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1 Introduction

How should we compare welfare across different pension designs when people have un-

equal lifespans? A common approach is to use the standard utilitarian welfare theory. One

important implication of this theory is that optimal pension benefits are independent of ex-

pected longevity. This means that, everything else equal, people who live longer will receive

more in total payments, implying the redistribution from the short-lived to the long-lived.

One obvious objection to this type of redistribution is that due to the negative income-

mortality correlation it is income-regressive. A broader question, however, is whether the

redistribution from the short-lived to the long-lived is desirable even if income and mortality

were not correlated.

The problem of how to account for contribution of non-economic factors such as lifespan

to general welfare has been discussed since at least Atkinson and Bourguignon (1982), but

the standard utilitarian welfare function is still widely used for policy analysis. Recently,

a growing number of structural studies have been incorporating differential mortality into

the quantitative analysis of pension systems (e.g., Jones and Li, 2022; Laun et al., 2019;

Sanchez-Romero, 2019). However, the question of how the implicit bias towards the long-

lived embedded in the standard utilitarianism affects welfare measurements has largely been

left out of this discussion.

In this paper, we develop a general framework to separately analyze the progressiv-

ity/regressivity along income and mortality dimensions. We use our framework to character-

ize conditions under which a regressive redistribution along mortality dimension, i.e., from

the short-lived to the long-lived, is not optimal. To develop our approach, we need to take

a stand on the following three points: (i) how far we are willing to deviate from the stan-

dard utilitarian approach, (ii) why longevity matters for the welfare assessment, (iii) how we

assess the mortality-related redistribution in isolation from income redistribution.

In our approach to social welfare, we do not specifically incorporate a bias towards the

short-lived by, for example, increasing their pareto weight. Instead, our sole deviation from

the standard utilitarian theory is to introduce aversion to inequality in lifetime utilities. This

is done by assuming social welfare is a concave function of individual welfare, while a linear

function is assumed in the standard utilitarian approach (see the discussion in Atkinson and

Stiglitz, 1970). Since individual welfare is a concave function of consumption, both welfare

criteria imply aversion to consumption inequality. However, the aversion to inequality in

lifetime utilities is present only when individual welfare is aggregated non-linearly.

In the environment we consider, longevity matters for welfare because life is valuable. We

assume that being alive brings additional non-pecuniary benefits, following a long tradition
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in the value of life literature (e.g., Hall and Jones, 2007; Rosen, 1988). In this approach, the

long-lived have an utility advantage over the short-lived even when their consumption is the

same.

Differentiating between income- and mortality-related redistribution is an important part

of our analysis. To conceptualize ideas, we consider a framework where individuals differ

in initial wealth/endowment and mortality. We then examine an average tax imposed by a

particular redistributive scheme. If, everything else equal, the average tax is higher (lower)

for the short-lived compared to the long-lived, we refer to this as mortality regressivity

(progressivity). This conceptual framework allows us to examine the redistribution along

mortality dimension for a given degree of income redistribution.

Using our theoretical framework, we derive several interesting results. We start by con-

sidering a simple case when people differ in their mortality but not in endowments. We show

that in this environment, there is a tension between the aversion to two types of inequality:

in consumption and in individual welfare. When aversion to consumption inequality exceeds

aversion to inequality in individual welfare, mortality regressivity is always optimal. More-

over, when the aversion to these two types of inequality is the same, mortality regressivity

is still optimal. In order for the redistribution from the long-lived to the short-lived to be

optimal, aversion to lifetime inequality must be stronger than aversion to consumption in-

equality. Importantly, the push towards mortality progressivity is stronger when life is more

valuable. This is because in this case, the variation in individual welfare due to lifespan

variation is higher, calling for larger compensation to the short-lived.

We next examine a more general framework where there is heterogeneity in both en-

dowments and mortality. We show that the optimality of mortality regressivity in this

environment is determined by the same factors as described above as long as social planner

can freely redistribute endowments. We then consider the case when endowments cannot be

directly redistributed, and show that mortality progressivity can be optimal even if there is

no aversion to inequality in lifetime utilities. This result arises when there is a positive cor-

relation between life expectancy and income. Moreover, the stronger is the income-mortality

correlation, the more mortality-progressive is the optimal allocation. This is because it is

optimal to redistribute towards low-income people, but since this option is not available,

the next best thing is to redistribute towards people with high mortality as they are more

likely to be poor. Put differently, mortality progressivity becomes optimal as a substitute

for income progressivity which cannot be directly achieved.

This conceptual framework easily lends itself to the study of pension systems’ design,

and this represents the next step of our analysis. To do this, we modify our approach by

introducing working and retirement stages of the life-cycle. People pay contributions during
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their working life that depend on their labor productivity, and receive pension benefits

when retired. The lifelong contributions to the pension system can be thought of as one’s

endowment, and pension benefits represent the annuitized value of this endowment.

We show that in absence of concern for lifetime inequality, optimal pensions are equal-

ized across individuals, while with aversion to lifetime inequality, optimal pensions become

positively linked to mortality and negatively to labor productivity. The mortality-pension

link is used to compensate high-mortality people for their short life, and income-pension link

- to compensate low-income people for their low consumption during working life.

In the final part of our analysis, we provide a quantitative illustration using a life-cycle

model where people differ in their labor income and mortality. We estimate labor income and

survival probabilities from the Panel Study of Income Dynamics (PSID) and the Health and

Retirement Study (HRS), respectively. We use our quantitative model for the comparative

welfare analysis of different spending-neutral pension systems. These systems differ in their

mortality progressivity but are restricted in their ability to directly redistribute income.

We show that when we shut down the heterogeneity in labor income, the welfare gains from

mortality progressivity are relatively low even when aversion to lifetime inequality is high. In

contrast, with heterogeneity in labor income, the welfare gains of moving to more mortality-

progressive pensions can exceed 2% of annual consumption. This happens because, given

the strong estimated correlation between labor income and mortality, it is optimal to use

mortality progressivity to increase consumption of low-income people when direct income

redistribution is restricted.

Our results thus emphasize that there are two distinct reasons making mortality progres-

sivity optimal. First is the desire to compensate high-mortality people for their short life.

This effect is only present when life is valuable and there is strong aversion to inequality

in lifetime utilities. Second reason is the desire to redistribute towards low-income people.

This effect is present when income and mortality are negatively correlated and when there

are limited instruments to directly redistribute income. Importantly, while in both cases,

mortality progressivity produces welfare gains, the underlying cause differs. In the first case,

optimality of mortality progressivity is driven by the concern for the short-lived, while in

the second - by the concern for the poor.

Our conclusions have important implications for the comparative pension policy analysis

in presence of unequal lifespans. A typical pension system usually involves regressive redis-

tribution along mortality dimension and progressive redistribution along income dimension.

We suggest a framework that can be used to analyze the two types of redistribution sepa-

rately. This allows us to do a more detailed comparison of different policies, and to separate

the sources of welfare changes between the increase in welfare of the poor and in that of
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the short-lived. We show that in this analysis, three modeling assumptions are of crucial

importance: the nature of income-mortality correlation, the value of life, and the assumed

degree of aversion to lifetime inequality.

The rest of this paper is organized as follows. Section 2 reviews the related literature. Sec-

tion 3 introduces the model and derives the results for the case when there is only mortality

heterogeneity. Section 4 studies the case with both endowment and mortality heterogene-

ity, and Section 5 extends our framework to analyze different pension designs. Section 6

describes the quantitative illustration, and Section 7 concludes.

2 Related literature

Our paper belongs to several strands of literature. First are theoretical studies that in-

vestigate optimal pension/tax systems in presence of differential mortality. When evaluating

the effects of different reforms, two approaches are typically used. The first approach is to

focus on a set of Pareto improving reforms, i.e., the reforms that do not make any individual

worse off compared to the status-quo (Adema et al., 2016; Hosseini and Shourideh, 2019).

The second approach is to use ex-ante welfare comparison, commonly relying on the stan-

dard utilitarian welfare theory. This approach favors the redistribution from the short-lived

to the long-lived, and this theoretical result was labeled by Leroux and Ponthiere (2013)

”the paradox of the double penalization of the short-lived”. The short-lived are penalized

by nature by being endowed with low life expectancy and, in addition, they are penalized

by lower lifetime consumption. One important implication of this result is the optimality of

pension system with mortality-independent benefits, i.e., pooled annuitization (Cremer et

al., 2010).

To avoid the double penalization paradox when considering pension arrangements, several

approaches were used. Leroux and Ponthiere (2013) suggest imputing the consumption

equivalence of longer life and include it as a part of social planner problem, while Pestieau and

Racionero (2016) incorporate higher social weight on the utility of the short-lived. Bommier

et al. (2011a, 2011b) use a standard utilitarian welfare function but allow individuals to

have temporal risk aversion, i.e., aversion with respect to life duration. We contribute

to this line of research by characterizing a set of conditions when mortality progressivity

optimally arises in a relatively standard setting, i.e., we only deviate from the standard

utilitarianism by introducing aversion to inequality in individual welfare. Importantly, we

illustrate the importance of value of life, the nature of income-mortality correlation, and

available income-redistributive tools for this analysis.

The second strand of literature we belong to investigates the normative and positive as-

5



pects of pension systems using a quantitative framework, an active line of research starting

from Auerbach and Kotlikoff (1987). Many of the earlier studies abstract from differential

mortality by assuming that people have fixed identical lifespans (Huggett and Parra, 2010;

Ndiaye, 2020) or that survival probability does not differ across agents once age is controlled

for (Conesa and Krueger, 1999; Kitao, 2014; Nishiyama and Smetters, 2007). With more

detailed empirical documentation of the large inequality in mortality (Chetty et al., 2016),

a growing number of studies start incorporating differential mortality in their analysis of

pension systems. An important application of the quantitative models with differential mor-

tality is the study of welfare consequences of various pension reforms such as reorganization

of benefits and/or financing approaches (see an extensive review in Jones and Li, 2022).

