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The impact of biomedical innovation on U.S. mortality, 1999-2019: 
evidence partly based on 286 million descriptors of 27 million PubMed articles 

 
Abstract 

We investigate econometrically the overall impact that biomedical innovation had on 
premature mortality in the U.S. during the period 1999-2019.  We use a difference-in-differences 
research design: we investigate whether the diseases for which there was more biomedical 
innovation had larger reductions in premature mortality.  Biomedical innovation related to a 
disease is measured by the change in the mean vintage of descriptors of PubMed articles about 
the disease.  We analyze data on 286 million descriptors of 27 million articles about over 800 
diseases. 

Our estimates indicate that premature mortality from a disease is significantly inversely 
related to the lagged vintage of descriptors of articles about the disease.  For example, the 
number of years of potential life lost before age 75 due to a disease is significantly inversely 
related to the mean vintage of descriptors 2-16 years earlier; it is most strongly inversely related 
to the vintage of descriptors 12 years earlier.  This lag is not surprising: we show that the number 
of prescriptions for a drug is significantly positively related to the number of PubMed descriptors 
of the drug 6-14 years earlier.  It is most strongly related to the number of PubMed descriptors of 
the drug 10 years earlier.   

To explore whether biomedical innovation had different effects on the mortality of whites 
and blacks, we also estimate models using race-specific mortality data.  Our estimates indicate 
that biomedical innovation reduced the mortality of white people sooner than it reduced the 
mortality of black people, and that the mortality of black people was not reduced by the most 
recent innovations. 

From 1999 to 2019, the age-adjusted mortality rate (excluding deaths from unintentional 
injury, suicide, and homicide) from all diseases declined by approximately 20%--about 1% per 
year.  Our estimates imply that, in the absence of biomedical innovation, age-adjusted mortality 
rates would not have declined.  Also, from 1975 to 2019, the age-adjusted cancer mortality rate 
declined by approximately 27%.  Our estimates also imply that, in the absence of biomedical 
innovation, the age-adjusted cancer mortality rate would not have declined.  Some factors other 
than biomedical innovation (e.g., a decline in the smoking rate and an increase in educational 
attainment) probably contributed to the decline in mortality.  But other factors (e.g., a rise in 
obesity and the prevalence of chronic conditions) undoubtedly contributed to an increase in 
mortality. 
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I. Introduction 

 

Economists recognize that mortality reduction is an important component of economic 

growth, broadly defined.  Life expectancy at birth is one of the three components of the United 

Nations’ Human Development Index (United Nations Development Programme (2024)), a 

summary measure of average achievement in key dimensions of human development.  Nordhaus 

(2003) argued that “to a first approximation, the economic value of increases in longevity in the 

last hundred years is about as large as the value of measured growth in non-health goods and 

services.” 

Many leading economists believe that economic growth is primarily driven by 

technological progress, which is generated by R&D investment.  Romer (1990, p. S72) argued 

that “technological change…lies at the heart of economic growth.”  Jones (1998, pp. 89-90) 

argued that “technological progress is driven by research and development (R&D) in the 

advanced world.”  Jones (2002) presented a model in which long-run growth is driven by the 

discovery (via research effort) of new ideas throughout the world.  His model built upon a large 

collection of previous research, including Grossman and Helpman (1991) and Aghion and Howitt 

(1992), as well as earlier contributions by Phelps (1966), Shell (1966), Nordhaus (1969), and Simon 

(1986).  Cutler, Deaton and Lleras-Muney (2006) concluded that “knowledge, science, and 

technology are the keys to any coherent explanation” of mortality.   

 In this study, we propose to investigate econometrically the overall impact that 

biomedical innovation had on premature mortality in the U.S. during the period 1999-2019.  We 

will use a difference-in-differences research design: we will investigate whether the diseases for 

which there was more biomedical innovation had larger reductions in premature mortality (e.g., 

the number of years of potential life lost before age 75).  Biomedical innovation related to a 

disease will be measured by the change in the mean vintage of Medical Subject Headings 

(MeSH) descriptors in PubMed articles about the disease. 

 Our methodology is similar to the one used in a previous study (Lichtenberg (2018)).  

The present study will build on the previous study in several important ways.  First, the previous 

study only covered cancer.  While cancer is certainly an important disease, it accounted for only 

19% of years of potential life lost before age 75 in the U.S. in 2019.  The present study will 

analyze data on all diseases.  Second, the previous study did not examine whether biomedical 
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innovation had different effects on the mortality of different racial groups.  The present study 

will examine that issue.  Third, the previous study analyzed cancer mortality during the period 

1999-2013; the present study will analyze mortality from all diseases during the period 1999-

2019.  We will also reexamine cancer mortality during a longer period (1975-2019) and using an 

alternative mortality measure (the age-adjusted mortality rate). 

In the next section, we explain how we constructed measures of biomedical innovation, 

by disease.  In section III, we present our econometric model of mortality.  Data sources and 

descriptive statistics are presented in section IV.  Empirical results are presented in section V.  

Implications of the estimates are discussed in section VI.  The final section provides a summary. 

 

II. Measurement of biomedical innovation, by disease 

 

Our measures of biomedical innovation, by disease, were constructed from data 

contained in PubMed, a literature database available to the public online since 1996, developed 

and maintained by the National Center for Biotechnology Information, part of the U.S. National 

Library of Medicine (NLM).  The PubMed database contains more than 36 million citations and 

abstracts of biomedical literature. PubMed data can be downloaded as described on 

the Download PubMed Data page.  The PubMed database has three components: MEDLINE, 

PubMed Central (PMC), and Bookshelf.1   

MEDLINE is the largest component of PubMed and consists primarily of citations from 

journals selected for MEDLINE.  MEDLINE is NLM’s premier bibliographic database that 

contains more than 31 million references to journal articles in life sciences with a concentration 

on biomedicine.  Currently, there are citations from more than 5,200 worldwide journals in about 

40 languages. 

The subject scope of MEDLINE is biomedicine and health, broadly defined to encompass 

those areas of the life sciences, behavioral sciences, chemical sciences, and bioengineering 

needed by health professionals and others engaged in basic research and clinical care, public 

 
1 Citations for PubMed Central (PMC) articles make up the second largest component of PubMed.  PMC is a full 
text archive that includes articles from journals reviewed and selected by NLM for archiving (current and historical), 
as well as individual articles collected for archiving in compliance with funder policies.  The third and last 
component of PubMed is citations for books and some individual chapters available on Bookshelf.  Bookshelf is a 
full text archive of books, reports, databases, and other documents related to biomedical, health, and life sciences. 

https://pubmed.ncbi.nlm.nih.gov/download/
https://www.ncbi.nlm.nih.gov/pmc/about/intro/
https://www.ncbi.nlm.nih.gov/books/
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health, health policy development, or related educational activities. MEDLINE also covers life 

sciences vital to biomedical practitioners, researchers, and educators, including aspects of 

biology, environmental science, marine biology, plant and animal science as well as biophysics 

and chemistry.  The majority of the publications in MEDLINE are scholarly journals; however, a 

small number of newspapers, magazines, and newsletters considered useful to particular 

segments of the NLM broad user community have historically been included. 

