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Abstract

A crucial input into causal inference is the imputed counterfactual outcome. Impu-
tation error can arise because of sampling uncertainty from estimating the prediction
model using the untreated observations, or from out-of-sample information not cap-
tured by the model. While the literature has focused on sampling uncertainty, it van-
ishes with the sample size. Often overlooked is the possibility that the out-of-sample
error can be informative about the missing counterfactual outcome if it is mutually or
serially correlated. Motivated by the best linear unbiased predictor (blup) of Gold-
berger (1962) in a time series setting, we propose an improved predictor of potential
outcome when the errors are correlated. The proposed pup is practical as it is not
restricted to linear models, can be used with consistent estimators already developed,
and improves mean-squared error for a large class of strong mixing error processes.
Ignoring predictability in the errors can distort conditional inference. However, the
precise impact will depend on the choice of estimator as well as the realized values of
the residuals.
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1 Introduction

Understanding the effects of policies is an important aspect of economic analysis and many

questions of interest involve an individual’s or a group’s response to multiperiod interven-

tions. Given treatment status, a researcher observes the outcome of unit i after intervention

at t = T0 +1 (denoted Yit(1)) and wants to compare it to the hypothetical outcome without

intervention (denoted Yit(0)). Since we do not observe Yit(0) for t > T0, these values need to

be imputed. Now imputation is concerned with the prediction of values that will never be

sampled, and from results in the prediction literature, we know that in-sample estimation

uncertainty should diminish with the sample size and what dominates total prediction error

asymptotically is the variation not explained by the model. Yet, in applications, we tend

to perform robust inference taking the residuals as given, when an improved prediction is

possible by removing predictable variations that might still be in the residuals.

To illustrate, consider Figure 1 which studies the impact of the German reunification

in 1990 on Y1t = log GDP. Because the GDP data are non-stationary, we estimate com-

mon factors from a 16 country panel of GDP growth (∆Y2,1:T (0), . . . ,∆Y17,1:T (0)), where

∆Yi,1:T (0) ≡ (∆Yi1(0), . . . ,∆YiT (0))
′. The top-left panel displays actual (log) GDP over the

full sample, along with the in-sample fit Ŷ1,1:T0(0), and the counterfactual values Ŷ1,T0+1:T (0).

The effect of reunification on GDP is stark, but masks the fact that the (in-sample) residuals

ê1,1:T0 = ∆Y1,1:T0(0) − ∆̂Y 1,1:T0(0) are persistent. This can be seen from the correlogram in

the bottom left panel, or from the plot of the series itself in the top right panel. The series

ê1,1:T0 is also cross-correlated with other errors, though many of the corr(ê1,1:T0 , êj,1:T0) are

not statistically significant as shown in the bottom right panel. The in-sample residuals

of the log level model are also serially correlated, as shown in Figure 2. Time series and

cross-section correlation of the in-sample residuals is not specific to this example.

This paper considers the implications of non-spherical errors for model-based imputation.

Non-spherical errors, which induce predictability, can arise because the model for Yit(0)

is mis-specified or because Yit(0) cannot be adequately captured by observed information

without further signal extraction. We build on the best-linear-unbiased predictor (hereafter,

blup) developed in Goldberger (1962) for linear models with non-spherical errors. The key

to blup is not that it is based on GLS estimation, but that it has a correction term that

depends on the covariance structure of the errors. We suggest a practical predictor (plup)

that is asymptotically equivalent to the infeasible blup to a first order. Furthermore, if

predictability is due to serial correlation, a simple AR(1) correction will reduce the mean-

squared prediction error for a large class of stationary mixing error processes. This is not
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to say that an AR(1) correction is best as the desired adjustment will necessarily be data

dependent, but to point out that simple modifications can reduce the mean-squared error of

the standard prediction.

We adapt Goldberger’s result for linear prediction to an imputation setting when the

counterfactual outcomes are never observed. We derive infeasible blup for linear panel data

models and make precise its dependence on the covariance structure of the errors. We show

that when T0 is large, a plup that controls for time and/or cross-section correlation can be

constructed. But the idea of correcting the standard prediction for predictable errors is more

general and can be applied to non-linear models when direct modeling of dynamics is not

so straightforward. Thus when linearity is not required, we refer to the practical unbiased

predictor as pup.1

In addition to inefficient point predictions, ignoring correlation in the errors also has

implications for inference. Though a standard prediction will yield asymptotically valid

unconditional inference, the prediction interval will be wider because correlated residuals

inflate error variance. More concerning is that standard prediction is biased conditional on

pre-treatment outcomes of both the treated and the untreated, as well as the post-treatment

outcomes of the untreated. This bias may distort inference and the precise impact will depend

not just on persistence of the residuals, but also on the realized values of the residuals relevant

for imputing Yi,T0+h(0). In the German unification example, ê1,T0 is 1.03 in the growth rate

model. This non-zero value yields pup growth rates that are slightly different from the

standard prediction.

pup is concerned with reducing the out-of-sample error and does not preclude the use

of robust standard errors or resampling schemes to account for correlation in the in-sample

residuals. In practice, a pup for unit i will use residuals of unit i before treatment, and

possibly of the untreated units after T0. For serial correlation type error dependence that

should die off as h increases, a pup correction is most effective in imputating Yi,T0+h(0)

at small h. Recent work by Chernozhukov, Wüthrich, and Zhu (2021), Fan, Masini, and

Medeiros (2022), and Ferman (2023) can be seen from a pup perspective.

Our central message is that in-sample uncertainty is asymptotically dominated by vari-

ability of the out-of-sample prediction error, and more attention should be paid to improving

the point-prediction before turning to inference. The rest of the paper proceeds as follows.

Section 2 sets up the econometric framework and provides motivating examples for pre-

dictable errors. Section 3 summarizes the properties of blup and then presents plup. Its

mean-squared error is analyzed using asymptotic expansions of the population prediction

1We thank Bruce Hansen for this suggestion.
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error under mixing conditions. Section 4 switches focus from predicting future outcomes

to imputing missing values. Unconditional and conditional coverage of prediction intervals

are analyzed in Section 5. With some abuse of language, we sometimes use ’imputation’

and ’prediction’ interchangeably. Our discussion will focus on time dependence but the

arguments also hold for spatial and cross-section dependence.

2 The Econometric Framework

We will use the standard potential outcome framework for analysis. Let Yit(1) be the poten-

tial response for unit i at time t if it was exposed to treatment (or policy intervention), and

Yit(0) be the potential response of a (control) unit i that was not exposed to intervention

at t. We observe Yit = Yit(0)(1 − Dit) + Yit(1)Dit where treatment status Dit = 1 if unit

i is exposed in period t and is zero otherwise. Without loss of generality, we order the N1

exposed units before the N0 = N −N1 unexposed units. We observe

Yit =


Yit(0), i = 1, . . . , N, t = 1, . . . , T0

Yit(0), i = N1 + 1, . . . , N, t = T0 + 1, . . . , T

Yit(1) i = 1, . . . , N1, t = T0 + 1, . . . , T

and are interested in the effect on unit i ∈ [1, N1] in h > 0 periods after treatment begins

in T0 + 1. Different average treatment effects can be derived from the individual treatment

effect, defined as

δi,T0+h = Yi,T0+h(1)︸ ︷︷ ︸
observed outcome
in period T0+h

− Yi,T0+h(0)︸ ︷︷ ︸
outcome without treatment

in period T0+h

.

The econometrics challenge is that Yit(0) is not observed for i ≤ N1 when t > T0.

Following the literature, we assume that Yit(0) has a pseudo-true conditional mean (or

mean-unbiased proxy) mit = M(β;H) that is parameterized by a vector β given some

information set H, and eit = Yit(0) −mit is such that E(eit) = 0. For example, an AR(1)

approximation would make mit = ρyit−1 and H would be yis for s ≤ T0. Being a pseudo-true

mean, mit may not coincide with the true conditional mean say, m∗
it, where e

∗
it = Yit(0)−m∗

it.

For each i = 1, . . . , N1,

Yit(0) = mit + eit, t = 1, . . . , T

Yit(1) = mit + δit + eit, t > T0.

Let m̂it be a consistent estimate of mit. Then

Yit(0) = m̂it + êit.
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Since Ŷit(0) = m̂it, the treatment effect on unit i at a given t = T0 + h is then estimated by

δ̂i,T0+h = Yi,T0+h(1)− Ŷi,T0+h(0)

= Yi,T0+h(1)− Yi,T0+h(0) + (Yi,T0+h(0)− m̂i,T0+h)

= δi,T0+h + ei,T0+h + (mi,T0+h − m̂i,T0+h).

The pointwise imputation/prediction error is

δ̂i,T0+h − δi,T0+h = (mi,T0+h − m̂i,T0+h) + ei,T0+h.

This error has two sources of variation: one from in-sample estimation of mit, and one due to

the out-of-sample error ei,T0+h not captured by the model. The first error will be negligible

as T0 increases provided that m̂it is consistent for mit in some well defined sense, but the

second error does not vanish with the sample size and thus total prediction error variance is

minimized asymptotically if mit is chosen such eit does not contain predictable information.

However, theory actually allows eit to be serially and/or mutually correlated, and while

the assumption of no correlation is convenient, it is not always appropriate. In the next

subsection, we provide some examples for dependence in the errors.

2.1 Examples when eit is predictable

We will first clarify what we mean by in-sample and out-of-sample errors. To fix ideas,

suppose that unit 1 is being treated and the model is linear so thatm1t = x′tβ. Single equation

estimation yields the imputed value δ̂1,T0+1 = x′T0+1β̂ and imputation error δ̂1,T0+1−δ1,T0+1 =

−x′T0+1(β̂ − β) + e1,T0+1 whose variance is

var(δ̂1,T0+1 − δ1,T0+1) = σ2
e + x′T0+1var(β̂)xT0+1.

