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Abstract. I study whether platform competition in ride-hailing generates waste
and whether efficiency can be enhanced by consolidating competing networks, con-
sidering the tension between market power and network economies. I construct a
comprehensive dataset documenting the operations of two large platforms in New
York City and use it to discipline a spatial equilibrium model of ride-hailing markets
where platforms set prices strategically. Comparing the status quo with counterfac-
tuals, I find that market power and missed network economies generate a waste of
9% and 15% of driver hours, respectively. Consolidation achieved through a merger
would improve efficiency but adversely affect riders through higher prices, especially
in high-density areas. In contrast, removing barriers to simultaneous multi-homing
would improve efficiency and lead to lower prices, higher surplus for riders, lower
traffic, and higher profits for platforms.

1This paper is a revised version of the first chapter of my PhD dissertation at Harvard University.
I am grateful to my advisors Myrto Kalouptsidi, Robin Lee and Ariel Pakes. Thanks also to Giulia
Brancaccio, Allan Collard-Wexler, Alessandro Gavazza, Gautam Gowrisankaran, Alessandro Lizzeri,
Allen T. Zhang, three anonymous referees and numerous seminar participants for helpful comments.
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1. Introduction

In recent years, online platforms have fundamentally reshaped numerous industries,
including retail, hotels, media, advertising, and the taxi industry. In these markets,
competition between platforms often comes at the expense of network economies, or
economies of scale. Users benefit from the expansion of platforms’ networks, gaining
access to a larger pool of potential trading partners. If there are costs associated
with users joining multiple networks simultaneously, platform competition can lead
to the fragmentation of the user base across separate networks, which is inefficient.
To what extent does this lead to waste? Is competition beneficial, or could efficiency
be enhanced by consolidating all users into a single network? I explore this question
in the ride-hailing industry focusing on New York City, the largest ride-hailing market
in the United States.
I construct a comprehensive dataset of prices, wait times, drivers’ compensations and
movements, and match this dataset with publicly accessible trip records, providing a
complete picture of the operations of two large platforms over a two-month period.
Notably, the dataset tracks the movements of all idle drivers across a vast geographical
area, accounting for 75% of all NYC trips. Through this data, I document that drivers
spend almost half of their time empty, either idling between consecutive trips or en-
route to pick-ups. The average driver utilization, defined as the share of time drivers
spend transporting passengers relative to their total working hours, is only 53%.
Ride-hailing vehicles account for a significant portion of traffic in Manhattan’s most
congested regions, with empty vehicles contributing substantially.
On one hand, a lack of interoperability contributes to this waste: passengers can only
be matched with drivers who are available on the same network at the exact moment
they make a request; a passenger requesting a trip on one platform cannot be matched
with a driver who is online on another platform, and vice versa. By analyzing drivers’
trajectories, I document that drivers are simultaneously available on both platforms
for less than 5% of their idle time. This means that, even though they may frequently
switch apps, drivers are mostly available on one a single platform at any given time.
This leads to inefficient matching, as passengers often miss potential matches with
nearby drivers who are active on a different platform, and vice versa, leading to wasted
driver miles.
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On the other hand, not all empty miles are necessarily wasteful. To some extent,
low utilization is inherent to the nature of the taxi industry and of transportation
markets in general.1 Also, consolidating competing networks does not necessarily
reduce waste, as it might lead platforms to increase prices, potentially offsetting any
efficiency gains.

To separately quantify these forces, I develop a spatial equilibrium model of ride-
hailing markets where platforms set prices strategically, and simulate equilibria under
alternative market structures. The model focuses on the equilibrium play between
two platforms that set origin-destination specific fees charged to passengers and com-
pensations paid to drivers, while capturing two central features of ride-hailing mar-
kets. First, the market is two-sided: users respond not only to prices but also to
the number of users joining on the opposing side. This is because drivers benefit
from receiving more trip requests, while a higher density of idle drivers ensures that
trip requests can be quickly dispatched by nearby drivers, reducing passengers’ wait
times before pick-up. Importantly, this spatial matching process becomes more ef-
ficient as more users participate, leading to economies of scale. Second, the model
captures the spatial and dynamic elements that lead to empty driver miles. Trips
relocate drivers from origin to destination, and travel patterns are asymmetric, hence
drivers spend time re-positioning between consecutive trips. Although users multi-
home - passengers compare price quotes across platforms before making a request,
and drivers frequently switch platforms based on market conditions - drivers are only
available on a single platform at any given time.

With the exception of multi-homing, the description of passengers’ and drivers’ be-
havior and their interactions is akin to widely-used spatial equilibrium models of
transportation, such as Buchholz (2022), Brancaccio et Al. (2020; 2023), Castillo
(2023). The framework extends this literature by incorporating platforms’ endoge-
nous price-setting behavior. Platforms use prices as instruments to coordinate the

1Before the rise of app-based services, the average utilization of medallion taxi cabs in NYC was
42% (Buchholz, 2022). To compare this with current figures, consider that medallion taxis primarily
operated in Manhattan’s densest regions, where utilization rates for app-based drivers now range
between 56% and 60%. Numbers are comparable in oceanic transportation, where it has been
documented that dry bulk carriers travel empty 42% of the time (Brancaccio et al., 2020).
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spatial search of riders and drivers, internalizing how users’ behavior and the in-
teraction between opposing sides affect market outcomes. The equilibrium concept
extends previous models of two-sided platforms, such as Rysman (2004) and Arm-
strong (2006), to accommodate dynamics and complex forms of multi-homing.

The solution approach centers around two elements. First, I derive a Spence (1975)
representation for platforms’ pricing problem, which shows that platforms behave as if
they were selecting a spatial allocation of drivers and passengers, while internalizing
how they must set prices to induce users to behave accordingly. This allows to
reframe platforms’ problem focusing on the direct selection of allocations rather than
prices. Second, I derive an intuitive and easy-to-compute expression for the gradient of
platforms’ objective function. This enables to compute the model equilibria through a
gradient-based search for the allocations that maximize platforms’ profits conditioned
on the rival’s strategy, and provides a clear characterization of the profit-maximizing
prices, revisiting classic insights from two-sided markets in a spatial context.

The model is built on four key primitives, estimated by combining variation from
different sources. The first primitive is the relationship between the density of idle
drivers and passengers’ wait times, which is estimated using granular data on driver
density, wait times, and traffic speeds. The second is passengers’ value of time, that
is, how much they are willing to pay to reduce the time waited. This is estimated
from high-frequency data on how passengers switch between platforms in response to
changes in relative prices and wait times.

On the drivers’ side, labor supply adjusts on both the intensive and extensive mar-
gins. For the intensive margin, I estimate a dynamic model of driver entry, exit,
and movement decisions, leveraging variation in drivers’ wages and labor supply to
infer their outside options. Drivers are forward-looking and make optimal dynamic
decisions under correct expectations on the evolution of prices and their matching
probabilities. Solving this problem determines drivers’ weekly working hours and the
frequency with which they work across different platforms and visit various locations.
On the extensive margin, there is free entry of drivers into the NYC labor pool. In-
tuitively, if drivers’ net weekly revenues when making optimal dynamic decisions are
high, more drivers join, which increases competition and lowers weekly revenues, and
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vice versa. This mechanism allows the number of drivers to adjust in equilibrium,
while weekly revenues net of outside options remain constant.2

The last key primitive is the extent to which platforms are willing to exercise their
market power to increase profits at the expense of overall efficiency. I estimate the
weight that platforms place on profits relative to total welfare by matching the ob-
served price mark-ups with those predicted by the model.

I compare the status quo with four simulated counterfactuals. I start by computing
the social planner solution in two scenarios: one where the two platforms are inter-
operable and one where they are not. This allows to separately quantify the extent
of waste originating from two distinct sources. The first source is platforms’ conduct:
all else being equal, market power results in prices being set above marginal costs,
leading to sub-optimal trip demand. The second is the missed network economies
resulting from the lack of interoperability between platforms. I find that a social
planner could increase welfare by $173 million annually without increasing the time
drivers spend on the street. Of this loss, $53 million per year is due to market power,
while the remainder is due to missed network economies. Alternatively, a social plan-
ner could reduce traffic by 24% without reducing the welfare of market participants.
Platforms’ conduct and missed network economies account for a waste of 9% and 15%
of driver hours, respectively.

Next, I explore the extent to which these inefficiencies can be mitigated under alterna-
tive market structures. I begin by simulating the impact of a merger. Consolidation
achieved through the merger improves efficiency, reducing traffic by about 10% with-
out reducing overall welfare. However, eliminating competition leads the resulting
monopolist to raise prices, exacerbating market power distortions. This negatively
impacts riders, leading to an $82 million annual drop in their surplus. The effects
of the merger vary significantly by location, with low-density regions experiencing
the highest efficiency gains, while high-density areas see higher price increases and
greater decreases in ridership and rider surplus.

2In particular, this implies that drivers’ surplus is held fixed in counterfactuals. The Supplemental
Material provides a robustness analysis relaxing this assumption, which yields similar results. This
robustness is due to the fact that the estimated drivers’ surplus at the status quo is small. Therefore,
even though it might change in percentage terms, the absolute changes are minor and overshadowed
by changes in riders’ surplus.
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Finally, I explore whether a market configuration exists that can achieve the benefits
of interoperability without sacrificing the benefits of competition. In practice, con-
solidating users in a single network does not necessarily require a platform merger. It
can alternatively be accomplished by eliminating obstacles that prevent drivers from
working simultaneously on different apps, such as technological barriers preventing
third-party apps from interconnecting with multiple platforms. In the last counterfac-
tual, I simulate a scenario where two interoperable platforms compete: each platform
sets prices independently, yet idle drivers are always available to dispatch trip re-
quests from both platforms. The outcomes are comparable to those of a merger:
traffic decreases by 7.5% and overall welfare rises by $100 million per year. The main
difference is that a significant portion of these efficiency gains are passed on to riders
through reduced prices. Interestingly, platforms’ profits also increase, though by a
smaller margin compared to the merger scenario.

Related Literature. This paper contributes to the rapidly growing empirical literature
on transportation with new methods, new data, and a different scope.3 First, while
previous studies treat prices (or pricing rules) as fixed model primitives, this paper
introduces a spatial equilibrium model where prices are set endogenously by profit-
maximizing firms, along with new methods to solve it. Second, rather than examining
a single transport network in isolation, it constructs a new dataset that allows for
the study of interactions between multiple networks. Third, while prior research
focused on the incentives of transport network users (e.g. passengers and drivers)
and their responses to exogenous policy changes (e.g. pricing), this paper emphasizes
the strategic decisions and interactions of the platforms themselves.

3Within the context of urban transportation, a series of recent papers studies efficiency issues.
Frechette et al. (2019) and Buchholz (2022) both study search frictions and regulation in taxi mar-
kets; Shapiro (2018) and Liu, Wan, and Yang (2021) study welfare improvements from centralization;
several papers study pricing issues (e.g. Castillo (2023), Buchholz et al. (2024), Bian (2020), Ma
et al. (2022), Besbes et al. (2021)) and asymmetric information (Gaineddenova (2022)). In oceanic
transportation, Brancaccio et al. (2020) explore the role of the transportation sector in world trade,
while Brancaccio et al. (2023) study eficiency and optimal policy in the presence of search frictions.
See also Ghili and Kumar (2021) on demand and supply imbalances in ridesharing platforms; Ostro-
vsky and Schwarz (2018) on carpooling and self-driving cars; Kreindler (2023) on congestion pricing;
Cao et al. (2021) on competition in bike-sharing; Kreindler et al. (2023) and Almagro et al. (2024)
on public transportation systems; Yang (2022) on trucking markets.
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As a result, this paper also contributes to the extensive empirical literature on plat-
form economics and network effects.4 The importance of network economies has been
well recognized in several industries, including radio and television (Besen and John-
son, 1986, Farrell et al., 1992), operating systems (Bresnahan, 2002), credit cards
(Rochet and Tirole, 2003), and others. Quintessential examples are telecommuni-
cations (Brock, 1981 and Gabel, 1991) and the internet (Lehr, 1995), where inter-
operability standards have emerged to facilitate interconnections between separate
networks. This paper argues that such standards are currently absent in ride-hailing
and identifies the main channels through which this leads to waste, quantifying the
resulting economic losses and the trade-offs of alternative interventions.