MEDLINE is the online counterpart to the MEDical Literature Analysis and Retrieval 

System (MEDLARS) that originated in 1964.  MEDLINE includes literature published from 

1966 to present, and an OLDMEDLINE subset that has selected coverage of literature prior to 

that period. The OLDMEDLINE subset represents journal article citations from two print 

indexes: the 1946-1959 Current List of Medical Literature (CLML), and the 1960-1965 

Cumulated Index Medicus (CIM). There are approximately 2,011,000 article citations from 

international biomedical journals that cover the fields of medicine, preclinical sciences and allied 

health sciences from 1946 through 1965.2  

A distinctive feature of MEDLINE/PubMED is that the records are indexed with Medical 

Subject Headings (MeSH).  MeSH is the NLM’s controlled vocabulary thesaurus; the NLM says 

that MeSH “is one of the most highly sophisticated thesauri in existence today.”  It consists of 

sets of terms (“descriptors”) in a hierarchical structure that permits searching at various levels of 

specificity.3  There were 30,454 descriptors in 2023 MeSH.  The MeSH Section staff continually 

revise and update the MeSH vocabulary.4  Staff subject specialists are responsible for areas of 

the health sciences in which they have knowledge and expertise.  In addition to receiving 

suggestions from indexers and others, the staff collect new terms as they appear in the scientific 

literature or in emerging areas of research; define these terms within the context of existing 

vocabulary; and recommend their addition to MeSH.  Professionals in various disciplines are 

also consulted regarding broad organizational changes and close coordination is maintained with 

various specialized vocabularies.  Between 2003 and 2023, the number of MeSH descriptors 

 
2 The OLDMEDLINE subset does not include citations from the Quarterly Cumulative Index Medicus (QCIM) print 
indexes. A hand search of the QCIM print indexes is necessary to ensure comprehensive review of medical 
periodical literature of the world from 1946 through 1956. 
3 Most Descriptors indicate the subject of an indexed item, such as a journal article, that is, what the article is about. 
https://www.nlm.nih.gov/mesh/intro_record_types.html.  The MeSH “tree” can be explored here: 
https://meshb.nlm.nih.gov/treeView. 
4 https://www.nlm.nih.gov/pubs/factsheets/mesh.html 

https://www.nlm.nih.gov/pubs/factsheets/mesh.html
https://www.nlm.nih.gov/pubs/factsheets/mesh.html
https://www.nlm.nih.gov/mesh/intro_record_types.html
https://meshb.nlm.nih.gov/treeView
https://www.nlm.nih.gov/pubs/factsheets/mesh.html
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increased from 21.4 thousand to 30.5 thousand.  On average, about 453 descriptors were added 

per year.  The mean number of descriptors per article is 10.6; the 27 million PubMed articles 

published by 2019 have 286 million descriptors. 

The NLM’s MeSH Descriptor file and website indicates the year in which each MeSH 

descriptor was established.5  However, a descriptor can appear in PubMed articles that were 

published many years before the descriptor was established.  For example, as shown in Appendix 

Figure 1, the descriptor “female” (unique ID D005260) was established in 1966 but appears in 

PubMed articles as early as 1942; it appeared in 12,370 articles in 1964.  In this study, we will 

define the vintage of a descriptor as the earliest publication year of PubMed articles in which the 

descriptor occurs.   

Although the number of MeSH descriptors has increased substantially, the average 

frequency at which recent descriptors occur in PubMed is much lower than the average 

frequency at which earlier-vintage descriptors occur.  Consequently, the mean vintage of 

descriptors is quite old, and has not increased much.  As shown in Figure 1, half of the 

descriptors that ever appeared in PubMed first appeared after 1960, but only 17% of the 

(frequency-weighted) descriptor citations occurring in post-2015 publications were for 

descriptors that first appeared after 1960. 

A substantial number of MeSH descriptors (in section C of the MeSH tree) are about 

diseases.  Hence, we can identify articles that are about different diseases.  By using the NLM’s 

Unified Medical Language System, we can determine the ICD10 codes corresponding to MeSH 

disease descriptors.  Table 1 shows the top 25 (out of 1028) 3-digit ICD10 diseases, ranked by 

number of PubMed articles.  (Some articles may discuss several diseases.)  Not surprisingly, 

highly prevalent diseases including breast neoplasms, HIV, hypertension, lung neoplasms, acute 

myocardial infarction, and diabetes are included in this list. 

The measure of disease-specific biomedical innovation we will employ is the long-run 

change in the mean vintage of descriptors of articles about each disease.  We hypothesize that, in 

general, diseases for which there were larger increases in vintage had smaller increases, or larger 

declines, in mortality. 

 
5 The MEDLINE co-occurrences file summarizes the MeSH Descriptors that occur together in MEDLINE citations 
from the MEDLINE/PubMed Baseline (National Library of Medicine (2024)). 

https://meshb.nlm.nih.gov/
https://meshb.nlm.nih.gov/treeView
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The hypothesis that later vintage goods and services tend to be of higher quality than 

earlier vintage goods has been advocated by many economists since it was first formulated in the 

1950s.  Johansen (1959) developed a theoretical model of vintage capital in which there are 

technological improvements in capital in later vintages.  Intriligator (1992, p. S77) said that “the 

newer capital is more productive than the older capital as a result of technological improvements 

in the later vintages.”  Bresnahan and Gordon (1996) said that “new goods are at the heart of 

economic progress.”  As noted by Jovanovic and Yatsenko (2012), in “the Spence–Dixit–Stiglitz 

tradition…new goods [are] of higher quality than old goods.”  Bohlman, Golder, and Debanjan 

(2002, p. 1177) said that “technology improves over time…As technology advances, later 

entrants can utilize a more recent and efficient vintage of technology than an earlier entrant who 

has committed to older technology…vintage effects will benefit later entrants…We refer to 

‘vintage effects’ as any technology shift that results in lower costs for a later entrant, enabling it 

to achieve higher product quality.”  In 1987, the Royal Swedish Academy of Sciences awarded 

the Alfred Nobel Memorial Prize in Economic Sciences to Robert Solow for his contributions to 

the theory of economic growth.  The Academy cited Solow’s 1960 article, Investment and 

Technical Progress, in which he presented a  

new method of studying the role played by capital formation in economic growth. His 
basic assumption was that technical progress is “built into” machines and other capital 
goods and that this must be taken into account when making empirical measurements of 
the role played by capital. This idea then gave birth to the “vintage approach” (a similar 
idea was discussed by Leif Johansen in Norway at about the same time)…The most 
important aspect of Solow’s article was not so much the empirical outcome, but the 
method of analyzing “vintage capital.”  Nowadays, the vintage capital concept has many 
other applications and is no longer solely employed in analyses of the factors underlying 
economic growth…The vintage approach has proved invaluable, both from the 
theoretical point of view and in applications such as the analysis of the development of 
industrial structures. 

 

III. Econometric model of mortality 

 

To investigate econometrically the impact that biomedical innovation had on premature 

mortality in the U.S. during the period 1999-2019, we will estimate many versions of the 

following model: 

ln(mortalitydt) = βk vintage_measured,t-k + αd + δt + εdt      (1) 

where mortalitydt is one of the following variables: 
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ypll85dt = the number of years of potential life lost before age 85 due to disease d in 
year t (t = 1999, 2000, …, 2019) 
 

ypll75dt = the number of years of potential life lost before age 75 due to disease d in 
year t 
 

ypll65dt = the number of years of potential life lost before age 65 due to disease d in 
year t6 
 

and vintage_measured,t-k is one of the following variables: 

vint_meand,t-k = the mean vintage (year of first appearance in PubMed) of descriptors of 
articles about disease d published in year t-k (k = 0, 2, …, 20) 
 

post1990%d,t-k = the fraction of descriptors of articles about disease d published in year t-k 
that first appeared in PubMed after 1990 

 

In eq. (1), αd is a fixed effect for disease d, and δt is a fixed effect for year t.  The year 

fixed effects (δt‘s) in eq. (1) control for the effects of changes in aggregate demographic and 

macroeconomic variables (e.g. population size and age structure, GDP, educational attainment), 

to the extent that those variables have similar effects on mortality from different diseases.  Eq. 

