
Identification and Estimation in a Class of Potential

Outcomes Models

Manu Navjeevan

UCLA

mnavjeevan@g.ucla.edu

Rodrigo Pinto

UCLA

rodrig@econ.ucla.edu

Andres Santos

UCLA

andres@econ.ucla.edu

October, 2023

Abstract

This paper develops a class of potential outcomes models characterized by three

main features: (i) Unobserved heterogeneity can be represented by a vector of po-

tential outcomes and a “type” describing the manner in which an instrument deter-

mines the choice of treatment; (ii) The availability of an instrumental variable that

is conditionally independent of unobserved heterogeneity; and (iii) The imposition

of convex restrictions on the distribution of unobserved heterogeneity. The pro-

posed class of models encompasses multiple classical and novel research designs, yet

possesses a common structure that permits a unifying analysis of identification and

estimation. In particular, we establish that these models share a common necessary

and sufficient condition for identifying certain causal parameters. Our identification

results are constructive in that they yield estimating moment conditions for the pa-

rameters of interest. Focusing on a leading special case of our framework, we further

show how these estimating moment conditions may be modified to be doubly ro-

bust. The corresponding double robust estimators are shown to be asymptotically

normally distributed, bootstrap based inference is shown to be asymptotically valid,

and the semi-parametric efficiency bound is derived for those parameters that are

root-n estimable. We illustrate the usefulness of our results for developing, identi-

fying, and estimating causal models through an empirical evaluation of the role of

mental health as a mediating variable in the Moving To Opportunity experiment.

Keywords: Potential outcomes, instrumental variables, mediation, identification,

double robustness, Lasso, semiparametric efficiency.



1 Introduction

Potential outcomes models have become the leading framework for identifying and esti-

mating causal effects in applications with heterogeneous treatment responses. Originally

developed for randomized experiments (Neyman, 1990) and observational studies (Ru-

bin, 1974), these models have also proven transformative in shaping our understanding

of instrumental variable approaches for addressing selection. In this regard, fundamen-

tal contributions were made by Imbens and Angrist (1994) and Heckman and Vytlacil

(2005) who highlighted the importance to identification of restricting the manner in

which an instrument can impact treatment decisions. A subsequent literature has built

on their foundational work by developing identifying restrictions for a wide range of

empirically relevant settings, including applications involving ordered, unordered, and

multiple instruments, as well as the presence of mediating variables.

In this paper, we propose and develop a class of potential outcomes models that uni-

fies and expands upon these identification strategies. The main assumptions imposed by

our framework are: (i) Unobserved heterogeneity can be represented by a vector of poten-

tial outcomes and a “type” describing the manner in which the instruments determines

the treatment decision; (ii) The instrumental variables are conditionally independent of

unobserved heterogeneity; and (iii) The distribution of unobserved heterogeneity belongs

to a convex set. The third requirement can include, for instance, support restrictions on

the unobserved heterogeneity. These encompass, among others, the monotonicity con-

dition of Angrist and Imbens (1995), the partial monotonicity requirement of Mogstad

et al. (2021), and the revealed preference based restrictions of Kline and Walters (2016)

and Pinto (2021). Additional examples of convex identifying restrictions that go beyond

support conditions include the sequential exogeneity requirement of Imai et al. (2010)

and the comparative compliers requirement of Mountjoy (2022).

Within the proposed class of models, we study the identification and estimation

of parameters that may be expressed as the expectation (or limit of expectations) of

identified functions of the unobserved heterogeneity and covariates. These parameters

include, for example, local average treatment effects, marginal treatment effects, and

conditional expectations of covariates given types as in Abadie (2003). Our main iden-

tification result is the characterization of necessary and sufficient conditions for such

parameters to be identified. In particular, we establish that identification is equivalent

to the function whose expectation we aim to identify belonging to the closure of the

range of an identified linear map Υ. Intuitively, identification is tantamount to the ex-

istence of a sequence of functions {κj} of observable variables such that Υ(κj) suitably

approximates the function of unobserved heterogeneity whose expectation we wish to

identify. Critically, the map Υ is the same across all the models in our framework, but

the sense in which Υ(κj) must converge depends on the restrictions being imposed – i.e.
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stronger restrictions yield weaker topologies and hence the identification of additional

parameters. Our characterization of identification is additionally constructive in that it

implies that if the parameter of interest is identified, then it must equal the limit of the

expectations of the corresponding approximating functions {κj} of observable variables.

The constructive nature of our identification results further suggests an estimation

strategy: Simply estimate the corresponding approximating sequence {κj} and compute

its sample average. Establishing asymptotic normality when the nuisance parameters

{κj} are estimated via machine learning methods, however, often requires characterizing

orthogonal scores that themselves depend on the specific restrictions being imposed. In

our estimation analysis, we therefore focus on a leading special case of our framework

in which the identifying restrictions being imposed do not depend on the distribution of

observable variables.1 For this class of applications, we derive a double robust moment

condition and follow ideas in Smucler et al. (2019), Chernozhukov et al. (2022a), and

Chernozhukov et al. (2022c) by employing ℓ1-regularization to estimate nuisance param-

eters. We show that the resulting estimators are asymptotically normally distributed and

that bootstrap based inference is asymptotically valid even if the estimator converges at

a slower than root-n rate. We additionally derive the semiparametric efficiency bound

for these parameters and characterize the conditions under which it is finite. As we illus-

trate in the context of Mogstad et al. (2021), the latter result has important implications

for root-n estimability in applications with continuous instruments.

Our results are not only useful in the context of existing models, but can also be

instrumental in developing, identifying, and estimating novel causal models. We high-

light the utility of our analysis in this regard with an empirical analysis of the Moving

to Opportunity (MTO) experiment. Specifically, we evaluate a conjecture by Ludwig

et al. (2008) who suggested that improved mental health may play an important role in

the causal mechanism through which moving from high to low-poverty neighborhoods

impacts economic outcomes. Guided by our necessary and sufficient conditions for iden-

tification, we devise a model that enables us to identify and estimate the mediating

effects of improved mental health for different subpopulations. Overall, we find evi-

dence in support of the causal channel in which mental health mediates the effect of

neighborhood relocation on labor market outcomes.

This paper contributes to a vast literature on potential outcomes models. Our analy-

sis appears to be the first to establish the unifying role that a common linear map Υ plays

in determining identification across a variety of models and assumptions. Through this

common structure, our analysis delivers necessary and sufficient conditions for identifi-

cation – a result that complements the literature, which has largely focused on sufficient

conditions for identification.2 In some applications, our results yield conditions under

1As we illustrate in our empirical analysis, estimation under other restrictions is also possible.
2Corollary C-1 in Heckman and Pinto (2018), for example, provides necessary and sufficient condi-
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which existing sufficient conditions for identification are in fact necessary – e.g., those in

Abadie (2003) and Heckman and Pinto (2018). In other applications, our results yield

novel characterizations of what parameters within our framework are identified – e.g.,

as in Mogstad et al. (2021). Our identification analysis is further related to work pro-

viding analytical (Manski, 1990, 2003; Heckman and Vytlacil, 2001) or computational

(Balke and Pearl, 1997; Mogstad et al., 2018) bounds for partially identified parameters.

By establishing that point identification is determined by a single linear equation, our

analysis effectively yields a simple way to derive conditions under which these bounds

collapse to a point in the models that fall within our framework.

Our estimation results rely on a double robust moment equation that coincides with

that of Tan (2006) and Singh and Sun (2022) for the model of Imbens and Angrist (1994).

More generally, however, our results yield the first double robust moment equation

for a variety of models and parameters – e.g., under a monotonicity assumption we

obtain doubly robust estimators for Heckman and Vytlacil (2005) that do not rely

on the propensity score. The semiparametric efficiency bound derived in this paper

similarly significantly extends the existing efficiency literature to a variety of models

and parameters. Our analysis corrects some approaches in the literature by relying

on results by Le Cam and Yang (1988) that enable us to construct the tangent set

generated by parametric submodels of the unobserved heterogeneity; see Remark 5.2.

This construction further enables us to connect to results in van der Vaart (1991b) and

characterize when the efficiency bound is finite. The latter result is, to our knowledge,

novel in all the models we consider.

The remainder of the paper is organized as follows. In Section 2 we formally intro-

duce the class of models we study and discuss multiple illustrative examples. Section

3 highlights the empirical implications of our results through an analysis of the MTO

experiment. Finally, Sections 4 and 5 contain all theoretical results while Section 6

briefly concludes. All mathematical derivations are included in the Appendix.

2 The Model

We consider applications in which we observe a scalar outcome Y ∈ Y ⊆ R, a dis-

crete treatment T ∈ T ≡ {t1, . . . , td}, an instrument Z ∈ Z, and covariates X ∈ X.

We model unobserved heterogeneity through a vector of potential outcomes Y ⋆ ≡
(Y ⋆(t1), . . . , Y

⋆(td)) and a type T ⋆ : Z → {t1, . . . , td} that describes the manner in

which the instrument determines a unit’s treatment decision. The observed treatment

and outcome are given by the treatment choice induced by the instrument and the po-

tential outcome corresponding to the chosen treatment – i.e. T = T ⋆(Z) and Y = Y ⋆(T ).

tions for linear restrictions implied by the model to deliver identification. Our results in contrast provide
necessary and sufficient conditions for identification that reflect all the restrictions of the model.
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In order to introduce the assumptions that characterize our model, we first define

Lp(Q) ≡ {f : ∥f∥Q,p <∞} ∥f∥pQ,p ≡
∫

|f |pdQ;

i.e. Lp(Q) denotes the set of functions that have a finite pth moment under Q. Also recall

that a distribution Q is absolutely continuous with respect to (w.r.t.) a distribution

Q′, denoted Q ≪ Q′, if Q assigns zero probability to any event to which Q′ assigns

zero probability. Importantly, whenever Q is absolutely continuous w.r.t. Q′ it admits a

density w.r.t. Q′ that we denote by dQ/dQ′. Finally, we let Q0 denote the true unknown

distribution of (Y ⋆, T ⋆, Z,X) and P the identified distribution of (Y, T, Z,X).

Given the introduced notation, we impose the following two assumptions:

Assumption 2.1. (i) (Y ⋆, T ⋆, Z,X) ∼ Q0 with Y ⋆ ≡ (Y ⋆(t1), . . . , Y
⋆(td)) ∈ Y⋆ ⊆ Rd,

Z ∈ Z, X ∈ X, and T ⋆ ∈ T⋆ with T∗ a set of functions from Z to T ≡ {t1, . . . , td}; (ii)
We observe T = T ⋆(Z), Y = Y ⋆(T ), Z, and X with (Y, T, Z,X) ∼ P .

Assumption 2.2. (i) (Y ⋆, T ⋆) ⊥⊥ Z|X under Q0; (ii) Q0 ≪ µ for some identified

separable probability measure µ; (iii) dQ0/dµ belongs to a set Q ⊆ L1(µ) for Q a closed

convex subset of Banach Space (Q, ∥ · ∥Q) with ∥ · ∥Q (weakly) stronger than ∥ · ∥µ,1.

Assumption 2.1 formalizes the data generating process, but has by itself no iden-

tifying power. The main conditions powering our identification results are imposed in

Assumptions 2.2. In particular, Assumption 2.2(i) requires that Z be exogenous in

the sense that it be statistically independent of the unobserved heterogeneity (Y ⋆, T ⋆)

conditional on X. Assumption 2.2(ii) in turn encodes restrictions on the support of

the unobserved heterogeneity. For instance, since Q0 must assign zero probability to

any event to which µ assigns zero probability, we may employ µ to rule out certain

realizations of T ∗ – e.g., to rule out “defiers” in Imbens and Angrist (1994). Finally,

Assumption 2.2(iii) enables us to accommodate additional convex restrictions on the

density of Q0. These restriction may include both regularity conditions that ensure the

parameter of interest is well defined (see Example 2.1 below) as well as more substantive

identifying assumptions (see Section 3 below). We note that while not stated explicitly,

we may set Q and Q to be identified instead of known.

The unknown true distribution Q0 of (Y ⋆, T ⋆, Z,X) induces, through Assumption

2.1, the identified distribution P of the observable variables (Y, T, Z,X). Absent re-

strictive assumptions, Q0 is not identified in our model because there are alternative

distributions Q for (Y ⋆, T ⋆, Z,X) that induce the distribution P . In what follows, we

refer to any such distribution Q as being observationally equivalent to Q0. While it may

not be possible to identify Q0, it is still possible to restrict it to the identified set

Θ0 ≡ {Q : Q is obs. equiv. to Q0, (Y
⋆, T ⋆) ⊥⊥ Z|X under Q, Q≪ µ,

dQ

dµ
∈ Q};
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i.e., the identified set Θ0 is the set of distributions for (Y ⋆, T ⋆, Z,X) that induce P and

additionally satisfy the requirements imposed on Q0 in Assumption 2.2.

Our primary goal is to study the identification and estimation of features of the true

distribution Q0. Concretely, we study the identification and estimation of functionals of

Q0 that, for some identified sequence of functions {ℓj}, have the structure

λQ ≡ lim
j→∞

EQ[ℓj(Y
⋆, T ⋆, X)]. (1)

Here, the Q subscript is meant to emphasize that the expectation is taken with respect

to a distribution Q that may not equal Q0. For instance, a leading example is to let ℓj

equal a known function f for all j, in which case identification of λQ0 is tantamount to

the identification of the expectation of f(Y ⋆, T ⋆, X) under the true distribution Q0.

2.1 Examples

In order to fix ideas, we next introduce examples that highlight the flexibility of our

setup. We will return to some of them throughout the paper to illustrate our results.

Our first examples are based on the most studied models in the literature.

Example 2.1. Following Rosenbaum and Rubin (1983), suppose we observe an outcome

Y ∈ R, a binary treatment T ∈ {0, 1}, covariates X ∈ X, and that potential outcomes

Y ⋆ ≡ (Y ⋆(0), Y ⋆(1)) are independent of T conditional on X. To map this setting into

our framework we let Z = T , select µ to satisfy the restriction

µ(T ⋆(Z) = Z) = 1,

and note that Assumption 2.2(i) is then equivalent to the unconfoundedness assumption

(Y ⋆(0), Y ⋆(1)) ⊥⊥ T |X. The classical parameter of interest in the literature is the average

treatment effect (ATE), which corresponds to setting ℓ(Y ⋆, T ∗, X) = Y ⋆(1) − Y ⋆(0) in

(1). Ensuring the ATE is well defined requires us to impose that Y ⋆(0) and Y ⋆(1) have

a first moment, which can be accomplished through Assumption 2.2(iii).

Example 2.2. Consider a special case of Imbens and Angrist (1994) in which we ob-

serve an outcome Y , a binary treatment T ∈ {0, 1}, and a binary instrument Z ∈ {0, 1}.
In this context, T ⋆ is a random function mapping Z ≡ {0, 1} to T ≡ {0, 1}. Follow-

ing Imbens and Angrist (1994) we may employ Assumption 2.2(ii) to impose that the

instrument does not induce individuals out of treatment by setting µ to satisfy

µ(T ⋆(1) ≥ T ⋆(0)) = 1;

i.e. µ assigns zero probability to “defiers.” Functionals with the structure in (1) include

the local average treatment effect (LATE) or, more generally, functionals of the marginal
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distributions of Y ⋆ conditional on “compliers” (Imbens and Rubin, 1997; Abadie, 2003).

We also note that Assumptions 2.1 and 2.2 can accommodate extensions to ordered

discrete treatments (Angrist and Imbens, 1995) or alternatives restrictions on T ⋆ such

as the “extensive margin compliers only” requirement in Rose and Shem-Tov (2021).

Example 2.3. Heckman and Vytlacil (1999) study a generalized Roy model in which

a unit selects whether to adopt a binary treatment T ∈ {0, 1} according to

T = 1{f(X,Z) ≥ ξ} (2)

for f an unknown continuous function, ξ unobservable, and (Y ⋆(0), Y ⋆(1), ξ) ⊥⊥ Z|X.

Assuming that Z is a scalar and f(X, ·) is monotonically increasing, we may map this

model into our framework by letting T ⋆ ≡ 1{f(X, ·) ≥ ξ} and setting µ to satisfy3

µ(lim
z↓z′

T ∗(z) = T ∗(z′) and T ⋆(z) ≥ T ⋆(z′) for all z ≥ z′) = 1.

Common parameters of interest in this literature, such as the policy relevant treatment

effect (PRTE) of Heckman and Vytlacil (2005), can be expressed as

E[h(Y ⋆, ξ,X)] (3)

where h is an identified function. Because T ⋆ is not necessarily an invertible function of

ξ, the parameter in (3) may not map into the functionals in (1) that we study. However,

under regularity conditions, it is possible to show that a necessary condition for (3) to

be identified is that h must depend on ξ only through T ⋆.4 Hence, our characterization

of identification of (1) also characterizes identification of (3) and our estimation results

apply to (3) whenever it is identified. We also note that our framework can accommodate

other structural equations models, such as those in Lee and Salanié (2018).

Our next three examples illustrate the ability of our framework to accommodate

multivalued treatments, vector valued instruments, and mediating variables.

Example 2.4. Kline and Walters (2016) employ the Head Start Impact Study to eval-

uate the cost-effectiveness of the Head Start Program. In their analysis, Z ∈ {0, 1}
denotes whether an individual was offered to attend a Head Start school and the treat-

ment T can take three values: Attend a Head Start School (h), attend other schools

(c), or receive home care (n). Here, T ⋆ maps {0, 1} to {h, c, n} and we can therefore

characterize T ⋆ as a vector T ⋆ = (T ⋆(0), T ⋆(1)) taking values in {h, c, n}×{h, c, n}. The
main identification assumption imposed by Kline and Walters (2016) is that receiving

3The upper semicontinuity of T ∗ is a consequence of the continuity of f(X, ·). The general case
in which Z is not scalar and f(X, ·) is not monotonic corresponds to imposing that T ⋆(z) ≥ T ⋆(z′)
whenever p(z,X) ≥ p(z′, X) µ-almost surely for p(Z,X) ≡ P (T = 1|Z,X).

4Formally, we must have h(Y ⋆, ξ,X) = E[h(Y ⋆, ξ,X)|Y ⋆, T ⋆, X] with probability one.
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an offer to attend a Head Start school can only (weakly) induce individuals to attend a

Head Start school. Formally, they require that T ⋆ = (T ⋆(0), T ⋆(1)) belong to the set

R⋆ ≡

{(
n

h

)
,

(
c

h

)
,

(
n

n

)
,

(
c

c

)
,

(
h

h

)}

with probability one, which can be mapped into our framework by setting µ to satisfy

µ(T ⋆ ∈ R⋆) = 1. More generally, in applications with a discrete valued instrument Z we

may always impose support restrictions on T ⋆ by demanding that µ(T ⋆ ∈ R⋆) = 1 for

some finite set of vectors R⋆ ≡ {t⋆1, . . . , t⋆r}. Through this observation, our framework

can accommodate the unordered monotonicity condition of Heckman and Pinto (2018),

the analysis of the Moving to Opportunity experiment by Pinto (2021), and the double

threshold crossing model of survey non-response by Dutz et al. (2021).

Example 2.5. Mogstad et al. (2021) propose a partial monotonicity condition that can

deliver a causal interpretation for the two stage least squares (TSLS) estimand in ap-

plications with vector valued instruments. For instance, in an empirical re-examination

of Carneiro et al. (2011), the authors consider a setting in which T ∈ {0, 1} indi-

cates whether an individual attended college, Y represents log average hourly wage, and

Z = (C,W ) where C ∈ {0, 1} indicates whether a college is present in the county of

residence at age 14 and W denotes average log earnings in the county of residence at

age 17. Mogstad et al. (2021) further suppose that increasing C induces individuals into

treatment, while increasing W induces individuals out of treatment. Formally, their

requirement may be mapped into our framework by selecting µ to satisfy

µ(T ∗(1, w) ≥ T ∗(0, w) and T ∗(c, w) ≤ T ∗(c, w′) for all c ∈ {0, 1}, w ≥ w′) = 1. (4)

Under an appropriate choice of sequence {ℓj}, parameters such as (1) can then include,

for example, analogues to the marginal treatment effect (MTE) of Heckman and Vytlacil

(2005). We also note that restrictions analogous to (4) where employed in the empirical

study of the returns to two-year colleges by Mountjoy (2022).

Example 2.6. Mediation analysis aims to identify how a treatment can affect an out-

come through intermediate variables called mediators. Angrist et al. (2022), for instance,

argue that engagement in the first year of college is an important mediator through which

student grants impact graduation rates. Letting D ∈ {0, 1} indicate whether a student

is awarded a grant, M ∈ {e, ne} denote whether she was engaged (e) or not (ne), and

Y ∈ {0, 1} indicate whether she graduated within six years, we may map their study

into our framework by letting T = (D,M) and Z = D. Potential outcomes Y ∗ are then

indexed by t = (d,m) ∈ {0, 1} × {e, ne}, while T ∗ is a function mapping Z ≡ {0, 1}
to T ≡ {0, 1} × {e, ne}. Assumptions 2.2(i)(ii) can then be employed to impose identi-

fying restrictions such as the sequential ignorability requirement of Imai et al. (2010),

while parameters with the structure in (1) include the direct and indirect effects of Pearl
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(2001) and Robins (2003). Finally, we note our framework can also accommodate IV

mediation models, such as those of Imai et al. (2013) and Frölich and Huber (2017).

3 Moving to Opportunity

As a preview of our theoretical results, we first illustrate their ability to develop, iden-

tify, and estimate a causal model in the context of an empirical analysis of the MTO

experiment. MTO was a housing experiment in which households living in high-poverty

neighborhoods were offered vouchers that incentivized them to relocate to low-poverty

neighborhoods. The experiment targeted disadvantaged families residing in impover-

ished housing projects from June 1994 to July 1998 (Orr et al., 2003). Approximately

75% of these households relied on welfare support, 92% were female-headed, and only

one-third of adult family members had attained a high school diploma.

The MTO literature has found significant impacts on adult mental health, psycho-

logical well-being, and risky behavior (Katz et al., 2001; Kling et al., 2005, 2007) as well

as on economic outcomes for compliers moving from high to low-poverty neighborhoods

(Clampet-Lundquist and Massey, 2008; Pinto, 2021).5 We revisit MTO to investigate

a conjecture by Ludwig et al. (2008), who hypothesize that relocation to low-poverty

neighborhoods can improve mental health and empower previously marginalized women

to obtain steady employment. Specifically, we employ our theoretical results to obtain

the first estimates of the role improved mental health plays as a mediator in the causal

channel through which neighborhood relocation affects economic outcomes.

To map this application into our framework, we let Z ∈ {0, 1} indicate whether

a voucher is offered, Y denote an economic outcome of interest, D ∈ {0, 1} indicate

whether the household relocated to a low-poverty neighborhood, andM ∈ {0, 1} indicate
whether the head of household reported having positive mental health.6 We further set

T = (D,M) and let potential outcomes Y ∗(t) depend on t = (d,m) to reflect that

mental health and relocating neighborhoods can both affect economic outcomes. For

our covariates X, we follow the literature in employing experimental site indicators

and variables pertaining to household and neighborhood characteristics. We report

additional implementation details for this empirical study in Appendix A.4.

3.1 Learning About Types

We begin by studying functionals of the distribution of types T ∗, which here describe

the heterogeneous manner in which Z affects mental health and the relocation decision.

5The evidence on economic impacts from moving from high to medium-poverty neighborhoods is
less conclusive, with treatment on the treated estimates often being insignificant (Ludwig et al., 2013).

6Specifically, M = 1 if the head out household reported feeling calm during the past thirty days.
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In particular, for identified functions ℓ, we first estimate expectations with the structure

EQ0 [ℓ(T
∗, X)]. (5)

A leading special case of such expectations is the probability that T ∗ equals a point t∗

in its support, which corresponds to setting ℓ(T ∗, X) = 1{T ∗ = t∗}.

By selecting µ in Assumption 2.2(ii) to restrict the support of T ∗, our model enables

us to restrict how a voucher offer affects relocation decisions and mental health. Under

such support restrictions, our identification results imply that (5) is identified if and

only if there exists a function κ of (T,Z,X) satisfying the equation∑
t∈T

∑
z∈Z

1{t∗(z) = t}κ(t, z,X)P (Z = z|X) = ℓ(t∗, X) (6)

for every t∗ in the support of T ∗ and all X; see Corollary 4.3. Moreover, any κ satisfying

equation (6) can be employed to identify the expectation of ℓ(T ∗, X) through the equality

EQ0 [ℓ(T
∗, X)] = EP [κ(T,Z,X)]. (7)

Guided by this result, we impose three requirements that deliver identification of the

distribution of (T ∗, X): (i) A voucher offer (weakly) incentivizes households to relocate;

(ii) Moving to a low-poverty neighborhood (weakly) improves mental health; and (iii) A

voucher offer affects mental health only through the relocation decision. Formally, we

impose these restrictions by letting T ∗(z) ≡ (D∗(z),M∗(z)) with D∗ and M∗ describing

how relocation and mental health respond to a voucher offer, and setting

µ(D∗(1) ≥ D∗(0) and M∗ = F ∗ ◦D∗ with F ∗(1) ≥ F ∗(0)) = 1. (8)

The imposed restrictions limit the support of T ∗ to seven possible types. These types,

displayed in the first panel of Table 1, are characterized by the possible realizations of

D∗ andM∗ – i.e. whether they are never takers, compliers, or always takers with regards

to relocation and mental health status. For instances, types CN, CA, and CC always

relocate when offered a voucher. Relocation, however, does not change the mental health

status of types CN and CA, but improves the mental health status of type CC.