This development raises an important question of how to model differential mortality

and its relationship with other economic variables, and three approaches have been consid-

ered. The first and second approaches make opposite assumptions about the correlation of

socio-economic variable and mortality: there either a one-to-one link between mortality and

income (Bagchi, 2019; Hosseini and Shourideh, 2019; Sanchez-Romero, 2019; Sheshinski and

Caliendo, 2021) or there is no association between the two (Bagchi and Jung, 2020; Imro-

horoglu and Kitao, 2012). The third approach allows for a richer modeling of the interaction

between mortality and economic variables by introducing a third stochastic variable, health,

which evolution can be correlated with socio-economic variables and which affects life ex-

pectancy. At the same time, socio-economic variables such as education may also directly

affect survival (Jones and Li, 2022; Laun et al., 2019) or the interaction between survival and

economics variables can be entirely intermediated by health (Pashchenko and Porapakkarm,

2021). In the third approach, people with higher income are more likely to be healthy and

thus are more likely to live longer, but the correlation between income and mortality is not

perfect.

We contribute to this line of research by suggesting a framework to better understand

the distinct role of redistribution along income and mortality dimensions in the comparative

analysis of pension policies. Importantly, we show that how the relationship between income

and mortality is modeled is very important for this type of welfare assessments.

The third strand of literature we relate to studies the issues related to the value of life.

The constraint that continuation utility of being alive exceeds that of being dead is not

commonly enforced in studies with individual optimization problems since, in most cases, it

does not affect results. However, in certain applications this constraint plays a crucial role.

Among them are valuation of changes in life expectancy or health (De Nardi et al., 2022;

Hall and Jones, 2007; Murphy and Topel, 2006) or saving and portfolio choice with non-

additive preferences (Pashchenko and Porapakkarm, 2022). We contribute to this literature
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by showing that the value of life can play an important role in welfare evaluations of pension

reforms. This happens when these evaluations are done using a more general social welfare

criteria that take non-pecuniary factors into account.

3 Only mortality heterogeneity

We start by constructing a framework where individuals only differ in their mortality.

We consider the case with heterogeneous endowments in Section 4.

3.1 Environment

Consider a representative cohort whose initial mass is one. Individuals enter the model at

age t = 0 with the same endowment A and receive no additional income over their lifetime.

Individuals live to the maximum age of T . We denote the probability to survive from age

t to t + 1 as θi. We assume θi does not vary with age but differs across individuals with

θi∼ G(θi) on the interval [θmin, θmax], and the average survival is defined as

θ =

∫ θmax

θmin

θi dG (θi)

Individuals discount the future at the rate β. Resources can be transferred intertemporally

at the rate r. We assume β(1 + r) = 1.

We consider two versions of the model. First is the laissez-faire situation when each

individual, on entering the model at t = 0, converts his endowment A into an annuity

based on an actuarially fair price.1 We assume no consumption takes place at the starting

period t = 0, and between t = 1 and t = T , consumption is equal to income coming from

the annuitized endowment. In the second version of the model, consumption each period

(for t > 0) is decided upon by social planner who optimizes ex-ante welfare subject to the

aggregate resource constraint.

We denote the actuarially fair price of a unit of annuity income for an individual i as qi,

where:

qi =
T∑
t=1

(
θi

1 + r

)t
Note that qi ∈ [qmin, qmax], where qmin = q(θmin) and qmax = q(θmax). We denote the average

1The one-time annuitization in the first period is optimal when there is no uncertainty except that in
survival and annuities are actuarially fair. See Pashchenko (2013) for a formal proof.
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annuity price as q, where

q =

∫ qmax

qmin

qi dG (θi).

It is worth noting that there is a one-to-one relationship between annuity price and individual

survival probability, so in the subsequent analysis, we will consider individuals along the

dimension of θi and qi interchangeably.

Individuals derive utility from consumption cit based on utility function u(cit), where

u(cit) is strictly increasing, weakly concave and twice continuously differentiable. In addi-

tion, individuals derive non-pecuniary benefits from the fact that they are alive, which are

captured by a positive constant b. Thus, total utility per period of an individual i, vit, can

be represented as follows:

vit = u(cit) + b

The utility in the state of death is normalized to zero.2 Thus life is valued more than death

when vit > 0. The ex-ante lifetime utility of an individual i (or lifetime utility from the

perspective of age t = 0) is

Vi =
T∑
t=1

(β θi)
t (u(cit) + b) =

T∑
t=1

(β θi)
t vit (1)

Given that every agent in the economy gets endowment A, and the total initial mass

of people in a representative cohort is one, the aggregate resource constraint for this econ-

omy can be represented as follows (to make notations less cluttered, we drop the limits of

integration): ∫ T∑
t=1

(
θi

1 + r

)t
cit dG (θi) = A (2)

In what follows, we will focus on age-invariant consumption allocations such that cit =

ci ∀ t , i.e., each individual’s consumption is constant over time. This is the case in the

laissez-faire economy, and we will later confirm that age-independent consumption is also

optimal.

We next introduce two definitions.

Definition 1 We call the consumption allocation {ci} feasible if it satisfies the aggregate

resource constraint in Eq (2).

A convenient way to describe the relationship between consumption and mortality is by

using the concept of elasticity. We introduce the relevant elasticity in the next definition.

2This approach is common in the value of life literature, see, for example, Hall and Jones (2007) and
Murphy and Topel (2006). An alternative approach is to re-normalize disutility from being dead instead of
assuming extra utility from being alive. Rosen (1988) shows that these two approaches are equivalent.
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Definition 2 Consider a feasible consumption allocation {ci}. The elasticity of con-

sumption ci to actuarially fair annuity price qi is defined as follows:

εcqi =
dci
dqi

· qi
ci

Note that εcqi shows how consumption changes with individual’s survival probability (or

individual’s annuity price).

3.2 Defining mortality regressivity

Intuitively, mortality regressivity implies that there is regressive redistribution along the

dimension of mortality, i.e., form the short-lived to the long-lived. To understand whether a

particular allocation is regressive or progressive, we first need to establish a reference point.

We use as a reference point a laissez-faire allocation, when each individual annuitizes his

endowment at the actuarially-fair price, and thus there is no redistribution across mortality

types. To emphasize the absence of redistribution, we will refer to this as neutral allocation.

Definition 3 A feasible consumption allocation
{
cNi
}
is neutral if

cNi =
A

qi
∀ i

It is worth noting that this corresponds to the situation when the elasticity of consump-

tion to mortality is equal to -1 , i.e. , εcqi = −1 ∀ i.

Consider next some feasible allocation {ci}. To understand whether it is mortality-

regressive or progressive, we compare it with the neutral (or laissez-faire) allocation {cNi }.
We can think of {cNi } as the allocation before the redistribution takes place, and {ci} as that

after the redistribution. We can think of the difference cNi − ci as a tax (possibly negative),

and we define the average tax ATi as follows:

ATi =
cNi − ci

cNi
= 1−

ci

cNi

We define mortality regressivity/progressivity based on how the average tax changes with

mortality.

Definition 4 A feasible consumption allocation {ci} is mortality-regressive (mortality-
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progressive) if the average tax decreases (increases) with life expectancy or qi:

∂ATi

∂qi
< (>) 0.

We next are going to formulate the proposition linking mortality regressivity and the

concept of elasticity introduced in Definition 2.

Proposition 1 Consider a feasible allocation {ci}. If this allocation is mortality-

regressive (mortality-progressive) then the following is true:

εcqi > (<)− 1 ∀ i

Proof We will do the proof for the mortality-regressive case. That for the mortality-

progressive case is analogous. Using the definition of the neutral allocation {cNi }, we can

rewrite the average tax as follows:

ATi = 1−
ciqi

A

The derivative of the average tax with respect to qi is

∂ATi

∂qi
= −

1

A

∂(ciqi)

∂qi
= −

ci

A
(εcqi + 1),

where the last equality follows from the definition of elasticity. Since in the mortality-

regressive case
∂ATi
∂qi

< 0, it follows that εcqi > −1. This finishes the proof of the proposition.

One important example to consider is the feasible allocation that is the same for all

agents, c =
A

q
. This allocation is mortality-regressive as the average tax is decreasing in qi:

ATi = 1−
qi

q
(3)

Note that the elasticity is equal to zero, εcqi = 0.

3.3 Optimality of mortality regressivity

To understand under what conditions mortality progressivity can optimally arise, in this

section, we consider the social planner problem for this economy. In our formulation of this

problem, we deviate from the standard utilitarian approach in that we allow for the aversion
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to inequality in lifetime utilities. In the standard utilitarian approach, this inequality does

not matter because the total welfare is a linear sum of individual lifetime utilities Vi, and

thus Vi of different individuals are perfect substitutes. In our case, total welfare is a sum of

a concave function of Vi, which relaxes the assumption of perfect substitution (see Atkinson

and Stiglitz, 1970).

Social planner maximizes welfare of a representative cohort subject to the aggregate

resource constraint:

max
{cit}

∫
Ψ(Vi) dG (θi) (4)

s.t.
∫ T∑

t=1

(
θi

1 + r

)t
cit dG (θi) = A (5)

Here Ψ(·) represents planner’s attitude towards inequality in lifetime utilities Vi , where Vi is

defined in Eq (1). Note that in a standard utilitarian welfare case, Ψ(·) is linear. We assume

that Ψ(·) is strictly increasing, weakly concave and twice continuously differentiable. Eq (5)

is the aggregate resource constraint.

Denoting the Lagrange multiplier on the resource constraint as λ, we can write the first-

order conditions as follows:

∂Ψ(Vi)

∂ Vi
βt θti

∂ u(cit)

∂ cit
=

(
θi

1 + r

)t
λ

Given that β(1 + r) = 1, this can be simplified as follows:

∂Ψ(Vi)

∂ Vi
· ∂ u(cit)

∂ cit
= λ ∀ i , t (6)

Two important properties of the optimal allocation follow from Eq (6):

1. cit = ci ∀ i , i.e., it is optimal to give every individual a constant consumption

stream.