2. Market and data

The US app-based taxi market, often referred to as ride-hailing, is controlled by Uber
and Lyft. In 2019, these companies had about one million active drivers in the US,
and about 36% of surveyed adults said they had ever used their service.5 I focus on
New York City, one of the largest markets worldwide. The analysis excludes medallion
(yellow) taxi cabs, which operate under a distinct institutional environment.

Since Uber introduced its flagship service UberX in 2012, subsequently joined by Via
in 2013, Lyft in 2014, and Juno in 2016, the NYC market has experienced rapid
expansion and reorganization. App-based services have quickly taken over the tradi-
tional yellow taxi cab business, accounting for about 76% of all for-hire vehicle trips as
of 2019. Juno and Via ceased their operations in 2019 and 2021, leaving Uber as the
dominant platform, and Lyft as its sole competitor. As of 2019, these two platforms
dispatched more than 15 million trips and about 80000 drivers per month. If drivers
were classified as employees, Uber alone would be the largest for-profit private em-
ployer in NYC (Parrott and Reich (2018)). Market shares have been remained more
or less constant since 2019, at around 75% and 25%.

4E.g. Katz and Shapiro (1985), Rysman (2004), Clements and Ohashi (2005), Kaiser and Wright
(2006), Argentesi and Filistrucchi (2007), Chandra and Collard-Wexler (2009), Corts and Lederman
(2009), Genakos and Valletti (2011), Lee (2013), Jeziorski (2014). References include handbook
chapters by Farrell and Klemperer (2007) and Jullien, Pavan, and Rysman (2021), and a survey
article by Evans and Schmalensee (2005).
5www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-hailing-apps/
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2.1. Data construction. I obtain high-frequency granular data for two large plat-
forms, referred to as Platform 1 and Platform 2. The data spans from mid-May 2019
to mid-July 2019 and covers the vast geographical area represented in Figure 2.1. The
selected area includes all of Manhattan and sizable portions of Brooklyn, Queens, and
the Bronx, accounting for about 75% of all NYC ride-hailing trips.
First, I use the trip records published monthly by the NYC Taxi and Limousine Com-
mission (TLC). This dataset contains a record of every trip originating or terminating
within NYC, including information on the origin and destination, time of pick-up
and drop-off, trip time and distance. I complement this with a novel comprehen-
sive dataset of passenger prices, wait times, drivers’ compensations and movements,
collected through the platforms’ Application Programming Interfaces (APIs).
APIs encode the structure of communications between a platform’s server and a user’s
smartphone. Every time a user opens the app, their phone sends a message to the
server with information including their desired origin and destination. The server
responds with a JSON-encoded list of information that includes the upfront price the
user must pay for the trip, their expected wait time before a driver can pick them
up, a list of the nearest eight drivers available (represented by unique identifiers and
GPS coordinates with timestamps tracing their recent trajectories), estimates of the
trip’s time and distance, and a surge multiplier. This surge multiplier can be used to
compute drivers’ expected compensation for the trip.6

I collect this data throughout the dense grid of observation points represented in
Figure 2.1. Each point makes a data request every few seconds during the entire
sample period, with the destination rotating among a fixed grid of locations, also
represented in Figure 2.1. The density of the grid ensures that every driver is always
recorded by at least one observation point, resulting in a dataset that records all
drivers’ trajectories within the sample region.7 Importantly, drivers are only recorded
when they are idle and available to receive trip requests, disappearing from the dataset
when they either stop working or get matched with a passenger.
6In 2019, drivers were compensated according to the formula:

driver compensation = surge multiplier · (α · time + β · distance)
where the coefficients α and β can be observed from the driver apps.
7To ensure that all drivers are recorded, the space between two points is kept less than the minimum
distance to the furthest car observed over a two-week experimentation period.



8

Figure 2.1. The first three panels show the observation points in different
boroughs. Each point makes a data request every few seconds, with the
destination rotating among the grid of destinations in the fourth panel.

I use the observed trajectories to compute the total time drivers spend idle during
every one-hour window throughout the sample period. I also compute the total time
drivers spend transporting passengers by summing the durations of all trips, and
estimate the time drivers spend en-route to pick up passengers by summing all trips’
expected wait times.8 These calculations provide estimates of the average number of
drivers performing each task during every one-hour window in the sample.9 Summing
across all activities yields an estimate of the total time drivers spend working, or an
estimate of the average number of active drivers.

2.2. Summary statistics. The summary statistics are presented in Table 1. Platforms
dispatch 81 trips per hour per square kilometer on average. Passengers typically
pay $19 per trip and wait about 3.5 minutes before pickup, while drivers receive an
average of $12. The price difference is distributed among taxes, tolls, and platforms’
commissions. There are on average 42 drivers per square kilometer on the street, with
15 idle, 5 en-route to pick up a passenger, and 22 actively transporting a passenger
to their destination. Driver utilization is defined as the share of time drivers spend

8Whenever a passenger is waiting to be picked up, a driver is traveling to pick them up
9For example, if drivers spend two hours idle during a one-hour interval, this indicates that, on
average, there are two idle drivers
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transporting passengers relative to their total working hours. This stands at 56% for
Platform 1 and 46% for Platform 2. Notably, the two platforms offer nearly identical
prices and pay drivers similarly, even though Platform 1 has a substantially larger
market share, accounting for 75% of trips and 70% of drivers. Platforms’ wait times
are also similar. In contrast, there is considerable variation in prices, wait times,
driver utilization, and market activity, both spatially and over time.

Price Driver Wait Trips Active Idle Drivers Utili-
price time per hour drivers drivers en-route zation

($) ($) (min.) (per km2) (per km2) (per km2) (per km2)
Platform 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2

Average 19.4 - 19.5 12.5 - 12.6 3.4 - 3.7 59.9 - 21.0 29.6 - 12.7 9.6 - 5.6 3.4 - 1.3 .56 - .46

1am - 5am 18.4 - 19.0 11.9 - 12.1 3.2 - 3.5 28.1 - 11.5 13.0 - 6.9 5.1 - 3.5 1.5 - 0.7 .49 - .39
5am - 9am 20.2 - 20.5 12.9 - 13.2 3.9 - 4.4 40.3 - 12.5 20.2 - 8.3 6.6 - 3.9 2.6 - 0.9 .54 - .42
9am - 1pm 19.4 - 19.0 12.3 - 12.3 3.2 - 3.6 59.3 - 20.8 32.4 - 14.0 12.1 - 6.8 3.2 - 1.3 .53 - .43
1pm - 5pm 20.0 - 19.7 12.8 - 12.8 3.5 - 3.9 64.7 - 22.1 34.5 - 14.3 10.8 - 6.1 3.8 - 1.4 .58 - .47
5pm - 9pm 19.2 - 19.2 12.5 - 12.4 3.3 - 3.5 87.1 - 29.1 42.6 - 17.2 12.8 - 7.3 4.9 - 1.7 .58 - .48
9pm - 1am 19.2 - 19.7 12.2 - 12.6 3.3 - 3.4 79.9 - 30.1 34.9 - 15.2 10.3 - 5.8 4.3 - 1.7 .58 - .51

Lower Man. 20.8 - 21.3 13.1 - 13.1 3.4 - 3.7 174.4 - 59.8 81.3 - 33.5 21.2 - 12.7 10.0 - 3.7 .62 - .51
Midtown 20.4 - 21.2 12.6 - 12.8 3.5 - 3.7 219.1 - 68.1 110.5 - 43.6 33.5 - 19.5 13.0 - 4.2 .58 - .46
Upper Man. 20.6 - 20.4 12.7 - 12.7 3.1 - 3.5 95.3 - 30.4 46.2 - 17.6 14.3 - 7.2 4.9 - 1.8 .58 - .49
Harlem 18.2 - 18.5 12.3 - 12.5 3.2 - 3.8 53.0 - 17.1 24.0 - 9.5 7.4 - 3.9 2.8 - 1.1 .57 - .47
Bronx 16.0 - 17.4 10.9 - 12.0 3.5 - 4.3 37.6 - 6.1 17.2 - 4.5 6.2 - 2.5 2.2 - 0.4 .51 - .34
Brooklyn 19.1 - 18.1 12.7 - 12.3 3.4 - 3.6 39.0 - 20.2 19.8 - 11.0 6.6 - 4.3 2.2 - 1.2 .55 - .50
Queens 18.2 - 17.9 11.9 - 11.9 3.1 - 3.4 22.2 - 7.4 12.9 - 6.1 6.0 - 3.7 1.2 - 0.4 .45 - .32

Table 1. Summary statistics

2.3. Multi-homing. Ride-hailing users multi-home: passengers often compare price
quotes across different apps before making a request, and drivers frequently switch
between apps. However, platforms do not communicate with each other: a passenger
requesting a trip on one platform cannot be matched with a driver who is online on



10

Figure 2.2. Examples of coincident and non-coincident trajectories.

another platform. In networking jargon, the platforms’ networks are not interopera-
ble. The lack of interoperability may lead to inefficient matching, as passengers might
miss potential matches with nearby drivers who are active on a different platform,
and vice versa. This holds regardless of how frequently users switch platforms, since
passengers can only be matched with drivers who are available on the same network
at the exact moment they make a request. This inefficiency is mitigated only if most
drivers run both platforms’ apps simultaneously. I refer to this type of behavior as
simultaneous multi-homing.
While there are accounts of sophisticated multi-homing behavior among drivers, this
tends to be the exception rather than the rule. According to TLC data, only 50% of
drivers dispatched a trip for both platforms in July 2019, with the remaining half not
multi-homing at all. Allon et al. (2023) further observe that drivers switch platforms
between consecutive trips only about 5% of the times, which suggests 13% for the
share of drivers running both apps simultaneously.10 This is likely an overestimate,
since operating multiple apps concurrently requires more effort than just switching
between trips. Using drivers’ geolocations, I compute a more accurate estimate.
The final data set contains records of about 37 million driver trajectories, where the
average trajectory lasts about 10 minutes, and tracks the driver’s exact geolocation
every 5 seconds. Intuitively, when a driver runs both apps simultaneously, the data
records two trajectories on different platforms that are coincident in time and space.
To account for potential data inaccuracies, I aggregate time into 20-seconds windows
10The two platforms dispatch about 75% and 25% of all trips, respectively. Hence, if all drivers ran
both platforms simultaneously, they would switch .75 · .25 + .25 · .75 = 37.5% of the times. This
yields an estimate of .05/.375 = 13% for the share of drivers simultaneously multi-homing.
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Figure 2.3. The solid line represents the share of idle drivers who work for
both platforms simultaneously. The dashed line indicates the average time
drivers must wait between consecutive trips, shifted and re-scaled so that
the mean and variance of the two series are equal.

and space into squares of 200 squared meters, and represent each trajectory by means
of the sequence of the squares visited during different time windows. Two trajectories
are deemed coincident if their intersection covers at least 90% of the shortest one.
Figure 2.2 shows two instances of trajectories deemed coincident and non-coincident.
Overall, this test matches 4.5% of drivers.11 Figure 2.3 shows how this number varies.
To summarize, simultaneous multi-homing among drivers is negligible. There are
several explanations for this fact. First, Figure 2.3 shows that fluctuations in the
number of shared drivers are largely explained by variation in drivers’ wait between
consecutive trips. This is intuitive, as the main advantage for drivers to run both
apps is to reduce waiting. This could partly explain why this behavior is limited
11Given the density of drivers in certain regions, this test might deem as coincident trajectories of
different drivers. To verify the extent of this bias, I also run a placebo test matching trajectories
observed on the same platform. Given that each platform assigns its drivers a unique identifier,
different trajectories on the same platform always belong to different drivers. This placebo test
matches about 1.7% of drivers.
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in NYC, where the average wait between trips is only about 10 minutes.12 Second,
drivers face technical challenges and incentives that discourage multi-homing. Apps
often prevents drivers from receiving trip requests unless they are open on the main
screen, which means that simultaneous multi-homing can only be performed using
two separate phones, or with the aid of third-party software. However, technological
obstacles often prevent third-party apps from functioning correctly, and subscriptions
are costly.13 Moreover, platforms set incentives, such as loyalty payments and ratings,
that increase the opportunity costs of multi-homing.14

2.4. Empty seats, full streets?15 NYC drivers spend almost half of their time empty,
either idling while waiting for requests or en-route to pick up passengers. To put
this into perspective, there are on average about 155 drivers per square kilometer in
Midtown, 70 of whom are unoccupied. This means 3.5 drivers and 1.5 empty drivers
per block, and these figures escalate during rush hours.