It is straightforward to verify that, for any function ℓ, equation (6) admits a solution

and hence that the expectation of ℓ(T ∗, X) is identified. In particular, it follows that

the probability of each type is identified and that we may apply our asymptotically

normal estimator based on (7) to estimate it; see Theorem 5.1. The first panel of

Table 1 reports our estimates of the type probabilities. While all types in our model

occur with a strictly positive probability, the vast majority of households either do not
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Table 1: Type Probabilities and Conditional Expectation of Baseline Variables

Type Definitions and Probabilities

NN NA CN CC CA AN AA

(D∗(0),M∗(0)) (0,0) (0,1) (0,0) (0,0) (0,1) (1,0) (1,1)
(D∗(1),M∗(1)) (0,0) (0,1) (1,0) (1,1) (1,1) (1,0) (1,1)

Probability Point Estimate 0.258 0.253 0.194 0.065 0.203 0.014 0.013
s.e. (0.014) (0.014) (0.013) (0.023) (0.022) (0.004) (0.003)

Expected Value of Covariate Conditional on Types

NN NA CN CC CA AN AA

Household member 0.183 0.145 0.156 0.388 0.076 0.091 0.077
has a disability (0.020) (0.019) (0.022) (0.156) (0.039) (0.066) (0.054)

No teens in the 0.535 0.566 0.656 0.736 0.653 0.602 0.902
household (0.028) (0.029) (0.030) (0.176) (0.050) (0.121) (0.071)

Applied for a Section 0.394 0.408 0.491 0.277 0.491 0.162 0.399
Eight Voucher (0.027) (0.029) (0.033) (0.182) (0.052) (0.088) (0.125)

Moved 3+ times 0.083 0.080 0.120 0.130 0.079 0.002 0.049
in past 5 years (0.014) (0.016) (0.021) (0.097) (0.027) (0.013) (0.044)

No friends in the 0.355 0.400 0.410 0.699 0.360 0.341 0.659
neighborhood (0.026) (0.029) (0.033) (0.204) (0.051) (0.115) (0.118)

Neighborhood is 0.462 0.429 0.534 0.592 0.514 0.471 0.496
unsafe at night (0.027) (0.029) (0.033) (0.181) (0.052) (0.119) (0.132)

Gangs/Drugs are primary 0.768 0.741 0.841 0.500 0.848 0.806 0.818
reason to move (0.022) (0.024) (0.023) (0.178) (0.042) (0.091) (0.105)

First panel reports the seven support points of T ∗ and their respective estimated probabilities. Second panel
reports estimates for the expectation of baseline variables conditioned on types. All estimates account for the
person-level weight for the adult survey of the interim analyses. Standard errors are displayed in parentheses.

relocate with a voucher offer (types NN and NA) or only relocate when given a voucher

(types CN, CC, CA). In contrast, only 2.6% of households would relocate to low-poverty

neighborhoods without a voucher offer (types AN and AA). We also note that only 4.7%

of households experience an improvement in mental health upon relocating (type CC).

Since the type probabilities are identified, for any type t∗ we may set ℓ(T ∗, X) =

X1{T ∗ = t∗}/Q0(T
∗ = t∗), in which case (5) equals the expected value of baseline vari-

ables conditional on type. The second panel of Table 1 presents estimates for such iden-

tified type characteristics. Interestingly, the observed characteristics of double compliers

(type CC) substantially differ from those of other types. The CC households are more

likely to include a disabled family member yet are less likely to have teenagers. They
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seldom apply for Section 8, exhibit higher neighborhood mobility than other types, and

are less likely to report having friends in the neighborhood. Although they are slightly

more likely to feel unsafe in the neighborhood, they do not cite gang or drug-related

issues as the primary reason for seeking to move to relocate.

3.2 Learning About Outcomes

We next turn to estimating treatment effects in our model. A natural starting point is

to examine the LATE of Imbens and Angrist (1994), which in our context equals:

LATE ≡ EQ0 [Y
∗(1,M∗(1))− Y ∗(0,M∗(0))|T ∗ ∈ {CN,CC,CA}].

The LATE informs us about the treatment effect of relocating to a low-poverty neigh-

borhood for the subgroup of individuals who decide to relocate in response to being

offered a voucher. However, the LATE is a weighted average of causal effects across

types with different mental health statuses and is, as a result, not suitable for assessing

the mediating role of mental health. Specifically, the LATE is a weighted average of:

CDE0 ≡ EQ0 [Y
∗(1, 0)− Y ∗(0, 0)|T ∗ = CN ]

CDE1 ≡ EQ0 [Y
∗(1, 1)− Y ∗(0, 1)|T ∗ = CA]

CTE ≡ EQ0 [Y
∗(1, 1)− Y ∗(0, 0)|T ∗ = CC]; (9)

i.e., the LATE aggregates the “controlled direct effects” of relocating while keeping

mental health status constant (CDE0 and CDE1) and the “controlled total effect” of

simultaneously relocating and improving mental health (CTE).

Because the marginal distribution of T ∗ is identified, the identification of CDE0,

CDE1, and CTE reduces to the identification of expectations with the structure

EQ0 [ρ(Y
∗(t))ℓ(T ∗, X)] (10)

for identified ρ and ℓ. Applying our identification results to this context immediately

implies that restriction (8) fails to identify CDE0, CDE1, and CTE; see Corollary 4.4. We

therefore introduce an “exogeneity of irrelevant mediator choices” (EIMC) assumption:

Potential outcomes corresponding to high (resp. low) poverty neighborhood and poor

(resp. good) mental health are conditionally independent of what mental health would

have been in a low (resp. high) poverty neighborhood. Formally, EIMC requires that

Y ∗(0, 0) ⊥M∗(1)|D∗(1) > D∗(0),M∗(0) = 0, X

Y ∗(1, 1) ⊥M∗(0)|D∗(1) > D∗(0),M∗(1) = 1, X

which we note can be imposed in our model through the set Q in Assumption 2.2(iii).
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Table 2: Treatment Effects Estimates

Implied

Outcome CDE0 CDE1 CTE LATE LATE

Household is Economically 0.024 0.048 0.059 0.035 0.039
Self-Sufficient (0.050) (0.063) (0.078) (0.039)

Sampled Adult 0.127∗ -0.003 0.132 0.066 0.070
is Employed (0.066) (0.079) (0.122) (0.051)

Sampled Adult not -0.042 -0.074 -0.412∗∗ -0.113∗∗ -0.106
in Labor Force (0.071) (0.072) (0.144) (0.049)

Household Total 0.498 2.928 2.479 1.811 1.840
Income (2.262) (2.191) (3.014) (1.523)

Estimates for the treatment effects CDE0, CDE1, CTE (as in (9)), and LATE for different economic outcomes.
The last column evaluates LATE as a weighted average of CDE0, CDE1, and CTE. All estimates account for the
person-level weight for the adult survey of the interim analyses. Standard errors are displayed in parentheses.

Our identification results imply that EIMC and restriction (8) secure the identifica-

tion of CDE0, CDE1, and CTE; see Theorem 4.3. More generally, our results yield that

expectations with the structure in (10) are identified if and only if there is a κ solving

EQ0 [
∑
z∈Z

1{T ∗(z) = t}κ(z,X)P (Z = z|X)|V ∗(t), X] = EQ0 [ℓ(T
∗, X)|V ∗(t), X], (11)

where V ∗(t) = T ∗ if t ∈ {(0, 1), (1, 0)}, V ∗((0, 0)) = T ∗1{T ∗ /∈ {CN,CC}}, and

V ∗((1, 1)) = T ∗1{T ∗ /∈ {CA,CC}}.7 Moreover, any function κ satisfying equation

(11) can be employed to identify the expectation of ℓ(T ∗, X) through the equality

EQ0 [ρ(Y
∗(t))ℓ(T ∗, X)] = EP [ρ(Y )1{T = t}κ(Z,X)]. (12)

We highlight that the identifying equations in (6) and (11) are both linear, but (11)

requires us to “equal” ℓ(T ∗, X) in a weaker sense than (6). This contrast reflects a deeper

observation, established in Theorem 4.1, that identification is driven by a common linear

map Υ and a topology that reflects the strength of the identifying assumptions.

Table 2 reports treatment effects estimates based on an orthogonal score of (12);

see Appendix A.4 for details. We examine four different outcomes: (i) Household is

self-sufficient; 8 (ii) Adult participant is employed; (iii) Adult participant is not in the

labor force; and (iv) Household Total Income. LATE estimates suggest that moving

from high to low-poverty neighborhoods is associated with improved self-sufficiency, a

7Here, with some abuse of notation, we understand T ∗ × 1 to equal T ∗ and T ∗ × 0 to equal 0.
8Defined as total household income in 2001 being above the poverty line and the household not

currently being a recipient of welfare programs, namely, AFDC/TANF, food stamps, SSI, or Medicaid.
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Figure 1: Quantile Treatment Effects for Total Household Income
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A. Quantile Effects for CDE0
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B. Quantile Effects for CDE1
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C. Quantile Effects for CTE
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D. Quantile Effects for LATE

Graph A: Difference in the quantiles of Y ∗(1, 0) and Y ∗(0, 0) conditional on type CN. Graph B: Difference in
the quantiles of Y ∗(1, 1) and Y ∗(0, 1) conditional on type CA. Graph C: Difference in the quantiles of Y ∗(1, 1)
and Y ∗(0, 0) conditional on type CC. Graph D: Difference in the quantiles of Y ∗(1,M∗(1)) and Y ∗(0,M∗(0))
conditional type {CA,CN,CC}. All estimates consider the person-level weight from the adult survey in the
interim analyses. Income is measured in thousands of dollars per year.

higher likelihood of being employed, and increased income. The estimates for CDE0

and CDE1 indicate that these positive effects from relocation are largely present even if

mental heath status is unchanged. Parameter CTE encompasses two effects: the impact

of moving to a low-poverty neighborhood and the effect of enhanced mental health.

In full support of the conjecture by Ludwig et al. (2008), we see that mental health

plays an important role in mediating the effects of neighborhood relocation on labor

force participation. Table 2 additionally reports the LATE implied by our estimates for

CDE0, CDE1, CTE, and type probabilities. The implied and estimated LATEs closely

align, providing credence to our decomposition of LATE into direct and total effects.

We further investigate treatment impacts across the outcome distribution by com-

puting Quantile Treatment Effects (QTEs) analogues to the average effects estimated

in Table 2 – e.g., the QTE for CTE consists of comparing the quantiles of Y ∗(1, 1)
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against those of Y ∗(0, 0) for type CC. Figure 1 reports our QTE estimates for total

household income with 95% pointwise confidence regions. Overall, we find the estimates

for the QTEs corresponding to relocating while keeping mental health constant (CDE0

and CDE1) are decreasing though mostly statistically insignificant. In contrast, we find

that the QTEs corresponding to both relocating and improving mental health (CTE)

are positive and statistically significant across the quantiles we examine. Reflecting the

low proportion of type CC in the population, the LATE QTEs exhibit mixed findings,

being decreasing and statistically significant for lower quantiles only.

4 Identification

We next turn to our theoretical results starting, in this section, by developing a charac-

terization of point identification for the functionals that we study.

4.1 Two Key Lemmas

We begin by introducing two lemmas that play a fundamental role in our characterization

of identification. The first result is technical in nature, but crucial for our analysis.

Lemma 4.1. If Assumptions 2.1 and 2.2 hold, then Θ0 is convex and there is a Q̄ ∈ Θ0

such that all Q ∈ Θ0 are absolutely continuous with respect to Q̄.

In words, Lemma 4.1 establishes the existence of a distribution Q̄ that is both in the

identified set Θ0 for the true distribution Q0 and “larger” than any other distribution in

Θ0. Intuitively, by “larger” we mean that the support of any distribution in the identified

set must be contained in the support of the distribution Q̄. We note that there may be

multiple measures Q̄ satisfying the conclusion of Lemma 4.1. However, such measures

are equivalent in the sense that they must be mutually absolutely continuous – i.e. they

must assign zero probability to the same sets. Hence, whether Q̄ assigns probability

zero (or one) to a set is a property that is identified from the distribution of the data.

Our second lemma is the cornerstone of our identification analysis. In order to

formally state this key result, we first introduce a linear operator Υ that maps functions

of (Y, T, Z,X) to functions of (Y ∗, T ∗, X). Specifically, for any f ∈ L1(P ) we set

Υ(f) ≡
∑
t∈T

EPZ|X [f(Y
⋆(t), t, Z,X)1{T ⋆(Z) = t}],

where PZ|X denotes the conditional distribution of Z given X and the notation EPZ|X

emphasizes the expectation is taken with respect to Z while (Y ⋆, T ⋆, X) are kept “fixed.”
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Under our assumptions, it is possible to show that Υ(f) in fact satisfies

Υ(f) = EQ[f(Y, T, Z,X)|Y ∗, T ∗, X] (13)

for any Q in the identified set Θ0 – i.e. Υ maps functions of observables into functions

of unobservables by taking conditional expectations given (Y ∗, T ∗, X).

The next lemma combines the map Υ with the measure Q̄ to obtain a sufficient

condition for the expectation of a function ℓ of (Y ⋆, T ⋆, X) to be identified.

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold, and ℓ satisfy Q̄(Υ(κ) = ℓ) = 1 for

some κ ∈ L1(P ). Then it follows that ℓ ∈ L1(Q) for all Q ∈ Θ0 and in addition

EQ[ℓ(Y
⋆, T ⋆, X)] = EP [κ(Y, T, Z,X)]. (14)

The conclusion of Lemma 4.2 is straightforward to obtain after noting that the

conditions imposed on κ and the equality in (13) ensure, for any Q ∈ Θ0, that

EQ[κ(Y, T, Z,X)|Y ∗, T ∗, X] = ℓ(Y ∗, T ∗, X)

from whence result (14) is immediate by the law of iterated expectations. The principal

implication of Lemma 4.2 is a recipe for identification and estimation of the expectation

of a function ℓ of (Y ∗, T ∗, X). In particular, Lemma 4.2 suggests estimating the expec-

tation of ℓ by employing sample moments based on an estimator of a function κ solving

the equation Υ(κ) = ℓ. In implementing this approach, it is often fruitful to rely on our

next corollary, which obtains an alternative representation for κ in terms of the density

π ≡
dPZ|X

dµZ|X
.

Corollary 4.1. Let Assumptions 2.1 and 2.2 hold, and suppose ν ∈ L1(P ) is such that

µ(
∑
t∈T

EµZ|X [ν(Y
∗(t), t, Z,X)1{T ∗(Z) = t}] = ℓ(Y ∗, T ∗, X)) = 1. (15)

If µ(π(Z,X) > δ) = 1 for some δ > 0, then the function κ ≡ ν/π satisfies κ ∈ L1(P )

and Q̄(Υ(κ) = f) = 1, and therefore EQ0 [ℓ(Y
⋆, T ⋆, X)] = EP [κ(Y, T, Z,X)].

Under the requirement that π be bounded away from zero, Corollary 4.1 shows that

we may find a function κ solving Υ(κ) = ℓ by taking the ratio of a function ν satisfying

(15) and the density π. This characterization is particularly useful in applications in

which the measure µ is known (instead of identified), as is the case in the majority of

the examples discussed in Section 2.1. Specifically, if µ is known, then the functions

ν satisfying (15) are known in that they may be computed analytically or numerically.
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In particular, it follows that κ = ν/π is known up to the identified density π. We will

extensively employ these observations when developing our estimators in Section 5.

Remark 4.1. Revisiting Example 2.1 can be instructive in illustrating the content of

Corollary 4.1. In this example, based on Rosenbaum and Rubin (1983), we imposed

µ(T ∗(Z) = Z) = 1 and set ℓ(Y ∗, T ∗, X) = Y ∗(1)− Y ∗(0). In order to identify the ATE,

Corollary 4.1 suggests finding a function ν satisfying equation (15). To this end, we

select µ to satisfy µ(Z = 0|X) = µ(Z = 1|X) = 1/2, which implies that

ν(Y, T, Z,X) = 2Y (1{Z = 1} − 1{Z = 0})

solves (15). Moreover, under such a choice of µ, π satisfies π(z,X) = P (Z = z|X)/2 for

z ∈ {0, 1}. Therefore, computing κ = ν/π and employing Corollary 4.1 yields that

EQ0 [Y
∗(1)− Y ∗(0)] = EP [κ(Y, T, Z,X)] = EP [

Y 1{Z = 1}
P (Z = 1|X)

− Y 1{Z = 0}
P (Z = 0|X)

],

which recovers the canonical propensity score reweighing moment for identifying the

ATE. Similarly, applying Corollary 4.1 to the model in Imbens and Angrist (1994)

recovers the the “κ-weights” identifying equations of Abadie (2003).

4.2 Main Result

Lemma 4.2 establishes that a sufficient condition for the identification of the expectation

of a function ℓ of (Y ⋆, T ⋆, X) is the existence of a function κ of (Y, T, Z,X) satisfying

Υ(κ) = ℓ in an appropriate sense. The conclusion of Lemma 4.2 is additionally con-

structive in that it suggests an estimator for the parameter of interest. However, our

analysis so far leaves two important questions unanswered. First: Is it possible to em-

ploy a similar approach to identify and estimate the more general class of parameters

that interest us? Second: Is such an approach applicable whenever the parameter of

interest is identified? In other words, are our sufficient conditions for identification also

necessary? We next provide affirmative answers to these questions.

Specifically, we next return to the general class of functionals with the structure

λQ ≡ lim
j→∞

EQ[ℓj(Y
⋆, T ⋆, X)] (16)

and provide necessary and sufficient conditions for the identification of λQ0 . In partic-

ular, we will show that λQ0 is identified if and only if the functional Q 7→ λQ is in the

“closure” of the set of functions that equal Υ(κ) for some κ – notice the distinction

with Lemma 4.2, which requires ℓ to exactly equal Υ(κ) for some κ. Intuitively, we will

establish that for a functional of Q0 to be identified, it must be the “limit” of functionals

of Q0 whose identification can be shown through Lemma 4.2. Such a characterization of
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identification is additionally constructive in that it suggests estimating λQ0 by employ-

ing the sample averages of a sequence of functions {κj} for which Υ(κj) “converges” to

the desired functional. Formalizing this discussion, however, first requires to clarify the

sense (i.e. topology) in which we mean “converge,” “closure,” and “limit.” We next turn

to this task, which requires us to introduce additional assumptions and notation.

Our next assumption introduces the final regularity conditions for our model.

Assumption 4.1. (i) {ℓj}∞j=1 is an identified sequence satisfying {ℓj}∞j=1 ⊂ L1(Q) for

all Q ∈ Θ0; (ii) λQ (as in (16)) is well defined and satisfies |λQ| < ∞ for all Q ∈ Θ0;

(iii) dQ/dµ belongs to the interior of Q in Q for some Q ∈ Θ0.

Assumption 4.1(i) formalizes the requirement that the functions {ℓj} be identified

and integrable with respect to every Q ∈ Θ0. The latter requirement can be ensured, for

example, by imposing suitable regularity conditions through Q in Assumption 2.2(iii).

In turn, Assumption 4.1(ii) formalizes the structure of the parameter of interest by

imposing that the limit in (16) exists and is finite for any Q ∈ Θ0 – a requirement

that can again be ensured through the specification of Q. Finally, Assumption 4.1(iii)

will help us establish that our sufficient conditions for identification are also necessary.

Intuitively, Assumption 4.1(iii) requires that the restrictions imposed through Q do not

bind at some Q ∈ Θ0 and as a result cannot point identify λQ0 .

As we have informally discussed, the identification of λQ0 hinges on whether the

functional Q 7→ λQ is in, an appropriate sense, the closure of the set of functions that

equal Υ(κ) for some κ. To formally introduce the relevant topology, we first define

⟨f, g⟩Q ≡
∫
fgdQ

for any f, g such that |fg| ∈ L1(Q) and let QV denote the marginal distribution of a

random variable V under Q – e.g., QT ∗ denotes the marginal distribution of T ⋆ under

Q. It is also useful to note that, for any suitably “smooth” s ∈ L∞(Q̄Y ⋆T ⋆X), the limit

lim
j→∞

⟨s, ℓj⟩Q (17)

will often exist for any Q ∈ Θ0. For instance, if we let 1 be the function that is constant

at one and evaluate (17) at s = 1, then we recover λQ. Given this observation, we set

SQ ≡ {s ∈ L∞(QY ∗T ∗X) : | lim
j→∞

⟨s, ℓj⟩Q| <∞ and s
dQ

dµ
∈ Q},

where we tacitly understand every s ∈ SQ to be such that the limit in (17) exists.

Additionally, we let span{A} denotes the linear span of a set A, and introduce a vector
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Figure 2: Diagram of the definition of the τ topology dictating point identification.

SQ
(set of functions)

used to define L
(set of linear functionals)

R∪ Λ
(set of linear functionals)

in each other’s domain

indu
ces the

τ (weak) topology

space L of linear functionals defined on the space
⋂

Q∈Θ0
L1(Q) by setting

L ≡ span{L :
⋂

Q∈Θ0

L1(Q) → R s.t. L = ⟨·, s⟩Q for some s ∈ S, Q ∈ Θ0}.

By Lemma 4.2, a function Υ(κ) is in the domain of all the linear functionals L ∈ L
for any κ ∈ L1(P ). Through duality, however, it is more instructive to identify such

functions with a set of linear functionals on L. We therefore define the set R by

R ≡ {L′ : L → R s.t. L′(L) = L(Υ(κ)) for some κ ∈ L1(P )}.

Similarly, {ℓj} generates a linear functional on L, which we denote by Λ and equals

Λ(L) ≡ lim
j→∞

L(ℓj),

and we note that any L ∈ L can also be viewed as a functional on {R∪Λ} through the

relation L′ 7→ L′(L). Given the introduced concepts, we can finally define the topology

that dictates identification. Specifically, we let τ denote the weak topology on {R ∪ Λ}
that is generated by the functionals L ∈ L – i.e. τ is the weakest topology on {R∪Λ} that
makes all L ∈ L continuous; see Figure 2 for a diagram summarizing this construction.

The next theorem is our main identification result.

Theorem 4.1. If Assumptions 2.1, 2.2, and 4.1 hold, then it follows that λQ0 is iden-

tified if and only if Λ belongs to the the τ -closure of R.

Intuitively, Theorem 4.1 establishes that λQ0 is identified if and only if there is a

sequence {L′
j} ⊆ R converging to Λ in the τ topology.9 To the best of our knowledge,

the characterization of all the functionals that are identified is novel in the context of all

the examples in Section 2.1. To gain some insight into why Λ belonging to the τ -closure

of R is a sufficient condition for identification, let LQ0 ≡ ⟨·,1⟩Q0 and note

λQ0 = lim
j→∞

⟨ℓj ,1⟩Q0 = Λ(LQ0). (18)

9We discuss sequences for ease of exposition. However, we note that our formal arguments rely on
nets because the τ topology may not be first countable and therefore not be metrizable.
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Moreover, since L′
j ∈ R implies L′

j(L) = L(Υ(κj)) for some κj , it follows from {L′
j}

converging to Λ in the τ topology that there is a sequence {κj} satisfying

Λ(LQ0) = lim
j→∞

L′
j(LQ0) = lim

j→∞
⟨Υ(κj),1⟩Q0 = lim

j→∞
EP [κj(Y, T, Z,X)], (19)

where the final equality follows from Lemma 4.2. Importantly, results (18) and (19) not

only establish the identification of λQ0 , but also suggest an estimation strategy: Simply

employ the sample moments based on estimates of the approximating sequence {κj}.

More surprisingly, Theorem 4.1 also establishes that the existence of the desired

sequence {κj} is in fact a necessary condition for the identification of λQ0 .
10 As a result,

it is without loss of generality to estimate λQ0 by employing the discussed estimation

strategy that is motivated by results (18) and (19). Moreover, while our preceding

discussion suggests that we need only find a sequence {κj} satisfying (19), Theorem 4.1

states that the identification of λQ0 is in fact only possible if the stronger requirement

that L(Υ(κj)) → Λ(L) for all L ∈ L is satisfied. As our next corollary illustrates, the

latter observation can be helpful in characterizing the desired sequence {κj}.

Corollary 4.2. Let Assumptions 2.1, 2.2 hold with Q = Q = L∞(µ), µ ≪ Q̄ with

dµ/dQ̄ bounded, and λQ ≡ EQ[ℓ(Y
∗, T ∗, X)] for some identified ℓ ∈ L1(µY ∗T ∗X). Then:

(i) λQ0 is identified if and only if limj→∞ ∥ℓ−Υ(κj)∥µ,1 = 0 for some {κj} ⊆ L1(P ).

Moreover, any such sequence {κj} satisfies λQ0 = limj→∞EP [κj(Y, T, Z,X)].

(ii) Suppose in addition that µ(π(Z,X) > δ) = 1 for some δ > 0. Then, λQ0 is

identified if and only if there is a sequence {νj} ⊆ L1(P ) satisfying

lim
j→∞

Eµ[|ℓ(Y ∗, T ∗, X)−
∑
t∈T

EµZ|X [νj(Y
∗(t), t, Z,X)1{T ∗(Z) = t}]|] = 0. (20)

Moreover, for any such {νj}, κj = νj/π satisfies λQ0 = limj→∞EP [κj(Y, T, Z,X)].

Corollary 4.2 specializes Theorem 4.1 to the case in which the functional of interest is

the expectation of a function ℓ of (Y ∗, T ∗, X) and Assumption 2.2(iii) only imposes that

the density of Q0 be bounded. Within this context, Corollary 4.2(i) shows that λQ0 is

identified if and only if ℓ is the limit of a sequence of functions {Υ(κj)} in the ∥·∥µ,1-norm.

Paralleling Corollary 4.1, Corollary 4.2(ii) additionally provides conditions under which

it is without loss of generality to set κj = νj/π for any sequence {νj} satisfying (20).

Corollary 4.2(ii) has two important implications for applications in which µ is known

and therefore the sequence {νj} is known and computable analytically or numerically;

see Remark 5.1. First, Corollary 4.2(ii) provides us with a simple characterization of

{κj} in terms of the identified density π that we will use in estimation. Second, condition

(20) allows us to assess whether the restrictions of our model (as embodied in µ) point

identify a functional of interest or not; see our discussion of Example 2.5 below.