Correlation in xtet may necessitate robust standard errors for β̂, but provided that E[xte1t] =

0, β̂ is consistent in the sense that var(β̂) → 0 as T0 → ∞. Thus, the variance of imputation

error is dominated by the out-of-sample error variance σ2
e ≡ var(e1,T0+1) asymptotically. This

variance is minimized when e1,T0+1 is uncorrelated. Serial correlation can arise because of

temporal aggregation, but residual correlation (temporally or mutually) is usually a symptom

of misspecification of the model or conditioning information. We give some examples below.

Example misspecification 1: Suppose that Y1,t(0) = ϕ1Y1,t−1(0)+ϕ2Y1,t−2(0)+ v1t is an

AR(2) process with iid innovations v1t, but the researcher assumes an AR(1) model. Then

m1t = βY1,t−1(0), the pseudo true parameter is β = ϕ1

1−ϕ2
̸= ϕ1, and e1t = v1t + (ϕ1 −

β)Y1,t−1(0) + ϕ2Y1,t−2(0) is serially correlated when ϕ2 ̸= 0.
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Example misspecification 2: Suppose that the potential outcome has an interactive

fixed effect structure: Y1t(0) = λ′1Ft + ϵ1t but a researcher specifies an additive fixed effect

model Y1t(0) = λ1 + Ft + e1t. Then e1t will be serially correlated if Ft is serially correlated,

even if ϵ1t is white noise.

Factor-based imputation assumes Xit = λ′iFt + eit where Ft is a vector of r latent com-

mon factors with λi as loadings and eit is an idiosyncratic error. An appeal of factor-based

imputation is that under some conditions, the space spanned by F can be consistently es-

timated without modeling the (weak cross-section or time) dependence in the idiosyncratic

errors. While Xu (2017) iteratively estimates F and the missing values jointly by principal

components (PCA), Bai and Ng (2021) impute the missing values (or complete the matrix)

using two full-sample applications of PCA. Athey, Bayati, Doudchenko, Imbens, and Khos-

ravi (2021); Arkhangelsky, Athey, Hirshberg, Imbens, and Wager (2021) estimate the low

rank component using singular value thresholding (SVT).2 Though all consistent estimators

of F imply that F̂T0+h can be used as though they were observed predictors, the possibility

remains that e1,T0+h can be predicted by information available.

Example Correlated Idiosyncratic Errors (from Fan, Masini, and Medeiros (2022))

Suppose that Yit(0) = λ′iFt + eit and the researcher correctly assumes m1t = λ′1Ft but eit is

correlated with ejt for j in some index set C. Then e1t = v1t +
∑

j∈C θjejt is predictable by

those ejt where j ∈ C.

The method of synthetic control (SC) developed in Abadie and Gardeazabal (2003) as-

sumes that there exist weights β∗
j such that a perfect fit Y1t(0) =

∑N
j=2 β

∗
jYj,t(0) exists for

every t ≤ T0. Abadie, Diamond, and Hainmueller (2010) make additional use of K eco-

nomic predictors Xt = (X1t, X0t), where X0t = (X2t, . . . , XN,t) for the unexposed. The

Synthetic Difference-in-Difference (SDID) in Arkhangelsky, Athey, Hirshberg, Imbens, and

Wager (2021) also reweights the pre-treatment time periods to balance the pre-and post ex-

posure time periods and nests SC and DID as special cases. However, an increasing number

of papers suggest that an ‘imperfect pretreatment fit’ may prevent recovery of β∗.

Example Imperfect Fit 1: (from Ben-Michael, Feller, and Rothstein (2021)) Suppose

that Yit(0) = ϕ1Yi,t−1(0) + vit for all i = 1, 2, . . . , N , and one constructs m1t =
∑N

j=2 β
∗
jYj,t.

We can show that the error e1t = Y1t(0) − m1t can be decomposed as e1t = ϕ1e1,t−1 +

2Regularization is not necessary to consistently estimate the missing values, but could give a lower rank
common component than the one in Bai and Ng (2021).
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v1t −
∑N

j=2 β
∗
j vjt. The error e1,T0+1 contains an imbalance component ϕ1e1,T0 = ϕ1(Y1,T0 −∑N

j=2 β
∗
jYj,T0) (which is zero if there is perfect fit but not otherwise) as well as a noise

component v1,T0+1 −
∑N

j=2 β
∗
j vj,T0+1, and both can contribute to serial correlation.

Example Imperfect Fit 2: (from Ferman and Pinto (2021)) Suppose that Yit(0) = ci +

Λ′
iFt + ϵit and one estimates β̂ = argminb∥Y1(0) − X0b)||22 where X0 = (Y2, . . . , YN). With

β∗ = plimβ̂, the population imputation error is

e1t = Y1t(0)−X ′
0tβ

∗ =

(
c1 −

N∑
j=2

β∗
j cj

)
+ F ′

t

(
λ1 −

N∑
j=2

β∗
jλj

)
+

(
ϵ1t −

N∑
j=2

β∗
j ϵjt

)
.

The first two terms vanish only if σϵ ≡ var(ϵit) = 0; otherwise, (c1, λ1) ̸= (
∑N

j=2 β
∗
j cj,

∑N
j=2 β

∗
jλj).

Ferman and Pinto (2021) suggest to remove the bias with a mean adjustment but this may

not remove serial or mutual correlation in the errors.

In the above examples, eit absorbs all sorts of deficiencies in mit and thus contains

information about Yit(0). Cross-section, spatial, and time dependence in eit are examples of

non-spherical errors.

3 Prediction with Non-Spherical Errors

This section uses classical results in linear prediction to motivate how information in the

errors can be used to improve prediction. We will consider optimal linear prediction in a

time series setting so that the i subscript can be dropped.

3.1 Goldberger’s BLUP

This subsection summarizes results for best linear unbiased prediction, blup. The concept

seems to be first considered in Henderson (1950) in the animal breeding literature to predict

the quality of offsprings. It is still widely used in estimation of random effects in linear mixed

models for cross-section data.3 Goldberger (1962) formalizes the idea in a setting where the

linear model for predicting a scalar variable yt is given by

yt = X ′
tβ + et (1)

where Xt is a K×1 vector of completely observed predictors assumed to be fixed in repeated

samples, β is a vector of time invariant parameters, et is a zero mean stationary process that

is possibly serially correlated, and Ω is the T0 × T0 covariance matrix of the T0 × 1 vector e.

3Robinson (1991) provides a survey of its many derivations, including a Kalman filter interpretation, see
also Spall (1991). Taub (1979) and Baltagi (2008, 2013) use it in variance components analysis of panel
data.
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Goldberger (1962) is interested in a linear unbiased prediction of ym at some m > T0

given information up to T0 when Ω is positive definite but has non-zero off-diagonal entries.

Let X be at T0 ×K matrix of regressors. The assumption of squared loss E[(ym − ym|T0)
2]

implies a linear predictor of the form ym|T0 = A′y with prediction error ym|T0 − ym = (A′X −
X ′

m)β +A′e− em. The unbiasedness constraint E[ym|T0 ] = ym requires that A′X −X ′
m = 0,

implying a prediction variance of

σ2
m = E[(ym|T0 − ym)

2] = E[A′ee′A+ e2m − 2A′eme]

= A′ΩA+ E
(
e2m
)
− 2A′ω

where ω ≡ E[eme]. Let λ be the Lagrange multiplier on the unbiasedness constraint. Min-

imizing A′ΩA − 2A′ω − 2λ′(X ′A − Xm) with respect to A gives the best linear unbiased

prediction (blup)

y∗m|T0
= x′mβGLS + ω′Ω−1eGLS,

where βGLS = (X ′Ω−1X)−1X ′Ω−1y is the infeasible GLS estimator, and eGLS = y −XβGLS

is a T0 × 1 vector of errors. Notably, y∗m|T0
depends on assumptions about Ω, and in a time

series setting, this depends on the dynamics of et. If et = ϕ1et−1 + vt, where vt
d∼(0, σ2

v), Ω

is σ2
e = σ2

v/(1 − ϕ2
1) times a T0 × T0 Toeplitz matrix with ϕi−1

1 on the i-th diagonal. Then

ω ≡ E[eme] = ϕ−T0+m
1 ΩT0 , where ΩT0 is the last column of Ω. The AR(1) assumption implies

a blup at m = T0 + h of

y∗T0+h|T0
= X ′

T0+hβGLS + ϕh
1eGLS,T0

with prediction error e∗T0+h|T0
= yT0+h − y∗T0+h|T0

= eT0+h − ϕh
1eT0 + op(1) = vT0+h + op(1)

where the op(1) term converges to 0 as T0 → ∞.

blup is infeasible because ϕ1 is not observed. Feasible blup requires iterative Cochrane-

Orcutt or Prais-Winsten estimation of ϕ1, or direct estimation of β and ϕ1 from a Durbin

equation.4 These feasible estimators are all efficient and consistent. Cochrane and Orcutt

(1949) suggest to improve the standard prediction by incorporating lags of regressors and the

dependent variable. The difference is that êGLS,t summarizes the dynamic relation between

y and X into a single signal and can be appealing when X is of high dimension.

A feasible blup differs from the OLS prediction in two ways. First, it uses β̂GLS instead

of β̂OLS and thus requires the dynamics of et to be specified. Second, blup adds to the GLS

prediction a term that adjusts for serial correlation in e which in this AR(1) example is ϕ1eT0

4Cochrane-Orcutt performs least squares regression of yt − ϕ1yt−1 on Xt − ϕ1Xt−1 for given ϕ1 using

data from t = 2, . . . , T0, and then estimates ϕ1 from an autoregression in yt − X ′
tβ̂ till convergence. The

Prais-Winsten estimator additionally exploits information in t = 1. It is also possible to estimate β and ϕ1

directly from the Durbin equation yt = X ′
tβ + yt−1ϕ1 +X ′

t−1γ+error.

7



for h = 1. Since blup is an optimal prediction, it is more efficient than an OLS prediction.

