LOCAL IMPACTS OF GLOBAL MARKETS

Dynamic Adjustment to Trade Shocks

UČ San Diego UC San Diego UC San Diego

Junyuan Chen Carlos Goés Marc Muendler Fabian Trottner UC San Diego

NBER Summer Institute: July 9, 2024

Dynamic Adjustment to Trade Shocks

- Costs of trade disruptions depend on adjustment of trade flows
- In the data, trade responds dynamically: short-run \neq long-run (Dekle et al 07; Ruhl 08; Anderson Yotov 23; Boehm et al 23)
- In benchmark quantitative models, trade elasticity is constant
- *De facto* time-varying trade elasticity demands reconciliation

This Paper

- Theory to guide estimation of time varying trade elasticity
- Microfoundations of time varying trade elasticity in computational model
- Adjustment frictions with stochastic opportunity to switch supplier
- Short-term dynamics deviate from long-term steady-state

Concrete Insights

- Micro-founded Ricardian model with gradual trade adjustment:
 - nest Eaton Kortum 02 as limiting long-run case,
 - structural equation for trade elasticity estimation by horizon,
 - new formula for time-varying gains from trade.
- Quantitative re-evaluation of US-China trade war:
 - short-term overshooting (China) or undershooting (United States),
 - dynamics for third countries: short-run losses, long-run gains.

Related Literature

- International elasticity puzzle. Ruhl 08; Fontaigne et al 18, 22
- **Time-varying elasticity estimation**. Yilmaz 19; deSouza et al. 22; Anderson Yotov 23; Boehm et al 23
- Staggered trade contracts and decisions. Kollintzas Zhou 92; Calvo 83; Arkolakis et al 11
- **Sisyphos process**. Montero Villarroel 16 (directed random walk with random restarts)

© Chen, Goés, Muendler, Trottner | 5

Agenda

- Model
- Formulas
- Estimation
- Application

© Chen, Goés, Muendler, Trottner | 5

Agenda

• Model

- Formulas
- Estimation
- Application

Model Setup

- Eaton-Kortum trade model with input-output linkages
- Sourcing decisions subject to friction
 - when possible, choose cheapest global supplier
 - possibility to choose suppliers arises at random times
- *Consequence*: Trade flows adjust gradually to trade shocks

Households

- N countries $s, d \in \mathcal{N}$; I industries $i, j \in \mathcal{I}$; time periods t
- L_d consumers supply one unit of labor, maximize consumption $C_{d,t}$

$$C_{d,t} = \prod_{i \in \mathcal{I}} \left(C_{di,t} \right)^{\eta_{di}}$$

- $C_{di,t}$: consumption of industry *i*'s composite good (non-traded)
- η_{di} : consumption expenditure share of industry *i* in *d*
- Consumer price index: $P_{d,t} = \prod_{i \in \mathcal{I}} \left(P_{di,t} / \eta_{di} \right)^{\eta_{di}}$

Intermediate Varieties

- Continuum of intermediate varieties $\omega \in [0, 1]$ in each industry i
- Production technology in country *s*:

$$y_{si}(\omega) = z_{si}(\omega)\ell^{\alpha_{si}}\prod_j (M_{sji})^{\alpha_{sji}}$$

- $z_{si}(\omega)$: perpetual productivity of firm producing ω
- ℓ , M_{sji} : domestic labor, composite goods from other industries

- CRS:
$$\sum_{j} \alpha_{sji} = 1 - \alpha_{si}$$

• Perfect competition, no firm-to-firm trade

Assembly of Intermediate Varieties

- Arrival rate of firms with efficiency $z_{si}(\omega) \ge z$: Poisson $(A_{si}z^{-\theta_i})$
 - A_{si} governs absolute advantage
 - θ_i governs comparative advantage
- Assemblers aggregate intermediate varieties into composite goods:

$$Y_{di,t} = \left(\int_{[0,1]} y(\omega)^{\frac{\sigma_i - 1}{\sigma_i}} \mathrm{d}\omega\right)^{\frac{\sigma_i}{\sigma_i - 1}} = \sum_{j \in \mathcal{I}} M_{dij,t} + C_{di,t}$$