10Theorem 4.1 only implies the existence of a net, but we again discuss sequences for ease of exposition.
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4.3 Special Case: Types

Functionals of the joint distribution of (T ⋆, X) are often of interest in their own right or

as building blocks towards estimating other parameters. In this section, we specialize

our analysis to such functionals by considering parameters with the structure

λQ ≡ lim
j→∞

EQ[ℓj(T
⋆, X)], (21)

which we refer to as functionals about “types.” While Theorem 4.1 of course continues

to apply to this context, the fact that {ℓj} now only depends on (T ⋆, X) will allow us

to sharpen our identification results. In particular, we will show that λQ0 is identified if

and only if it can be identified from the joint distribution of (T,Z,X) – i.e. from “first

stage” information. As a result, in estimating functionals about types we may simplify

estimation by only employing the sample for (T,Z,X) (instead of (Y, T, Z,X)).

In order to formally state the conditions for our result, we first define the measure

Q̄it ≡ Q̄Y ⋆|XQ̄T ⋆ZX ,

which shares the same marginal distributions for (Y ∗, X) and (T ∗, X) as Q̄, but is such

that Y ∗ is independent of T ∗ conditionally on X. Given this notation we impose:

Assumption 4.2. (i) Q̄it ≪ Q̄; (ii) (dQ̄it
Y ⋆T ⋆X/dQ̄Y ⋆T ⋆X)s ∈ SQ̄ for all s ∈ L∞(Q̄T ⋆X)∩

SQ̄; (iii) (dQT ⋆X/dQ̄T ⋆X)s ∈ SQ̄ for all Q ∈ Θ0 and s ∈ L∞(QT ⋆X) ∩ SQ; (iv) For any

Q ∈ Θ0 and s ∈ SQ we have that EQ[s(Y
⋆, T ⋆, X)|T ⋆, X] ∈ SQ.

Assumption 4.2(i) essentially requires the support of Y ⋆ conditional on (T ⋆, X) under

Q̄ to not depend on T ⋆. We view Assumption 4.2(i) as the key requirement ensuring that

the identification of functionals about types can be characterized by the distribution of

(T,Z,X). Assumptions 4.2(ii) and 4.2(iii) impose restrictions on the densities dQ̄it/dQ̄

and dQT ⋆X/dQ̄T ⋆X (for Q ∈ Θ0), while Assumption 4.2(iv) requires that conditional

expectations of functions in SQ belong to SQ as well. Assumptions 4.2(ii)-(iv) can in

many applications be verified by appropriately selecting Q and Q in Assumption 2.2(iii);

see, e.g., Corollary 4.3 and Section 4.3.1 below.

The next theorem is our main result on identification of functionals about types.

Theorem 4.2. Let Assumptions 2.1, 2.2, 4.1, 4.2 hold, λQ be as in (21), and define

RT ≡ {L′ : L → R s.t. L′(L) = L(Υ(κ)) for some κ ∈ L1(PTZX)}.

Then, it follows that λQ0 is identified if and only if Λ belongs to the the τ -closure of RT .

Theorem 4.2 establishes that functionals about types are identified if and only if

they are identified from the distribution of (T,Z,X). Formally, Theorem 4.2 shows
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that λQ0 is identified if and only if it belongs to the τ -closure of the subset RT ⊆ R
(instead of the τ -closure of R as in Theorem 4.1). In particular, RT is generated by

first stage information in that it consists of functionals corresponding to Υ(κ) for some κ

depending on (T,Z,X) only. The main implication of this result is that, when estimating

functionals about types, we may search for the desired approximating sequence {Υ(κj)}
for Λ by considering functions {κj} that depend on (T,Z,X) only.

Theorem 4.2 further yields an analogue to Corollary 4.2. In particular, under parallel

conditions to those imposed in Corollary 4.2, it is possible to show that the expectation

of a function ℓ of (T ∗, X) is identified if and only if ℓ can be approximated by a sequence

{Υ(κj)} with κj depending only on (T,Z,X). For conciseness, however, we do not

formally state such a result. Instead, in our next corollary we highlight the implications

of Theorem 4.2 in the empirically salient case of discrete instruments.

Corollary 4.3. Let Assumption 2.1, 2.2 hold, Q = Q = L1(µ), Q̄it ≪ Q̄ with dQ̄it/dQ̄

bounded, ℓ ∈ L1(Q̄T ⋆X) be identified, Z be discrete, P (Z = z|X) ≥ ε > 0 a.s. for all

z ∈ Z, and Q̄(T ⋆ = t⋆|X) ≥ ε > 0 a.s. for any t⋆ ∈ T⋆ with Q̄(T ⋆ = t⋆) > 0. Then:

(i) λQ0 ≡ EQ0 [ℓ(T
⋆, X)] is identified if and only if Q̄(Υ(κ) = ℓ) = 1 for some κ ∈

L1(PTZX). Moreover, any such κ satisfies λQ0 = EP [κ(T,Z,X)].

(ii) Suppose in addition that µ(π(Z,X) > δ) = 1 for some δ > 0 and µ ≪ Q̄. Then

λQ0 is identified if and only if there exists a ν ∈ L1(PTZX) satisfying

µ(ℓ(T ∗, X) =
∑
t∈T

EµZ|X [ν(t, Z,X)1{T ∗(Z) = t}]) = 1. (22)

Moreover, for any such function ν, κ = ν/π satisfies λQ0 = EP [κ(T,Z,X)].

Corollary 4.3(i) specializes our analysis to the case of discrete instruments and no

additional identifying assumptions being imposed in Assumption 2.2(ii) – a setting that

covers many of the examples in Section 2.1. In this context, Corollary 4.3(i) establishes

that the expectation of a function ℓ of (T ∗, X) is identified if and only if ℓ equals Υ(κ) for

some function κ of (T,Z,X). Under its assumptions, Corollary 4.3(i) therefore delivers

a converse to Lemma 4.2. In turn, Corollary 4.3(ii) parallels Corollary 4.2 in providing

conditions that can be helpful in assessing whether the desired κ exists and estimating

it if it does. Such a characterization is particularly useful when µ is known, in which

case the validity of (22) for some ν is independent of the distribution of the data.

4.3.1 Examples Revisited

We next revisit Examples 2.4 and 2.5 to illustrate the implications of our results in

models with discrete and continuous instruments respectively.
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Example 2.4 (cont.) The main features of this example, based on Kline and Walters

(2016), are that Z and T ∗ are discrete and µ imposed µ(T ∗ ∈ R∗) = 1 for some set

R∗ ≡ {t∗1, . . . , t∗r}. Denoting the support of Z by Z = {z1, . . . , zq}, we then let

ωj(t
∗) ≡ (1{t∗(zj) = t1}, · · · , 1{t∗(zj) = td})

and note Corollary 4.3(ii) implies the expectation of ℓ(T ∗, X) is identified if and only if

min
{sj}qj=1⊂Rd

r∑
i=1

(ℓ(t∗i , X)−
q∑

j=1

s′jωj(t
∗
i ))

2 = 0 (23)

with probability one (over X). Moreover, provided condition (23) holds, we can find a

function κ of (T,Z,X) whose expectation equals the expectation of ℓ(T ∗, X) by setting

(κ(t1, zj , X), . . . , κ(td, zj , X)) ≡ sj(X)′

P (Z = zj |X)

for any (s1(X), . . . , sq(X)) minimizing (23). For instance, specializing (23) to Kline and

Walters (2016) implies that the distribution of (T ∗, X) is identified in that application.

More generally, the preceding discussion highlights that identifying and estimating a

functional about types reduces to a simple numerical problem when Z is discrete.

Example 2.5 (cont.) In this example, based on Mogstad et al. (2021), Z = (C,W )

with C binary,W a scalar, and µ imposed that T ∗(c, w) be increasing in c and decreasing

in w. As in Example 2.3, we also require T ∗(c, w) to be lower semicontinuous in w and

for simplicity assume that W is continuously distributed with compact support [w,w].

Under these restrictions, each T ∗ can be identified with a unique pair (K∗
0 ,K

∗
1 ) satisfying

T ∗(c, w) =
1∑

i=0

1{c = i,K∗
i > w}

and K∗
i ∈ [w,w] ∪ {∞} – note that, for c = i, K∗

i = w and K∗
i = ∞ corresponds to

“never-takers” and “always-takers.” We therefore study the identification of the distri-

bution of (K∗
0 ,K

∗
1 , X) and note that the restriction that T ∗(c, w) be increasing in c is

equivalent to imposing µ(K∗
1 ≥ K∗

0 ) = 1. It is convenient to let K∗
i be continuously

distributed on (w,w] under µ, though we allow µ to possibly assign positive mass to

{w} and {∞}. Under conditions paralleling those in Corollary 4.2(ii), Theorem 4.2 here

implies that the expectation of a function ℓ of (K∗
0 ,K

∗
1 , X) is identified if and only if

lim
j→∞

Eµ[|
1∑

i=0

∫ w̄

K∗
i

νj(0, i, w,X)dw +

∫ K∗
i

w
νj(1, i, w,X)dw − ℓ(K∗

0 ,K
∗
1 , X)|] = 0 (24)

for some sequence {νj(T,C,W,X)}. Moreover, provided condition (24) holds, the ex-
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pectation of ℓ(K∗
0 ,K

∗
1 , X) equals the limit of the expectations of the functions

κj(t, c, w,X) =
νj(t, c, w,X)

fW |CX(w|c,X)P (C = c|X)

where fW |CX denotes the conditional density of W given (C,X). The characterization

of identification obtained in (24) in fact implies that the expectation of a function ℓ of

(K∗
0 ,K

∗
1 , X) is identified if and only if ℓ belongs to the ∥ · ∥µ,1-closure of the set

T ≡ {f : f(K∗
0 ,K

∗
1 , X) = g0(K

∗
0 , X) + g1(K

∗
1 , X) for some g0, g1}. (25)

For instance, since 1{K∗
1 > a1, K

∗
0 ≤ a0} = 1{K∗

1 > a1} − 1{K∗
0 > a0} for any

a0 ≥ a1 under ∥ · ∥µ,1 due to µ(K∗
1 ≥ K∗

0 ) = 1, it follows that the probability of the

event {K∗
1 > a1, K

∗
0 ≤ a0} is identified. Conversely, 1{K∗

1 > a1, K
∗
0 ≤ a0} does not

belong to the ∥ · ∥µ,1-closure of T when a1 > a0, and hence the probability of the event

{K∗
1 > a1, K

∗
0 ≤ a0} is identified if and only if a0 ≥ a1.

4.4 Special Case: Outcomes

We conclude our discussion of identification by specializing our analysis to functionals of

the distribution of (Y ∗(t), T ∗, X) for some t ∈ T. In particular, we focus on parameters

that for some identified function ρ and sequence {ℓj} have the structure

λQ ≡ lim
j→∞

EQ[ρ(Y
⋆(t))ℓj(T

⋆, X)], (26)

which we refer to as functionals about “outcomes.” Our primary motivation for study-

ing these functionals is that they include features of the conditional distribution of a

potential outcome given types and covariates as a special case.

Intuitively, identification of functionals of the distribution of (Y ∗(t), T ∗, X) should

only be possible from the distribution of observations for which treatment assignment

T equals t. As a result, identification will now require us to approximate the sequence

{ℓj} by employing only the subset of observations for which T equals t – contrast with

Theorem 4.2 which instead employs all treatment values. In order to introduce the

assumptions that enable us to formalize this intuition, we first define the measure

Q̄io ≡ Q̄Y ⋆(t1)|X · · · Q̄Y ⋆(td)|XQ̄T ⋆ZX ;

i.e., for any t ∈ T, Q̄io shares the same marginal distributions for (Y ∗(t), X) and (T ∗, X)

as Q̄, but is such that all coordinates of Y ∗ and T ∗ are mutually independent condition-
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ally on X. We also define a function ϕQ̄,ρ of (Y ∗(t), X) to be given by11

ϕQ̄,ρ(Y
⋆(t), X) ≡

ρ(Y ⋆(t))− EQ̄[ρ(Y
⋆(t))|X]

VarQ̄{ρ(Y ⋆(t))|X}
.

Given the introduced notation, we impose the following assumptions.

Assumption 4.3. (i) ρ and {ℓj} are identified, ρ ∈ L∞(Q̄), and {ℓj} ⊂ L1(Q) for all

Q ∈ Θ0; (ii) λQ (as in (26)) is well defined and satisfies |λQ| <∞ for all Q ∈ Θ0.

Assumption 4.4. (i) EQ[ρ(Y
⋆(t))|T ⋆, X] ∈ SQ and EQ[s(Y

⋆, T ⋆, X)|T ⋆, X] ∈ SQ for

any Q ∈ Θ0 and s ∈ SQ; (ii) Q̄io ≪ Q̄ and dQ̄io/dQ̄ ∈ L∞(Q̄); (iii) ϕQ̄,ρ ∈ L∞(Q̄),

VarQ̄{ρ(Y ⋆(t))|X} > 0 a.s. under Q̄, and s(dQ̄io
Y ⋆T ⋆X/dQ̄Y ⋆T ⋆X)ϕQ̄,ρ ∈ SQ̄ for all s ∈

L∞(Q̄T ⋆X) ∩ SQ̄; (iv) (dQT ⋆X/dQ̄T ⋆X)s ∈ SQ̄ for all Q ∈ Θ0 and s ∈ L∞(QT ⋆X) ∩ SQ.

Assumption 4.3 ensures that λQ is well defined and {ℓjρ} is integrable under any

Q ∈ Θ0 – note that Assumption 4.3 essentially imposes that Assumptions 4.1(i)(ii) hold

with {ℓjρ} in place of {ℓj}. In turn, Assumption 4.4 is similar in spirit to the con-

ditions we imposed in Assumption 4.2 to establish our results concerning functionals

about types. Specifically, we note Assumptions 4.4(i)(iv) imposes restrictions on condi-

tional expectations and densities that parallel those of Assumptions 4.2(ii)-(iv), while

Assumption 4.4(ii) imposes a key support requirement that parallels Assumption 4.2(i).

Finally, Assumption 4.4(iii) requires that VarQ̄{ρ(Y ⋆(t))|X} be positive, which implies

the parameter of interest indeed concerns features of the outcomes distribution – e.g. if

ρ were constant, then (26) would fall within the framework of Section 4.3.

Our next theorem characterizes the identification of functionals about outcomes.

Theorem 4.3. Let Assumptions 2.1, 2.2, 4.1(iii), 4.3, 4.4 hold, λQ be as in (26), define

L1(PtZX) ≡ {f ∈ L1(P ) : f(T,Z,X) = 1{T = t}g(Z,X) for some g ∈ L1(P )} and

Rt ≡ {L′ : L → R s.t. L′(L) = L(Υ(κ)) for some κ ∈ L1(PtZX)}.

Then, it follows that λQ0 is identified if and only if Λ belongs to the τ -closure of Rt.

Theorem 4.3 establishes that functionals about outcomes are identified if and only

if they are identified from the distribution of observations with treatment assignment T

equal to t. We emphasize the contrast with Theorem 4.2, which showed identification of

functionals about types is equivalent to Λ being in the τ -closure of RT (instead of Rt in

Theorem 4.3). In particular, since Rt ⊆ RT , it follows that identification of a functional

about outcomes for a given sequence {ℓj} implies the identification of the corresponding

11If VarQ̄{ρ(Y ⋆(t))|X} = 0, then ρ(Y ⋆(t)) = EQ̄[ρ(Y
⋆(t))|X] and, setting 0/0 = 0, we therefore let

ϕQ̄,ρ(Y
⋆(t), X) = 0 whenever VarQ̄{ρ(Y ⋆(t))|X} = 0.
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functional about types. More generally, since Λ depends only on the sequence {ℓj}, the
identification of λQ0 for some ρ implies that Λ is in the τ -closure of Rt and therefore

that λQ0 is in fact identified for all suitable ρ.

Our next corollary illustrates these implications in the case of discrete instruments.

Corollary 4.4. Let Assumptions 2.1, 2.2 hold, Q = Q = L1(µ), Q̄io ≪ Q̄ with dQ̄io/dQ̄

bounded, ℓ ∈ L1(Q̄T ⋆X) be identified, ρ be bounded, identified, and VarQ̄{ρ(Y ⋆(t))|X} ≥
ε > 0 a.s.. If Z is discrete, P (Z = z|X) ≥ ε > 0 a.s. for all z ∈ Z, and Q̄(T ⋆ = t⋆|X) ≥
ε > 0 a.s. for any t⋆ ∈ T⋆ with Q̄(T ⋆ = t⋆) > 0, then the following are equivalent:

(i) EQ0 [ρ(Y
⋆(t))ℓ(T ⋆, X)] is identified.

(ii) EQ0 [f(Y
⋆(t))ℓ(T ⋆, X)] is identified for any bounded f .

(iii) Q̄(Υ(κ) = ℓ) = 1 for some κ(T,Z,X) = 1{T = t}g(Z,X) with g ∈ L1(PZX), and

therefore EQ0 [f(Y
∗(t))ℓ(T ∗, X)] = EP [f(Y )κ(T,Z,X)] for any bounded f .

Through the equivalence of (i) and (ii), Corollary 4.4 formalizes that the identifica-

tion of λQ0 for some ρ implies the identification of λQ0 for all ρ. Corollary 4.4 additionally

establishes that identification of an expectation about outcomes requires that there be

a κ solving ℓ = Υ(κ). Unlike Corollary 4.3, however, identification of functionals about

outcomes further requires κ to only employ observations corresponding to treatment

status t – i.e., κ must satisfy κ(T,Z,X) = 1{T = t}g(Z,X) for some g. Paralleling

Corollaries 4.2 and 4.3, it is further possible to show that identification of λQ0 is also

equivalent to the existence of a function ν ∈ L1(PZX) satisfying

ℓ(T ∗, X) = EµZ|X [ν(Z,X)1{T ∗(Z) = t}] (27)

with µ-probability one. Such a result is again particularly helpful when µ is known, in

which it is straightforward to asses whether λQ0 is identified (through (27)) and estimate

the desired κ through the relation κ(T,Z,X) = 1{T = t}ν(Z,X)/π(Z,X).

4.4.1 Examples Revisited

We conclude our discussion on identification by revisiting Examples 2.4 and 2.5.

Example 2.4 (cont.) In this context, Corollary 4.4 implies that the expectation of a

function with the structure ρ(Y ∗(t))ℓ(T ∗, X) is identified if and only if

min
{sj}qj=1⊂R

r∑
i=1

(ℓ(t∗i , X)−
q∑

j=1

sj1{t∗i (zj) = t})2 = 0 (28)

with probability one (over X). Moreover, provided condition (28) holds, the expectation
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of ρ(Y ∗(t))ℓ(T ∗, X) is equal to the expectation of ρ(Y )κ(T,Z,X) where

κ(T, zj , X) = 1{T = t} sj(X)

P (Z = zj |X)

for any (s1(X), . . . , sq(X)) minimizing (28). These results highlight that identifying a

functional about outcomes reduces to a simple numerical problem when Z is discrete.

Example 2.5 (cont.) In this application, under conditions paralleling those in Corol-

lary 4.2, Theorem 4.3 implies that the expectation of a function ρ(Y ∗(0))ℓ(K∗
0 ,K

∗
1 , X)

is identified if and only if there exists a sequence {νj(C,W,X)} satisfying

lim
j→∞

Eµ[|ℓ(K∗
0 ,K

∗
1 , X)−

1∑
c=0

∫ w̄

K∗
c

νj(c, w,X)dw|] = 0. (29)

Moreover, provided condition (29) holds, the expectation of ρ(Y ∗(0))ℓ(K∗
0 ,K

∗
1 , X) is

identified as the limit of the expectations of ρ(Y )κj(T,C,W,X) with

κj(t, c, w,X) ≡ 1{t = 0}νj(c, w,X)

fW |CX(w|c,X)P (C = c|X)
.

More generally, our analysis yields that the expectation of ρ(Y ∗(t))ℓ(K∗
0 ,K

∗
1 , X) is iden-

tified if and only if ℓ belongs to the ∥ · ∥µ,1-closure of the set Tt, where

T0 ≡ {f : f(K∗
0 ,K

∗
1 , X) = g0(K

∗
0 , X) + g(K∗

1 , X) with g0(∞, X) = g1(∞, X) = 0}

T1 ≡ {f : f(K∗
0 ,K

∗
1 , X) = g0(K

∗
0 , X) + g(K∗

1 , X) with g0(w, X) = g1(w, X) = 0}.

For instance, setting ℓ(K∗
0 ,K

∗
1 ) = 1{K∗

0 ≤ a0,K
∗
1 > a1} with a0, a1 ∈ [w, w̄] ∪ {∞} we

can conclude that the expectation of ρ(Y ∗(t))1{K∗
0 ≤ a0,K

∗
1 > a1} is identified for both

t = 0 and t = 1 if and only if a0 ≥ a1. In particular, it follows that parameters such as

EQ0 [Y
∗(1)− Y ∗(0)|K∗

0 ≤ a0,K1 = a1] and EQ0 [Y
∗(1)− Y ∗(0)|K∗

0 = a0,K1 > a1] (30)

are identified for any points a0, a1 satisfying w ≤ a1 ≤ a0 <∞.

5 Estimation

In our analysis so far, we have allowed features of our model (e.g., the measure µ and

functions {ℓj}) to depend on the distribution P of the data. To construct an estimator,

however, we need to incorporate additional information on the exact manner in which

these features depend on P . For concreteness, in what follows we therefore focus on a

leading special case in which µ and {ℓj} are known instead of identified – a setting that

encompasses the majority of our examples in Section 2.1.
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Our estimation strategy is based on two observations that follow from our identifica-

tion analysis. First, if the parameter of interest is point identified, then it must equal the

limit of expectations of a sequence of unknown functions {κj}. Second, provided {ℓj}
and µ are known, the functions {κj} can often be set to equal κj = νj/π for known {νj}
and π = dPZ|X/dµZ|X ; see, e.g., Corollaries 4.2, 4.3, and 4.4. These observations enable

us to devise double robust identifying moment conditions that readily yield asymptoti-

cally normal estimators. We next construct such estimators for functionals about types

and about outcomes and characterize their semiparametric efficiency bound.

5.1 Estimation: Types

Recall that functionals about types, as studied in Section 4.3, have the structure

λQ = lim
j→∞

EQ[ℓj(T
⋆, X)]. (31)

By Theorem 4.2, if λQ0 is point identified, then it must equal the limit of the expectation

of functions {κj} of (T,Z,X). Moreover, in an important class of applications, the

functions {κj} satisfy κj = νj/π for some known functions {νj} of (T,Z,X).

Our estimator is based on the observation that the structure κj = νj/π with π =

dPZ|X/dµZ|X implies that for any t ∈ T and function f we have the equality

EP [κj(t, Z,X)f(Z,X)] = EPX
[EµZ|X [νj(t, Z,X)f(Z,X)]].

Therefore, we may equivalently express the expectation of κj(T,Z,X) as being equal to

EP [κj(T,Z,X)] =
∑
t∈T

EP [κj(t, Z,X)(1{T = t} − P (T = t|Z,X))]

+
∑
t∈T

EPX
[EµZ|X [νj(t, Z,X)P (T = t|Z,X)]]. (32)

Crucially, the identifying moment in (32) is double robust in the sense that the equality

continues to hold if for any t ∈ T we substitute either of the nuisance parameters

κj(t, Z,X) or P (T = t|Z,X) with different functions of (Z,X). This double robustness

readily enables estimation through a variety of plug-in machine learning methods. For

concreteness, we follow ideas in Smucler et al. (2019), Chernozhukov et al. (2022a), and

Chernozhukov et al. (2022c) and employ an ℓ1-regularized double robust estimator.

Specifically, our estimator is obtained from the following algorithm:

Step 1. Partition {1, . . . , n} into K subsets {Ik}Kk=1, select functions {bl}
p
l=1 of (Z,X)

with p potentially larger than n, and let b(Z,X) ≡ (b1(Z,X), . . . , bp(Z,X))′. The num-

ber of partitions K is fixed with n, and usually set to five or ten.
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Step 2. For each treatment value t ∈ T and partition k compute the estimators

β̂t,k ∈ arg min
β∈Rp

∑
i∈Ick

(1{Ti = t} − b(Zi, Xi)
′β)2 + α∥β∥1 (33)

γ̂t,k ∈ arg min
γ∈Rp

∑
i∈Ick

1

2
(b(Zi, Xi)

′γ)2 − EµZ|X [νj(t, Z,Xi)b(Z,Xi)
′γ] + α∥γ∥1, (34)

where Ick = {1, . . . , n} \ Ik. We note that the penalty α need not be the same in both

estimation problems, but the set of functions {bl}pl=1 must be the same. The penalty α

can be selected in a data-drive way such as, e.g., cross-validation.

Step 3. For each k, let |Ik| denote the number of observations in Ik and set λ̂k to equal

λ̂k ≡ 1

|Ik|
∑
i∈Ik

∑
t∈T

b(Zi, Xi)
′γ̂t,k(1{Ti = t}−b(Zi, Xi)

′β̂t,k)+EµZ|X [νj(t, Z,Xi)b(Z,Xi)
′β̂t,k].

Note that in computing the estimator λ̂k we employ estimators γ̂t,k and β̂t,k that are

obtained from data not in partition Ik (see Step 2).

Step 4. The estimator for λQ0 is given by λ̂ ≡
∑

k λ̂k|Ik|/n – i.e. λ̂ is simply the

weighted average of the estimators {λ̂k}Kk=1 obtained from each partition Ik.

Intuitively, we may view b(Z,X)′β̂t,k and b(Z,X)′γ̂t,k as estimators for the nuisance

parameters P (T = t|Z,X) and κj(t, Z,X) and λ̂ as a plug-in estimator based on (32).