To make this point precise, consider again the AR(1) case. At h = 1, feasible blup

ŷ∗T0+1|T0
= X ′

T0+1β̂GLS + ϕ̂1êGLS,T0

has prediction error ê∗T0+1|T0
= yT0+1 − ŷ∗T0+1|T0

, or

ê∗T0+1|T0
= vT0+1 − (XT0+1 − ϕ1XT0)

′ (β̂GLS − β)−
(
ϕ̂1,GLS − ϕ1

)
êGLS,T0

= vT0+1 + op(1) (2)

where the op(1) term comes from the fact that the jointly estimated β̂GLS and ϕ̂1,GLS are
√
T0 consistent for β and ϕ1. Since ê∗T0+1|T0

is asymptotically vT0+1 whose variance is σ2
v ,

feasible blup achieves the same asymptotic efficiency as infeasible blup.

In contrast, the OLS prediction error is

êT0+1|T0 = eT0+1 −X ′
T0+1(β̂OLS − β)

= eT0+1 + op(1) (3)

where the op(1) term comes from
√
T0 consistency of β̂OLS for β. But êT0+1|T0 is asymptoti-

cally eT0+1 whose variance is σ
2
e ≥ σ2

v . Thus, the MSE improvement of blup over OLS is due

to the additional term ϕ1eT,GLS in the prediction, not because of GLS versus OLS estimation

per se. Building on this idea, we will consider a linear prediction that is also asymptotically

unbiased but can improve upon the OLS prediction without a priori knowledge of the precise

dynamic structure of et.

3.2 From BLUP to PLUP

This subsection suggests a practical variant (plup) and studies its mean-squared error (MSE)

using asymptotic expansions, first for h = 1, and then for h > 1 when direct and iterative

forecasts are possible.

Our point of departure is that any predictor that controls for serial correlation will have

the same first order effect as feasible blup. Let β̂ denote the least squares estimate of β.

Consider modifying the (standard) least-squares prediction ŷT0+1|T0 = X ′
T0+1β̂ as follows:

ŷ+T0+1|T0
= ŷT0+1|T0 + ρ̂1êT0 (4)

where êT0 = yT0 −X ′
T0
β̂ is the OLS residual, and

ρ̂1 =

∑T0

t=1 êt−1êt∑T0

t=1 ê
2
t−1

(5)
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is the least squares estimate of the first order autocorrelation coefficient of êt. Note that

unlike feasible blup which re-estimates β after ρ̂1 is available, we simply adjust the OLS

prediction ŷT0+1|T0 for serial correlation with ρ̂1êT0 . The prediction error ê+T0+1|T0
= yT0+1 −

ŷ+T0+1|T0
= yT0+1 − ŷT0+1|T0 − ρ̂1êT0 is

ê+T0+1|T0
= êT0+1|T0 − ρ̂1êT0

= eT0+1 − ρ1eT0 + op(1),

where the last equality follows because β̂
p−→β and ρ̂1

p−→ρ1. If et is indeed an AR(1) model,

then ρ1 = ϕ1 and

ê+T0+1|T0
= vT0+1 + op(1),

which is asymptotically equal to vT0+1, the prediction error of the infeasible blup.

As it turns out, adding the term ρ̂1êT0 to any consistent prediction ŷT0+1|T0 will yield an

efficiency gain even when the true model is not an AR(1). We will refer to the prediction

ŷ+T0+1|T0
= X ′

T0+1β̂ + ρ̂1êT0

as practical blup (or plup), practical because it does not require GLS estimation and

it is asymptotically as efficient as blup. To formalize the properties of the plup error

ê+T0+1|T0
= yT0+1 − ŷ+T0+1|T0

, we assume the following.

Assumption A1

(a) E |et|r <∞ for some r > 2, for all t.

(b) {et} is a zero mean strictly stationary strong mixing process with mixing coefficients

α (k) = O
(
k−

r
r−2

−δ
)
for some δ > 0.

We define the strong mixing coefficients as α (k) = supA,B |P (A ∩B)− P (A)P (B)| where
A and B vary over events in the sigma fields generated by {es : s ≤ 0} and {es : s ≥ k},
respectively. Assumption A1 includes linear processes et =

∑∞
j=0 ψjvt−j, where

∑∞
j=0 |ψj| <

∞ and vt is i.i.d.(0, σ
2
v) with E |vt|r < ∞, which includes stationary invertible ARMA(p,q)

processes and nonlinear weakly dependent processes with GARCH and ARCH innovations.

Lemma 1 (h = 1): Let Xt be predictors and et be the errors in the model defined by (1).

Suppose that {et} satisfies Assumption A1 and that for j = 0, 1, E (Xtet−j), E (Xt−jet) and

E
(
XtX

′
t−j

)
exist such that β̂

p−→β. Then as T0 → ∞,
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(i) ρ̂1
p−→ρ1 ≡ γ1

γ0
, where γk ≡ E (etet−k) for all k;

(ii) Standard prediction error: êT0+1|T0 = eT0+1 + op(1) where eT0+1
d∼(0, γ0);

(iii) plup error: ê+T0+1|T0
= eT0+1 − ρ1eT0 + op(1) where eT0+1 − ρ1eT0

d∼(0, γ0(1− ρ21)).

Part (i) shows that ρ̂1 converges to the first order autocorrelation coefficient of et. Parts

(ii) and (iii) describe the asymptotic expansion of the prediction errors ignoring the esti-

mation error uncertainty. Part (ii) implies that the standard prediction is asymptotically

unconditionally unbiased in spite of not accounting for serial correlation because eT0+1 is

mean zero by assumption, and it has asymptotic variance γ0 ≡ var (eT0+1) = σ2
e . The plup

error in (iii) also has an unconditional mean of zero, but its variance is γ0(1 − ρ21). Since

|ρ1| ≤ 1,

γ0(1− ρ21) ≤ γ0,

implying that the plup mean-squared dominates the standard prediction. If et is truly gen-

erated as et = ϕ1et−1+vt, the plup error ê+T0+1|T0
will be asymptotically serially uncorrelated

since ρ1 = ϕ1.

However, an AR(1) correction will improve upon the standard prediction even when et

is not an AR(1), provided that et is a mixing process satisfying A1. For instance, if et is an

AR(2) defined by et = ϕ1et−1 + ϕ2et−2 + vt, then ρ1 = ϕ1

1−ϕ2
̸= ϕ1. But it will still be the

case that ρ̂1
p−→ρ1 as stated in (i). The plup error is now ê+T0+1|T0

= eT0+1 − ρ1eT0 + op(1) =

(ϕ1 − ρ1)eT0−1 + ϕ2eT0−2 + op(1), while the standard prediction error is êT0+1|T0 = ϕ1eT0−1 +

ϕ2eT0−2 + op(1). Both have a mean of zero, implying that misspecifying the dynamics will

not contribute to unconditional bias. Nonetheless, the plup variance is (1 − ρ21)σ
2
e , which

is smaller than the standard prediction error variance of σ2
e since |ρ1| ≤ 1. Thus the AR(1)

correction unambiguously reduces one-step asymptotic mean squared prediction error. In

theory, an AR(p) correction with known parameters should improve prediction when et is an

AR(p). But in practice, sampling uncertainty may offset some gains. Furthermore, when the

assumed AR(p) is not the true model, the mean-squared error is no longer tractable as shown

in Kunitomo and Yamamoto (1985) even without sampling error. The AR(1) correction is

appealing because it is simple to implement, and precise mean-squared error statements can

be made when there is no sampling uncertainty as stated in Lemma 1.

Next, consider cases when h > 1. The standard prediction ŷT0+h|T0 = X ′
T0+hβ̂ has error

êT0+h|T0 = yT0+h − ŷT0+h|T0 = eT0+h + op(1), where E[eT0+h] = 0 and var(eT0+h) = γ0. There

are two ways to implement plup. The first to use the AR(1) model for et to iteratively
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predict eT0+h. Iterated plup (or plupi), defined as

ŷ+I
T0+h|T0

= X ′
T0+hβ̂ + ρ̂h1 êT0 ,

has error ê+I
T0+h|T0

= eT0+h − ρh1eT0 + op(1). As shown in the Appendix,

eT0+h − ρh1eT0

d∼(0, γ0[1 + ρ2h1 − 2ρh1ρh]).

The second approach is to directly predict eT0+h using information up to T0. Let ρ̂h = γ̂h/γ̂0

be the hth order sample autocorrelation coefficient of {êt : t = 1, . . . , T0}. Direct plup (or

plupd) is defined as

ŷ+d
T0+h|T0

= X ′
T0+hβ̂ + ρ̂hêT0 .

plupd has error ê+d
T0+h|T0

= eT0+h − ρheT0 + op (1), where

eT0+h − ρheT0

d∼(0, γ0
(
1− ρ2h

)
).

Lemma 2 (h ≥ 1) Under the same assumptions as in Lemma 1, the asymptotic MSE of

plupd is always smaller than or equal to that of plupi and that of the standard predictor

for all h ≥ 1.

The proof is given in the Appendix. The standard predictor, plupi and plupd are all

asymptotically unbiased provided that E[et] = 0. But

var(eT0+h − ρheT0)− var
(
eT0+h − ρh1eT0

)
= −γ0

(
ρh − ρh1

)2 ≤ 0

with equality when the AR(1) model is correctly specified. Furthermore,

var(eT0+h − ρheT0)− var(eT0+h) = −ρ2hγ0 ≤ 0

with equality when ρh = 0. Hence, absent sampling uncertainty, the asymptotic MSE of

plupd using eT0 to improve the standard prediction can be no larger than plupi which uses

the same information for correction, or the standard predictor which ignores eT0 for any h ≥
1. This is not to say that a richer dynamic model would not produce further improvements.

What’s noteworthy is that even a simple correction will reduce the prediction MSE at any h.

We can also expect the plupd gains to be largest at h = 1 and diminish with h because the

long horizon forecast of a covariance stationary process is the unconditional mean. Though

precise statements can be made for plupd, we can only say that the asymptotic MSE of

plupi is smaller or equal than that of the standard predictor if 1 + ρ2h1 − 2ρh1ρh ≤ 1 (see the

Appendix for a proof).

Once a prediction is made, we can construct prediction intervals. We will be studying

plup based inference under normality in the context of causal inference. As we will see in

Section 5, while the standard prediction is unconditionally unbiased, it is conditional biased

and conditional inference will, in general, have the wrong coverage.
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3.3 Simulations for Linear Predictions

This subsection evaluates the unconditional and conditional prediction bias, MSE, and cov-

erage with and without plup correction in a single equation setting where by unconditional

inference, we mean that ei,T0 is random in repeated sampling, and by conditional inference,

we mean that ei,T0 is treated as fixed with respect to some conditioning information, as would

be the case in practice.

