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Abstract

Under the classic hedonic valuation approach, the demand for environmental improvements is
often estimated from changes in housing prices. We show that when housing supply is elastic,
amenity improvements may yield an expansion of the housing market (the ‘quantity’ effect), mut-
ing the capitalization of the amenity into housing prices (the ‘price’ effect). We demonstrate this
in the context of local air quality improvements induced by the Clean Air Act’s (CAA) PM2.5 stan-
dards. The price capitalization of air quality improvements is higher in places with relatively in-
elastic housing supply, while quantity responses are larger in places with relatively elastic housing
supply. A simple spatial equilibrium model demonstrates that the reduced-form hedonic valua-
tion coefficient reflects the willingness to pay for an amenity attenuated in proportion to the local
housing supply elasticity. Incorporating housing supply elasticities into the classic hedonic regres-
sion framework increases the estimated marginal benefits of CAA-induced reductions in PM2.5 by
up to over 100 percent.
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1 Introduction

The hedonic valuation approach to estimating the economic benefits of non-market amenities such

as environmental quality frequently relies on the housing market to infer the implicit price func-

tion of the amenity (Harrison and Rubinfeld, 1978; Smith and Huang, 1995; Chay and Greenstone,

2005; Bayer et al., 2009; Bento et al., 2015; Sager and Singer, 2022). In a partial equilibrium setting

in which housing stock is fixed, the responsiveness of housing prices to outward demand shifts

induced by amenity improvements offers an appropriate estimate of the marginal benefits of the

improvement. Indeed, implicit in the canonical hedonic valuation model is the assumption that

marginal willingness to pay (MWTP) for an amenity is fully capitalized into prices, or that sup-

ply is perfectly inelastic. However, in general equilibrium settings in which supply is elastic, the

housing market may expand to accommodate increased demand (the ‘quantity’ effect). In this

case, the capitalization of the amenity into housing prices (the ‘price’ effect) will be attenuated,

and the standard hedonic price parameter will no longer serve as a sufficient statistic for MWTP.

Rather, it will provide an underestimate of the true parameter.

Consider Los Angeles, California, with relatively inelastic housing supply, and Atlanta, Geor-

gia, with relatively elastic housing supply. Both experienced large improvements in air quality

over the 2000–2010 decade following the introduction of the Clean Air Act’s (CAA) PM2.5 Na-

tional Ambient Air Quality Standards (NAAQS). Over this decade, PM2.5 concentrations fell by

31 percent in Los Angeles and by 26 percent in Atlanta. Over this same period, Los Angeles ex-

perienced a 72 percent increase in housing prices in real terms and about a 3 percent increase in

its total population. Meanwhile, Atlanta experienced only a 5 percent increase in housing prices

in real terms and about a 24 percent increase in its total population. What role did local hous-

ing supply constraints play in mediating the relationship between local amenity shifts and price

changes, and what does this imply for subsequent estimates of the marginal benefits of air quality

improvements? How can researchers estimate MWTP for amenity shifts in settings with elastic

supply?

In this paper, we present evidence that plausibly exogenous improvements in air quality

induced by the CAA generate both price and quantity effects, with the relative strength of each

depending on the elasticity of local housing supply. A reduction in average annual PM2.5 con-

centrations yields larger price increases in Census tracts with relatively inelastic housing supply,
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whereas it yields larger population increases in Census tracts with relatively elastic housing sup-

ply. Our reduced-form evidence is consistent with the economic intuition that housing supply con-

straints mediate the relationship between demand shocks and housing prices. This indicates that

price changes will not fully capitalize the benefits of amenity improvements in situations when

quantities are not explicitly fixed. We present a simple spatial equilibrium model which incorpo-

rates this intuition. Our model shows that when housing is elastically supplied, the reduced-form

effect of a pollution reduction is an attenuated estimate of willingness to pay, where the attenua-

tion is proportional to the local housing supply elasticity. Using this framework and incorporating

estimates of local housing supply elasticities from the literature, we provide new estimates of the

MWTP for reduced PM2.5 concentrations. We find that incorporating measures of housing sup-

ply elasticity into the classic hedonic regression framework substantially increases the estimated

marginal benefits of reductions in PM2.5.

To isolate the causal relationship between air quality and local prices and population sizes,

we exploit the introduction of the 1997 PM2.5 National Ambient Air Quality Standards (NAAQS),

which went into effect in 2005.1 Following the implementation of these 1997 standards, areas

designated as ‘nonattainment’ were legally required to reduce PM2.5 concentrations, while ‘at-

tainment’ areas, with PM2.5 concentrations below the regulatory ceiling, were not. Instrumenting

for Census-tract-level changes in average PM2.5 concentrations with area nonattainment status in

2005, we estimate the effect of declining PM2.5 concentrations on housing prices (the ‘price’ effect)

and population sizes (the ‘quantity’ effect) between 2000 and 2010. We then examine how price

and quantity effects of these air quality improvements differ across inelastic- and elastic-supply

areas based on housing supply elasticity estimates from Saiz (2010) and Baum-Snow and Han

(2024).

We find that regulation-induced air quality improvements are met with large increases in

housing prices: Across all tracts in our sample, a CAA-induced 1-unit decline in average PM2.5

concentrations yields about a 5.8 percent increase in local housing prices, as measured by the

tract-level housing price index (HPI). This is equivalent to an increase of about $6,570 per home

in 2000 dollars. Grouping Census tracts into eight bins of housing supply elasticity based on the

estimates from Saiz (2010), we find that air quality improvements yield much larger housing price

1Other research exploiting the introduction of the NAAQS standards regulating PM2.5 to understand the effects of
these regulations on exposure to air pollution include Bento et al. (2015); Jha et al. (2019); Currie et al. (2020); Sager and
Singer (2022).
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increases in the most inelastic-supply housing markets (an 8.7 percent increase) compared to the

most elastic-supply housing markets (a statistically insignificant 2.5 percent decrease).

We estimate the quantity effect based on the change in log population counts within consis-

tent (2010) Census tract boundaries. While the price effect of air quality improvements is largest

in the most inelastic-supply places, we find that the CAA-induced decline in PM2.5 concentrations

yields the largest quantity effect in the most elastic-supply Census tracts. A regulation-induced

1-unit decline in average PM2.5 concentrations over the 2000–2010 period yields about a 5.7 per-

cent increase in population in the most elastic-supply housing markets, compared to a statistically

insignificant 0.3 percent increase in the most inelastic-supply housing markets. The conclusion

that the price (quantity) response to improved air quality is greater in relatively inelastic (elas-

tic) locations is largely robust to alternative definitions of housing supply elasticity and quantity

outcomes, different empirical specifications, as well as matching observations according to pre-

regulation price and quantity trends.

The reduced-form evidence is consistent with the economic intuition that housing supply

constraints should modify the price and quantity effects of demand shifts, and it indicates that

the classic hedonic valuation technique will likely underestimate MWTP in elastic-supply settings

when price effects are attenuated by simultaneous quantity effects. Motivated by this insight, we

develop a simple Rosen-Roback-style model of spatial equilibrium that provides expressions for

local housing prices and population sizes as functions of local levels of air pollution. The model

enables us to interpret the coefficients from a standard hedonic regression in the presence of both

price and quantity responses to changes in local amenities. Specifically, the model implies that

when supply is perfectly inelastic, the standard hedonic price coefficient is indeed a sufficient

statistic for MWTP. However, in the presence of quantity margins (i.e., when supply is elastic), the

coefficient from a standard hedonic model is the MWTP for the amenity improvement, attenu-

ated in proportion to the elasticity of housing supply. Guided by the parameters in the model, we

provide new estimates of MWTP that incorporate the local housing supply elasticity measured at

both the metropolitan statistical area (MSA)- (Saiz, 2010) and the Census-tract level (Baum-Snow

and Han, 2024). This approach produces MWTP estimates of about $7,360 to $14,384 per unit of

pollution reduction (per household), which is on the order of 12 to 117 percent larger than the

estimate produced by the standard hedonic approach ($6,570 per household). Therefore, incorpo-

rating housing supply elasticity into the hedonic regression framework substantially increases the
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estimated benefits of environmental improvements.

This paper makes two important contributions to the literature. First, we build the litera-

ture exploiting the CAA regulatory structure to study air pollution (Chay and Greenstone, 2005;

Grainger, 2012; Bento et al., 2015; Jha et al., 2019; Currie et al., 2020; Sanders et al., 2020; Sager and

Singer, 2022; Bishop et al., 2023), and we provide quasi-experimental evidence that housing sup-

ply constraints influence how well housing prices capitalize local air quality improvements. Areas

in which supply is more inelastic, due to regulatory constraints or geographic barriers to construc-

tion, experience the strongest price effects of regulation-induced pollution improvements. This is

consistent with recent advances in the urban economics literature showing that housing supply

constraints shape price effects and sorting behavior (Katz and Rosen, 1987; Glaeser and Gyourko,

2003, 2005, 2018; Glaeser et al., 2005; Gyourko et al., 2008; Glaeser and Ward, 2009; Saiz, 2010; Kahn

et al., 2010; Gyourko and Molloy, 2015; Ganong and Shoag, 2017; Baum-Snow et al., 2018; Hsieh

and Moretti, 2019; Baum-Snow, 2023). Our reduced-form evidence indicates that places with rela-

tively elastic housing markets may accommodate demand shifts via increases in housing supply,

which may attenuate the price effects of such demand shifts. This implies that the elasticity of

the market in question (typically housing) should be considered when estimating the MWTP for

amenity improvements.

Second, we contribute to the extensive empirical and theoretical literature on hedonic valu-

ation by extending the Rosen-Roback model of spatial equilibrium (Rosen, 1979; Roback, 1982) to

allow for a quantity response to amenity improvements in addition to price capitalization. Many

studies exploit the price capitalization of environmental improvements to infer the marginal bene-

fits of these changes (Harrison and Rubinfeld, 1978; Smith and Huang, 1995; Chay and Greenstone,

2005; Bayer et al., 2009; Bento et al., 2015; Keiser and Shapiro, 2019; Sager and Singer, 2022). Our

model provides guidance on how the hedonic framework can be adapted to measure MWTP for

amenities in general equilibrium settings, accounting for the elasticity of local housing supply.

Our model shows that in the presence of quantity effects, the reduced-form effects of air quality

improvements will underestimate the MWTP for air quality. In these cases, the true MWTP can

be recovered by incorporating a measure of housing supply elasticity into the traditional hedonic

price capitalization approach. Specifically, the traditional price capitalization regression coeffi-

cient reflects MWTP attenuated by the housing supply elasticity. Incorporating measures of local

housing supply elasticity into the hedonic framework produces estimates of MWTP up to over
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100% larger than estimates based solely on price capitalization.