2.
dci
dqi

⩽ 0 , i.e., optimal consumption is non-increasing in longevity. This follows

because for any two individuals i and j, given weak concavity of Ψ(·), Eq (6) implies that if

ci ≥ cj then Vi ≤ Vj. Since for a given level of consumption, lifetime utility is increasing in

qi (Vi = qi(u(ci) + b)), this can only be true when
dci
dqi

≤ 0. This implies that εcqi ≤ 0 ∀ i.

In the subsequent analysis, we focus on | εcqi |.
When consumption is age-invariant, the per-period utility vi is also the same at each age.

We can use this fact together with the definition of the annuity price and the assumption
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β(1 + r) = 1, to rewrite the lifetime utility Vi in Eq (1) as follows:

Vi = viqi

Before proceeding, we are going to introduce the following notations:

∂Ψ(V )

∂ V
≡ ΨV ,

∂ u(c)

∂ c
≡ uc

∂2Ψ(V )

∂ V 2
≡ ΨV V ,

∂2 u(c)

∂ c2
≡ ucc

Below, we summarize the key assumptions we use for our analysis.

Assumption 1. Both u(·) and Ψ(·) are strictly increasing, weakly concave and twice

continuously differentiable

Assumption 2. β(1 + r) = 1

Assumption 3. Life is valuable for all individuals: per-period utility of being alive vi

exceeds zero (utility at death), vi = u(ci) + b > 0 for all i.

The following proposition formalizes a criteria to determine whether an optimal allocation

is mortality-regressive or -progressive.

Proposition 2 Consider the consumption allocation {ci} that represents the solution to

the social planner problem described in Eqs (4)-(5). Under Assumptions 1-3, whether this

allocation is mortality-regressive/progressive can be determined as follows:

1. If Ψ(·) is linear, {ci} is the same for all individuals, ci = c for all i, and is mortality-

regressive.

2. If Ψ(·) is strictly concave, {ci} is mortality-regressive (mortality-progressive) if

ucici
vi

+
Rui

RΨi

> (<) 1 ∀ i (7)

where Rui = −ucci
uci

ci and RΨi = −ΨV Vi

ΨVi

Vi are the coefficients of relative risk aversion of

functions u(·) and Ψ(·), respectively.

Proof In the subsequent discussion, we will drop an individual’s subscript i except in

cases when we want to emphasize the difference between individuals.

Using the simplified notation introduced above, we can rewrite the FOC in Eq (6) as

follows:

ΨV uc = λ (8)
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Taking the full differential of this equation around the optimal allocation, we get:

ΨV V v uc dq + (ΨV V u2
c q +ΨV ucc) dc = 0

Hence

dc

dq
= − ΨV V v uc

ΨV V u2
c q +ΨV ucc

= −v

ΨV V

ΨV

V

ΨV V

ΨV

V uc q +
ucc
uc

c
V

c

Using the definitions of the coefficients of the relative risk aversion and the fact that

V = vq , we can transform this as follows:

dc

dq
= −v

q

RΨ

RΨ uc +Ru
v
c

Rewriting this expression in terms of elasticity, we have:

| εcqi | =
RΨ

RΨ
uc c
v

+Ru

It directly follows that when RΨ = 0 (Ψ(·) is linear), | εcqi | = 0, and optimal consumption

is the same for all agents. This proves part 1 of the proposition. When RΨ ̸= 0 , we can

rewrite the elasticity as follows:

| εcqi | =
1

uc c
v

+
Ru

RΨ

(9)

The consumption allocation is mortality-regressive (-progressive) when | εcqi | < (>) 1 by

Proposition 1. This finishes the proof of the proposition.

Intuition To better understand the intuition, consider the key expression of Proposition

2 in Eq (7), which contains two terms. The first term represents the elasticity of per-period

utility v to consumption,
uc c

v
=

dv

dc
· c
v
. It determines how sensitive is per-period utility to

the marginal change in consumption. This sensitivity depends on whether consumption is

all that matters, or whether there are also non-pecuniary factors that affect utility.

The second term
Ru

RΨ

measures the relative concavity of the functions u(·) and Ψ(·),
and thus determines whether social planner is more concerned about inequality in lifetime

utilities or in consumption.

When non-pecuniary benefits of being alive (b) are high, the first term is relatively low,
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and if it is combined with strong aversion to lifetime inequality (the second term is low),

this represents a push for mortality progressivity. This happens because it is optimal to

compensate the short-lived for their low lifetime utility with higher consumption. In the

opposite case, when consumption is the dominant component in utility, and the planner is

less concerned about inequality in lifetime welfare, it is more likely that the optimal allocation

is mortality-regressive.

Additional results We next are going to show that when we introduce an additional

assumption that both u(·) and Ψ(·) are constant relative risk aversion functions, Proposition

2 gives raise to two corollaries.

Assumption 4. The functions u(·) and Ψ(·) have constant relative risk aversion, i.e.,

Rui = Ru and RΨi
= RΨ for all i.

Corollary 1 Suppose Assumptions 1-4 hold. Then the optimal consumption allocation

is always mortality-regressive if Ru ≥ RΨ.

Proof : When RΨ = 0, this follows from part 1 of Proposition 2. When RΨ > 0, this

follows from Eq (7) and the fact that v > 0 and uc > 0.

An important implication of Corollary 1 is that even if u(·) and Ψ(·) have the same degree

of concavity (Ru = RΨ), mortality regressivity is still optimal. In other words, in order for

mortality progresivity to be optimal, it is not enough to introduce aversion to inequality in

lifetime utilities, it is essential that the concern for lifetime inequality is stronger than the

concern for consumption inequality, i.e., Ψ(·) should be more concave than u(·).

Corollary 2 Suppose Assumptions 1-4 hold. In addition, assume that u(·) and Ψ(·) are
strictly concave. Then mortality progressivity of the optimal consumption allocation {ci} is

more likely to arise when per-period utility of being alive b is larger.

Proof : Consider the FOC in Eq (8) for two agents, i and j, with qi < qj. We can

combine the FOCs as follows:

ΨVi

ΨVj

uci
ucj

=

(
qi
qj

)−RΨ
(
u(ci) + b

u(cj) + b

)−RΨ uci
ucj

= 1,

Here we used the fact that Vi = q(u(ci) + b) and the assumption that Ψ(·) is the CRRA

function with risk aversion Rψ. Consider a perturbation of this equation around the optimal

allocation when we change b. Since qi < qj, we have ci > cj and the ratio

(
u(ci) + b

u(cj) + b

)−RΨ
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increases in response to the marginal change in b (holding allocation fixed at the optimal

level). Hence, we now have ΨViuci > ΨVjucj , so it is optimal to rearrange the allocation in a

way that ci increases and cj decreases. In other words, resources are reallocated from low-

mortality to high-mortality agents, which represents a move towards mortality progressivity.

Intuitively, Corollary 2 implies that when the value of being alive increases, unequal

lifespans create larger dispersion in lifetime utilities. Social planner who is averse to this

type of inequality reduces it by compensating high-mortality people for their short life with

higher consumption, thus moving towards mortality progressivity.

3.4 The aversion to inequality in consumption versus in lifetime

utilities

The key implication of Proposition 2 is that the relative concavity of functions u(·)
and Ψ(·) is important for the optimality of mortality progressivity/regressivity. To better

illustrate the intuition of this result, we consider two opposite cases in terms of whether u(·)
or Ψ(·) is more concave. We are going to assume that one of these functions is linear and the

other is strictly concave, in which case the optimal consumption allocations can be derived

analytically.

Only consumption inequality matters: Ψ(·) is linear and u(·) is concave In this

case, social planner is concerned only about consumption inequality and is neutral to in-

equality in lifetime utilities. It is optimal to equalize consumption, ci = c . The optimal

consumption c can be found from the aggregate resource constraint:∫
qi c dG (θi) = c

∫
qi dG (θi) = c q = A,

implying c =
A

q
. This means that social planner makes individuals annuitize their endow-

ment at the same pooled price. We will refer to this consumption allocation as the utmost

mortality-regressive.

Note that the resulting lifetime utility is linearly increasing in qi :

Vi = qi (u( c ) + b )

The average tax for this case is given in Eq (3). The elasticity of consumption to annuity

price is zero, | εcqi | = 0 for ∀ i .
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Only inequality in lifetime utility matters: Ψ(·) is concave and u(·) is linear In

this case, social planner aims to equalize lifetime utilities, while being indifferent to inequality

in consumption. Assuming u(c) = c, we can solve for the optimal allocation as follows. From

the first-order condition in Eq (8) we have:

ΨVi = λ ∀ i,

implying Vi = V ∀ i .

Since qi (u( ci)+b) = qi ci+qi b = V , we can transform the aggregate resource constraint:∫
qi ci dG (θi) =

∫(
V − qi b

)
dG (θi) = V − q b = A

Thus V = A+ q b and

ci =
A

qi︸︷︷︸
neutral

+ b
q − qi
qi︸ ︷︷ ︸

compensation for short life

(10)

When b = 0, this allocation is neutral (or laissez-faire). When b > 0, people with low life

expectancy (qi < q) receive transfers financed by reduction in consumption of people with

high life expectancy (qi > q). We will refer to this consumption allocation as the utmost

mortality-progressive.

We can write the average tax as:

ATi = 1−
A+ b(q − qi)

A
= b

qi − q

A
,

and it is increasing in qi implying mortality progressivity.

The absolute value of the elasticity of consumption to annuity price is greater than one

as long as b > 0:

| εcqi | =
A+ b q

A+ b (q − qi)
> 1 ∀ i

Numerical illustration The important difference between the utmost mortality-regressive

(Ψ(·) is linear) and the utmost mortality-progressive (u(·) is linear) allocations is how con-

sumption changes with longevity type. In the utmost mortality-regressive case,
dci

dqi
= 0,

while
dci

dqi
< 0 for the utmost mortality-progressive case. Overall, the mortality progressivity

is determined by the speed at which consumption declines with longevity.

