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Motivation

Uncertainty among drivers of the business cycle (e.g. Castelnuovo,
2019; Fernández-Villaverde and Guerrón-Quintana, 2020);

Extensive literature on the aggregate effects of uncertainty shocks
(e.g. Bloom, 2009; Jurado et al., 2015; Carriero et al., 2021; Carriero
et al., 2023);

Limited research on the distributional implications;

Growing attention towards distributional aspects of macroeconomic
phenomena:

Aggregate effects of distributional dynamics (e.g. Heathcote et al.,
2010; Athreya et al., 2017; and Auclert et al., 2020);
Distributional implications of aggregate shocks (e.g. Anderson et al.,
2016; De Giorgi and Gambetti, 2017; Ahn et al., 2018; Kaplan and
Violante, 2018).
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Motivation

Modeling distributional dynamics using standard methods is
problematic:

Percentiles in standard VARs Z=⇒ percentiles crossing;
Moments in standard VARs Z=⇒ number of moments is indefinite;

A distribution is a function (infinite-dimensional vector):
Growing interest towards statistical methods for functional data
(observations of curves defined on a continuous domain). Examples:

Electricity consumption (e.g. Ferraty and Vieu 2006);
Yield curve (e.g. Litterman and Scheinkman 1991; Diebold and Li,
2006);
Distribution of high frequency stock prices (Tsay, 2016).

Huber, Marcellino, Tornese NBER SI 2024
NBER Summer Institute, 11 July 2024
3 / 54



Related literature

Use of Functional-VAR to model joint dynamics of aggregate
variables and income distribution (e.g. Chang M. et al., 2024).
Econometric methods for functional data:

Bayesian (Kowal et al., 2017; Chang M. et al., 2024);
Frequentist (Chang et al., 2016; Hu and Park, 2016);

Recent empirical applications of functional models:
Inoue and Rossi (2018): monetary policy as functional schocks;
Meeks and Monti (2023): Phillips curve with heterogeneous beliefs;
Chang et al. (2022): effects of shocks on heterogeneous inflation
expectations;
Bjørnland et al.(2023): effects of oil shocks on the distribution of stock
returns;
Chang and Schorfheide (2024): effects of monetary policy on
earnings/consumption distribution.
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Contribution

How to treat distributions for Functional Data Analysis (FDA):
different transformations have different pro and cons;
How to summarize the density through Functional-PCA (FPCA,
Ramsay and Silverman, 1997): advantages over alternative methods
(e.g. splines, Chang et al., 2024);
What are the effects of uncertainty shocks on income distribution;
Robustness of the results to different modeling strategies;
Estimation of the effects through Functional Local Projections.
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Preview of the results

Show through simulations that:
FPCA on pt(·) provides best approximations, but produces inadmissible
distribution responses to shocks (i.e. densities with negative regions);
FPCA on log(pt(·)) ensures non-negativity (not unit-integration) of
distributions, but provides worst approximations;
FPCA on Log Quantile Density (LQD, Petersen and Muller, 2016)
ensures non-negativity and unit-integration of distributions, and
provides accurate approximations;

Propagation of uncertainty shocks in two phases (Carriero et al,
2024):

Short run: Unemployment increases, in particular for less educated
workers; Investments are reduced; Share of employed with low relative
income decreases Z=⇒ Decreased inequality among employees;
Longer horizon: Unemployment is reabsorbed, especially among less
educated workers; Labor productivity decreases; Mass of low-income
workers increases Z=⇒ Increased inequality among employees.
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Outline of the presentation

1 Econometric Model:
1 Functional VAR
2 Density Estimation
3 Transformation of the Density
4 FPCA
5 VAR Inference

2 Simulated Data Experiments
3 Effects of Uncertainty Shocks on Earnings Distribution
4 Functional Local Projections
5 Conclusions

Huber, Marcellino, Tornese NBER SI 2024
NBER Summer Institute, 11 July 2024
7 / 54



The model

Assume that income observations are ξit ∼ iid pt , ξit ∈ Ξ;

Objective is to model the joint dynamics of:
A function, pt (ξ), defined on a continuous support Ξ;
A set of nv random variables, yt = [y1,t , ..., ynv ,t ]

′.