(1) will be estimated by weighted least squares, weighting by (∑t mortalitydt).  Disturbances will 

be clustered within diseases. 

 vint_meand,t-k is our principal measure of vintage.  But the data on the vintages of MeSH 

descriptors are clearly left-censored: only 2% of MeSH descriptors first appeared in PubMed 

before 1945, and 40% first appeared during 1945-1947.  Therefore, we will also estimate some 

versions of eq. (1) in which vintage_measured,t-k = post1990%d,t-k. 

Estimates of eq. (1) will not capture cross-disease spillover effects: the potential effects of 

biomedical innovation for one disease (e.g., hypertension) on mortality from other diseases (e.g., 

acute cerebrovascular disease (stroke)).  Although some spillover effects are adverse, others—

perhaps most—are positive.  For example, Prince et al (2007) argued that “mental disorders 

increase risk for communicable and non-communicable diseases, and contribute to unintentional 

and intentional injury. Conversely, many health conditions increase the risk for mental disorder, 

 
6 The U.S. CDC’s WISQARS Years of Potential Life Lost (YPLL) Report website permits one to specify age 
thresholds of 65, 70, 75, 80, and 85.  The World Health Organization has used YPLL to measure disease burden in 
its Global Burden of Disease (GBD) and Global Health Estimates (GHE) reports for many years. In the 2010 GBD, 
the WHO used an age threshold of 86.01 years for all persons. In the current GHE, the WHO uses an age threshold 
of 91.93 years for all persons. 
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and comorbidity complicates help-seeking, diagnosis, and treatment, and influences prognosis.”  

Also, the NIH National Institute on Aging (2024) says that “conditions such as diabetes, 

depression, and stroke may increase a person’s risk for Mild Cognitive Impairment.” 

The relationship between biomedical innovation, as measured by the change in PubMed 

descriptor vintage, and the change in mortality is unlikely to be contemporaneous and may be 

subject to a substantial lag.  Innovations may be discussed in biomedical literature several years 

before they are most frequently used, and improvement in outcomes may occur several years 

after changes in treatment (van de Glind et al (2016), Barter and Waters (2018)).  For one 

important type of descriptors—drug descriptors—we can obtain insight into the timing of the 

relationship between the frequency of PubMed descriptors and the frequency of use of the drug.  

From the Medical Expenditure Panel Survey Prescribed Medicines files, we can obtain estimates 

of the number of U.S. outpatient prescriptions, by (Multum MediSource Lexicon) generic drug 

name and year (1996-2021).  We can also compute the annual number of PubMed descriptors of 

each of these drugs.7  Using these data, we estimated the following model, using data on about 

600 drugs: 

n_rxst = ρk n_descriptorss,t-k + αs + δt + εst        (2) 

where 
n_rxst = the estimated number (in millions) of U.S. outpatient prescriptions for 

drug (chemical substance) s in year t (t = 1996, 1997, …, 2021) 
 

n_descriptorss,t-k = the number of times the descriptor of drug s occurred in PubMed in year 
t-k (k = 0, 1, 2, …, 20) 

 

Estimates of ρk from eq. (2) are shown in Table 2 and plotted in Figure 2.  Each estimate is from 

a separate regression.  For k < 5, the estimates of ρk are not statistically significant: the number 

of prescriptions for a drug is not significantly related to the number of PubMed descriptors of the 

drug 0-5 years earlier.  However, for 6 < k < 14, the estimates of ρk are positive and statistically 

significant: the number of prescriptions for a drug is significantly positively related to the 

number of PubMed descriptors of the drug 6-14 years earlier.  It is most strongly related to the 

number of PubMed descriptors of the drug 10 years earlier.  The point estimate of ρ10 (.0036) 

 
7 The NLM’s Unified Medical Language System was used to link Multum MediSource Lexicon generic drug names 
to MeSH drug descriptors. 
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indicates that one additional descriptor of a drug is associated with 3600 additional outpatient 

prescriptions for the drug 10 years later. 

 Considering this evidence, it would not be surprising if mortality from a disease is most 

strongly inversely related to the mean vintage of descriptors of articles about the disease years 

(e.g., 6-14 years) earlier. 

 As noted above, in addition to estimating eq. (1) using data on mortality of the entire 

population, we will estimate eq. (1) using data on mortality by race for two groups—whites and 

blacks—to explore whether biomedical innovation had different effects on the mortality of the 

two groups.  Such disparities could occur because some groups may have greater access to 

innovations than other groups. Wang et al (2006) found significant racial disparities in use of 

drugs approved within the previous 5 years. Data from the 2016–2021 Medical Expenditure Panel 

Survey Prescribed Medicines Files indicate that the mean FDA approval year of outpatient 

antineoplastic drugs taken by black Americans was over 4 years earlier than the mean FDA 

approval year of outpatient antineoplastic drugs taken by white Americans (1970.2 vs. 1974.4).  

Lichtenberg (2024) found that the approval of one additional drug for a cancer site 6–10 years 

earlier reduced the black female mortality rate 58% as much as it reduced the white female 

mortality rate.  

The change in mortality from a disease is likely to depend on the change in incidence of 

the disease as well as on biomedical innovation for the disease.  The change in incidence might 

be correlated across diseases with biomedical innovation (the change in descriptor vintage).  

Unfortunately, data on incidence, by disease and year, are not available for all diseases.  

However, annual 1975-2019 data on age-adjusted incidence rates8 (and on age-adjusted mortality 

rates), by disease and year, are available for an important subset of diseases: 43 types of cancer 

(e.g., breast, colon, lung).  These data enable us to determine if and how controlling for incidence 

affects estimates of the effect of biomedical innovation on mortality. 

First, we examined the “simple” relationship between incidence and mortality by 

estimating the following equation: 

ln(aa_mort_ratedt) = γj ln(aa_inc_rated,t-j) + αd + δt + εdt      (3) 

 
8 A cancer incidence rate is the number of new cancers of a specific site/type occurring in a specified population 
during a year, usually expressed as the number of cancers per 100,000 population at risk.  A cancer mortality rate is 
the number of deaths, with cancer as the underlying cause of death, occurring in a specified population during a 
year. Cancer mortality is usually expressed as the number of deaths due to cancer per 100,000 population.  
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where 

aa_mort_ratedt = the age-adjusted mortality rate from disease (cancer site) d in year t (t = 
1975, 1976, …, 2019) 
 

aa_inc_rated,t-j = the age-adjusted incidence rate of disease (cancer site) d in year t-j 
 

Eq. (3) was estimated by weighted least squares, weighting by (∑t aa_mort_ratedt).  Disturbances 

were clustered within cancer sites.  The estimates are shown in Table 3.  The growth in mortality 

is significantly positively correlated with the growth in incidence 0-8 years earlier; it is most 

strongly correlated with the contemporaneous growth in incidence.  A 10% increase in the 

incidence rate in year t is associated with a 5.8% increase in the mortality rate in year t. 

Next, we examined the “simple” relationship between incidence and descriptor vintage 

by estimating the following equation: 

vint_meand,t = γj ln(aa_inc_rated,t-j) + αd + δt + εdt       (4) 

Eq. (4) was estimated by weighted least squares, weighting by n_descriptorsd,t = the total 

number of descriptors of articles about disease (cancer site) d in year t.  Disturbances were 

clustered within cancer sites.  The estimates are shown in Appendix Table 1.  The change in 

mean descriptor vintage is not significantly related to either contemporaneous or lagged changes 

in incidence.   