The rest of this paper is organized as follows. Section 2 presents a stylized model of supply

and demand for air quality improvements, demonstrating how demand shifts yield both price and

quantity effects in elastic settings. We describe our data and methodological approach to estimat-

ing the price and quantity effects in Sections 3 and 4, with results detailed in Section 5. Section 6

presents a spatial equilibrium model for air quality improvements, with model estimation results

provided in Section 6.2. Section 7 concludes.

2 A stylized depiction of the housing market and amenity improve-

ments

We first illustrate how the canonical hedonic model might underestimate the value of air quality

improvements when housing stock can expand to absorb increased demand by offering a simple

graphical depiction. This exposition is similar to that presented in Baum-Snow (2023). We build

on this stylized example using a richer model of spatial equilibrium in Section 6.

Consider two locations: one with relatively inelastic housing supply, and one with relatively

elastic housing supply. Housing supply might be inelastic because there exist various geograph-

ical barriers to construction, or because local zoning and land use regulations make construction

relatively costly. At time t = 0, demand for these locations is given by D(Amenity0), with price P0

and quantity Q0 in Figure 1.

Now, imagine that demand for these locations shifts outward due to an exogenous increase

in local amenities, such as an improvement in air quality. This improvement is reflected by the

shift from D(Amenity0) to D(Amenity1) in Figure 1a. The inelastic housing market, relatively

constrained in its ability to produce new housing units, will experience this demand shift pre-

dominantly as a price increase, with prices increasing from P0 to P1,inelastic. The location with

more elastic housing supply will respond to this demand shift by expanding its housing stock to

accommodate newcomers, such that the price effect is relatively attenuated and the quantity effect

is relatively large — Q1,elastic reflects a larger outward shift in housing units than Q1,inelastic. In the

extreme example in which housing supply is perfectly inelastic, the entire effect of the demand

shift will manifest as a price increase, from P0 to P1,inelastic in Figure 1b. This is the setting in which
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Figure 1: Effect of demand shift in (in)elastic markets

(a)

(b)

Notes: This figure reflects a stylized depiction of supply and demand for two locations: one with inelastic housing
supply (in teal), and one with elastic housing supply (in brown). An amenity improvement is reflected in the outward
shift in demand from D(Amenity0) to D(Amenity1). Panel b is identical to panel a, but the inelastic housing market
has perfectly inelastic housing supply.
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the typical hedonic method is assumed to take place.

Consider Los Angeles, California, and Atlanta, Georgia. Both cities were in nonattainment

areas based on the 1997 PM2.5 National Ambient Air Quality Standards (NAAQS), which went

into effect in 2005. Both experienced large improvements in air quality over the 2000–2010 period,

in part thanks to this designation. Between 2000 and 2010, PM2.5 concentrations fell by 31 percent

in Los Angeles and by 26 percent in Atlanta. Los Angeles has many regulatory and geographic

constraints that limit new residential construction, and thus it has quite inelastic housing supply.

Atlanta, on the other hand, has relatively elastic housing supply.2 Over the 2000–2010 decade, Los

Angeles experienced a 72 percent increase in (real) housing prices and about a 3 percent increase

in its total population. Meanwhile, Atlanta experienced only a 5 percent increase in (real) housing

prices and about a 24 percent increase in its total population. Of course, these price and population

trajectories are not solely reflective of the impact of regulation-induced air quality improvements,

but the stark contrast across the two places is consistent with the basic economic theory illustrated

in Figure 1.

This is a highly stylized exposition of supply and demand, but it illustrates the important role

that housing supply elasticities play in determining how well amenity changes are capitalized into

housing prices, and thus how well price changes reflect MWTP. While taste-based sorting may

result in different estimates of MWTP across place, basic economic theory offers an alternative

explanation: supply constraints dictate the relative price and quantity effects of demand shifts.

In places with perfectly inelastic supply, demand shifts will be perfectly capitalized into housing

prices. As supply is more elastic, housing stock will expand to accommodate increased demand,

attenuating the price capitalization. Even if individuals are randomly sorted into inelastic and

elastic housing markets such that the WTP for improved air quality is constant across locations

(i.e., there is no self-selection based on preferences for air quality), a hedonic evaluation of the

benefits of cleaner air based exclusively on price capitalization will produce larger estimates in

the inelastic housing market compared to the elastic housing market. By neglecting the demand

shift that manifests as an increase in the quantity margin, the evaluation would underestimate the

true MWTP in more elastic housing markets.

We are not the first to raise concerns regarding the assumption of fixed housing supply im-

2In Saiz (2010), the estimated metro-level housing supply elasticity in Los Angeles is 0.63, compared to 2.55 in
Atlanta.
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plicit in the canonical hedonic model. Many scholars have acknowledged this issue and provided

helpful direction for conducting hedonic valuation methods in general equilibrium environments.

For example, Sieg et al. (2004) provide a structural model of Tiebout sorting, demonstrating how

individuals re-optimize in response to large changes in amenities, and illustrating the large differ-

ences between partial- and general-equilibrium estimates of MWTP in the case of sorting-induced

endogenous local attribute changes. Here, we leave aside the issue of endogenous local amenity

changes and focus instead on how local housing supply characteristics affect the capacity for hous-

ing prices to adjust and for individuals to sort more generally. More recently, Banzhaf (2021) shows

that price changes associated with improved air quality include both amenity demand (WTP) and

changes in the hedonic price function, especially over longer time horizons. That is, amenity

shocks can influence the equilibrium hedonic price function for an entire housing market (in-

cluding untreated units), such that there may exist price changes not directly attributable to local

amenity improvements. In our exposition, the ex-post price function in a difference-in-differences

setting can represent a completely different quantity of housing – and thus a fundamentally dif-

ferent housing market – when housing supply is relatively elastic. We do not address the issue

of indirect price effects treated in Banzhaf (2021), but rather show that even the direct price effect

captured by typical hedonic methods is an insufficient statistic for MWTP when there also exists

a quantity margin. In Section 6, we back out MWTP incorporating this quantity margin, offering

a simple method scholars may use to recover MWTP when housing supply is not explicitly fixed.

3 Data

Our primary empirical analysis leverages changes in tract-level air pollution, housing prices, and

population densities in over 25,000 metropolitan area Census tracts over the 2000-2010 period.

We construct a data set of tract-level characteristics between 2000 and 2010 using several sources,

detailed below.

3.1 Air pollution data

Fine-grain air pollution data have recently been produced for the entire U.S. using a combination

of satellite data, pollution monitors, land use characteristics, and chemical air transport models.

Three of the major data projects offering these satellite-derived pollution estimates include Meng

et al. (2019), Di et al. (2016), and van Donkelaar et al. (2019). We aggregate the gridded air pollu-
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tion data from van Donkelaar et al. (2019) to the Census-tract level, although our conclusions are

insensitive to using alternative data sets. Our primary independent variable of interest is the long-

difference change in average annual PM2.5 concentrations in a given Census tract between 2000

and 2010. We also consider this change over the 2000–2007, 2000–2013, and 2000–2016 periods in

order to elucidate the differences between short- (partial equilibrium) and longer-term (general

equilibrium) adjustments.

3.2 Housing price, quantity, and demographic data

We combine the air quality data with local housing, economic, and demographic data retrieved

from the decennial Census, the American Community Survey (ACS), and the Federal Housing

Finance Agency (FHFA). Our two main outcome variables of interest are the tract’s housing price

index (HPI) in the final year of the period (where 2000 is the base year of the index) and the long-

difference change in the natural log of the tract’s population over the period.3 The HPI, retrieved

from the FHFA, is a weighted, repeat-sales index capturing movements in prices of single-family

homes whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac. It

provides a measure of housing price appreciation in a given tract (or county) holding the under-

lying quality of housing stock relatively constant.

Measuring quantity adjustments with fixed geographic units is less straightforward than the

measurement of price adjustments. Census tract boundaries are modified (and new tracts defined)

periodically to account for population adjustments, such that the geographic unit is designed to

have relatively consistent populations over time. Cities grow outward as well as upward, and thus

comparisons of the number of individuals living within a consistent city boundary across time

will fail to incorporate the contribution of sprawl to larger numbers of residents or housing units.

Counties offer a relatively tractable geographic unit from which to measure quantity adjustments

but offer less precision for exploring the importance of housing supply elasticities, as rural and

urban tracts within a given county will have largely different housing supply constraints. With

these limitations in mind, we measure tract-level quantity adjustments using the change in the

natural log of the population over the given period, and we assign all characteristics to Census

tracts using the consistent tract boundaries as defined by the 2010 Census.4 Baseline tract-level

3For the 2000-2010 period, the outcome variable is the tract’s 2010 HPI. For the 2000–07, 2000–13 and 2000–16 periods,
we consider the 2007, 2013, or 2016 HPI, respectively, indexed to 2000, such that the HPI in 2000 is 100 for all tracts.

4Supply constraints may promote increased crowding within existing housing units. Our conclusions are robust to
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covariates are retrieved from the 2000 Census.5 Population counts for years 2000 and 2010 are

derived from the decennial Census.

3.3 Housing supply restriction and elasticity data

We incorporate various measures of housing supply constraints defined at both the tract- and

metropolitan- area levels. Our primary measure of local housing supply elasticity is drawn from

Saiz (2010), who provides housing supply estimates at the metropolitan area level for cities with

over 500,000 persons in 2000. These elasticity estimates incorporate geographic constraints to

development, a determinant of exogenously undevelopable land in the area, as well as local land

use regulations determined from the 2005 Wharton Regulation Survey.6 We limit our sample to

metro-area tracts in the contiguous United States with non-missing Saiz (2010) elasticity estimates

(and non-missing HPI estimates), resulting in a sample of 25,843 Census tracts reflecting over

one-third of the U.S. population. Elasticity estimates range from the most inelastic of 0.6 (Miami,

Florida) to the most elastic of 5.45 (Wichita, Kansas).7 To elucidate how price capitalization varies

across elasticity, we group tracts into eight equal-sized bins based on their Saiz (2010) elasticities.

Each bin includes about 3,230 Census tracts.