Define ft (ξ) = g (pt (ξ))− ḡ to be some de-meaned
transformation of the distribution (i.e. ḡ = 1

T

∑T
t=1 g (pt (ξ)));

Specify yt to be a vector of macro/financial aggregate variables.
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Functional VAR (F-VAR)

The F-VAR(p) is (see e.g. Inoue and Rossi, 2021; Chang et al., 2024):

yt = cy +

p∑
l=1

Bl ,yyyt−l +

p∑
l=1

∫
Bl ,yf

(
ξ́
)
ft−l

(
ξ́
)
d ξ́ + uy ,t

ft (ξ) = cf (ξ)+

p∑
l=1

Bl ,fy (ξ) yt−l+

p∑
l=1

∫
Bl ,ff

(
ξ, ξ́

)
ft−l

(
ξ́
)
d ξ̃+uf ,t (ξ)

Where uy ,t and uf ,t (ξ) are innovations with zero mean and variance:

Ω(ξ, ξ́) =

 Ωyy Ωyf

(
ξ́
)

Ωfy (ξ) Ωff

(
ξ, ξ́

)  .
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Functional VAR (F-VAR)

ft (·) and uf ,t (·) are continuous functions Z=⇒ Infinite dimensional
model;
By the Karhunen-Loéve theorem, every random function can be
represented as an expansion in some orthogonal functional basis (e.g.
splines, Fourier series, wavelets).
The functions, ft (·) and uf ,t (·) can then be written as:

ft (ξ) =
∑∞

k=1 ζk (ξ) ∗ αk,t ;

uf ,t (ξ) =
∑∞

k=1 ζk (ξ) ∗ ũk,t ;

where ζk (·) are components of the functional basis, and αk,t and ũk,t are scalars;

We assume that these functions can be approximated by terminating
the expansions at some truncation point, K :

ft (ξ) ≈
∑K

k=1 ζk (ξ) ∗ αk,t = ζ′ (ξ)αt ; uf ,t (ξ) ≈
∑K

k=1 ζk (ξ) ∗ ũk,t = ζ′ (ξ) ũt ;

where ζ (ξ) is a K × 1 vector of coefficients, and αt and ũt are K × 1 random
vectors.

Huber, Marcellino, Tornese NBER SI 2024
NBER Summer Institute, 11 July 2024
10 / 54



Functional VAR (F-VAR)

Similarly, the functional coefficients, cf (·), Bl ,fy (·), Bl ,yf (·), and
Bl ,ff (·, ·), can then be written as:

cf (ξ) =
∑∞

k=1 ζk (ξ) ∗ c̃f ,k ; Bl,fy (ξ) =
∑∞

k=1 ζk (ξ) ∗ b̃
′
l,fy,k ;

Bl,yf

(
ξ́
)
=

∑∞
j=1 δj

(
ξ́
)
∗ b̃l,yf ,j ; Bl,ff

(
ξ, ξ́

)
=

∑∞
k=1

∑∞
j=1 ζk (ξ) ∗ δj

(
ξ́
)
∗ b̃l,ff ,kj ;

where δj (·) are components of another functional basis,c̃f ,k , and b̃l,ff ,kj are
scalars, and b̃l,fy ,k and b̃l,yf ,j are nv × 1 vectors.

Hence, we consider the approximations:

cf (ξ) ≈ ζ′ (ξ) c̃ f ; Bl,fy (ξ) ≈ ζ′ (ξ) B̃ l,fy ;

Bl,yf

(
ξ́
)
≈ B̃

′
l,fyδ (ξ); Bl,ff

(
ξ, ξ́

)
≈ ζ′ (ξ) B̃ l,ff δ

(
ξ́
)
;

where δ
(
ξ́
)

is a K × 1 vector of coefficients, c̃ f , B̃ l.fy , B̃ l,fy and B̃ l,ff are
matrices of parameters, of dimension K × 1, K × nv , nv × K , and K × K
respectively.
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Functional VAR (F-VAR)