This can be best illustrated with the following numerical example. We consider the
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Figure 1: Consumption allocations differing in their mortality progressivity.

example where A = 5, r = 2%, b = 1, maximum lifespan T = 20 and the survival probability

being uniformly distributed in the interval [0.8, 0.95]. In Figure 1 we plot three allocations:

mortality-neutral, the utmost mortality-regressive, and the utmost mortality-progressive.

The figure shows that consumption declines much quicker as longevity increases in case of

the mortality-progressive case compared to the mortality-neutral case.

4 Mortality and endowment heterogeneity

In this section, we are going to relax the assumption of equal endowments. Instead, we

examine the situation when individuals differ in both mortality and endowments, with the

two possibly being correlated.

4.1 Environment

We denote an endowment of an individual i as ai with ai ∼ F (ai) on the interval

[amin, amax], and with average endowment
∫

ai dF (ai) = A. We denote the joint distri-

bution of ai and qi as H(a, q), and the endowment-weighted average annuity price as qa:

qa =

∫
q

∫
a

qiai H(ai, qi) dai dqi

A
,
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As before, we focus on age-invariant consumption allocations (ci is the same for all t).

Consumption does not vary with age in the laissez-faire case, and it is also the property of

the optimal allocation, which can be shown in the same way as in Section 3. We can thus

write the aggregate resource constraint as

∫
q

∫
a

T∑
t=1

(
θi

1 + r

)t
ciH(ai, qi) dai dqi = A (11)

We next need to define the reference allocation that can be used to determine mortality

regressivity/progressivity. For this, we modify our definition of the neutral or laissez-faire

consumption allocation (Definition 3 from Section 3) as follows.

Definition 3.1 A feasible consumption allocation
{
cNi
}
is neutral if

cNi =
ai
qi

∀ i

This corresponds to the situation when each individual converts his endowment ai into

an annuity based on his actuarially-fair annuity price qi.

There may be redistribution along both mortality and endowment dimensions, and we

wish to disentangle the two, i.e., to analyze redistribution along the mortality dimension

for a given endowment distribution. For this, we are going to modify our Definition 4 from

Section 3.

As before, we are going to start by comparing a feasible allocation {ci} with the neutral

allocation {cNi }, constructing a tax cNi − ci, with the average tax ATi taking the same form

as before:

ATi = 1−
ci

cNi

Our modified definition of mortality progressivity/regressivity is stated as follows.

Definition 4.1 A feasible consumption allocation {ci} is mortality-regressive/-neutral/-

progressive when the average tax decreases/does not change/increases with life expectancy

or qi, given the endowment ai:

∂ATi

∂qi

∣∣∣∣
ai

< (=) > 0.

It is worth noting that this definition also includes a concept of mortality-neutrality

differing from that of neutrality more generally. When endowments do not differ across

agents, these two concepts are the same. With heterogeneous endowments, some feasible

allocations can be not neutral (not laissez-faire), while still being mortality-neutral. One
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example of such allocation is the following: ci =
A

qi
. The average tax in this case is ATi =

1− A

ai
. This tax does not change with longevity or qi for a given endowment ai.

In order to understand whether a particular allocation is mortality-progressive/regressive,

we can still apply Proposition 1 but in a slightly modified form.

Proposition 1.1 Consider a feasible allocation {ci}. If this allocation is mortality-

regressive (mortality-progressive) then the following is true:

εcqi | ai > (<)− 1 ∀ i,

where εcqi | ai is the partial elasticity of consumption to mortality, i.e., the elasticity for a given

level of endowment ai:

εcqi | ai =
dci
dqi

∣∣∣∣
ai

· qi
ci
.

Proof See Appendix A.

4.2 Optimality of mortality regressivity

The social planner’s problem in the environment with both mortality and endowment

heterogeneity can be formulated as follows:

max
{ci}

∫
Ψ(Vi)H(ai, qi) dai dqi (12)

subject to the aggregate resource constraint in Eq (11). The following proposition compares

optimal consumption allocations in this case with the case of homogeneous endowments

considered in Section 3.

Proposition 3 Consider the consumption allocation {ci} that represents the solution to

the social planner problem described in Eqs (12) and (11). Suppose Assumptions 1-3 hold,

and
∫

ai dF (ai) = A = A, i.e., the total endowment in the economies with heterogeneous

and homogeneous endowments are the same. Then the optimal consumption allocation in

the two economies is the same.

Proof Since A = A, the aggregate resource constraint is the same in the two economies.

Denoting the Lagrange multiplier on the aggregate resource constraint as λ, we can write

the FOC as follows:

ΨVi uci = λ (13)
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This is equivalent to the FOC in Eq (8) for the social planner problem in Eqs (4)-(5). The two

social planner problems have the same solution, which finishes the proof of the proposition.

It is worth noting that the FOC in Eq (13) implies that consumption allocation {ci}
does not depend on individual endowments ai but can depend on mortality qi. Proposition

3 shows that when social planner can freely redistribute endowments, the characterization

of the optimal allocation does not change when we allow for heterogeneous endowments.

This also means that the conditions for mortality regressivity are the same as described in

Proposition 2.

We next examine the two extreme cases considered above, when either function Ψ(·) or
u(·) is linear. This results in either the utmost mortality-regressive allocation (when only

consumption inequality matters), or the utmost mortality-progressive allocation (when only

lifetime inequality matters). Using the same steps as in Section 3.4, we can find the utmost

mortality-regressive consumption allocation:

ci =
A

q
(14)

The utmost mortality-progressive allocation takes the following form:

ci =
A

qi
+ b

q − qi

qi
(15)

In both cases, individual endowments are pooled together and equally distributed across

agents (everyone gets A). The pooled endowment is then annuitized at the average annu-

ity price in the utmost mortality-regressive case. In the utmost mortality-progressive case,

pooled endowments are annuitized at the individual actuarially-fair prices with a compen-

sation for short life added when b > 0.

4.3 Restricted social planner problem

We next consider a more interesting case when social planner cannot directly choose

consumption allocations, but instead has an access to a limited set of instruments. It is

worth start by noting that in the unrestricted social planner problem, optimal consumption

allocations vary between the utmost mortality-regressive (Eq 14) and the utmost mortality-

progressive (Eq 15) cases. We can approximate consumption allocations in between these
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two extreme cases with the following parametric form:

ci = (1− α1)
A

q
+ α1

A

qi
+ α2 b

q − qi
qi

, (16)

where α1 ∈ [0, 1] and 
α2 = 0 ; if α1 < 1

α2 ≥ 0 ; if α1 = 1

When α1 = 0, the allocation is the utmost mortality-regressive. As α1 increases, the alloca-

tion moves away from the utmost-regressive and towards the mortality-neutral case. Once

α1 = 1, the allocation is mortality-neutral. Increasing α2 above zero introduces mortality

progressivity. The aggregate resource constraint is met for all described combinations of α1

and α2.

Importantly, in the unrestricted social planner problem, the correlation between endow-

ment and mortality does not matter since individual endowments are pooled together. We

next consider a situation when the ability of social planner to redistribute endowments is

limited. Specifically, we assume that individual endowments ai cannot be changed. This case

is interesting because it allows us to focus on the redistribution along mortality dimension,

and to understand the role of the mortality-endowment correlation.

We thus modify the consumption allocation rule in Eq (16) as follows:

ci = (1− α1)
ai
qa

+ α1
ai
qi

+ α2 b
q − qi
qi

(17)

Compared to Eq (16), the first term in this equation is divided by qa as opposed to q in order

to meet the aggregate resource constraint. This way, varying α1 and α2 does not change the

total spending on consumption allocations.

We can now define the constrained social planner problem: social planner maximizes

social welfare by choosing α1 and α2:

max
α1,α2

∫
q

∫
a

Ψ(Vi) H(Ai, qi) dai dqi (18)

where Vi = qi(u(ci) + b) and ci is given in Eq (17).

Our goal is to understand how the mortality-endowment correlation affects the optimality

of mortality progressivity. In this analysis, we focus on the case which is least favorable to

mortality progressivity based on our analysis in the previous section: we assume that social
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planner is indifferent to inequality in lifetime utilities and has aversion to consumption

inequality (Ψ(·) is linear and u(·) is strictly concave).

Our key results of this section are summarized in Proposition 4.

Proposition 4 Consider the constrained social planner problem described in Eq (18),

and suppose Assumptions 1-4 hold. In addition, assume RΨ = 0 and Ru > 1. The optimal

choice of α1 and α2 can be summarized as follows:

(1) If cov(q, a) = 0, then at the optimum α1 = 0,

(2) If cov(q, a) > 0, then

(i) At the optimum α1 > 0,

(ii) If cov(q,
a

q
) < 0, then at the optimum α2 = 0,

(iii) If cov(q,
a

q
) > 0, then at the optimum α2 > 0.

Proof See Appendix B.

The intuition for the part (i) of Proposition 4 follows from our analysis in the previous

section: when social planner’s only concern is consumption inequality (as Ψ(·) is assumed

to be linear), it is optimal to equalize consumption. The closest social planner can get to

equalizing consumption when he cannot directly redistribute endowments is by annuitizing

an endowment of each agent at the same pooled price.

Once we introduce the correlation between mortality and endowment, optimal alloca-

tions change. Specifically, when short-lived people tend to have lower endowments, there is a

push for mortality progressivity, which is more pronounced when the mortality-endowment

link is stronger, cov(q,
a

q
) > 0. We formally show that the latter condition is stronger

than cov(q, a) > 0 in the Auxiliary proposition in Appendix B. Intuitively, the condition

cov(q,
a

q
) > 0 implies that even though people with longer life expectancy face higher actu-

arially fair annuity prices q, their endowments a tend to be so high that they still can obtain

higher annuity income,
a

q
.

