The Distributional Effects of Economic Uncertainty

Florian Huber

University of Salzburg Massimiliano Marcellino

Bocconi University, CEPR, IGIER

Tommaso Tornese

Bocconi Univeristy

NBER Summer Institute, 11 July 2024

Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 1/54

Motivation

- Uncertainty among drivers of the business cycle (e.g. Castelnuovo, 2019; Fernández-Villaverde and Guerrón-Quintana, 2020);
- Extensive literature on the aggregate effects of uncertainty shocks (e.g. Bloom, 2009; Jurado et al., 2015; Carriero et al., 2021; Carriero et al., 2023);
- Limited research on the distributional implications;
- Growing attention towards distributional aspects of macroeconomic phenomena:
 - Aggregate effects of distributional dynamics (e.g. Heathcote et al., 2010; Athreya et al., 2017; and Auclert et al., 2020);
 - Distributional implications of aggregate shocks (e.g. Anderson et al., 2016; De Giorgi and Gambetti, 2017; Ahn et al., 2018; Kaplan and Violante, 2018).

Motivation

- Modeling distributional dynamics using standard methods is problematic:
 - Percentiles in standard VARs \implies percentiles crossing;
 - Moments in standard VARs \implies number of moments is indefinite;
- A distribution is a function (infinite-dimensional vector):
- Growing interest towards statistical methods for functional data (observations of curves defined on a continuous domain). Examples:
 - Electricity consumption (e.g. Ferraty and Vieu 2006);
 - Yield curve (e.g. Litterman and Scheinkman 1991; Diebold and Li, 2006);
 - Distribution of high frequency stock prices (Tsay, 2016).

Related literature

- Use of Functional-VAR to model joint dynamics of aggregate variables and income distribution (e.g. Chang M. et al., 2024).
- Econometric methods for functional data:
 - Bayesian (Kowal et al., 2017; Chang M. et al., 2024);
 - Frequentist (Chang et al., 2016; Hu and Park, 2016);
- Recent empirical applications of functional models:
 - Inoue and Rossi (2018): monetary policy as functional schocks;
 - Meeks and Monti (2023): Phillips curve with heterogeneous beliefs;
 - Chang et al. (2022): effects of shocks on heterogeneous inflation expectations;
 - Bjørnland et al.(2023): effects of oil shocks on the distribution of stock returns;
 - Chang and Schorfheide (2024): effects of monetary policy on earnings/consumption distribution.

- How to treat distributions for Functional Data Analysis (FDA): different transformations have different pro and cons;
- How to summarize the density through Functional-PCA (FPCA, Ramsay and Silverman, 1997): advantages over alternative methods (e.g. splines, Chang et al., 2024);
- What are the effects of uncertainty shocks on income distribution;
- Robustness of the results to different modeling strategies;
- Estimation of the effects through Functional Local Projections.

Preview of the results

- Show through simulations that:
 - FPCA on p_t(·) provides best approximations, but produces inadmissible distribution responses to shocks (i.e. densities with negative regions);
 - FPCA on log(p_t(·)) ensures non-negativity (not unit-integration) of distributions, but provides worst approximations;
 - FPCA on Log Quantile Density (LQD, Petersen and Muller, 2016) ensures non-negativity and unit-integration of distributions, and provides accurate approximations;
- Propagation of uncertainty shocks in two phases (Carriero et al, 2024):
 - Short run: Unemployment increases, in particular for less educated workers; Investments are reduced; Share of employed with low relative income decreases ⇒ Decreased inequality among employees;
 - Longer horizon: Unemployment is reabsorbed, especially among less educated workers; Labor productivity decreases; Mass of low-income workers increases ⇒ Increased inequality among employees.

Outline of the presentation

Econometric Model:

- Functional VAR
- 2 Density Estimation
- Transformation of the Density
- 4 FPCA
- 6 VAR Inference
- ② Simulated Data Experiments
- Seffects of Uncertainty Shocks on Earnings Distribution
- 9 Functional Local Projections
- Onclusions

The model

- Assume that income observations are $\xi_{it} \sim iid p_t$, $\xi_{it} \in \Xi$;
- Objective is to model the joint dynamics of:
 - A function, $p_t(\xi)$, defined on a continuous support Ξ ;
 - A set of n_v random variables, $y_t = [y_{1,t}, ..., y_{n_v,t}]'$.
- Define $f_t(\xi) = g(p_t(\xi)) \bar{g}$ to be some de-meaned transformation of the distribution (i.e. $\bar{g} = \frac{1}{T} \sum_{t=1}^{T} g(p_t(\xi)))$;

• Specify y_t to be a vector of macro/financial aggregate variables.

• The F-VAR(p) is (see e.g. Inoue and Rossi, 2021; Chang et al., 2024):

$$y_{t} = c_{y} + \sum_{l=1}^{p} B_{l,yy} y_{t-l} + \sum_{l=1}^{p} \int B_{l,yf} \left(\dot{\xi} \right) f_{t-l} \left(\dot{\xi} \right) d\dot{\xi} + u_{y,t}$$

$$f_{t}(\xi) = c_{f}(\xi) + \sum_{l=1}^{p} B_{l,fy}(\xi) y_{t-l} + \sum_{l=1}^{p} \int B_{l,ff}(\xi, \xi) f_{t-l}(\xi) d\widetilde{\xi} + u_{f,t}(\xi)$$