In each of the 5000 replications, we first simulate K = 2 regressors and yt = X ′
tβ + et

where for T = 1, . . . , 200, et = ϕ1et−1 + ϕ2et−2 + vt. With vt
d∼N(0, .05), the R2 of the

regression is about 2/3. In Case 1, et is an AR(1) with ϕ1 = .8, and in Case 2, et is an

AR(2) with (ϕ1, ϕ2) = (1.3,−.4). Table 1 reports four sets of errors in predicting yT0+h.

The column labeled ’best’ is the infeasible prediction when β, ϕ1, ϕ2, and eT0 are known.

The column labeled ’noadj’ is also infeasible but unlike ’best’, it does not take into account

information in eT0 . The column labeled ’ols’ is the standard prediction ŷT0+h using the least

squares estimate β̂. The columns plupi and plupd are iterative and direct plup respectively.

Both are based on a simple AR(1) correction, ie. even when the true DGP is AR(2). Note

that they are identical when h = 1.

The top panel of Table 1 reports the unconditional bias and MSE for horizons h =

1, 2, 5, 10. The average over all 10 horizons is reported in the row labeled ’avg’. Since

E[eT0 ] = 0, the unconditional prediction bias is close to zero. However, the unconditional

prediction MSE is much smaller with plup corrections. In the AR(1) case, the MSE for the

standard (OLS) prediction is 0.14 at h = 1, but the plup corrections reduce the MSE to 0.05.

In the AR(2) case, the OLS prediction has an MSE of 0.43 while the plup corrections reduce

the MSE to 0.06. The MSE improvements are smaller when h > 1, but still non-trivial.

The middle panel of Table 1 shows conditional prediction errors when (eT0−1, eT0) are

fixed to (0.5, 1). All predictions are conditionally biased, but the plup biases are significantly

smaller. When h = 1 and the errors are AR(1), the standard prediction has a conditional bias

of 0.79 while the plup corrections reduce it to 0.01. When the errors are an AR(2) process

but an AR(1) correction is implemented, the conditional OLS bias at h = 1 is reduced from

1.09 to 0.18. Correspondingly, the MSE is reduced from 1.26 to 0.09. Note that the biases are

largest when h = 1 because the predictability of a stationary ergodic process decreases with

the forecast horizon. The improvements in MSE at h = 1 translate into improved average

predictions over 10 periods. Without the corrections, the average prediction in the AR(2)

case has a bias of 0.61 and an MSE of 0.56. The AR(1) plup direct correction reduces bias

to 0.17 and MSE to 0.22.

12



4 Imputation of Counterfactual Outcomes

Imputation concerns prediction of values that are never observed. The problem is widely

studied in a static setup, but there are few results for a dynamic setting. Little and Ru-

bin (2019, Ch. 11) consider an AR(1) model where y1, y3, . . . , yT−1 are observed but not

y2, y4, . . . , yT . The adjustments, shown to require an implicit regression of yt on yt−1 and

yt+1, can be seen as smoothed estimates of a suitably defined Kalman filter. Chow and Lin

(1971) consider missing values occurring between two releases of low frequency data and

show that the best prediction involves a correction term that has a blup form. Ng and

Scanlan (2024) consider factor-based imputation of weekly missing values of a scalar series

occurring throughout the sample.

Causal inference concerns imputation of missing potential outcomes that tend to occur at

the end of the sample. The problem is typically studied for an iid setting when it is natural

to assume that the errors are uncorrelated5. As suggested in Section 2, correlation in the

residuals cannot be ruled out. We will consider the imputation problem from the perspective

of optimal prediction, with the goal of using the insights of blup to improve the imputation

of Yi,T0+h(0). We assume that eit = Yit(0) − mit are strong mixing processes and rule out

non-stationary data. In addition, we impose the following high level assumption:

Assumptions A2: For h ≥ 1, m̂i,T0+h − mi,T0+h = op (1) and T−1
0

∑T0

t=1 (m̂it −mit)
2 =

op (1).

Assumption A2 is verified in Chernozhukov, Wüthrich, and Zhu (2021) for estimators

including synthetic control, matrix completion, factor-based methods. Given an asymptoti-

cally unbiased m̂i,T0+h satisfying Assumptions A1 and A2, the estimated treatment effect

δ̂i,T0+h = mi,T0+h + δi,T0+h + ei,T0+h − m̂i,T0+h

has error

δ̂i,T0+h − δi,T0+h = (mi,T0+h − m̂i,T0+h) + ei,T0+h. (6)

This error has two components: an in-sample estimation uncertainty component that de-

pends on the estimator but vanishes as T0 → ∞, and an out-of-sample prediction component

that depends on the choice of mit and the information H used in the imputation.

5Brodersen, Gallusser, Koehler, Remy, and Scott (2015) consider state space estimation of the counter-
factual outcomes in the presence of trends, but serial correlation in idiosyncratic shocks and/or the factors
are not allowed. Carvalho, Masini, and Medeiros (2018); Masini and Medeiros (2021, 2022) consider causal
inference in a high-dimensional setting when the data are persistent and possibly non-stationary.
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In order to extend Goldberger’s blup from a complete data setting to a potential out-

comes setting, define the n× 1 vector of (observed) control outcomes Y(0) by

Y(0)︸︷︷︸
n×1

=



Y1,1:T0

...
YN,1:T0

YN1+1,T0+1:T
...
YN,T0+1:T


≡

Ypre(0)(NT0×1)

Ypost(0)(N−N1)T1×1



where n = (NT −N1T1). Note that Y(0) includes not only the pre-intervention outcomes on

all units Ypre(0) ≡ (Y1,1:T0 . . . YN,1:T0)
′ but also the post-intervention outcomes on the control

units Ypost(0) ≡ (YN1+1,T0+1:T . . . YN,T0+1:T )
′.

Let M be the pseudo-conditional mean for Y(0) and E be the corresponding errors. The

matrices M and E contain typical elements mit and eit, respectively. With this notation,

Y(0) = M+ E , E =

(
Epre

Epost

)
d∼(0,Γ)

Γ = E[EE ′] =

(
Γpre,pre Γpre,post

Γpost,pre Γpost,post

)
.

The n × n matrix Γ depends on Σ = E[ete
′
t], which is the N × N covariance matrix of

et = (e′1:N1,t
, e′N1+1:N,t)

′. It also depends on Ωi = E[eie
′
i], which is the time series covariance

of unit i, and its dimension can be T × T or T0 × T0 depending on whether i is treated.

Consider the linear case M = Xβ, where X contains observed predictors. Consider

obtaining blup given information on Y(0) and X . Re-doing Goldberger’s problem gives the

following:

Proposition 1 Assume that treatment assignment is known, Y(0) = M + E, where M =

Xβ where β is constant across i and t. Let Γ be the n× n variance-covariance of E, where
n = NT −N1T1. The blup of the counterfactual outcome for unit i ∈ [1, N1] is

Y+
i,T0+h(0) = X ′

i,T0+hβGLS + ω′
ihΓ

−1EGLS

where βGLS is the vector of infeasible GLS estimates and EGLS are the corresponding residuals,

ωih = E[Eei,T0+h] is n× 1 vector of covariances between the unexplained errors in the vector

of observed control outcomes and unit i’s counterfactual outcome not explained by the model

at T0 + h.

Proposition 1 provides the individual level best linear unbiased prediction in a treatment

effects setting. Two cases are of special interest.
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Case 1: serial correlation only: If E[eℓtejs] = 0 for ℓ ̸= j and for all t, s, then for

i ∈ [1, N1],

ω′
ihΓ

−1EGLS = θ′ieGLS,i,1:T0 (7)

where θi = (E[ei,1:T0e
′
i,1:T0

])−1E[ei,1:T0ei,1:T0+h] is the T0 × 1 vector of coefficients from pro-

jecting ei,T0+h on (ei,1, . . . , ei,T0).

The result in (7) follows from the fact that when there is no cross-section dependence

in the errors, then the correction for unit i only depends on Ωi, the T0 × T0 autocovariance

structure of ei. For instance, if N1 = 1 and i = 1 is the treated unit,

ωih =

(
E[ei,1:T0ei,T0+h]

0N0T×1

)
,

where N0 = N − N1, and the prediction simplifies to mi,T0+h + ρhi eGLS,i,T0 if eit is assumed

to be an AR(1), where ρi is the first order autocorrelation coefficient of eit. This coincides

with Goldberger’s correction reviewed in Section 3.

Case 2: cross-section correlation only: If E[eℓtejs] = 0 for t ̸= s and for all ℓ, j, then

for i ∈ [1, N1],

ω′
ihΓ

−1EGLS =

N−N1∑
j=1

θi,N1+jeGLS,N1+j,T0+h. (8)

where θi,N1+j are the slope coefficients from projecting eit on eN1+1,t, . . . , eN,t using t =

1, . . . , T0.

blup corrections with cross-section dependence have been derived in a static variance

components setting but not in our set up. The result in (8), which is new, is based on two

features that follow from no serial correlation. First, for any treated unit i ∈ [1, N1],

ωih =

(
E(Epreei,T0+h)
E(Epostei,T0+h)

)
=

(
0NT0×1

E(Epostei,T0+h)

)
.

Second, the covariance matrix of errors Γ has a block diagonal structure

Γ =

(
Σ⊗ IT0 0

0 Σ00 ⊗ IT1

)
, Σ =

(
Σ11 Σ10

Σ′
10 Σ00

)
,

where Σ11 = E(e1:N1,te
′
1:N1,t

), Σ00 = E(eN1+1:N,te
′
N1+1:N,t), and Σ10 = E(e1:N1,te

′
N1+1:N,t). Let

[Σ10]i,. be the i-th row of the matrix Σ10. Then, for any i ∈ [1, N1] and h > 0, the non-zero

entries of the n× 1 vector ωih are given by

E(Epostei,T0+h) = [Σ01]
′
i. ⊗ Jh
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where Jh is the h-th column of the identity matrix of dimension T1. As a consequence of the

two features, the blup correction is

ω′
ihΓ

−1EGLS = ([Σ10]i,.Σ
−1
00 ⊗ J ′

h)E
post
GLS.