We supplement this elasticity measure with estimates of tract-level housing supply elastici-

ties from Baum-Snow and Han (2024).8 These estimates are identified using labor demand shocks

in commuting destinations from residential locations. The authors then estimate the change in

local housing quantity resulting from shifts in local housing prices, conditional on tract-specific

observables. Tract-level housing supply elasticities vary based on the tract’s distance to the central

instead estimating the effect on the change in the number of housing units as well as the change in population density,
following Banzhaf and Walsh (2008) and Greenstone and Gallagher (2008).

5As detailed in Section 4, these include the share of the tract population that is non-Hispanic white, the share of
adults with a college degree, median household income, the share of housing units that are occupied, and the share of
occupied housing units that are renter-occupied.

6Saiz (2010) uses the measure of local land use regulations from the Wharton Residential Land Use Regulation
Index (WRLURI), constructed by Gyourko et al. (2008). This regulatory index provides an aggregate measure of the
restrictiveness of local land use regulations in 293 metropolitan areas in the U.S.

7This aggregate measure is based on 11 subindexes, which include a local political pressure index, state political
involvement index, state court involvement index, local zoning approval index, local project approval index, local
assembly index, supply restrictions index, density restrictions index, open-space index, exactions index, and approval
delay index. These indices are summarized using factor analysis. The final aggregated index is increasing in the
restrictiveness of regulations and is standardized across communities.

8Baum-Snow and Han (2024) provide several housing supply elasticity estimates. We use the elasticity estimates
based on their quadratic finite mixture model, which are the authors’ preferred estimates. This model allows parame-
ters governing tract supply elasticities to flexibly differ between metropolitan areas as functions of developable land,
regulation, and developed land. We use the elasticity estimates from the 2021 version of this working paper, which
produces nearly identical groupings of tracts as the estimates in the published version of the paper.
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business district, land availability, topographical features, and land use regulations. These tract-

level elasticities are primarily meant for comparison within metropolitan areas rather than across,

and thus we combine these tract-level elasticity measures with the Saiz (2010) measure to produce

a characterization of a Census tract’s elasticity that is comparable across metropolitan areas. To

do so, we take the simple average of MSA-level (Saiz, 2010) and tract-level (Baum-Snow and Han,

2024) supply estimates. This value ranges from the most inelastic of 0.25 (Census tract 186.10 in

San Diego, California) to the most elastic of 3.17 (Census tract 100.04 in Wichita, Kansas). We again

group tracts into eight equal-sized bins based on this average value.

3.4 Summary statistics and an application to air quality improvements

Table 1 presents the central summary statistics for the 25,843 Census tracts that form the basis of

our analysis. Across all tracts in the sample, the average PM2.5 concentration was 13µg/m3 in 2000,

and the average change over the 2000–2010 decade was a decline of 3µg/m3. Over this decade,

home prices increased by an average of 32.7% and population counts increased by an average of

10.8 log points. Table 1 also presents statistics in each of the 8 bins of metro-level housing supply

elasticity, based on the measure in Saiz (2010). Bin 1 (the most inelastic group of Census tracts)

started the period with the highest average concentrations of PM2.5 and experienced the largest

subsequent declines over the decade. Column 6 shows the average metro-level elasticity in each

bin, while column 7 describes the average metro/tract-level elasticity taken by simple mean of the

measures from Saiz (2010) and Baum-Snow and Han (2024).

In Section 2, we showed that outward demand shifts should yield larger price growth in

markets with more inelastic supply and larger population growth in markets with more elastic

supply. While the statistics in Table 1 are purely descriptive, they are consistent with this stylized

exposition. Housing prices tended to grow more in the most inelastic housing markets, while

population counts tended to grow more in the most elastic housing markets over the 2000–2010

period. One goal of our empirical analysis is to explore the extent to which these diverging growth

patterns are attributable to CAA-induced reductions in PM2.5 concentrations.
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Table 1: Summary statistics for primary outcome & independent variables

(1) (2) (3) (4) (5) (6) (7)
PM2.5 conc.

(2000)
Med. home
value (2000)

∆PM2.5
2000–10

2010 HPI
(2000=100)

∆ln(pop)
2000-10

Metro-level
elasticity

Metro/tract
elasticity

Full sample: (N=25,843)
mean 13.0 113,260 -3.0 132.7 10.8 1.6 0.9
(sd) (3.4) (63,842) (1.8) (28.8) (27.7) (0.9) (0.5)

8 bins of Saiz (2010) elasticity
1 (most 15.0 161,813 -4.4 155.8 4.8 0.6 0.4

inelastic) (4.9) (87,929) (2.5) (25.6) (19.0) (0.0) (0.1)

2 12.7 147,508 -2.9 138.4 7.4 0.8 0.5
(2.5) (80,922) (1.3) (24.4) (24.3) (0.0) (0.1)

3 13.1 97,863 -3.6 126.8 12.3 1.0 0.6
(4.5) (41,315) (2.3) (20.4) (28.0) (0.1) (0.1)

4 12.2 105,208 -2.8 121.7 7.9 1.3 0.8
(2.7) (47,300) (1.6) (34.8) (24.6) (0.1) (0.1)

5 12.7 113,858 -3.5 148.1 9.8 1.6 0.9
(2.6) (54,065) (1.1) (31.5) (27.5) (0.0) (0.1)

6 12.2 90,808 -2.5 129.9 15.0 2.0 1.2
(3.4) (40,335) (1.7) (21.1) (33.5) (0.2) (0.1)

7 14.0 92,350 -2.6 117.3 14.1 2.5 1.4
(2.4) (43,426) (1.4) (20.7) (29.0) (0.1) (0.1)

8 (most 12.2 83,502 -1.6 120.0 17.9 3.4 1.9
elastic) (2.2) (35,861) (1.2) (16.1) (33.2) (0.6) (0.3)

Median home value is based on Census estimates retrieved from Social Explorer and is reported in 2000-level (nominal)
dollars. 2000-level PM2.5 concentrations and its change are based on the values reported in van Donkelaar et al. (2019).
The 2010 housing price index (HPI) is retrieved from FHFA. Change in ln(population) is based on estimates from the
Census, retrieved from Social Explorer, and is multiplied by 100 for ease of interpretation. Metro-level elasticity refers
to the elasticity derived in Saiz (2010), while metro/tract elasticity refers to the average elasticity across Saiz (2010) and
Baum-Snow and Han (2024).
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4 Methodological approach

In this section, we outline our approach to estimating the relationship between regulation-induced

air quality improvements (i.e., declines in PM2.5 concentrations) and subsequent price and popu-

lation growth. Our approach follows Chay and Greenstone (2005), Sager and Singer (2022), and

others who instrument for mid-period CAA nonattainment status to estimate the effect of air qual-

ity improvements on subsequent outcomes. Here, we use this framework to separately identify

both price and quantity effects, and we estimate how this relationship differs based on the elas-

ticity of local housing supply. This allows us to elucidate the extent to which housing supply

constraints mediate the price capitalization of air quality improvements.

Consider the following long-difference equation:

∆yj = β0 + β1∆PM2.5j + X′
jγ + δd + εj (1)

Where ∆yj is the dependent variable in tract j (the change in housing prices and the change in

population counts), ∆PM2.5j is the long-difference change in average PM2.5 concentrations in

tract j, X′
j reflects tract-level covariates, and δd represents Census division fixed effects. We focus

on two primary outcome variables: the tract’s 2010 HPI (indexed to 2000, such that it reflects the

percent change in housing prices), and the 2000–2010 change in the natural log of tract popula-

tion. The inclusion of Census division fixed effects absorbs secular trends in price and population

movements that differ across regions. Our conclusions are largely robust to alternative levels of

geographic controls (e.g., Census region). Tract-level covariates include the share of the tract pop-

ulation that is non-Hispanic white, the share of adults with a college degree, median household

income, the share of housing units that are vacant, and the share of occupied housing units that

are renter-occupied. These covariates are meant to capture observable demographic, educational,

economic, and housing market characteristics that might influence housing prices or population

growth as well as pollution concentrations. Again, our point estimates are relatively stable across

specifications (e.g., omitting controls). We cluster standard errors at the county level. Estimating

equation 1 using Ordinary Least Squares, β1 measures the association between a one-unit change

in average tract-level PM2.5 concentrations and the change in the tract’s price or population be-

tween 2000 and 2010 after controlling for observable covariates.

In order to determine whether the relationship between air quality improvements and as-

sociated price and quantity changes differs depending on the elasticity of local housing supply,
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we estimate a slightly modified version of equation 1, where we interact the primary explanatory

variable (∆PM2.5j) with a binned value of the Saiz (2010) elasticity assigned to the tract’s MSA,

ej . We allow for eight, equal-sized bins of this value and estimate the following:

∆yj =
8∑

q=1

βq (∆PM2.5j × 1[ej = q]) + X′
jγ + δd + εj (2)

Tracts in the lowest quantile (ej = 1) are in the most inelastic metro areas and tracts in the

highest quantile (ej = 8) are the most elastic. The eight bins are collectively exhaustive of all

Census tracts in the sample used for the primary analysis. Our central method for grouping tracts

into bins relies on the metro-level elasticities in Saiz (2010). We also group tracts into eight equal-

sized bins based on the average of their metro-level elasticity and the tract-level elasticity in Baum-

Snow and Han (2024), as described in Section 3. The conclusions are insensitive to the number of

quantiles, q. In equation 2, β1 measures the relationship between a PM2.5 concentrations and the

outcome of interest in the most inelastic quantile, β2 measures this relationship in the second-most

inelastic quantile, etc., and β8 measures this relationship in the most elastic quantile. Again, we

focus on two outcome variables ∆yj : The 2010 HPI, indexed to 2000 levels, and the 2000–2010

change in the natural log of the population. We can then compare the point estimate across bins to

understand how the ‘price’ and ‘quantity’ effect of air quality improvements differs across regions

with varying housing supply constraints.

4.1 Causal inference: Clean Air Act

Many unobserved characteristics covary with both air pollution and the central outcomes of inter-

est, introducing bias in the estimation of the pollution-price or pollution-population gradient. The

issue of misspecification in the traditional hedonic price model is well-known, and researchers

have used a wide variety of quasi-experimental solutions to address it.9 We exploit the introduc-

tion of the Clean Air Act (CAA) 1997 PM2.5 National Ambient Air Quality Standards (NAAQS),

which went into effect in 2005, to isolate regulation-induced changes in PM2.5 concentrations over

the 2000–2010 decade. The annual air quality standard for PM2.5 set by the regulation was 15

micrograms per cubic meter (µg/m3), based on the three-year average of annual mean PM2.5 con-

centrations.10 In December of 2004, EPA issued official designations for the 1997 PM2.5 standards,

classifying areas as nonattainment if they violated the 1997 annual standard over a three-year

9See, for example, Chay and Greenstone (2005); Bayer et al. (2009); Lee and Taylor (2019); Banzhaf (2021).
10The regulation also imposed a daily standard of 65 µg/m3.
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period. These areas are displayed in blue in Figure 2. Following this designation, states with

nonattainment areas were required to submit to the EPA state implementation plans (SIPs) iden-

tifying how nonattainment areas would meet PM2.5 standards, and meet these standards by 2010.