- σ_i is elasticity of substitution

Sourcing Choice of Assemblers

- Variable trade cost: $\tau_{sdi,t}$
- Permission to choose: $x_{i,t}(\omega) \in \{0,1\}$

$$- P\left[x_{i,t}(\omega) = 1\right] = \zeta_i$$

- If $x_{i,t}(\omega) = 1$, then choose supplier in least costly source country
- If $x_{i,t}(\omega) = 0$, then keep supplier as in t 1
- No contractual advantage of entering assemblers
- ζ_i is supplier adjustment probability (search friction)

Trade Flows: Newly Sourced Varieties

- Measure $\mu_{i,t}(0) = \zeta_i$ of varieties from least costly source country
- Share of expenditure in *d* on *newly sourced* varieties (0) from *s*:

$$\lambda_{sdi,t}^{0} = \frac{A_{sj} \left(c_{sdi,t}\right)^{-\theta_{i}}}{\Phi_{di,t}^{0}}, \text{ where } \Phi_{di,t}^{0} \equiv \sum_{n \in \mathcal{N}} A_{ni} \left(c_{ndi,t}\right)^{-\theta_{i}}$$

- Unit cost component: $c_{sdi,t} \equiv \Theta_{si} \tau_{sdi,t} (w_{s,t})^{\alpha_{si}} \prod_{j} (P_{sj,t})^{\alpha_{sji}}$. Market access term: $\Phi^0_{di,t}$ (encodes average price paid)
- Trade elasticity: θ_i (Fréchet shape parameter as in Eaton-Kortum)

Trade Flows: Prices of Legacy Varieties

• Measure $\mu_{i,t}(k) = (1 - \zeta_i)\mu_{i,t-1}(k-1)$ of legacy varieties sourced from same country as t - k periods ago

• Price of legacy variety
$$\omega$$
: $p_{sdj,t}^k(\omega) = \frac{c_{sdi,t-k} \prod_{\varsigma=t-k+1}^t \hat{c}_{sdi,\varsigma}}{z_{si}(\omega)}$
for $\hat{c}_{sdi,t} \equiv c_{sdi,t}/c_{sdi,t-1}$.

• Price from k periods ago adjusted for cumulative change in unit cost

Trade Flows: Shares of Legacy Varieties

• Share of expenditure in *d* on *legacy* varieties (*k*) from *s*:

$$\lambda_{sdi,t}^{k} = \frac{\lambda_{sdi,t-k}^{0} \left(\prod_{\varsigma=t-k+1}^{t} \hat{c}_{sid,\varsigma}\right)^{-(\sigma_{i}-1)}}{\Phi_{di,t}^{k}}$$
where $\Phi_{di,t}^{k} \equiv \sum_{n \in \mathcal{N}} \lambda_{ndi,t-k}^{0} \left(\prod_{\varsigma=t-k+1}^{t} \hat{c}_{nid,\varsigma}\right)^{-(\sigma_{i}-1)}$
and $\lambda_{sdi,t-k}^{0}$ encodes distribution of prices at $t-k$

- Trade elasticity: $\sigma_i 1$ (elasticity of substitution as in Armington)
- Intuition: Demand for legacy varieties adjusts at intensive margin only

Aggregation

• Partial price index for *newly sourced* varieties

$$P_{di,t}^{0} = \Gamma_{i} \mu_{i,t}(0)^{-1/(\sigma_{i}-1)} \left(\Phi_{di,t}^{0}\right)^{-\frac{1}{\theta_{i}}}$$

• Partial price index for *legacy* varieties last chosen at t - k

$$P_{di,t}^{k} = P_{di,t-k}^{0} \cdot \left(\frac{\mu_{i,t}(k)}{\mu_{i,t-k}(0)} \Phi_{di,t}^{k}\right)^{-1/(\sigma_{i}-1)}, k \ge 1$$

• Aggregate trade flows in industry *i*

$$\lambda_{sdi,t} = \sum_{k=0}^{\infty} \left(\frac{P_{di,t}^k}{P_{di,t}} \right)^{-(\sigma_i - 1)} \lambda_{sdi,t}^k$$

© Chen, Goés, Muendler, Trottner | 14

Agenda

Model

- Formulas
- Estimation
- Application

Trade Elasticity by Time Horizon

• Elasticity of total exports at t + h w.r.t. trade cost $\tau_{sdi,t}$ at t:

$$\varepsilon_i^h \equiv \frac{\partial \ln \lambda_{sdi,t+h}}{\partial \ln \tau_{sdi,t}} = -\theta_i \left[1 - (1 - \zeta_i)^{h+1} \right] - (\sigma_i - 1)(1 - \zeta_i)^{h+1}$$

for steady state at t - 1 (up to a first order)