Using this finite approximation, the F-VAR becomes a standard
finite-dimensional Factor Augmented VAR:[

yt
αt

]
=

[
cy
c̃ f

]
+

p∑
l=1

[
Bl ,yy Bl ,yf Cα

Bl ,fy Bl ,ff Cα

] [
yt−l

αt−l

]
+

[
uy ,t
ũf ,t

]
,

where Cα ≡< δ (·) , ζ (·) >=
∫
δ
(
ξ́
)
ζ′
(
ξ́
)
d ξ́, and ut =

[
u′y ,t , ũ

′
t

]′
has zero mean and variance Ω.

Inference can now be performed applying conventional frequentist or
Bayesian techniques;
It can be given a structural interpretation based on identifying
assumptions;
Functional Impulse Response Functions (F-IRFs) can be computed by
mapping back the IRFs for αt to the functional space using the basis
ζ (·).
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Recursive Identification

Assume that the VAR is driven by n = nv + K structural shocks, εt :

A0ut = εt ,

with εt being i.i.d. with zero mean and diagonal variance Σ.

If A0 is assumed to be lower-triangular, the structural form of the
F-VAR is (as usual) exactly identified;

A0 can be found by inverting the lower-triangular Cholesky factor of
the estimated Ω;

Note: the choice of ζ (·) affects ũf ,t , but it does not affect the
labeling of the first nv structural shocks in εt , εy ,t .
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Functional IRFs

Given the finite dimensional representation of the Functional-VAR, the
IRFs of αt at horizon h after a shock εj = d , IRFα (h, εj = d), can be
easily computed;
These need to be mapped back to IRFs for the distribution of interest,
IRFp (h, εj = d), by:

1 Computing the model-implied steady-state distribution:

pss (·) = g−1 (ζ (·)′ αss + ḡ
)

2 Computing the expected distribution h periods after the shock:

pss+h (·) |εj=d = g−1 (ζ (·)′ (αss + IRFα (h, εj = d)) + ḡ
)

3 Computing the difference between the two:

IRFp (h, εj = d) = pss+h (·) |εj=d − pss (·)
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FDA on Distributions

Performing FDA on distributions poses unique challenges:
Ignore constraints: ft (ξ) = pt (ξ)− 1

T

∑T
t=1 pt (ξ) (i.e. g (pt (·)) = pt (·)):

PRO: Enforces unit integration of pss+h (·) |εj=d and pss (·) if ζ (·) have
zero integral. Allows good approximation in terms of Euclidean
distance;
CONS: If ζ (·) have zero integral, F-IRFs can leave the space of
densities (i.e. can take negative values in some regions of the support);

Consider ft (ξ) = log (pt (ξ))− 1
T

∑T
t=1 log (pt (ξ)) (i.e. g (pt (·)) = log pt (·)):

PRO: Enforce non negativity constraint;
CONS: pss+h (·) |εj=d and pss (·) need to be re-normalized to have unit
integral. Approximation can be poor;

Consider the Log Quantile Density (LQD) associated with pt (ξ) (Petersen
and Müller, 2016):

PRO: It is unrestricted and can be easily mapped back to the pdf of
interest for a given support. It is less sensitive to horizontal variation
and to outliers;
CONS: The approximation can be less accurate than the one allowed
by the first approach (although not always, see Petersen and Müller,
2016).
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Log Quantile Density

g (pt (·)) = log

{
d

dz
Qt (z)

∣∣∣∣
z=x

}
= − log {pt (Qt (x))}

where Q (z) = F−1 (z) is the quantile function (inverse cdf), and x ∈ [0, 1].
It loses information about Ξ, but is totally unrestricted (i.e. it lies in
the linear L2 space).
When Ξ is known, pt (·) can be easily dervided back from the LQD,
by:

1 Computing Qt (x) = θ
∫ x

0 exp [ft (z)] dz , where

θ = supξ∈Ξ ξ ×
{∫ 1

0 exp [ft (z)] dz
}−1

;
2 Computing pt (ξ) =

d
dξFt (ξ) =

d
dzQ

−1
t (ξ).
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Functional Bases

Choice of the bases ζ (·) and δ (·):
The choice of δ (·) is irrelevant, as long as Cα =

∫
δ
(
ξ́
)
ζ′

(
ξ́
)
d ξ́ is

finite. It never appears in the analysis;
The choice of ζ (·) is crucial:

Splines: Chang M. et al. (2022). Can need large K to summarize
important features of ft (·).
FPCA: Tsay (2016), Chen et al. (2019), Meeks and Monti (2021). The
shape of the components ζk (·) are automatically selected to reflect the
most important features for the dynamics of ft (·).