It is important to point out that the push towards mortality-progressivity in this case

arises not because social planner wants to equalize lifetime utility and to compensate high-

mortality agents for their short life, but because mortality progressivity is used as a substitute

for income progressivity in absence of direct instruments to redistribute endowments.
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5 Mortality regressivity and pension design

In this section, we extend our theoretical framework to analyze pension design. We

modify the setup of Sections 3 and 4 in two ways. First, instead of a representative cohort,

we consider the overlapping generations model. Second, we introduce two stages of the life-

cycle: working and retirement periods. During working period, each individual receives labor

income and pays contributions to the pension system, during retirement period, he receives

pension benefits. In this environment, we can think of total contributions to the system

as one’s endowment, and of pension benefits as the annuitized value of the endowment.

People may differ both in endowments and mortality, and pension system may thus feature

redistribution along both dimensions. We focus on a set of revenue-neutral policies, i.e.,

policies that are financed by the same tax revenue.

5.1 Environment

We consider an overlapping generations model where each individual lives for T periods:

for the first R periods, an agent receives labor income ϵi, between periods R + 1 and T , an

agent is retired. The population grows at the rate n.

In our analysis, we maintain Assumptions 1-4 from Section 3. We also assume the

economy is dynamically efficient, so that the population growth rate is equal to the interest

rate, n = r. In addition, we assume agents have inelastic labor supply and cannot save. In

our quantitative model in the next section, we relax the assumption of no savings.

Agents differ in mortality and labor productivity ϵi, with ϵi ∼ F (ϵi), and we denote

the average productivity ϵ =
∫
ϵ dF (ϵ). Agents survive to period R with probability one,

and after that, the probability to survive from age t to t + 1 is θi with θi ∼ G(θi) and

θ =
∫
θ dG (θ). Labor productivity and mortality can be correlated and we denote their

joint distribution as H(ϵ, θ).

The actuarially fair price qi of a unit of lifelong annuity income for an individual i acquired

before retirement (at age R) is:

qi =
T−R∑
t=1

(
θi

1 + r

)t
,

with the average annuity price denoted as q. As before, we use actuarially fair annuity price

qi and mortality θi interchangeably in the subsequent discussion.

During the working stage of the life-cycle, each agent pays proportional tax τ on his

labor income. After retirement, each agent receives benefits ssbi. Given our assumption

that agents cannot save, each period’s consumption is equal to income (either labor income

23



or pension income), and the lifetime utility can be represented as follows:

Vi =
R∑
t=1

βt−1(u(ϵi(1− τ)) + b) + βR−1

T−R∑
t=1

(βθ)t(u(ssbi) + b)

=
R∑
t=1

βt−1(u(ϵi(1− τ)) + b) + βR−1qi (u(ssbi) + b) (19)

The last equality follows from the assumption β(1 + r) = 1 (Assumption 2) and the

definition of the annuity price. Denoting the lifetime utility during working period as

V W
i =

∑R
t=1 βt−1(u(ϵi(1−τ))+b), and during the retirement period as V R

i = qi (u(ssbi)+b),

we can also write:

Vi = V W
i + βR−1V R

i

5.2 Pension system

There are two ways to set up a pension system in this environment, either on a fully

funded or on a pay-as-you-go basis. In the first case, an individual pays contributions to

his pension account that is later annuitized. In the second case, working-age people finance

pensions of retirees. In this section, we show that under the assumptions of dynamic efficiency

and inelastic labor supply, the two systems are equivalent. This result is convenient because

it allows us to think of pension contributions in both cases as individuals’ notional balances

or endowments.

In the fully-funded pension system, an individual i has a notional balance ICi, which

represents his lifelong contributions:

ICi = τϵi

R∑
t=1

(1 + r)t−1

Upon retirement, the notional balance ICi is converted into an annuity. Thus, for each

individual, ssbi qi = ICi. Since this is true for every individual, it is true for the whole

cohort of pre-retirement age (t = R), and we can write the balance equation for the fully-

funded pension system as follows:∫
q

∫
ϵ

ssb q H(ϵ, q) dϵ dq =

∫
ϵ

ICdF (ϵ) (20)

In the pay-as-you-go system, individuals’ contributions are used to finance pensions of

the old. Denoting as N the initial size of the cohort who is currently of age T (the oldest
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cohort), we can write the pension system balance equation as follows:

N

∫
q

∫
ϵ

ssb

T−R∑
t=1

θt(1 + n)T−R−tH(ϵ, q) dϵ dq = N

∫
ϵ

τϵ
R∑
t=1

(1 + n)T−tdF (ϵ)

Dividing both sides by N(1 + n)T−R, which is the size of the cohort who is about to retire,

we have ∫
q

∫
ϵ

ssb
T−R∑
t=1

(
θ

1 + n

)t

H(ϵ, q) dϵ dq =

∫
ϵ

τϵ
R∑
t=1

(1 + n)t−1dF (ϵ) (21)

We can use our assumption of dynamic efficiency (n = r) and the definition of the

actuarially-fair annuity price to show that the balance equations for the fully-funded and

pay-as-you-go pension systems in Eqs (20) and (21) are equivalent. Moreover, we can think

of the right-hand side of Eq (21) as the average of notional balances ICi, since when n = r

the following is true:

ICi = τϵi

R∑
t=1

(1 + n)t−1

In this stylized framework, we will treat ICi as one’s endowment, and pension benefits ssbi

as the annuitized value of this endowment.

It is worth noting that since we focus on a set of revenue-neutral policies, we fix the tax

rate τ . Given the assumption of inelastic labor supply, this means the average contributions

IC ≡
∫
ϵ

ICdF (ϵ) do not vary across policies.

5.3 Definitions

We next modify our key definitions from Section 4, starting from that of feasibility.

Definition 1.2 We call pension benefits {ssbi} feasible if they satisfy the pension system

balance equation in Eqs (20) or (21).

Since in our framework, pension benefits can be thought of as annuitized value of one’s

endowment, this leads us to the following definition of neutral pension benefits.

Definition 3.2 Feasible pension benefits {ssbNi } are neutral if

ssbNi =
ICi

qi
∀ i

This corresponds to the situation when each individual converts his lifelong contributions to

the pension system ICi into an annuity based on his actuarially-fair annuity price qi. Thus,
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neutral benefits involve no redistribution along neither mortality nor endowment dimensions.

A pension system may involve redistribution along both income and mortality dimensions,

and we wish to analyze these two separately. For this, we are going to modify our definition

of mortality regressivity (Definition 4.1 from Section 4) and add the definition of endowment

regressivity/progressivity.

To do this, we start by comparing feasible pension benefits {ssbi} with neutral benefits

{ssbNi }, constructing a tax ssbNi − ssbi, with the average tax ATi taking the following form:

ATi = 1−
ssbi

ssbNi

Our modified definition of mortality progressivity/regressivity is stated as follows.

Definition 4.2 Feasible pension benefits {ssbi} are mortality-regressive/-neutral/-progressive

when the average tax decreases/does not change/increases with life expectancy or qi, given

the endowment (lifetime pension contributions) ICi:

∂ATi

∂qi

∣∣∣∣
ICi

< (=) > 0.

In a similar fashion, we can define the endowment regressivity/progressivity in our envi-

ronment:

Definition 6 Feasible pension benefits {ssbi} are endowment-regressive/-neutral/-progressive

when the average tax decreases/does not change/increases with endowment ICi, given the

life expectancy or qi:

∂ATi

∂ICi

∣∣∣∣
qi

< (=) > 0.

5.4 Optimal pension system

Consider the social planner problem in this environment. Since the tax rate τ and the

size of the pension program are fixed, social planner only chooses how to set pension benefits

subject to the pension system balance equation:

max
{ssbi}

∫
q

∫
ϵ

Ψ(Vi) H(ϵi, qi) dϵi dqi (22)
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s.t. ∫
q

∫
ϵ

ssbi qi H(ϵi, qi) dϵidqi = IC, (23)

where Vi is given in Eq (19).

Denoting the Lagrange multiplier on the constraint as βR−1λ, we can write the FOC as

follows:

ΨVi ussbi = λ, (24)

where
∂Ψ(Vi)

∂ Vi
≡ ΨVi ,

∂ u(ssbi)

∂ ssbi
≡ ussbi

The FOC in Eq (24) implies the following property of the optimal pension benefits.

Since Vi is increasing in both qi and ϵi, when Ψ(·) is strictly concave, ssbi is decreasing in qi

(given ϵi) and in ϵi (given qi). The later effect is new compared to the environment studied

in Sections 3 and 4, where an individual’s endowment does not affect optimal consumption.

This effect arises because social planner can only change consumption after retirement, while

concern for lifetime inequality also makes the utility over working period matter for optimal

pensions.

We can now formulate the modified version of Proposition 2.

Proposition 2.1 Consider pension benefits {ssbi} that represent the solution to the

social planner problem described in Eqs (22)-(23). Under Assumptions 1-4, whether these

benefits are mortality- and endowment-regressive/progressive can be determined as follows.

1. If Ψ(·) is linear, {ssbi} are mortality-regressive.

2. If Ψ(·) is strictly concave, then {ssbi} are mortality-regressive (-progressive) if

ussbissbi
vRi

+
Ru

RΨ

Vi
βR−1V R

i

> (<) 1 ∀ i (25)

where vRi = u(ssbi) + b is the flow utility per period after retirement.

3. {ssbi} are always endowment-progressive.

Proof : See Appendix C.

Intuition Consider the condition for mortality regressivity/progressivity in Eq (25). Sim-

ilarly to Eq (7) in Section 3, it contains two parts. The first term represents the elasticity

of per-period utility during retirement period vRi to pension benefits ssbi, i.e.,
ussbissbi

vRi
=

dvRi
dssbi

· ssbi
vRi

. It describes how sensitive is per period utility after retirement to the marginal
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change in pension benefits (or consumption).

The second term measures the relative concavity of the functions u(·) and Ψ(·), and

thus captures how important is concern for consumption inequality compared to concern for

inequality in lifetime utilities. Unlike in Eq (7), here the measure of relative concavity
Ru

RΨ

is multiplied by the term
Vi

βR−1V R
i

, which is the ratio of lifetime utility Vi to the discounted

lifetime utility during the retirement period, βR−1V R
i . Since the lifetime utility is the sum

of utilities during working and retirement periods, this expression is larger than one. This

multiplicative term makes the condition for mortality progressivity harder to meet, as it

scales up the ratio
Ru

RΨ

, thus putting more weight on consumption inequality. Moreover, the

smaller is V R
i relative to Vi, the more pronounced this effect is. This is because inequality

in mortality only plays a role after retirement. Thus, the less important is retirement period

for total welfare, the less important is mortality inequality.