The sample splitting in Step 1 is important for relaxing our assumptions, though we note

λ̂ will remain asymptotically normal without sample splitting provided we impose suffi-

ciently strong sparsity requirements. We also note that we may substitute b(Z,X)′β̂t,k

with certain nonlinear estimators, such as logistic regression, and still obtain a double

robust estimator for λQ0 provided b(Z,X)′γ̂t,k is modified accordingly as well (Smucler

et al., 2019; Chernozhukov et al., 2022a). Alternatively, in Step 3 we may substitute

b(Z,X)′β̂t,k and b(Z,X)′γ̂t,k with any suitably convergent machine learning estimators

for the nuisance parameters (Chernozhukov et al., 2018). The resulting estimator for

λQ0 , however, may fail to be double robust in the sense that inference based on it can

be invalid if any of the nuisance parameter estimators is inconsistent.

In order to state sufficient conditions for the asymptotic normality of our estimator

λ̂, we first need to introduce some additional notation. To this end, we define

βt ∈ arg min
β∈Rp

EP [(1{T = t} − b(Z,X)′β)2]

γt ∈ arg min
γ∈Rp

{1
2
EP [(b(Z,X)′γ)2]− EPX

[EµZ|X [νj(t, Z,X)b(Z,X)′γ]},

which are the estimands for which β̂t,k and γ̂t,k will be assumed to be consistent for. We
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additionally denote the estimation error for βt and γt in the prediction norm by

rβt ≡ max
1≤k≤K

{EP [(b(Z,X)′(β̂t,k−βt))2]}1/2 rγt ≡ max
1≤k≤K

{EP [(b(Z,X)′(γ̂t,k−γt))2]}1/2.

The estimands b(Z,X)′βt and b(Z,X)′γt are approximations to the nuisance parameters

P (T = t|Z,X) and κj(t, Z,X), and we denote their approximation errors by

δβt ≡ {EP [(P (T = t|Z,X)− b(Z,X)′βt)
2]}1/2

δγt ≡ {EP [(κj(t, Z,X)− b(Z,X)′γt)
2]}1/2.

Finally, it will be convenient to denote the influence function of our estimator λ̂ by

ψ(T,Z,X) ≡
∑
t∈T

b(Z,X)′γt(1{T = t} − b(Z,X)′βt)

+
∑
t∈T

EµZ|X [νj(t, Z,X)b(Z,X)′βt]− λQ0 , (35)

and to let σ2 ≡ VarP {ψ(T,Z,X)} denote its variance. While we have suppressed it

from the notation, it is important to note that p (the dimension of b(Z,X)) and j (as

indexing κj) can depend on n, and as a result so do all the terms we have defined.

Given the introduced notation, we impose the following assumptions:

Assumption 5.1. (i) {Yi, Ti, Xi, Zi}ni=1 is i.i.d.; (ii) There are known {νj} ⊆ L∞(PTZX)

such that κj ≡ νj/π satisfies Υ(κj)
τ→ Λ; (iii) µZ|X ≪ PZ|X and ∥1/π∥∞ <∞.

Assumption 5.2. (i) maxt ∥b′βt∥∞ = O(1) and B ≡ maxt ∥b′γt∥∞ ∨ ∥νj∥∞ < ∞
satisfies B log(n) = o(σ

√
n); (ii) rγt ∨ Brβt ∨

√
nrβt r

γ
t = oP (σ) for all t ∈ T; (iii)

√
nδβt δ

γ
t = o(σ) for all t ∈ T; (iv)

√
n|λQ0 − EP [κj(T,Z,X)]| = o(σ); (v) |Ik| ≍ n.

Assumption 5.1(ii) formalizes our conditions on κj which, by our identification anal-

ysis, is equivalent to the identification of λQ0 in a variety of applications. Assumption

5.1(iii) imposes that π be bounded away from zero. In turn, Assumption 5.2 states

conditions on β̂t,k and γ̂t,k – we impose high level conditions given the preponderance

of results in the literature justifying these assumptions under lower level assumptions.

Specifically, Assumption 5.2(ii) demands that β̂t,k and γ̂t,k be suitably convergent to

their respective estimands in the prediction norm. Sufficient conditions for deriving

convergence rates for γ̂t,k can be found in Chernozhukov et al. (2022c), and for β̂k in

Bühlmann and van De Geer (2011) and Bartlett et al. (2012) with and without sparsity

assumptions respectively. Assumption 5.2(iii) states our rate requirements on the ap-

proximation errors δγt and δβt . The rate is double robust in that Assumption 5.2(iii) can

hold even if one of the estimands is not consistent for its corresponding nuisance param-

eter. Finally, Assumption 5.2(iv) is automatically satisfied if {κj} does not depend on

j (as in Lemma 4.2) and may be viewed as an undersmoothing requirement otherwise.
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Remark 5.1. Sufficient conditions for Assumption 5.2(iv) can be analytically derived

in certain applications in which κj depends on j; see, e.g., our discussion of Example

2.5 below. Alternatively, a numerical bound can be obtained through the inequality

|EQ0 [ℓ(T
∗, X)− κj(T,Z,X)]|

≤ ∥dQ0

dµ
∥∞ × Eµ[|ℓ(T ∗, X)−

∑
t∈T

EµZ|X [νj(t, Z,X)1{T ∗(Z) = t}]|].

In particular, if νj is computed through, e.g., Corollary 4.2 then we may set it to control

the bias in Assumption 2.2(iii) given a sup-norm bound on dQ0/dµ.

Our next result establishes the asymptotic normality of our estimator.

Theorem 5.1. Let Assumptions 2.1, 2.2, 4.1, 5.1, 5.2 hold, λQ and ψ be as defined in

(31) and (35), and σ2 ≡ VarP {ψ(T,Z,X)}. Then, there is a Z ∼ N(0, 1) satisfying

√
n

σ
(λ̂− λQ0) =

1√
nσ

n∑
i=1

ψ(Ti, Zi, Xi) + oP (1) = Z+ oP (1). (36)

For inference, we will rely on a multiplier bootstrap procedure that approximates the

distribution in Theorem 5.1 and further extends to vector valued parameters and their

nonlinear functionals. Specifically, for each k we define an estimator for ψ by setting

ψ̂k(T,Z,X) ≡
∑
t∈T

b(Z,X)′γ̂t,k(1{T = t} − b(Z,X)′β̂t,k)

+
∑
t∈T

EµZ|X [νj(t, Z,X)b(Z,X)′β̂t,k]− λ̂. (37)

Our “bootstrapped” estimator λ̂∗ is then obtained by employing ψ̂k and an i.i.d. sample

{Wi}ni=1 of standard normal weights independent of the data to perturb λ̂ according to

λ̂∗ ≡ λ̂+
1

n

K∑
k=1

∑
i∈Ik

Wiψ̂k(Ti, Zi, Xi). (38)

We employ standard normal weights W to simplify our technical arguments, though

under appropriate moment restrictions the proposed bootstrap remains valid provided

W satisfies E[W ] = 0 and E[W 2] = 1 – e.g., for W set to be Rademacher weights.

The next result establishes the validity of the proposed bootstrap.

Theorem 5.2. Let the conditions of Theorem 5.1 hold and {Wi}ni=1 be i.i.d. standard

normal random variables independent of {Yi, Ti, Zi, Xi}ni=1. Then, there exists a stan-
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dard normal random variable Z∗ independent of {Yi, Ti, Zi, Xi}ni=1 and satisfying

√
n

σ
(λ̂∗ − λ̂) =

1√
nσ

n∑
i=1

Wiψ(Ti, Zi, Xi) + oP (1) = Z∗ + oP (1). (39)

Theorems 5.1 and 5.2 justify employing the distribution of (λ̂∗ − λ̂) conditional

on the data as an approximation to the distribution of (λ̂ − λQ0). For instance, in

order to obtain a two sided confidence region we would: (i) Draw 1 ≤ b ≤ B samples

{W (b)
i }ni=1 of the weights independently of the data; (ii) Employ each sample {W (b)

i }ni=1

to obtain a bootstrap estimator λ̂∗(b) through (38); (iii) Compute the 1− α quantile ĉα

of {|λ̂∗(b) − λ̂|}Bb=1; and (iv) Set the two sided confidence region to equal λ̂± ĉα.

5.1.1 Examples Revisited

We next illustrate our results in the context of Examples 2.4 and 2.5, focusing our

discussion on the computation of the terms in our algorithm that are model specific.

Example 2.4 (cont.) Suppose ℓ is a known function of (T ∗, X) and recall that we

showed the expectation of ℓ(T ∗, X) is identified if and only if with probability one

min
{sj}qj=1⊂Rd

r∑
i=1

(ℓ(t∗i , X)−
q∑

j=1

s′jωj(t
∗
i ))

2 = 0, (40)

where ωj(t
∗) ≡ (1{t∗(zj) = t1}, . . . , 1{t∗(zj) = td}). To implement our estimator in

this context, let (s1(X), . . . , sq(X)) be a minimizer of (40) and sjm(X) denote the mth

coordinate of sj(X). It is then possible to show that νj does not depend on j and

EµZ|X [ν(tm, Z,Xi)b(Z,Xi)] =

q∑
j=1

sjm(Xi)b(zj , Xi).

This construction yields a double robust estimator of, e.g., Q0(T
∗ ∈ A) for any A for

which the probability is identified (i.e. (40) holds with ℓ(t∗, X) = 1{t∗ ∈ A}).

Example 2.5 (cont.) We focus on discussing estimators for the expectation of a

function ℓ of (K∗
c , X) for some c ∈ {0, 1} – estimators for the expectation of a function

of (K∗
0 ,K

∗
1 , X) then readily follow from our identification results (see (25)). To this end,

suppose ℓ(K∗
c , X) is differentiable in K∗

c on (w, w̄) with derivative ℓ′(K∗
c , X) and that

ℓ(K∗
c , X) = 0 whenever K∗

c ∈ {w, w̄,+∞}. It can then be shown that we may set

EµZ|X [ν(1, C,W,X)b(C,W,Xi)] =

∫ w̄

w
ℓ′(w,Xi)b(c, w,Xi)dw (41)

and ν(0, C,W,X) = 0 (see (24)). Expectations of more general functions of (K∗
c , X) can
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in turn be estimated by approximating them with differentiable functions. For example,

the expectation of ℓ(K∗
c ) = 1{a ≤ K∗

c ≤ b} with w < a < b < w̄ can be approximated

by the expectation of ℓj(K
∗
c ) = F ((b −K∗

c )/hj) − F ((a −K∗
c )/hj) for some hj ↓ 0 and

F the c.d.f. of a compactly supported mean zero continuous random variable. In this

case, we may again set ν(0, C,W,X) = 0 while (41) becomes

EµZ|X [νj(1, C,W,X)b(C,W,Xi)] =

∫ w̄

w

1

hj
(F ′(

a− w

hj
)− F ′(

b− w

hj
))b(c, w,Xi)dw (42)

and, under regularity conditions, B ≍ σ2 ≍ 1/hj and |λQ0 − EP [κj(T,Z,X)]| = O(h2)

so that Assumption 5.2 requires us to set log2(n)/(nhj) = o(1) and nh5j = o(1).

5.2 Estimation: Outcomes

We next turn to developing an estimator for functionals about outcomes, as studied in

Section 4.4. Recall that these functionals are characterized by having the structure

λQ = lim
j→∞

EQ[ρ(Y
∗(t))ℓj(T

⋆, X)] (43)

for some known ρ and t ∈ T. If λQ0 is identified, then by Theorem 4.3 it must equal

the limit of the expectation of {ρκj} for some sequence of functions {κj} of (T,Z,X).

While the functions {κj} are unknown, in a leading set of applications they satisfy

κj(T,Z,X) = 1{T = t}νj(Z,X)

π(Z,X)
(44)

for known functions {νj}; see, e.g., Corollary 4.4 and subsequent discussion. Due to the

similarities between the identifying equations for functionals about types and outcomes,

we are able to obtain estimators for functionals about outcomes by slightly modifying

our preceding analysis for types. As a result, in what follows we keep exposition brief

though note that the discussion and remarks of Section 5.1 apply to this section as well.

Our estimator for functionals about outcomes is obtained though the algorithm:

Step 1. Partition {1, . . . , n} into K subsets {Ik}Kk=1, select a set of functions {bl}pl=1 of

(Z,X), and let b(Z,X) ≡ (b1(Z,X), . . . , bp(Z,X))′.

Step 2. For each partition 1 ≤ k ≤ K compute the following two estimators

β̂k ∈ arg min
β∈Rq

∑
i∈Ick

(ρ(Yi)1{Ti = t} − b(Zi, Xi)
′β)2 + α∥β∥1 (45)

γ̂k ∈ arg min
γ∈Rq

∑
i∈Ick

{1
2
(b(Zi, Xi)

′γ)2 − EµZ|X [νj(Z,Xi)b(Z,Xi)
′γ]}+ α∥γ∥1, (46)

where the set of functions {bl}pl=1 must be the same in both estimation problems.
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Step 3. For each partition 1 ≤ k ≤ K compute the plug-in estimator λ̂k given by

λ̂k ≡ 1

|Ik|
∑
i∈Ik

b(Zi, Xi)
′γ̂k(ρ(Yi)1{Ti = t} − b(Zi, Xi)

′β̂k) + EµZ|X [νj(Z,Xi)b(Z,Xi)
′β̂k]

where |Ik| denotes number of observations in the partition Ik.

Step 4. Compute λ̂ ≡
∑

k λ̂k|Ik|/n as the final estimator for λQ0 .

The asymptotic properties of λ̂ can unsurprisingly be established under similar condi-

tions to those employed in Section 5.1. Adjusting notation, we now define the estimands

β ≡ arg min
β∈Rp

EP [(ρ(Y )1{T = t} − b(Z,X)′β)2]

γ ≡ arg min
γ∈Rp

{1
2
EP [(b(Z,X)′γ)2]− EPX

[EµZ|X [νj(Z,X)b(Z,X)′γ]]}

and denote the convergence rates for β̂k and γ̂k to β and γ in the prediction norm by

rβ ≡ max
1≤k≤K

{EP [(b(Z,X)′(β̂k − β))2]}1/2 rγ ≡ max
1≤k≤K

{EP [(b(Z,X)′(γ̂k − γ))2]}1/2.

The functions b(Z,X)′β and b(Z,X)′γ represent approximations to E[ρ(Y )1{T = t}|Z,X]

and νj(Z,X)/π(Z,X) respectively, and we denote their approximation errors by

δβ ≡ {EP [(EP [ρ(Y )1{T = t}|Z,X]− b(Z,X)′β)2]}1/2

δγ ≡ {EP [(
νj(Z,X)

π(Z,X)
− b(Z,X)′γ)2]}1/2.

Finally, we introduce the influence function for our estimator, which here is given by

ψ(Y, T, Z,X)

≡ b(Z,X)′γ(1{T = t}ρ(Y )− b(Z,X)′β) + EµZ|X [νj(Z,X)b(Z,X)′β]− λQ0 , (47)

and set σ2 ≡ VarP {ψ(Y, T, Z,X)}. We again note that the introduced parameters are

allowed to depend on n, though we suppressed such dependence from the notation.

The following assumptions suffice for estalibshing the asymptotic properties of λ̂.

Assumption 5.3. (i) {Yi, Ti, Xi, Zi}ni=1 is i.i.d.; (ii) There are known {νj} ⊆ L∞(PZX)

such that κj given by (44) satisfies Υ(κj)
τ→ Λ; (iii) µZ|X ≪ PZ|X and ∥1/π∥∞ <∞.

Assumption 5.4. (i) ∥ρ∥∞ < ∞, ∥b′β∥∞ = O(1), and B ≡ ∥b′γ∥∞ ∨ ∥νj∥∞ < ∞
satisfies B log(n) = o(σ

√
n); (ii) rγ ∨Brβ ∨

√
nrβrγ = oP (σ); (iii)

√
nδβδγ = o(σ); (iv)

√
n|λQ0 − EP [ρ(Y )κj(T,Z,X)]| = o(σ); (v) |Ik| ≍ n.

Assumptions 5.3 and 5.4 are simply adaptations of Assumptions 5.1 and 5.2 to

the present estimation problem. The most substantive difference between these sets
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of assumptions is that Assumption 5.4(i) requires ρ to be bounded – a condition that

enables us to establish our results employing convergence rates in the prediction norm.

While we impose this requirement for simplicity, we note that it may be relaxed by

strengthening the norm under which we require β̂k and γ̂k to converge to β and γ.

The next result establishes the asymptotic normality of our estimator.

Theorem 5.3. Let Assumptions 2.1, 2.2, 4.1, 5.3, 5.4 hold, λQ and ψ be as defined in

(43) and (47), and σ2 ≡ VarP {ψ(Y, T, Z,X)}. Then, there is a Z ∼ N(0, 1) satisfying

√
n

σ
(λ̂− λQ0) =

1√
nσ

n∑
i=1

ψ(Yi, Ti, Zi, Xi) + oP (1) = Z+ oP (1). (48)

For inference we again rely on the multiplier bootstrap. Specifically, for each 1 ≤
k ≤ K in our partition we define an estimator for the influence function by setting

ψ̂k(Y, T, Z,X)

≡ b(Z,X)′γ̂k(1{T = t}ρ(Y )− b(Z,X)′β̂k) + EµZ|X [νj(Z,X)b(Z,X)′β̂k]− λ̂. (49)

For {Wi}ni=1 an i.i.d. sample of standard normal random variables independent of the

data, we then obtain a “bootstrapped” analogue λ̂∗ to λ̂ by setting

λ̂∗ ≡ λ̂+
1

n

K∑
k=1

∑
i∈Ik

Wiψ̂k(Yi, Ti, Zi, Xi).

Our next result establishes the validity of the proposed bootstrap procedure.

Theorem 5.4. Let the conditions of Theorem 5.3 hold and {Wi}ni=1 be i.i.d. standard

normal random variables independent of {Yi, Ti, Zi, Xi}ni=1. Then, there exists a stan-

dard normal random variable Z∗ independent of {Yi, Ti, Zi, Xi}ni=1 and satisfying

√
n

σ
(λ̂∗ − λ̂) =

1√
nσ

n∑
i=1

Wiψ(Yi, Ti, Zi, Xi) + oP (1) = Z∗ + oP (1). (50)

Theorems 5.3 and 5.4 justify employing the proposed bootstrap to conduct infer-

ence on functionals about outcomes. Moreover, together with Theorems 5.1, 5.2, and

the Delta method, they also justify employing the bootstrap to conduct inference on

parameters such as, e.g., conditional expectations of potential outcomes given types and

of types given covariates.12 Specifically, such parameters have the structure

F (λQ01, . . . , λQ0q)

12See Lemma A.10 in the Appendix for a version of the Delta method suitable for our setting.
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where F : Rq → R is a known differentiable function and each λQ0j ∈ R is a func-

tional about types or outcomes.13 For instance, to obtain a two sided confidence

region we would: (i) Compute estimators (λ̂1, . . . , λ̂q) for (λQ01, . . . , λQ0q) using our

results for types or outcomes; (ii) Draw B samples {W (b)
i }ni=1 of weights indepen-

dent of the data; (iii) Employ each sample {W (b)
i }ni=1 to obtain bootstrap estimators

(λ̂
∗(b)
1 , . . . , λ̂

∗(b)
q ) using our results for types or outcomes; (iv) Set ĉα to equal the 1 − α

quantile of {|F (λ̂1, . . . , λ̂q) − F (λ̂
∗(b)
1 , . . . , λ̂

∗(b)
q )|}Bb=1 across the B samples; and (v) Re-

port F (λ̂1, . . . , λ̂q) ± ĉα as a two sided confidence region. Similarly, our results also

allow us to conduct inference on directionally (but not fully) differentiable functionals

of (λQ01, . . . , λQ0q) by relying on the framework developed in Fang and Santos (2018).

5.2.1 Examples Revisited

Example 2.4 (cont.) We previously established that, for a known function ℓ of (T ∗, X),

the expectation of ρ(Y ∗(t))ℓ(T ∗, X) is identified if and only if

min
{sj}qj=1⊂R

r∑
i=1

(ℓ(t∗i , X)−
q∑

j=1

sj1{t∗i (zj) = t})2 = 0 (51)

with probability one (over X). In order to estimate an identified functional about

outcomes (i.e. one for which (51) holds), we may implement our estimator with

EµZ|X [ν(Z,Xi)b(Z,Xi)] =

q∑
j=1

sj(Xi)b(zj , Xi),

where (s1(X), . . . , sq(X)) is any minimizer of (51). Hence, we may for example conduct

inference on EQ0 [Y
∗(t)1{T ∗ ∈ A}] (provided ℓ(t∗, X) = 1{t∗ ∈ A} satisfies (51)) or, in

combination with our results on functionals about types, on EQ0 [Y
∗(t)|T ∗ ∈ A].

Example 2.5 (cont.) When illustrating the implementation of our estimator for

functionals about types in this example we employed functions κj with the structure

κj(T,Z,X) = 1{T = 1}νj(Z,X)/π(Z,X). Hence, the same νj can be employed to esti-

mate functionals about Y ∗(1) – e.g., to estimate EQ0 [ρ(Y
∗(1))1{a ≤ K∗

c ≤ b}] we may

employ (42). Similarly, to estimate EQ0 [ρ(Y
∗(0))1{a ≤ K∗

c ≤ b}] we may set

EµZ|X [νj(C,W,Xi)b(C,W,Xi)] =

∫ w̄

w

1

hj
(F ′(

b− w

hj
)− F ′(

a− w

hj
))b(c, w,Xi)dw,

and by combining estimators we may conduct inference on average treatment effects for

individuals with K∗
c ∈ [a, b]. More generally, our results enable us to conduct inference

on average treatment effects for groups determined by (K∗
0 ,K

∗
1 ) as in, e.g., (30).

13E.g., for some event A set λQ01 = EQ0 [Y
∗(t)1{T ∗ ∈ A}], λQ02 = EQ0 [1{T ∗ ∈ A}], and

F (λQ01, λQ02) = λQ01/λQ02 to obtain F (λQ01/λQ02) = EQ0 [Y
∗(t)|T ∗ ∈ A].
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5.3 Efficiency Bound

We conclude this section by deriving the semiparametric efficiency bound for the esti-

mation problems studied in Sections 5.1 and 5.2 that required µ to be known (instead

of identified). To this end, we first introduce a series of definitions that are standard in

the literature on semiparametric efficiency (Bickel et al., 1993).

Definition 5.1. A path η 7→ Qη,g is a function defined on [0, 1) such that Qη,g is a

probability distribution on Y⋆ ×T⋆ × Z×X satisfying Qη,g ≪ µ for every η and

lim
η→0

∫
(
1

η
(
dQ

1/2
η,g

dµ
−
dQ

1/2
0,g

dµ
)− 1

2
g
dQ

1/2
0,g

dµ
)2dµ = 0. (52)

The function g ∈ L2(Q0,g) is called the score of the path η 7→ Qη,g.

Definition 5.2. We say that a path η 7→ Qη,g is a submodel if: (i) (Y ⋆, T ⋆) ⊥⊥ Z|X
under Qη,g for all η ∈ [0, 1), and (ii) Q0,g ∈ Θ0.

A path is simply a “smooth” one dimensional parametrization of distributions for

random variables (Y ⋆, T ⋆, Z,X). We emphasize that in Definition 5.1 we are relying

on the fact that µ is known and is therefore fixed along the path. A submodel is a

path that in addition: (i) Satisfies the requirements of our model – i.e. Qη,g ≪ µ and

(Y ⋆, T ⋆) ⊥⊥ Z|X under Qη,g; and (ii) Induces the distribution P on (Y, T, Z,X) at η = 0

– i.e. Q0,g is observationally equivalent to Q0. We note that we do not require that the

path satisfy Assumption 2.2(iii). In this regard, our analysis concerns applications in

which the conditions encoded in Q are not informative or we do not want to use such

information in estimation. In applications in which Q encodes regularity conditions,

such as in the majority of the examples in Section 2.1, it is often possible to establish

that Assumption 4.1(iii) implies that Assumption 2.2(iii) is uninformative, though such

arguments rely on the specific choice of Q.

For any η, a distributionQη,g for (Y
⋆, T ⋆, Z,X) induces a distribution for (Y, T, Z,X)

through the relation (Y, T, Z,X) = (Y ⋆(T ), T ⋆(Z), Z,X). As a result, each submodel

η 7→ Qη,g induces a path η 7→ Pη,s of probability distributions for (Y, T, Z,X) with a score

that we denote by s – i.e. the map η 7→ Pη,s satisfies smoothness requirements analogous

to those imposed in (52) and by construction P0,s = P (Le Cam and Yang, 1988). The

resulting set of scores s that can be produced in this manner generate the so-called

tangent space for our model, which plays a crucial role in characterizing semiparametric

efficiency bounds – see Theorem A.1 in the appendix for a characterization of the tangent

space that may be of independent interest.

Remark 5.2. By construction, every path η 7→ Pη,s we consider satisfies the restrictions

of our model. This approach contrasts with, for instance, Frölich (2007) who does not
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impose that η 7→ Pη,s be generated by an underlying path η 7→ Qη,g satisfying the

restrictions of the model. Nonetheless, the efficiency bound of Frölich (2007) is correct

because in the model he examines P is just identified in the sense of Chen and Santos

(2018). We emphasize, however, than in models in which P is overidentified, neglecting

to impose the restrictions of the model can lead to incorrect efficiency bounds.