This suggests that controlling for incidence will not have a significant effect on estimates 

of the effect of biomedical innovation on mortality.  This can be verified by estimating two 

versions of the following equation, one excluding and the other including ln(aa_inc_ratedt) as a 

regressor:9 

ln(aa_mort_ratedt) = βk vintage_measured,t-k + γj ln(aa_inc_ratedt) + αd + δt + εdt   (5) 

Eq. (5) was estimated by weighted least squares, weighting by (∑t aa_mort_ratect).  Disturbances 

were clustered within cancer sites.  Estimates of both versions of eq. (5) are shown in Table 4.  

When we don’t control for incidence, the estimates of βk are negative and significant (p-value < 

.04) when k < 2, and negative and at least marginally significant (p-value < .08) when k < 6.  

When we control for incidence, the estimates of βk are negative and significant (p-value < .05) 

 
9 The equation includes ln(aa_inc_ratedt) because, as shown in Table 3, mortality growth is most strongly correlated 
with the contemporaneous growth in incidence. 
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for all values of k but one.  This suggests that failure to control for incidence will not result in 

overestimation of the effect of biomedical innovation on mortality. 

 

IV. Data sources and descriptive statistics 

 

Mortality data (yll85dt, yll75dt, yll65dt) for all diseases were computed from 1999-2019 Multiple 

Cause-of-Death Mortality Data files posted on the NBER website (National Bureau of Economic 

Research (2024)).   

Vintage data (vintage_measured,t-k, post1990%d,t-k) and other attributes of PubMed articles 

(n_descriptorss,t) were computed from the PubMed annual baseline files. 

Prescription drug data.  Estimates of the number of U.S. outpatient prescriptions, by (Multum 

MediSource Lexicon) generic drug name and year (1996-2021) (n_rxst) were computed from 

Medical Expenditure Panel Survey Prescribed Medicines files (Agency for Healthcare Research 

and Quality (2024)). 

Cancer incidence and mortality data (aa_mort_ratect, aa_inc_ratec,t-j) for 1975-2019 were 

obtained from Cancer Query Systems (National Cancer Institute (2024)). 

Mappings from MeSH descriptors to ICD10 codes and to Multum MediSource Lexicon generic 

drug names were computed from the Unified Medical Language System Concept Names and 

Sources (MRCONSO) File (National Library of Medicine (2024)).   

Mappings from ICD10 codes to SEER cancer site codes were obtained from the SEER Cause of 

Death Recode 1969+ (National Cancer Institute (2024)).   

Descriptive statistics.  Aggregate data on years of potential life lost before ages 85, 75, and 65 in 

1999 and 2019 are shown in Table 5.  Between 1999 and 2019, YPLL before age 85 (YPLL85) 

increased by 15.0%, from 33.5 million to 38.6 million.  When deaths from three external causes 

(unintentional injury, suicide, and homicide) are excluded, YPLL85 increased by 8.7%, from 

28.0 million to 30.4 million.  During that period, the population below age 85 increased, so the 

age-adjusted YPLL85 rate declined by 13.5%; excluding deaths from three external causes, the 

YPLL85 rate declined by 21.7%--about 1% per year.  Excluding deaths from the three external 

causes, the age-adjusted rates of years of potential life lost before ages 75 and 65 (YPLL75 and 

YPLL65, respectively) declined by similar amounts: 20.1% and 19.8%, respectively. 

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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Table 5 also shows the “age-adjusted population below age 85” which we define as the 

ratio of YPLL85 to the age-adjusted YPLL85 rate.  The age-adjusted population below age 85 

increased by 33.0% (38.9% when deaths from three external causes are excluded). 

 Aggregate data on PubMed descriptor vintage during 1979-2019 are shown in Appendix 

Table 2.  The data shown are weighted means across diseases; diseases are weighted by total 

YPLL75 during 1999-2019.  From 1979 to 1999, vint_mean increased by 3.0 years, from 1943.1 

to 1946.1.  From 1999 to 2019, vint_mean increased by about half that much, by 1.4 years.  From 

1979 to 1999, post1990% increased from 0.0% to 0.9%.  From 1999 to 2019, post1990% 

increased from 0.9% to 3.5%. 

 Appendix Table 3 shows data on mortality and descriptor attributes for the top 25 

diseases, ranked by total ypll75 during 1999-2019. 

 

V. Empirical results 

 

 Estimates of many versions of eq. (1) are reported in Table 6 and plotted in Figure 3.  

Each estimate is from a separate equation.  On the left side of the table and figure are estimates 

when the vintage measure is vint_mean; on the right side are estimates when the vintage measure 

is post1990%.  In the table, estimates in bold are statistically significant (p-value < .05).  In the 

figure, solid squares denote statistically significant estimates, the large solid squares denote the 

most significant estimates, and hollow squares denote statistically insignificant estimates.   

 Rows 1-11 of the table and panels A and B of the figure show estimates when the 

dependent variable is ln(YPLL85dt).  When the vintage measure is vint_mean, the estimates are 

negative and statistically significant when 2 < k < 16: YPLL85 is significantly inversely related 

to the mean vintage of descriptors 2-16 years earlier.  It is most strongly inversely related to the 

vintage of descriptors 6 years earlier.  The point estimate of β6 when the vintage measure is 

vint_mean (-0.086) implies that a one-year increase in vintage is associated with an 8.3% 

reduction in YPLL85 6 years later.  Further implications of the magnitudes of the estimates will 

be discussed in the next section.  When the vintage measure is post1990%, the estimates are 

negative and statistically significant when 0 < k < 8: YPLL85 is significantly inversely related to 

the fraction of post-1990 descriptors 0-8 years earlier.  It is most strongly inversely related to the 

vintage of descriptors 2-4 years earlier. 
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Rows 12-22 of the table and panels C and D of the figure show estimates when the 

dependent variable is ln(YPLL75dt).  When the vintage measure is vint_mean, the estimates are 

negative and statistically significant when 2 < k < 16: YPLL75 is significantly inversely related 

to the mean vintage of descriptors 2-16 years earlier.  It is most strongly inversely related to the 

vintage of descriptors 12 years earlier.  When the vintage measure is post1990%, the estimates 

are negative and statistically significant when 0 < k < 20: YPLL75 is significantly inversely 

related to the fraction of post-1990 descriptors 0-20 years earlier.  It is most strongly inversely 

related to the vintage of descriptors 4 years earlier. 

Rows 23-33 of the table and panels E and F of the figure show estimates when the 

dependent variable is ln(YPLL65dt).  When the vintage measure is vint_mean, the estimates are 

negative and statistically significant when 6 < k < 16: YPLL65 is significantly inversely related 

to the mean vintage of descriptors 6-16 years earlier.  It is most strongly inversely related to the 

vintage of descriptors 12 years earlier.  When the vintage measure is post1990%, the estimates 

are negative and statistically significant when 0 < k < 20: YPLL65 is significantly inversely 

related to the fraction of post-1990 descriptors 0-20 years earlier.  It is most strongly inversely 

related to the vintage of descriptors 14 years earlier. 

As discussed above, to explore whether biomedical innovation had different effects on 

the mortality of whites and blacks, eq. (1) can be estimated using race-specific mortality data.  

(The same descriptor vintage data are used to estimate the white and black mortality equations.)  

Estimates of eq. (1) when mortalitydt = YPLL75dt, by race, are shown in Table 7 and plotted in 

Figure 4.  In rows 1-11 of the table, the vintage measure is vint_mean.  The estimates of βk from 

the white mortality equation are negative and statistically significant when 2 < k < 16: YPLL75 

of whites is significantly inversely related to the mean vintage of descriptors 2-16 years earlier.  