It is also worth making a quick note about the relationship between pensions and endow-

ments. In the neutral case (when each individual receives pension benefits based on his own

lifetime contribution ICi), pension benefits are higher for people with high productivity ϵi. In

contrast, optimal pensions are the same for all productivity types in the standard utilitarian

welfare settings (Ψ(·) is linear), implying the redistribution form high- to low-productivity

types. Introducing aversion to lifetime inequality (Ψ(·) is concave) makes pension benefits

decreasing in productivity, thus involving even more pronounced progressive redistribution

along the endowment dimension. As mentioned earlier, this is to compensate low-productive

people for their low consumption during working years: as social planner does not control

consumption at young age, more unequal pensions are used to reduce dispersion in lifetime

utilities.

5.5 Two examples

To better illustrate the intuition, we once again consider two extreme cases differing in

whether inequality in consumption or in lifetime utilities matters for welfare.

Case 1: Only aversion to consumption inequality matters (Ψ(·) is linear and u(·) is

concave). In this case, optimal social security benefits are the same for all individuals and

take the following form:

ssbi =
IC

q
for ∀ i

Thus, social planner equalizes consumption after retirement by pooling together all individual

contributions (or endowments), and by annuitizing equalized endowments at the pooled
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annuity price q.

We can write down the average tax in this case as:

ATi = 1−
IC

ICi

qi

q

The tax increases in endowment ICi but decreases in life expectancy or qi, implying endow-

ment progressivity but mortality regressivity.

Case 2: Only aversion to lifetime inequality matters (Ψ(·) is concave and u(·) is linear).
Assuming u(c) = c and using the assumption β(1 + r) = 1, we can solve for ssbi with the

following result:

ssbi =
IC

qi︸︷︷︸
part 1

+ b
q − qi
qi︸ ︷︷ ︸

part 2

+
1− τ

τ

IC − ICi

qi︸ ︷︷ ︸
part 3

The expression for optimal benefits contains three parts. The first part is the mortality-

neutral allocation with fully-redistributed pension contributions, i.e., contributions are pooled

together, divided equally among agents, and then converted into an annuity based on the

individual actuarially-fair price. The second part is the compensation for short life which is

positive (negative) for people with low (high) life expectancy. It is worth noting that these

two parts are also present in the expression for optimal consumption when only lifetime

inequality matters considered in the previous sections (see Eq (10) in Section 3 and Eq (15)

in Section 4).

The third part is new: this is an additional redistributive component that social planner

uses to compensate low-income people for having low consumption during their working

years. This term arises because social planner can only affect consumption after retirement,

while aiming to reduce inequality in lifetime utilities.

We can express the average tax in this case as:

ATi =
1

τ

ICi − IC

ICi
+ b

qi − q

ICi

The average tax increases in life expectancy or qi, and in endowment or ICi, implying both

mortality- and endowment progressivity.3

3 It can be shown that ATi increases in ICi when
1

τ
IC+ b(q− qi) > 0. The latter inequality always hold,

otherwise ssbi is negative.
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6 Quantitative illustration

In this section, we aim to understand the relative quantitative importance of the theo-

retical mechanisms described above. To do this, we quantitatively solve a life-cycle model

with two stages, working and retirement periods, as described in Section 5. We then use

the model to assess the welfare effects of different pension designs that vary in the degree of

mortality regressivity.

6.1 Model description

Individuals A model period is one year. Individuals enter the model at age t = 25. Up to

age R, individuals receive labor income, after age R, individuals retire and receive pensions.

Individuals are ex-ante different in their type j, j ∈ [1, ..., J ] which is fixed throughout

their life. Type affects individual’s survival probability and labor productivity. As in Section

5, we assume agents survive with probability one till age R. For age t > R, we denote the

type-dependent probability to survive from age t to t+1 as θjt . The earnings of an individual

are equal to λjt , the idiosyncratic productivity that depends on age (t) and type (j).

During the working period (t = 1...R), an individual pays tax τ on his labor earnings,

after retirement (t = R + 1...T ), he receives pension benefits ssb.

The state variables of an individual are assets (kt), age (t), and type (j). The optimization

problem of an individual can be represented as follows:

Vt(kt, j) = max
ct,kt+1

{
u(ct) + b+ θjtVt+1(kt+1, j)

}
(26)

subject to

kt (1 + r) + inct = kt+1 + ct, (27)

where

inct =

λjt(1− τ) ; if t ≤ R

ssb ; if t > R
(28)

Social Security There is a pension system that collects contributions from the young

and pays out benefits to the old. As in Section 5, we assume the economy is dynamically

efficient, n = r. Denoting the distribution of agents over states as M (·), we can write down

the pension system balance equation as follows:∫
t≤R

τλjt M (k, j, t) =

∫
t>R

ssb M (k, j, t)
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Note that due to the dynamic efficiency assumption, the balance equation is the same for

the pay-as-you-go and fully funded systems (as discussed in Section 5.2). Since all agents

survive with probability one till age R, the left-hand side of the pension balance equation

represents the average of individuals’ pension contributions ICj, where

ICj = τ
R∑
t=1

(1 + n)t−1λjt = τ
R∑
t=1

(1 + r)t−1λjt

The last equality follows from the dynamic efficiency assumption, and it allows us to think

of ICj as a notional pension balance or individual endowment.

As before, we consider pension benefits as the annuitized value of endowments. Our goal

is to examine how varying degree of mortality progressivity of the pension system affects

welfare. To do this, as in Section 4, we consider the environment where endowments ICj

cannot be changed. In other words, we restrict the ability of the pension system to directly

redistribute individual contributions/endowments.

Welfare We aggregate the lifetime utilities of different individuals into the ex-ante measure

of welfare as follows:

EW =

∫
Ψ (V1 (k1, j)) M (k1, j) (29)

We assume that both the utility function u(·) and the function used to aggregate individual

welfare Ψ(·) are of the CRRA type with risk aversion parameters Ru = σ and RΨ = γ:

u(c) =
c1−σ

1− σ

and

Ψ(V1) =
V 1−γ
1

1− γ
.

The welfare effects of each experiment are computed as follows. We treat the utmost

mortality-regressive case (pooled annuitization) as a benchmark, and we denote the corre-

sponding ex-ante welfare as EWBS. Consider a situation when every agent receives cash

transfer ∆ every period, and denote the corresponding ex-ante welfare as EW (∆). Note

that if ∆ = 0, we have the benchmark welfare: EW (0) = EWBS.

Denote the ex-ante welfare in the experimental economy as EWExp. We compute the

cash transfers needed to make average welfare in the baseline and experimental economies
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the same (∆∗) by solving the following equation:

EW (∆∗) = EWExp

Our welfare measure CEV is expressed as a percentage of average consumption:

CEV =
∆∗

c

6.2 Parameterization

In our model, we focus on male individuals. Within the same gender group, education

and race are important determinants of longevity inequality. To capture this, the ex-ante

fixed type in our model is a pair of fixed characteristics, education and race, j = (ed, ra).

There are three education types and two race types, thus the total number of types J is equal

to 6. Three education types correspond to high-school dropouts (ed = 1), people with only

high-school degree or high-school degree and some college education but no college degree

(ed = 2), and people with college or higher degree (ed = 3). Two race groups correspond to

non-white (ra = 1) and white (ra = 2).

We set the retirement age R + 1 to 65. For age t > R, the conditional probability to

survive from age t to t+ 1 (θjt ) is estimated using the Health and Retirement Study (HRS)

dataset. In our estimation, we use a sample of male individuals and estimate a logit model

which depends on a set of age, race, and education dummy variables. Our estimated survival

probabilities are plotted in the left panel of Figure 2.

To estimate labor productivity for each type, λjt , we use the Panel Study of Income

Dynamics (PSID). We use a sample of male workers, where we define a person as employed

if he works at least 520 hours per year, and earns at least the federal minimum wage.

We normalize labor income to 2002 base year using the Consumer Price Index (CPI). Our

estimated labor income profiles are plotted in the right panel of Figure 2.

We set population growth n and interest rate r to 1%. As in our theoretical section, we

maintain the assumption β(1+r) = 1, hence we set the discount rate β to the inverse of 1+r.

We set risk aversion over consumption, σ, to 2, which is a common value used in structural

life-cycle models. We set the initial distribution of each type based on the fraction of people

in each race/education group in the HRS at age 65. We consider several alternative values

for the aversion to inequality in lifetime utilities (γ), and non-pecuniary utility of being alive

(b).
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Figure 2: Left panel: survival probabilities by race and education. Right panel: labor income (normalized
by average earnings) by race and education. The abbreviations are as follows: LHS - less than high-school
degree (ed = 1), HSD - high-school degree (ed = 2), ColD - college degree and above (ed = 3). NW stands
for non-whites (ra = 1), and W stands for whites (ra = 2).

6.3 Results

In this section, we use our quantitative life-cycle model for the comparative welfare anal-

ysis of different pension arrangements. We start by describing how we set our quantitative

experiments. We then evaluate the welfare effects of restoring mortality-neutrality using

the utmost mortality-regressive case as a benchmark. Finally, we compare a wider range of

pension policies varying in the degree of mortality regressivity/progressivity.

6.3.1 Setup

To better understand the underlying mechanisms when changing the degree of mortality

progressivity in a pension system, we consider two versions of our model. The first model,

which we refer to as ”only mortality heterogeneity”, is when people have the same endow-

ments throughout their lifetime. To construct this model, we assume that all types have the

same labor productivity equal to the average in their age group: λjt = λt for all j. In this

case, all individuals have exactly the same pension balances or contributions to the pension

system: ICj = IC for all j. The second model, which we refer to as ”mortality and income

heterogeneity”, corresponds to the full model, i.e., each type has different labor income and

mortality.
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6.3.2 Moving to mortality-neutrality

The starting point of our analysis is the utmost mortality-regressive case or pooled annu-

itization, which is a common feature of many pension systems. We first consider the welfare

effects of restoring mortality-neutrality. Below we explain how we compute pension benefits

in the utmost mortality-regressive and mortality-neutral cases.