- increases in absolute value over time (for $\theta_i > \sigma_i 1$)
- converges to θ_i as $h \to \infty$
- with rate of convergence $\ln(1-\zeta_i)$
- structural analogue to reduced-form estimation by Boehm et al 23

Welfare Formula

• Real wage response to trade shock at t = 0:

$$\widehat{W}_{d}^{h} = \prod_{i,j\in\mathcal{I}} \left[\left(\frac{\lambda_{ddj,h}}{\lambda_{ddj,-1}} \right)^{-\frac{1}{\theta_{j}}} \left(\Xi_{dj,h} \right)^{\frac{1}{\sigma_{j}-1}} \right]^{\eta_{i}\overline{a}_{sji}}$$
$$\equiv_{dj,h} \equiv (1-\zeta_{j})^{h+1} \left(\frac{\lambda_{ddj,h}}{\lambda_{ddj,-1}} \right)^{\chi_{j}} + \sum_{\varsigma=0}^{h} \zeta_{j} (1-\zeta_{j})^{\varsigma} \left(\frac{\lambda_{ddj,h}}{\lambda_{ddj,h-\varsigma}^{0}} \right)^{\chi_{j}}$$

- $\chi_i \equiv -[\theta_j (\sigma_j 1)]/\theta_j$: short- vs. long-run flexibility of trade. \bar{a}_{sji} : (j, i)-th element of Leontief inverse $(I - A_d)^{-1}$
- Distortion term $\equiv_{dj,h}$ varies by age of supply relationship $\lambda_{\cdot,h}/\lambda_{\cdot,h-k}^0$. ACR formula long-run limit: $\lim_{h\to\infty} \equiv_{dj,h} = 1$

© Chen, Goés, Muendler, Trottner | 16

Agenda

- Model
- Formulas
- Estimation
- Application

Implementations

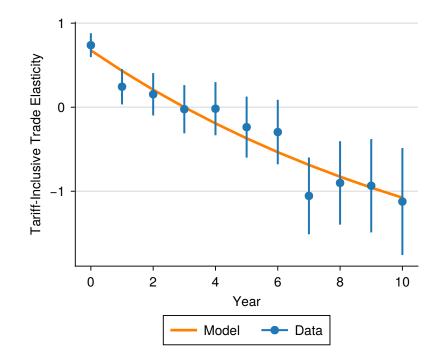
- Identification based on tariff changes in third-party countries
- Current
 - Reduced-form estimates from Boehm et al 23
 - Recover θ , σ , ζ using horizon-*h* trade elasticities ε^h (minimum distance)
- Future
 - Pool horizons, use non-linear least squares to recover θ_i , σ_i , ζ_i

Results for All HS Product Categories

	Targeted Trade Elasticity Coefficients		
	Baseline BLP	Excl. horz. 5-6	Excl. horz. 4-8
Long-run Trade Elasticity $-\theta$	-2.54	-2.17	-1.51
	(2.06)	(1.29)	(.63)
Short-run Trade Elasticity $-(\sigma-1)$.81	.84	.89
	(.09)	(.10)	(.11)
Supplier adjustment probability ζ	.08	.10	.14
	(.06)	(.06)	(.06)

Source: Horizon-*h* trade elasticities by Boehm et al 23 (BLP), using tariff-inclusive trade values for all time horizons in baseline column and excluding select time horizons in subsequent columns. *Notes*: Parameters θ , σ -1, ζ from minimum distance estimator based on trade elasticity formula. Standard errors from asymptotic distribution in parenthesis, using standard error estimates from BLP to obtain diagonal variance-covariance matrix. Model-based trade elasticity at impact: $\varepsilon^0 < -(\sigma - 1)$ for $\theta > \sigma - 1$. Trade elasticity at impact based on tariff-exclusive trade value in BLP: -0.76; transformed to trade elasticity at impact for tariff-inclusive trade value: 0.24.

Implied Trade Elasticity



Source: Horizon-*h* trade elasticities by Boehm et al 23 (BLP), using all time horizons in baseline. *Note*: Parameters θ , $\sigma - 1$, ζ from minimum distance estimator based on trade elasticity formula. Confidence bands from BLP.