It is a linear combination of Epost
GLS, the GLS errors of the control units in the post-treatment

sample, with weights given by the N − N1 vector θ′i = (θi,N1+1, . . . , θi,N) = Σ−1
00 [Σ10]

′
i,.,

where θi,N1+j is the population coefficient associated with eN1+j,t in the regression of eit on

eN1+1:N,t = (eN1+1,t, . . . , eN,t)
′. Given the definition of Jh, we can write the blup correction

for unit i in period T0 + h as ω′
ihΓ

−1EGLS = θ′ieGLS,N1+1:N,T0+h, as given in the Proposition.

The θi vector can be sparse such as in factor models when the idiosyncratic errors can only

be weakly dependent in the sense that if E(eitejt) = τij,t, |τij,t| ≤ |τ̄ij| for some τ̄ij for all t,

and
∑N

j=1 |τ̄ij| ≤M ≤ ∞ for all i.

4.1 From blup to pup

In Section 3, we take as a starting point that the first order improvement of blup comes

from controlling for the predictability in eit. While blup is developed for linear predictions,

linearity is not necessary to obtain an improved predictor. Our practical unbiased predictor

(henceforth, pup) can be used with any choice ofM that can be consistently estimated so that

the residuals Ê = Y(0)−M̂ can be used to improve prediction. In practice, implementation

still requires parametric assumptions on Ω and Σ. For a serially correlated process eit

satisfying mixing conditions, we have the following

Lemma 3 Under Assumptions A1 and A2, a standard imputation has error δ̂i,T0+1−δi,T0+1 =

ei,T0+1 + op(1), whose variance is σ2
e,i = γ0,i. A pup correction has error δ̂+i,T0+1 − δi,T0+1 =

ei,T0+1−ρi,1ei,T0 +op(1), whose variance is (σ+
e,i,1)

2 = γ0,i(1−ρ2i,1), where ρi,1 is the first-order

autocorrelation of eit. Since |ρi,1| ≤ 1, (σ+
e,i,1)

2 ≤ σ2
e,i.

Lemma 3 follows immediately from Lemmas 1 and 2 but the results are presented in a

treatment effect setting where the op(1) term vanishes with T0. For h = 1, the MSE of a

pup imputation will always be smaller than that of a standard imputation. We focus on

h = 1 since the gain in MSE should be largest, and furthermore, it is also the case when

the direct and iterative corrections coincide. In theory, a direct pup using ρi,h has better

properties than an iterative pup using ρhi,1 when h > 1. But in simulations when sampling

uncertainty is present, the two behave similarly and both dominate the standard predictor.
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It is also possible to entertain both time and cross-section dependence in eit. For example,

Ŷ +
i,T0+h(0) = Ŷi,T0+h(0) +

pi∑
s=0

ρ̂isêi,T0−s +
N∑
j ̸=i

pj∑
s=−pj

θ̂ij,sêj,T0+h−s. (9)

The first correction captures the time series information from êi’s own history, while the

second correction captures cross-section dependence using estimates of the current and past

idiosyncratic errors of the control units.

Though optimal prediction of counterfactual outcomes has not been studied, pup like cor-

rections have recently been considered. Chernozhukov, Wüthrich, and Zhu (2021) consider

time dependence in e1t and suggest adding to the standard imputed value an AR(p) estimate

of the residuals, but the idea is not flushed out. Fan, Masini, and Medeiros (2022) consider

a factor model with observables Wit and assume contemporaneously correlated idiosyncratic

errors eit = θ′ie−i,t + vit, where e−i,t is a N − 1 vector that excludes eit. This correlation

can be controlled by êjt from estimation of the factor model. To circumvent overfitting the

augmented prediction model Yit(0) = γ′iWit + λ′iFt + θ′1ê−i,t + vit when N0 is large, lasso

is used to select which of the êj,t to keep. Our analysis provides a framework for thinking

about these pup like modifications.

4.2 Simulations: δ̂it vs δ̂
+
it

In Table 1, we saw in a linear prediction setting that plup yields significant reductions in

bias and mean-squared error. Since imputation is a form of prediction, we can anticipate

improvements from using pup in imputation settings. To illustrate this, we generate Yit(0)

using a factor model:

Yit(0) = ci + Λ′
iFt + eit, t = 1, . . . , T

Y1t(1) = Y1t(0) + δ1t, δ1t = 0.1 t = T0 + 1, . . . , T.

We assume that unit 1 is treated with δ1t = 0.1 and eit = ϕiei,t−1+vit, vit
d∼N(0, .25), ϕ1 = 0.6,

ϕi = 0 for i > 1. We set ci = 0 for all i, r = 2, F1t = .8F1t−1 + eF1t and F2t = .5F2,t−1 + eF2t,

Λik
d∼N(0, 1), eF1t

d∼N(0, .5), eF2t
d∼N(0, .3). The ‘best’ prediction is Y1,T0+h = Λ′

1FT0+h+ϕ
h
1e1,T0

and the standard prediction is based on the principal components Λ̂′
iF̂T0+h of the demeaned

data for the control group, which will be denoted pca.

Table 2 reports the error in imputing δ̂1,T0+h for (T,N) = (50, 20). Because Y1t(1) is

observed, δ̂1t − δ1t = Y1t(1) − Ŷ1t(0) is due entirely to Ŷ1t(0). The top panel considers

e1t = 0.6e1t−1 + v1t. We see that though pca is unconditionally unbiased, its MSEs are
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larger compared to the pup ones. Furthermore, the conditional biases upon fixing e1,T0 = 1.0

are smaller with pup, as is MSE. For mutually correlated errors when e1t = 0.5e2t + v1t, the

conditional case randomly draws e2,T0+1:T1 once and keeps the vector fixed in the replications.

Again, the two imputations based on pup reduce MSE unconditionally and conditionally.

Unlike in the time series case, the improvements can occur at any horizon h. Though direct

pup has slightly better population properties than iterative pup , they have rather similar

properties in simulations. To simplify notation, we use the term pup in the next subsection,

with the understanding that either direct or iterated correlation can be used.

5 Inference Based on Imputed Counterfactual Outcomes

Let F (x) = P (eit ≤ x) be the marginal distribution function of eit, and F+ (x) be the

marginal distribution of an adjusted pup error. Lemma 3 suggests that

δ̂i,T0+1 − δi,T0+1
d−→ ei,T0+1

d∼F

δ̂+i,T0+1 − δi,T0+1
d−→ ei,T0+1 − ρi,1ei,T0

d∼F+.

Though both F and F+ are centered at zero, F is more dispersed than F+. There is

surprisingly little work on inference based on a feasible blup even in a single equation

setting presumably because further assumptions on F are needed. We will assume that

{eit} is a Gaussian process with autocovariance at lag j of γj,i, and let z1−α be such that

Φ (z1−α) = 1 − α, where Φ is the cdf of the standard normal distribution. The Gaussian

assumption is only made to illustrate the issues created by omitting predictability. Other

distributions can be used in its place so long as eit satisfies our mixing assumption.

We consider intervals of the form δ̂±σ̂δz1−α/2 where δ̂ is either the standard predictor, or a

pup predictor with variance defined in Lemma 3. These intervals, denoted PIih, and PI+ih, can

be based on asymptotic theory or resampling methods as in Li (2020) and Cattaneo, Feng,

and Titiunik (2021), among others. The intervals will be used for both unconditional and

conditional inference. By unconditional inference, we mean that ei,T0 is random in repeated

sampling. By conditional inference, we mean that ei,T0 is treated as fixed with respect to some

conditioning information, as would be the case in practice. Phillips (1979) notes that while

unconditional inference is useful for evaluating econometric methods, conditional inference

has a role in applications.

We begin with unconditional inference. We say that a prediction interval is uncondi-

tionally asymptotically valid if it contains δi,T0+h with probability 1 − α as T0 → ∞. We

will focus on pointwise results for unit i where ei,T0+h ≡ Yi,T0+h(0) −mi,T0+h. It is easy to
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show that under the assumptions of Lemma 3 and assuming that {eit} is Gaussian, all three

intervals are asymptotically valid unconditionally. Consider for instance PIih, an interval

for the standard prediction error for unit i. Since δ̂i,T0+h − δi,T0+h = ei,T0+h + op(1) and

ei,T0+h
d∼N (0, γ0,i), where γ0,i ≡ σ2

e,i, we have

P (δi,T0+h ∈ PIih) = P
(
δ̂i,T0+h − σ̂e,iz1−α/2 ≤ δi,T0+h ≤ δ̂i,T0+h + σ̂e,iz1−α/2

)
= P

(
−z1−α/2 ≤ σ̂−1

e,i (δ̂i,T0+h − δi,T0+h) ≤ z1−α/2

)
= P

(
−z1−α/2 ≤ σ−1

e,i ei,T0+h ≤ z1−α/2

)
+ o (1)

= Φ
(
z1−α/2

)
− Φ

(
−z1−α/2

)
+ o (1)

= 1− α + o (1) .

In the above, the third equality follows because σ̂−1
e,i (δ̂i,T0+h − δi,T0+h) = σ−1

e,i ei,T0+h + op(1)

and the fourth equality uses the Gaussianity assumption on eit. The argument for the

pup prediction intervals is similar and thus all three intervals are (unconditionally) asymp-

totically valid. In the absence of sampling uncertainty, PI+ is asymptotically narrower than

PI for all h whether or not eit is truly an AR(1) process.