The utmost mortality-regressive case In the utmost mortality-regressive case, pension

benefits are the same for all people in the model ”only mortality heterogeneity”. This is

because in this model, labor income and thus pension balances do not differ across types,

and converting them into annuity based on the pooled price results in the same pension

benefits:

ssbj =
IC

q
for ∀ j

These pension benefits are plotted as a solid line in the left panel of Figure 3. It is worth

noting that in this environment, even though people have the same income and the same

pensions, their consumption still differs as they have different optimal savings because of the

difference in longevity.

In the ”mortality and income heterogeneity” model, pension benefits differ across types

because of the difference in pension balances:

ssbj =
ICj

q

These benefits are plotted as a solid line in the right panel of Figure 3.

Mortality-neutral case In the mortality-neutral case, pension benefits are based on in-

dividual mortality. For ”only mortality heterogeneity” model, pension benefits take the

following form:

ssbj =
IC

qj

The benefits are plotted as a dashed line in the left panel of Figure 3. In the ”mortality and

income heterogeneity” model, we have

ssbj =
ICj

qj

These pension benefits are plotted as a dashed line in the right panel of Figure 3.
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Figure 3: Pensions benefits (normalized by average income), the utmost mortality-regressive (pooled annu-
itization) versus the mortality-neutral cases. Left panel: only mortality heterogeneity. Right panel: mortality
and income heterogeneity. The abbreviations are as follows: LHS - less than high-school degree (ed = 1),
HSD - high-school degree (ed = 2), ColD - college degree and above (ed = 3). NW stands for non-whites
(ra = 1), and W stands for whites (ra = 2).

An important observation from Figure 3 is that when there is no heterogeneity in labor

income, mortality-neutral pension benefits are higher for short-lived groups. This is because

pension balances are the same for all groups, while annuity prices are lower for the short-

lived, allowing them to get higher pension benefits. This is, however, no longer the case

when labor income differs by type. In this case, there are two forces: on the one hand, the

short-lived get their pension balances converted to benefits at a lower price. On the other

hand, their balances are lower because of lower labor income. The latter effect dominates,

making pension benefits lower for the short-lived.

The welfare effects of moving to mortality-neutrality for the two versions of the model

are presented in Figure 4. Each graph in the figure shows CEV for different degrees of

aversion to inequality in lifetime utility γ, varying from 0 to 5, and for different levels of

non-pecuniary utility of being alive b, varying from 10 to 50.

Consistent with our results in the previous sections, welfare effects are sensitive to non-

pecuniary benefits of being alive b, and to the aversion to inequality in lifetime utilities γ. For

the model ”only mortality heterogeneity” (left panel) welfare effects of mortality-neutrality

become positive even before γ exceeds risk aversion over consumption σ, which is equal to

2. This happens because in our quantitative model, we allow for savings. This generates

additional consumption inequality across types, and hence increases the push for mortality

progressivity.

This effect becomes more evident when considering the model ”mortality and income

heterogeneity” (right panel). Here mortality-neutrality is always welfare-improving, even
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Figure 4: Welfare effects when moving from the utmost mortality-regressive (pooled annuitization) to
mortality-neutral pensions. Left panel: only mortality heterogeneity. Right panel: mortality and income
heterogeneity.

when there is no aversion to lifetime inequality, i.e., γ = 0. In this case, the endowment

inequality between types is large, and mortality-neutrality reduces this inequality. However,

it is important to point out that the reduction in inequality when moving to mortality-neutral

pensions is small (see the right panel of Figure 3). This is because inequality in pensions

due to inequality in labor income is much more important than that generated by difference

in mortality, suggesting it can be optimal to move beyond mortality-neutrality and towards

a more progressive system.

6.3.3 Moving to mortality progressivity

We next turn to evaluating welfare effects of different pension designs ranging from the

utmost mortality-regressive to mortality-progressive. Specifically, following the analysis in

Section 4, we consider pension systems where benefits are determined as follows:

ssbj = (1− α1)
ICj

qIC
+ α1

ICj
qj

+ α2

q − qj

qj

Here qIC is the endowment-weighted average annuity price.4 In this expression, α2 represents

the compensation coefficient that increases consumption of people with low life expectancy

(qi < q) at the cost of decreasing consumption of people with high life expectancy. By varying

α1 and α2, we can move from the utmost mortality-regressive to mortality-progressive case

4As in Section 4.3, we use the endowment-weighted average annuity price so that the total pension
payments are the same, and the pension balance equation is met in each case.
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as summarized in Table 1. Importantly, the pension system balance equation is met for all

considered combinations of α1 and α2.

α1 α2

Utmost regressive (pooled price) 0 0

Weakly regressive 0.5 0

Neutral 1 0

Progressive 1 0.75

Table 1: Parametrization for different degrees of mortality progressivity

The results of this exercise are presented in Figure 5. To construct this figure, we fix

the level of non-pecuniary utility of life b at 30. Each graph in the figure reports CEV

when moving from regressive to progressive cases described in Table 1 for different levels of

aversion to lifetime inequality γ. As in the previous analysis, all welfare results are reported

using the utmost mortality-regressive case as a benchmark.
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Figure 5: Welfare effects when changing mortality progressivity. Left panel: only mortality heterogeneity.
Right panel: mortality and income heterogeneity.

Several important observations from Figure 5 are as follows. For the model ”only mortal-

ity heterogeneity” (left panel), mortality progressivity is optimal when aversion to lifetime

inequality is high. For the model ”mortality and income heterogeneity”, mortality progres-

sivity is welfare improving for all the combinations of parameters considered, including the

case with no aversion to lifetime inequality (γ = 0). Moreover, the welfare gains of moving

to mortality progressivity in the full model can be quite substantial. For example, the CEV

is equal to 2.5% when the aversion to lifetime inequality γ is equal to 5. It is important to

point out, however, that these gains arise not because high-mortality types get compensated
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for their short life. Instead, the gains are due to the ability of mortality progressivity to re-

duce inequality coming from dispersion in pension contributions. This is because mortality

and labor income are highly correlated, and there is a constraint that pension contributions

cannot be directly redistributed.

7 Conclusion

We develop a framework for understanding the optimality of redistribution along the

mortality dimension in isolation from the issue of income redistribution. While income and

mortality are correlated, the correlation is not perfect, and the welfare effects of redistribution

along these two dimensions may be different. In particular, the standard utilitarian approach

favors redistribution from high-income to low-income groups, while at the same time, favoring

redistribution from the short-lived to the long-lived.

Our goal is to understand when the redistribution from the short-lived to the long-lived

is not optimal. Three important features of our analysis are as follows. First, we deviate

from the standard utilitarian welfare criterion only by introducing aversion to inequality

in lifetime utilities in addition to aversion to consumption inequality. Second, we define a

neutral case which involves no redistribution along the mortality dimension and use it as

a benchmark to assess mortality regressivity/progressivity. Third, we treat life as valuable,

which implies that people who live long have utility advantage over the short-lived even when

there is no difference in their consumption.

Using this framework, we derive several interesting results. First, when people differ in

life expectancy but not in income, mortality progressivity is optimal only when life is valu-

able and aversion to lifetime inequality is stronger than aversion to consumption inequality.

Put differently, adding concern about lifetime inequality is not enough to make mortality

progressivity optimal unless this concern dominates aversion to consumption inequality.

Second, when people differ in their income, and income and mortality are negatively cor-

related, mortality progressivity can also optimally arise when income-redistributive tools are

limited. This happens because in this case, mortality progressivity can partially substitute

for income progressivity.

We then apply our framework to the analysis of pension design. We show that optimal

pension benefits are mortality-regressive unless social planner has aversion to lifetime in-

equality. At the same time, when concern for lifetime inequality enters pension design, it

creates an additional effect of increasing the degree of optimal income progressivity. This

happens because it becomes optimal not only to compensate high-mortality people for their

short life, but also to compensate the poor for their low consumption during working life.
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In the final part of our analysis, we construct a quantitative life-cycle model to numer-

ically illustrate the welfare effects of increasing mortality progressivity of pension benefits,

while restricting income redistribution and preserving revenue-neutrality. We show that wel-

fare effects of mortality-related redistribution crucially depend on the degree of aversion to

lifetime inequality, and (even more so) on the income-mortality correlation.

Our results thus emphasize the distinction between two reasons for why mortality pro-

gressivity may be optimal: (i) to compensate the short-lived for their short life; (ii) as a

substitute for income progressivity. The first case arises when life is valuable and social wel-

fare incorporates strong aversion to lifetime inequality, and the second - when income and

mortality are correlated and there are limited instruments to redistribute income. While

similar in its final effect (welfare gains from mortality-progressive pensions), these two cases

differ fundamentally. In the first case, the results are driven by the concern for the short-

lived, and in the second - by the concern for the poor.

Our results thus create an important framework for better understanding welfare effects

of pension policies when people differ in non-pecuniary factors (life expectancy). Pension

systems in many countries, including in the US, are under strain from the changing de-

mographics, and various ways to maintain their sustainability are widely discussed. Many

considered policies are judged based on the standard utilitarian welfare criteria, and thus are

favoring the short-lived over the long-lived. We propose a way to refine the measurement of

welfare consequences of pension reforms, and separate the gains accruing to the poor from

that to the short-lived.
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Appendix

A Proof of Proposition 1.1

In this section, we provide the poof of Proposition 1.1. We first restate the proposition.

Proposition 1.1 Consider a feasible allocation {ci}. If this allocation is mortality-

regressive (mortality-progressive) then the following is true:

εcqi | ai > (<)− 1 ∀ i,

where εcqi | ai is the partial elasticity of consumption to mortality, i.e., the elasticity for a given

level of endowment ai:

εcqi | ai =
dci
dqi

∣∣∣∣
ai

· qi
ci
.