• Where $u_{y,t}$ and $u_{f,t}(\xi)$ are innovations with zero mean and variance:

$$\Omega(\xi, \acute{\xi}) = \left[\begin{array}{cc} \Omega_{yy} & \Omega_{yf}\left(\acute{\xi}\right) \\ \Omega_{fy}\left(\xi\right) & \Omega_{ff}\left(\xi, \acute{\xi}\right) \end{array} \right]$$

Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 9 / 54

Huber, Marcellino, Tornese

- $f_t(\cdot)$ and $u_{f,t}(\cdot)$ are continuous functions \Longrightarrow Infinite dimensional model:
- By the Karhunen-Loéve theorem, every random function can be represented as an expansion in some orthogonal functional basis (e.g. splines, Fourier series, wavelets).
- The functions, $f_t(\cdot)$ and $u_{f,t}(\cdot)$ can then be written as:

$$f_t(\xi) = \sum_{k=1}^{\infty} \zeta_k(\xi) * \alpha_{k,t};$$
$$u_{f,t}(\xi) = \sum_{k=1}^{\infty} \zeta_k(\xi) * \widetilde{u}_{k,t};$$

where $\zeta_k(\cdot)$ are components of the functional basis, and $\alpha_{k,t}$ and $\widetilde{u}_{k,t}$ are scalars;

• We assume that these functions can be approximated by terminating the expansions at some truncation point, K:

$$f_{t}(\xi) \approx \sum_{k=1}^{K} \zeta_{k}(\xi) * \alpha_{k,t} = \zeta'(\xi) \alpha_{t}; \quad u_{f,t}(\xi) \approx \sum_{k=1}^{K} \zeta_{k}(\xi) * \widetilde{u}_{k,t} = \zeta'(\xi) \widetilde{u}_{t};$$
where $\zeta(\xi)$ is a $K \times 1$ vector of coefficients, and α_{t} and \widetilde{u}_{t} are $K \times 1$ random vectors.

NBER Summer Institute, 11 July 2024
Huber, Marcellino, Tornese
NBER SI 2024
10/54

• Similarly, the functional coefficients, $c_f(\cdot)$, $B_{I,fy}(\cdot)$, $B_{I,yf}(\cdot)$, and $B_{I,ff}(\cdot, \cdot)$, can then be written as:

$$c_{f}\left(\xi\right) = \sum_{k=1}^{\infty} \zeta_{k}\left(\xi\right) * \widetilde{c}_{f,k}; \quad B_{l,fy}\left(\xi\right) = \sum_{k=1}^{\infty} \zeta_{k}\left(\xi\right) * \mathbf{b}_{l,fy,k};$$
$$B_{l,yf}\left(\dot{\xi}\right) = \sum_{j=1}^{\infty} \delta_{j}\left(\dot{\xi}\right) * \widetilde{\mathbf{b}}_{l,yf,j}; \quad B_{l,ff}\left(\xi,\dot{\xi}\right) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \zeta_{k}\left(\xi\right) * \delta_{j}\left(\dot{\xi}\right) * \widetilde{b}_{l,ff,kj};$$

where $\delta_j(\cdot)$ are components of another functional basis, $\tilde{c}_{f,k}$, and $\tilde{b}_{l,ff,kj}$ are scalars, and $\tilde{b}_{l,fy,k}$ and $\tilde{b}_{l,yf,j}$ are $n_v \times 1$ vectors.

• Hence, we consider the approximations:

$$c_{f}(\xi) \approx \zeta'(\xi) \widetilde{c}_{f}; \quad B_{l,fy}(\xi) \approx \zeta'(\xi) \widetilde{B}_{l,fy};$$
$$B_{l,yf}\left(\dot{\xi}\right) \approx \widetilde{B}'_{l,fy}\delta(\xi); \quad B_{l,ff}\left(\xi,\dot{\xi}\right) \approx \zeta'(\xi) \widetilde{B}_{l,ff}\delta\left(\dot{\xi}\right);$$

where $\delta\left(\vec{\xi}\right)$ is a $K \times 1$ vector of coefficients, \tilde{c}_{f} , $\tilde{B}_{l.fy}$, $\tilde{B}_{l,fy}$ and $\tilde{B}_{l,ff}$ are matrices of parameters, of dimension $K \times 1$, $K \times n_v$, $n_v \times K$, and $K \times K$ respectively.

Huber, Marcellino, Tornese

NBER Summer Institute, 11 July 2024 11 / 54

 ~ 1

• Using this finite approximation, the F-VAR becomes a standard finite-dimensional Factor Augmented VAR:

$$\begin{bmatrix} y_t \\ \alpha_t \end{bmatrix} = \begin{bmatrix} c_y \\ \widetilde{\mathbf{c}}_f \end{bmatrix} + \sum_{l=1}^{p} \begin{bmatrix} B_{l,yy} & B_{l,yf} C_{\alpha} \\ B_{l,fy} & B_{l,ff} C_{\alpha} \end{bmatrix} \begin{bmatrix} y_{t-l} \\ \alpha_{t-l} \end{bmatrix} + \begin{bmatrix} u_{y,t} \\ \widetilde{u}_{f,t} \end{bmatrix},$$

where $C_{\alpha} \equiv <\delta(\cdot), \zeta(\cdot) >= \int \delta\left(\dot{\xi}\right) \zeta'\left(\dot{\xi}\right) d\dot{\xi}$, and $u_t = [u'_{y,t}, \widetilde{u}'_t]'$
has zero mean and variance Ω .

- Inference can now be performed applying conventional frequentist or Bayesian techniques;
- It can be given a structural interpretation based on identifying assumptions;
- Functional Impulse Response Functions (F-IRFs) can be computed by mapping back the IRFs for α_t to the functional space using the basis $\zeta(\cdot)$.

Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 12 / 54

Recursive Identification

• Assume that the VAR is driven by $n = n_v + K$ structural shocks, ε_t :

$$A_0 u_t = \varepsilon_t,$$

with ε_t being i.i.d. with zero mean and diagonal variance Σ .

- If A₀ is assumed to be lower-triangular, the structural form of the F-VAR is (as usual) exactly identified;
- A₀ can be found by inverting the lower-triangular Cholesky factor of the estimated Ω;
- Note: the choice of ζ (·) affects ũ_{f,t}, but it does not affect the labeling of the first n_v structural shocks in ε_t, ε_{y,t}.

Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 13 / 54

Functional IRFs

- Given the finite dimensional representation of the Functional-VAR, the IRFs of α_t at horizon h after a shock ε_j = d, IRF_α (h, ε_j = d), can be easily computed;
- These need to be mapped back to IRFs for the distribution of interest, $IRF_{p}(h, \varepsilon_{j} = d)$, by:
 - Computing the model-implied steady-state distribution:

$$p_{ss}\left(\cdot\right) = g^{-1}\left(\zeta\left(\cdot\right)' \alpha_{ss} + \bar{g}\right)$$

② Computing the expected distribution h periods after the shock:

$$p_{\mathrm{ss}+h}\left(\cdot\right)|_{\varepsilon_{j}=d}=g^{-1}\left(\zeta\left(\cdot\right)'\left(\alpha_{\mathrm{ss}}+\mathit{IRF}_{\alpha}\left(h,\varepsilon_{j}=d\right)\right)+\bar{g}\right)$$

Omputing the difference between the two:

$$IRF_{p}(h, \varepsilon_{j} = d) = p_{ss+h}(\cdot)|_{\varepsilon_{j}=d} - p_{ss}(\cdot)$$

NBER SI 2024

FDA on Distributions

Performing FDA on distributions poses unique challenges:

• Ignore constraints: $f_t(\xi) = p_t(\xi) - \frac{1}{T} \sum_{t=1}^{T} p_t(\xi)$ (i.e. $g(p_t(\cdot)) = p_t(\cdot)$):

- PRO: Enforces unit integration of p_{ss+h}(·) |_{εj=d} and p_{ss}(·) if ζ(·) have zero integral. Allows good approximation in terms of Euclidean distance;
- CONS: If ζ (·) have zero integral, F-IRFs can leave the space of densities (i.e. can take negative values in some regions of the support);
- Consider $f_t(\xi) = \log(p_t(\xi)) \frac{1}{T} \sum_{t=1}^{T} \log(p_t(\xi))$ (i.e. $g(p_t(\cdot)) = \log p_t(\cdot)$):
 - PRO: Enforce non negativity constraint;
 - CONS: p_{ss+h}(·) |_{εj=d} and p_{ss}(·) need to be re-normalized to have unit integral. Approximation can be poor;
- Consider the Log Quantile Density (LQD) associated with $p_t(\xi)$ (Petersen and Müller, 2016):
 - PRO: It is unrestricted and can be easily mapped back to the pdf of interest for a given support. It is less sensitive to horizontal variation and to outliers;
 - CONS: The approximation can be less accurate than the one allowed by the first approach (although not always, see Petersen and Müller, 2016).

Huber, Marcellino, Tornese

Log Quantile Density

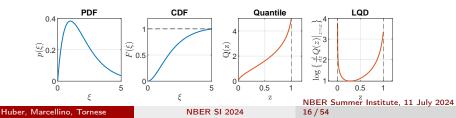
$$g\left(p_{t}\left(\cdot\right)\right) = \log\left\{\left.\frac{d}{dz}Q_{t}\left(z\right)\right|_{z=x}\right\} = -\log\left\{p_{t}\left(Q_{t}\left(x\right)\right)\right\}$$

where $Q(z) = F^{-1}(z)$ is the quantile function (inverse cdf), and $x \in [0, 1]$.

- It loses information about Ξ, but is totally unrestricted (i.e. it lies in the linear L² space).
- When Ξ is known, $p_t(\cdot)$ can be easily dervided back from the LQD, by:

Omputing
$$Q_t(x) = \theta \int_0^x \exp[f_t(z)] dz$$
, where
 $\theta = \sup_{\xi \in \Xi} \xi \times \left\{ \int_0^1 \exp[f_t(z)] dz \right\}^{-1}$;

3 Computing $p_t(\xi) = \frac{d}{d\xi} F_t(\xi) = \frac{d}{dz} Q_t^{-1}(\xi)$.



Functional Bases

- Choice of the bases $\zeta(\cdot)$ and $\delta(\cdot)$:
 - The choice of $\delta(\cdot)$ is irrelevant, as long as $C_{\alpha} = \int \delta(\dot{\xi}) \zeta'(\dot{\xi}) d\dot{\xi}$ is finite. It never appears in the analysis;
 - The choice of $\zeta(\cdot)$ is crucial:
 - Splines: Chang M. et al. (2022). Can need large K to summarize important features of f_t (·).
 - FPCA: Tsay (2016), Chen et al. (2019), Meeks and Monti (2021). The shape of the components $\zeta_k(\cdot)$ are automatically selected to reflect the most important features for the dynamics of $f_t(\cdot)$.
- We use Tsay's (2016) FPCA approach:
 - Summarizes the bulk of the dynamic variation observed in $f_t(\cdot)$ with low K;
 - Easy to implement;
 - We experimented with other methods with no meaningful changes.