It is most strongly inversely related to the vintage of descriptors 12 years earlier.  The estimates 

of βk from the black mortality equation are negative and statistically significant when 6 < k < 14: 

YPLL75 of blacks is significantly inversely related to the mean vintage of descriptors 6-14 years 

earlier.  It is most strongly inversely related to the vintage of descriptors 12 years earlier.   

In rows 12-22 of the table, the vintage measure is post1990%.  All 11 estimates of βk 

from the white mortality equation are negative and statistically significant.  None of the 11 

estimates of βk from the black mortality equation are statistically significant.  These estimates 

indicate that biomedical innovation reduced the mortality of white people sooner than it reduced 
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the mortality of black people, and that the mortality of black people was not reduced by the most 

recent innovations. 

 

VI. Discussion 

 

 Estimates of two versions of eq. (1)—including and excluding vintage_measured,t-k as a 

regressor—enable us to estimate how much biomedical innovation reduced age-adjusted 

mortality rates during the period 1999-2019.  When vintage_measured,t-k is included in eq. (1),  

δ2019 is an estimate of the 1999-2019 change in mortality, holding constant vintage_measured,t-k, 

i.e., in the absence of biomedical innovation.  (δ1999 is normalized to zero.)  When 

vintage_measured,t-k is excluded from eq. (1), δ2019 is an estimate of the 1999-2019 change in 

mortality in the presence of biomedical innovation.  Changes in age-adjusted mortality rates can 

be computed by subtracting the corresponding log-change in age-adjusted population shown in 

Table 5 (e.g., 0.329 for the population below age 85) from the δ2019 estimates. 

 These calculations are shown for each of the three mortality measures and both of the 

vintage measures in Figure 5.  In each case, we use the lag for which the relationship is most 

significant.  Panel A shows estimates of the growth in the age-adjusted YPLL85 rate in the 

presence and absence of the change in vint_mean 6 years earlier.  The growth (log-change) in the 

presence of biomedical innovation is -0.20 and is significantly different from zero.  The growth 

in the absence of biomedical innovation is 0.02 and is not significantly different from zero.  We 

cannot reject the null hypothesis that in the absence of biomedical innovation, as measured by 

the lagged change in vint_mean, the age-adjusted YPLL85 rate would not have declined during 

the period 1999-2019.  The estimates for the other mortality and vintage measures are quite 

similar.  The growth (ln change) in the presence of biomedical innovation is -0.19 to -0.16 and is 

significantly different from zero; the growth in the absence of biomedical innovation is not 

significantly different from zero. 

 Similarly, by estimating 3 versions of eq. (5), we can estimate how much biomedical 

innovation and changes in cancer incidence reduced the age-adjusted cancer mortality rate 

during the period 1975-2019.  Those calculations are shown in Figure 6.  In the presence of 

changes in cancer incidence and biomedical innovation, the log-change in the age-adjusted 

cancer mortality rate was -0.37.  Only a small part of that decline was due to the decline in 



16 
 

cancer incidence: controlling only for cancer incidence, the estimated log-change in the age-

adjusted cancer mortality rate was -0.33, and is significantly different from zero.  But when we 

control for vint_meand,t-6 as well as for ln(aa_inc_ratedt), the estimated log-change in the age-

adjusted cancer mortality rate was 0.04, and is not significantly different from zero. 

From 1999 to 2019, age-adjusted mortality rates (excluding deaths from unintentional 

injury, suicide, and homicide) declined by approximately 20%--about 1% per year.  Our 

estimates imply that, in the absence of biomedical innovation, age-adjusted mortality rates would 

not have declined.  Some factors other than biomedical innovation probably contributed to the 

decline in mortality.  The adult cigarette smoking rate declined from 23.5% in 1999 to 13.7% in 

2018 (American Lung Association (2024)).  The fraction of adults who had at least a bachelor’s 

degree increased from 23.9% in 1997 to 34.2% in 2017 (American Council on Eduction (2024)).  

However, other factors probably contributed to an increase in mortality.  From 1999-2000 

through 2017-March 2020, US obesity prevalence increased from 30.5% to 41.9%, and the 

prevalence of severe obesity increased from 4.7% to 9.2%.  Obesity-related 

conditions include heart disease, stroke, type 2 diabetes and certain types of cancer. These are 

among the leading causes of preventable, premature death (Centers for Disease Control (2024)).  

And between 2007 and 2018, the prevalence of 14 out of 21 chronic conditions among male 

Medicare beneficiaries increased, and the prevalence of 16 out of 21 chronic conditions among 

female beneficiaries increased (Center for Medicare and Medicaid Services (2024)). 

 

VII. Summary 

 

We investigated econometrically the overall impact that biomedical innovation had on 

premature mortality in the U.S. during the period 1999-2019.  We used a difference-in-

differences research design: we investigated whether the diseases for which there was more 

biomedical innovation had larger reductions in premature mortality.  Biomedical innovation 

related to a disease was measured by the change in the mean vintage of descriptors of PubMed 

articles about the disease.  We analyzed data on 286 million descriptors of 27 million articles 

about over 800 diseases. 

Our estimates indicated that premature mortality from a disease is significantly inversely 

related to the lagged vintage of descriptors of articles about the disease.  For example, the 
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number of years of potential life lost before age 75 due to a disease is significantly inversely 

related to the mean vintage of descriptors 2-16 years earlier; it is most strongly inversely related 

to the vintage of descriptors 12 years earlier.  This lag is not surprising: we showed that the 

number of prescriptions for a drug is significantly positively related to the number of PubMed 

descriptors of the drug 6-14 years earlier.  It is most strongly related to the number of PubMed 

descriptors of the drug 10 years earlier.   

To explore whether biomedical innovation had different effects on the mortality of whites 

and blacks, we also estimated models using race-specific mortality data.  Our estimates indicated 

that biomedical innovation reduced the mortality of white people sooner than it reduced the 

mortality of black people, and that the mortality of black people was not reduced by the most 

recent innovations. 

From 1999 to 2019, the age-adjusted mortality rate (excluding deaths from unintentional 

injury, suicide, and homicide) from all diseases declined by approximately 20%--about 1% per 

year.  Our estimates implied that, in the absence of biomedical innovation, age-adjusted mortality 

rates would not have declined.  Also, from 1975 to 2019, the age-adjusted cancer mortality rate 

declined by approximately 27%.  Our estimates also implied that, in the absence of biomedical 

innovation, the age-adjusted cancer mortality rate would not have declined.  Some factors other 

than biomedical innovation (e.g., a decline in the smoking rate and an increase in educational 

attainment) probably contributed to the decline in mortality.  But other factors (e.g., a rise in 

obesity and the prevalence of chronic conditions) undoubtedly contributed to an increase in 

mortality. 

Our estimates do not capture cross-disease spillover effects: the potential effects of 

biomedical innovation for one disease on mortality from other diseases.  Although some 

spillover effects are adverse, others are positive.   
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Fraction of 2023 MeSH descriptors first appearing in PubMed by year (1940, 1950, ..., 2020):

unweighted, and weighted by frequency in post-2015 PubMed articles   
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Estimates of ρk from eq. (2), based on data on about 600 drugs:

n_rxst = ρk n_descriptorss,t-k + αs + δt + εst

Each estimate is from a separate regression.
Disturbances were clustered within drugs.
n_rxst = the estimated number (in millions) of U.S. outpatient prescriptions for drug (chemical substance) s in year t (t = 1996, 1997, …, 2021)
n_descriptorss,t-k = the number of times the descriptor of drug s occurred in PubMed in year t-k (k = 0, 1, 2, …, 20)
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Figure 3
Estimates of βk from eq. (1): ln(mortalitydt) = βk vintage_measured,t-k + αd + δt + εdt
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Figure 3
Estimates of βk from eq. (1): ln(mortalitydt) = βk vintage_measured,t-k + αd + δt + εdt

Each estimate is from a separate regression.
Disturbances were clustered within diseases.