Our first result derives the semiparametric efficiency bound for estimating λQ0 when

λQ = EQ[ℓ(Y
⋆, T ⋆, X)] (53)

with ℓ a known function. Following Bickel et al. (1993), for any submodel η 7→ Qη,g

inducing a path η 7→ Pη,s we define the information bound for estimating λQ0 by

I−1(Q·,g) ≡ { ∂
∂η
λQη,g

∣∣∣
η=0

}2 × {EP [s
2(Y, T, Z,X)]}−1. (54)

Intuitively, the information bound I−1(Q·,g) is the asymptotic variance of the maximum

likelihood estimator for λQ0 in the parametric submodel η 7→ Qη,g. We note that in

order for I−1(Q·,g) to be well defined, η 7→ Qη,g must be regular in the sense that it

induces a path η 7→ Pη,s whose score has positive variance and hence has positive Fisher

information. The semiparametric efficiency bound for estimating λQ0 is then defined as

I−1 ≡ sup
Q·,g

I−1(Q·,g), (55)

where the supremum is taken over all submodels η 7→ Qη,g for which I−1(Q·,g) is well

defined (i.e. the Fisher information of the submodel is positive).

As a final of notation we introduce a map I mapping functions s of the observables

(Y, T, Z,X) to functions I(s) of (Y ∗, T ∗, X) by setting

I(s) ≡
∑
t∈T

EPZ|X [s(Y
⋆(t), t, Z,X)1{T ⋆(Z) = t}]− EP [s(Y, T, Z,X)|X]. (56)

The null space of I, defined as N(I) ≡ {s ∈ L2(P ) : ∥I(s)∥Q̄,2 = 0}, and its orthocom-

plement [N(I)]⊥ ≡ {s ∈ L2(P ) : ⟨s, s̃⟩P = 0 for all s̃ ∈ N(I)}, play a crucial role in our

next result characterizing the semiparametric efficiency bound for λQ0 .

Theorem 5.5. Let Assumptions 2.1 and 2.2 hold, µ be known, λQ ≡ EQ[ℓ(Y
∗, T ∗, X)]

for some known bounded ℓ, and λQ0 be identified. Then the following hold:

(i) Suppose Q̄(Υ(κ) = ℓ) = 1 for some κ ∈ L2(P ) and let φ denote the projection of

κ onto [N(I)]⊥. Then: I−1 = VarP {φ(Y, T, Z,X)}+VarP {EP [κ(Y, T, Z,X)|X]}.
(ii) Suppose Assumption 4.1(iii) holds and the projection of ℓ onto the ∥ · ∥Q̄,2-closure

of the range of Υ : L2(P ) → L2(Q̄) is bounded. If there is no κ ∈ L2(P ) satisfying

Q̄(Υ(κ) = ℓ) = 1, then it follows that I−1 = ∞.
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Theorem 5.5(i) characterizes the semiparametric efficiency bound for estimating λQ0

when: (i) ℓ is known, and (ii) There is a κ such that Q̄(Υ(κ) = ℓ) = 1 – i.e., λQ0 falls

within the scope of Lemma 4.2. By Theorem 4.1, we know that λQ0 may be identified

even if there is no κ solving Q̄(Υ(κ) = ℓ) = 1. Subject to an additional regularity

condition, however, Theorem 5.5(ii) establishes that such functionals have an infinite

semiparametric efficiency bound14 – a conclusion that is often interpreted as equivalent

to the functional not being (regularly) estimable at the root-n rate (Chamberlain, 1986).

In summary, we can conclude that: (i) Lemma 4.2 characterizes a set of functionals with

a finite semiparametric efficiency bound, and (ii) Theorem 4.1 characterizes all additional

functionals that are identified, though such functionals are not root-n estimable.

Theorem 5.5(i) both recovers previously available semiparametric efficiency bounds

as special cases (Hahn, 1998; Frölich, 2007) and delivers new semiparametric efficiency

bounds for multiple applications (e.g., Heckman and Vytlacil (1999) and Mogstad et al.

(2021)). In turn, Theorem 5.5(ii) provides, to our knowledge, the first characterization

of when causal parameters are not root-n estimable in these models. For our analysis,

an important implication of Theorem 5.5 is its ability to assess whether our proposed

estimators are efficient. The next corollary accomplishes this task by providing sufficient

conditions for the estimators proposed in Sections 5.1 and 5.2 to be efficient.

Corollary 5.1. Suppose the conditions of Theorem 5.1 (resp. Theorem 5.3) hold with

maxt δ
β
t ∨ δγt = o(1) (resp. δβ ∨ δγ = o(1)) and the conditions of Theorem 5.5(i) hold

with a κ satisfying Assumption 5.1(ii) (resp. Assumption 5.3(ii)).

(i) If s = 0 is the only s ∈ L2(P ) satisfying ∥Υ(s)∥Q̄,2 = 0 and EP [s(Y, T, Z,X)|Z,X] =

0, then the estimator of Section 5.1 (resp. Section 5.2) attains the efficiency bound.

(ii) Let Assumption 4.4(ii) hold, δt(T ) ≡ 1{T = t} and suppose, for any g ∈ L2(P )

and t ∈ T, ∥Υ(gδt)∥Q̄,2 = 0 implies ∥gδt∥Q̄,2 = 0. If s ∈ L2(PTZX) satisfying

∥Υ(s)∥Q̄,2 = 0 implies that s ∈ L2(PZX), then it follows that the estimator of

Section 5.1 (resp. Section 5.2) attains the efficiency bound.

Corollary 5.1(i) provides sufficient conditions for our estimators to be efficient by

ensuring P is just identified in the sense of Chen and Santos (2018). In turn, Corollary

5.1(ii) imposes additional restrictions under which verifying whether our estimators are

efficient reduces to a more stringent (hence easier to verify) condition than the one

obtained in part (i). The requirements of Corollary 5.1 are easily verified in the examples

of Section 2.1 to which our semiparametric efficiency analysis applies; see our discusion

of Examples 2.4 and 2.5 below. Moreover, we note that Corollary 5.1 further implies

that our estimators can be used to efficiently estimate parameters that are differentiable

functions of multiple λQ0 with the structure in (53) (van der Vaart, 1991a). More

14Intuitively, the additional regularity condition enables us to show that ℓ belonging to the ∥ · ∥Q̄,1

closure of Υ(L1(P )) implies ℓ also belongs to the ∥ · ∥Q̄,2 closure of Υ(L2(P )).
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generally, however, it is important to note that our estimators may fail to be efficient in

applications in which P is overidentified in the sense of Chen and Santos (2018).

5.3.1 Examples Revisited

Example 2.4 (cont.) In this context, Corollary 5.1(ii) can be used to show that the

estimators of Section 5.1 and 5.2 are efficient provided that: (i) For all t, the matrix
1{t∗1(z1) = t} . . . 1{t∗1(zq) = t}

...
. . .

...

1{t∗r(z1) = t} . . . 1{t∗r(zq) = t}

 (57)

has rank q; and (ii) Any function f of (T,Z) satisfying the system of equations

d∑
i=1

q∑
j=1

1{t∗k(zj) = ti}f(ti, zj) = 0 for all 1 ≤ k ≤ r (58)

must be such that f(t, z) = f(t′, z) for any t ̸= t′ and any z. The second requirement

may be verified analytically or numerically through a linear program. For instance, it

is straightforward to analytically verify both requirements in the model of Kline and

Walters (2016) and hence that our estimators are efficient in that application.

Example 2.5 (cont.) For this application, Corollary 5.1(ii) can be used to show that

our estimators are efficient provided the support of K∗
0 and K∗

1 contains [w, w̄] – i.e.

provided a marginal change in W always induces some individuals into treatment. We

also note that in Section 5.2 we discussed estimation of parameters such as

EQ0 [ρ(Y
∗(t))ℓ(K∗

c , X)] (59)

and found our estimators to be root-n consistent when ℓ is differentiable in K∗
c , but

slower than root-n consistent when we set ℓ to equal an indicator function. Theorem 5.5

provides an explanation for this difference, as it implies that (59) has a finite efficiency

bound when ℓ is differentiable, and an infinite one when ℓ is an indicator function.

6 Conclusion

We proposed and developed a class of potential outcomes models that unifies and extends

multiple identification strategies in the literature. By leveraging the rich structure of

this class of models, we further derived widely applicable identification and estimation

results. We believe that our findings will be valuable to researchers, both in the context

of existing models and in the development of novel identification strategies.
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Appendix

This Appendix contains the proofs for all the results stated in the paper. Through-

out, we employ the notation QV to denote the marginal distribution of a random vari-

able V under Q and QV |W to denote the conditional distribution of V given W under

Q. When employing Q̄it (as in Section 4.3) and Q̄io (as in Section 4.4), we implic-

itly assume the conditional distributions QY ∗|X and QY ∗(t)|X exist. Finally, distribu-

tions Q for (Y ∗, T ∗, Z,X) are assumed to be defined on a product σ-field generated by

FY ∗ ×FT ∗ ×FZ ×FX , where FV denotes the σ-field on which QV is defined.

A.1 Proofs for Section 4

Proof of Lemma 4.1. We first establish the existence of the dominating measure Q̄ ∈ Θ0.

To this end, first note that since µ is separable by Assumption 2.2(ii), Lemma 13.14 in

Aliprantis and Border (2006) implies that L1(µ) is separable under ∥ · ∥µ,1. Next set

D0 ≡ {dQ/dµ : Q ∈ Θ0} and note that Corollary 3.5 in Aliprantis and Border (2006),

D0 ⊂ L1(µ), and L1(µ) being separable imply D0 is also separable under ∥ · ∥µ,1. Hence,
there exists a countable set D ≡ {Qi}∞i=1 ⊆ Θ0 such that for any Q ∈ Θ0 and ϵ > 0

∥dQ
dµ

− dQi

dµ
∥µ,1 < ϵ (A.1)

for some Qi ∈ D. Next note that by Assumption 2.2(iii), Q is a closed convex subset of

a Banach space Q with norm ∥ · ∥Q. For any 2 ≤ n <∞ then define

λin =


1−

∑n
i=2 λin if i = 1

2−i/max{1, ∥dQi/dµ∥Q} if 2 ≤ i ≤ n

0 if i > n

(A.2)

and note that
∑n

i=1 λin = 1 and λin > 0 for any 1 ≤ i ≤ n due to
∑∞

i=1 2
−i = 1.

Therefore, since Q is convex by Assumption 2.2(iii), it follows that

fn ≡
n∑

i=1

λin
dQi

dµ

belongs to Q for all n. Moreover, for any n < m the triangle inequality yields that

∥fn − fm∥Q ≤ |λ1n − λ1m|∥dQ1

dµ
∥Q +

m∑
i=n+1

λim∥dQi

dµ
∥Q

≤ (λ1n − λ1m)∥dQ1

dµ
∥Q +

∞∑
i=n+1

1

2i
, (A.3)
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where we employed that λim∥dQi/dµ∥Q ≤ 2−i and λ1n is decreasing in n by (A.2).

Furthermore, since 1/2 < λ1n by (A.2) and
∑∞

i=1 2
−i = 1, it follows from λ1n being

decreasing in n that the sequence {λ1n}∞n=1 has a limit in R. Hence, by (A.3) we obtain

that the sequence {fn}∞n=1 is Cauchy in Q. By completeness of Q, there therefore exists

a q0 ∈ Q such that ∥fn − q0∥Q = o(1) and since Q is closed in Q we obtain that

q0 ∈ Q ⊆ L1(µ). Finally, we define Q̄ satisfying Q̄≪ µ and dQ̄/dµ ∈ Q by setting

Q̄(A) ≡
∫
A
q0dµ (A.4)

for any measurable set A. Since by Assumption 2.2(iii) we have ∥ · ∥µ,1 ≲ ∥ · ∥Q we can

also conclude that ∥fn − q0∥µ,1 = o(1). Therefore, for any bounded g we obtain

lim
n→∞

|
∫
gdQ̄−

n∑
i=1

λin

∫
gdQi| ≤ lim

n→∞
∥g∥∞

∫
|q0 −

n∑
i=1

λin
dQi

dµ
|dµ = 0. (A.5)

In particular, we note that (A.5) immediately yields
∫
dQ̄ = 1 and 0 ≤ Q̄(A) ≤ 1 for

any measurable set A and hence by (A.4) that Q̄ is indeed a probability measure.

We next show that Q̄ ∈ Θ0. To this end note that (A.5) and Qi ∈ Θ0 implying Qi

induces P yields that for any value t ∈ T and (measurable) set V we must have

Q̄(T ⋆(Z) = t, (Y ⋆(t), Z,X) ∈ V ) = lim
n→∞

n∑
i=1

λinQi(T
⋆(Z) = t, (Y ⋆(t), Z,X) ∈ V )

= lim
n→∞

n∑
i=1

λinP (T = t, (Y,Z,X) ∈ V )

= P (T = t, (Y,Z,X) ∈ V ), (A.6)

since
∑n

i=1 λin = 1, which implies Q̄ also induces P . Next let f and g be arbitrary

bounded functions of (Y ⋆, T ⋆, X) and (Z,X) respectively and note that

EQ̄[g(Z,X)f(Y ⋆, T ⋆, X)] = lim
n→∞

n∑
i=1

λinEQi [g(Z,X)EQi [f(Y
⋆, T ⋆, X)|X]]

= lim
n→∞

n∑
i=1

λinEP [g(Z,X)EQi [f(Y
⋆, T ⋆, X)|X]]

= EQ̄[g(Z,X)( lim
n→∞

n∑
i=1

λinEQi [f(Y
⋆, T ⋆, X)|X])], (A.7)

where the first equality follows from (A.5) and (Y ⋆, T ⋆) ⊥⊥ Z|X under Qi and the second

equality from Qi inducing P due to Qi ∈ Θ0. In turn, the third equality in (A.7) follows

from the dominated convergence theorem and Q̄ inducing P as shown in (A.6). Since
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(A.7) holds for any bounded g, Definition 10.1.1 in Bogachev (2007) we obtain

EQ̄[f(Y
⋆, T ⋆, X)|X,Z] = lim

n→∞

n∑
i=1

λinEQi [f(Y
⋆, T ⋆, X)|X]

= EQ̄[f(Y
⋆, T ⋆, X)|X], (A.8)

where the second equality can be deduced by applying the equalities in (A.7) evaluated

at functions g of X only. We have so far shown that result (A.8) holds for any arbitrary

bounded f . To extend the result to any f ∈ L1(Q̄) let fM ≡ f1{|f | ≤ M} and note

that result (A.8) and Proposition 10.1.7 in Bogachev (2007) imply that

EQ̄[f(Y
⋆, T ⋆, X)|X,Z] = lim

M↑∞
EQ̄[fM (Y ⋆, T ⋆, X)|X,Z]

= lim
M↑∞

EQ̄[fM (Y ⋆, T ⋆, X)|X] = EQ̄[f(Y
⋆, T ⋆, X)|X]. (A.9)

Since (A.9) holds for any integrable f , we can conclude that (Y ⋆, T ⋆) ⊥⊥ Z|X under Q̄

and therefore, by the preceding results, that Q̄ ∈ Θ0. Next, fix an arbitrary Q ∈ Θ0 and

set A with Q(A) > 0 and note that there exists a Qk ∈ D satisfying

∥dQ
dµ

− dQk

dµ
∥µ,1 <

Q(A)

2

by result (A.1). Hence, the triangle and Jensen’s inequalities allow us to conclude that

Qk(A) ≥ Q(A)− |
∫
A
(
dQ

dµ
− dQk

dµ
)dµ| ≥ Q(A)− ∥dQ

dµ
− dQk

dµ
∥µ,1 >

Q(A)

2
(A.10)

and thus that Qk(A) > 0 as well. Since definition (A.2) implies that the sequence

{λkn}∞n=1 is bounded away from zero for n sufficiently large, we can combine results

(A.5) and (A.10) to obtain that Q̄(A) ≥ lim infn→∞ λknQk(A) > 0. In particular, since

A was arbitrary we can conclude that Q≪ Q̄ as desired.

In order to establish Θ0 is convex, let Q1, Q2 ∈ Θ0, γ ∈ [0, 1], and define Qγ ≡
γQ1+(1−γ)Q2. Then note: (i) dQγ/dµ = γdQ1/dµ+(1−γ)dQ2/dµ ∈ Q by Assumption

2.2(iii); (ii) Qγ induces P by the arguments in (A.6) applied with Qγ in place of Q̄; and

(iii) (Y ⋆, T ⋆) ⊥⊥ Z|X under Qγ by the arguments in (A.7) and (A.8) applied with Qγ in

place of Q̄. It follows that Qγ ∈ Θ0 and therefore that Θ0 is convex.

Proof of Lemma 4.2. First note that Q̄(Υ(κ) = ℓ) = 1 and Lemma 4.1 together imply

that Q(Υ(κ) = ℓ) = 1 for all Q ∈ Θ0. By Corollary A.1 we can thus conclude

f(Y ⋆, T ⋆, X) = EQ[κ(Y, T, Z,X)|Y ⋆, T ⋆, X] (A.11)

Q-almost surely for any Q ∈ Θ0. Result (A.11) and κ ∈ L1(P ) therefore yields that
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f ∈ L1(Q) for all Q ∈ Θ0 as claimed. Hence, for any Q ∈ Θ0 we can conclude

EQ[f(Y
⋆, T ⋆, X)] = EQ[κ(Y, T, Z,X)] = EP [κ(Y, T, Z,X)]

where the first equality follows from (A.11) and the law of iterated expectations, and

the second equality follows from Q ∈ Θ0.

Proof of Corollary 4.1. By Lemma A.2, we have µ(Υ(κ) = ℓ) = 1 and hence also that

Q̄(Υ(κ) = ℓ) = 1 due to Q̄≪ µ. Thus, the result is immediate from Lemma 4.2.

Proof of Theorem 4.1. We first show that λQ0 being identified implies that Λ belongs

to the τ -closure of R. To this end, we let L′ denote the linear span of {R∪Λ} and note

that every L ∈ L can be identified with a linear functional on L′ through the relation

L′ 7→ L′(L). We endow L′ with the weak topology generated by L, which we denote

by σ(L′,L), and observe (L′, σ(L′,L)) is a topological vector space and its topological

dual is L; see, e.g., Example 1.3.23 in Bogachev and Smolyanov (2017). Moreover, since

σ(L′,L) is generated by the family of seminorms {|L|}L∈L, Theorem 5.73 in Aliprantis

and Border (2006) implies that (L′, σ(L′,L)) is additionally locally convex. We also

note that by Lemma 2.53 in Aliprantis and Border (2006), the τ topology on {R ∪ Λ}
coincides with the relative topology on {R∪Λ} that is induced by the topology σ(L′,L)
on L′. Therefore, Λ belongs to the τ -closure of R (in {R ∪ Λ}) if and only if Λ belongs

to the σ(L′,L)-closure of R (in L′); see, e.g., Theorem 17.4 in Munkres (2000). Letting

R̄ denote the σ(L′,L)-closure of R in L′, it then follows that in order to show that Λ

belongs to the τ -closure of R it suffices to establish that Λ ∈ R̄.

We proceed by contradiction and suppose that Λ /∈ R̄. Since, as argued, (L′, σ(L′,L))
is a locally convex topological vector space and L is its topological dual, Corollary 5.80

in Aliprantis and Border (2006) implies there then is an L0 ∈ L satisfying

L0(Λ) ̸= 0 L0(L
′) = 0 for all L′ ∈ R̄. (A.12)

Moreover, by definition of L there is a finite collection {(sj , Qj)}Jj=1 with sj ∈ SQj

and Qj ∈ Θ0 for all 1 ≤ j ≤ J and such that for all L′ ∈ L′ we have L0(L
′) =

L′(
∑J

j=1⟨·, sj⟩Qj ). Hence, by definition of R and Υ we obtain for any f ∈ L1(P ) that

0 =

J∑
j=1

EQj [(
∑
t∈T

EPZ|X [f(Y
⋆(t), t, Z,X)1{T ⋆(Z) = t}])sj(Y ⋆, T ⋆, X)]

=

J∑
j=1

EQj [f(Y, T, Z,X)EQj [sj(Y
⋆, T ⋆, X)|Y, T, Z,X]]

= EP [f(Y, T, Z,X)(
J∑

j=1

EQj [sj(Y
⋆, T ⋆, X)|Y, T, Z,X])], (A.13)
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where the first equality follows from L0(L
′) = 0 for all L′ ∈ R, the second from Corollary

A.1 and the law of iterated expectations, and the third from Qj ∈ Θ0 for all 1 ≤ j ≤ J .

Thus, since (A.13) was shown to hold for any f ∈ L1(P ) we can conclude that

P (

J∑
j=1

EQj [sj(Y
⋆, T ⋆, X)|Y, T, Z,X] = 0) = 1.

Hence, by Lemma A.3 there are Q̃,Qa ∈ Θ0 and η > 0 such that for all (measurable) A

Q̃(A) = Qa(A) + η
J∑

j=1

EQj [sj(Y
⋆, T ⋆, X)1{(Y ⋆, T ⋆, Z,X) ∈ A}].

Letting 1 denote the function in L∞(Q̄) that takes a constant value of one, we then

obtain by definition of λQ, L0(Λ) = Λ(L0) and the definition of Λ that

λQ̃ = lim
k→∞

⟨ℓk,1⟩Q̃ = lim
k→∞

{⟨ℓk,1⟩Qa + η

J∑
j=1

⟨ℓk, sj⟩Qj} = λQa + ηL0(Λ).

However, η > 0 and L0(Λ) ̸= 0 by (A.12) together imply that λQ̃ ̸= λQa . Thus, since

Q̃,Qa ∈ Θ0 we obtain that λQ is not identified reaching a contradiction. We therefore

conclude that if λQ is identified, then Λ must belong to the τ -closure of R.

For the converse direction, we now suppose that Λ belongs to the τ -closure of R.

Since L is identified (because it only depends on Θ0), Λ is identified (because {ℓj}∞j=1 is

identified), and R is identified (because Υ : L1(P ) → L1(Q̄) is identified), Theorem 2.4

in Aliprantis and Border (2006) implies there is an identified net {L′
α}α∈A with

lim
α
L′
α(L) = Λ(L) for all L ∈ L (A.14)

and L′
α ∈ R for all α ∈ A. Therefore, for any Q1, Q2 ∈ Θ0 we can then conclude that

λQ1 = Λ(⟨·,1⟩Q1) = lim
α
L′
α(⟨·,1⟩Q1) = lim

α
L′
α(⟨·,1⟩Q2) = Λ(⟨·,1⟩Q2) = λQ2 ,

where the first and last equalities follow by definition of Λ, the second and fourth

equalities by result (A.14), and the third equality by Lemma 4.2 and L′
α ∈ R. Thus, we

conclude that λQ is constant in Q ∈ Θ0 and is therefore identified.

Proof of Corollary 4.2. First note that Assumptions 2.1 and 2.2 were directly imposed.

Moreover, Assumption 4.1(i) is satisfied since ℓ ∈ L1(µ), dQ/dµ ∈ L∞(µ) for all Q ∈ Θ0

by Assumption 2.2(iii), and Holder’s inequality imply for any Q ∈ Θ0 that

EQ[|ℓ(Y ⋆, T ⋆, X)|] =
∫

|ℓ|dQ
dµ

dµ ≤ ∥ℓ∥µ,1∥
dQ

dµ
∥µ,∞ <∞. (A.15)
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Also note that Assumption 4.1(ii) is immediate since here the sequence {ℓj} is constant,

while Assumption 4.1(iii) trivially holds due to Q = Q. Thus, Theorem 4.1 implies that

λQ is identified if and only if Λ belongs to the τ -closure of R.

To establish part (i), note that since ℓ ∈ L1(Q) for all Q ∈ Θ0 and sdQ̄/dµ ∈ L∞(µ)

for any s ∈ L∞(Q̄Y ⋆T ⋆X) (because Q̄ ≪ µ and dQ̄/dµ ∈ L∞(µ)), it follows that in this

application SQ̄ = L∞(Q̄Y ⋆T ⋆X). Therefore, Lemma A.4 and the definition of R imply

that there is a sequence {κj} ⊆ L1(P ) satisfying ∥ℓ − Υ(κj)∥Q̄,1 = o(1). Since µ ≪ Q̄

and dµ/dQ̄ is bounded, we can conclude {κj} also satisfies ∥ℓ−Υ(κj)∥µ,1 = o(1). For the

converse, note that if there is a sequence {κj} ⊂ L1(P ) satisfying ∥ℓ−Υ(κj)∥µ,1 = o(1),

then dQ/dµ ∈ L∞(µ) for all Q ∈ Θ0 and Holder’s inequality yields

lim
j→∞

∥ℓ−Υ(κj)∥Q,1 ≤ ∥dQ
dµ

∥µ,∞ × lim
j→∞

∥ℓ−Υ(κj)∥µ,1 = 0. (A.16)

Therefore, for any Q1, Q2 ∈ Θ0, Lemma 4.2 and result (A.16) together establish that

λQ1 = lim
j→∞

∫
Υ(κj)dQ1 = lim

j→∞

∫
κjdP = lim

j→∞

∫
Υ(κj)dQ2 = λQ2 ,

which establishes λQ0 is identified and λQ0 = limj→∞EP [κj(Y, T, Z,X)]. In turn part

(ii) of the Corollary follows from part (i) and Lemma A.2.