Proof We will do the proof for the mortality-regressive case. That for the mortality-

progressive case is analogous. Using the definition of the neutral allocation {cNi }, we can

rewrite the average tax as follows:

ATi = 1−
ciqi

ai

The partial derivative of the average tax with respect to qi for a given level of endowment

ai takes the form:

∂ATi

∂qi

∣∣∣∣
ai

= −
1

ai

∂(ciqi)

∂qi

∣∣∣∣
ai

= −
ci

ai
(εcqi | ai + 1),

where the last equality follows from the definition of the partial elasticity. Since in the

mortality-regressive case
∂ATi

∂qi

∣∣∣∣
ai

< 0, it follows that εcqi | ai > −1. This finished the proof of

the proposition.

B Proof of Proposition 4

In this section, we provide the poof of Proposition 4. We first restate the proposition.

Proposition 4 Consider the constrained social planner problem described in Eq (18),

and suppose Assumptions 1-4 hold. In addition, assume RΨ = 0 and Ru > 1. The optimal

choice of α1 and α2 can be summarized as follows:
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(1) If cov(q, a) = 0, then at the optimum α1 = 0,

(2) If cov(q, a) > 0, then

(i) At the optimum α1 > 0,

(ii) If cov(q,
a

q
) < 0, then at the optimum α2 = 0,

(iii) If cov(q,
a

q
) > 0, then at the optimum α2 > 0.

Proof The first-order condition for the choice of α1 can be written as follows:

(α1) :

∫
q

∫
a

uc q

(
a

q
− a

qa

)
H(a, q) da dq = 0 (30)

Consider this equation evaluated at α1 = 0. Based on the consumption allocation rule in

Eq(17), we have ci =
ai
qa

(since when α1 = 0, we have α2 = 0 as well).

Consider first the case when cov(q, a) = 0. In this case, ci varies with ai but not with

qi. Thus, cov(q, c) = 0 and hence cov(q, uc) = 0. Based on this, we can transform Eq(30) as

follows: ∫
q

∫
A

ucaH(a, q) da dq − 1

qa

∫
q

∫
a

uca q H(a, q) da dq =

=

∫
q

∫
a

ucaH(a, q) da dq − q

qa

∫
q

∫
a

ucaH(a, q) da dq = 0

where in the last equality we used the fact that q = qa when cov(q, a) = 0. The first-order

condition holds with equality when α1 = 0 implying that this represents the optimum. This

finishes the proof of part (1) of the proposition.

Consider next the case when cov(q, a) > 0. Using the fact that u(·) is the CRRA function

with risk aversion Ru (Assumption 4), we have uc = c−Ru , and hence we can rewrite the

left-hand side of the FOC as follows:

(qa)Ru

∫
q

∫
a

a1−Ru

(
1−

q

qa

)
H(a, q) da dq = (qa)Ru

∫
q

∫
a

ϕ(a)µ(q)H(a, q) da dq, (31)

where ϕ(a) ≡ a1−Ru and µ(q) ≡ 1 −
q

qa
. Both functions are monotone decreasing in

its respective arguments (for the first function it follows from Ru > 1), and have posi-

tive means (for the second function it follows from the positive correlation between q and

44



a, which implies q < qa). Since cov(q, a) > 0, we thus have cov(µ(q), ϕ(a)) > 0, and∫
q

∫
a

ϕ(a)µ(q)H(a, q) da dq > 0. Thus, the FOC in Eq (31) is positive when evaluated at

α1 = 0, meaning it is optimal to increase the value of this variable. This finishes the proof

of part 2(i) of Proposition 4.

To prove parts (ii) and (iii) of the proposition, we turn to the FOC for the choice of α2,

which can be written as follows:∫
q

∫
a

uc (q − q)H(a, q) da dq = 0 (32)

Consider this equation evaluated at α1 = 1 and α2 = 0. In this case, the consumption

allocation rule in Eq (17) becomes ci =
ai
qi
. The FOC in Eq (32) can be transformed as

follows: ∫
q

∫
a

uc (q − q)H(a, q) da dq = −cov(uc, q)

Since uc =

(
a

q

)−Ru

, the correlation between uci and qi depends on the sign of cov(q,
a

q
). Let

us consider two cases.

First, when cov(q,
a

q
) < 0, we have cov(uc, q) > 0. This means that the left-hand side of

the FOC in Eq (32) is negative, implying that it is not optimal to increase α2 above zero.5

This finishes the proof of part 2(ii) of Proposition 4.

Second, when cov(q,
a

q
) > 0, we have cov(uc, q) < 0, implying that the left-hand side of

the FOC in Eq(32) is greater than zero, thus it is optimal to set α2 > 0. This finishes the

proof of part 2(iii) of Proposition 4.

Comparing conditions cov(q, a) > 0 and cov(q,
a

q
) > 0 We argue that the condition

cov(q,
a

q
) > 0 is stronger than the condition cov(q, a) > 0, and we formally prove it in the

auxiliary proposition below.

Auxiliary proposition If cov(q,
a

q
) > 0 then cov(q, a) > 0, while the reverse is not true.

5 In fact, based on the FOC in Eq (32) it is optimal to make α2 negative. This happens because in this
case, setting α1 = 1 is not optimal.
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Proof We can use the definition of covariance to express cov(q,
a

q
) as follows:

cov(q,
a

q
) =

∫
q

∫
a

q · a
q
H(a, q) da dq − q

∫
q

∫
a

a

q
H(a, q) da dq =

= q

(
A

q
−
[
a

q

])
,

where [
a

q

]
≡
∫
q

∫
a

a

q
H(a, q) da dq

To approximate

[
a

q

]
, we can use Taylor expansion around the means of a and q, A and q,

respectively. This results in the following expression:[
a

q

]
≈ A

q
+

A

q
· V ar(q)

q2
− cov(q, a)

q2

If cov(q,
a

q
) > 0, we have

A

q
>

[
a

q

]
. This implies

cov(q, a)

q2
>

A

q
· V ar(q)

q2
> 0

Thus, cov(q, a) > 0.

On the other hand, when cov(q, a) > 0, it is still possible to have
A

q
<

[
a

q

]
, and thus

cov(q,
a

q
) < 0. This finishes the proof of the auxiliary proposition.

C Proof of Proposition 2.1

In this section, we provide the poof of Proposition 2.1. We are going to start by giving

two additional definitions and by formulating and proving an additional proposition.

We define two partial elasticities of pension benefits, with respect to mortality and en-

dowment (or lifetime pension contributions). These elasticities show how pension benefits

change with mortality (endowment), while keeping endowment (mortality) fixed:

εssbqi | ICi
=

dssbi
dqi

∣∣∣∣
ICi

· qi
ssbi
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εssbICi | qi =
dssbi
dICi

∣∣∣∣
qi

· ICi
ssbi

To understand whether pensions benefits are progressive/regressive along mortality and

endowment dimensions, we can use the modified version of Proposition 1 from Section 3,

which is stated below.

Proposition 1.2 Consider feasible pension benefits {ssbi}. If these benefits are mortality-

regressive/progressive then the following is true:

εssbqi | ICi
> (<)− 1 ∀ i

If these benefits are endowment-regressive/progressive then the following is true:

εssbICi | qi > (<) 1 ∀ i

Proof We start by doing the proof for the mortality-regressive case. That for the

mortality-progressivity case is analogous. In the mortality-regressive case, we have

∂ATi

∂qi

∣∣∣∣
ICi

= −
1

ICi

∂(ssbiqi)

∂qi

∣∣∣∣
ICi

= −
ssbi

ICi
(εssbqi | ICi

+ 1) < 0.

From here it follows that εssbqi | ICi
> −1, which finishes the proof of the proposition.

We next consider the case of endowment regressivity. That for the endowment progres-

sivity case is analogous. In the endowment-regressive case, we have

∂ATi

∂ICi

∣∣∣∣
qi

= −qi

∂

(
ssbi

ICi

)
∂ICi

∣∣∣∣
qi

= −
qi ssbi

IC2
i

(εssbICi | qi − 1) < 0.

From here it follows that εssbICi | qi > 1, which finishes the proof of the proposition.

We next will restate and then prove Proposition 2.1.

Proposition 2.1 Consider pension benefits {ssbi} that represent the solution to the

social planner problem described in Eqs (22)-(23). Under Assumptions 1-4, whether these

benefits are mortality- and endowment-regressive/progressive can be determined as follows:

1. If Ψ(·) is linear, {ssbi} are mortality-regressive.
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2. If Ψ(·) is strictly concave, then {ssbi} are mortality-regressive (-progressive) if

ussbissbi
vRi

+
Ru

RΨ

Vi
βR−1V R

i

> (<) 1 ∀ i (33)

3. {ssbi} are always endowment-progressive.

Proof :

Following the same steps as when proving Proposition 2, we can take a full differential

of Eq (24) around the optimal allocation while keeping either ICi or qi fixed. This allows us

to obtain the following expressions for partial elasticities:

εssbqi | ICi
= − RΨ

RΨ
ussbissbi

vRi
+Ru

Vi
βR−1V R

i

εssbICi | qi = −
RΨ

uWci c
W
i

vWi

V W
i

Vi

RΨ
ussbissbi

vRi

βR−1V R
i

Vi
+Ru

Consider first the partial elasticity of pension benefits with respect to q, εssbqi | ICi
. Based

on Proposition 1.2, {ssbi} are mortality-regressive(-progressive) if this expression is greater

(less) than negative one. From here, parts 1 and 2 follow directly.

Consider next the partial elasticity of pension benefits with respect to IC, εssbICi | qi . Based

on Proposition 1.2, {ssbi} are endowment-regressive(-progressive) if this expression is greater

(less) than one. Given that all agents have positive flow utility of being alive every period

(vWi > 0 and vRi > 0 for all i), εssbICi | qi is always negative and hence less than one, implying

endowment progressivity. This proves part 3 of the proposition.
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