- We follow a three-step approach:
- Estimate the distribution of interest for every t from a sample of draws;
- Transform the distributions and approximate the resulting function through FPCA;
- Jointly model the FPCs and a set of random variables with a (Bayesian) VAR.

Density Estimation

- We estimate the distribution of interest (income) using a kernel density estimator (Venables and Ripley, 1999);
- We adopt a boundary correction as the support of the distribution is bounded;
- The kernel estimator is:

$$\hat{p}_t(\xi) = \frac{1}{n_t h} \sum_{i=1}^{n_t} \left\{ \Phi\left(\frac{\xi - \xi_{it}}{h}\right) + \Phi\left(\frac{\xi - \xi_{it}^L}{h}\right) + \Phi\left(\frac{\xi - \xi_{it}^U}{h}\right) \right\};$$

where $\xi_{it}^{L} = 2L - \xi_{it}$ and $\xi_{it}^{U} = 2U - \xi_{it}$, with L and U being the lower and upper bound of the support. Φ is the Gaussian kernel, h is the bandwidth, and n_t is the size of the sample drawn from p_t .

• We set *h* following Silverman's rule of thumb.

Functional Principal Component Analysis (FPCA)

- Let X denote a $T \times N$ matrix with $(t, i)^{th}$ element $x_{t,i} = f_t(\xi_i) = g(\hat{p}_t(\xi_i)), t = 1, ..., T, i = 1, ..., N.$
- The matrix X can be decomposed using a truncated Singular Value Decomposition (SVD, see e.g. Tsay, 2016):

$$X = SVD' + E;$$

where:

- S is the $T \times K$ matrix of the first K left eigenvectors;
- V is the $K \times K$ diagonal matrix containing the largest K eigenvalues;
- D is the $N \times K$ matrix of the first K right eigenvectors;
- E contains the approximation error for considering only K components.
- The principal components D will serve as our functional basis $\zeta(\cdot)$;
- The scores VS'_t (S_t : *t*-th row of S), will serve as our factors α_t ;
- The estimated $\hat{\alpha}_t$ can be plugged in the $n_v + K$ -dimensional VAR.
- FPCA selects the modes of variation that explain the largest share of time vatiation in $f_t(\xi_i)$ (i.e. they are more effcient than alternative bases).

Huber, Marcellino, Tornese

Inference

• Standard Bayesian or frequentist methods can be applied to perform inference on the $n_v + K$ -dimensional VAR:

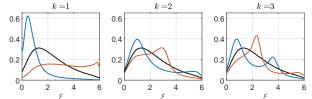
 $z_t = \Pi x_t + u_t,$ where $z_t = [y'_t, \alpha'_t]', x_t = [1, z'_{t-1}, \dots, z'_{t-p}]'$ and $\Pi = [\Pi_0, \Pi_1, \dots, \Pi_p],$ with $\Pi_0 = [c'_y, \tilde{c}'_f]'$ and $\Pi_l = \begin{bmatrix} B_{l,yy} & B_{l,yf} C_\alpha \\ B_{l,fy} & B_{l,ff} C_\alpha \end{bmatrix}.$

- In all applications, we use Bayesian methods and assume natural conjugate Gaussian-Inverse Wishart prior distribution for the reduced form parameters (Π, Ω): p(vec (Π'), Ω) = p(Ω) × p(vec (Π') | Ω),
 - $p(\Omega)$ is Inverse Wishart with ν degrees of freedom and scale matrix Φ ;
 - $p(vec(\Pi') \mid \Omega)$ is Gaussian with mean $vec(\Psi)$ and variance $\Omega \otimes \Gamma$;
- We set ν, Φ, Ψ, and Γ following the Minnesota tradition (Doan et al., 1984; Carriero et al., 2015).

Huber, Marcellino, Tornese

Simulated Data 1: F-SVAR DGP 1

- Simulate T = 500 data points, z_t , from a $n_v + K_{true}$ -dimensional SVAR(p), with: lower triangular A_0 , p = 4, $n_v = 2$, and $K_{true} = 3$;
- ⁽²⁾ Simulated α_t are transformed into LQD functions, using as basis the FPC taken from the LQD of a mixture of *Gammas*, with a time varying *Beta* mixing distribution;
- The LQDs are then transformed into distributions with support $\Xi = [0, 6];$
- A sample of size N = 500 is drawn at every t and assumed observed by the econometrician.



DGP's modes of variation: change to the mean distribution implied by a 2 std change in $\alpha_{k,t}$ (red: positive, blue: negative).

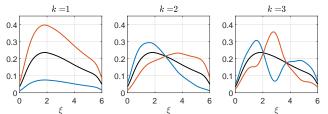
Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 22 / 54

Simulated Data 2: F-SVAR DGP 2

- Simulate T = 500 data points, z_t , from a $n_v + K_{true}$ -dimensional SVAR(p), with: Lower triangular A_0 , p = 4, $n_v = 2$, and $K_{true} = 3$;
- Simulated α_t are transformed into p_t(·), using as basis the FPC taken from a mixture of *Gammas*, with a time varying *Beta* mixing distribution;
- At every t, N = 500 draws are taken from $p_t(\cdot)$, which is obtained by taking the exponential of log $(p_t(\cdot))$ and re-normalizing it to have unit integral.



DGP's modes of variation: change to the mean distribution implied by a 2 std change in $\alpha_{k,t}$ (red: positive, blue: negative).

Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 23 / 54

Simulated Data 3: Krusell and Smith (1998) DGP

- Simulated data borrowed from Chang M. et al. (2022);
- T = 160 artificial observations from the SVAR(1) resulting from the log-linearized solution of the Krusell and Smith (1998) model. Observe:
 - Productivity level, the capital stock, the employment level $(n_v = 3)$;
 - Centered moments of the distribution of assets among the employed;
- A sample of N = 9230 is draws from the asset distribution;
- The matrix A₀ implied by the model is lower triangular, the first structural shock is a productivity shock.

Alternative Transformations of $p_t(\cdot)$

- Compare approximation provided by FPC when performed on different transformations of $p_t(\cdot)$;
- Cross-validation:
 - Extract FPC from 80% of the (time) sample (randomly selected);
 - 2) Estimate the α_t for the remaining 20% of the sample through OLS;
 - Solution For this 20%, compute the Mean Integrated Squared Error for every K:

$$MISE = \frac{1}{T} \sum_{t=1}^{T} \int_{\Xi} \left(\hat{f}_t \left(\xi \right) - f_t \left(\xi \right) \right)^2 d\xi$$

where $\hat{f}_t(\xi) = \zeta(\xi)' \hat{\alpha}_t$, with $\zeta(\xi)$ and $\hat{\alpha}_t$ being the FPC and scores estimated in point 1 and 2 above.

• The experiment is repeated 100 times for the first 2 DGPs.

Alternative Transformations of $p_t(\cdot)$

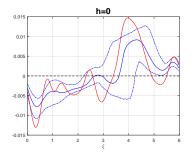
MISE						
				K		
		1	2	3	4	5
DGP1	$p_{t}\left(\cdot ight)$	1	0.465	0.249	0.127	0.069
	$\log p_{t}\left(\cdot ight)$	1.879	1.457	0.996	0.730	0.594
	LQD	1.085	0.644	0.530	0.370	0.307
DGP2	$p_{t}\left(\cdot ight)$	1	0.102	0.053	0.032	0.022
	$\log p_{t}\left(\cdot ight)$	5.150	1.982	3.143	1.671	1.128
	LQD	2.334	1.167	0.678	0.421	0.337
DGP3	$p_{t}\left(\cdot ight)$	1	0.598	0.486	0.395	0.324
	$\log p_{t}\left(\cdot ight)$	1.908	1.857	1.467	1.339	1.260
	LQD	1.449	1.199	1.174	1.066	1.020

Ratios relative to the MISE attained by the first approach for K = 1.

Alternative Transformations of $p_t(\cdot)$: Comments

- FPCA on $p_t(\cdot)$ produces the best approximations in our DGPs;
- The average $\frac{1}{T} \sum_{t=1}^{T} p_t(\xi)$ has unit integral, while FPCs on $p_t(\cdot) \frac{1}{T} \sum_{t=1}^{T} p_t(\xi)$ have zero integral by construction (therefore have negative regions). This implies that:
 - F-IRFs always integrate to 1;
 - If a shock moves the distribution away from the mean, the resulting distribution has negative regions;
- Common solution is to perform FPCA on $\log (p_t(\cdot))$;
- FPCA on the LQD allows approximations significantly more accurate than those based on log $(p_t(\cdot))$;
- In the analysis, we use FPC extracted from the de-meaned LQD (results do not change if we follow the other approaches).

Interpretation of F-IRFs



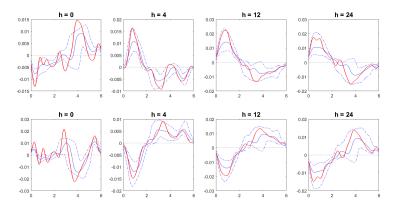
- The figure shows the difference between $p_{ss+h}(\cdot)|_{\varepsilon_j=std(\varepsilon_j)}$ and $p_{ss}(\cdot)$.
 - The horizontal axis shows the support Ξ;
 - The vertical axis mesures the difference between the two densities;
 - *h* is the horizon of the response.

NBER Summer Institute, 11 July 2024 28 / 54

F-SVAR DGP 1: F-IRFs

Single realization of the simulated experiment.

Red lines: true responses of $p_t(\cdot)$ to one standard deviation shocks to ε_1 (upper panels) and ε_2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines: 90% credible bands. *h* denotes the horizon at which the response is measured. The number of FPC is selected as the smallest one for which 90% of variance is explained.

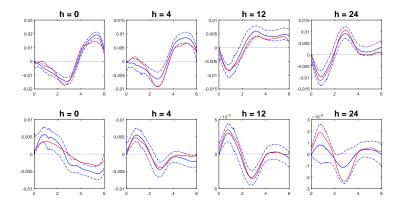


Huber, Marcellino, Tornese

NBER SI 2024

F-SVAR DGP 2: F-IRFs

Red lines: true responses of $p_t(\cdot)$ to one standard deviation shocks to ε_1 (upper panels) and ε_2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines: 90% credible bands. *h* denotes the horizon at which the response is measured. The number of FPC is selected as the smallest one for which 90% of variance is explained.