Solid squares denote statistically significant estimates; the large solid squares denote the most significant estimates, and hollow squares denote 
statistically insignificant estimates.
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Figure 4
Estimates of βk from eq. (1): ln(mortalitydt) = βk vintage_measured,t-k + αd + δt + εdt, by race
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Figure 5

Estimated 1999-2019 changes in age-adjusted mortality rates from all diseases in the presence and 
absence of biomedical innovation
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Rank 3-digit ICD10 disease Number of PubMed 
articles

1 Z33 Pregnant state, incidental 968,121
2 C80 Malignant neoplasm, without specification of site 573,408
3 D36 Benign neoplasm of other and unspecified sites 486,572
4 D49 Neoplasms of unspecified behavior 486,572
5 C50 Malignant neoplasm of breast 323,322

6
B20 Human immunodeficiency virus [HIV] disease resulting in infectious and 
parasitic diseases

282,371

7
R41 Other symptoms and signs involving cognitive functions and awareness 280,589

8 I10 Essential (primary) hypertension 253,494
9 C34 Malignant neoplasm of bronchus and lung 250,714

10 R54 Senility 247,361
11 E66 Obesity 223,599
12 K76 Other diseases of liver 195,545
13 I21 Acute myocardial infarction 185,429
14 I22 Subsequent myocardial infarction 185,429
15 C22 Malignant neoplasm of liver and intrahepatic bile ducts 184,084
16 F91 Conduct disorders 181,054
17 T14 Injury of unspecified body region 178,993
18 F99 Mental disorder, not otherwise specified 175,350

19
A15 Respiratory tuberculosis, bacteriologically and histologically confirmed 165,146

20 F03 Unspecified dementia 164,569
21 E11 Type 2 diabetes mellitus 163,852
22 R52 Pain, not elsewhere classified 151,130
23 I67 Other cerebrovascular diseases 151,049
24 F20 Schizophrenia 150,860
25 N28 Other disorders of kidney and ureter, not elsewhere classified 148,999

Table 1

Top 25 (out of 1028) 3-digit ICD10 diseases, ranked by number of PubMed articles



k (lag) Estimate Std. Err. 95% Lower Conf. 
Limit

95% Upper Conf. 
Limit

Z Pr > |Z|

0 0.0000 0.0000 0.0000 0.0000 0.75 0.4542
1 0.0000 0.0001 -0.0001 0.0001 0.85 0.3973
2 0.0014 0.0013 -0.0012 0.0040 1.06 0.2908
3 0.0018 0.0015 -0.0012 0.0047 1.16 0.2455
4 0.0023 0.0017 -0.0011 0.0057 1.34 0.1808
5 0.0031 0.0019 -0.0005 0.0068 1.67 0.0958
6 0.0039 0.0019 0.0001 0.0076 2.03 0.0427
7 0.0039 0.0018 0.0004 0.0074 2.16 0.0306
8 0.0037 0.0017 0.0005 0.0069 2.24 0.0248
9 0.0037 0.0016 0.0006 0.0068 2.35 0.0186

10 0.0036 0.0015 0.0007 0.0066 2.39 0.0170
11 0.0036 0.0015 0.0006 0.0066 2.37 0.0176
12 0.0035 0.0015 0.0005 0.0065 2.27 0.0232
13 0.0033 0.0015 0.0003 0.0063 2.14 0.0323
14 0.0031 0.0016 0.0000 0.0063 1.97 0.0491
15 0.0029 0.0016 -0.0003 0.0061 1.79 0.0741
16 0.0027 0.0017 -0.0006 0.0060 1.61 0.1083
17 0.0025 0.0017 -0.0009 0.0058 1.45 0.1457
18 0.0021 0.0017 -0.0012 0.0055 1.27 0.2058
19 0.0019 0.0017 -0.0014 0.0052 1.12 0.2634
20 0.0016 0.0016 -0.0015 0.0047 1.02 0.3096

Each estimate is from a separate regression.

Estimates in bold are statistically significant (p-value < .05).
Disturbances were clustered within drugs.  

n_rxst = the estimated number (in millions) of U.S. outpatient prescriptions for drug 
(chemical substance) s in year t (t = 1996, 1997, …, 2021)

n_descriptorss,t-k = the number of times the descriptor of drug s occurred in PubMed 
in year t-k (k = 0, 1, 2, …, 20)

Table 2

Estimates of ρk from eq. (2), based on data on about 600 drugs:

n_rxst = ρk n_descriptorss,t-k + αs + δt + εst  



j (lag) Estimate Std. Err. Z Pr > |Z|
0 0.578 0.100 5.78 <.0001
2 0.564 0.108 5.23 <.0001
4 0.521 0.124 4.19 <.0001
6 0.459 0.145 3.15 0.0016
8 0.382 0.167 2.29 0.0219

10 0.306 0.183 1.68 0.0932
12 0.223 0.193 1.16 0.2476
14 0.160 0.196 0.82 0.4125
16 0.101 0.191 0.53 0.5952
18 0.066 0.181 0.36 0.7157
20 0.026 0.168 0.16 0.8766

Estimates in bold are statistically significant (p-value < .05).

aa_mort_ratedt = the age-adjusted mortality rate from disease 
(cancer site) d in year t (t = 1975, 1976, …, 2019)
aa_inc_rated,t-j = the age-adjusted incidence rate of disease 
(cancer site) d in year t

Table 3

Eq. (3) was estimated by weighted least squares, weighting by 
(∑t aa_mort_ratedt).  

Estimates of γj from eq. (3):

ln(aa_mort_ratedt) = γj ln(aa_inc_rated,t-j) + αd + δt + εdt  

Each estimate is from a separate regression.

Disturbances were clustered within cancert sites.  



k (lag) βk Estimate Std. Err. Z Pr > |Z| βk Estimate Std. Err. Z Pr > |Z|

0 -0.065 0.028 -2.33 0.0196 -0.056 0.028 -1.99 0.0462
2 -0.064 0.031 -2.07 0.0383 -0.056 0.028 -2.04 0.0412
4 -0.064 0.033 -1.95 0.0511 -0.059 0.027 -2.19 0.0286
6 -0.061 0.034 -1.80 0.0717 -0.058 0.026 -2.27 0.0234
8 -0.058 0.035 -1.64 0.1002 -0.055 0.026 -2.17 0.0303

10 -0.051 0.036 -1.42 0.1552 -0.051 0.025 -2.02 0.0431
12 -0.041 0.036 -1.12 0.2623 -0.045 0.025 -1.78 0.0749
14 -0.037 0.031 -1.18 0.2395 -0.046 0.022 -2.12 0.0338
16 -0.030 0.027 -1.11 0.2661 -0.043 0.020 -2.18 0.0291
18 -0.030 0.023 -1.27 0.203 -0.044 0.018 -2.51 0.0122
20 -0.023 0.020 -1.16 0.2461 -0.041 0.017 -2.45 0.0142

Estimates in bold are statistically significant (p-value < .05).
Disturbances were clustered within cancer sites.  
Eq. (5) was estimated by weighted least squares, weighting by (∑t aa_mort_ratedt).  
Each estimate is from a separate regression.