5.1 Conditional Inference

While the three intervals provide correct unconditional coverage, will they all have correct

conditional coverage? In particular, will they cover δi,T0+h with the nominal coverage prob-

ability of 1−α, conditionally on some information set H? To answer this question, consider

again the AR(1) case when eit = ϕiei,t−1 + vit, vit
d∼N(0, σ2

v,i), and H is an information set

containing ei,T0 . Under the assumption of normality, ei,T0+1
d∼N(ϕiei,T0 , σ

2
v,i) conditionally on

ei,T0 and hence
ei,T0+1−ϕiei,T0

σv,i

d∼N(0, 1). But as
ei,T0+1

σe,i

d∼N(ϕi
ei,T0
σe,i

,
σ2
v,i

σ2
e,i
) ̸= N(0, 1), the standard

prediction will not usually have the correct coverage unless ϕi or ei,T0 are zero. Indeed,

PIi1 will not have the correct conditional coverage probability even asymptotically because

P (δi,T0+1 ∈ PIi1|ei,T0) is asymptotically equal to

Φ

(
− ϕi

σv,i
ei,T0 +

σe,i
σv,i

z1−α/2

)
− Φ

(
− ϕi

σv,i
ei,T0 −

σe,i
σv,i

z1−α/2

)
.

When ϕi ̸= 0, the first term will not return the normal cdf at level 1 − α/2 unless ei,T0 is

zero.

The problem of distorted inference extends to a multi-period ahead conditional inference.

For any h > 1, we see that

ei,T0+h = ϕh
i ei,T0 + ui,T0+h|ei,T0

d∼N
(
ϕh
i ei,T0 , ω

2
h,i

)
,
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where ui,T0+h
d∼(0, ω2

h,i), ω
2
h,i = γ0,i

(
1− ϕ2h

i

)
,6 with γ0,i ≡ σ2

e,i = σ2
v,i (1− ϕ2

i )
−1
. The problem

arises because the standard prediction error is not centered at zero when we condition on

ei,T0 . Thus for any h ≥ 1, P (δi,T0+h ∈ PIih|ei,T0) is asymptotically equal to

Φ

(
− ϕh

i

ωh,i

ei,T0 + z1−α/2
σe,i
ωh,i

)
− Φ

(
− ϕh

i

ωh,i

ei,T0 − z1−α/2
σe,i
ωh,i

)
where ω2

h,i is the h-period forecast error variance defined above. For fixed h, conditional

inference is distorted unless ei,T0 = 0, though the distortion decreases with h because ϕh
i

tends to zero.

To illustrate the extent of conditional bias, consider two models for eit: one when eit =

ϕiei,t−1 + vit is an AR(1), and one when eit = vit + θivi,t−1 is an MA(1). In both cases, the

conditional forecast is biased. Analytically evaluating actual coverage for any i for a nominal

95% interval, we have

Standard Prediction with (e1,T0 , σv,1) = (−2.0, 0.5)
h coverage bias coverage bias

AR(1): ϕ1 = 0.8 MA(1): θ1 = 0.8
1 0.84 -2.26 0.58 -1.77
2 0.87 -1.41 0.95 -0.00
3 0.90 -1.01 0.95 -0.00
4 0.92 -0.76 0.95 -0.00
5 0.93 -0.59 0.95 -0.00

The coverage probability is 0.95 at ϕ1 = θ1 = 0 for all values of h because there is no

conditional bias. When ϕ1 ̸= 0 in the AR(1) case, bias decreases with σ2
v,1 and h. When

θ1 ̸= 0 in the MA(1) case, the bias is limited to h = 1 because the process has a memory of

one period. Coverage is distorted by bias, as suggested by theory.

In contrast, pup has error δ̂+i,T0+h − δi,T0+h = vi,T0+h + op(1). It is conditionally centered

at zero with conditional variance σ2
v,i. Let σ̂

+
i,h denote a consistent estimator of this variance

(which will depend on whether an iterative or a direct estimator is used). Under normality,

the pup prediction interval PI+ih = δ̂+i,T0+h±σ̂
+
i,hz1−α/2 has the correct coverage asymptotically.

At h = 1 when iterative and direct pup coincide, P
(
δi,T0+1 ∈ PI+i1|ei,T0

)
is asymptotically

Φ

(
σ̂+
i,1

σv,i
z1−α/2

)
− Φ

(
−
σ̂+
i,1

σv,i
z1−α/2

)
= 1− α + op (1) ,

6This follows because ui,T0+h = vi,T0+h + . . . + ϕh−1
i vi,T0

. Thus, ω2
h,i = σ2

v,i

∑h−1
j=0 ϕ2h

i = σ2
v,i

1−ϕ2h
i

1−ϕ2
i

≡

γ0,i
(
1− ϕ2h

i

)
, γ0,i = σ2

v,i

(
1− ϕ2

i

)−1
.
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where the last equality uses the fact that σ̂+
i,1

p−→σv,i.

Analogous to conditional bias due to time dependence, a similar bias occurs when the

errors are cross-sectionally correlated. In particular, suppose that eit is serially uncorrelated

for all i, but E[eitejt] ̸= 0 for at least one j ̸= i. If i = 1 is the only treated unit, the

model of interest is Y1t(0) = m1t + e1t with e1t = θ′1e2:N,t + v1t. Consider two treatment

effects estimators, one based on the standard prediction of Y1t(0) and another based on

pup . The standard prediction yields δ̂1,T0+1− δ1,T0+1 = e1,T0+1+ op(1) which has asymptotic

mean zero and asymptotic variance σ2
e,1 ≡ E(e21t). Instead, the pup prediction yields a

prediction error δ̂+1,T0+1 − δ1,T0+1 = e1,T0+1 − θ′1e2:N,T0+1 + op(1), whose asymptotic variance

is σ2
v,1 = σ2

e,1 − Σ′
01Σ

−1
00 Σ01 < σ2

e,1. With cross-sectionally correlated errors, the standard

prediction is conditionally biased because e1,T0+1|e2:N,T0+1
d∼N(θ′1e2:N,T0+1, σ

2
v,1) is not centered

at zero. Conditional coverage under normality is asymptotically determined by

Φ

(
− θ′1
σv,1

e2:N,T0+1 + z1−α/2
σe,1
σv,1

)
− Φ

(
− θ′1
σv,1

e2:N,T0+1 − z1−α/2
σe,1
σv,1

)
.

The conditional bias arising from θ1 ̸= 0 and σe,1 ̸= σv,1 will distort inference. Notably,

− θ′1
σv,1

here plays the role of − ϕ1

σv,1
in the AR(1) setting. But in contrast to the case of serial

correlation, the size distortion does not diminish with h. The pup prediction is more efficient

because e1t|e2:N,t
d∼(θ′1e2:N,t, σ

2
v,1) which has a smaller variance.

To illustrate, suppose that N1 = 1 and e1t = θ1e2t + v1t, where we assume that σ12

is the only non-zero cross sectional covariance. In this case, the relevant parameters are

[Σ00]11 = σ2
e,2, and [Σ01]11 = cov(e1t, e2t) ≡ σ12. Unlike in the time series case when we only

condition on e1,T0 , we now condition on e2,T0+h for each h. In the following example, we

draw e2,T0+h once from the normal distribution using the rndn function in matlab with

seed 1234, and cov(e1t, e2t) from the uniform distribution using the rand function with seed

57.
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Standard Prediction when e1,T0+h = θ1e2,T0+h + v1,T0+h, e2,T0+h fixed

Σ = diag(σ2
e,1,Σ00) = diag(0.5, 0.841).

Σ01 = 0.613 Σ01 = −0.613
h ē2,T0+h coverage bias coverage bias
1 0.68 0.63 -1.64 0.89 -0.70
2 -0.83 0.81 1.07 0.86 0.85
3 -0.92 0.93 -0.38 0.84 0.95
4 0.09 0.95 0.17 0.95 -0.09
5 0.86 0.94 0.32 0.86 -0.89

The parameterizations result in θ1 = sgn × 0.72 where the sign depends on whether

Σ01 ≡ σ12 is positive or negative. The sign affects the magnitude of the bias which in

turn affects the extent of size distortion. However, unlike in the time series case when

predictability falls with h by nature of stationarity, the cross-section correlation does not

decrease with h. As a consequence, the effect on coverage can vary significantly across

horizons.

5.2 Simulations: PI vs PI+

Tables 1 and 2 above showed that pup corrections reduce bias and mean-squared prediction

error significantly. But do these improvements lead to more accurate inference? We first

return to Table 1 when point prediction is based on the simple linear model is yt = X ′
tβ+ et.

The corresponding results for coverage are reported in Table 1(b). Note first that there is

no gain in unconditional coverage regardless of the error structure because E[eit] = 0 by

assumption. Hence we focus on conditional coverage. In the AR(1) case, coverage is 40%

at h = 1 without pup correction, but is at the desired level of 95% with correction. pup

coverage in the AR(2) case is 91%, which is less accurate, but still better than the OLS

coverage of 0.69.

Evaluation of coverage based on δit is more involved because the sampling error depends

on the estimator. Furthermore, given estimates of δ̂i,T0+h for some i ∈ [1, N1], any of the

following hypothesis can be considered.

HA
0 : δi,T0+h = δ0i,T0+h

HB
0 : δi,T0+h = 0 ∀h

HC
0 : ∆i,T0+1:T = ∆0

i,T0+1:T ∆i,T0+1:T = 1
T1

∑T1

h=1 δi,T0+h

HD
0 : ∆1:N1,T0+h = ∆0

1:N1,T0+h, ∆1:N1,T0+h = 1
N1

∑N1

i=1 δi,T0+h

HE
0 : ∆1:N1,T0+1:T = ∆0

1:N1,T0+1:T1
, ∆1:N1,T0+1:T = 1

T1

1
N1

∑T1

h=1

∑N1

i=1 δi,T0+h

While A and B are pointwise hypotheses, hypotheses C,D,E concern the average treatment

effect of the treated, where the average can be taken over time, over units, or both. The
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interpretation of each test depends on T1 and N1. Consider HC
0 . If T1 is small so that

∆i,T0+1:T = 1
T1

∑T
t=T0+1 δit is random, we construct a prediction interval for ∆i,T0+1:T . When

T1 is large, ∆i,T0+1:T
p−→∆i,∞ = E[δit] is non-random. In this case, we construct a confidence

interval for ∆1,T0+1:T . Considerations of N1 are likewise needed for testing HD
0 .7

To give a flavor of the results, we only considerHA
0 andHC

0 using the same data generating

process in Table 2. We estimate (Ft,Λi) using the tall-wide procedure in Bai and Ng

(2021). With this estimator, the asymptotic distribution of δ̂i,T0+h is determined by the

distribution of ei,T0+h. Hence the distribution of δ̂i,T0+h is normal only if eit is Gaussian.

