working in either a high-ranked or a low-ranked department in 1956. We
also control for the main effect of working in a low-ranked department in 1956. We define
low-ranked departments as those below the 75th percentile of the department ranking.?
In physics, for example, low-ranked departments are all departments that were ranked
lower than the University of Wisconsin, Madison.
We show estimates for the deciles of the visible citation distribution for scientists in high-
ranked and low-ranked departments in Figure 10.?” Estimates for scientists in low-ranked
departments are consistently larger than for scientists in high-ranked departments. The
p-values for the tests that coefficients for the top two deciles are the same in low-ranked
and high-ranked departments are below 0.001. This indicates that scientists who were in
lower-ranked departments in 1956 benefited disproportionately from the availability of
citation metrics.”®

In other words, citation metrics enabled the discovery of “hidden stars.” This may have
reduced misallocation by helping the highest-cited scientists in low-ranked departments to
move to high-ranked departments. This finding is consistent with anecdotal evidence; for
example, a contemporary scientist remarked that “[t|Jhe SCI was especially useful to find

people who would otherwise be overlooked” (as cited in Wouters, 1999b, p. 138).

26Results are qualitatively similar if we use alternative cutoffs (e.g., 60th, 70th, 80th, or 90th percentile,
see Appendix Figure D.2).

2TTo improve clarity, the figure does not report the estimates for the invisible citation deciles. As in
Figure 9, the estimates for invisible citations are consistently smaller than for visible citations. We also
find no difference in the impact of invisible citations depending on the department rank.

28These effects may be interpreted as mechanical because scientists in low-ranked departments in 1956
have more scope to move to a higher-ranked department. Nevertheless, it is important to quantify how
“hidden stars” may benefit from the availability of performance metrics.
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Figure 10: Heterogenous Effect of Citation Rank for Peripheral Scientists
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Notes: The figure plots coefficients Sf (orange) and SqL (blue) and 95 percent confidence intervals from
Equation (6).

One example, of such a “hidden star” is the medical scientist Hans Hecht. Swiss-born,
he obtained his M.D. in Germany in 1936. He escaped the Nazi regime in 1938 and
emigrated to the United States.?® He started his U.S. career as an “Instructor of Medicine
at the Wayne University School of Medicine, following which he moved to the University
of Utah, where, in 1946, he earned a second M.D. degree” (Katz, 1971) and became a
professor there. Arnold Katz of the Mount Sinai School of Medicine described that his:
“breadth of scientific interests [...] was always based on an extraordinarily high level of
scientific excellence [...] he was never taken in by the investigator with a long list of
unoriginal or superficial papers, but saw clearly the essential quality of a man’s work”
(Katz, 1971). In the mid-1960s, Hans Hecht was hired by the University of Chicago.

We explore whether the example of Hans Hecht indeed provides more general insights
into the characteristics of “hidden stars.” That is, we investigate which characteristics
are correlated with being underplaced before the availability of citation metrics. For
this analysis, we define star scientists as scientists whose total citations (both visible
and invisible) place them in the top five percent of the subject-level citation distribution
in 1969. For these 450 scientists we can infer some characteristics from our data, e.g.,
whether they were female, but also whether they were of Asian, Hispanic, or Jewish origin.
We measure these characteristics based on the names of academics (for more details, see
Appendix B.1). In addition, we collect information on where these star scientists obtained
their Ph.D. through an extensive web search.?"

We then report the average characteristics of star scientists in high-ranked departments

29Gee Becker et al. 2023 for the emigration of scientists from Nazi Germany.
30We obtain the Ph.D. university for 400 out of the 450 star scientists.
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and of star scientists who worked in low-ranked departments in 1956 (“hidden stars”).
38% of star scientists in high-ranked departments had received a Ph.D. from a top-10
department in the United States. In contrast, only 18% of “hidden stars” had received a
Ph.D. from a top-10 department (Figure 11). We also find that there were twice as many
women among “hidden stars”. Since there were very few women in academia at the time
(Taria et al., 2022), the difference is not statistically significant. Overall, this evidence
suggests that “hidden stars” had, on average, obtained their Ph.D. from worse universities

and that they were more likely to be female.