The observed decline in PM2.5 concentrations between 2000 and 2010 is shown in Figure 3.

Figure 2: NAAQS PM2.5 nonattainment areas

Notes: Areas classified as nonattainment under the 1997 NAAQS (as announced in December 2004) are indicated in
blue. Source: U.S. Environmental Protection Agency (EPA).

A comparison of Figures 2 and 3 suggests that while much of the country experienced air

quality improvements over the 2000-2010 period, many of the areas with the greatest improve-

ments (e.g., Southern California, Northern Georgia, and the Central Atlantic region) were those

that were in nonattainment in 2005. Currie et al. (2020) document that the 1997 NAAQS greatly

improved air quality in newly regulated areas, indicating that the standards were relevant to the

differential reduction in PM2.5 seen in Figure 3. We provide additional evidence of instrument

relevance below.

Following Chay and Greenstone (2005), who instrumented for changes in county-level TSP

concentrations from 1970-1980 with mid-decade nonattainment status, several papers leverage

differential nonattainment status designation across place to identify the effect of relevant air qual-

ity improvements on outcomes of interest (e.g., Bento et al. (2015); Sager and Singer (2022); Currie

et al. (2020)). Here, we instrument for tract-level changes in average PM2.5 concentrations with a
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Figure 3: Change in average annual PM2.5 concentrations, 2000-2010

Notes: Figure reflects the change in average annual PM2.5 concentrations between 2000 and 2010, where annual PM2.5

concentrations are based on the estimates provided by van Donkelaar et al. (2019).

dummy variable indicating whether the tract was in a nonattainment status area in 2005.11 The

central identifying assumption is that conditional on observable characteristics, nonattainment

status is exogenous to expected outcomes. In this setting, this would be violated if places that

were designated as nonattainment were on differential price or quantity trajectories than those

in attainment, or if nonattainment status has a direct impact on outcomes that is distinct from

its impact that occurs through pollution reductions (e.g., employment effects).12 We observe in

Appendix section A that nonattainment tracts were growing more slowly – in terms of both pop-

ulation changes and housing price changes – prior to the period of analysis. For this reason, we

believe that our instrumental variable strategy likely yields a lower bound estimate on the change

in prices and quantities attributable to regulation-induced declines in PM2.5 concentrations. In

robustness checks, we match attainment and nonattainment tracts according to these population

and price pre-trends, and weight observations using the weights generated in this matching pro-

cess. This produces quantitatively similar estimates as our primary specification, as detailed in

Appendix section A.13

11We cluster standard errors on county, as nonattainment “areas” tended to align with county boundaries.
12Sager and Singer (2022) similarly instrument for changes in tract-level PM2.5 concentrations with mid-decade nonat-

tainment status.
13A central goal of our analysis is not simply to estimate the price capitalization of air quality improvements, but to

characterize how this capitalization differs across tracts with varying degrees of housing market constraints. This relies
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Table 2: First stage and reduced form: Nonattainment status

(1) (2) (3) (4) (5) (6)
∆ PM2.5, 2000-10 2010 HPI (2000=100) ∆ ln(pop), 2000-10

Nonattainment -1.685*** -1.574*** 10.289** 9.196** -0.506 0.081
(0.209) (0.187) (4.831) (4.367) (1.742) (1.290)

Controls ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓ ✓ ✓
F-stat (nonatt) 64.76 70.47
R-squared 0.487 0.512 0.371 0.430 0.037 0.119
Observations 25,843 25,843 25,843 25,843 25,843 25,843

Standard errors, in parentheses, are clustered on county. Controls include the share of the tract population that is non-
Hispanic white, the share of adults with a college degree, median household income, the share of housing units that
are occupied, and the share of occupied housing units that are renter-occupied. Nonattainment status refers to the 1997
NAAQS standards, which went into effect in 2005.
*** p<0.01, ** p<0.05, * p<0.1

Restricting the sample to Census tracts with non-missing HPI values and non-missing elas-

ticity estimates yields a sample of 25,843 Census tracts. The first-stage F-statistic on the nonat-

tainment instrument is about 70. Table 2 shows this first-stage relationship, and indicates that

nonattainment status is associated with about a 1.7-µg/m3 decline in PM2.5 concentrations over

the 2000-2010 period, relative to an average PM2.5 concentration of 13.0 µg/m3 in 2000 across the

entire sample (Table 1). Table 2 also displays the reduced-form relationship between nonattain-

ment status and the central outcome variables of interest, indicating that nonattainment status is

associated with a 9.2 percent increase in housing prices and a statistically insignificant and small

(0.08 log points) increase in population. Table 1 showed that tracts classified as the most inelas-

tic based on their metropolitan area’s Saiz (2010) elasticity began the period with higher average

PM2.5 concentrations of more elastic tracts. This implies that a 1-unit reduction in PM2.5 concen-

trations represents a smaller percent change in inelastic tracts compared to elastic tracts.14

on the slightly weaker assumption that the relationship between nonattainment status and expected price changes is
the same across inelastic and elastic areas.

14This could produce differential price effects in inelastic and elastic markets independent of differential housing
supply constraints. If housing prices are more responsive to larger relative (i.e., percent) improvements in air quality,
elastic tracts should experience larger price effects in response to a 1-unit improvement. Alternatively, if individuals are
willing to pay more for air quality improvements at higher initial levels of pollution, inelastic tracts should experience
larger price effects. However, the evidence on taste-based sorting suggests that the opposite is likely the case. Chay
and Greenstone (2005) provide “modest evidence” that MWTP for pollution reductions is lower in communities with
relatively high pollution levels, consistent with preference-based sorting, whereby individuals living in places with
initially low levels of air quality have higher MWTP for incremental pollution reductions. We do not take a stand on
which of these effects (if either) dominates, but if preference-based sorting is at play, this would bias our estimates
toward finding a larger price effect in elastic markets, with lower initial PM2.5 concentrations.
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While our strategy addresses endogeneity concerns around air quality, it does not address

potential selection across elastic and non-elastic places. Conditional on observable characteris-

tics, individuals may still sort into elastic or inelastic housing markets based on their underlying

preferences for air quality. If sorting into elastic vs. inelastic locations arises due to unobservable

taste dispersion, then the underlying MWTP for pollution reductions are expected to differ across

housing markets.15 Individuals living in relatively inelastic markets (e.g., the coasts) might differ

from individuals living in relatively elastic markets (e.g., the sunbelt) in ways that are correlated

with their preferences for air quality. We include a rich set of observable tract-level covariates (X′
j)

in our regression to address these concerns. However, we are unable to rule out that self-selection

could drive some variations in the price response to pollution reductions. While this is a limi-

tation in comparing the point estimates βq across elasticity bins, it does not obstruct the broader

conceptual point that market constraints influence the capitalization of amenity improvements.

As discussed in Bishop et al. (2020), a central challenge to interpreting the estimates pro-

duced by this instrumental variable approach, which is an application of a more general class of

difference-in-differences hedonic valuation techniques, is that price functions may change over

time. Kuminoff and Pope (2014), Banzhaf (2021), and others show that the MWTP estimate pro-

duced in the typical difference-in-differences framework combines information on two hedonic

price functions (pre- and post-treatment) and thus may be biased. Our setting overlaps with the

Great Recession and the associated housing crisis, which fundamentally altered the price func-

tions in housing markets across the United States. While this would complicate the MWTP es-

timate produced from price capitalization in the canonical setting for the reasons discussed by

Kuminoff and Pope (2014) and Banzhaf (2021), the central goal of our reduced-form exercise is not

to produced unbiased estimates of MWTP based on price capitalization. Rather, it is to elucidate

another, distinct source of bias in the canonical framework: the assumption of fixed quantities.

Our empirical approach demonstrates how price capitalization differs depending on the elasticity

of the local housing market, or its capacity to absorb increased demand. We present a theoretical

strategy to recover MWTP in the presence of both price and quantity margins in Section 6.

15Note that this is different from the issue of endogenous or taste-based sorting often discussed in the canonical he-
donic setting (which remains an issue here). Individuals with higher MWTP might choose to live in places with initially
low levels of pollution reduction. Banzhaf and Walsh (2008) show that individuals with greater MWTP might endoge-
nously sort in response to air quality improvements, such that individuals living in newly clean areas have different
MWTP than those elsewhere.
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5 Results: Price and quantity effects of air quality improvements

This section presents the central quasi-experimental evidence on the price and quantity effects of

air quality improvements across metropolitan Census tracts. Section 5.1 offers our primary empir-

ical results for the effect of these improvements across metro-area Census tracts over the 2000 to

2010 period.16 In Appendix A, we show that these results are largely robust to alternative weight-

ing schemes that explicitly address any potential pre-trends in the central outcome variables. In

Section 5.2, we demonstrate how price and quantity effects of air quality improvements differ de-

pending on the elasticity of local housing supply. We find consistent evidence that housing prices

capitalize improvements in air quality across U.S. Census tracts over the 2000-2010 period, with

this price effect mediated by the elasticity of local housing supply. More inelastic-supply places ex-

perience much larger price capitalization of air quality improvements, while more elastic-supply

places experience larger quantity changes. This suggests that housing supply constraints are rel-

evant when estimating the MWTP for amenity improvements, and motivates the creation of a

tractable model for benefit estimation in Section 6 that explicitly incorporates the capacity for

markets to accommodate increased demand via increases in quantity.