However, the treatment effect averaged over T1 periods can be asymptotically normal with

a convergence rate of min(T0, T1) if the CLT 1√
T0

∑T0

t=1 Fteit
d−→N(0,Φi) holds. In contrast,

the average treatment effect over N1 units can be asymptotically normal with a convergence

rate of min(N0, N1) if a CLT for 1√
N0

∑N0

i=1 Λieit
d−→N(0,Γt) holds. These distinctions will

help understand the coverage results reported in Table 2(b).

Turning first to the time series case in the top panel of Table 2(b), pup coverage for δi,T0+h

improves over PCA, but only for h = 1, 2, suggesting that for serially correlated errors, pup

is most effective when h is small, especially when T0 is small. For cross-sectionally correlated

errors reported in the bottom panel, improved coverage of pup can occur at any h, but is

more systematic when N0 is large.

As explained above, the limiting distribution of the Bai and Ng (2021) estimator of ̂̄δi
depends on adequacy of central limit theory, while it is normality of eit that renders δ̂it

normally distributed. It is thus not surprising that coverage of δit does not provide a good

guide to the coverage of δ̄i = 1
T1

∑T1

h=1 δi,T0+h. At (T0, N0) = (50, 20), pup conditional

coverage of δ̄i is too low, though no more inaccurate than the standard pca prediction.

Whether the errors are serially or cross-sectionally correlated, coverage of δ̄i is more reliable

as T0 increases because we average over T1 variables that become increasingly Gaussian.

Sampling methods could be useful when T0 is small, see e.g. Li, Shen, and Zhou (2023).

6 Conclusion

Goldberger (1962) shows that if the errors of the prediction model are non-spherical, they

can be exploited to improve prediction. Motivated by this result, this paper has suggested

pup, a simple way to adjust existing estimates of counterfactual outcomes for dependence in

the errors. The adjustment consists of adding a term that exploits the presence of serial or

7For large T1,
1
T1

∑T1

h=1 mi,T0+h−m̂i,T0+h+
1
T1

∑T
h=1 ei,T0+h+δi,T0+h−E[δi,T0+h], which equals ∆̂i,T0+1:T−

∆i,T0+1:T + δi,T0+h − E[δi,T0+h].
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cross sectional correlation in the prediction errors of the model used to obtain the estimated

counterfactual outcomes.

We showed that improved mean-squared errors are possible without knowledge of the

true error structure, and simple corrections often suffice. We also showed that omitting

the pup adjustment term when the error is predictable can result in conditional bias, thus

leading to prediction intervals that are not conditionally asymptotically valid. In contrast, a

prediction interval based on pup is conditionally unbiased, resulting in valid inference both

conditionally and unconditionally.

While improved predictions are possible, it should be pointed out that when serial cor-

relation is a concern, we can focus on corrections at small h because ρh will be small for

stationary mixing processes. Furthermore, dependence in the residuals is necessary but not

sufficient for improved prediction. This is because the pup adjustment depends not just on

ρ̂is or ρ̂js, but also on the values of êi,T0−s and êj,T0+j−s which can take on values close to zero.

In the German unification example, the cross-section pup correction does not make much

difference. However, the residuals exhibit serial dependence and the AR(1) pup correction

changed the imputed growth rate for 1991 from -1.722 to -1.537 and for 1996 from -1.528 to

-1.662. If take log GDP as the outcome variable instead of GDP growth, the residuals are

still serially correlated with ρ̂1 = 0.72. But (ê1,T0 , ê1,T0−1) = (0.025,−0.0024) which are small

relative to y1,T0 = 9.26. Hence in this case, the pup corrections did not make appreciable

difference. Ultimately, whether the pup corrections are large is an empirical matter. Our

goal is simply to draw awareness to the possibility of improvements. A practical first step

could be to use the in-sample residuals êit to construct an LM test for no dependence using

the auxiliary regression

êit = X ′
itδ0 +

pi∑
s=0

δi,sêi,t−s +
N∑
j=1

pj∑
s=−pj

δj,sêj,t−s.

We can entertain pup corrections if the null hypothesis is rejected, keeping in mind that the

significance of the corrections depend not only on the hypothesis to be tested, but also on

the estimator used.
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A Appendix: Proofs

Proof of Lemma 1. The proof of part (i) follows from standard arguments, see e.g., Hayashi

(2000), p. 145. We provide a brief sketch here. Write ρ̂1 = γ̂1
γ̂0
, with γ̂j = 1

T0

∑T0

t=1 êtêt−j,

for j = 0, 1. Let γ̃j = 1
T0

∑T0

t=1 etet−j and note that γ̃j →p γj under Assumption A1. Since

êt = yt −X ′
tβ̂ = et +X ′

t(β − β̂), we can write

γ̂j = γ̃j − T−1
0

T0∑
t=1

(Xt−jet +Xtet−j)
′(β̂ − β) + (β̂ − β)′(T−1

0

T0∑
t=1

XtX
′
t−j)

−1(β̂ − β).

The last two terms are op (1) under the assumption that β̂ − β = op (1) and assuming

that E(Xt−jet), E(Xte
′
t−j) and E

(
XtX

′
t−j

)
are all finite for j = 0, 1. It follows that γ̂j =

γ̃j + op(1) = γj + op (1), which implies the result. To prove (ii), note that êT0+1|T0 =

yT0+1 −X ′
T0+1β̂ = eT0+1 −X ′

T0+1(β̂ − β) = eT0+1 + op (1) under the assumption that β̂ − β =

op(1). It follows immediately that E(eT0+1) = 0 and V ar(eT0+1) ≡ γ0 = σ2
e . For (iii),

note that we can write ê+T0+1|T0
= eT0+1 − ρ1eT0 + op(1), given (i) and the assumption that

β̂ − β = op(1). Since E (et) = 0 for all t, we have E(eT0+1 − ρ1eT ) = 0. In addition,

V ar(eT0+1 − ρ1eT ) = γ0 + ρ21γ0 − 2ρ1γ1 = γ0 − γ21/γ0 ≤ γ0, where the second equality follows

by replacing ρ1 = γ1/γ0.

Proof of Lemma 2. The standard OLS prediction error is

êT0+h|T0 = yT0+h − ŷT0+h|T0 = eT0+h −X ′
T0+h(β̂ − β) = eT0+h + op (1) .

The mean of eT0+h is zero and the variance is γ0. The h-step ahead direct plup based on an

AR(1) approximation is

ê+d
T0+h|T0

= yT0+h − ŷ+d
T0+h|T0

= eT0+h − ρ̂hêT0 + op (1) = eT0+h − ρheT0 + op (1) ,

where êT0 is the OLS residual for observation T0, and ρ̂h is the h-th order sample autocorre-

lation of êt. It follows immediately that the asymptotic MSE of the direct plup is smaller

or equal than that of OLS since the variance of eT0+h−ρheT0 is γ0(1−ρ2h) ≤ γ0, since ρ
2
h ≤ 1.

To compare direct plup with iterated plup , note that the h-step ahead iterated plup based

on an AR(1) approximation is

ŷ+I
T0+h|T0

= ŷT0+h|T0 + ρ̂h1 êT0 ,

where ρ̂1 is defined in (5) and êT0 is the OLS residual for observation T0. The iterated

plup error is

ê+I
T0+h|T0

= yT0+h − ŷ+I
T0+h|T0

= eT0+h − ρ̂h1 êT0 + op (1) = eT0+h − ρh1eT0 + op (1) .
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Both versions of plup have mean zero but the variance of iterated plup is larger or equal

than that of direct plup since we can show that the difference between these two variances is

γ0(ρh − ρh1)
2 ≥ 0. A comparison between iterated plup and the standard prediction reveals

that both prediction errors have mean zero, but the variance of the standard OLS prediction

is V ar (eT0+h) = γ0 whereas that of the iterated plup error is equal to

V ar
(
eT0+h − ρh1eT0

)
= γ0 + ρ2h1 γ0 − 2ρh1γh

= γ0[1 + ρ2h1 − 2ρh1(
γh
γ0

)]

= γ0[1 + ρ2h1 − 2ρh1ρh)],

since ρh = γh
γ1
, where γh = E (et+het). When 1 + ρ2h1 − 2ρh1ρh ≤ 1 we can conclude that the

mean square prediction error of plup is smaller than the mean square prediction error of

OLS.
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Figure 1: Effect of German Unification, GDP growth

The data are downloaded from https://doi.org/10.7910/DVN/24714
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Figure 2: Effect of German Unification on level of GDP
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Table 1: Prediction Errors

yt = X1tβ1 +X2tβ2 + et, β1 = β2 = 1, T = 50

X1t = 0.6X1,t−1 + u1t, u1t ∼ N(0, 1), X2t = u2t, u2t ∼ N(0, 1)

et = ϕ1et−1 + ϕ2et−2 + vt, vt ∼ N(0, 0.05)

Unconditional
h best noadj ols plupI plupD best noadj ols plupI plupD

bias mse

(ϕ1, ϕ2)=(0.80,0.00)
1 -0.00 -0.01 -0.00 -0.00 -0.00 0.05 0.14 0.14 0.05 0.05
2 0.00 -0.00 0.00 0.00 0.00 0.05 0.14 0.14 0.08 0.08
5 0.00 0.00 0.00 0.00 0.00 0.05 0.13 0.14 0.12 0.12
10 0.00 -0.00 -0.00 -0.00 0.00 0.05 0.14 0.14 0.14 0.14

avg -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.07 0.08 0.06 0.06
(ϕ1, ϕ2)=(1.30,-0.40)