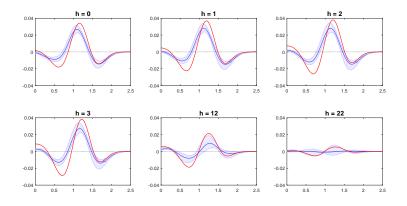
Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 30 / 54

Krusell and Smith (1998) DGP: F-IRFs

Red lines: true responses of $p_t(\cdot)$ to one standard deviation technology shocks. Solid blue lines: posterior median responses, dashed blue lines: 90% credible bands. The number of FPC is selected as the smallest one for which 90% of variance is explained. (Timing convetion is different than the one in Chang et al.(2024): here shock happens at t = 0, there at t = 2)



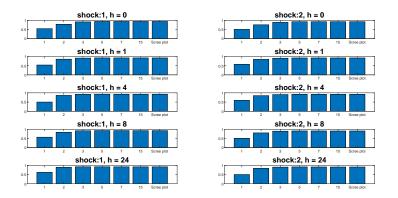
NBER Summer Institute, 11 July 2024 31 / 54

Huber, Marcellino, Tornese

NBER SI 2024

Monte Carlo: F-SVAR DGP 1

Average correlation between median and true F-IRFs across 200 MC replications.



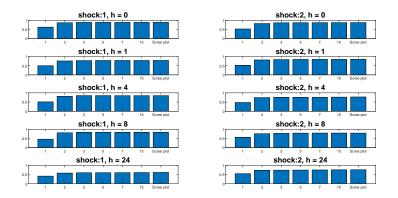
Horizontal axis reports number of FPC (K). Scree Plot: select K so that 90% of variance is explained

NBER SI 2024

NBER Summer Institute, 11 July 2024 32 / 54

Monte Carlo: F-SVAR DGP 2

Average correlation between median and true F-IRFs across 200 MC replications.



Horizontal axis reports number of FPC (K). Scree Plot: select K so that 90% of variance is explained

Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 33 / 54

Uncertainty shocks: the model

- Augment the VAR model analyzed by Jurado et al. (JLN, 2015) by including the income distribution among employed people as $f_t(\cdot)$;
- Earnings-to-GDP data constructed by Chang M et al. (2022) based on the Current Population Survey (CPS);
- Support of the distribution is $\Xi = [0, 2.1]$ (2.1 is the smallest censoring point in the sample);
- Convert the monthly SVAR of JLN in a quarterly F-SVAR model and focus on the period 1989:Q1 2017:Q3;
- The n_v = 11 endogenous variables included in the model are: (i) real GDP, (ii) real PCE, (iii) GDP deflator, (iv) real wages, (v) real investments, (vi) labor productivity, (vii) unemployment rate, (viii) Federal Funds Rate, (ix) S&P500 index, (x) M2 growth rate, and (xi) JLN's macro-uncertainty measure;
- Assume K = 7 (different Ks do not affect results for K > 2);
- The macro-uncertainty shock is identified by ordering the uncertainty measure last among the aggregate variables in a Cholesky identification scheme.

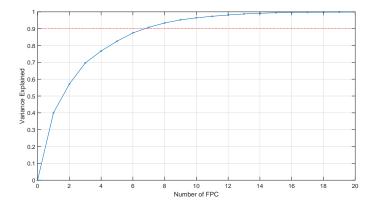
Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 34 / 54

Income Distribution: Scree Plot

Share of variance explained by FPC.



NBER SI 2024

NBER Summer Institute, 11 July 2024 35 / 54

Uncertainty shocks: IRFs

IRFs to an uncertainty shock implied by: a SVAR (red), F-SVAR (blue), 68% credible bands (dashed lines and shaded areas).

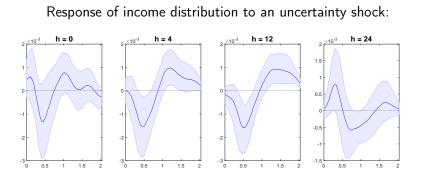


NBER Summer Institute, 11 July 2024 36 / 54

Huber, Marcellino, Tornese

NBER SI 2024

Uncertainty shocks: F-IRFs



• The horizontal axis measures the earnings relative to the per-capita level of GDP;

NBER SI 2024

• *h* denotes the horizon in quarters.

Huber, Marcellino, Tornese

NBER Summer	Institute,	11	July	2024
37 / 54				

Uncertainty shocks: comments

Aggregate effects:

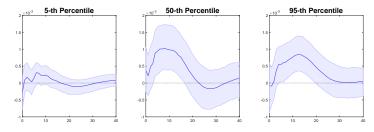
- IRFs predicted by the F-SVAR are similar to those generated by the standard SVAR, but:
 - Response of inflation is negative;
 - Labor productivity is not affected in the short run.

Distributional effects:

- Propagation two phases:
 - In the short run (up to 12 moths): while unemployment increases, the share of workers with low relative income decreases, and the mass of people employed receiving income above the average increases;
 - In the longer run: while unemployment is reabsorbed, the share of occupied with low relative income increases to the detriment of the middle-income class (probably due to the decrease of labor productivity triggered by the decrease in investments experienced at short horizons).

Uncertainty shocks: Quantiles IRF

The F-IRFs of income distribution can be mapped to the IRF of quantiles of interest:

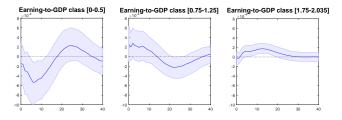


- The horizontal axis indicates the horizon in quarters, the vertical axis measures the change in the quantile.
- While the bottom quantile is affected only mildly, the median and the top quantiles shift to the right significantly.

NBER SI 2024

Uncertainty shocks: Earning Classes IRF

The F-IRFs of income distribution can be mapped to the response of the share of employed people belonging to specific earnings classes:

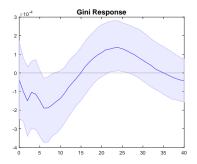


- The share of employed people belonging to the low-income class decreases significantly in a first phase, while the relative weight of the middle and upper class increases;
- In a second phase, the share of low-income employed increases, drawing mainly from the middle class.