The level of utilization is ultimately an outcome of platforms’ price-setting behavior:
all else being equal, when prices are higher demand is lower, and hence utilization is
lower. If platforms set prices higher than socially optimal, this results in lower than
optimal utilization. As discussed in the previous section, the lack of interoperability
may also lead to matching inefficiencies, wasting driver miles. However, it is important
to note that low utilization does not necessarily indicate inefficiency. To some extent,
empty miles are inherent to the nature of the ride-hailing industry.

First, demand is highly volatile, while drivers work longer shifts, often sitting idle
between peaks in demand. Second, travel patterns are asymmetric. During an average

12This was confirmed by many drivers I interviewed on this subject. Most drivers mentioned minimal
wait times and satisfaction with current earnings as the main reasons for working with only one
platform at a time. Several drivers also cited technical difficulties and incentives described below.
13The largest third-party app allowing drivers to simultaneously multi-home, Mystro, charged $5 per
week for this service in 2019. According to Mystro’s CEO, platforms “do not provide any official ways
to interoperate with their network outside their first-party app [...] and they actively put barriers
to prevent other apps from accessing their network” (authorized quote from a private conversation).
14For instance, drivers must accept at least 85% of trip requests to maintain a “pro” status which
brings important benefits, and they receive bonuses for dispatching consecutive trips.
15The title of this section references a report in which a former NYC Department of Transportation’s
first Deputy Commissioner for Traffic and Planning advocates “for the City or State to mandate
that Uber, Lyft and other TNCs limit the time that their drivers spend waiting for their next trip
request” as a way to reduce Manhattan traffic congestion (Schaller, 2017).
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weekday morning rush, Midtown experiences a net inflow of about 1700 trips per hour,
meaning that there are 1700 more passengers traveling to Midtown than leaving it.
As a result, 1700 drivers per hour cannot receive new requests from Midtown after
drop-offs and must spend time idle relocating to other regions. This situation reverses
during the evening rush. This pattern holds true across most regions in NYC: at any
given time, either the inflow of trips substantially exceeds the outflow, or vice versa,
leading to idling time and low utilization. Third, a higher number of idle drivers
ensures that passengers are matched with nearby drivers.16 This improves service
quality by reducing wait times for passengers and minimizes the time drivers spend
en-route to pick-ups, thus reducing empty miles. In contrast, operating at excessively
high utilization is inefficient and can lead to disruptions in extreme cases.17

To summarize, assessing whether low utilization is wasteful requires accounting for
the market features leading to empty driver miles. These considerations inform the
model presented in the next section.

3. Model

This section presents a model focusing on the equilibrium play between two platforms
(firms, or marketplaces), m = 1, 2. Platforms compete by setting prices

pmxij , rmxij ∀ i, j, x.

That is, they choose how much passengers pay (pmxij) and how much drivers are paid
(rmxij) for trips from each origin i to each destination j . Origins and destinations
i, j ∈ {1, 2, ..., I} are the regions depicted in Figure 5.2 in Section 5.2, and prices are
adjusted depending on the weekday-hour x ∈ {(Monday, 0am) ... (Sunday, 11pm)}.
I refer to x as an hour, and denote by x−1 and x+1 the hours before and after x.18

Time is continuous and measured in hours. For tractability, the transition from x
to x+1 occurs stochastically at Poisson rate 1 - i.e. once every hour on average. I

16Section 4.3 shows that, after controlling for traffic speed and region-specific fixed effects, doubling
the density of idle drivers cuts wait times in half.
17Castillo et al. (2023) note that high utilization sometimes leads to negative feedback cycles known
as Wild Goose Chases: drivers travel long distances to pick up passengers, which decreases the
density of available drivers, thereby increasing pick-up distances even further.
18E.g. if x = (Sunday,11pm) then x−1 = (Sunday,10pm) and x+1 = (Monday,0am).
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focus on stationary equilibria where all relevant variables remain constant within an
hour x, following a cyclical pattern that repeats identically every week. Therefore,
variables are indexed by x, and time is otherwise excluded from the notation.19

This is a simpler problem than the one platforms solve in real-life, mainly because
origins and destinations are coarse, and prices only change on an hourly basis. The-
oretically, it is straightforward to allow platforms to condition prices on additional
information by expanding x to include more variables. In practice, conditioning
prices on all the relevant information is computationally intractable, and platforms
use heuristics that reduce dimensionality. The model simplifies by abstracting from
short-lived fluctuations and instead focuses on four main ingredients.

First, the market is two-sided: riders and drivers respond not only to prices but also
to the number of users on the other side. Second, the model accounts for the factors
causing a temporal and spatial mismatch between riders and drivers discussed in
Section 2.4. Third, the spatial matching process between riders and drivers becomes
more efficient as more users join the market, resulting in economies of scale. Fourth,
platforms set prices strategically, internalizing how users’ behavior and the interaction
between opposing sides affect market outcomes. I begin with a detailed overview of
these main elements.

3.1. Main ingredients.

3.1.1. Riders and drivers. Passengers request trips from i to j on Platform m at
Poisson rate qmxij , measured in trip requests per hour. Demand is strictly decreasing
in own price pmxij and wait time wm

xi , and strictly increasing in rival’s price p−mxij and
wait time w−mxi :

qmxij = qmxij (pmxij , p−mxij , wm
xi , w−mxi ). (3.1)

Wait times measure the amount of time a passenger must wait to be picked up, which
depends on both demand and drivers’ labor supply, as detailed below. To maintain
consistency in time units across different variables, wait times are measured as a
fraction of one hour, even though passengers typically wait for only a few minutes.

19The stationarity constraints are introduced formally in Section 3.2.2 below.
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Equivalently, passenger prices are pinned down by passengers’ inverse demand curves,
obtained by inverting the demand curves holding wait times fixed:

pmxij = pmxij (qmxij , q−mxij , wm
xi , w−mxi ). (3.2)

Similarly, when the rival’s price is held fixed, inverting qmxij (·) in its first argument
yields m’s residual inverse demand curve. Slightly abusing notation, I denote this by

pmxij = pmxij (qmxij , p−mxij , wm
xi , w−mxi ). (3.3)

This allows to define the weekly gross surplus of m’s passengers Wm, measured in
dollars per week, as the total area below these curves across all origins, destinations,
and weekday-hours. The net surplus CSm is the gross surplus minus the prices paid:

Wm ≡
∑
xij

∫ qmxij

0 pmxij (z, p−mxij , wm
xi , w−mxi )dz; CSm ≡ Wm −

∑
xij
qmxijpmxij . (3.4)

On drivers’ side, labor supply adjusts on two distinct margins. First, it adjusts on
the extensive margin, which determines the number of potential workers, denoted
by N. This can be thought of as the pool of qualified individuals who register to
drive in NYC, which entails clearing a set of administrative fees and procedures. I
will refer to these potential workers simply as drivers, with the understanding that,
at any given time, a driver may not necessarily be working. Indeed, as detailed in
Section 3.2 below, drivers solve a dynamic problem, frequently choosing whether to
work or remain inactive, which platform to work for, and where to position in the
city network. They respond to the system of driver prices r, wait times w, and
the frequencies of trip requests they receive while idle.20 I refer to these frequencies
as drivers’ matching rates, which are given by the ratios between demand and the
number of competing available drivers:

θmxij = θmxij (qmxij , smxi) ≡ qmxijsmxi . (3.5)

Drivers’ dynamic decisions determine nx , the average number of drivers working in
hour x, as well as smxi, the average number of drivers who are available on Platform

20I omit indices when denoting full vectors, e.g r = [rmxij ∀, x, ij m].
Again, to ensure consistency in time units, matching rates are measured in matches per hour, even
though drivers drivers typically wait only a few minutes before receiving a request.
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m - i.e. idle, waiting to be matched - in region i. These must satisfy∑
im

smxi
available

on m

+ ∑
ijm
qmxij (wm

xi + txij )
matched

on m

= nx
active

(labor supply)

≤ N
registered

(labor pool)

(3.6)

where txij denotes is the average duration of a trip from i to j in hour x, measured as
a fraction of one hour.
Equation (3.6) is an accounting identity stating that, at any given time, each active
driver is either already matched or idle and available to be matched. Intuitively, for a
driver, a trip entails spending wm

xi minutes traveling to pick up the passenger, and txij
minutes to transport the passenger from origin to destination. Hence,

∑
ijm qmxij (wm

xi+
txij ) is the average number of drivers who are matched, obtained by multiplying the
number of trips by the duration of each trip. If there are nx active drivers in total,
this implies that the number of drivers who are idle,

∑
im smxi, must satisfy the above

equation.
Both nx and smxi are continuous-time quantities, measuring the number of drivers who
are active and idle on average at any given time instant during hour x. Section 3.2
describes how these quantities are outcomes of a process where drivers continuously
transition between being idle and being matched, enter and exit, and move between
regions. Importantly, this dynamic process accounts for the factors leading to empty
driver miles discussed in Section 2.4. First, although demand is concentrated around
peak hours, drivers may choose to work longer shifts, creating a temporal mismatch
between supply and demand. Second, travel patterns are asymmetric, and trips
relocate drivers from origin to destination, causing drivers to re-position between
consecutive trips. Third, drivers can multi-home by frequently switching platforms.
However, regardless of how often they switch, they can only be available on one
platform at a time.
Four primitives dictate how drivers react to market conditions. First, drivers incur
a per-mile cost cd for dispatching a trip. Second, while they are active - either idle
or matched - they incur a flow cost cx . This encompasses expenses like fuel, vehicle
leasing or depreciation, as well as opportunity costs such as the value of leisure time.
I refer to these costs as drivers’ (average) dynamic outside options, which can vary
over time depending on weekday-hours. A third parameter, γ, governs heterogeneity
in drivers’ dynamic outside options, which in turn determines the elasticity of their
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labor supply on the intensive margin. That is, how many more (less) hours each
driver will work following and increase (decrease) in wages.
When making optimal dynamic decisions, a driver’s weekly revenues net of these
costs yield an optimal net weekly payoff u, which is a function of the payoff-relevant
variables:

u = u(r, θ,w).
To ensure consistency in time units, u is measured in dollars per hour, even though
it represents a weekly average. Drivers weigh u against a fourth parameter ū, encom-
passing (amortized) weekly registration costs, e.g. administrative fees and inspec-
tions, as well as wages from driving outside NYC. I model this through a free entry
condition:

u = ū. (3.7)

This captures drivers’ extensive margin labor supply decisions as well as their mobility
across adjacent urban areas, similarly to worker free entry conditions typically found
spatial urban models (e.g. Ahlfeldt et al. 2015).21 Intuitively, if u is higher than ū
more drivers will join the NYC labor pool, and competition among them will lower u,
and vice versa. This pins down the number number of drivers N registered in NYC.
On the other hand, it implies that drivers’ surplus, i.e. their weekly net payoff, is
pinned down by ū in equilibrium, hence it remains fixed in counterfactuals.