Proof of Theorem 4.2. By Theorem 4.1, λQ0 is identified if and only if Λ belongs to the

τ -closure of R. Since RT ⊆ R, it immediately follows that if Λ is in the τ -closure of

RT , then λQ0 is identified. Thus, to establish the theorem it suffices to show that if Λ is

in the τ -closure of R, then it must also belong to the τ -closure of RT . To this end, note

that if Λ belongs to the τ -closure of R, then the definition of R and Theorem 2.14 in

Aliprantis and Border (2006) imply that there exists a net {fα}α∈A ⊆ L1(P ) satisfying

lim
α
⟨s,Υ(fα)⟩Q = Λ(⟨s, ·⟩Q) (A.17)

for all s ∈ SQ and Q ∈ Θ0. Next, set gα(t, Z,X) ≡ EQ̄Y ⋆|X
[fα(Y

⋆(t), t, Z,X)] for any

t ∈ {t1, . . . , td}. By Jensen’s inequality, Q̄ ∈ Θ0, and the definition of Q̄it we then obtain

EP [|gα(T,Z,X)|] = EQ̄T⋆ZX
[
∑
t∈T

1{T ⋆(Z) = t}|EQ̄Y ⋆|X
[fα(Y

⋆(t), t, Z,X)]|]

≤ EQ̄it [
∑
t∈T

1{T ⋆(Z) = t}|fα(Y ⋆(t), t, Z,X)|]

= EQ̄it
Y ∗T∗X

[
∑
t∈T

EQ̄Z|X
[1{T ⋆(Z) = t}|fα(Y ⋆(t), t, Z,X)|]], (A.18)

where the final equality follows from Lemma A.1 and Q̄it
ZX = Q̄ZX . Letting 1 denote the

function of (Y ⋆, T ⋆, X) taking a constant value of 1, note that 1 ∈ SQ̄ and Assumption

4.2(ii) imply dQ̄it
Y ⋆T ⋆X/dQ̄Y ⋆T ⋆X ∈ SQ̄. In particular, since SQ̄ ⊆ L∞(Q̄Y ⋆T ⋆X), we may
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conclude that dQ̄it
Y ⋆T ⋆X/dQ̄Y ⋆T ⋆X is bounded, which together with (A.18) yields

EP [|gα(T,Z,X)|] ≲ EQ̄Y ∗T∗X
[
∑
t∈T

EQ̄Z|X
[1{T ⋆(Z) = t}|fα(Y ⋆(t), t, Z,X)|]]

= EP [|fα(Y, T, Z,X)|], (A.19)

where the equality follows from Corollary A.1 and Q̄ ∈ Θ0 implying Q̄Z|X = PZ|X .

Thus, since fα ∈ L1(P ), result (A.19) implies that gα ∈ L1(PTZX).

Next select any s0 ∈ SQ̄ ∩ L∞(Q̄T ⋆X) and note that the definition of Υ yields that

⟨s0,Υ(gα)⟩Q̄ = EQ̄T⋆X
[EPZ|X [EQ̄Y ⋆|X

[
∑
t∈T

1{T ⋆(Z) = t}fα(Y ⋆(t), t, Z,X)s0(T
⋆, X)]]]

= EQ̄it [
∑
t∈T

1{T ⋆(Z) = t}fα(Y ⋆(t), t, Z,X)s0(T
⋆, X)]

= EQ̄it
Y ∗T∗X

[
∑
t∈T

EQ̄it
Z|X

[1{T ⋆(Z) = t}fα(Y ⋆(t), t, Z,X)]s0(T
⋆, X)], (A.20)

where in the second equality we employed Lemma A.1, PZ|X = Q̄Z|X due to Q̄ ∈ Θ0, and

the definition of Q̄it, while the final equality follows from Lemma A.1 and (Y ⋆, T ⋆) ⊥⊥
Z|X under Q̄it. Further note that because s0 and ℓj only depend on (T ⋆, X) we have

Λ(⟨·, s0⟩Q̄) = lim
j→∞

⟨ℓj , s0⟩Q̄T⋆X
= lim

j→∞
⟨ℓj , s0⟩Q̄i

T⋆X
= lim

j→∞
⟨ℓj , s0

dQ̄it
Y ⋆T ⋆X

dQ̄Y ⋆T ⋆X
⟩Q̄

= lim
α
⟨Υ(fα), s0

dQ̄it
Y ⋆T ⋆X

dQ̄Y ⋆T ⋆X
⟩Q̄ = lim

α
⟨Υ(fα), s0⟩Q̄it = lim

α
⟨Υ(gα), s0⟩Q̄, (A.21)

where the second equality follows from Q̄T ⋆X = Q̄it
T ⋆X , the fourth from result (A.17), Q̄ ∈

Θ0, and s0(dQ̄
it
Y ⋆T ⋆X/dQ̄Y ⋆T ⋆X) ∈ SQ̄ by Assumption 4.2(ii), and the sixth from result

(A.20), the definition of Υ, and Q̄it
Z|X = Q̄Z|X = PZ|X . To conclude, let ΠQ(s)(T

⋆, X) ≡
EQ[s(Y

⋆, T ⋆, X)|T ⋆, X] and note that for any s ∈ SQ and Q ∈ Θ0 we have

Λ(⟨·, s⟩Q) = lim
j→∞

⟨ℓj ,ΠQ(s)⟩Q = lim
j→∞

⟨ℓj ,ΠQ(s)
dQT ⋆X

dQ̄T ⋆X
⟩Q̄

= lim
α
⟨Υ(gα),ΠQ(s)

dQT ⋆X

dQ̄T ⋆X
⟩Q̄ = lim

α
⟨Υ(gα), s⟩Q, (A.22)

where the first equality follows from ℓj depending only on (T ⋆, X), the third equality

follows from result (A.21) and ΠQ(s)dQT ⋆X/dQ̄T ⋆X ∈ SQ̄ by Assumptions 4.2(iii) and

4.2(iv), while the final equality follows from the law of iterated expectations. Thus,

result (A.22) and Theorem 2.14 in Aliprantis and Border (2006) implies that Λ belongs

to the τ -closure of RT , which establishes the claim of the theorem.

Proof of Corollary 4.3. The fact that existence of a κ ∈ L1(PTZX) satisfying Q̄(Υ(κ) =

ℓ) = 1 implies λQ0 is identified follows from Lemma 4.2. To establish the converse, we
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verify the conditions for Theorem 4.2. To this end, note Assumptions 2.1 and 2.2 were

directly assumed, while Assumption 4.1(iii) is immediate from Q = Q = L1(µ). Define

T⋆
0 ≡ {t⋆ ∈ T⋆ : Q̄(T ⋆ = t⋆) > 0},

and note that Q(T ⋆ ∈ T⋆
0) = 1 for any Q ∈ Θ0 due to Q ≪ Q̄. Moreover, since any

Q ∈ Θ0 must satisfy QX = Q̄X = PX , it follows by direct calculation that

dQT ⋆X

dQ̄T ⋆X
(T ⋆, X) =

∑
t⋆∈T⋆

0

1{T ⋆ = t⋆}Q(T ⋆ = t⋆|X)

Q̄(T ⋆ = t⋆|X)
(A.23)

for any Q ∈ Θ0. In particular, since Q̄(T ⋆ = t⋆|X) ≥ ε a.s. result (A.23) implies that

∥dQT ⋆X

dQ̄T ⋆X
∥Q̄,∞ ≤ 1

ε
. (A.24)

Hence, ℓ ∈ L1(Q̄T ⋆X) and (A.24) imply ℓ ∈ L1(Q) for any Q ∈ Θ0, verifying Assump-

tions 4.1(i)(ii). Further note that in this application SQ = L∞(QY ⋆T ⋆X) for any Q ∈ Θ0

and therefore Assumptions 4.2(i)(ii) hold (because we assumed dQ̄it/dQ̄ is bounded),

Assumption 4.2(iii) follows from (A.24), and Assumption 4.2(iv) holds by Jensen’s in-

equality. Thus, all the conditions of Theorem 4.2 are satisfied and we can conclude that

if λQ0 is identified, then Λ belongs to the τ -closure of RT . By applying Lemma A.4 we

can then conclude that there exists a sequence {κj} ⊆ L1(PTZX) satisfying

lim
j→∞

∥ℓ−Υ(κj)∥Q̄,1 = 0. (A.25)

Next let S0 ≡ {(t, z) ∈ T×Z : P (T = t, Z = z) > 0} and note that Q̄ ∈ Θ0 implying

Q̄ is observationally equivalent to Q0 and (Y ⋆, T ⋆) ⊥⊥ Z|X under Q̄ yield

P (T = t, Z = z|X) = Q̄(T ⋆(z) = t, Z = z|X)

=
∑

t⋆∈T⋆
0:t

⋆(z)=t

Q̄(T ⋆ = t⋆|X)P (Z = z|X) ≥ ε2 (A.26)

for any (t, z) ∈ S0, and where in the final inequality we employed that Q̄(T ∗ = t∗|X) ≥ ε

for any t∗ ∈ T∗
0 and P (Z = z|X) ≥ ε for any z ∈ Z by hypothesis. Hence, for any event

E with P (X ∈ E) > 0 and (t, z) ∈ S0, Bayes’ rule and result (A.26) yield

P (X ∈ E) =
P (X ∈ E|T = t, Z = z)P (T = t, Z = z)

P (T = t, Z = z|X ∈ E)
≤ P (X ∈ E|T = t, Z = z)

ε2
.

Letting PX|t,z denote the distribution of X conditional on (T,Z) = (t, z) for any (t, z) ∈
S0, it therefore follows that PX ≪ PX|t,z and dPX/dPX|t,z ≤ ε−2 almost surely under
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PX|t,z. In particular, we can conclude for any (t, z) ∈ S0 and 1 ≤ j <∞ that

EPX
[|κj(t, z,X)|] ≤ 1

ε2
EP [|κj(t, z,X)||T = t, Z = z] ≤ 1

ε4
EP [|κj(T,Z,X)|] (A.27)

where the final inequality follows by noting (A.26) implies P (T = t, Z = z) ≥ ε2.

Thus, κj ∈ L1(PTZX) and result (A.27) together imply that κj(t, z, ·) ∈ L1(PX) for any

(t, z) ∈ S0. Next set κ̃j(t, z,X) ≡ κj(t, z,X)P (Z = z|X) and note that

∥ℓ−Υ(κj)∥Q̄,1 = EQ̄[|ℓ(T ⋆, X)−
∑

(t,z)∈S0

1{T ⋆(z) = t}κj(t, z,X)P (Z = z|X)|]

= EQ̄[|ℓ(T ⋆, X)−
∑

(t,z)∈S0

1{T ⋆(z) = t}κ̃j(t, z,X)|]. (A.28)

Since κ̃j(t, z, ·) ∈ L1(PX) for all (t, z) ∈ S0, results (A.25), (A.28), and Lemma A.5

imply there are functions {f0(t, z,X)}(t,z)∈S0
satisfying f0(t, z, ·) ∈ L1(PX) and

EQ̄[|ℓ(T ⋆, X)−
∑

(t,z)∈S0

1{T ⋆(z) = t}f0(t, z,X)|] = 0.

Finally, set κ(t, z,X) ≡ f0(t, z,X)/P (Z = z|X) and note that κ ∈ L1(PTZX) because

P (Z = z|X) ≥ ε > 0 a.s. and f0(t, z, ·) ∈ L1(PX) for any (t, z) ∈ S0. We then obtain

EQ̄[|ℓ(T ⋆, X)−
∑
t∈T

EPZ|X [1{T
⋆(Z) = t}κ(t, Z,X)]|]

= EQ̄[|ℓ(T ⋆, X)−
∑

(t,z)∈S0

1{T ⋆(z) = t}f0(t, z,X)|] = 0,

yielding that identification of λQ implies the existence of the desired κ. Hence, we have

shown that λQ0 is identified if and only if Q̄(ℓ = Υ(κ)) = 1 for some κ ∈ L1(PTZX),

which establishes part (i) of the corollary. Part (ii) of the corollary is immediate from

part (i), Lemma A.2, µ≪ Q̄ by assumption, and Q̄≪ µ since Q̄ ∈ Θ0.

Proof of Theorem 4.3. We first show that if Λ belongs to the τ -closure of Rt, then

λQ0 is identified. To this end, note that L is identified (because Θ0 is identified), Λ is

identified (because {ℓj} is identified), and Rt is identified (because Υ : L1(P ) → L1(Q̄)

is identified). Hence, Theorem 2.14 in Aliprantis and Border (2006) and Λ being in the

τ -closure of Rt imply there is an identified net {L′
α}α∈A satisfying

lim
α
L′
α(L) = Λ(L) for all L ∈ L. (A.29)

Next, let ΠQ(s)(T
⋆, X) ≡ EQ[s(Y

⋆, T ⋆, X)|T ⋆, X] for any s ∈ L1(Q), and note that

Assumption 4.3(i) and the law of iterated expectations imply for any Q ∈ Θ0 that

λQ = Λ(⟨·,ΠQ(ρ)⟩Q) = lim
α
L′
α(⟨·,ΠQ(ρ)⟩Q), (A.30)
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where the second equality follows from (A.29) and ΠQ(ρ) ∈ SQ by Assumption 4.4(i).

Also note that, by definition of Rt, there exists a net {fα}α∈A ⊆ L1(PtZX) satisfying

L′
α(⟨·, s⟩Q) = ⟨Υ(fα), s⟩Q for any Q ∈ Θ0 and s ∈ SQ. Noting that fα(T,Z,X) =

gα(Z,X)1{T = t} for some function gα, we then obtain that

L′
α(⟨·,ΠQ(ρ)⟩Q) = EQ[EQ[ρ(Y

⋆(t))|T ⋆, X]EPZ|X [gα(Z,X)1{T ⋆(Z) = t}]]

= EQ[EPZ|X [ρ(Y
⋆(t))gα(Z,X)1{T ⋆(Z) = t}]] = EP [ρ(Y )gα(Z,X)1{T = t}], (A.31)

where the final equality follows from Corollary A.1, the law of iterated expectations, and

Q ∈ Θ0. Since (A.30) and (A.31) hold for any Q ∈ Θ0, it follows that λQ0 is identified.

We next establish that if λQ0 is identified, then Λ must belong to the τ -closure of

Rt. To this end, we first define the spaces SQ,ρ and Lρ to be given by

SQ,ρ ≡ {s ∈ L∞(QY ⋆T ⋆X) : | lim
j→∞

⟨s, ρℓj⟩Q| <∞ and s
dQ

dµ
∈ Q}

Lρ ≡ span{L :
⋂

Q∈Θ0

L1(Q) → R s.t. L = ⟨·, s⟩Q for some s ∈ SQ,ρ and Q ∈ Θ0},

let Λρ(L) ≡ limj→∞ L(ℓjρ) for any L ∈ Lρ, and τρ denote the weak topology on {R∪Λρ}
that is generated by Lρ – i.e. SQ,ρ, Lρ, Λρ, and τρ correspond to our definitions for

L,SQ,Λ, and τ applied with {ℓjρ} in place of {ℓj}. By Theorem 4.1 and λQ0 being

identified, it then follows that Λρ belongs to the τρ-closure of R. Hence, Theorem 2.14

in Aliprantis and Border (2006) implies there is a net {L′
α}α∈A ⊆ R satisfying

lim
α
L′
α(L) = Λρ(L) for all L ∈ Lρ. (A.32)

Next note that Y ⋆(t) being independent of T ⋆ conditionally onX under Q̄io, the marginal

distribution of (Y ⋆(t), X) being the same under Q̄ and Q̄io, the law of iterated expecta-

tions, and Assumptions 4.4(ii)(iii) allow us to conclude that

Q̄io(EQ̄io [ρ(Y ⋆(t))ϕQ̄,ρ(Y
⋆(t), X)|T ⋆, X] = 1) = 1. (A.33)

Fixing an arbitrary s ∈ SQ̄, then note that the law of iterated expectations, the marginal

distribution of (T ⋆, X) being the same under Q̄ and Q̄io and result (A.33) yield

lim
j→∞

⟨ℓj , s⟩Q̄ = lim
j→∞

⟨ℓj ,ΠQ̄(s)⟩Q̄ = lim
j→∞

⟨ℓj ,ΠQ̄(s)⟩Q̄io

= lim
j→∞

⟨ℓjρ, ϕQ̄,ρΠQ̄(s)⟩Q̄io = lim
j→∞

⟨ℓjρ, ϕQ̄,ρΠQ̄(s)
dQ̄io

Y ⋆T ⋆X

dQ̄Y ⋆T ⋆X
⟩Q̄, (A.34)

where the final equality follows from Assumption 4.4(ii). Since the limit in (A.34)

exists due to s ∈ SQ̄, Assumptions 4.4(i)(iii) imply ϕQ̄,ρΠQ̄(s)(dQ̄
io
Y ⋆T ⋆X/dQ̄Y ⋆T ⋆X) ∈

SQ̄,ρ. Next note that by definition of R, there exists a net {vα}α∈A ⊆ L1(P ) such that
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L′
α(⟨·, s⟩Q) = ⟨Υ(vα), s⟩Q for any Q ∈ Θ0 and s ∈ SQ,ρ. In particular, we have

lim
j→∞

⟨ℓj , s⟩Q̄ = lim
α
⟨Υ(vα), ϕQ̄,ρΠQ̄(s)

dQ̄io
Y ⋆T ⋆X

dQ̄Y ⋆T ⋆X
⟩Q̄ = lim

α
⟨Υ(vα), ϕQ̄,ρΠQ̄(s)⟩Q̄io (A.35)

due to (A.32) and (A.34). Next set fα(T,Z,X) ≡ 1{T = t}gα(Z,X) with gα given by

gα(Z,X) ≡ EQ̄Y ⋆(t)|X
[vα(Y

⋆(t), t, Z,X)ϕQ̄,ρ(Y
⋆(t), X)],

and where in the expectation Z and X are kept constant. Also note that Q̄ ∈ Θ0,

Jensen’s inequality, and ϕQ̄,ρ ∈ L∞(Q̄) by Assumption 4.4(iii) imply that

EP [|fα(T,Z,X)|] ≲ EQ̄T⋆ZX
[1{T ⋆(Z) = t}EQ̄Y ⋆(t)|X

[|vα(Y ⋆(t), t, Z,X)|]

= EQ̄io [1{T ⋆(Z) = t}|vα(Y ⋆(t), t, Z,X)|]

≲ EQ̄[1{T ⋆(Z) = t}|vα(Y ⋆(t), t, Z,X)|]

= EP [|1{T = t}vα(Y, T, Z,X)|], (A.36)

where the first equality holds by definition of Q̄io; the second inequality follows from

dQ̄io/dQ̄ ∈ L∞(Q̄) by Assumption 4.4(ii); and the final equality holds because Q̄ ∈ Θ0.

In particular, since vα ∈ L1(P ), result (A.36) implies fα ∈ L1(PtZX) and therefore that

Υ(fα) ∈ Rt. Finally, we observe that the law of iterated expectations, Q̄ ∈ Θ0, Corollary

A.1, and Q̄io
T ⋆ZX = Q̄T ⋆ZX allow us to conclude for any s ∈ SQ̄ that

⟨Υ(fα), s⟩Q̄
= EQ̄io [gα(Z,X)1{T ⋆(Z) = t}EQ̄[s(Y

⋆, T ⋆, X)|T ⋆, X]]

= EQ̄io [vα(Y
⋆(t), t, Z,X)1{T ⋆(Z) = t}ϕQ̄,ρ(Y

⋆(t), X)EQ̄[s(Y
⋆, T ⋆, X)|T ⋆, X]]

=
∑
t̃∈T

EQ̄io [vα(Y
⋆(t̃), t̃, Z,X)1{T ⋆(Z) = t̃}ϕQ̄,ρ(Y

⋆(t), X)EQ̄[s(Y
⋆, T ⋆, X)|T ⋆, X]]

= ⟨Υ(vα), ϕQ̄,ρΠQ̄(s)⟩Q̄io , (A.37)

where the second equality follow from the definition of Q̄io and gα; the third equality

from (Y ⋆(t̃), T ⋆, Z) being independent of Y ⋆(t) conditionally on X under Q̄io whenever

t̃ ̸= t, EQ̄io [ϕQ̄,ρ(Y
⋆(t), X)|X] = 0 by definition of ϕQ̄,ρ and Q̄io

Y ⋆(t)X = Q̄Y ⋆(t)X ; and the

final equality holds by Lemma A.1 and Q̄io
ZX = Q̄ZX = PZX . Thus, combining results

(A.35) with (A.37) allows us to conclude that for any s ∈ SQ̄ we have

lim
j→∞

⟨ℓj , s⟩Q̄ = lim
α
⟨Υ(fα), s⟩Q̄. (A.38)

To conclude, note that for any Q ∈ Θ0 and s ∈ SQ, the law of iterated expectations,
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Q≪ Q̄, ΠQ(s)dQT ⋆X/dQ̄T ⋆X ∈ SQ̄ by Assumptions 4.4(i)(iv), and result (A.38) yield

Λ(⟨·, s⟩Q) = lim
j→∞

⟨ℓj ,ΠQ(s)⟩Q = lim
j→∞

⟨ℓj ,ΠQ(s)
dQT ⋆X

dQ̄T ⋆X
⟩Q̄

= lim
α
⟨Υ(fα),ΠQ(s)

dQT ⋆X

dQ̄T ⋆X
⟩Q̄ = lim

α
⟨Υ(fα), s⟩Q.

Hence, since Υ(fα) ∈ Rt, we conclude that Λ belongs to the τ -closure of Rt.

Proof of Corollary 4.4. The proof is similar to that of Corollary 4.3 and we therefore omit

some of the details. We first verify that the assumptions of Theorem 4.3 are satisfied. To

this end, note that Assumptions 2.1 and 2.2 were directly imposed, whileQ = Q = L1(µ)

implies Assumption 4.1(iii) holds. Letting T⋆
0 ≡ {t⋆ ∈ T⋆ : Q̄(T ⋆ = t⋆) > 0}, it can then

be shown that Q̄(T ⋆ = t⋆|X) ≥ ε > 0 a.s. and QX = PX for any Q ∈ Θ0 yield

∥dQT ⋆X

dQ̄T ⋆X
∥Q̄,∞ ≤ 1

ε
. (A.39)

In particular, ℓ ∈ L1(Q̄T ⋆X) and result (A.39) imply that Assumptions 4.3(i)(ii) also

hold. Moreover, since in this application SQ = L∞(QY ⋆T ⋆X) for any Q ∈ Θ0, Assump-

tions 4.4(i) and (iv) hold by Jensen’s inequality and result (A.39) respectively. Similarly,

we note that Assumption 4.4(ii) was directly imposed, while Assumption 4.4(iii) is satis-

fied since we assumed ρ ∈ L∞(Q̄) and VarQ̄{ρ(Y ⋆(t0))|X} ≥ ε > 0 a.s. under Q̄. Thus,

the conditions of Theorem 4.3 hold.

Next note that if (i) holds, then Theorem 4.3 implies Λ belongs to the τ -closure of

Rt. By Lemma A.4, there therefore exists a sequence {κj} ∈ L1(PZXt) satisfying

lim
j→∞

∥ℓ−Υ(κj)∥Q̄,1 = 0. (A.40)

Letting Z0 ≡ {z ∈ Z : P (T = t, Z = z) > 0} and noting that κj(T,Z,X) = 1{T =

t}gj(Z,X) for some function gj by definition of L1(PtZX), it then follows from the same

arguments employed in Corollary 4.3 that gj(z, ·) ∈ L1(PX) for any z ∈ Z0. Next set

g̃j(z,X) ≡ gj(z,X)P (Z = z|X) and observe that by definition of Υ we have

∥ℓ−Υ(κj)∥Q̄,1 = EQ̄[|ℓ(T ⋆, X)−
∑
z∈Z0

1{T ⋆(z) = t}gj(z,X)P (Z = z|X)|]

= EQ̄[|ℓ(T ⋆, X)−
∑
z∈Z0

1{T ⋆(z) = t}g̃j(z,X)|]. (A.41)

Combining results (A.40) and (A.41) with Lemma A.5 then implies that there are func-

tions {f0(z,X)}z∈Z0 satisfying f0(z, ·) ∈ L1(PX) for all z ∈ Z0 and

EQ̄[|ℓ(T ⋆, X)−
∑
z∈Z0

1{T ⋆(z) = t}f0(z,X)|] = 0. (A.42)
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Hence, setting κ(T,Z,X) ≡ 1{T = t}
∑

z∈Z0
1{Z = z}f0(Z,X)/P (Z = z|X) we obtain

from P (Z = z|X) ≥ ε > 0 a.s. that κ ∈ L1(PtZX) and from (A.42) that Q̄(Υ(κ) = ℓ) = 1.

Since Q̄(Υ(κ) = ℓ) = 1 implies Q̄(Υ(fκ) = fℓ) = 1 for any bounded f , Lemma 4.2

allows us to conclude that (i) implies (iii). Thus, because (iii) trivially implies (ii) and

(ii) trivially implies (i), the claim of the corollary follows.

Lemma A.1. Let Q be a distribution for (Y ⋆, T ⋆, Z,X) satisfying (Y ⋆, T ⋆) ⊥⊥ Z|X
under Q. Then it follows that for any f ∈ L1(Q) we have:

EQ[f(Y
⋆, T ⋆, Z,X)|Y ⋆, T ⋆, X] = EQZ|X [f(Y

⋆, T ⋆, Z,X)].