We use Tsay’s (2016) FPCA approach:
Summarizes the bulk of the dynamic variation observed in ft (·) with
low K ;
Easy to implement;
We experimented with other methods with no meaningful changes.
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Empirical Approach

We follow a three-step approach:

1 Estimate the distribution of interest for every t from a sample of
draws;

2 Transform the distributions and approximate the resulting function
through FPCA;

3 Jointly model the FPCs and a set of random variables with a
(Bayesian) VAR.
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Density Estimation

We estimate the distribution of interest (income) using a kernel
density estimator (Venables and Ripley, 1999);

We adopt a boundary correction as the support of the distribution is
bounded;
The kernel estimator is:

p̂t (ξ) =
1
nth

nt∑
i=1

{
Φ

(
ξ − ξit

h

)
+ Φ

(
ξ − ξLit

h

)
+ Φ

(
ξ − ξUit

h

)}
;

where ξLit = 2L− ξit and ξUit = 2U − ξit , with L and U being the lower
and upper bound of the support. Φ is the Gaussian kernel, h is the
bandwidth, and nt is the size of the sample drawn from pt .
We set h following Silverman’s rule of thumb.

Huber, Marcellino, Tornese NBER SI 2024
NBER Summer Institute, 11 July 2024
19 / 54



Functional Principal Component Analysis (FPCA)

Let X denote a T × N matrix with (t, i)th element
xt,i = ft (ξi ) = g (p̂t (ξi )), t = 1, ...,T , i = 1, ...,N.
The matrix X can be decomposed using a truncated Singular Value
Decomposition (SVD, see e.g. Tsay, 2016):

X = SVD ′ + E ;

where:
S is the T × K matrix of the first K left eigenvectors;
V is the K × K diagonal matrix containing the largest K eigenvalues;
D is the N × K matrix of the first K right eigenvectors;
E contains the approximation error for considering only K components.

The principal components D will serve as our functional basis ζ (·);
The scores VS ′

t (St : t-th row of S), will serve as our factors αt ;
The estimated α̂t can be plugged in the nv + K -dimensional VAR.
FPCA selects the modes of variation that explain the largest share of
time vatiation in ft (ξi ) (i.e. they are more effcient than alternative
bases).
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Inference

Standard Bayesian or frequentist methods can be applied to perform
inference on the nv + K -dimensional VAR:

zt = Πxt + ut ,

where zt = [y ′t , α
′
t ]
′, xt =

[
1, z ′t−1, . . . , z

′
t−p

]′ and
Π = [Π0,Π1, . . . ,Πp], with Π0 =

[
c ′y , c̃

′
f

]′ and

Πl =

[
Bl ,yy Bl ,yf Cα

Bl ,fy Bl ,ff Cα

]
.

In all applications, we use Bayesian methods and assume natural
conjugate Gaussian-Inverse Wishart prior distribution for the reduced
form parameters (Π,Ω): p (vec (Π′) ,Ω) = p (Ω)× p (vec (Π′) | Ω),

p (Ω) is Inverse Wishart with ν degrees of freedom and scale matrix Φ;
p (vec (Π′) | Ω) is Gaussian with mean vec (Ψ) and variance Ω⊗ Γ;

We set ν, Φ, Ψ,and Γ following the Minnesota tradition (Doan et al.,
1984; Carriero et al., 2015).
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Simulated Data 1: F-SVAR DGP 1

1 Simulate T = 500 data points, zt , from a nv + Ktrue-dimensional
SVAR(p), with: lower triangular A0, p = 4, nv = 2, and Ktrue = 3;