3.1.2. Matching. The second main ingredient is the matching technology, which is
modeled by means of a function

wm
xi = wxi(smxi). (3.8)

This accounts for spatial matching frictions and platforms’ first-dispatch protocol:
when a rider requests a trip, she is immediately matched with the nearest available
driver. Indeed, recall that smxi measures the average number of drivers who are avail-
able at any given time instant during hour x. Also, because time is continuous, there
21The Supplemental Material includes an extension where Equation (3.7) is replaced by a constant
elasticity supply curve. It also provides a robustness analysis for the counterfactuals under different
calibrations for the extensive margin elasticity, yielding results similar to those obtained under
Equation (3.7). This robustness is due to the fact that, as shown in Section 4, drivers’ surplus is
very small across all specifications. Thus, even though drivers’ surplus might change in percentage
terms, the absolute changes are small and overshadowed by changes in other variables.
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is never more than one request arriving at the exact same instant. Hence, when a
rider requests a trip, there are exactly smxi drivers available to her. This justifies the
function in Equation (3.8). Intuitively, a higher density of idle drivers implies that,
on average, a rider will be matched to a driver closer to her location, resulting in
lower wait times.

Note that wait times depend on both passenger demand and drivers’ labor supply
through Equation (3.6), even though these factors are not direct arguments of func-
tion wxi(·). Holding drivers’ labor supply constant, an increase in demand reduces
the number of available drivers, thereby increasing wait times. Conversely, holding
demand constant, an increase in drivers’ labor supply leads to more available dri-
vers, thus reducing wait times. Also, importantly, a proportional increase in both
demand and labor supply results in more available drivers, thus reducing wait times.
This mechanism generates economies of scale: the matching process becomes more
efficient as more users join a platform.

3.1.3. Conduct. The third main ingredient is platforms’ conduct, that is, how they
strategically set prices. This involves two elements.

The first is the extent to which platforms are willing to exercise their market power to
increase profits at the expense of overall efficiency. In practice, platforms may avoid
setting profit-maximizing prices, both to avoid regulatory and media scrutiny and to
incentivize adoption over the long term (see e.g. Castillo (2023), Gutierrez (2021),
Sullivan (2022)). The model captures this in a reduced-form way by assuming that
Platform m’s objective is to maximize a combination Om of her weekly profits and
the total surplus generated in her marketplace:

Om = λmΠm + (1− λm)(Πm + CSm). (3.9)

Note that drivers’ surplus does not appear in this expression because it is pinned
down by free entry (Condition 3.7). m’s weekly profits are the difference between the
prices received from passengers and payments to drivers:

Πm =∑
xij
qmxij (pmxij − rmxij ).
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When λm = 1, platforms maximize profits. When λm = 0, platforms maximize the
total surplus, which is the sum of profits and net customer surplus. Intermediate
values of λm capture the weight platforms place on profits, a parameter I estimate
from data. Section 5.3 also considers counterfactuals with alternative values of λm.
Second, to allow platforms to set prices strategically, one needs to consider how they
expect price deviations to impact market outcomes. There are multiple rational
expectations that platforms might hold, since users respond not only to prices but
also to wait times and matching rates, which in turn depend on users’ participation
decisions. This creates the standard coordination problem in two-sided markets: one
side will not join if the opposing side does not join, and vice versa.
To address this, I assume that, when evaluating price deviations, platforms hold fixed
not only the system of two-sided prices p−m, r−m but also the system of pick-up times
w−m and matching rates θ−m prevailing on the rival platform. They consider a market
outcome to be possible under pm, rm if it is consistent with passengers’ demand curves,
drivers’ dynamic decisions and free entry, and how the interaction between opposing
sides affects wm, θm trough their matching technology, holding p−m, r−m, w−m, θ−m

fixed. In equilibrium, no price deviation is profitable when evaluated based on its
best possible outcome. In other words, platforms cannot expect to benefit from
any price deviation. This equilibrium notion aligns with previous work on two-sided
platforms, which typically assumes away coordination failures.
Section 3.2 describes the supply-side dynamics in detail. With these in place, Sec-
tion 3.3 provides a formal definition of the market equilibrium, and further discusses
similarities and differences with previous literature on two-sided platforms. Address-
ing platforms’ pricing problem within a dynamic model presents technical challenges,
which are addressed in Sections 3.4-3.6. Given the technical nature of the remainder
of this section, readers interested only in the empirical analysis may skip directly to
Section 4.

3.2. Supply-side dynamics.

3.2.1. Entry, exit and movement. Drivers make decisions in continuous time respond-
ing to prices, wait times, and matching rates. They are forward-looking, forming cor-
rect expectations on the evolution of these variables at various locations. They have a
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zero discount rate, that is, they maximize their average weekly payoff.22 Solving their
dynamic decision problem yields drivers’ optimal average weekly payoff u, measured
in dollars per hour. Readers who are not familiar with models without discounting
can simply think at u as drivers’ opportunity cost of time. The optimality conditions
below are similar to those that would obtain in a model with discounting; the only
difference being that, instead of weighting future payoffs according to a discount rate,
the opportunity cost of time is discounted every hour.23

Drivers begin by making hourly entry and exit decisions. At the beginning of hour
x, those who were inactive during x−1 can enter at a random location, receiving

Vx =∑
i
Pi|xVxi. (3.10)

Pi|x denotes the probability of starting from region i, hence
∑

i Pi|x = 1, while Vxi
denotes the inclusive value of the entry choice

Vxi = Emax{Vin|xi + εin, Vout|x + εout}. (3.11)

In the above expression, Vin|xi and Vout|x denote the continuation values of working
and staying inactive, respectively. ε is a i.i.d. preference shock drawn from a type-I
extreme value distribution with scale parameter γ.

The distribution of εout−εin captures heterogeneity in drivers’ outside options, hence γ
governs the degree of heterogeneity, which determines the sensitivity of entry decisions
to differences in continuation values. The probability that a driver chooses to enter,
denoted by σin|xi, satisfies the logit formula

σin|xi = (exp γ−1Vin|xi + exp γ−1Vout|x)−1 exp γ−1Vin|xi. (3.12)

Similarly, I denote the probability that a driver opts to stay inactive by

σout|xi = 1− σin|xi. (3.13)

22The absence of discounting is a natural assumption, since drivers make frequent decisions in an en-
vironment that repeats cyclically every week. From an empirical standpoint, this is indistinguishable
from a model with a small positive discount rate.
23A more detailed explanation can be found in the Supplemental Material (Rosaia, 2024), which
contains a self-contained exposition of drivers’ problem with discounting, and derives the optimality
conditions below in the limit as the discount rate vanishes.
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Drivers who stay inactive discount the opportunity cost of time for one hour, and
face the entry choice again in x+1, hence they receive

Vout|x = −u+ Vx+1. (3.14)

Drivers who enter choose which platform to work for, receiving continuation value

Vin|xi = Emax{Vm|xi + εm : m = 1, 2} (3.15)

where Vm|xi denotes the continuation value of working for Platform m = 1, 2, and
ε is a i.i.d. preference shock drawn from a type-I extreme value distribution. The
probability that a drivers chooses Platformm, denoted by σm|xi, takes the logit formula

σm|xi = (∑
m

expVm|xi)−1 expVm|xi. (3.16)

Drivers choosing to work for m remain idle until either they get matched, or they
move to an adjacent region, or x transitions to x + 1. I first define their continuation
value in these three scenarios, and then explain how these contribute to Vm|xi.

First, idle drivers get matched with passengers routed towards j at rate θmxij , receiving

rmxij − cddij − (wm
xi + txij )(cx + u) + Vj|xim. (3.17)

That is, matched drivers receive the compensation rmxij upfront and pay a distance-
based cost cddij , which depends on the distance dij and the per-mile cost cd. They
then spend wm

xi hours en-route to pick up the passenger and txij hours traveling from
i to j , incurring the dynamic outside option cx and the opportunity cost of time u
for the total duration of wm

xi + txij hours. Upon reaching destination, they receive the
expected continuation value

Vj|xim = (wm
xi + txij )Vx+1j + [1− (wm

xi + txij )]Vin|xj . (3.18)

Intuitively, since both wait times and travel times are measured in fractions of hours,
drivers dispatched during hour x arrive at destination during x+1 with probability
wm
xi + txij . In this case, they choose whether to keep working or become inactive,

receiving the inclusive value of the entry choice. With the remaining probability,1− (wm
xi + txij ), they arrive before x transitions to x+1 and choose whether to switch

platform, receiving the inclusive value of the platform choice.
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Second, at Poisson rate λ, drivers idle in i can move towards a region j within Ji,
which includes i and the regions adjacent to it. With some probability Pj|xi, drivers
choosing j relocate to j and choose whether to switch platform, receiving the inclusive
value of the platform choice; with the remaining probability, 1 − Pj|xi, they remain
idle in i but may still switch platforms.24 Drivers choosing j = i always remain in i,
meaning Pi|xi ≡ 1. The inclusive value of this movement decision is given by

Vmove|xi = Emax{Pj|xiVin|xj + (1− Pj|xi)Vin|xi + εj : j ∈ Ji} (3.19)

where ε is drawn i.i.d. from a type-I extreme value distribution. Hence, drivers
choose j with probability given by the logit formula

σj|xi = [∑
j

expPj|xi(Vin|xj − Vin|xi)]−1 expPj|xi(Vin|xj − Vin|xi). (3.20)

Third, x transitions to x+1 at Poisson rate 1, at which point drivers choose whether
to continue working or become inactive, receiving the inclusive value of the entry
decision, Vx+1i.
Hence, finally, idle drivers receive the expected continuation value

Vm|xi = (1 + λ+∑
j
θmxij )−1{−cx − u+ λVmove|xi + Vx+1i

+∑
j
θmxij [rmxij − cddij − (wm

xi + txij )(cx + u) + Vj|xim]}. (3.21)

In words, drivers remain idle for an average of (1 + λ + ∑
j θmxij )−1 hours, during

which they incur the dynamic outside option cx and the opportunity cost of time u.
Then, one of the following happens: with probability proportional to θmxij , they are
dispatched to j , receiving the continuation value in Expression 3.17; with probabil-
ity proportional to λ, they make a movement decision, receiving the inclusive value
Vmove|xi; with probability proportional to 1, x transitions to x+1, and they receive the
inclusive value of the entry/exit decision, Vx+1i.

24For the empirical analysis I set λ = 60/5, which means that idle drivers face movement decisions
once every five minutes on average. For consistency with travel times, I set Pj|xi = (λtxij )−1. This
implies that, on average, it takes txij hours for a driver who always chooses j to relocate there.
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3.2.2. Stationary distribution. When the number of drivers N is given, their choice
probabilities σ determine the hourly distribution of drivers available on different plat-
forms at various locations, smxi, and drivers’ overall labor supply, nx . These must
satisfy a system of recursive equations.