Figure 11: Characteristics of “Hidden Stars” and Other Star Scientists
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Notes: The figure reports characteristics of star scientists who were in high-ranked departments (blue)
and low-ranked departments (“hidden stars,” orange) in 1956. As before, low-ranked departments are
those below the 75th percentile of the department ranking in 1956. For this figure, we define star scientists
as all scientists in the top five percent of the subject-level citation distribution.

III.C Heterogeneous Effects for Minority Scientists

In the last part of this section, we investigate the heterogeneous impacts of citation metrics
on minority scientists. Specifically, we analyze whether women, Hispanics, Asians, and
Jews disproportionately benefited from the availability of citation metrics. As outlined
above, we identify these groups based on the names of academics. As the proportion of
minorities among academics was low in the 1960s (e.g., Card et al. 2023, Iaria et al. 2022),

we pool all minorities to gain power. We then estimate the following regression:
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Dep. Rank; = Z 551 - 1(Visible Cit Decile; = q) x Majority;

q

+ Z 8q" - L(Visible Cit Decile; = q) x Minority;

q

+ Z 93/[ - 1(Inwvisible Cit Decile; = q) x Majority; (7)
q

+ Z ;" - 1(Invisible Cit Decile; = q) x Minority;
q

+ w - Minority; + 7 - Publications; + Subject FE + ¢;

Variables are defined as before, but we add interactions with indicator variables that equal
one if the scientist belonged either to the majority or to the minority. We also control for
an indicator that equals one if the scientists belonged to a minority.

While we do not find evidence that minority scientists, on average, benefited more from
citation metrics than majority scientists (Appendix Table D.2), the evidence in Figure 12
suggests that among star scientists (top decile) minority scientists benefit slightly more
than majority scientists.®® The p-value for the test that the coefficients for the tenth decile
are the same for minority and majority scientists is 0.051.

Figure 12: Heterogenous Effects for Majority and Minority Scientists
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Notes: The figure plots coefficients Sé\/l (blue) and 5;” (orange) and 95 percent confidence intervals from
Equation (7).

Taken together, these results suggest that the availability of more “objective” perfor-

mance metrics helped disadvantaged high-quality scientists. In particular, highly cited

31The democratizing effect of citation metrics is driven by larger effects of citation metrics for women

and Jews (see Figure D.3). These results are robust to adding a control for the department rank of
scientist 7 in 1956 (Appendix Figure D.4).

32



scientists in lower-ranked departments (“hidden stars”) and highly cited minority scientists

benefited from the availability of citation metrics.

IV Impact of Performance Metrics on Careers

As shown above, citation metrics increased assortative matching between scientists and
departments. In the last part of the paper, we study whether scientists with more
visible citations also accrued additional benefits. We investigate such benefits by studying
the impact of citation metrics on promotions and receiving NSF grants. This analysis
also speaks to whether citation metrics increased recognition by peers and the wider
scientific community, suggesting Matthew effects (Merton, 1968). We estimate the following

regressions:

Specification 1:

1[CareerOutcomel; = 6 - Visible Citations; + 0 - Invisible Citations; (8)
+ 7 - Publications; + Subject F'E + ¢;

Specification 2:

1[CareerOutcome); = 6y - Visible Citations; + 62 - Pseudo-Visible Citations; (9)
+ 61 - Invisible Citations (SCI years); + 62 - Invisible Citations (non-SCI years);
+ 7 - Publications; + Subject FE + ¢;

where 1[CareerOutcome]; is an indicator that equals one if the scientist was promoted or

received an NSF grant. The remaining variable definitions are identical to Equations (1)

and (2).

IV.A Effect on Promotions

We investigate if scientists who we observe as assistant or associate professors in 1956 were
promoted to full professors by 1969. This allows us to directly study how the introduction
of performance metrics influenced academic careers and peer recognition. We estimate
Equations (8) and (9), where the dependent variable equals one if scientist ¢ was promoted
to full professor between 1956 and 1969.