2 Simulated αt are transformed into LQD functions, using as basis the
FPC taken from the LQD of a mixture of Gammas, with a time
varying Beta mixing distribution;

3 The LQDs are then transformed into distributions with support
Ξ = [0, 6];

4 A sample of size N = 500 is drawn at every t and assumed observed
by the econometrician.
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0.4

0.6
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0.4
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0 2 4 6
0

0.2

0.4

0.6

DGP’s modes of variation: change to the mean distribution implied by a 2 std
change in αk,t (red: positive, blue: negative).
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Simulated Data 2: F-SVAR DGP 2

1 Simulate T = 500 data points, zt , from a nv + Ktrue-dimensional
SVAR(p), with: Lower triangular A0, p = 4, nv = 2, andKtrue = 3;

2 Simulated αt are transformed into pt (·), using as basis the FPC taken
from a mixture of Gammas, with a time varying Beta mixing
distribution;

3 At every t, N = 500 draws are taken from pt (·), which is obtained by
taking the exponential of log (pt (·)) and re-normalizing it to have unit
integral.
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DGP’s modes of variation: change to the mean distribution implied by a 2 std
change in αk,t (red: positive, blue: negative).
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Simulated Data 3: Krusell and Smith (1998) DGP

Simulated data borrowed from Chang M. et al. (2022);
T = 160 artificial observations from the SVAR(1) resulting from
the log-linearized solution of the Krusell and Smith (1998)
model. Observe:

Productivity level, the capital stock, the employment level
(nv = 3);
Centered moments of the distribution of assets among the
employed;

A sample of N = 9230 is draws from the asset distribution;
The matrix A0 implied by the model is lower triangular, the first
structural shock is a productivity shock.
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Alternative Transformations of pt (·)

Compare approximation provided by FPC when performed on different
transformations of pt (·);
Cross-validation:

1 Extract FPC from 80% of the (time) sample (randomly selected);
2 Estimate the αt for the remaining 20% of the sample through OLS;
3 For this 20%, compute the Mean Integrated Squared Error for every K :

MISE =
1
T

T∑
t=1

∫
Ξ

(
f̂t (ξ)− ft (ξ)

)2
dξ

where f̂t (ξ) = ζ (ξ)′ α̂t , with ζ (ξ) and α̂t being the FPC and scores
estimated in point 1 and 2 above.

The experiment is repeated 100 times for the first 2 DGPs.
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Alternative Transformations of pt (·)

MISE
K

1 2 3 4 5

D
G

P
1 pt (·) 1 0.465 0.249 0.127 0.069

log pt (·) 1.879 1.457 0.996 0.730 0.594
LQD 1.085 0.644 0.530 0.370 0.307

D
G

P
2 pt (·) 1 0.102 0.053 0.032 0.022

log pt (·) 5.150 1.982 3.143 1.671 1.128
LQD 2.334 1.167 0.678 0.421 0.337

D
G

P
3 pt (·) 1 0.598 0.486 0.395 0.324
log pt (·) 1.908 1.857 1.467 1.339 1.260

LQD 1.449 1.199 1.174 1.066 1.020
Ratios relative to the MISE attained by the first approach for K = 1.
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Alternative Transformations of pt (·): Comments

FPCA on pt (·) produces the best approximations in our DGPs;

The average 1
T

∑T
t=1 pt (ξ) has unit integral, while FPCs on

pt (·)− 1
T

∑T
t=1 pt (ξ) have zero integral by construction (therefore

have negative regions). This implies that:
F-IRFs always integrate to 1;
If a shock moves the distribution away from the mean, the resulting
distribution has negative regions;

Common solution is to perform FPCA on log (pt (·));
FPCA on the LQD allows approximations significantly more accurate
than those based on log (pt (·));
In the analysis, we use FPC extracted from the de-meaned LQD
(results do not change if we follow the other approaches).
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Interpretation of F-IRFs

0 1 2 3 4 5 6
-0.015

-0.01

-0.005

0

0.005

0.01

0.015
h=0

The figure shows the difference between pss+h (·) |εj=std(εj) and pss (·).