First, let ηxi be the average number of drivers who begin hour x by facing the entry
choice in region i. We must have

ηxi
entry choice

=∑
m

smx−1i
while idle

+∑
jm
smx−1jθmx−1ji(wm

x−1j + tx−1ji)
upon drop-off

+ (N − nx−1)Pi|x
while inactive

. (3.22)

Indeed, when x−1 transitions to x, on average,
∑

m smx−1i drivers are idle in i and
face the entry choice immediately;

∑
jm smx−1jθmx−1ji(wm

x−1j + tx−1ji) drivers are matched
towards i and face the entry choice upon drop-off; N − nx−1 drivers are inactive and
face the entry choice in i with probability Pi|x .

Drivers choose to exit (or to remain inactive) with probability σout|xi, so we must have

N − nx
inactive

=∑
i
ηxiσout|xi. (3.23)

On the other hand, drivers choose to enter (or to continue working) with probability
σin|xi, and must choose which platform to work for. Let πxi be the average number
of drivers facing the platform choice in region i during hour x. Recall that drivers
may also switch platforms upon moving, or directly upon drop-off if they reach their
destination before the transition to x+1 (otherwise, they must first choose whether to
keep working). Hence, we must have

πxi
platform choice

= ηxiσin|xi
upon entry

+∑
jm
smxjθmxji[1− (wm

xj + txji)]
directly upon drop-off

(3.24)

+ λ∑
jm

[smxjσi|xjPi|xj + smxiσj|xi(1− Pj|xi)
upon moving

]
Indeed, ηxiσin|xi drivers face the platform choice in i upon entry; smxiθmxji drivers dis-
patched from j to i reach destination before the transition to x+1 with probability1 − (wm

xj + txji), facing the platform choice in i directly upon drop-off; λsmxj drivers
make a movement decision from j during hour x, move towards i with probability
σi|xj , and reposition to i with probability Pi|xj , facing the platform choice in i; λsmxi
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drivers make a movement decision from i, move towards j with probability σj|xi, and
remain in i with probability 1− Pj|xi, facing the platform choice in i.

These drivers choose Platform m with probability σm|xi, remaining idle until either
they get matched (at rate θmxi ≡

∑
j θmxij) or make a movement decision (at rate λ),

before x transitions to x+1. The average number of idle drivers is the difference
between the average inflow and the average outflow.

smxi = πxiσm|xi
inflow

− (θmxi + λ)smxi .
outflow

(3.25)

Finally, Equation (3.6) must hold. Replacing qmxij with smxiθmxij , this can be written as∑
im
smxi
idle

+∑
ijm
smxiθmxij (wm

xi + txij )
matched

= nx
active

. (3.26)

That is, at any given time, active drivers are idle or matched, and the number of
matched drivers is obtained by multiplying the average number of matches, smxiθmxij ,
by the average time needed to dispatch a trip, wm

xi + txij .
3.2.3. Optimality. Conditions (3.22)-(3.26) describe the stationary distributions that
are compatible with the entry, exit and movement decisions ofN drivers, encapsulated
by the optimal choice probabilities σ .

Definition 1. s is consistent with the optimal entry, exit, and movement decisions of
N drivers if Conditions (3.10)-(3.26) are satisfied.

Drivers’ dynamic decisions also determine their average weekly payoff u. It can be
shown that this admits an intuitive expression.

Proposition 1. If Conditions (3.10)-(3.26) are satisfied then

u = {∑
xijm

smxiθmxij [rmxij − cddij − (txij +wm
xi)cx ]−∑

xim
smxicx + E} · (168 ·N)−1 (3.27)

where E is a term that captures drivers’ payoffs from the i.i.d. shocks.

The first term on the right-hand side is drivers’ weekly total surplus, that is, the sum
of weekly revenues from matches net of the costs of time and distance, minus the cost
of idling time, plus a term that captures utilities from the i.i.d. shocks. Dividing this
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by 168 (the number of weekday-hours) and by the number of drivers N yields the
surplus u for an individual driver measured in dollars per hour.

Definition 1 describes the supply-side adjustment on the intensive margin, i.e. holding
N fixed. Free entry further requires u = ū (Condition 3.7). When this is also satisfied,
I say that s is driver-optimal.

Definition 2. (i) s is driver-optimal if Conditions (3.7) and (3.10)-(3.26) are satisfied.

(ii) sm is driver-optimal if there exists s−m such that s is driver-optimal.

Condition (i) defines a supply curve, describing how drivers’ distribution responds to
changes in r, θ and w accounting for adjustments on both the intensive and extensive
margins. Condition (ii) defines the supply curves faced by individual platforms.

3.2.4. Inversion. Every distribution of available drivers corresponds to an essentially
unique system of payments drivers must receive. This forms the basis for identifica-
tion, and supports both the theoretical results and the computational algorithm. This
section makes this idea precise. Readers not interested in theory and computation
may jump directly to Section 3.3 and skip Sections 3.4-3.6 that follow.

Note that drivers’ optimality conditions (Equations 3.10-3.21) and average weekly
payoff (Equation 3.27) depend on prices only through the mean payoffs

δmxi = −cx +∑
j
θmxij [rmxij − cddij − (wm

xi + txij )cx ]. (3.28)

This means that different price systems that yield the same δ result in identical
choice probabilities σ and average weekly payoff u. Intuitively, this is because δmxi
fully captures drivers’ incentives for working on Platform m in region i: for each hour
spent searching, they incur the outside option cx , and get matched

∑
j θmxij times on

average, receiving the compensation net of the costs of time and distance. Slightly
abusing notation, I write this as

u = u(δ, θ,w)
and say that s is driver-optimal under δ, θ,w if it is driver-optimal under r, θ,w,
with the understanding that δ is a function of prices.
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Drivers’ distribution is invertible in δ: for every distribution s, there is a unique δ
such that s is driver-optimal. Inversion nests two steps, corresponding to the intensive
and extensive margin. First, when N is held fixed, it can be shown that there is a
unique system of mean payoffs rationalizing s as the outcome of drivers’ optimal
dynamic decisions. I denote this by δ(s, θ,w,N).
Proposition 2. For every θ,w, every s strictly positive and every N large enough,
there exists a unique δ ≡ δ(s, θ,w,N) such that s is consistent with the optimal
entry, exit, and movement decisions of N drivers.

This relates to standard identification results in dynamic discrete choice models,
where it is well-known that choice probabilities identify differences in payoffs (see
e.g. Magnac and Thesmar, 2002). Here, drivers’ choice probabilities are not ob-
served, as multiple systems σ can result in the same distribution s. Instead, s reveals
the time drivers spend idle in various locations, which identifies δ.
Optimality further requires N to adjust until free entry is satisfied:

u(δ(s, θ,w,N), θ, w) = ū. (3.29)

This suggests an inversion procedure that searches for an N satisfying the above
equation, while adjusting δ as a function of N to ensure that Conditions (3.10)-(3.26)
also hold. The Supplemental Material presents an algorithm performing these steps.
Intuitively, consider increasing N while keeping s fixed. This means that more dri-
vers contribute the same labor supply, hence drivers must spend more time inactive.
For this to be the case, working must become less attractive, meaning that the pay-
offs in δ(s, θ,w,N) must decrease as a function of N. This suggests that, first,
u(δ(s, θ,w,N), θ, w) should decrease with N. Second, as payoffs decrease, drivers
spend more time inactive, receiving zero payoff. Hence u(δ(s, θ,w,N), θ, w) can
approach zero but not become negative. This reasoning leads to the following.

Proposition 3. Function u(δ(s, θ,w,N), θ, w) is strictly decreasing and continuous
in N, and maps N onto (0,+∞).
This implies that function u(δ(s, θ,w, ·), θ, w) is invertible: for every ū strictly posi-
tive, Equation (3.29) has a unique solution for N. Hence there exists a unique δ such
that both free entry and Conditions (3.10)-(3.26) are satisfied.
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Proposition 4. For every θ,w and every s strictly positive there exists a unique δ
such that s is driver-optimal.

That is, there exists a unique δ rationalizing s as an outcome of drivers’ behavior,
accounting for adjustments on both the intensive and extensive margins. I denote
this by:

δ = δ(s, θ,w). (3.30)

When the rival’s prices, hence δ−m, are held fixed, a similar inversion defines the
inverse supply curves faced by individual platforms.

Proposition 5. For every δ−m, θ, w and every sm strictly positive there exists a unique
δm such that sm is driver-optimal.

That is, holding the rival’s prices fixed, there is a unique system of mean payoffs δm

that m must provide to drivers in order to induce them to behave consistently with
sm. Slightly abusing notation, I denote this by

δm = δm(sm, δ−m, θ, w). (3.31)

Equations (3.30) and (3.31) define the supply-side analogues of Equations (3.2) and
(3.3). Therefore, I will refer to these as drivers’ inverse supply curve and m’s residual
inverse supply curve, respectively.

3.3. Equilibrium. When evaluating price deviations, platforms hold fixed both the
system of two-sided prices p−m, r−m and the system of pick-up times w−m and match-
ing rates θ−m prevailing on the rival platform. m deems qm, sm a possible outcome of
pm, rm if this is consistent with how users respond, holding p−m, r−m, w−m, θ−m fixed.

Definition 3. Platform m deems qm, sm a possible outcome of pm, rm if (i) qm =
qm(pm, p−m, wm, w−m) and (ii) sm is driver-optimal under δ, θ,w, where (iii) wm =
w(sm) and θm = θm(qm, sm).25
First, platforms correctly internalize their demand curves. Second, they correctly
internalize drivers’ behavior, accounting for adjustments on both the intensive and
25In what follows I remove indices from an equation when it applies to all coordinates, e.g. qm =
qm(pm, p−m, wm, w−m) means qmxij = qmxij (pmxij , p−mxij , wmxi , w−mxi ) for all x, ij.
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extensive margins. Third, they internalize how the interaction between opposing sides
affects wm, θm trough their matching technology, holding w−m, θ−m fixed.

Definition 4. q, s, p, r is an equilibrium if, for all m = 1, 2, qm, sm, pm, rm solves

max
pm,rm

( max
qm,sm

Om s.t. qm, sm is a possible outcome of pm, rm ). (3.32)

For any price system pm, rm, the inner problem in (3.32) defines its best possible
outcome. That is, the allocation qm, sm maximizing m’s objective Om (Equation 3.9)
among all possible outcomes of pm, rm. Definition 4 states that in equilibrium no
price deviation is profitable when evaluated based on its best possible outcome. In
other words, platforms cannot expect to benefit from any deviation.

This equilibrium notion aligns with previous work on two-sided platforms, which typ-
ically assumes away coordination failures. The common approach assumes either that
firms can directly select their users’ utilities from joining (e.g. Armstrong, 2006) or
that firms can directly select the number of their users (e.g. Rysman, 2004). These
two notions are equivalent in a monopoly but differ when there is more than one
firm. Intuitively, firms can expect to steal users from their rival upon deviating when
they compete in users’ utilities but not when they select directly the number of their
users. This paper aligns more closely with the first notion: platforms take as given
all factors affecting users’ payoffs when joining the rival (prices, wait times, match-
ing rates) while they can expect to steal both passengers and drivers from the rival
upon deviating. On the other hand, this model differs from previous literature by
accommodating complex forms of multi-homing. First, drivers are allowed to switch
platforms dynamically. This implies that platforms’ share drivers’ labor pool N, and
that drivers’ weekly utility from joining the market, u(r, θ,w), is a function of both
platforms’ market outcomes, making previous approaches not directly applicable. Sec-
ond, this equilibrium notion readily extends to the case where drivers simultaneously
multi-home, a counterfactual considered in Section 5.

3.4. Spence’s monopolist. Platforms behave as if they were selecting an allocation
qm, sm while internalizing how they must set prices to induce their users to behave
accordingly. To make this precise, the remainder of this section and Sections 3.5-3.6
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below simplify the notation by omitting p−m, r−m, θ−m, w−m. The understanding is
that the rival’s variables are held fixed, and the focus is on m’s optimal response.