5.1 Price and quantity impacts of air quality improvements

We first examine the price and population response to change in average annual PM2.5 concentra-

tions over the 2000–2010 period without differentiating housing markets according to their local

housing supply constraints. Table 3 shows the OLS and nonattainment status IV coefficient es-

timates of β1 in equation 1, detailing the relationship between changes in average annual PM2.5

concentrations and tract-level housing prices and population sizes across the 25,843 metropoli-

tan Census tracts. The change in the natural log of the population has been multiplied by 100 to

facilitate interpretation as an approximation of the percent change in the population. The point

estimate from our primary specification including all tract-level controls (column 4) indicates that

a CAA-induced 1-unit (µg/m3) decline in average annual PM2.5 concentrations yields a 5.8 per-

cent increase in local housing prices in 2010 relative to 2000 levels. The IV estimates for housing

prices are substantially larger, and more precise than the OLS estimates. This is consistent with the

evidence presented in Chay and Greenstone (2005) and Sager and Singer (2022), as well as other

hedonic estimates of the benefits of air quality improvements. The IV estimates for the effect of

16We illustrate how price responses differ across various lengths of time in Appendix B, showing that prices are
relatively more responsive under short time horizons.
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Table 3: Price and population responses to ∆PM2.5, 2000-2010

(1) (2) (3) (4) (5) (6) (7) (8)
2010 HPI (2000=100) ∆ ln(population), 2000-2010

OLS IV OLS IV

∆PM2.5, ’00-10 -1.551 -0.984 -6.108** -5.843** 1.608*** 0.880** 0.301 -0.051
(1.438) (1.316) (2.664) (2.750) (0.488) (0.418) (1.030) (0.818)

Controls ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 25,843 25,843 25,843 25,843 25,843 25,843 25,843 25,843

Standard errors, in parentheses, are clustered on county. Controls include the share of the tract population that is non-
Hispanic white, the share of adults with a college degree, median household income, the share of housing units that
are occupied, and the share of occupied housing units that are renter-occupied. Columns 3, 4, 7, and 8 instrument for
change in PM2.5 with NAAQS nonattainment status, as described in text. The outcome variable in columns 5 through 8
has been multiplied by 100 for ease of interpretation.
*** p<0.01, ** p<0.05, * p<0.1

pollution declines on population changes are statistically indistinguishable from zero, while the

positive OLS coefficients imply that population declines with pollution declines. This is consistent

with existing evidence of a strong correlation between pollution and economic activity. When we

instrument for declining pollution levels with regulatory designations, this relationship becomes

indistinguishable.

One might be concerned that nonattainment tracts were on different trajectories than attain-

ment tracts independent of their regulatory status, which may confound the interpretation of the

estimates presented above. Using a similar IV strategy as here, Sager and Singer (2022) demon-

strate that matching nonattainment to attainment tracts based on pre-regulation pollution levels

produces attenuated estimates of the pollution effects of nonattainment status (i.e., the first stage),

but it increases estimates of price capitalization in response to regulation-induced pollution de-

clines. We note that, in estimating the price and quantity impacts of air quality improvements

induced by nonattainment status, one must also consider potential pre-trends in these outcome

variables. In Appendix Section A, we show that the price and quantity impacts of regulation-

induced pollution declines presented in Table 3 are robust to alternative weighting schemes where

we match nonattainment and attainment tracts according to pre-trends in price and population

changes and weight observations according to the weights produced in this matching process.
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5.2 Price and quantity impacts by housing supply elasticity

Next, we consider heterogeneity in the effect of air quality improvements across relatively inelas-

tic and elastic housing markets. To do so, we estimate equation 2 for the 25,853 Census tracts,

grouping tracts into 8 bins of metro-level elasticity according to the values in Saiz (2010), where

bin 1 is the most inelastic and bin 8 is the most elastic. We find that regulation-induced air quality

improvements yield larger housing price increases in tracts defined by inelastic housing markets,

and larger population increases in tracts defined by elastic housing markets, consistent with the

stylized model presented in Section 2. Figure 4 reports the estimated coefficients βq in equation

2 (and 95 percent confidence intervals), where we instrument for the change in average annual

PM2.5 concentrations over the 2000–2010 period with nonattainment status. Panel A reports the

coefficient estimates for HPI (the ‘price’ effect), and Panel B reports the coefficient estimates for

population changes (the ‘quantity’ effect). The estimates in each panel are estimated from a single

regression.

The leftmost point estimate in Panel A implies that a 1-unit decline in annual PM2.5 concen-

trations produces an 8.7 percent increase in housing prices in the most inelastic tracts, compared

to a (statistically insignificant) 2.5 percent decline in housing prices in the most elastic tracts. The

figure suggests that housing prices appear to increase the most in response to regulation-induced

pollution declines in the most inelastic tracts and that there is a clear relationship between supply

elasticities and price capitalization.17

At the same time, Panel B — showing the quantity effect — displays a somewhat striking

mirror-image version of Panel A. Regulation-induced pollution declines yield the largest popula-

tion increases in the most elastic Census tracts. The rightmost point estimate in Panel B implies

that a 1-unit decline in annual PM2.5 concentrations produces about a 5.7 percent increase in pop-

ulation in the most elastic tracts. Moving rightward from the leftmost estimate, there is a clear

downward trend in the point estimate, with a 0.3 percent decline in population in the most inelas-

tic census tracts. Population responses to pollution declines grow as places are more elastic.

17The most inelastic bin of tracts began the period with higher levels of annual PM2.5 emissions than other bins (15
µg/m3 in the most inelastic tracts versus 13 µg/m3 across all tracts in the sample), such that a 1-unit decline reflects
about a 6.7 percent decline in emissions in inelastic tracts compared to 7.7 percent decline across all tracts. Thus,
in percentage terms, a smaller pollution decline yields a much larger price increase in inelastic markets. The implied
elasticity of housing prices with respect to pollution is thus about -1.3 in the most inelastic tracts, compared to -0.75
across all metro-area Census tracts in the sample. The implied elasticity reported in Sager and Singer (2022) is -1.1.
Chay and Greenstone (2005) estimate that the implied elasticity of housing prices with respect to TSP concentrations is
between -0.2 and -0.35.

21



Figure 4: Price and population response to changes in PM2.5, by metro-level elasticity

(a) Outcome: 2010 HPI (2000=100)

(b) Outcome: ∆ln(population), 2000-10

Notes: Figure shows the point estimates and 95 percent confidence intervals of the regression coefficient βk on change
in tract-level PM2.5 concentrations over the 2000–2010 in parentheses interacted with the tract’s metro-level elasticity
quantile based on Saiz (2010). Tracts are broken into 8 quantiles, where 1 is the most inelastic. The point estimates in
each sub-figure are produced from a single regression, which includes controls for the share of the tract population that
is non-Hispanic white, the share of adults with a college degree, median household income, the share of housing units
that are occupied, the share of occupied housing units that are renter-occupied, and division fixed effects. Standard
errors are clustered on county. We instrument for the change in PM2.5 with NAAQS nonattainment status, as described
in text. The outcome variable in the bottom panel has been multiplied by 100 for ease of interpretation.
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We note that the grouping of Census tracts into 8 bins of metro-level elasticity estimates is

meant for expositional purposes — there is nothing special about these cut-offs, and the relation-

ship is quite similar using different thresholds (e.g., using 4 quantiles or 10 quantiles). We also

note that there exists heterogeneity in supply constraints within metropolitan areas. In Figure 5,

we replicate the analysis above but incorporate tract-level elasticity estimates from Baum-Snow

and Han (2024). Specifically, we group tracts into 8 bins based on the average of their tract- and

metro-level elasticity estimates from Baum-Snow and Han (2024) and Saiz (2010). This produces

extremely similar patterns as those observed in Figure 4. With the exception of bin 5, the most

supply-constrained tracts experience the largest price capitalization of pollution declines. Con-

currently, the most elastic-supply tracts experience the largest population increases in response to

pollution declines.18

The relationships described in this section are consistent with economic theory, as we expect

housing market constraints to play a role in determining the price and quantity effects of demand

shifts. What is less clear is what this implies for estimating the marginal benefits of pollution

reductions. If price capitalization were there sufficient statistic necessary for estimating MWTP,

the results in Panel A of Figure 5 suggest that MWTP is simply larger in inelastic-supply places.

However, the quantity effects in Panel B imply that other margins of adjustment may attenuate

the price capitalization in elastic-supply places. In the section that follows, we present a simple

spatial equilibrium model that allows us to interpret the reduced-form price and quantity effects as

MWTP modified by local housing supply elasticities. This model offers a way to estimate MWTP

for pollution reductions in the presence of quantity effects.

6 A model for air-quality improvements

Our empirical evidence shows that pollution declines yield larger price increases in places char-

acterized by relatively inelastic housing markets, and larger quantity (population) in places char-

acterized by relatively elastic housing markets. Intuitively, in markets in which housing supply

is not perfectly inelastic, a quantity adjustment may attenuate the price capitalization of demand

18Housing markets may be relatively more inelastic in shorter-run settings, as one cannot build new housing units
immediately, even in elastic-supply places. Similarly, even inelastic-supply locations become relatively elastic over
long enough time horizons. In Appendix Section B, we consider how price capitalization changes over progressively
longer long-difference settings. As expected, we find that price capitalization attenuates over progressively longer time
horizons.
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Figure 5: Price and population response to changes in PM2.5, by tract- and metro-level elasticity

(a) Outcome: 2010 HPI (2000=100)

(b) Outcome: ∆ln(population), 2000-10

Notes: Figure shows the point estimates and 95 percent confidence intervals of the regression coefficient βk on change
in tract-level PM2.5 concentrations over 2000–2010 in parentheses interacted with the tract’s elasticity quantile, based
on the average of tract- (Baum-Snow and Han, 2024) and metro- (Saiz, 2010) level elasticities. Tracts are broken into 8
quantiles, where 1 is the most inelastic. The point estimates in each sub-figure are produced from a single regression,
which includes controls for the share of the tract population that is non-Hispanic white, the share of adults with a
college degree, median household income, the share of housing units that are occupied, the share of occupied housing
units that are renter-occupied, and division fixed effects. Standard errors are clustered on county. We instrument for
the change in PM2.5 with NAAQS nonattainment status, as described in text. The outcome variable in the bottom panel
has been multiplied by 100 for ease of interpretation.
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shifts. This suggests that when supply is not perfectly inelastic, incorporating both price and

quantity effects will be necessary for generating credible estimates of MWTP.

To make progress towards incorporating this quantity margin when estimating MWTP for

amenity changes, we develop a simple spatial equilibrium model for air-quality improvements

that provides expressions for local population and housing prices as a function of local amenities.

This model builds on the long line of research that extends the logic of Rosen (1979) and Roback

(1982) to estimate the benefits of amenity improvements.19 We show that when housing supply is

perfectly inelastic, price capitalization from an amenity improvement is indeed a sufficient statis-

tic for estimating the MWTP. When housing is elastically supplied, the traditional hedonic price

capitalization approach must incorporate a measure of housing supply elasticity in order to back

out MWTP.