The horizontal axis shows the support Ξ;
The vertical axis mesures the difference between the two densities;
h is the horizon of the response.
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F-SVAR DGP 1: F-IRFs
Single realization of the simulated experiment.
Red lines: true responses of pt (·) to one standard deviation shocks to ε1 (upper panels)
and ε2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines:
90% credible bands. h denotes the horizon at which the response is measured.The
number of FPC is selected as the smallest one for which 90% of variance is explained.
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F-SVAR DGP 2: F-IRFs

Red lines: true responses of pt (·) to one standard deviation shocks to ε1 (upper panels)
and ε2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines:
90% credible bands. h denotes the horizon at which the response is measured.The
number of FPC is selected as the smallest one for which 90% of variance is explained.

0 2 4 6
-0.02

-0.01

0

0.01

0.02

0.03
h = 0

0 2 4 6
-0.01

-0.005

0

0.005

0.01

0.015
h = 4

0 2 4 6
-0.015

-0.01

-0.005

0

0.005

0.01
h = 12

0 2 4 6
-0.015

-0.01

-0.005

0

0.005

0.01

0.015
h = 24

0 2 4 6
-0.01

-0.005

0

0.005

0.01
h = 0

0 2 4 6
-0.01

-0.005

0

0.005

0.01
h = 4

0 2 4 6
-5

0

5
10-3 h = 12

0 2 4 6
-3

-2

-1

0

1

2

3
10-3 h = 24

Huber, Marcellino, Tornese NBER SI 2024
NBER Summer Institute, 11 July 2024
30 / 54



Krusell and Smith (1998) DGP: F-IRFs
Red lines: true responses of pt (·) to one standard deviation technology shocks. Solid
blue lines: posterior median responses, dashed blue lines: 90% credible bands. The
number of FPC is selected as the smallest one for which 90% of variance is explained.
(Timing convetion is different than the one in Chang et al.(2024): here shock happens
at t = 0, there at t = 2)
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Monte Carlo: F-SVAR DGP 1

Average correlation between median and true F-IRFs across 200 MC replications.
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Monte Carlo: F-SVAR DGP 2

Average correlation between median and true F-IRFs across 200 MC replications.
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Uncertainty shocks: the model

Augment the VAR model analyzed by Jurado et al. (JLN, 2015) by
including the income distribution among employed people as ft(·);
Earnings-to-GDP data constructed by Chang M et al. (2022) based on
the Current Population Survey (CPS);
Support of the distribution is Ξ = [0, 2.1] (2.1 is the smallest
censoring point in the sample);
Convert the monthly SVAR of JLN in a quarterly F-SVAR model and
focus on the period 1989:Q1 - 2017:Q3;
The nv = 11 endogenous variables included in the model are: (i) real
GDP, (ii) real PCE, (iii) GDP deflator, (iv) real wages, (v) real
investments, (vi) labor productivity, (vii) unemployment rate, (viii)
Federal Funds Rate, (ix) S&P500 index, (x) M2 growth rate, and (xi)
JLN’s macro-uncertainty measure;
Assume K = 7 (different K s do not affect results for K > 2);
The macro-uncertainty shock is identified by ordering the uncertainty
measure last among the aggregate variables in a Cholesky
identification scheme.
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Income Distribution: Scree Plot

Share of variance explained by FPC.
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Uncertainty shocks: IRFs

IRFs to an uncertainty shock implied by: a SVAR (red), F-SVAR (blue),
68% credible bands (dashed lines and shaded areas).
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Uncertainty shocks: F-IRFs

Response of income distribution to an uncertainty shock:
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The horizontal axis measures the earnings relative to the per-capita
level of GDP;
h denotes the horizon in quarters.
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Uncertainty shocks: comments

Aggregate effects:
IRFs predicted by the F-SVAR are similar to those generated by the
standard SVAR, but:

Response of inflation is negative;
Labor productivity is not affected in the short run.