First, note that platforms’ objectiveOm (Equation 3.9) can be written as the difference
between a revenue term Rm and a cost term Cm:

Om = [λm∑
xij
qmxijpmxij + (1− λm)Wm]− [∑

xij
qmxijrmxij ] ≡ Rm − Cm.

In words, platforms maximize a combination of revenues and rider surplus, minus
total costs. In turn, Cm can be written in terms of drivers’ mean payoffs δm:

Cm =∑
xij
qmxijrmxij =∑

xi
smxicx +∑

xij
qmxij [cddij + (wm

xi + txij )cx ] +∑
xi
smxiδmxi .

26Intuitively, platforms must compensate drivers for their cost of idling time and the
time- and distance-based costs they incur when dispatching trips. Additionally, they
must provide drivers with location-specific incentives, captured by δm.

When the rival’s variables are held fixed, pm,Wm and δm are pinned down as functions
of qm, sm, wm, θm by m’s residual inverse demand and supply curves (Equations 3.3,
3.4 and 3.31). In turn, wm = w(sm) and θm = θm(qm, sm) are functions of qm, sm.
Hence, both the cost and the revenue term are ultimately functions of qm, sm:

Rm = Rm(qm, sm), Cm = Cm(qm, sm).
Combining these observations shows that Problem 3.32 is equivalent to:

max
qm,sm

Rm(qm, sm)−Cm(qm, sm). (3.33)

This is reminiscent of a Spence (1975) monopolist. Intuitively, wait times reflect the
quality of service for passengers. Platforms can influence service quality by incen-
tivizing drivers to spend more time idle. Hence they behave as if they were selecting
quantity and quality of service, subject to a revenue function that captures passengers’
demand curves and a cost function that captures drivers’ behavior.

Problem 3.33 should be viewed as an “as if” representation of platforms’ pricing
problem, since platforms hold fixed the rival’s prices p−m, r−m, rather than the rival’s
allocation q−m, s−m. Importantly, firms can expect to attract users from their rival

26To see this, multiply both sides of Equation (3.28) by smxi, use smxiθmxij = qmxij and rearrange terms.
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upon deviating. Mathematically, this difference is captured by the fact that platforms
internalize their residual inverse demand and supply curves (Equations 3.3 and 3.31),
which take as given the rival’s prices, rather than the full inverse demand and supply
curves (Equations 3.2 and 3.30), which take as argument the rival’s allocation.

3.5. Optimality conditions. This formulation simplifies in two ways. First, Problem
3.33 is unconstrained.27 Second, and most importantly, it allows for the derivation of
intuitive expressions for platforms’ optimality conditions.

Proposition 6. Take any qm, sm strictly positive. Let V be the system of drivers’ value
functions when wm = w(sm), θm = θm(qm, sm) and δm = δm(sm, θm, wm), and rm be
any price system satisfying Equation (3.28). Then:

dCm(qm, sm)
dqmxij

= cddij + (wm
xi + txij )(cx + ū) + Vm|xi − Vj|xim (3.34)

dCm(qm, sm)
dsmxi

=∑
j
θmxij [rmxij − cddij − (wm

xi + txij )(cx + ū) + Vj|xim − Vm|xi]
− |dwxi(smxi)

dsmxi
|
∑
j
qmxij (cx + ū+ Vin|xj − Vx+1j ) (3.35)

The intuition is simple. First, Equation (3.34) states that, to dispatch an additional
passenger, platforms must compensate drivers for their opportunity cost of the trip,
which is the sum of a cost of time and distance and a term Vm|xi − Vj|xim trading off
drivers’ value at origin with their continuation value at destination.
As for Equation (3.35), the first term on the right-hand side captures captures a
congestion effect. An additional idle driver reduces existing drivers’ matching rates
by |dθmxij/dsmxi| = θmxij/smxi. When the number of drivers is increased, existing drivers
must be compensated for the overall cost of this congestion externality. This cost is
calculated as the number of existing drivers times the reduction in matching rates,
smxi|dθmxij/dsmxi| = θmxij , multiplied by the difference between the continuation values of
being matched and staying idle, summed across all destinations. The second term
27More precisely, the only remaining constraint is that allocations must be strictly positive. However,
it can be shown that this constraint is never binding, provided that pmxij (qmxij , p−mxij , wmxi , w−mxi ) → ∞
as qmxij → 0, which holds for all common demand specifications. Hence, Problem 3.33 can be treated
as unconstrained.
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accounts for the fact that an additional idle driver reduces the wait times for all the∑
j qmxij trips originating from i by

∣∣dwm
xi/dsmx,i

∣∣ hours. This results in a reduction
in drivers’ time-based costs of cx + ū dollars for every hour saved. Moreover, as
trips become shorter, the likelihood that matched drivers reach destination before x
transitions to x+1 increases. The quantity Vin|xj−Vx+1j measures the change in drivers’
expected continuation value at destination for every hour saved.

The first order condition of Problem (3.33) with respect to qmxij yields

pmxij = cddij + (wm
xi + txij )(cx + ū)︸ ︷︷ ︸

marginal cost of time and distance

+ λmqmxij |
dpmxij
dqmxij

|︸ ︷︷ ︸
market power distortion

+ Vm|xi − Vj|xim︸ ︷︷ ︸
continuation externality

. (3.36)

As captured by the first two terms, prices tend to be higher than the marginal cost
of a trip, since platforms charge a mark-up proportional to their residual inverse
demand elasticity. The last term is reminiscent of standard pricing formulae in two-
sided markets: platforms charge a lower (resp. higher) price to users on one side
of the market the higher is the positive (resp. negative) externality they create for
users on the opposing side. Passengers create an externality on drivers by re-locating
them from origin to destination, hence the cross-side externality trades off drivers’
value at origin with their continuation value at destination. When λm = 0, the above
equation yields the welfare-maximizing prices. If instead λm > 0, prices exceed the
welfare-maximizing level, leading to an under-provision of passenger trips.

The first order condition of Problem (3.33) with respect to smxi yields∑
j
θmxij [rmxij − cddij − (wm

xi + txij )(cx + ū) + Vj|xim − Vm|xi]︸ ︷︷ ︸
negative externality on idle drivers

= dwm
xi

dsmxi
dWm

dwm
xi︸ ︷︷ ︸

positive externality on riders

+ λmdw
m
xi

dsmxi
[∑
j
qmxij

dpmxij
dwm

xi
− dW

m

dwm
xi

]︸ ︷︷ ︸
Spence distortion

(3.37)

+ |dw
m
xi

dsmxi
|
∑
j
qmxij (cx + ū+ Vin|xj − Vx+1j )︸ ︷︷ ︸

positive externality on matched drivers

.
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Drivers are paid more (resp. less) the higher is the positive (resp. negative) externality
they create for other users. Negative externalities stem from the congestion effect
an additional driver creates on existing drivers by reducing their matching rates.
Positive externalities stem from the fact that drivers reduce wait times, thus increasing
passengers’ surplus and leading to lower costs for matched drivers. When λm = 0,
driver compensations are set to balance these opposing effects. If instead λm > 0,
platforms do not fully internalize riders’ surplus. Instead, they internalize that lower
wait times allow for charging higher prices without losing passengers, hence drivers’
compensations are distorted as in Spence (1975).

3.6. Gradient-based search. Proposition 6 is crucial from a computational stand-
point, enabling the computation of equilibria through a gradient-based search for the
allocations that maximize platforms’ profits conditioned on the rival’s strategy.

At every step, the search starts from a strictly positive allocation q, s and computes
w = w(s), θ = θ(q, s), and p through passengers’ inverse demand curves (Equa-
tion 3.2). The core of each step consists in inverting drivers’ distribution, that is,
computing δ = δ(s, θ,w) through the procedure outlined in Section 3.2.4.

Let dOm/dqmxij and dOm/dsmxi denote the derivatives of m’s objective evaluated at
qm, sm, holding p−m, δ−m, w−m, θ−m fixed. Once δ, w and θ are known, drivers’
value functions can be computed via standard value iteration methods, hence these
derivatives can be computed as per Proposition 6.28

The search proceeds by updating q, s along these derivatives: given small a step size
step > 0, the allocation at the next step, q(+1), s(+1), is computed as

qm(+1)xij = qmxij + step · dO
m

dqmxij
; sm(+1)xi = smxi + step · dO

m

dsmxi
.

The algorithm stops when q(+1), s(+1) ∼ q, s. In short, the algorithm simultaneously
applies gradient ascent to both platforms’ best response problems (Problem 3.33),
and stops when the optimality conditions (Equations 3.36 and 3.37) are satisfied.

28The derivative dOm/dqmxij is simply the difference between the left- and right-hand sides of Equation
(3.36). The derivative dOm/dsmxi can be written as a function of δ by taking the difference between
the left- and righ-hand sides of Equation (3.37), and substituting in Equation (3.28).
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Convergence is not guaranteed with multiple platforms, although I consistently ob-
serve convergence across all simulations considered in Section 5. It is also worth
noting that several counterfactuals involve a single platform, such as a monopolist or
a social planner. With a single platform, a problem similar to 3.33 fully describes
the model equilibria - rather than a platform’s best response to the rival. Hence the
gradient-based search reduces to standard gradient ascent, and convergence can be
established under standard regularity conditions.

4. Estimation

This section describes the estimation of the model primitives, namely, the demand
systems, drivers’ cost parameters, the matching technology, and platforms’ conduct
parameters. The Supplemental Material provides an evaluation of the model’s fit.

4.1. Demand. The demand system is specified as follows. In hour x, Mxij potential
passengers seek transportation from i to j , choosing between different ride-hailing
platforms m = 1, 2 and an outside option. Their average utility from taking the
outside option is normalized to zero, while the average utility from choosing Platform
m is the sum of an average value vxij , a disutility βpxij for each dollar spent, a disutility
βwx per minute waited, and a brand effect αxi if m = 1:

umxij ≡ vxij + αxi · {if m = 1} − βpxijpmxij − βwx wm
xi .

I assume that demand follows a nested logit model. The inner nest is a decision be-
tween platforms, conditional on taking a ride-hailing trip; the outer nest is a decision
between ride-hailing and the outside option. This can be written as

qmxij
Mxij

= expumxij∑
m expumxij (∑m expumxij )ηxij1 + (∑m expumxij )ηxij

where ηxij is a nest parameter.

The parameters Mxij and ηxij are calibrated. Mxij is set to match the number of trips
taken by New Yorkers across all transport modes from the 2018 MTA NYC travel
survey.29 ηxij is chosen so that the elasticity of total ride-hailing demand with respect

29https://new.mta.info/transparency/surveys.
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to prices is 0.6, in line with experimental estimates by Castillo (2023) and Cohen
et al. (2016).30

The price and wait time coefficients are estimated from high-frequency variation in
platforms’ relative shares. I divide the sample period in one-hour intervals t. Platform1’s relative share of passengers traveling from i to j at time t takes the logit formula

q1
tij

q1
tij + q2

tij
= exp(αxi − βpxij (p1

tij − p2
tij )− βwx (w1

ti −w2
ti))1 + exp(αxi − βpxij (p1

tij − p2
tij )− βwx (w1

ti −w2
ti)) (4.1)

where qmtij , pmtij and wm
ti denote the number of trips, average passenger price and

average wait time observed on Platform m at time t. I estimate this equation via
maximum likelihood.