Proof. Let G denote the σ-field on which Q is defined, which recall we set to equal the

σ-field generated by (GY ⋆ × GT ⋆ × GZ × GX) where GV denotes the σ-field on which the

marginal distribution QV is defined. We further define the class of sets

A ≡ {A ∈ G : EQ[1{(Y ⋆, T ⋆, Z,X) ∈ A}|Y ⋆, T ⋆, X] = EQZ|X [1{(Y
⋆, T ⋆, Z,X) ∈ A}]}

and note that Y⋆×T⋆×Z×X ∈ A. Also observe that if A1, A2 ∈ A and A1 ⊆ A2 then

EQ[1{(Y ⋆, T ⋆,Z,X) ∈ A2 \A1}|Y ⋆, T ⋆, X]

= EQ[1{(Y ⋆, T ⋆, Z,X) ∈ A2} − 1{(Y ⋆, T ⋆, Z,X) ∈ A1}|Y ⋆, T ⋆, X]

= EQZ|X [1{(Y
⋆, T ⋆, Z,X) ∈ A2}]− EQZ|X [1{(Y

⋆, T ⋆, Z,X) ∈ A1}]

= EQZ|X [1{(Y
⋆, T ⋆, Z,X) ∈ A2 \A1}], (A.43)

where the first and third equalities follow from A1 ⊆ A2 while the second equality

follows from A1, A2 ∈ A. In particular, result (A.43) implies that A2 \ A1 ∈ A. Next,

let {Ai}∞i=1 ⊂ A be a sequence of pairwise disjoint sets and note that

EQ[1{(Y ⋆, T ⋆, Z,X) ∈
∞⋃
i=1

Ai}|Y ⋆, T ⋆, X]

= lim
n→∞

EQ[
n∑

i=1

1{(Y ⋆, T ⋆, Z,X) ∈ Ai}|Y ⋆, T ⋆, X]

= lim
n→∞

EQZ|X [
n∑

i=1

1{(Y ⋆, T ⋆, Z,X) ∈ Ai}]

= EQZ|X [1{(Y
⋆, T ⋆, Z,X) ∈

∞⋃
i=1

Ai}], (A.44)

where the first and third equalities follow from Theorem 10.1.5(4) in Bogachev (2007)

and {Ai}∞i=1 being disjoint, while the second holds due to Ai ∈ A for all i. In particular,

(A.44) implies
⋃∞

i=1Ai ∈ A, and we can therefore conclude that A is a λ-system.
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Let AY ⋆ ∈ GY ⋆ , AT ⋆ ∈ GT ⋆ , AZ ∈ GZ , and AX ∈ GX be arbitrary, and then observe

EQ[1{(Y ⋆, T ⋆,Z,X) ∈ AY ⋆ ×AT ⋆ ×AZ ×AX}|Y ⋆, T ⋆, X]

= 1{Y ⋆ ∈ AY ⋆}1{T ⋆ ∈ AT ⋆}1{X ∈ AX}EQZ|X [1{Z ∈ AZ}]

= EQZ|X [1{(Y
⋆, T ⋆, Z,X) ∈ AY ⋆ ×AT ⋆ ×AZ ×AX}] (A.45)

where the first equality follows from (Y ⋆, T ⋆) ⊥⊥ Z|X under Q and the second by

direct manipulation. Result (A.45) implies AY ⋆ × AT ⋆ × AZ × AX ∈ A and, since

AY ⋆ , AT ⋆ , AZ , AX were arbitrary, that (GY ⋆ × GT ⋆ × GZ × GX) ⊆ A. Since (GZ × GX ×
GT ⋆ ×GY ⋆) is a π-system and G equals the σ-field generated by (GY ⋆ ×GT ⋆ ×GZ ×GX),

the π − λ theorem (see, e.g., Theorem 2.38 in Pollard (2002)) then implies A = G.

To conclude, let f ∈ L1(Q) be arbitrary and {fn} be a sequence of simple functions

satisfying |fn| ≤ |f | and fn(Y ⋆, T ⋆, Z,X) → f(Y ⋆, T ⋆, Z,X) on a set with Q-probability

one. By Proposition 10.1.7 in Bogachev (2007) we can then conclude that

EQ[f(Y
⋆, T ⋆, Z,X)|Y ⋆, T ⋆, X] = lim

n→∞
EQ[fn(Y

⋆, T ⋆, Z,X)|Y ⋆, T ⋆, X]

= lim
n→∞

EQZ|X [fn(Y
⋆, T ⋆, Z,X)] = EQZ|X [f(Y

⋆, T ⋆, Z,X)],

where the second equality holds due to fn being a simple function and A = G.

Corollary A.1. If Assumption 2.1 holds, Q ∈ Θ0, and f ∈ L1(P ), then it follows

EQ[f(Y, T, Z,X)|Y ⋆, T ⋆, X] =
∑
t∈T

EPZ|X [f(Y
⋆(t), t, Z,X)1{T ⋆(Z) = t}].

Proof. The claim is immediate from Lemma A.1 and noting that: (i) Y = Y ⋆(T ) and

T = T ⋆(Z) by Assumption 2.1 imply f(Y, T, Z,X) =
∑

t∈T f(Y
⋆(t), t, Z,X)1{T ⋆(Z) =

t}, and (ii) QZ|X = PZ|X due to Q ∈ Θ0 by hypothesis.

Lemma A.2. Let Assumptions 2.1 and 2.2 hold, and suppose that µ(π(Z,X) > δ) = 1

for some δ > 0. If ν ∈ L1(P ), then it follows κ = ν/π satisfies κ ∈ L1(P ) and

EµZ|X [ν(Y
∗(t), t, Z,X)1{T ⋆(Z) = t}] = EPZ|X [κ(Y

∗(t), t, Z,X)1{T ∗(Z) = t}].

Proof. First note that since µ(π(Z,X) > δ) = 1 and Q̄ ∈ Θ0 must satisfy Q̄ ≪ µ, it

follows that Q̄(π(Z,X) > δ) = 1. Moreover, Q̄ZX = PZX due to Q̄ ∈ Θ0 and therefore

P (π(Z,X) > δ) = 1 as well. Hence, we can conclude that 1/π ∈ L∞(P ), which together

with ν ∈ L1(P ) yields that κ = ν/π ∈ L1(P ). Next note that since µ(π(Z,X) > 0) = 1,
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it follows that on a set with µ-probability one we must have

EµZ|X [ν(Y
∗(t), t, Z,X)1{T ⋆(Z) = t}]

= EµZ|X [ν(Y
∗(t), t, Z,X)1{T ⋆(Z) = t}1{π(Z,X) > 0}]

= EPZ|X [κ(Y
∗(t), t, Z,X)1{T ∗(Z) = t}],

where the final equality follows from the definitions of κ and π.

Lemma A.3. Let Assumptions 2.1, 2.2, and 4.1(iii) hold, and suppose that a finite

collection {sj , Qj}Jj=1 with sj ∈ SQj and Qj ∈ Θ0 for all 1 ≤ j ≤ J satisfies

P (
J∑

j=1

EQj [sj(Y
⋆, T ⋆, X)|Y, T, Z,X] = 0) = 1. (A.46)

Then, there exist a Qa ∈ Θ0 and a constant η > 0 such that the measure Q̃ given by

Q̃(A) ≡ Qa(A) +
J∑

j=1

ηEQj [sj(Y
⋆, T ⋆, X)1{(Y ⋆, T ⋆, Z,X) ∈ A}]

(for any A in the domain of Q̄) belongs to the identified set Θ0.

Proof. First note that by Assumption 4.1(iii) there exists a measure Qi ∈ Θ0 such that

dQi/dµ belongs to the interior of Q in Q. Therefore setting Qa to equal

Qa = λQi +
1− λ

J

J∑
j=1

Qj (A.47)

we can conclude that dQa/dµ also belongs to the interior of Q in Q provided λ ∈ (0, 1)

is chosen sufficiently large, and moreover that Qa ∈ Θ0 due to Θ0 being convex and

Qj ∈ Θ0 for all 1 ≤ j ≤ J . Next note that Q̃(A) is well defined for any A in the

domain of Q̄ and that Q̃ is countably additive by the dominated convergence theorem.

Moreover, observe that ∥sj∥Qj ,∞ < ∞ for all 1 ≤ j ≤ J since sj ∈ SQj ⊆ L∞(Qj).

Hence, by the choice of Qa in (A.47) we obtain for any A in the domain of Q̄ that

Q̃(A) ≥
J∑

j=1

{1− λ

J
Qj(A)−η∥sj∥Qj ,∞

∫
A
dQj} =

J∑
j=1

Qj(A)(
1− λ

J
−η∥sj∥Qj ,∞). (A.48)

Thus, result (A.48) implies Q̃ is a positive measure provided we set η > 0 to satisfy

η < (1− λ)/(J maxj ∥s∥Q̄,∞) (which is possible because λ < 1). Further observe

Q̃(Y⋆ ×T⋆ × Z×X) = Qa(Y⋆ ×T⋆ × Z×X) + η
J∑

j=1

EQj [sj(Y
⋆, T ⋆, X)] = 1, (A.49)

54



where the final equality follows from Qa being a probability measure, condition (A.46),

the law of iterated expectations, and Qj being observationally equivalent to Q0 due

to Qj ∈ Θ0 for all 1 ≤ j ≤ J . Given the already verified positivity of Q̃ (for η

sufficiently small), result (A.49) implies that Q̃ is indeed a probability measure. Also

note that since Qj ≪ µ due to Qj ∈ Θ0 for all 1 ≤ j ≤ J , it follows Q̃ ≪ µ and

dQ̃/dµ = dQa/dµ+ η
∑

j sjdQj/dµ. Thus, since dQ
a/dµ belongs to the interior of Q in

Q and sjdQj/dµ ∈ Q by definition of SQj , it follows that dQ̃/dµ ∈ Q for η > 0 small.

We next show that Q̃ is observationally equivalent to Q0. To this end, note that

Assumption 2.1(ii) and Qa ∈ Θ0 imply for any t ∈ T and (measurable) set V that

P (T = t, (Y,Z,X) ∈ V ) = Qa(T ⋆(Z) = t, (Y ⋆(t), Z,X) ∈ V ). (A.50)

However, for any t ∈ T and (measurable) set V , Assumption 2.1(ii) also yields that

J∑
j=1

EQj [sj(Y
⋆, T ⋆, X)1{T ⋆(Z) = t, (Y ⋆(t), Z,X) ∈ V )}]

=

J∑
j=1

EQj [EQj [sj(Y
⋆, T ⋆, X)|Y, T, Z,X]1{T = t, (Y, Z,X) ∈ V }] = 0, (A.51)

where the final equality follows from condition (A.46) and Qj being observationally

equivalent to Q0 due to Qj ∈ Θ0 for all 1 ≤ j ≤ J . Hence, (A.50), (A.51), and the

definition of Q̃ imply that Q̃ is indeed observationally equivalent to Q0.

To conclude the proof, it only remains to show that (Y ⋆, T ⋆) ⊥⊥ Z|X under Q̃. To

this end, select an f ∈ L1(PZX) and let g be any bounded function of (Y ⋆, T ⋆, X). Then

note that since (Y ⋆, T ⋆) ⊥⊥ Z|X under Qa and all Qj (due to Qa, Qj ∈ Θ0) we obtain

EQ̃[g(Y
⋆, T ⋆, X)f(Z,X)] = EQa [g(Y ⋆, T ⋆, X)EQa [f(Z,X)|X]]

+ η
J∑

j=1

EQj [g(Y
⋆, T ⋆, X)sj(Y

⋆, T ⋆, X)EQj [f(Z,X)|X]]. (A.52)

However, since we showed Q̃ is observationally equivalent toQ0 andQ
a andQj are obser-

vationally equivalent to Q0 (due to Qa, Qj ∈ Θ0) it also follows that EQa [f(Z,X)|X] =

EQj [f(Z,X)|X] = EQ̃[f(Z,X)|X]. Combining this observation with (A.52) then yields

EQ̃[g(Y
⋆, T ⋆, X)f(Z,X)] = EQ̃[g(Y

⋆, T ⋆, X)EQ̃[f(Z,X)|X]]. (A.53)

Since (A.53) holds for any bounded g it follows EQ̃[f(Z,X)|Y ⋆, T ⋆, X] = EQ̃[f(Z,X)|X];

see, e.g., Definition 10.1.1 in Bogachev (2007). Thus, since f ∈ L1(PZX) was also

arbitrary, we conclude (Y ⋆, T ⋆) ⊥⊥ Z|X under Q̃ and therefore that Q̃ ∈ Θ0.
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Lemma A.4. Let Assumptions 2.1, 2.2 hold, Λ : L → R satisfy Λ(⟨·, s⟩Q) = ⟨ℓ, s⟩Q for

some ℓ ∈
⋂

Q∈Θ0
L1(Q), SQ̄ = L∞(Q̄Y ⋆T ⋆X), and C ⊆ R be convex. If Λ belongs to the

τ -closure of C, then there is a sequence {fn}∞n=1 ⊆ L1(Q̄Y ⋆T ⋆X) such that limn→∞ ∥ℓ−
fn∥Q̄,1 = 0 and Ln : L → R given by Ln(⟨·, s⟩Q) ≡ ⟨fn, s⟩Q satisfies Ln ∈ C for all n.

Proof. First note that for any L ∈ C, it follows from C ⊆ R that there is a ψ(L) ∈⋂
Q∈Θ0

L1(Q) such that L(⟨·, s⟩Q) = ⟨ψ(L), s⟩Q for all s ∈ SQ and Q ∈ Θ0. Next define

C ≡ {f ∈
⋂

Q∈Θ0
L1(Q) : f = ψ(L) for some L ∈ C} and note that by Theorem 2.14 in

Aliprantis and Border (2006) and Λ belonging to the τ -closure of C, there must exist a

net {cα}α∈A ⊆ C such that for all s ∈ SQ̄ = L∞(Q̄Y ⋆T ⋆X) we have

lim
α
⟨s, cα⟩Q̄ = ⟨s, ℓ⟩Q̄. (A.54)

A second application of Theorem 2.14 in Aliprantis and Border (2006) and result (A.54)

imply ℓ ∈ L1(Q̄Y ⋆T ⋆X) belongs to the closure of C ⊆ L1(Q̄Y ⋆T ⋆X) under the weak

topology generated by SQ̄ = L∞(Q̄Y ⋆T ⋆X). However, since L∞(Q̄Y ⋆T ⋆X) is the norm

dual of L1(Q̄Y ⋆T ⋆X) and C ⊆ L1(Q̄Y ⋆T ⋆X) is convex (by convexity of C), it follows that
ℓ belongs to the closure of C under ∥ · ∥Q̄,1 (see, e.g., Theorem 3.12 in Rudin (1991)).

Therefore, by Theorem 2.40(1) in Aliprantis and Border (2006) we can conclude that

there is a sequence {fn} ⊆ C satisfying ∥ℓ− fn∥Q̄,1 = o(1) as claimed.

Lemma A.5. Let Assumptions 2.1 and 2.2 hold, T⋆ be finite, {Ci}ri=1 be a finite col-

lection of subsets of T⋆, and define A :
⊗r

i=1 L
1(PX) → L1(Q̄T ⋆X) according to

A(f)(T ⋆, X) =

r∑
i=1

1{T ⋆ ∈ Ci}fi(X)

for any f = {fi}ri=1 ∈
⊗r

i=1 L
1(PX). If Q̄(T ⋆ = t⋆|X) ≥ ε > 0 a.s. for any t⋆ ∈ T⋆

satisfying Q̄(T ⋆ = t⋆) > 0, then it follows that the range of A is closed.

Proof. First let T⋆
0 ≡ {t⋆ ∈ T⋆ : Q̄(T ⋆ = t⋆) > 0} denote the support of T ⋆ under Q̄ and

enumerate T⋆
0 by T⋆

0 = {t⋆1, . . . , t⋆d⋆}. Further interpret any {fi}ri=1 ∈
⊗r

i=1 L
1(PX) as a

column vector f(X) ≡ (f1(X), . . . , fr(X))′ and define a d⋆ × r matrix Ω according to

Ω ≡


ω′
1
...

ω′
d⋆

 ωj ≡


1{t⋆j ∈ C1}

...

1{t⋆j ∈ Cr}

 .

Letting ∥a∥1 ≡
∑d

i=1 |ai| for any a ≡ (a1, . . . , ad)
′ ∈ Rd, then note that Q̄(T ⋆ = t⋆|X) ≥
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ε > 0 for all t⋆ ∈ T⋆
0 and Q̄X = PX due to Q̄ ∈ Θ0 allow us to conclude

EQ̄[|A(f)(T ⋆, X)|] = EQ̄[
d⋆∑
j=1

1{T ⋆ = t⋆j}|
r∑

i=1

1{t⋆j ∈ Ci}fi(X)|]

= EPX
[

d⋆∑
j=1

Q̄(T ⋆ = t⋆j |X)|ω′
jf(X)|] ≥ ε× EPX

[∥Ωf(X)∥1]. (A.55)

Let Ω† denote the Moore-Penrose pseudoinverse of Ω and note that since ΩΩ†Ω = Ω by

Proposition 6.11.1(6) in Luenberger (1969) and Ω : range{Ω†} → Rd⋆ is an invertible

map (see Chapter 6.11 in Luenberger (1969)), it follows there is an η > 0 satisfying

EPX
[∥Ωf(X)∥1] ≥ ηEPX

[∥Ω†Ωf(X)∥1]. (A.56)

Next suppose there is a sequence {fn} ∈
⊗r

i=1 L
1(PX) and an ℓ ∈ L1(Q̄T ∗X) such that

∥A(fn) − ℓ∥Q̄,1 = o(1). Combining (A.55) and (A.56) implies the sequence {Ω†Ωfn} is

Cauchy in
⊗r

i=1 L
1(PX) under the norm EPX

[∥f(X)∥1]. Hence, since
⊗r

i=1 L
1(PX) is

complete we can conclude that there is an f̃ ∈
⊗r

i=1 L
1(PX) such that

lim
n→∞

EPX
[∥Ω†Ωfn(X)− f̃(X)∥1] = 0. (A.57)

Therefore, the same manipulations as in result (A.55) and Ω = ΩΩ†Ω imply that

EQ̄[|ℓ(T ⋆, X)−A(f̃)(T ⋆, X)|] ≤ lim
n→∞

EQ̄[|A(fn − f̃)(T ⋆, X)|]

≤ lim
n→∞

EPX
[∥Ωfn(X)− Ωf̃(X)∥1] ≤ ∥Ω∥o,1EPX

[∥Ω†Ωfn(X)− f̃(X)∥1] = 0,

where the final inequality holds for ∥ · ∥o,1 the operator norm of Ω : Rr → Rd⋆ when

both the range and domain are endowed with ∥ · ∥1, while the final equality follows by

(A.57). We can thus conclude the range of A is closed, which establishes the lemma.

A.2 Proofs for Sections 5.1 and 5.2

Proof of Theorem 5.1. We begin by noting that by definition of λ̂ and ψ̂k in (37) we

may apply Lemma A.6 with Wi satisfying P (Wi = 1) = 1 to obtain that

λ̂ =
1

n

n∑
i=1

(ψ(Ti, Zi, Xi) + λQ0) + oP (
σ√
n
), (A.58)

which establishes the first equality in (36). Since ∥ψ∥∞ ≲ B by Assumption 5.2(i) and
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σ2 = VarP {ψ(T,Z,X)} by definition, Theorem 1.1 in Zhai (2018) further yields

1√
nσ

n∑
i=1

(ψ(Ti, Zi, Xi)− EP [ψ(T,Z,X)]) = Z+OP (
B log(n)

σ
√
n

) (A.59)

for Z a standard normal random variable possibly depending on n. The theorem follows

from (A.58), (A.59), Lemma A.7, and B log(n) = o(σ
√
n) by Assumption 5.2(i).

Proof of Theorem 5.2. First note that Lemma A.6, (λ̂−λQ0) = OP (σ/
√
n) by Theorem

5.1, and
∑

iWi/n = oP (1) due to E[W ] = 0 together allow us to conclude that

√
n

σ
(λ̂∗ − λ̂) =

1√
nσ

n∑
i=1

Wiψ(Ti, Zi, Xi) +
1

n

n∑
i=1

Wi ×
√
n

σ
(λQ0 − λ̂) + oP (1)

=
1√
nσ

n∑
i=1

Wiψ(Ti, Zi, Xi) + oP (1). (A.60)

Next note that σ2 ≡ VarP {ψ(T,Z,X)} by definition, ∥ψ∥∞ ≲ B and B log(n) = o(σ
√
n)

by Assumption 5.2(i), and Bernstein’s inequality (see, e.g., Lemma 2.2.9 in van der Vaart

and Wellner (1996)), yield that for n sufficiently large

P (| 1
nσ

n∑
i=1

(ψ(Ti, Zi, Xi)− EP [ψ(T,Z,X)])| > log(n)√
n

) ≤ 2 exp{− log2(n)

4
}. (A.61)

In particular, note that result (A.61) together with Lemma A.7 imply that we have

| 1
n

n∑
i=1

{ψ2(Ti, Zi, Xi)− (ψ(Ti, Zi, Xi)− EP [ψ(T,Z,X)])2}| = oP (
σ2 log(n)

n
). (A.62)

Moreover, Markov’s inequality, ∥ψ∥∞ ≲ B, and σ2 ≡ VarP {ψ(T,Z,X)} further imply

P (| 1
n

n∑
i=1

(ψ(Ti, Zi, Xi)− EP [ψ(T,Z,X)])2

σ2
− 1| > ϵ)

≤ 1

nϵ2σ4
VarP {(ψ(T,Z,X)− EP [ψ(T,Z,X)])2} ≲

B2σ2

nσ4
(A.63)

for any ϵ > 0. Therefore, setting σ̂2 ≡
∑

i ψ
2(Ti, Zi, Xi)/n, we can conclude from results

(A.62) and (A.63) together with B log(n) = o(σ
√
n) by Assumption 5.2(i) that

σ̂2

σ2
=

1

n

n∑
i=1

(ψ(T,Z,X)− EP [ψ(T,Z,X)])2

σ2
+ oP (1) = 1 + oP (1). (A.64)

To conclude, note that {Wi}ni=1 being i.i.d. standard normal random variables and

58



{Wi}ni=1 being independent of the sample {Yi, Ti, Zi, Xi}ni=1 imply that the variable

Z∗ ≡ 1√
nσ̂

n∑
i=1

Wiψ(Ti, Zi, Xi)

satisfies Z∗ ∼ N(0, 1) conditionally on {Yi, Ti, Zi, Xi}ni=1 and hence Z∗ is independent of

{Yi, Ti, Zi, Xi}ni=1. The theorem therefore follows from (A.60) and (A.64).

Proof of Theorem 5.3. The proof follows by identical arguments as those employed in

Theorem 5.1 but relying on Lemmas A.8 and A.9 in place of A.6 and A.7.

Proof of Theorem 5.4. The proof follows by identical arguments as those employed in

Theorem 5.1 but relying on Theorem 5.3 and Lemmas A.8 and A.9 in place of Theorem

5.1 and Lemmas A.6 and A.7.

Lemma A.6. Let Assumptions 5.1(i)(iii) and 5.2(i)(ii)(v) hold, {Wi}ni=1 be an i.i.d.

sequence independent of {Yi, Ti, Zi, Xi}ni=1 satisfying E[W 2] <∞, ψ and ψ̂k be as defined

in (35) and (37) respectively, and σ2 ≡ VarP {ψ(T,Z,X)}. Then it follows that

1

n

K∑
k=1

∑
i∈Ik

Wi{ψ̂k(Ti, Zi, Xi) + λ̂n} =
1

n

n∑
i=1

Wi{ψ(Ti, Zi, Xi) + λQ0}+ oP (
σ√
n
).

Proof. Let ∆̂γ
t,k ≡ (γ̂t,k − γt), ∆̂

β
t,k ≡ (β̂t,k − βt), and note that for 1 ≤ k ≤ K we have

1

n

∑
i∈Ik

Wi{(ψ̂k(Ti, Zi, Xi) + λ̂)− (ψ(Ti, Zi, Xi) + λQ0)}

=
1

n

∑
i∈Ik

∑
t∈T

Wi(1{Ti = t} − b(Zi, Xi)
′βt)b(Zi, Xi)

′∆̂γ
t,k

+
1

n

∑
i∈Ik

∑
t∈T

Wi{EµZ|X [νj(t, Z,Xi)b(Z,Xi)
′]− b(Zi, Xi)

′γtb(Zi, Xi)
′}∆̂β

t,k

− 1

n

∑
i∈Ik

∑
t∈T

Wi(∆̂
γ
t,k)

′b(Zi, Xi)b(Zi, Xi)
′∆̂β

t,k. (A.65)

Next observe that by definition of βt, it must satisfy the following first order condition

EP [(1{T = t} − b(Z,X)′βt)b(Z,X)] = 0. (A.66)

Hence, since γ̂t,k is computed using the observations in Ick, which are independent of the

observations in Ik, and {Wi}ni=1 is independent of {Yi, Ti, Zi, Xi}ni=1, (A.66) yields

E[
1

n

∑
i∈Ik

∑
t∈T

Wi(1{Ti = t} − b(Zi, Xi)
′βt)b(Zi, Xi)

′∆̂γ
t,k|{γ̂t,k}t∈T] = 0.

Therefore, by employing that the observations within Ik are i.i.d., |Ik| ≍ n by Assump-
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tion 5.2(v), ∥b′βt∥∞ being bounded by Assumption 5.2(i), and E[W 2] <∞ we obtain

Var{ 1
n

∑
i∈Ik

∑
t∈T

Wi(1{Ti = t} − b(Zi, Xi)
′βt)b(Zi, Xi)

′∆̂γ
t,k|{γ̂t,k}t∈T}

≲
1

n

∑
t∈T

EP [(b(Z,X)′∆̂γ
t,k)

2]. (A.67)

Moreover, by identical arguments but relying on the first order condition for γt yields

Var{ 1
n

∑
i∈Ik

∑
t∈T

Wi{EµZ|X [νj(t, Z,Xi)b(Z,Xi)
′]− b(Zi, Xi)

′γtb(Zi, Xi)
′}∆̂β

t,k|{β̂t,k}t∈T}

≲
1

n

∑
t∈T

{EP [(EµZ|X [νj(t, Z,X)b(Z,X)′∆̂β
t,k])

2] + EP [(b(Z,X)′γt)
2(b(Z,X)′∆̂β

t,k)
2]

≲
B2

n

∑
t∈T

EP [(b(Z,X)′∆̂β
t,k)

2], (A.68)

where in the final inequality we employed Jensen’s inequality, Assumptions 5.1(iii) and

5.2(i), and dµZ|X/dPZ|X = 1/π. Finally, note that the Cauchy-Schwarz inequality yields

| 1
n

∑
i∈Ik

∑
t∈T

Wi(∆̂
γ
t,k)

′b(Zi, Xi)b(Zi, Xi)
′∆̂β

t,k|

≤ { 1
n

∑
i∈Ik

W 2
i (b(Zi, Xi)

′∆̂γ
t,k)

2}1/2 × { 1
n

∑
i∈Ik

(b(Zi, Xi)
′∆̂β

t,k)
2}1/2. (A.69)

Therefore, combining results (A.65), (A.67), (A.68), and (A.69), E[W 2
i ] < ∞, {Wi}ni=1

being independent of {Yi, Ti, Zi, Xi}ni=1, and Markov’s inequality we obtain that

1

n

∑
i∈Ik

Wi{(ψ̂k(Ti, Zi, Xi) + λ̂n)− (ψ(Ti, Zi, Xi) + λQ0)}

= OP (
∑
t∈T

rγt + rβt B√
n

+ rβt r
γ
t ) = oP (

σ√
n
),

where the final equality follows from Assumption 5.2(ii).