6.1 Spatial equilibrium model

Assume that there are a large number of places indexed by j. All workers inelastically supply

one unit of labor to their local labor market earning a wage of Wj . We assume that there is one

type of worker, such that all workers have the same marginal productivity (and hence face the

same wage, Wj).20 Workers consume one unit of a local good (housing) with a price Rj and they

consume a tradable good X with price of 1. They also gain utility from local amenities, Sj .

Worker i’s indirect utility is given by:

Vij = Wj + Sj − lnRj + εij (3)

where εij reflects worker i’s idyosyncratic preferences for place j.

There are a total of Nj workers in place j, and
∑

j Nj = Ntotal. Inverse supply of the local

good (housing) is given by:

lnRj = R̄+ ρj lnNj (4)

19Our model is most similar to Glaeser and Tobio (2007), who present a Rosen-Roback framework that uses changes
in population, income, and housing prices to assess the sources of growth in the Sunbelt. Bartik et al. (2019) also use the
concept of spatial equilibrium to infer MWTP for amenity changes. Other related extensions include Diamond (2016)
and Bieri et al. (2023), among others.

20We do not explicitly model mobility costs. Bayer et al. (2009) provide a careful treatment of this issue, showing that
the failure of individuals to move to areas experiencing air quality improvements could be partially due to mobility
frictions. Failing to account for these migration costs would downwardly bias estimates of the disutility associated
with pollution.
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where the number of housing units in place j is assumed to be equal to the number of workers, Nj ,

assuming that all workers consume one unit of housing. The parameter ρj is the inverse elasticity

of the supply of housing (Moretti, 2011). It will be influenced by place-specific characteristics

such as geographic characteristics and local land use regulations. In locations with substantial

geographic barriers to development and restrictive regulations, ρj will be large. In locations with

relatively loose regulatory codes and few geographic constraints, ρj will be very small. In the

extreme example in which housing supply is perfectly inelastic and the supply curve is vertical,

ρj will be infinite.

Assume that εij follows a Type 1 Extreme Value distribution. In equilibrium, the marginal

worker is indifferent between place j and all other places −j. The number of workers living in

place j can be written in terms of the probability that worker i chooses to live in place j, scaled by

the number of workers (Ntotal):21

Nj = Ntotal

exp
(
Wj + Sj − R̄

)
N

−ρj
j∑

k exp (Wk + Sk − lnRk)
(5)

Write log population (lnNj) and housing prices (Rj) as functions of amenity value Sj :

lnNj =
1

1 + ρj
(Wj + Sj − R̄) + C1 (6)

lnRj =
ρj

1 + ρj
(Wj + Sj) +

1

1 + ρj
R̄+ C2 (7)

where C1 and C2 are constants.

Taking the long difference in each variable over time:22

∆ lnNj =
1

1 + ρj
(∆Wj +∆Sj +∆R̄) (8)

∆ lnRj =
ρj

1 + ρj
(∆Wj +∆Sj) +

1

1 + ρj
∆R̄ (9)

21This is based on the conditional logit setup from McFadden (1973), used in a variety of settings in urban economics
(see, for example, Diamond (2016)).

22For brevity, we have omitted time subscripts in these expressions. We assume that Wj , Nj , Sj , Rj , and R̄ may
vary across time, while other parameters are assumed to be time-invariant. The derivations of these expressions can be
found in Appendix C.1.
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Now, let amenity value Sj be a linear function of local pollution concentrations Xj . The long

difference over time (∆Sj) is given by:

∆Sj = γ1∆Xj + ν̃j (10)

where ν̃j is an unobservable determinant of ∆Sj .23

We assume that wages are orthogonal to local pollution concentrations Xj . In the Appendix,

we extend the model to allow for local pollution concentrations to influence local productivity.

The broad conclusions are insensitive to this extension. Empirically, we find little evidence that

wages respond to local pollution concentrations.

Plugging equation 10 into the long difference expressions for population (equation 8) and

housing prices (equation 9), we can write the central parameters as functions of ∆Xj :

∆ lnNj =
1

1 + ρj
(∆R̄+∆Wj) +

γ1
1 + ρj

∆Xj + ξnj (11)

∆ lnRj =
ρj

1 + ρj
∆Wj +

1

1 + ρj
∆R̄+

ρjγ1
1 + ρj

∆Xj + ξrj (12)

where ξnj =
ν̃j

1+ρj
and ξrj =

ρj ν̃j
1+ρj

.

Equations 11 and 12 demonstrate how local population counts and housing prices respond to

local pollution concentrations. The marginal willingness to pay (MWTP) for air pollution changes

is given by the parameter γ1.

Thus ρj , combined with the coefficient from a regression of the change in housing prices on

the change in pollution concentrations, together offer sufficient statistics for MWTP, γ1.

6.2 Marginal WTP for amenity improvements from reduced-form estimates

Let β̂R and β̂N be the estimated causal effect of a 1-unit improvement in PM2.5 concentrations

(∆Xj) on the change in housing prices (∆ lnRj) and change in population (∆ lnNj).24 The model

presented above indicates that β̂R — the housing price capitalization of air quality improvements

23ν̃j is not orthogonal to air quality improvements ∆Xj , as unobserved characteristics may covary with both air
quality and amenity improvements.

24We proxy for the change in log housing prices with the percent change in housing prices, based on the HPI.
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— reflects the MWTP scaled by the expression ρj
1+ρj

:

β̂R =
ρj

1 + ρj
· γ1

Recall that ρj is the inverse housing supply elasticity, i.e. d lnRj

d lnNj
. When housing supply is

perfectly inelastic (i.e. as ρj → ∞), the coefficient from a typical hedonic price regression thus

offers a sufficient statistic for MWTP, γ1, because limρj→∞
ρj

1+ρj
= 1. However, when housing

supply is not perfectly elastic (i.e., ρj
1+ρj

< 1), the coefficient from this regression will reflect MWTP

attenuated by ρj
1+ρj

. This attenuation will be more severe when housing supply is very elastic, such

that ρj is very small. To account for the housing supply elasticity, one can estimate the regression

coefficient on the amenity change ∆Xj interacted with the term ρj
1+ρj

.

Thus, if ρj is known, it may be combined with the reduced-form hedonic price coefficient to

back out MWTP. If ρj is unknown, one needs the additional parameter β̂N to calculate MWTP:

β̂N =
γ1

1 + ρj

The ratio of β̂R and β̂N then provide the inverse housing supply elasticity parameter:

ρj =
β̂R

β̂N

Intuitively, because the exogenous shock to air quality acts as a demand shifter that moves both

prices and population counts, it can be leveraged to estimate housing supply elasticity. Do note

that ρj may vary across place j. If the empirical setting includes many locations with heteroge-

neous supply elasticities, the ρj that is produced by the ratio of β̂R and β̂N will reflect a weighted

average across place. Thus, this strategy is most appropriately used in settings in which housing

supply constraints do not vary substantially across observations.25

In summary, β̂R is a sufficient statistic for ρj when housing supply is perfectly inelastic. When

supply is not perfectly inelastic and ρj is known, one can calculate MWTP (γ1) as the housing price

regression coefficient on ρj
1+ρj

∆Xj . When ρj is unknown and it does not vary substantially across

observations, it can be calculated as the ratio of β̂R and β̂N and then used to back out the MWTP
25Note that, in our empirical setting, housing supply constraints do vary substantially across Census tracts.
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parameter, γ1.26

6.3 MWTP estimates that incorporate elastic housing supply

Informed by the model expressions derived above, this section presents estimates of MWTP which

account for housing supply elasticities. We first provide estimates of MWTP based on values of

inverse elasticity ρj taken from the literature. Following equation 12, we regress the change in log

housing prices on the change in PM2.5 multiplied by ρj
1+ρj

:

∆yj = β0 + βMWTP · ρj
1 + ρj

∆PM2.5j + X′
jγ + δd + εj (13)

where estimates of inverse elasticities ρj from the literature. We impute ρj from the literature in

one of three ways: ρj is defined as (i) the inverse of metro-level elasticity from Saiz (2010), (ii) the

inverse of tract-level elasticity from Baum-Snow and Han (2024), or (iii) the inverse of the average

of the two elasticity estimates. As before, we instrument for the change in PM2.5 between 2000

and 2010, with NAAQS nonattainment status. Here, βMWTP can be interpreted as the reduced-

form estimates of average MWTP for an additional unit decline in PM2.5 across all Census tracts,

accounting for the housing supply elasticities in each tract.

In Table 4, we present the IV coefficient estimates of βMWTP from equation 13 using these

three different methods of characterizing ρj , as well as the standard hedonic approach. Column 1

reproduces estimates from Table 3 reflecting the reduced-form effect of a 1-unit change in PM2.5 on

tract-level HPI, without incorporating any measure of housing supply elasticity. A 1-unit decline

in PM2.5 yields a 5.8% increase in housing prices, or an increase of $6,570 over the 2000-level me-

dian home value in the sample. Thus, the standard hedonic price capitalization approach would

imply a MWTP of about $6,570 per household for a 1-unit improvement in air pollution. Extrap-

olating from the first-stage coefficient from Table 2 (1.574), this implies that the NAAQS-induced

pollution reductions were valued at about $10,000 per household. Again, this estimate implic-

itly assumes that housing supply is perfectly inelastic, such that the housing price change is a

sufficient statistic for estimating MWTP.