The idea behind identification is that, intuitively, demand shocks not affecting brand-
specific preferences can impact the overall number of ride-hailing trips, but not plat-
forms’ relative shares. Hence endogeneity is a concern only insofar there is variation
in brand preferences, which is controlled for by allowing the brand effects αxi to vary
granurarly. In other words, identification relies on the assumption that, after con-
trolling for weekday-hour- and location-specific fixed effects, the residual variation in
relative prices and wait times is not due to idiosyncratic shocks to brand preferences
- but rather to factors that can be treated as exogenous for demand estimation, such
as shocks to driver availability of differences in platforms’ pricing and matching al-
gorithms. The maximum likelihood estimates of the brand effects, presented in the
Supplemental Material, support this argument, as they suggest that brand preferences
are fairly constant over time.

30The elasticity of total ride-hailing demand with respect to prices is the percentage decrease in∑
m qmxij following a 1 percent increase in both p1

xij and p2
xij . This can be written as:∑

m

qmxij∑
m qmxij

[
d logqmxij
d logpmxij + d logqmxij

d logp−mxij
] = −0.6.

Once βpxij is determined, this equation yields a closed-form expression for ηxij .
Castillo (2023) studies an experiment where passengers in five Latin American cities were randomized
into a control group and two treatment groups that received price discounts of 10% and 20%, finding
an average demand elasticity of 0.633. Cohen et al. (2016) exploit quasi-experimental variation in
Uber’s pricing algorithm to estimate demand elasticities in several U.S. cities, finding an average
elasticity of 0.6084 in NYC.
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For estimation, I set βpxij = βpi /txij , capturing the fact that longer trips are less
sensitive to absolute changes in prices.31 I let βpi vary by groups of regions and βwx
vary across four-hour windows, capturing variation in income across locations and
infra-day variation in passengers’ value of time. αxi varies across cells obtained from
the combinations of regions, four-hour windows, and a weekday/weekend dummy.
Table 2 below presents the maximum likelihood estimates of βpi and βwx , as well as
the average estimates of passengers’ value of time implied by these coefficients.32

Region βpi VOT Hour of day βwx VOT
($/hr) ($/hr)

Lower Manhattan 0.893 42.6 1am - 5am 0.015 12.6
(0.011) (0.004)

Midtown 0.892 45.6 5am - 9am 0.026 25.2
(0.010) (0.004)

Upper East and West 0.923 38.1 9am - 1pm 0.054 54
(0.015) (0.005)

Harlem 0.972 31.3 1pm - 5pm 0.033 35.7
(0.019) (0.003)

Bronx 0.991 31 5pm - 9pm 0.054 55.3
(0.019) (0.002)

Brooklyn 0.882 39.3 9pm - 1am 0.029 26.9
(0.009) (0.003)

Queens 0.944 33.1
(0.021)

Table 2. Maximum likelihood estimates of passengers’ sensitivity to price
and wait time, represented by parameters βpi and βwx from Equation (4.1),
along with the implied value of time estimates. The coefficients’ standard
errors are in parentheses.

The spatial variation in price coefficients is not large, ranging from 0.882 in Brooklyn
to 0.991 in the Bronx. Wait time coefficients change substantially over time, as
passengers are about 3.6 times more sensitive to wait times during the morning and
31This specification is consistent with the standard practice in the ride-hailing literature of estimating
demand as a function of the surge multiplier, which assumes that passengers’ price sensitivity is
inversely proportional to a linear combination of time and distance (e.g. Cohen et al. (2016)).
32Passengers’ value of time is their willingness to pay to reduce wait time, as measured by the ratio
βwx /β

p
xij . Table 2 presents region-specific and time-specific demand-weighted averages of these ratios.
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evening rush hours than during late night. The average value of time varies both
spatially and over time. It ranges from $31 in the Bronx to $45 in Midtown, and from
$12 at late night to $55 during the evening rush hour. For comparison, estimates of
hourly wages for 2019 Q3 assuming a 40-hour workweek are $51 in Manhattan, $24 in
Brooklyn, $27 in Queens and $28 in the Bronx.33 Another reference point is Buchholz
et al. (2024), who present detailed estimates of the value of time for passengers of a
ride-hailing platform in Prague. They find price elasticities four to ten times as large
as wait time elasticities. Their findings are roughly consistent with my estimates,
which imply price elasticities five to twenty times as large as wait time elasticities.

4.2. Cost parameters and labor supply elasticities. Recall that drivers’ cost param-
eters include the per-mile cost cd, the time-varying outside options cx , a parameter
γ capturing heterogeneity in drivers’ outside options, and a parameter ū capturing
registration costs.
γ and cd are calibrated. γ is set so that drivers’ labor supply elasticity on the
intensive margin is 0.5, consistently with experimental estimates by Hall et al. (2023)
and Caldwell and Oehlsen (2022).34 cd is set equal to the July 2019 standard rate of
$1.088 per mile set by the TLC.35

The time-varying outside options cx are estimated from temporal and spatial variation
in drivers’ wages and labor supply. Estimation relies on the identification result and
33According to the Quarterly Census of Employment and Wages by the U.S. Bureau of Labor
Statistics, the average weekly wage in 2019 Q3 was $2,055 in New York County (Manhattan), $955
in Kings County (Brooklyn), $1,074 in Queens County, and $1,130 in Bronx County.
34Drivers’ labor supply elasticity on the intensive margin is the percentage increase in

∑
x nx , drivers’

total hours worked per week, following a percentage increase in drivers’ hourly wages, holding fixed
N, the number of drivers in the NYC labor pool. Drivers’ hourly wages are the sum of total weekly
payments to drivers,

∑
xijm qmxijrmxij , divided by the total hours worked per week. This elasticity does

not admit a closed-form expression, so I set γ so that hours worked increase by 5% following a 10%
increase in hourly wages.
Hall et al. (2023) study drivers’ reactions to an exogenous 40% increase in hourly earnings across
several US cities, finding that hours worked per driver increased by 20%. Caldwell and Oehlsen
(2022) study an experiment where drivers in Houston were randomized into a control group and a
treatment group that received 10-50% higher earnings per trip, finding an intensive margin labor
supply elasticity of 0.8 for female drivers and 0.4 for male drivers. According to Cook et al. (2021),
27% of drivers in the US between 2015 and 2017 were women, resulting in an average elasticity of
0.508.
35This accounts for expenses such as “vehicle purchase or lease, fuel, maintenance, and insurance”:
www.nyc.gov/assets/tlc/downloads/pdf/driver_income_rules_12_04_2018.pdf
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inversion algorithm outlined in Section 3.2.4: once the number of drivers N and their
distribution s are observed, their expected payoffs δmxi from one hour spent searching
at various locations are identified and can be computed. These payoffs were defined
in Equation (3.28), repeated here for simplicity:

δmxi = −cx +∑
j
θmxij [rmxij − cddij − (wm

xi + txij )cx ]. (4.2)

Intuitively, for each hour spent searching, drivers incur the outside option cx and get
dispatched

∑
j θmxij times on average, receiving the compensation net of the cost of

time and distance. To compute δ, N is set equal to 80000, which is the number of
unique drivers who dispatched at least one ride-hailing trip in July 2019 according
to TLC data. Once δ and cd are known, Equation (4.2) yields a system of equations
whose only unknowns are the time-varying parameters cx . Figure 4.1 plots their least
squares estimates.

Figure 4.1. Drivers’ time-varying outside options cx , measured in dollars per
hour. Dashed lines indicate the 95% confidence intervals.

Drivers’ outside options are approximately $35 per hour on average. The estimated
value ranges from around $33 per hour during the day to roughly $39 per hour during
late night, indicating that leisure utility may be greatest during nighttime hours. A
potential point of comparison is the hourly wage earned by construction workers in
the state of New York, which averaged roughly $38 in June 2019.36

Once cx and cd are known, solving drivers’ dynamic choice problem yields their
average weekly revenues net of outside options u. The estimated value of u is very

36See https://labor.ny.gov/stats/ceshourearn2.asp
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small, at about $3660 per year. For comparison, direct costs that drivers must pay
for licensing related requirements total slightly over $1500.37 This is because drivers
in the sample work an average of only 2 hours per day. On the one hand, few
hours worked per week translate directly into low net weekly revenues. On the other
hand, the model rationalizes the small number of hours worked with high outside
options, resulting in small net revenues per hour worked. This fact likely reflects the
real situation of NYC drivers in 2019: after accounting for calibrated vehicle-related
expenses, drivers make about $15 per hour on average. This is the NYC minimum
wage in 2019, which is a good estimate of drivers’ outside options per hour worked.
Some authors argue that NYC drivers make even below this threshold (Parrott and
Reich, 2018).

Note that, multiplying u by the total driver labor force, which is 80,000 drivers in
July 2019, yields only $293 million per year as an upper bound for the total drivers’
surplus at status quo that would obtain if free entry (Equation 3.7) was replaced with
any extensive margin labor supply curve. For comparison, riders make about $4,097
million per year in surplus, and platforms make about $669 million per year in profits.

Intuitively, this makes the market empirically close to one with drivers’ free entry on
the extensive margin, justifying Equation (3.7). If free entry was relaxed in coun-
terfactuals, drivers’ surplus would change little in absolute terms relative to other
quantities. Specifically, changes in drivers’ surplus would not significantly impact
total welfare calculations, which are dominated by changes in riders’ surplus. The
Supplemental Material presents a robustness analysis that confirms this intuition
across alternative calibrations.

4.3. Matching function. A known feature of ride-hailing markets is that observed
wait times tend to be well-approximated by a constant elasticity function of the
spatial density of idle drivers.38 I observe the same in my sample when estimating a

37The TLC itemizes these costs in a flier distributed to prospective drivers:
http://www.nyc.gov/html/tlc/downloads/pdf/thinking_about_driving_fhv.pdf
38See Yan et al. (2020) and Castillo et al. (2023). Yan et al. (2020, Proposition 1) show that this
specification can also be justified theoretically: a simple model of matching in a homogeneous, two-
dimensional space predicts a wait time that is a constant elasticity function of the density of idle
drivers. I thank an anonymous referee for highlighting this.
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constant elasticity function of the form

logwm
xi = αi − βspeed log(speedxi)− βdensity log(driver densitymxi) (4.3)

where α and β are the parameters to be estimated. speedxi denotes the average traffic
speed in region i in weekday-hour x, while driver densitymxi denotes the ratio between
the number of idle drivers smxi and the area of region i. Intuitively, higher driver
density implies that passengers are matched to closer drivers, thus wait times are
lower. This relationship is affected by the speed of traffic and by topological features,
e.g. road patterns, which are controlled for by the region-specific fixed effects αi.

log( pick-up time )

log( speed ) -1.554 (0.011) R2 0.809
log( driver density ) -0.666 (0.003) Obs 6552

Region fixed effects Yes

Table 3. Least squares estimates of the matching function coefficients.