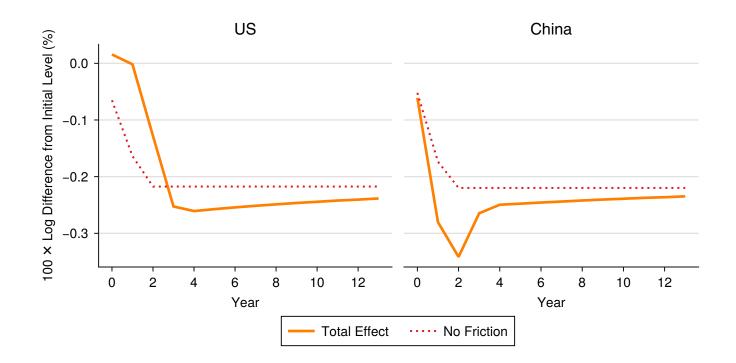
Agenda

- Model
- Formulas
- Estimation
- Application

Application: US–China Trade War 2018

- Data: OECD ICIO (77 regions, 45 industries aggregated to 32)
- Calibrate: initial steady state, trade flows in 2017
- Shock: changes in US-CHN tariffs from Fajgelbaum et al 20 (average increase of 10%, ranging from 3% to 18%)
- Solve: dynamic hat algebra (Dekle Eaton Kortum 07), trade and wage responses over time

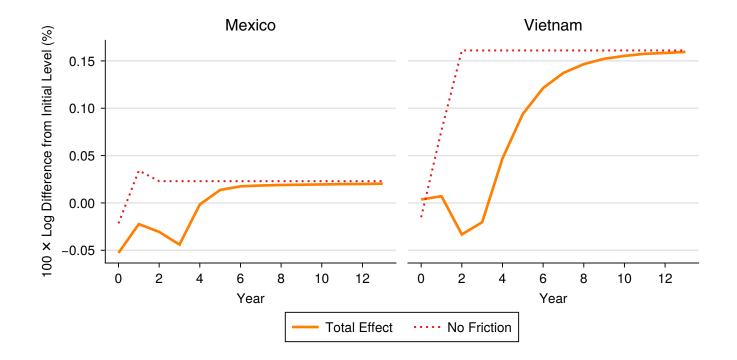
Changes in Welfare



Sources: OECD ICIO, tariffs from Fajgelbaum et al 20.

Notes: Changes relative to initial shock. De-facto tariff changes over initial three years. *Total Effect* simulates welfare for $\theta = 2.54$, $\sigma = .19$ and $\zeta = .08$. *No Friction* refers to simulation with $\zeta = 1$.

Changes in Welfare



Sources: OECD ICIO, tariffs from Fajgelbaum et al 20.

Notes: Changes relative to initial shock. De-facto tariff changes over initial three years. *Total Effect* simulates welfare for $\theta = 2.54$, $\sigma = .19$ and $\zeta = .08$. *No Friction* refers to simulation with $\zeta = 1$.

Concluding Remarks

- Framework to accommodate changing trade elasticity over time Reconcile long-run supply (Ricardian) and short-run demand (Armington) forces
- Adjustment frictions matter, qualitatively and quantitatively
- To reconcile changing trade elasticity, probability of supplier switches
- Simulations suggest differential short-run and long-run welfare effects

NBER SI 2024: Dynamic Adjustment to Trade Shocks

© Chen, Goés, Muendler, Trottner | 24

BACKUP

Equilibrium

- Market clearing as in Caliendo Parro 15, given trade flows $\lambda_{sdi,t}$
- Short-run dynamics: Trade flows and wages reflect fading shocks
- Long-run steady state:
 - trade shares equalize across k, regardless of adjustment status

- legacy varieties from supplier for k periods: $\mu_{i,t}(k) = \zeta_i (1 - \zeta_i)^k$ (stationary measure)