In contrast, columns 2–4 of Table 4 present estimates of MWTP that account for local housing

26In other words, when housing is supplied elastically, the MWTP for the amenity can be estimated as:

γ1 = β̂R + β̂N

where β̂R and β̂N are the dollar-value equivalents of price and population changes in percent.
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Table 4: Price response to air-quality improvements, scaled by housing supply elasticity

(1) (2) (3) (4)
2010 HPI

∆ PM2.5, 2000-10 -5.843**
(2.750)

ρj
1+ρj

×∆ PM2.5, 2000-10 -12.69** -6.498** -9.722**
(4.952) (3.033) (4.042)

Controls ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓

Elasticity used to calc. ρj Baseline (no
interaction)

Metro-level Tract-level Metro- and
tract- average

Observations 25,843 25,843 25,843 25,843

Standard errors, in parentheses, are clustered on county. Controls include the share of the tract population that is non-
Hispanic white, the share of adults with a college degree, median household income, the share of housing units that
are occupied, and the share of occupied housing units that are renter-occupied. In columns 2–4, we interact ∆ PM2.5

with ρj
1+ρj

, a measure of the inverse housing supply elasticity in tract j. In column 2, this is defined as the inverse of
the metro-level elasticity provided by Saiz (2010). In column 3, ρj is the inverse of the tract-level elasticity provided by
Baum-Snow and Han (2024). In column 4, we take the average of the metro- and tract-level elasticities and define ρj as
the inverse of this value. We instrument for the primary independent variable (∆ PM2.5 between 2000 and 2010, or that
scaled by ρj) with NAAQS nonattainment status, as described in text.
*** p<0.01, ** p<0.05, * p<0.1

supply elasticities, and the attenuation effect that elastic supply will have on the hedonic price

coefficient. The primary independent variable in these specifications is the change in PM2.5 con-

centrations over the 10-year period times ρj
1+ρj

. We again instrument for this with mid-decade

NAAQS nonattainment status. Imputing ρj from housing supply elasticities drawn from the liter-

ature, we find that the average βMWTP ranges from 6.5 to 12.7 percent, which translates to about

$7,360 to $14,384 per household per unit of pollution reduction. Extrapolating from the first-stage

coefficient as before, this implies that the NAAQS-induced pollution reductions were valued at

about $11,500 to $22,600 per household. Consistent with model predictions, these estimates of

MWTP are larger — on the order of about 12 to 117 percent larger — than the estimates based on

the standard hedonic estimates. Thus, the classic hedonic approach produces MWTP estimates

that are substantially lower than those produced after accounting for market constraints.

7 Conclusion and discussion

Many applications of the hedonic approach exploit price capitalization in the housing market

to estimate the benefits of local amenities. Implicit in these applications is the assumption that
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the supply of housing is fixed, or perfectly inelastic. In circumstances in which the market can

expand in order to accommodate increased demand arising from amenity improvements, there

will be a quantity response to these amenity changes in addition to this price response. We expect

that this quantity margin will be larger, and the concurrent price capitalization smaller, in places

characterized by relatively elastic housing supply. Thus, MWTP estimates based on price changes

alone may be biased to the extent that the observed price changes are attenuated by expansions in

supply.

The empirical evidence presented in this paper suggests that housing supply constraints

do indeed mediate the relationship between improvements in local amenities and housing price

growth. We exploit the implementation of the 1997 NAAQS for PM2.5, which took effect in 2005, to

show that exogenous improvements in air quality lead to a larger increase in housing prices in in-

elastic housing markets relative to elastic housing markets. This reduced-form result is consistent

across a range of specifications. That price capitalization is larger in relatively constrained housing

markets indicates either that individuals living in inelastic markets have stronger preferences for

cleaner air, or that price changes alone are insufficient to measure demand for clean air. Consistent

with a stylized model of supply and demand for amenity improvements, we find that exogenous

improvements in air quality lead to larger quantity changes (i.e., population increases) in elastic

housing markets relative to inelastic housing markets. That is, prices and quantities adjust in re-

sponse to amenity improvements, with the relative magnitude of these adjustments depending on

the elasticity of housing supply.

Motivated by this empirical evidence, we develop a spatial equilibrium model of local hous-

ing markets and population, which allows for improvements in environmental amenities to gen-

erate both price and quantity effects. The model provides expressions for housing prices and

population counts as functions of local amenities, with these relationships mediated by the elas-

ticity of local housing supply. Our model provides a new interpretation of the reduced-form effect

of air quality improvements on housing prices: this effect is an estimate of the MWTP scaled by

the local housing supply elasticity. Based on this insight, we provide new estimates of MWTP

using regulation-induced improvements in air quality, as well as measures of local housing sup-

ply elasticities from the literature. We find that the resulting MWTP for air quality is 12 to 117

percent larger than the estimate produced based on price capitalization alone. This indicates that

the canonical hedonic price coefficient will tend to underestimate the value of environmental im-
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provements in the presence of a quantity margin, with the resulting bias more severe in more

elastic-supply settings.

A key limitation of the analysis presented in this paper is that we do not account for het-

erogeneity in preferences for cleaner air. If individuals with a higher MWTP for air quality select

into cities with more inelastic local housing supply, then some of the heterogeneity in the price

effects could be explained by this taste-based sorting. Nevertheless, we show that price effects

should conceptually be larger in places with relatively inelastic housing supply, independent of

self-selection. We provide reduced-form evidence that is consistent with this conceptual predic-

tion using a variety of specifications and empirical settings. Given the distribution of true MWTP

in the population, we show that prices alone may be an insufficient statistic for recovering the

MWTP in situations when local housing markets are not perfectly inelastic.

Importantly, our critique of the canonical hedonic approach is limited to situations in which

researchers cannot plausibly take advantage of extremely short-run price responses to amenity

changes. Housing supply may indeed be fixed, or perfectly inelastic, under very immediate time

horizons. In situations in which there is an extremely abrupt and salient change in local amenities,

and researchers can estimate concurrent price changes, there will be little or no bias of the form

we discuss in this paper because there exists no quantity margin. However, over progressively

larger time horizons, new homes can be constructed and supply can expand to accommodate

increased demand. The capacity for new construction depends upon the elasticity of local housing

supply. Here, we show that explicitly accounting for this quantity margin is essential to producing

unbiased estimates of MWTP. Over the past several decades, much progress has been made in

elucidating and addressing the biases in the canonical hedonic method. In this paper, we present

one commonly overlooked source of bias emerging when the assumption of fixed quantities does

not hold, and present a model of spatial equilibrium that can be used to estimate MWTP in this

situation. We anticipate that much more progress will be made in developing tractable methods

to deal with this source of bias and the credibility of resulting estimates going forward.
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Appendix

A Pre-trends and alternative weighting schemes

While we do not observe significant differences in 2000-level covariates between tracts in nonat-

tainment and attainment areas, there are differences in population and price pre-trends between

the two groups of tracts. These characteristics are presented in Columns 1-3 of Table A1. We

consider the 1990-2000 change in log population and the 1995 HPI (where 2000=100) as the pri-

mary indicators of possible pre-trends.27 Because the HPI is indexed to 2000-level prices, a higher

value in 1995 reflects less price appreciation between 1995 and 2000. Thus, Table A1 indicates

that nonattainment tracts were growing more slowly – both in terms of population and prices –

prior to the period of analysis. For this reason, we believe that our primary instrumental variable

strategy likely yields a lower bound estimate on the change in prices and quantities attributable

to regulation-induced declines in PM2.5 concentrations.

Our primary specification exploiting CAA nonattainment status to understand tract-level

price capitalization and population responses to amenity improvements does not explicitly ad-

dress these differential pre-trends. In this section, we show that our central estimates are largely

robust to alternative weighting schemes in which we explicitly match attainment and nonattain-

ment tracts based on these pre-trends in price and quantity changes.

First, we estimate each attainment tract’s propensity score for treatment (i.e., receiving nonat-

tainment status) based on the 1995 HPI and the 1990-2000 change in log population. We use these

outcome changes because they precede the long-difference (2000–2010) setting. The 1995 HPI is

again indexed to 2000 levels, such that it represents the price change from 1995–2000. We use the

1995 HPI rather than the 1990 value, as the 1990 value is missing for a large share (37%) of tracts

in our primary sample.28 The 1990 population estimates are retrieved from the U.S. Census. We

do this propensity score matching (PSM) using the four nearest neighbors to treatment (nonat-

tainment) tracts and then weight the observations using the weights generated in this matching

process. We impose common support by dropping treatment observations whose propensity score

is higher than the maximum or less than the minimum propensity score of the control group (at-

27We consider the 1995 HPI rather than the 1990 HPI because a large share of tracts (37%) have missing values for
1990. Still, we lose some observations by considering the 1995 value (8.5% of tracts have missing 1995 values).

28The 1995 HPI is also missing for many tracts in our primary sample, although the share is much smaller (8.5%).
This process will drop all tracts with missing 1995 values.
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Table A1: Nonattainment and attainment tract characteristics

(1) (2) (3) (4) (5) (6)
Unweighted PSM-weighted

Attain. Non. (1)-(2) Attain. Non. (4)-(5)

2000-level covariates
ln(med. hh income) 10.867 10.895 -0.028 10.866 10.905 -0.039

(0.015) (0.027) (0.012) (0.028)
adult college share 31.323 30.276 1.047 31.332 30.654 0.678

(0.712) (1.397) (0.695) (1.455)
non-Hispanic white share 75.507 70.572 4.935 78.302 70.738 7.563

(1.705) (5.165) (1.523) (5.302)
renter-occupied housing rate 27.666 27.691 -0.024 26.575 27.466 -0.891

(0.646) (1.942) (0.510) (1.969)
vacancy rate 5.330 4.502 0.829** 5.208 4.379 0.829**

(0.215) (0.269) (0.185) (0.262)
Other characteristics

1995 HPI 78.215 81.425 -3.210*** 81.541 81.425 0.116
(0.980) (0.752) (0.732) (0.752)

∆ln(population), ’90-2000 30.746 18.303 12.442*** 18.884 18.077 0.806
(2.801) (2.084) (1.148) (2.083)

PM2.5 concentration, 2000 11.051 15.434 -4.383*** 11.075 15.455 -4.381***
(0.171) (0.558) (0.181) (0.575)

Observations 14,107 11,736 11,263 11,144

Sample in columns 1-3 includes all metro tracts with non-missing values for HPI and elasticity. Sample in columns
4-6 includes all metro tracts with non-missing values for HPI and elasticity with positive weights produced by PSM.
Means in columns 4-6 are weighted by these PSM weights. Standard errors, clustered on county, are in parentheses.
Non. refers to nonattainment tracts, based on whether the tract was in an area designated as nonattainment under the
1997 NAAQS standards, which went into effect in 2005. 2000-level covariates are retrieved from the U.S. Census. HPI
is retrieved from the FHFA and is indexed to 2000 levels (2000=100).
*** p<0.01, ** p<0.05, * p<0.1

tainment) observations. This yields a slightly smaller sample than that used in our primary anal-

ysis, as tracts that perform as poor matches to the treatment group are dropped from the analysis.

Weighting observations by the weights produced in this PSM process mollifies the differential

pre-trends observed earlier, as seen in Columns 4-6 of Table A1.

Because we are primarily interested in housing price capitalization, the second and third

weighting strategies focus on differential housing price trends across nonattainment and attain-

ment tracts. In the second strategy, we employ a similar method as the first, but match attainment

and nonattainment tracts on only 1995 HPI, again imposing common support by dropping treat-
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ment observations whose propensity score is higher than the maximum or less than the minimum

propensity score of the control group (attainment) observations. Finally, we note that housing

prices grew dramatically and heterogeneously across the United States in the run-up to the Great

Recession and associated housing crisis. Nonattainment status was announced in December of

2004, and thus it may be more appropriate to address potentially heterogeneous housing price

trends in the years immediately preceding nonattainment designation. Thus, in the third weight-

ing strategy, we match attainment and nonattainment tracts based on their 2005 HPI, where 2000

is still this base year. This amounts to matching tracts based on their 2000–2005 price appreciation.