We find that the visible citation rank has a significant positive impact on promotions
(Table 7). The probability of promotion increased by 4.1 percentage points (or 5.8 percent

relative to the mean) for scientists with a 10 percentile higher visible citation rank.*?

32The effect of citation metrics on promotions is estimated within the set of academics who we observe
in 1956 and who have not left academia by 1969. Since the probability of leaving academia decreases with
visible citations (see Section I1.D), we likely estimate a lower-bound of the effect of citation metrics on
promotions.
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The estimates for invisible citations are close to zero and statistically insignificant. The

estimates from Specification 2 confirm these findings (Table 7 and Figure 13, panel (a)).

Table 7: Promotion to Full Professor

Dependent Variable: Promotion to Full Professor

) 2 ®3) 4) (5)
Specification 1: Visible vs. Invisible Citations
Visible Citations 0.0042  0.0046  0.0047  0.0041  0.0040
(0.0006) (0.0007) (0.0007) (0.0010) (0.0013)
Invisible Citations 0.0009  0.0003  0.0004 -0.0003 -0.0001
(0.0005) (0.0006) (0.0006) (0.0010) (0.0012)
P-value (Visible = Invisible) 0.002 < 0.001 <0.001 0.017 0.068
R? 0.140 0.145 0.154 0.366 0.395
Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations
Visible Citations 0.0043  0.0048  0.0048  0.0041  0.0041
(0.0006) (0.0006) (0.0007) (0.0010) (0.0013)
Pseudo-Visible Citations 0.0000  -0.0004 -0.0003 -0.0002  0.0001
(0.0006) (0.0006) (0.0006) (0.0011) (0.0012)
Invisible Citations (SCI years) 0.0006  0.0005  0.0005  0.0006  0.0006
(0.0005) (0.0005) (0.0005) (0.0009) (0.0011)
Invisible Citations (non-SCI years) 0.0003  0.0001  0.0002  -0.0007 -0.0011
(0.0005) (0.0005) (0.0005) (0.0009) (0.0011)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 0.017 0.068
P-value (Visible = Invisible (SCI years)) <0.001 <0.001 <0.001 0.015 0.054
P-value (Visible = Invisible (non-SCI years)) <0.001 <0.001 <0.001 <0.001 0.002
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.755 0.541 0.663 0.678 0.655
R? 0.140 0.146 0.154 0.366 0.395
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 3,364 3,364 3,364 3,364 3,364
Dependent Variable Mean 0.707 0.707 0.707 0.707 0.707

Notes: The table reports the estimates of Equation (81 in the first panel and of Equation (91 in the second panel. The dependent variable
is an indicator equal to one if scientist ¢ was promoted to full professor between 1956 and 1969. These regressions use the sample of
scientists observed in 1956 and 1969, who were not full professors in 1956. The explanatory variable Visible Citations measures scientist
’s individual rank in the distribution of visible citations. Invisible Citations measures scientist i’s individual rank in the distribution of
invisible citations. Pseudo-Visible Citations measures scientist i’s individual rank in the distribution of pseudo-visible citations (citations
in journals indexed in the SCI in 1961, but for years not covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI
years) measures scientist ¢’s individual rank in the distribution of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations
(non-SCI years) measures scientist i’s individual rank in the distribution of invisible citations in non-SCI years (citations in journals not
indexed in the SCI in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where
100 is the best and 1 the worst scientist. Publications by Year separately measure the number of scientist i’s publications in each year
between 1956 and 1969. Publications by Journal separately measure the number of scientist 4’s publications in each journal (e.g., Nature).
Standard errors are clustered at the department level.

The results indicate that departments indeed used citation metrics in promotion
decisions. As full professor positions come with many advantages such as prestige, job
security, and research funds, these findings suggest that citation metrics affected individual

careers and the allocation of resources in the sciences.