1 -0.00 -0.01 -0.00 -0.00 -0.00 0.05 0.43 0.43 0.06 0.06
2 0.00 -0.00 -0.00 -0.00 -0.00 0.05 0.43 0.43 0.16 0.16
5 0.00 -0.00 0.00 -0.00 0.00 0.05 0.42 0.43 0.37 0.35
10 0.00 -0.01 -0.00 -0.00 -0.00 0.05 0.43 0.44 0.48 0.44

avg -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.28 0.29 0.21 0.20
Conditional on eT0 = 1.0 and eT0−1 = 0.5

bias mse
(ϕ1, ϕ2)=(0.80,0.00)

1 -0.00 0.80 0.79 0.01 0.01 0.05 0.68 0.68 0.05 0.05
2 0.00 0.64 0.64 0.01 0.02 0.05 0.49 0.49 0.09 0.09
5 0.00 0.33 0.33 0.01 0.02 0.05 0.23 0.23 0.13 0.13
10 0.00 0.11 0.10 0.00 0.02 0.05 0.15 0.15 0.14 0.15

avg -0.00 0.36 0.35 0.01 0.02 0.00 0.18 0.18 0.06 0.06
(ϕ1, ϕ2)=(1.30,-0.40)

1 -0.00 1.10 1.09 0.18 0.18 0.05 1.25 1.26 0.09 0.09
2 0.00 1.03 1.03 0.18 0.24 0.05 1.19 1.20 0.17 0.20
5 0.00 0.62 0.62 -0.04 0.20 0.05 0.72 0.73 0.34 0.38
10 0.00 0.21 0.21 -0.23 0.08 0.05 0.47 0.48 0.49 0.45

avg -0.00 0.61 0.61 -0.04 0.17 0.00 0.56 0.56 0.19 0.22

5000 replications using Matlab R2019a, seed = rng(1234,’twister’)
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]

Table 1(b) Coverage
T=50

h best noadj ols plupI plupD best noadj ols plupI plupD
Unconditional Conditional

(ϕ1, ϕ2)=(0.80,0.00)
1 0.96 0.95 0.95 0.95 0.95 0.96 0.40 0.41 0.95 0.95
2 0.95 0.95 0.95 0.95 0.95 0.95 0.64 0.63 0.95 0.95
5 0.96 0.95 0.95 0.95 0.95 0.96 0.88 0.88 0.95 0.94
10 0.95 0.95 0.95 0.94 0.94 0.95 0.94 0.94 0.94 0.94
avg 0.95 0.99 0.99 0.94 0.94 0.96 0.94 0.93 0.94 0.94

(ϕ1, ϕ2)=(1.30,-0.40)
1 0.96 0.95 0.95 0.95 0.95 0.96 0.79 0.77 0.92 0.92
2 0.95 0.95 0.95 0.95 0.95 0.95 0.76 0.75 0.94 0.92
5 0.96 0.95 0.95 0.95 0.95 0.96 0.87 0.87 0.96 0.93
10 0.95 0.95 0.94 0.95 0.94 0.95 0.94 0.94 0.94 0.94
avg 0.95 0.98 0.98 0.94 0.94 0.96 0.94 0.93 0.96 0.92

T=200
Unconditional Conditional

(ϕ1, ϕ2)=(0.80,0.00)
1 0.96 0.95 0.95 0.95 0.95 0.96 0.39 0.40 0.95 0.95
2 0.95 0.94 0.94 0.94 0.94 0.96 0.63 0.63 0.94 0.93
5 0.95 0.95 0.94 0.94 0.94 0.96 0.87 0.86 0.93 0.92
10 0.95 0.94 0.93 0.93 0.92 0.96 0.93 0.92 0.94 0.91
avg 0.94 0.99 0.98 0.92 0.92 0.95 0.93 0.91 0.91 0.89

(ϕ1, ϕ2)=(1.30,-0.40)
1 0.96 0.95 0.94 0.95 0.95 0.96 0.73 0.69 0.91 0.91
2 0.95 0.94 0.94 0.94 0.94 0.96 0.72 0.70 0.93 0.90
5 0.95 0.94 0.93 0.94 0.93 0.96 0.85 0.84 0.94 0.91
10 0.95 0.93 0.92 0.93 0.91 0.96 0.93 0.91 0.93 0.91
avg 0.94 0.98 0.97 0.94 0.91 0.95 0.92 0.90 0.94 0.89
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Table 2: Errors in Estimated Treatment Effect : T = 50, N = 20

Yit(0) = ci + Λ′
iFt + eit, δ1 = 0.1, 1

eit = ϕieit−1 + vit, vit ∼ N(0, 0.25), ϕi = 0.6, ϕj = 0, j > 1

F1t = 0.8F1,t−1 + eF1t, eF1t ∼ N(0, 0.5), Λ1i ∼ N(0, 1)

F2t = 0.5F2,t−1 + eF2t, eF2t ∼ N(0, .3), Λ2i ∼ N(0, 1).

h best noadj pca plupI plupD best noadj pca plupI plupD
e1t = 0.6e1t−1 + ϵ1t

Unconditional bias of δ̂i,T0+h mse
1 0.00 -0.00 0.00 0.01 0.01 0.25 0.37 0.43 0.33 0.33
2 -0.01 -0.01 -0.00 -0.00 -0.00 0.33 0.37 0.45 0.42 0.42
5 -0.00 -0.00 0.01 0.01 0.01 0.37 0.39 0.48 0.47 0.48
10 -0.01 -0.01 -0.00 -0.00 -0.00 0.39 0.40 0.50 0.50 0.51

avg -0.00 -0.00 0.00 0.00 0.00 0.12 0.13 0.18 0.17 0.17
e1t = 0.6e1t−1 + ϵ1t, eT0

=1.00

Conditional bias of δ̂i,T0+h mse
1 0.00 0.60 0.56 0.15 0.15 0.25 0.61 0.66 0.36 0.36
2 -0.01 0.35 0.32 0.12 0.14 0.33 0.45 0.53 0.45 0.47
5 -0.00 0.21 0.19 0.09 0.13 0.37 0.42 0.51 0.48 0.52
10 -0.01 0.12 0.09 0.04 0.09 0.39 0.40 0.51 0.50 0.54

avg -0.00 0.15 0.12 0.04 0.09 0.12 0.14 0.19 0.17 0.19

e1t = 0.5e2t + ϵ1t
Unconditonal bias of δ̂i,T0+h mse

1 0.00 -0.00 0.00 0.00 0.00 0.15 0.20 0.33 0.28 0.28
2 -0.01 -0.01 -0.00 -0.01 -0.01 0.15 0.21 0.35 0.29 0.29
5 0.00 -0.00 0.01 0.01 0.01 0.15 0.21 0.35 0.30 0.30
10 -0.01 -0.01 -0.01 0.00 0.00 0.15 0.21 0.34 0.29 0.29

avg -0.00 -0.00 0.00 0.01 0.01 0.01 0.02 0.05 0.04 0.04
e1t = 0.5e2t + ϵ1t, e2T0+1 = 0.27539

Conditional bias of δ̂i,T0+h mse
1 0.00 0.14 0.14 0.04 0.04 0.15 0.17 0.29 0.27 0.27
2 -0.01 0.49 0.49 0.12 0.12 0.15 0.38 0.52 0.35 0.35
5 0.00 0.47 0.48 0.13 0.13 0.15 0.37 0.52 0.35 0.35
10 -0.01 -0.45 -0.44 -0.14 -0.14 0.15 0.35 0.48 0.34 0.34

avg -0.00 -0.12 -0.12 -0.06 -0.06 0.01 0.03 0.06 0.05 0.05

5000 replications using Matlab 2019a with seed rng(456,’twister’). For cross-section correlation,

e2,T0:1:T=(0.6361, -0.6386, 0.7118, -1.7044, -1.2992, 1.6402, 0.1395, 0.9348, 0.5051, 0.9692).
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Table 2(b), Coverage
h best noadj pca plupI plupD best noadj pca plupI plupD

e1t = ϕe1t−1 + v1t
(T0, N0)=(50,20):Unconditional Conditional

1 0.95 0.94 0.92 0.93 0.93 0.96 0.87 0.86 0.92 0.92
2 0.91 0.94 0.91 0.91 0.91 0.92 0.92 0.90 0.91 0.90
5 0.88 0.93 0.90 0.88 0.87 0.90 0.94 0.91 0.89 0.87
10 0.89 0.94 0.90 0.84 0.83 0.91 0.94 0.91 0.85 0.84

avg 0.98 0.85 0.75 0.77 0.75 0.98 0.83 0.73 0.76 0.72

(T0, N0)=(200,50): Unconditional Conditional

1 0.95 0.95 0.94 0.95 0.95 0.96 0.90 0.89 0.95 0.95
2 0.91 0.95 0.94 0.94 0.94 0.91 0.92 0.92 0.94 0.94
5 0.89 0.95 0.94 0.93 0.93 0.89 0.95 0.94 0.94 0.93
10 0.89 0.95 0.94 0.94 0.93 0.90 0.95 0.94 0.94 0.93

avg 0.99 0.93 0.92 0.92 0.92 0.99 0.92 0.90 0.92 0.91

e1t = θ1e2t + v1t
(T0, N0)=(50,20): Unconditional Conditional

1 0.95 0.95 0.94 0.93 0.93 0.95 0.97 0.95 0.93 0.93
2 0.95 0.95 0.93 0.93 0.93 0.95 0.86 0.87 0.90 0.90
5 0.95 0.94 0.93 0.91 0.91 0.95 0.91 0.91 0.90 0.90
10 0.95 0.95 0.93 0.88 0.88 0.95 0.98 0.96 0.89 0.89

avg 0.88 0.88 0.79 0.78 0.78 0.88 0.81 0.75 0.77 0.77

(T0, N0)=(200,50): Unconditional Conditional

1 0.95 0.96 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.95
2 0.95 0.95 0.94 0.94 0.94 0.95 0.94 0.93 0.94 0.94
5 0.95 0.95 0.95 0.95 0.95 0.95 0.75 0.78 0.93 0.93
10 0.95 0.95 0.95 0.94 0.94 0.95 0.86 0.87 0.93 0.93

avg 0.94 0.94 0.92 0.92 0.92 0.94 0.92 0.91 0.92 0.92
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