We again impose common support. In all strategies, we match control and treatment observations

using the four nearest neighbors, although the conclusions are relatively insensitive to the precise

matching strategy used.

The identifying assumption is that nonattainment tracts and their propensity-matched at-

tainment tracts would have experienced the same changes in prices (or prices and populations)

over time in the absence of the regulation. While impossible to test this counterfactual explicitly,

weighting observations such that nonattainment and attainment tracts have common pre-trends

in these outcomes attenuates concerns that the observed “effect” of regulatory-induced pollu-

tion declines is driven by differential trajectories. The strategy outlined here is similar to that in

Sager and Singer (2022), who demonstrate how failing to match control (attainment) and treatment

(nonattainment) tracts on the pre-period outcomes of interest can substantially alter the coefficient

estimates when using NAAQS nonattainment status as an instrument for changes in PM2.5 con-

centrations.29

Table A2 shows the point estimates of β1 in equation 1 describing the relationship between

NAAQS-induced changes in tract-level PM2.5 concentrations and price and population changes

over the 2000–2010 period, using the alternative weighting schemes described in this section. As

before, we instrument for the change in PM2.5 with NAAQS nonattainment status announced in

December 2004. In columns 1 and 2, we reproduce the central estimates (without weighting) from

Table 3. In columns 3 through 8 of Table A2, we weight by the weights produced in PSM, described

29Sager and Singer (2022) are primarily interested in the effect of nonattainment status on subsequent changes in
PM2.5 concentrations, and thus match on pre-treatment levels of PM2.5. They show how this yields a smaller estimated
effect of nonattainment status on subsequent pollution, but a larger estimated effect of nonattainment on housing
prices. Given that we are primarily interested in changes in housing prices and population densities as outcomes, the
matching strategy we outline here better addresses the concerns related to differential counterfactual trends between
nonattainment and attainment tracts.
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Table A2: Price and population responses to ∆PM2.5, 2000-2010 (alternative weighting schemes)

(1) (2) (3) (4) (5) (6) (7) (8)
2010 HPI ∆ln(pop)’00-10 2010 HPI ∆ln(pop)’00-10 2010 HPI ∆ln(pop)’00-10 2010 HPI ∆ln(pop)’00-10

∆ PM2.5, 2000-10 -5.843** -0.051 -4.964* 0.136 -6.238** 0.594 -5.285* -0.662
(2.750) (0.818) (2.779) (0.759) (2.697) (0.813) (2.734) (0.794)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weight none none
’95 HPI &

∆ln(pop)’90-00
’95 HPI &

∆ln(pop)’90-00 ’95 HPI ’95 HPI ’05 HPI ’05 HPI

Observations 25,843 25,843 22,407 22,407 20,835 20,835 23,714 23,714

Standard errors, in parentheses, are clustered on county. Controls include the share of the tract population that is non-
Hispanic white, the share of adults with a college degree, median household income, the share of housing units that
are occupied, and the share of occupied housing units that are renter-occupied. We instrument for change in PM2.5 with
NAAQS nonattainment status, as described in text. The outcome variable in columns 2, 4, 6, and 8 has been multiplied
by 100 for ease of interpretation. In columns 3 through 8, we weight observations by the weights produced in PSM,
where we match nonattainment and attainment tracts on the variables indicated in the “weight” row using the 4 nearest
neighbors and imposing common support.
*** p<0.01, ** p<0.05, * p<0.1

above. Columns 3 and 4 match on 1995 HPI and 1990-2000 population changes. Columns 5 and 6

match on 1995 HPI only, and columns 7 and 8 match on 2005 HPI.

The point estimates in odd-numbered columns reflect the price effect, and the point esti-

mates in even-numbered columns reflect the population effect, of regulation-induced changes in

PM2.5 concentrations using these different weighting schemes. The price capitalization is quite

similar across these various strategies, while population changes remain small and statistically

insignificant across specifications. We also note that using these alternative weighting schemes

to estimate equation 2 produces similar results as those in Figure 4. The conclusion that hous-

ing prices are more sensitive to air quality improvements in markets characterized by relatively

inelastic housing supply, and that population sizes respond more in elastic-supply locations, is

largely insensitive to the choice of empirical specification or definition of local housing supply

elasticity. That is, housing prices do less to “capitalize” pollution declines in more elastic markets,

where population changes are the more relevant margin of adjustment to demand shifts.

41



Table B3: Price capitalization of air quality improvements over time

(1) (2) (3) (4)
HPI in year X (2000=100)

X=2007 2010 2013 2016

∆ PM2.5, 2000-X -14.596*** -5.843** -3.964** -2.657
(4.709) (2.750) (1.688) (2.454)

Controls ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓
Observations 25,749 25,843 25,669 24,855

Standard errors, in parentheses, are clustered on county. Controls include the share of the tract population that is
non-Hispanic white, the share of adults with a college degree, median household income, the share of housing units
that are occupied, and the share of occupied housing units that are renter-occupied. We instrument for change in PM2.5

between 2000 and the year indicated (X) with NAAQS nonattainment status, as described in text.
*** p<0.01, ** p<0.05, * p<0.1

B Short- and long-run impacts of air quality improvements on housing

prices

A housing market may be relatively inelastic if there exist substantial geographical or regulatory

barriers to construction, but it may also be relatively inelastic over shorter time horizons, as hous-

ing units cannot be built in the very short run. Thus, we expect that the price capitalization of

air quality improvements will be larger in the short run, and relatively more attenuated in the

long run. Indeed, we find that the housing price effects of NAAQS-induced declines in PM2.5

concentrations are larger in magnitude in the short run (2000-2007) and smaller in the longer run

(2000-2013 and 2000-2016).

Table B3 presents the point estimates capturing the effect of the regulation-induced change

in average annual PM2.5 concentrations on tract-level price changes over different long-difference

periods. In each column, we instrument for the change in average annual PM2.5 concentrations

between 2000 and the year indicated with nonattainment status. The outcome variable is defined

as the HPI in the year indicated, relative to 2000 levels. Thus, column 1 shows the price capitaliza-

tion between 2000 and 2007, column 2 shows the price capitalization between 2000 and 2010 (our

primary setting), column 3 shows the price capitalization between 2000 and 2013, and column

4 shows the price capitalization between 2000 and 2016. The specification used to produce the

estimates is identical to our central analysis, but the primary independent variable and outcome
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variable are adjusted to reflect the relevant time horizon. The price effect of pollution reduction be-

comes increasingly attenuated over time. Consistent with basic economic theory, in very short-run

settings, prices appear more responsive to demand shifts. A 1-µg/m3 decline in average annual

PM2.5 concentrations yields nearly a 15 percent increase in housing prices between 2000 and 2007,

which declines to a statistically indistinguishable 2.7 percent increase in housing prices between

2000 and 2016. This provides additional suggestive evidence that the elasticity of the local housing

market matters for price capitalization: Even housing markets characterized by substantial legal

or geographical constraints to construction are not perfectly inelastic over longer time horizons.

In these settings, the MWTP estimated based on price capitalization alone could be biased to the

extent that it does not incorporate the quantity margin. Over progressively longer time horizons,

we expect the magnitude of this bias to grow. In circumstances in which researchers evaluate rela-

tively immediate price changes in response to amenity improvements, there will be little resulting

bias in using price changes to estimate MWTP.30

C Model estimation details

C.1 Model derivation

The total number of workers in place j is given by (equation 5):

Nj = Ntotal

exp
(
Wj + Sj − R̄

)
N

−ρj
j∑

k exp (Wk + Sk − lnRk)

Taking the log of this equation:

lnNj =
(
Wj + Sj − R̄

)
− ρj lnNj + ln

(
Ntotal∑

k exp (Wk + Sk − lnRk)

)
Let C1 = ln

(
Ntotal∑

k exp(Wk+Sk−lnRk)

)
:

lnNj =
(
Wj + Sj − R̄

)
− ρj lnNj + C1

→

(1 + ρj) lnNj = Wj + Sj − R̄+ C1

30Depending on the empirical setting, estimating very short-run price changes may be more or less feasible. In
this setting, the standards were not implemented until 2005, and states were given a three-year window under which
to develop plans to reduce PM2.5 concentrations in nonattainment areas. Ambient air quality changes in a relatively
gradual manner, and may or may not be immediately salient, such that studying extremely short-run price responses
(i.e., when housing supply is perfectly inelastic) is typically infeasible.
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→

lnNj =
1

1 + ρj

(
Wj + Sj − R̄+ C1

)
Plugging this expression for lnNj into the equation lnRj = R̄+ ρj lnNj :

lnRj = R̄+ ρj

(
1

1 + ρj

(
Wj + Sj − R̄+ C1

))
→

Rj =
ρj

1 + ρj
(Wj + Sj) +

1

1 + ρj
R̄+ C2

where C2 =
ρj

1+ρj
C1.

Thus, log population and housing prices as functions of amenity value Sj are given by:

• Population (equation 6):

lnNj =
1

1 + ρj
(Wj + Sj − R̄) + C1

• Housing prices (equation 7):

lnRj =
ρj

1 + ρj
(Wj + Sj) +

1

1 + ρj
R̄+ C2

where C1 and C2 are constants.

Taking the long difference of equations 6 and 7 over time and plugging in the expression for

amenity values as a function of local pollution concentrations:31

• Population:

∆ lnNj =
1

1 + ρj
(∆Wj +∆Sj +∆R̄)

• Housing prices:

∆ lnRj =
ρj

1 + ρj
(∆Wj +∆Sj) +

1

1 + ρj
∆R̄

Finally, we let productivity amenity value Sj be a linear function of local pollution concen-

31We assume that C and C2 are time-invariant. We have omitted time subscripts in these expressions for brevity,
but we assume that only Wj , Nj , Sj , Rj , and R̄ may vary across time. All parameters with a ∆ should have a time
subscript.
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trations Xj :

Sj = γ0 + γ1Xj + νj

Taking the long difference of the above equation over time, letting γ0 be time-invariant:

∆Sj = γ1∆Xj + ν̃j

Plugging this equation into the long difference expressions for population and housing prices,

above, we arrive at equations 11 and 12.
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