• For equal fundamentals, long-run allocations as in Eaton-Kortum

Rationale of Future Implementation

• Pool horizons, use
$$\varepsilon_i^h = -\theta_i + [\theta_i - (\sigma_i - 1)] (1 - \zeta_i)^{h+1}$$
, estimate

$$\ln\left(\frac{X_{sdi,t+h}}{X_{sdi,t-1}}\right) = \bar{\gamma}_i \ln\left(\frac{\bar{\tau}_{sdi,t}}{\bar{\tau}_{sdi,t-1}}\right) + \gamma_i^h \ln\left(\frac{\bar{\tau}_{sdi,t}}{\bar{\tau}_{sdi,t-1}}\right) + \dots,$$

and recover (under approximation error)

$$\theta_{i} = -\bar{\gamma}_{i}$$

$$\sigma_{i} = 1 - \frac{\gamma_{i}^{0}}{1 - \zeta_{i}} - \bar{\gamma}_{i}$$

$$\zeta_{i} = 1 - \exp\left\{\frac{\sum_{m=0}^{H} \ln\left(\gamma_{i}^{m}/\gamma_{i}^{0}\right)}{\sum_{m=0}^{H} m}\right\}$$

Future Estimation

• Estimate horizon-h trade elasticity ε_i^h with $\hat{\beta}_i^h$

$$\ln\left(\frac{X_{sdi,t+h}}{X_{sdi,t-1}}\right) = \beta_i^h \ln\left(\frac{\bar{\tau}_{sdi,t}}{\bar{\tau}_{sdi,t-1}}\right) + \delta_{si,t+h} + \delta_{di,t+h} + u_{sdi,t+h}$$

- bilateral exports $X_{sdi,t+h}$, ad-valorem tariff $\overline{\tau}_{sdi,t}$, fixed effects
- use trade elasticity formula ε_i^h to recover θ_i , $\sigma_i 1$, ζ_i

(with minimum distance estimator)

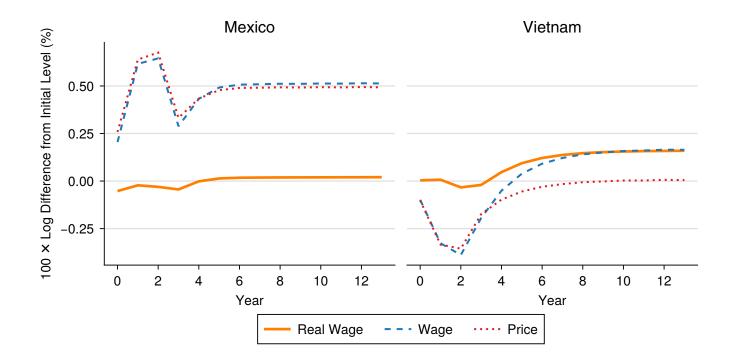
$$\beta_i^h = \varepsilon_i^h = -\theta_i + [\theta_i - (\sigma_i - 1)] (1 - \zeta_i)^{h+1}$$

Changes in Real Wages, Wages and Consumer Prices

Sources: OECD ICIO, tariffs from Fajgelbaum et al 20.

Notes: Changes relative to initial shock. De-facto tariff changes over initial three years. Simulations for $\theta = 2.54$, $\sigma = .19$ and $\zeta = .08$.

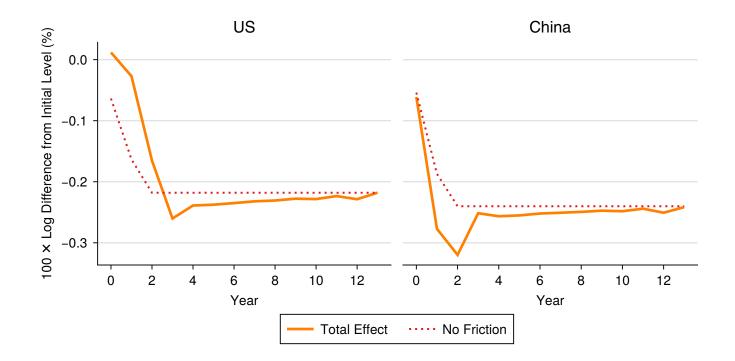
Changes in Real Wages, Wages and Consumer Prices



Sources: OECD ICIO, tariffs from Fajgelbaum et al 20.

Notes: Changes relative to initial shock. De-facto tariff changes over initial three years. Simulations for $\theta = 2.54$, $\sigma = .19$ and $\zeta = .08$.

Changes in Welfare: Alternative Estimates



Sources: OECD ICIO, tariffs from Fajgelbaum et al 20.

Notes: Changes relative to initial shock. De-facto tariff changes over initial three years. *Total Effect* simulates welfare for $\theta = 1.51$, $\sigma = .11$ and $\zeta = .14$. *No Friction* refers to simulation with $\zeta = 1$.