NBER Summer Institute, 11 July 2024 40 / 54

Uncertainty shocks: Gini IRF

The F-IRFs of income distribution can be mapped to the IRF of the Gini coefficient:



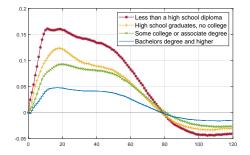
• Earnings inequality decreases in the short run, but it increases at longer horizons.

Huber,	Marce	llino, ⁻	Tornese
--------	-------	---------------------	---------

NBER Summer Institute, 11 July 2024 41 / 54

Uncertainty shocks: Interpretation

- The decline of the share of people earning low income is due to a stronger rise in unemployment among low income classes;
- We add to the monthly JLN VAR unemployment rates by educational attainment:



NBER Summer Institute, 11 July 2024 42 / 54

Further developments: Functional LP

- F-IRFs can be also estimated by Local Projections;
 - Set 5.2 Estimate responses of α_t : $IR_{\alpha}(t, h, d_i) = E[\alpha_{t+h} \mid \varepsilon_t = d_i, \Im_t] - E[\alpha_{t+h} \mid \varepsilon_t = 0, \Im_t];$
 - **2** Compute the Functional IRFs through the mapping: $IR_f(\xi, t, h, d_i) = \zeta'(\xi) \times IR_{\alpha}(t, h, d_i);$

Suppose y_{1t} is predetermined w.r.t. $[y_{2t}, \ldots, y_{n_v t}, \alpha_t]'$.

The joint response of α to an impulse in y_1 can be estimated through the multivariate regression:

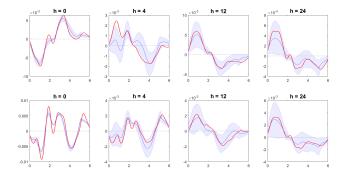
$$\alpha_{t+h} = a^{h} + \beta_{1}^{h} y_{1,t} + \sum_{l=1}^{p} B_{l+1}^{h} \left[y_{t-l}', \alpha_{t-l}' \right]' + e_{h,t}$$

where $IR_{\alpha}(t, h, d_i = [1, 0, ..., 0]') = \beta_1^h$.

• Can be estimated by OLS with (system-wide) HAR standard errors.

F-LP DGP 1: F-IRFs

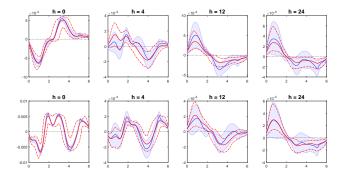
Red lines: true responses of $p_t(\cdot)$ to one standard deviation shocks to ε_1 (upper panels) and ε_2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines: 90% credible bands. *h* denotes the horizon at which the response is measured. The number of FPC is selected as the smallest one for which 90% of variance is explained.



NBER Summer Institute, 11 July 2024 44 / 54

DGP 1: F-LP vs F-SVAR

Blue Lines: F-LP. Red lines: F-SVAR.



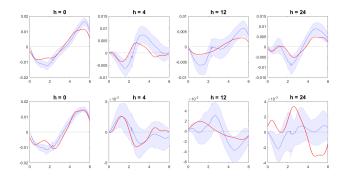
Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 45 / 54

F-LP DGP 2: F-IRFs

Red lines: true responses of $p_t(\cdot)$ to one standard deviation shocks to ε_1 (upper panels) and ε_2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines: 90% credible bands. *h* denotes the horizon at which the response is measured. The number of FPC is selected as the smallest one for which 90% of variance is explained.

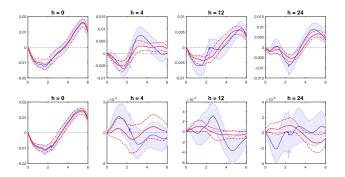


NBER SI 2024

NBER Summer Institute, 11 July 2024 46 / 54

DGP 2: F-LP vs F-SVAR

Blue Lines: F-LP. Red lines: F-SVAR.

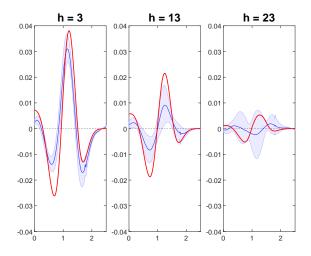


NBER SI 2024

NBER Summer Institute, 11 July 2024 47 / 54

Krusell and Smith (1998) DGP: F-IRFs

F-IRFs of the asset distribution to a productivity shock: implied by the DGP (red), estimated (solid blue), and 90% confidence intervals (dotted blue).

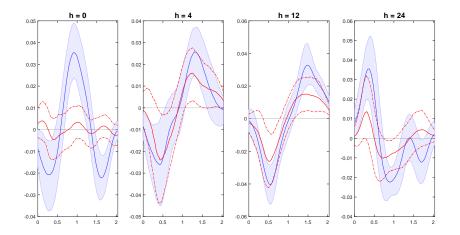


NBER Summer Institute, 11 July 2024 48 / 54

Huber, Marcellino, Tornese

NBER SI 2024

Uncertainty Shocks: F-IRFs



Huber, Marcellino, Tornese

NBER SI 2024

NBER Summer Institute, 11 July 2024 49 / 54

Conclusion

- Proposed a F-VAR to jointly study aggregate variables and distributions, where the latter are approximated by FPCA.
- Compared FPCA based on different transformations of the distribution of interest;
- Assessed the performance of the Bayesian inference method in simulation experiments;
- Studied the distributional implications of uncertainty shocks. Propagation of uncertainty shocks has two phases:
 - Short run: unemployment increases and share of employed with low relative income decreases;
 - Longer horizon: unemployment is reabsorbed, but mass of low-income workers grows, increasing inequality.
- All F-IRFs can be estimated by Functional Local Projections;
- Related ongoing research: (i) Bi-variate distributions (e.g. firms labor and capital), (ii) Nowcasting income/consumption distributions.