Table 3 shows the least squares estimates of Equation (4.3). If the traffic speeds
double, wait times are reduced by 150%. The role driver density is also substantial, as
a one-fold increase in density reduces wait times by about 55%. While parsimonious,
this model explains a substantial share of the space-time variation in wait times, as
measured by a coefficient R2 of 0.8.
4.4. Conduct parameters. Using the estimated demand parameters, cost parameters,
and matching technology, the optimal pricing formulae in Equations (3.36) and (3.37)
yield a closed-form expression of the optimal markups in prices (i.e. the difference
between passenger fares and driver earnings, net of taxes and tolls) as a function of
platforms’ conduct parameters. I calibrate the conduct parameters to match the av-
erage markups observed in the data, which leads to λ1 = 0.221 and λ2 = 0.305. This
means that platforms charge passengers below the profit maximization level, consis-
tently with analogous findings in ride-hailing (Castillo, 2023) and similar industries
(e.g. Gutierrez, 2021 and Sullivan, 2022).
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5. Counterfactuals

I simulate counterfactuals varying two main primitives.39 First, I consider counter-
factuals where a single entity - a monopolist, or a social planner - sets prices on both
platforms to maximize the joint objective

O∗ = λ
∑
m

Πm + (1− λ)∑
m

(Πm + CSm). (5.1)

When λ > 0, this leads to a monopolist maximizing a combination of profits and
total surplus across both marketplaces. When λ = 0 it leads to a social planner
maximizing total welfare.
Second, I consider counterfactuals where the two platforms are interoperable. Recall
that active drivers divide their time between idling and dispatching trips. Impor-
tantly, idle drivers may be available on either platform, but not on both. This is
captured by Equation (3.6), repeated here for simplicity:∑

im
smxi

available
on m

+∑
ijm
qmxij (wm

xi + txij ) = nx . (5.2)

I compare this with counterfactuals where idle drivers are simultaneously available
on both platforms, hence the above equation is replaced with

s1
xi = s2

xi ≡ sxi; ∑
i

sxi
available
on 1 and 2

+∑
ijm
qmxij (wm

xi + txij ) = nx . (5.3)

Comparing Equations (5.2) and (5.3), holding demand qx and drivers’ labor supply
nx fixed, the number of drivers available to m’s passengers,

∑
i smxi, is always larger

when platforms are interoperable. In the status quo, passengers may miss potential
matches with nearby drivers who are active on a different platform, leading to longer
wait times (as per Equation 3.8). Interoperability eliminates this inefficiency by
making all idle drivers simultaneously available to passengers on both platforms.

5.1. Efficiency. I start by computing the social planner solution in two alternative
scenarios: one in which the two platforms are interoperable, and one in which they are
not. In both scenarios, the social planner sets prices on both platforms to maximize
39In these counterfactuals, the supply-side dynamics described in Section 3.2 and platforms’ first
order conditions (Equations 3.36 and 3.37) change slightly. These changes are detailed in the Sup-
plemental Material (Rosaia 2024).



41

total welfare, under the constraint that drivers’ labor supply should not exceed an
upper bound, i.e.

∑
x nx ≤ n̄. I compute a solution to this problem for different values

of n̄, tracing an efficient frontier that measures the maximum welfare achievable in
equilibrium as a function of total amount of hours drivers spend on the street.

Figure 5.1. Efficient frontiers with and without interoperability, welfare-
maximizing equilibria, traffic-minimizing equilibria, and equilibria under mo-
nopoly and interoperable duopoly.

The solid lines in Figure 5.1 depict the efficient frontier when platforms are not in-
teroperable, with drivers’ average density on the x-axis. Table 4 shows the changes
in market outcomes corresponding to two points along this frontier.
First, the intersection with the vertical line originating from the status quo in the
first panel defines a welfare-maximizing equilibrium. The vertical distance between
this point and the status quo represents an absolute loss: if platforms were to set
prices efficiently, welfare would increase by $53 million per year without adding more
drivers to the streets, that is, without worsening the traffic externalities imposed
by ride-hailing services. Intuitively, this is due to market power causing passenger
prices to be set 20% above the constrained welfare-maximizing level. This leads to
sub-optimal trip demand, with platforms dispatching 12% fewer trips. Consequently,
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drivers receive fewer requests, hence they spend more time idle, and their utilization
is sub-optimal. In essence, drivers are not utilized efficiently: by keeping drivers
busier, a social planner could dispatch 12% more trips, increasing rider surplus by
$520 million per year without affecting overall traffic. Note that drivers would earn
1% less per trip, but this would be offset by dispatching more trips. However, the
reduction in prices would outweigh the reduction in costs, leading to a 70% drop in
profits, which is not aligned with platforms’ private incentives.
Second, the intersection with the horizontal line defines a traffic-minimizing equilib-
rium. The horizontal distance between this point and the status quo represents an
absolute traffic waste: traffic could be reduced by 9% without reducing welfare. The
rationale is similar to the previous scenario. By keeping drivers busier, a social plan-
ner could dispatch 4% more trips and increase rider surplus by 5%, all while reducing
overall traffic by 9%. However, the slight decrease in costs per trip (-0.6%) would
not offset the significant price reduction (-9%) needed to boost demand, and profits
would drop by 32%. Even though the increase in rider surplus exactly offsets the
profit reduction from a social welfare perspective, this configuration does not align
with platforms’ private incentives.
The dashed lines depict the efficient frontier when platforms are interoperable. In the
first panel, the efficient frontier is shifted upwards. This is because interoperability
improves the efficiency of the matching process. This leads to shorter wait times and
higher driver utilization, resulting in lower costs per trip, hence lower prices, more
trips and higher surplus for riders. The intersections with the vertical line and the
horizontal line define new welfare-maximizing and traffic-minimizing equilibria. The
vertical distance between the two lines measures the additional welfare wasted due the
lack of interoperability between the two platforms: if platforms were interoperable,
welfare could be increased by an additional $120 million per year without adding
more drivers to the streets. The horizontal distance measures the additional traffic
wasted: traffic could be reduced by an additional 15% without reducing welfare.

5.2. Market structure. This section explores the extent to which these inefficiencies
can be mitigated under alternative market structures. First, I simulate a scenario
where a monopolist sets prices on both platforms to maximize the joint objective
stated in Equation (5.1). The conduct parameter is set equal to the value estimated for
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Non-interoperable platforms Interoperable platforms

Monopoly Interoperable Welfare Traffic Welfare Traffic
duopoly maximizing minimizing maximizing minimizing

Welfare +1.5% +2.1% +1.1% - +3.6% -
(M$/yr) (+72.2) (+99.7) (+52.9) - (+173.5) -

Rider surplus -2% +1.4% +12.7% +5.3% +18.4% -4.3%
(M$/yr) (-82.4) (+56.4) (+519.6) (+218.7) (+756.1) (-175.5)

Profits +23.1% +6.5% -69.9% -32.4% -87.1% +26.5%
(M$/yr) (+154.6) (+43.3) (-466.7) (-216.6) (-582.6) (+177.1)

Trips -1.7% +1.5% +11.7% +4.3% +17.7% -5.2%

Active drivers -10% -7.5% - -9.1% - -23.7%

Driver utilization +9.2% +9.5% +12.2% +5.5% +18% +25.4%

Passenger prices +4.2% -1.2% -19.8% -9.5% -26.3% +6.8%

Driver prices -3.6% -3.8% -1.2% -0.6% -4.8% -3.3%

Wait times -9.4% -9.9% +7.8% +14.9% -7% +10%

Table 4. Counterfactual market outcomes measured in changes relative to
the status quo. The welfare-maximizing and traffic-minimizing equilibria are
defined as the points where the efficient frontiers intersect with the vertical
and horizontal lines originating from the status quo.

Platform 1 - i.e. λ = λ1 = 0.221. To abstract from changes in welfare due to changes
in service variety, passengers keep the ability to choose between the two separate
platforms, hence their demand curves (Equation 3.1) are unchanged. However, the
two platforms are interoperable, hence the specific platform chosen by passengers is
irrelevant from the monopolist’s perspective. This scenario can be interpreted as a
merger, or more specifically as the outcome of Platform 1 acquiring Platform 2.

Making platforms interoperable allows the monopolist to achieve a more efficient
matching process. However, eliminating competition leads the monopolist to raise
prices, worsening the market power distortions and offsetting most efficiency gains.
The new equilibrium is depicted in Figure 5.1, while Table 4 displays the changes in
market outcomes relative to the status quo, and Figure 5.2 illustrates the breakdown
of these changes across regions.
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Figure 5.2. Market outcomes under a monopoly and an interoperable
duopoly, measured in percentage changes relative to the status quo.

Compared to the status quo, the merger improves matching efficiency, reducing wait
times by 9% and increasing driver utilization by the same margin. By keeping dri-
vers busier, the monopolist reduces traffic by 10% while reducing passenger trips by
only 2%. Higher driver utilization also leads to cost savings per trip, allowing the
monopolist to reduce driver prices by 3.6%. The overall impact on welfare is positive.
However, these efficiency gains are not passed on to consumers, who instead face a 4%
price increase, resulting in a $82 million annual drop in their surplus. Most efficiency
gains are captured by the monopolist, whose profits increase by $155 million per year.
These figures vary significantly across space, with low-density peripheral regions ex-
periencing the highest efficiency gains. Intuitively, matching frictions are more pro-
nounced in low-density areas, where passengers often get matched with far-away dri-
vers. Increasing density in these areas leads to substantial reductions in wait times.
As drivers spend less time to pick up passengers, their utilization increases, leading
to large cost savings. A portion of these cost savings are passed on to riders, who
experience a smaller increase in prices and a smaller decrease in ridership and surplus
following a merger. Conversely, matching frictions are minimal in the high-density
regions of southern Manhattan, where riders and drivers are in close proximity and
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wait times are already near their minimum. Increasing density in these areas results
in smaller reductions in wait times, a smaller increase in driver utilization, and lower
cost savings, leading to higher price increases and a greater decrease in ridership and
rider surplus following a merger.

To summarize, the merger achieves both positive and negative outcomes. By making
platforms interoperable, it reduces traffic without reducing overall welfare. However,
the increased market power adversely affects riders, especially in high-density regions.
This raises the question of whether a market configuration exists that achieves the
benefits of interoperability without losing the advantages of competition.

In the last counterfactual, I simulate a scenario where two interoperable platforms
compete with each other. This means that, on the one hand, platforms indepen-
dently set prices to maximize their own objectives. On the other hand, at any given
time, all idle drivers are simultaneously available on both platforms. In practice,
this can be achieved by removing the obstacles and incentives preventing drivers to
simultaneously multi-home, as discussed in Section 2.3.

As shown in Figures 5.1 and 5.2 and Table 4, in many respects an interoperable
duopoly achieves outcomes comparable to those of a merger: it reduces wait times
and keeps drivers busier, lowering costs and reducing traffic. The key difference is that
a significant portion of these efficiency gains are now passed on to riders, who benefit
from lower prices and increased surplus, and take more trips. This is true across
the entire city, with passengers in peripheral areas benefiting the most. Interestingly,
platforms’ profits also rise, albeit by a considerably smaller margin compared to the
merger scenario.

5.3. The role of conduct. These results are specific to the conduct observed in the
sample: if conduct changes, equilibria would also change, and there is no easy way to
predict how conduct might change over time. Conduct can be endogenous or reflect
exogenous strategic decisions made at the firm or city level, or be influenced by the
ownership structure.

Since these dynamics cannot be assessed with the data at hand, the Supplemen-
tal Material includes a robustness analysis to explore how counterfactual outcomes
change with conduct. This provides both reassurance and caution. On one hand,
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most qualitative insights remain robust to exogenous changes in conduct. In terms
of magnitudes, the results are stable for the interoperable duopoly but vary for the
merger: as λ increases, a monopoly leads to higher price increases, resulting in larger
drops in ridership and surplus. Specifically, this means that the total welfare cal-
culations may flip sign. With values of λ slightly higher than those estimated, the
increase in profits no longer compensates for the decrease in rider surplus, leading to
a reduction in total welfare.

Therefore, the conclusion that a monopoly might increase total welfare is highly
context-dependent and generally does not hold. The welfare reduction reaches a
maximum of $295 million per year when λ = 1 (i.e., when platforms maximize plain
profits).

6. Conclusion

The lack of integration between ride-hailing networks results in sub-optimal outcomes
such as higher prices, reduced mobility, and increased traffic. However, consolidating
users into a single network involves a tension between higher efficiency and increased
market power. This paper provides a framework to quantify these opposing forces. A
merger, while potentially improving efficiency, would adversely affect riders, especially
in high-density markets. In contrast, removing barriers to simultaneous multi-homing
would capture the benefits of integration without losing the advantages of competi-
tion, reducing traffic and improving mobility while increasing profits and consumer
welfare.
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