aa_mort_ratedt = the age-adjusted mortality rate from disease (cancer site) d in year t (t = 1975, 1976, …, 
2019)
aa_inc_ratedt = the age-adjusted incidence rate of disease (cancer site) d in year t
vint_meand,t-k = the mean vintage (year of first appearance in PubMed) of descriptors of articles about 
disease d published in year t-k (k = 0, 2, …, 20)

ln(aa_mort_ratedt) = βk vint_meand,t-k + αd 

+ δt + εdt

ln(aa_mort_ratedt) = βk vint_meand,t-k + γj 

ln(aa_inc_ratedt) + αd + δt + εdt

not controlling for incidence controlling for incidence

Table 4
Estimates of the effect of descriptor vintage on age adjusted cancer mortality rate, not controlling and controlling 

for incidence



1999 2019 % change ln change

YPLL
all causes 33,530,448 38,561,965 15.0% 0.140
non-external causes1 27,986,901 30,429,676 8.7% 0.084

age adjusted rate
all causes 12,321 10,655 -13.5% -0.145
non-external causes1 10,316 8,074 -21.7% -0.245

age-adjusted population (100,000s)2

all causes 2,721 3,619 33.0% 0.285
non-external causes1 2,713 3,769 38.9% 0.329

YPLL
all causes 19,309,613 21,939,705 13.6% 0.128
non-external causes1 15,009,430 15,841,878 5.5% 0.054

age adjusted rate
all causes 7,418 6,691 -9.8% -0.103
non-external causes1 5,791 4,628 -20.1% -0.224

age-adjusted population (100,000s)2

all causes 2,603 3,279 26.0% 0.231
non-external causes1 2,592 3,423 32.1% 0.278

YPLL
all causes 11,145,856 11,638,857 4.4% 0.043
non-external causes1 7,955,848 7,360,735 -7.5% -0.078

age adjusted rate
all causes 4,593 4,237 -7.8% -0.081
non-external causes1 3,298 2,644 -19.8% -0.221

age-adjusted population (100,000s)2

all causes 2,427 2,747 13.2% 0.124
non-external causes1 2,413 2,784 15.4% 0.143

2. Age-adjusted population = YPLL / age-adjusted rate
1. Deaths from unintentional injury, suicide, and homicide are excluded

Source: CDC, WISQARS Years of Potential Life Lost (YPLL) Report, 1981 - 2020, 
https://wisqars.cdc.gov/ypll

Table 5
Years of potential life lost before ages 85, 75, and 65 in 1999 and 2019

Before age 85

Before age 75

Before age 65



row k (lag) Estimate Std. Err. Z Pr > |Z| Estimate Std. Err. Z Pr > |Z|

1 0 -0.075 0.043 -1.75 0.0793 -8.806 3.697 -2.38 0.0172
2 2 -0.091 0.038 -2.40 0.0165 -9.809 3.522 -2.79 0.0053
3 4 -0.091 0.034 -2.68 0.0074 -9.374 3.359 -2.79 0.0053
4 6 -0.086 0.029 -3.02 0.0025 -7.905 3.098 -2.55 0.0107
5 8 -0.074 0.026 -2.81 0.0049 -5.775 2.917 -1.98 0.0477
6 10 -0.067 0.024 -2.87 0.0041 -5.099 3.082 -1.65 0.0980
7 12 -0.051 0.018 -2.81 0.0050 -5.040 3.403 -1.48 0.1385
8 14 -0.046 0.019 -2.42 0.0153 -5.257 3.723 -1.41 0.1579
9 16 -0.041 0.019 -2.14 0.0322 -5.625 4.125 -1.36 0.1727

10 18 -0.017 0.020 -0.85 0.3967 -6.365 4.581 -1.39 0.1647
11 20 -0.014 0.019 -0.74 0.4588 -8.554 5.717 -1.50 0.1346

12 0 -0.061 0.042 -1.48 0.1401 -8.493 3.258 -2.61 0.0091
13 2 -0.077 0.037 -2.06 0.0399 -9.002 3.103 -2.90 0.0037
14 4 -0.078 0.032 -2.44 0.0149 -8.721 2.939 -2.97 0.0030
15 6 -0.078 0.027 -2.87 0.0041 -7.991 2.760 -2.90 0.0038
16 8 -0.072 0.025 -2.85 0.0044 -6.563 2.637 -2.49 0.0128
17 10 -0.071 0.023 -3.04 0.0024 -6.509 2.782 -2.34 0.0193
18 12 -0.055 0.016 -3.39 0.0007 -7.344 2.958 -2.48 0.0130
19 14 -0.051 0.018 -2.89 0.0038 -8.267 3.203 -2.58 0.0098
20 16 -0.048 0.018 -2.62 0.0088 -9.164 3.561 -2.57 0.0101
21 18 -0.028 0.021 -1.29 0.1960 -10.504 4.101 -2.56 0.0104
22 20 -0.024 0.020 -1.18 0.2387 -13.510 5.417 -2.49 0.0126

23 0 -0.043 0.042 -1.03 0.3032 -7.358 3.095 -2.38 0.0174
24 2 -0.056 0.038 -1.46 0.1443 -7.465 3.033 -2.46 0.0138
25 4 -0.058 0.031 -1.89 0.0593 -7.247 2.881 -2.52 0.0119
26 6 -0.063 0.026 -2.48 0.0133 -7.117 2.748 -2.59 0.0096
27 8 -0.062 0.025 -2.52 0.0118 -6.148 2.670 -2.30 0.0213
28 10 -0.065 0.024 -2.72 0.0066 -6.607 2.834 -2.33 0.0197
29 12 -0.049 0.018 -2.75 0.0060 -7.901 2.972 -2.66 0.0079
30 14 -0.046 0.019 -2.48 0.0132 -9.291 3.264 -2.85 0.0044
31 16 -0.045 0.019 -2.36 0.0185 -10.383 3.656 -2.84 0.0045
32 18 -0.032 0.021 -1.47 0.1402 -12.119 4.303 -2.82 0.0049
33 20 -0.029 0.020 -1.48 0.1398 -15.285 5.806 -2.63 0.0085

Table 6
Estimates of βk from eq. (1): ln(mortalitydt) = βk vintage_measured,t-k + αd + δt + εdt

Each estimate is from a separate equation.  Estimates in bold are statistically significant (p-value < .05).

vintage_measure = vint_mean vintage_measure = post1990%

mortalitydt = YPLL85dt

mortalitydt = YPLL75dt

mortalitydt = YPLL65dt



row lag Estimate Std. Err. Z Pr > |Z| Estimate Std. Err. Z Pr > |Z|
1 0 -0.073 0.041 -1.79 0.0737 -0.025 0.062 -0.40 0.6866
2 2 -0.089 0.036 -2.44 0.0147 -0.034 0.056 -0.61 0.5450
3 4 -0.088 0.032 -2.73 0.0063 -0.042 0.043 -0.99 0.3220
4 6 -0.086 0.029 -2.99 0.0028 -0.054 0.027 -2.00 0.0454
5 8 -0.077 0.027 -2.89 0.0039 -0.059 0.025 -2.36 0.0184
6 10 -0.074 0.024 -3.06 0.0022 -0.064 0.026 -2.46 0.0140
7 12 -0.055 0.016 -3.57 0.0004 -0.054 0.025 -2.15 0.0314
8 14 -0.052 0.018 -2.93 0.0034 -0.046 0.024 -1.97 0.0490
9 16 -0.049 0.019 -2.62 0.0088 -0.039 0.022 -1.74 0.0813

10 18 -0.029 0.022 -1.30 0.1921 -0.021 0.021 -1.00 0.3194
11 20 -0.025 0.021 -1.18 0.2368 -0.015 0.019 -0.79 0.4271