Distributional effects:
Propagation two phases:

In the short run (up to 12 moths): while unemployment increases, the
share of workers with low relative income decreases, and the mass of
people employed receiving income above the average increases;
In the longer run: while unemployment is reabsorbed, the share of
occupied with low relative income increases to the detriment of the
middle-income class (probably due to the decrease of labor productivity
triggered by the decrease in investments experienced at short horizons).
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Uncertainty shocks: Quantiles IRF

The F-IRFs of income distribution can be mapped to the IRF of quantiles
of interest:
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The horizontal axis indicates the horizon in quarters, the vertical axis
measures the change in the quantile.
While the bottom quantile is affected only mildly, the median and the
top quantiles shift to the right significantly.
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Uncertainty shocks: Earning Classes IRF

The F-IRFs of income distribution can be mapped to the response of the
share of employed people belonging to specific earnings classes:
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The share of employed people belonging to the low-income class
decreases significantly in a first phase, while the relative weight of the
middle and upper class increases;
In a second phase, the share of low-income employed increases,
drawing mainly from the middle class.
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Uncertainty shocks: Gini IRF

The F-IRFs of income distribution can be mapped to the IRF of the Gini
coefficient:
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Earnings inequality decreases in the short run, but it increases at
longer horizons.
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Uncertainty shocks: Interpretation

The decline of the share of people earning low income is due to a
stronger rise in unemployment among low income classes;
We add to the monthly JLN VAR unemployment rates by educational
attainment:
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Further developments: Functional LP

F-IRFs can be also estimated by Local Projections;
1 Estimate responses of αt :

IRα(t, h, di ) = E [αt+h | εt = di ,ℑt ]− E [αt+h | εt = 0,ℑt ];
2 Compute the Functional IRFs through the mapping:

IRf (ξ, t, h, di ) = ζ′ (ξ)× IRα(t, h, di );

Suppose y1t is predetermined w.r.t. [y2t , . . . , ynv t , αt ]
′.

The joint response of α to an impulse in y1 can be estimated through
the multivariate regression:

αt+h = ah + βh
1y1,t +

p∑
l=1

Bh
l+1

[
y ′t−l , α′

t−l

]′
+ eh,t

where IRα(t, h, di = [1, 0, . . . , 0]′) = βh
1 .

Can be estimated by OLS with (system-wide) HAR standard errors.
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F-LP DGP 1: F-IRFs

Red lines: true responses of pt (·) to one standard deviation shocks to ε1 (upper panels)
and ε2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines:
90% credible bands. h denotes the horizon at which the response is measured.The
number of FPC is selected as the smallest one for which 90% of variance is explained.
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DGP 1: F-LP vs F-SVAR

Blue Lines: F-LP. Red lines: F-SVAR.
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F-LP DGP 2: F-IRFs

Red lines: true responses of pt (·) to one standard deviation shocks to ε1 (upper panels)
and ε2 (lower panels). Solid blue lines: posterior median responses, dashed blue lines:
90% credible bands. h denotes the horizon at which the response is measured.The
number of FPC is selected as the smallest one for which 90% of variance is explained.
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DGP 2: F-LP vs F-SVAR

Blue Lines: F-LP. Red lines: F-SVAR.
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Krusell and Smith (1998) DGP: F-IRFs

F-IRFs of the asset distribution to a productivity shock: implied by the DGP
(red), estimated (solid blue), and 90% confidence intervals (dotted blue).
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Uncertainty Shocks: F-IRFs
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Conclusion

Proposed a F-VAR to jointly study aggregate variables and
distributions, where the latter are approximated by FPCA.
Compared FPCA based on different transformations of the
distribution of interest;
Assessed the performance of the Bayesian inference method in
simulation experiments;
Studied the distributional implications of uncertainty shocks.
Propagation of uncertainty shocks has two phases:

Short run: unemployment increases and share of employed with low
relative income decreases;
Longer horizon: unemployment is reabsorbed, but mass of low-income
workers grows, increasing inequality.

All F-IRFs can be estimated by Functional Local Projections;

Related ongoing research: (i) Bi-variate distributions (e.g. firms
labor and capital), (ii) Nowcasting income/consumption
distributions.
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