Huber, Marcellino, Tornese

Thank You!

- Ahn, S., Kaplan, G., Moll, B., Winberry, T., and Wolf, C., 2018. "When Inequality Matters for Macro and Macro Matters for Inequality," in *NBER Macroeconomics Annual* 2017, pp. 1-75;
- Anderson, E., Inoue, A., and Rossi, B., 2016. "Heterogeneous Consumers and Fiscal Policy Shocks," *Journal of Money, Credit and Banking* 48(8), 1877-1888;
- Athreya, K. B., Owens, A., Romero, J. S., and Schwartzman, F., 2017. "Does Redistribution Increase Output?," *Richmond Fed Economic Brief*, issue January;
- Auclert, A., and Rognlie, M., 2020. "Inequality and Aggregate Demand," Manuscript, Stanford University;
- Bloom, N., 2009. "The impact of uncertainty shocks." *Econometrica*, 77(3), 623-685;

Bjornland, H. C., Chang, Y., and Cross, J. L., 2023. "Oil and the Stock Market Revisited: A Mixed Functional VAR Approach," *CAMA Working Papers* 2023-18;

- Carriero, A., Clark, T. E., & Marcellino, M., 2015. Bayesian VARs: specification choices and forecast accuracy. *Journal of Applied Econometrics*, 30(1), 46-73;
- Carriero, A., Clark, T.E., Marcellino, M., 2021. Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty. *Journal of Econometrics*, Elsevier 225 (1), 47–73;
- Carriero, A., Marcellino, M., and Tornese, T. 2023. Macro uncertainty in the long run. Economics Letters, 225, 111067;
- Castelnuovo, E., 2019. "Domestic and Global Uncertainty: A Survey and Some New Results." CESifo Working Paper Series 7900, CESifo;
- Chang, M., Chen, X., & Schorfheide, F., 2024. "Heterogeneity and Aggregate Fluctuations." *Journal of Political Economy*, Forthcoming;
- Chang, Y., Gomez-Rodrguez, F., and Hong, M. G. H., 2022. "The Eeffcts of Economic Shocks on Heterogeneous Inflation Expectations." International Monetary Fund;

Chang, Y., Kim, C. S., & Park, J. Y., 2016. "Nonstationarity in time series of state densities." *Journal of Econometrics*, 192(1), 152-167;

Huber, Marcellino, Tornese

NBER SI 2024

- De Giorgi, G., ans Gambetti, L., 2017. "Business Cycle Fluctuations and the Distribution of Consumption," *Review of Economic Dynamics*, 23, 19-41;
- Doan, T., Litterman, R., & Sims, C., 1984. "Forecasting and conditional projection using realistic prior distributions." *Econometric reviews*, 3(1), 1-100;
 - Heathcote, J., Storesletten, K., and Violante, G. L., 2010. "The Macroeconomic Implications of Rising Wage Inequality in the United States," *Journal of Political Economy*, 118(4), 681-722;
- Fernández-Villaverde, Jesús and Pablo A. Guerrón-Quintana. "Uncertainty shocks and business cycle research." *Review of Economic Dynamics* 37 (2020): S118 S146;
- Ferraty, F., and Vieu, P. (2006), *Nonparametric Functional Data Analysis: Theory and Practice*, NewYork: Springer. [733];
- Hu, B., & Park, J. Y., 2017. "Econometric Analysis of Functional Dynamics in the Presence of Persistence." Manuscript, Department of Economics, Indiana University;
- Inoue, A., and Rossi, B., 2021. "The Effects of Conventional and Unconventional Monetary Policy: A New Approach." *Quantitative Economics*, 12(4), 1085-1138;
 - Jurado, K., Ludvigson, S. C., & Ng, S., 2015. "Measuring uncertainty." American Economic Review, 105(3), 1177-1216; NBER Summer Institute, 11 July 2024

Huber, Marcellino, Tornese

NBER SI 2024

53 / 54

- Kaplan, G., and L. Violante, G. L., 2018. "Microeconomic Heterogeneity and Macroeconomic Shocks." *Journal of Economic Perspective*, 32, 167-194;
- Kowal, D. R., Matteson, D. S., and Ruppert, D. 2017. "A Bayesian Multivariate Functional Dynamic Linear Model." *Journal of the American Statistical Association*, 112, 733–744;
 - Krusell, P., and Smith, A. A., 1998. "Income and Wealth Heterogeneity in the Macroeconomy." *Journal of Political Economy*, 106(5), 867-896;
- Litterman, R. B. & Scheinkman J. 1991. "Common Factors Affecting Bond Returns." *The Journal of Fixed Income*, 1 (1);
 - Meeks, R., ans Monti, F., 2019. "Heterogeneous beliefs and the Phillips curve." Bank of England working papers 807, Bank of England;
- F

Petersen, A., and H.-G. Muller (2016): "Functional data analysis for density functions by transformation to a Hilbert space," *Annals of Statistics*, 44, 183–218.

Tsay, R. S., 2016. "Some Methods for Analyzing Big Dependent Data," *Journal of Business & Economic Statistics*, 34(4), 673-688;

Venables, W. N., Ripley, B. D., 1999. *Univariate statistics*. Modern Applied Statistics with S-PLUS, 113-148.