12 0 -9.729 3.317 -2.93 0.0034 -4.684 4.080 -1.15 0.2508
13 2 -10.385 3.094 -3.36 0.0008 -4.430 4.144 -1.07 0.2851
14 4 -10.198 2.927 -3.48 0.0005 -3.469 3.837 -0.90 0.3659
15 6 -9.592 2.783 -3.45 0.0006 -2.277 3.362 -0.68 0.4982
16 8 -8.084 2.745 -2.95 0.0032 -1.087 2.805 -0.39 0.6982
17 10 -7.783 2.945 -2.64 0.0082 -2.019 2.695 -0.75 0.4538
18 12 -8.412 3.138 -2.68 0.0073 -3.653 2.918 -1.25 0.2105
19 14 -9.139 3.373 -2.71 0.0067 -5.433 3.437 -1.58 0.1139
20 16 -9.857 3.681 -2.68 0.0074 -7.356 4.451 -1.65 0.0984
21 18 -10.979 4.148 -2.65 0.0081 -9.895 5.860 -1.69 0.0913
22 20 -13.752 5.271 -2.61 0.0091 -14.777 9.134 -1.62 0.1057

Estimates in bold are statistically significant (p-value < .05).

YPLL75dt = the number of years of potential life lost before age 75 due to disease d in year t (t 
= 1999, 2000, …, 2019)

Eq. (1) was estimated by weighted least squares, weighting by (∑t YPLL75dt).  
Each estimate is from a separate regression.

vint_meand,t-k = the mean vintage (year of first appearance in PubMed) of descriptors of 
articles about disease d published in year t-k (k = 0, 2, …, 20)

Disturbances were clustered within diseases.  

White Black
vintage_measure = post1990%

Table 7

mortalitydt = YPLL75dt

Estimates of βk from eq. (1): ln(mortalitydt) = βk vintage_measured,t-k + αd + δt + εdt, by race

vintage_measure = vint_mean
White Black



Appendix Figure 1

Year in which MeSH descriptor 'female" was established, and timeline of PubMed occurences of MeSH 
descriptor "female"



j (lag) Estimate Std. Err. Z Pr > |Z|

0 -0.378 0.240 -1.58 0.1146
2 -0.361 0.259 -1.39 0.1638
4 -0.346 0.277 -1.25 0.2119
6 -0.294 0.279 -1.05 0.2918
8 -0.204 0.280 -0.73 0.4673

10 -0.092 0.285 -0.32 0.7463
12 -0.011 0.292 -0.04 0.9691
14 0.018 0.305 0.06 0.9535
16 0.021 0.281 0.08 0.9396
18 -0.011 0.270 -0.04 0.9662
20 -0.006 0.268 -0.02 0.9826

Estimates of γj from eq. (4):
vint_meand,t = γj ln(aa_inc_rated,t-j) + αd + δt + εdt  

Appendix Table 1

aa_inc_rated,t-j= the age-adjusted incidence rate of 
disease (cancer site) d in year t-j (j = 0, 2, …, 20)

Estimates in bold are statistically significant (p-
value < .05).

vint_meand,t = the mean vintage (year of first 
appearance in PubMed) of descriptors of articles 
about disease d published in year t

Each estimate is from a separate regression.

Eq. (4) was estimated by weighted least squares, 
weighting by n_descriptorsd,t = the total number of 
descriptors of articles about disease (cancer site) d in 
year t

Disturbances were clustered within cancer sites.  



year vint_mean post1990%
1979 1943.1 0.0%
1989 1944.3 0.0%
1999 1946.1 0.9%
2009 1946.9 1.8%
2019 1947.5 3.5%

Diseases are weighted by total YPLL75 during 1999-2019

Appendix Table 2

Weighted mean PubMed descriptor vintage, 1979-2019



Data on mortality and descriptor attributes for the top 25 diseases, ranked by total ypll75 during 1999-2019

3-digit ICD10 disease 1999-2019 1999 2019 1999 2019 1999 2019 1999 2019
I25 Chronic ischaemic heart 
disease

26,463,709 1,193,754 ####### 8,542 81,530 1946.2 1948.7 0.4% 4.4%

C34 Malignant neoplasm of 
bronchus and lung

23,423,058 1,087,688 811,290 47,996 141,276 1946.7 1948.6 1.1% 4.3%

I21 Acute myocardial infarction 16,937,069 932,303 610,883 40,769 55,557 1946.7 1948.7 1.0% 4.5%
J44 Other chronic obstructive 
pulmonary disease

9,660,016 307,373 511,028 419 38,407 1946.2 1947.1 0.7% 2.2%

C50 Malignant neoplasm of breast 9,627,251 432,312 396,333 75,003 164,137 1945.1 1947.1 1.6% 5.2%

K70 Alcoholic liver disease 7,859,390 241,047 444,014 13,996 20,945 1945.3 1946.7 0.7% 2.8%
C18 Malignant neoplasm of colon 6,773,165 284,574 298,696 22,039 31,658 1948.1 1949.6 1.8% 5.9%

C25 Malignant neoplasm of 
pancreas

5,665,382 194,367 290,714 17,374 50,213 1947.3 1949.7 1.3% 4.7%

A41 Other sepsis 5,104,245 160,817 240,551 10,081 35,403 1945.9 1947.6 0.6% 3.2%
I42 Cardiomyopathy 4,944,219 246,647 185,673 14,459 26,159 1947.0 1948.1 1.1% 3.7%
C71 Malignant neoplasm of brain 4,716,946 194,836 211,735 29,002 63,062 1946.1 1948.2 1.1% 4.5%

K74 Fibrosis and cirrhosis of liver 4,600,938 167,741 212,661 15,266 42,188 1946.0 1948.1 0.6% 3.9%

C80 Malignant neoplasm, without 
specification of site

4,304,555 207,319 183,201 77,310 216,918 1944.3 1946.5 1.2% 5.4%

C22 Malignant neoplasm of liver 
and intrahepatic bile ducts

4,256,428 111,365 215,620 37,336 108,606 1947.3 1949.2 1.2% 4.1%

J18 Pneumonia, organism 
unspecified

3,980,368 157,327 165,789 399 280 1944.4 1946.0 0.0% 1.8%

F10 Mental and behavioural 
disorders due to use of alcohol

3,782,428 135,467 211,629 16,235 20,966 1944.6 1945.4 0.4% 1.9%

I50 Heart failure 3,198,534 95,506 200,362 22,647 77,982 1946.7 1946.9 0.9% 2.6%
N18 Chronic kidney disease 2,806,031 81,765 169,219 22,306 76,222 1945.6 1946.4 0.7% 2.2%
C56 Malignant neoplasm of ovary 2,713,803 116,141 106,071 20,835 38,888 1947.3 1949.3 2.4% 5.9%

C15 Malignant neoplasm of 
oesophagus

2,690,895 100,916 122,814 12,645 29,080 1946.2 1948.0 1.3% 4.2%

I51 Complications and ill-defined 
descriptions of heart disease

2,668,533 80,014 140,902 23,026 48,432 1946.3 1947.8 1.1% 3.9%

E66 Obesity 2,554,340 54,444 141,239 30,974 143,243 1944.6 1945.9 0.6% 2.6%
E11 Type 2 diabetes mellitus 2,528,098 41,218 187,822 27,980 116,215 1946.1 1947.0 0.6% 2.7%
I46 Cardiac arrest 2,467,697 108,896 113,435 5,154 10,827 1944.8 1945.6 0.3% 1.9%

YPLL75 no. of descriptors vint_mean post1990%

Appendix Table 3
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