IV.B Effect on Research Grants

Finally, we investigate the effect of citation metrics on receiving research grants. This
analysis examines whether citation metrics affect the allocation of resources and recognition

by the wider scientific community. We digitize entries of all grants awarded in 1969 by
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the National Science Foundation (NSF) and match them to the scientists in our faculty
rosters (see Appendix B.1.3). We estimate Equations (8) and (9), where the dependent

variable equals one if scientist ¢ received at least one NSF grant.>

Table 8: Receiving an NSF Grant

Dependent Variable: Receiving NSF Grant
) 2) ®3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0021  0.0017  0.0015  0.0013  0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Invisible Citations 0.0003  -0.0000 -0.0000  0.0001  0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
P-value (Visible = Invisible) <0.001 <0.001 <0.001 0.001 0.002
R? 0.064 0.070 0.086 0.215 0.249

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0020  0.0017  0.0015  0.0012  0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Pseudo-Visible Citations -0.0004  -0.0005 -0.0005 -0.0002 -0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Invisible Citations (SCI years) 0.0003  0.0001  0.0003  0.0003  0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Invisible Citations (non-SCI years) 0.0007  0.0005  0.0005  0.0004  0.0005
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (SCI)) <0.001 <0.001 <0.001 0.001 0.003
P-value (Visible = Invisible (non-SCI)) <0.001 <0.001 0.002 0.009 0.022
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.005 0.016 0.005 0.200 0.222
R? 0.066 0.071 0.087 0.215 0.249
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 15,582 15,582 15,582 15,582 15,582
Dependent Variable Mean 0.068 0.068 0.068 0.068 0.068

Notes: The table reports the estimates of Equation (81 in the first panel and of Equation (91 in the second panel. The dependent variable
is an indicator equal to one if scientist ¢ received an NSF grant in 1969. These regressions use the sample of scientists observed in 1969,
excluding medicine. The explanatory variable Visible Citations measures scientist ’s individual rank in the distribution of visible citations.
Invisible Citations measures scientist ¢’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures
scientist ¢’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not
covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i’s individual rank in the distribution
of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

The visible citation rank has a significant positive impact on receiving NSF grants
(Table 8). The probability of receiving a grant increased by 1.3 percentage points (or 19.0
percent relative to the mean) for scientists with a 10 percentile higher visible citation rank.
The estimates for invisible citations are close to zero and statistically insignificant. The
estimates from Specification 2 confirm these findings (Table 8 and Figure 13, panel (b)).

These results highlight that the effects of citation metrics go beyond the allocation

of talent: they affect whether scientists are promoted and whether they receive research

33We exclude medical scientists from this analysis because the NSF does not fund research in medicine.
If we include medical researchers, the results are very similar (see Appendix Table E.1).
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Figure 13: Effect on Career Outcomes, Specification 2
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Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (9), see
Tables 7 and 8, Specification 2.

grants. Thus, recognition through citations enables high-performing scientists to accrue
additional rewards and resources, contributing to Matthew effects in the sciences (Merton,
1968).

V Conclusion

The evaluation of scientists based on performance metrics, and in particular citations, has
become ubiquitous in modern science. Scientists are highly aware of the number of citations
their papers have received, and standard metrics like the impact factor or the h-index are
not only used to evaluate scientists and papers but also influence hiring and promotion
decisions. Equally, departments and scientific journals are frequently ranked based on
citation measures. This widespread reliance on citation metrics has been criticized, as
citations only capture one dimension of an academic’s contribution to knowledge (DORA,
2013; CoARA, 2022). Despite these concerns, little is known about the consequences of
measuring citations for scientific careers, and the allocation of talent and resources.

In this paper, we use the introduction of the Science Citation Index to provide the
first causal estimates of how citation metrics affect the organization of science. We collect
new data and develop a new identification strategy to show that systematically measuring
and revealing citations had a large and immediate impact on the careers of scientists.
First, we show that the introduction of citation metrics increased assortative matching
between scientists and departments based on citations by reducing information frictions.
Second, we show that the effect was particularly pronounced for scientists in the top end
of the citation distribution, and especially for “hidden stars” (highly cited scientists in
lower-ranked departments), as well as for highly cited minority scientists. Finally, we show

that measuring citations increased the reliance on citation metrics in promotion decisions
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and in allocating research grants. Overall, our findings demonstrate that citation metrics

have a profound impact on the organization of modern science.
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