Lemma A.7. If Assumptions 5.1(ii), 5.2(iii)(iv) hold, and ψ is as in (35), then

|EP [ψ(T,Z,X)]| = o(
σ√
n
).

Proof. First note that the first order condition implied by the definition of γt yields

EP [(b(Z,X)′γt)(b(Z,X)′βt)]− EPX
[EµZ|X [νj(T,Z,X)b(Z,X)′βt]] = 0. (A.70)

Hence, by combining the definition of ψ, the first order condition in (A.70), the law of
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iterated expectations, and κj = νj/π we are able to conclude that

|EP [ψ(T,Z,X)]− (EP [κj(T,Z,X)]− λQ0)|

= |
∑
t∈T

EP [(b(Z,X)′γt − κj(t, Z,X))1{T = t}]|

= |
∑
t∈T

(EP [(b(Z,X)′γt − κj(t, Z,X))(P (T = t|Z,X)− b(Z,X)′βt)]|. (A.71)

Hence, result (A.71), the Cauchy-Schwarz inequality, and Assumptions 5.2(iii)(iv) yield

|EP [ψ(T,Z,X)]| ≤ |EP [κj(T,Z,X)− λQ0 |+O(
∑
t∈T

δβt δ
γ
t ) = o(

σ√
n
),

which establishes the claim of the lemma.

Lemma A.8. Let Assumptions 5.3(i)(iii) and 5.4(i)(ii)(v) hold, {Wi}ni=1 be an i.i.d.

sequence independent of {Yi, Ti, Zi, Xi}ni=1 satisfying E[W 2] <∞, ψ and ψ̂k be as defined

in (47) and (49) respectively, and σ2 ≡ VarP {ψ(Y, T, Z,X)}. Then it follows that

1

n

K∑
k=1

∑
i∈Ik

Wi{ψ̂k(Yi, Ti, Zi, Xi) + λ̂} =
1

n

n∑
i=1

Wi{ψ(Yi, Ti, Zi, Xi) + λQ0}+ oP (
σ√
n
).

Proof. The proof follows from identical arguments to those in Lemma A.6.

Lemma A.9. If Assumptions 5.3(ii), 5.4(iii)(iv) hold, and ψ is as in (47), then

|EP [ψ(Y, T, Z,X)]| = o(
σ√
n
).

Proof. The proof follows from identical arguments to those in Lemma A.7.

Lemma A.10. Let V ≡ (Y, T, Z,X), {Vi}ni=1 be i.i.d., {Wi}ni=1 be i.i.d. with W ∼
N(0, 1) independent of {Vi}ni=1, and ϕ : Rq → Rp be differentiable at (λQ01, . . . , λQ0q)

′ ≡
λQ0 ∈ Rq with derivative ϕ′λQ0

. Suppose λ̂ ≡ (λ̂1, . . . , λ̂q)
′ and λ̂∗ ≡ (λ̂∗1, . . . , λ̂

∗
q)

′ satisfy

√
n

σj
(λ̂j−λQ0j) =

1√
nσj

n∑
i=1

ψj(Vi)+oP (1)

√
n

σj
(λ̂∗j − λ̂j) =

1√
nσj

n∑
i=1

Wiψj(Vi)+oP (1)

with σ2j ≡ VarP {ψj(V )} and let σ̄ ≡ max1≤j≤q σj. If B ≡ max1≤j≤q ∥ψj∥∞ < ∞,

EP [ψj(V )] = o(σ̄/
√
n), B log(n) = o(σ̄

√
n), and σ̄ = o(

√
n), then it follows

√
n

σ̄
(ϕ(λ̂)− ϕ(λQ0)) = ϕ′λQ0

(G) + oP (1) (A.72)
√
n

σ̄
(ϕ(λ̂∗)− ϕ(λ̂)) = ϕ′λQ0

(G∗) + oP (1), (A.73)

where G and G∗ have the same distribution and G∗ is independent of {Vi}ni=1.
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Proof. First set ψ(V ) ≡ (ψ1(V ), . . . , ψq(V ))′ and note that σj/σ̄ ≤ 1 by definition of σ̄

and our requirements on (λ̂j − λQ0j) together allow us to conclude that

√
n

σ̄
(λ̂− λQ0) =

1√
nσ̄

n∑
i=1

ψ(Vi) + oP (1)

=
1√
nσ̄

n∑
i=1

(ψ(Vi)− EP [ψ(V )]) + oP (1) = G+ oP (1), (A.74)

where the second equality holds due to EP [ψj(V )] = o(σ̄/
√
n) by hypothesis, and the

final equality holds for some Gaussian G ∼ N(0,VarP {ψ(V )}/σ̄2) by Theorem 1.1 in

Zhai (2018) and B log(n)/σ̄
√
n = o(1) by hypothesis. In particular, note that since

the variance of each coordinate of G is bounded by one, we must have ∥G∥ = OP (1)

and therefore (A.74) implies ∥λ̂ − λQ0∥ = OP (σ̄/
√
n). Hence, ϕ : Rq → Rp being

differentiable by assumption together with result (A.74) allow us to conclude

√
n

σ̄
(ϕ(λ̂)− ϕ(λQ0)) =

√
n

σ̄
ϕ′λQ0

(λ̂− λQ0) +

√
n

σ̄
× o(∥λ̂− λQ0∥) = ϕ′λQ0

(G) + oP (1),

where in the final result we employed that σ̄/
√
n = o(1) by hypothesis and ∥λ̂−λQ0∥ =

OP (σ̄/
√
n) as already shown. Thus, claim (A.72) holds.

To establish claim (A.73) we first note that since EP [ψj(V )] = o(σ̄/
√
n) by hypoth-

esis and
√
nW̄n = OP (1) due to W ∼ N(0, 1), we can conclude that

1√
nσ̄

n∑
i=1

Wi ×
1

n

n∑
i=1

ψj(Vi)

=
1√
nσ̄

n∑
i=1

Wi ×
1

n

n∑
i=1

(ψj(Vi)− EP [ψj(V )]) + oP (1) = oP (1)

where the final equality holds due to
√
nW̄n = OP (1), Chebychev’s inequality, and

σj/σ̄ ≤ 1. Therefore, it follows from our condition on (λ̂∗ − λ̂) that we must have

√
n

σ̄
(λ̂∗ − λ̂) =

1√
nσ̄

n∑
i=1

Wi(ψ(Vi)−
1

n

n∑
k=1

ψ(Vk)) + oP (1)

= G∗ + oP (1), (A.75)

where the final equality holds for some G∗ ∼ N(0,VarP {ψ(V )/σ̄}) independent of the

data by Theorem S.7.1 in Chernozhukov et al. (2022b) – to apply said theorem set, in

their notation, fdnn,P (V ) = (ψ(V ) − EP [ψ(V )])/σ̄ and note that then Cn = O(1) due to

σj/σ̄ ≤ 1, Kn ≍ B/σ̄, J1n = 0, and J2n = O(1). Claim (A.73) of the lemma then follows

by identical arguments to those employed in showing claim (A.72) but relying on result

(A.75) in place of result (A.74).
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A.3 Proofs for Section 5.3

Proof of Theorem 5.5. Let η 7→ Qη,g be a submodel with Q0,g = Q ∈ Θ0 inducing a

path η 7→ Pη,s. Then note that by Proposition 4 in Le Cam and Yang (1988) we have

s(Y, T, Z,X) = EQ[g(Y
⋆, T ⋆, Z,X)|Y, T, Z,X]. (A.76)

Next define T1(Q) ≡ {g ∈ L2(QY ⋆T ⋆X) : EQ[g(Y
⋆, T ⋆, X)|Z,X] = 0} and note Lemma

A.12 implies that g = g1 + g2 for some g1 ∈ T1(Q) and g2 ∈ L2
0(PZX). Further set

∆(Y, T, Z,X) ≡ κ(Y, T, Z,X)− EP [κ(Y, T, Z,X)|Z,X] + EP [κ(Y, T, Z,X)|X]

and note that the law of iterated expectations and the definition of T1(Q) yield that

EQ[κ(Y, T, Z,X)g1(Y
⋆, T ⋆, X)] = EQ[∆(Y, T, Z,X)g1(Y

⋆, T ⋆, X)]

EP [EP [κ(Y, T, Z,X)|X]g2(Z,X)] = EP [∆(Y, T, Z,X)g2(Z,X)]. (A.77)

Next observe that g = g1 + g2 and Lemma F.1 in Chen and Santos (2018) yield that

∂

∂η
λQη,g

∣∣∣
η=0

= EQ[ℓ(Y
⋆, T ⋆, X)(g1(Y

⋆, T ⋆, X) + g2(Z,X))]. (A.78)

Therefore, Q̄(Υ(κ) = ℓ) = 1, Q≪ Q̄ for any Q ∈ Θ0, Corollary A.1, results (A.77) and

(A.78), the law of iterated expectations, and (Y ⋆, T ⋆) ⊥⊥ Z|X under Q imply

∂

∂η
λQη,g

∣∣∣
η=0

= EQ[EQ[κ(Y, T, Z,X)|Y ⋆, T ⋆, X](g1(Y
⋆, T ⋆, X) + g2(Z,X))]

= EQ[∆(Y, T, Z,X)(g1(Y
⋆, T ⋆, X) + g2(Z,X))]

= EP [∆(Y, T, Z,X)s(Y, T, Z,X)], (A.79)

where the final equality follows from Q inducing P due to Q ∈ Θ0, the law of iterated

expectations, and result (A.76). For any closed linear subspace V of a Hilbert space H

and f ∈ H we let Proj{f |V } denote the projection of f onto V (understood to be with

respect to the norm ∥ · ∥H of H). Then note that for T (P ) the tangent set and T̄ (P )

the tangent space (as defined in, e.g., Theorem A.1) result (A.79) yields that

sup
Q·,g

I−1(Q·,g) = sup
0̸=s∈T (P )

(EP [∆(Y, T, Z,X)s(Y, T, Z,X)])2

EP [s2(Y, T, Z,X)]

= sup
0̸=s∈T̄ (P )

(EP [∆(Y, T, Z,X)s(Y, T, Z,X)])2

EP [s2(Y, T, Z,X)]
= ∥Proj{∆|T̄ (P )}∥2P,2, (A.80)

where the second equality follows by continuity of the objective in s under ∥ · ∥P,2.
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Moreover, employing that T̄ (P ) = [N(I)]⊥ ⊕ L2
0(PZX) by Theorem A.1 we obtain

Proj{κ|T̄ (P )} = Proj{κ|[N(I)]⊥}+ Proj{κ|L2
0(PZX)}

= φ(Y, T, Z,X) + EP [κ(Y, T, Z,X)|Z,X]− EP [κ(Y, T, Z,X)], (A.81)

where the second equality follows from the definition of φ and Proj{κ|L2
0(PZX)} =

EP [κ(Y, T, Z,X)|Z,X] − EP [κ(Y, T, Z,X)]. Since L2
0(PZX) ⊆ T̄ (P ) and the law of

iterated expectations implies EP [κ(Y, T, Z,X)|X]− EP [κ(Y, T, Z,X)|Z,X] ∈ L2
0(PZX),

we thus obtain from result (A.81) and the definition of ∆ that

Proj{∆|T̄ (P )} = φ(Y, T, Z,X) + EP [κ(Y, T, Z,X)|X]− EP [κ(Y, T, Z,X)]. (A.82)

Part (i) of the theorem therefore follows from results (A.80), (A.82), and [N(I)]⊥ and

L2
0(PZX) being orthogonal subspaces of L2

0(P ).

In order to establish part (ii), we first construct a smaller set of submodels that

contains the “least favorable” paths. To this end, note that Lemma A.11(ii) implies we

may be view I as a map from L2(P ) to T1(Q̄). Letting R̄(I, Q̄) denote the ∥·∥Q̄,2-closure

of R(I, Q̄) ≡ {g ∈ L2(Q̄) : g = I(f) for some f ∈ L2(P )}, then set

P ≡ {Q·,g : Q·,g is a submodel, Qη,g ≪ Q̄, Q0,g = Q̄, g ∈ R̄(I, Q̄)⊕ L2
0(PZX)};

i.e. P consists of the submodels passing through Q̄ whose score belongs to the subspace

R̄(I, Q̄)⊕L2
0(PZX). Further note that since R(I, Q̄) ⊆ T1(Q̄) and T1(Q̄) is closed under

∥ · ∥Q̄,2, it follows that R̄(I, Q̄) ⊆ T1(Q̄). Hence, Lemma A.12 implies that

T (Q̄,P) ≡ {g : Q·,g ∈ P} = R̄(I, Q̄)⊕ L2
0(PZX). (A.83)

Next, define I ′
Q̄
(g) ≡ EQ̄[g(Y

⋆, T ⋆, Z,X)|Y, T, Z,X] for any g ∈ T (Q̄,P), and note that

by Jensen’s inequality we may view I ′
Q̄
as a map from T (Q̄,P) to L2(P ). Similarly set

E(f) ≡ I(f) + EP [f(Y, T, Z,X)|Z,X]− EP [f(Y, T, Z,X)] (A.84)

for any f ∈ L2(P ), and note that E(f) ∈ T (Q̄,P) by result (A.83). Moreover, for any

f ∈ L2(P ) and g ∈ T (Q̄,P) we obtain from result (A.83) implying that g = g1 + g2 for

some g1 ∈ R̄(I, Q̄) and g2 ∈ L2
0(PZX), and the law of iterated expectations that

⟨f, I ′
Q̄(g)⟩P = ⟨f, g1 + g2⟩Q̄ = ⟨E(f), g⟩Q̄, (A.85)

where the final equality follows by definition (A.84) and the same arguments employed

in (A.77). In particular, result (A.85) implies E : L2(P ) → T (Q̄,P) is the adjoint of

I ′
Q̄
: T (Q̄,P) → L2(P ). Thus, since Proposition 4 in Le Cam and Yang (1988) implies

that the set of paths P fit the framework of Section 3 in van der Vaart (1991b), Theorem
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4.1 in van der Vaart (1991b) (applied with A = I ′
Q̄

and A∗ = E), P being a subset of

all submodels, and result (A.78) yields that I−1 being finite implies

Q̄(E(f0) = Proj{ℓ|T (Q̄,P)}) = 1 for some f0 ∈ L2(P ). (A.86)

To conclude the proof, we aim to show that if condition (A.86) holds, then we must

have ∥ℓ−Υ(κ)∥Q̄,2 = 0 for some κ ∈ L2(P ). To this end, suppose (A.86) holds and note

that since E(f) = E(f + c) for any c ∈ R, we may assume without loss of generality that

f0 ∈ L2
0(P ). Moreover, result (A.83) and the definition of E imply

Proj{ℓ|L2
0(PZX)} = Proj{f0|L2

0(PZX)} I(f0) = Proj{ℓ|R̄(I, Q̄)}. (A.87)

In particular, result (A.87), the law of iterated expectations, Q̄ inducing P due to

Q̄ ∈ Θ0, and f0 ∈ L2
0(P ) implying EP [f0(Y, T, Z,X)|Z,X] = Proj{f0|L2

0(PZX)} yield

EQ̄[(ℓ(Y
⋆, T ⋆, X)− EQ̄[f0(Y, T, Z,X)|Y ⋆, T ⋆, X])EP [g(Y, T, Z,X)|X]] = 0 (A.88)

for any g ∈ L2
0(P ). Thus, result (A.88) and Corollary A.1 yield, for any g ∈ L2

0(P ), that

⟨ℓ−Υ(f0),Υ(g)⟩Q̄ = ⟨ℓ−Υ(f0), I(g)⟩Q̄ = ⟨ℓ− I(f0), I(g)⟩Q̄ = 0 (A.89)

where the second equality holds by the law of iterated expectations and Corollary A.1,

and the final equality by (A.87). Setting κ = f0 + λQ0 , then note that Υ(c) = c for any

c ∈ R, the law of iterated expectations, result (A.89), and λQ0 = EQ̄[ℓ(Y
∗, T ∗, X)] due

to λQ0 being identified imply that for any g ∈ L2
0(P ) and c ∈ R we have

0 = ⟨ℓ−Υ(f0),Υ(g)⟩Q̄ = ⟨ℓ−Υ(κ),Υ(g)⟩Q̄ = ⟨ℓ−Υ(κ),Υ(g + c)⟩Q̄. (A.90)

It follows from (A.90) that Υ(κ) equals the projection of ℓ onto the ∥ · ∥Q̄,2-closure of

Υ(L2(P )), and therefore that Υ(κ) is bounded by hypothesis. Also note that Assumption

4.1 holds due to ℓ being bounded and Assumption 4.1(iii) holding by hypothesis. Hence,

λQ0 being identified, Theorem 4.1, and Lemma A.4 applied with C = R yield

0 = inf
f∈L1(P )

∥ℓ−Υ(f)∥Q̄,1 = sup
∥f∥Q̄,∞≤1

⟨f, ℓ⟩Q̄ s.t. ⟨f,Υ(g)⟩Q̄ = 0 for all g ∈ L1(P ),

(A.91)

where the second equality follows from Theorem 5.8.1 in Luenberger (1969). Moreover,

since we have shown ∥Υ(κ)∥Q̄,∞ <∞ and ℓ is bounded, we next suppose without loss of

generality that ∥ℓ−Υ(κ)∥Q̄,∞ > 0 (because otherwise the theorem trivially follows). By

result (A.90), we then obtain that (ℓ−Υ(κ))/∥ℓ−Υ(κ)∥Q̄,∞ satisfies the constraints in

the maximization problem on the right hand side of (A.91), and hence we can conclude

0 ≥ ⟨ℓ−Υ(κ), ℓ⟩Q̄ = ∥ℓ−Υ(κ)∥2Q̄,2 + ⟨ℓ−Υ(κ),Υ(κ)⟩Q̄ = ∥ℓ−Υ(κ)∥2Q̄,2,
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where the final equality follows Υ(κ) equaling the projection of ℓ onto the ∥·∥Q̄,2 closure

of Υ(L2(P )). Thus, (A.86) implies Q̄(Υ(κ) = ℓ) = 1 for some κ ∈ L2(P ) and since

(A.86) is a necessary condition for I−1 to be finite, part (ii) of the theorem follows.

Proof of Corollary 5.1. First note that the conditions of part (i) and Lemma A.16

imply N(I) = L2(PZX). Hence, since L2(P ) = L2(PZX) ⊕ [L2(PZX)]⊥, it follows

that the projection of κ onto [N(I)]⊥ equals κ(Y, T, Z,X) − EP [κ(Y, T, Z,X)|Z,X].

The first claim of the corollary thus follows from Theorem 5.5(i), Lemma A.17, and

EP [κ(Y, T, Z,X)] = λQ0 due to Υ(κ) = ℓ and Lemma 4.2.

Next, let N(Υ) ≡ {s ∈ L2(P ) : ∥Υ(s)∥Q̄,2 = 0} and for any s ∈ N(Υ) let s̃t equal

s̃t(Z,X) ≡ EQ̄Y ⋆(t)|X
[s(Y ⋆(t), t, Z,X)]. (A.92)

Then note that Q̄ ∈ Θ0, Jensen’s inequality, and the definition of Q̄io imply that

EP [1{T = t}s̃2t (Z,X)] = EQ̄T⋆ZX
[1{T ⋆(Z) = t}(EQ̄Y ⋆(t)|X

[s(Y ⋆(t), t, Z,X)])2]

≤ EQ̄io [1{T ⋆(Z) = t}s2(Y ⋆(t), t, Z,X)]

≲ EQ̄[1{T ⋆(Z) = t}s2(Y ⋆(t), t, Z,X)]

≤ EP [s
2(Y, T, Z,X)], (A.93)

where the second inequality follows from dQ̄io/dQ̄ being bounded by Assumption 4.4(ii),

and the final follows from Q̄ ∈ Θ0. In particular, since s ∈ L2(P ), result (A.93) implies

s̃tδt ∈ L2(P ) as well. Moreover, s ∈ N(Υ) and dQ̄io/dQ̄ being bounded yield

0 = ∥Υ(s)∥2Q̄,2 ≳ ∥Υ(s)∥2Q̄io,2 = ∥(
∑
t∈T

Υ(δt(s− s̃t)) + Υ(
∑
t∈T

δts̃t)∥2Q̄io

=
∑
t∈T

∥Υ(δt(s− s̃t))∥2Q̄io,2 + ∥Υ(
∑
t∈T

(δts̃t)∥2Q̄io,2, (A.94)

where the final equality follows by noting that ⟨Υ(δt1(s − s̃t1),Υ(δt2s)⟩Q̄io = 0 and

⟨Υ(δt1(s − s̃t1),Υ(δt2 s̃t2)⟩Q̄io = 0 for any t1 ̸= t2 by definition of s̃t and Q̄io. Since

result (A.94), δts̃t ∈ L2(P ), and Q̄ ≪ Q̄io imply ∥Υ(δt(s − s̃t)∥Q̄,2 = 0, it follows from

the hypotheses of part (ii) of the corollary that ∥δt(s − s̃t)∥Q̄,2 = 0. Hence, we obtain

that s =
∑

t∈T δts̃t and since s ∈ N(Υ) was arbitrary, we can conclude that N(Υ) ⊆
L2(PTZX). However, by hypothesis N(Υ)∩L2(PTZX) ⊆ L2(PZX), and therefore Lemma

A.16 implies that N(I) = L2(PZX), which together with the same arguments employed

in part (i) yields the second claim of the corollary.

Theorem A.1. Let Assumptions 2.1, 2.2 hold, µ be known, and define the tangent set

T (P ) ≡ {s ∈ L2(P ) : η 7→ Pη,s is induced by some submodel η 7→ Qη,g}.
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Then, the tangent space satifies T̄ (P ) = [N(I)]⊥ ⊕ L2
0(PZX), where T̄ (P ) denotes the

∥ · ∥P,2-closure of T (P ) and L2
0(PZX) ≡ {f ∈ L2(PZX) : EP [f(Z,X)] = 0},

Proof. First set T1(Q) ≡ {g ∈ L2(QY ⋆T ⋆X) : EQ[g(Y
⋆, T ⋆, X)|Z,X] = 0} for any Q ∈ Θ0

and define a linear map I ′
Q : L2(Q) → L2(P ) to be given by

I ′
Q(g) ≡ EQ[g(Y

⋆, T ⋆, Z,X)|Y, T, Z,X].

Next set N(I, Q) ≡ {s ∈ L2(P ) : ∥I(s)∥Q,2 = 0} noting that N(I, Q̄) = N(I) for N(I)
as defined in the main text – for ease of exposition we omitted the dependence on Q

from the main text, but we make such dependence explicit in this proof to enhance

the clarity of the arguments that follow. Setting [N(I, Q)]⊥ ≡ {s ∈ L2(P ) : ⟨s, s′⟩P =

0 for all s′ ∈ N(I, Q)} and letting cl{A} denote the ∥·∥P,2 closure of any set A ⊆ L2(P ),

then observe that Lemma A.11(ii) and Theorem 6.7.3 in Luenberger (1969) imply

I ′
Q(T1(Q)) ⊆ cl{I ′

Q(T1(Q))} = [N(I, Q)]⊥ ⊆ [N(I, Q̄)]⊥, (A.95)

where the final set inclusion follows from Q ≪ Q̄ for any Q ∈ Θ0 implying that

N(I, Q̄) ⊆ N(I, Q). Further note that, by direct calculation, it is possible to verify

that Q̄(I(s) = 0) = 1 for any s ∈ L2(PZX) and therefore it follows that [N(I, Q̄)]⊥ and

L2
0(PZX) are orthogonal. Hence, if {sn} is a sequence in [N(I, Q̄)]⊥ + L2

0(PZX), then

writing sn = s1n + s2n for some {s1n} ⊂ [N(I, Q̄)]⊥ and {s2n} ⊂ L2
0(PZX) we obtain

from the orthogonality of [N(I, Q̄)]⊥ and L2
0(PZX) that ∥sn∥2P,2 = ∥s1n∥2P,2 + ∥s2n∥2P,2.

Therefore, if {sn} is a Cauchy sequence, then so must be {s1n} and {s2n} and hence,

since [N(I, Q̄)]⊥ and L2
0(PZX) are complete, we can conclude that {sn} has a limit in

[N(I, Q̄)]⊥ + L2
0(PZX). In particular, it follows that [N(I, Q̄)]⊥ + L2

0(PZX) is closed,

which together with result (A.95) and Lemma A.11(i) implies that

T̄ (P ) ⊆ cl{[N(I, Q̄)]⊥ + L2
0(PZX)} = [N(I, Q̄)]⊥ + L2

0(PZX). (A.96)

Conversely, note that Lemma A.11(ii) and Theorem 6.7.3 in Luenberger (1969) yield

[N(I, Q̄)]⊥ + L2
0(PZX) = cl{I ′

Q̄(T1(Q̄))}+ L2
0(PZX) ⊆ T̄ (P ), (A.97)

where the final set inclusion follows from Lemma A.11(i). The theorem therefore follows

from (A.96), (A.97), and the orthogonality of [N(I, Q̄)]⊥ and L2
0(PZX).

Lemma A.11. Let Assumptions 2.1 and 2.2(i)(ii) hold, µ be known, for any Q ∈ Θ0

let T1(Q) ≡ {g ∈ L2(QY ⋆T ⋆X) : EQ[g(Y
⋆, T ⋆, X)|Z,X] = 0}, and for any g ∈ L2(Q) set

I ′
Q(g) ≡ EQ[g(Y

⋆, T ⋆, Z,X)|Y, T, Z,X].

Then: (i) T (P ) =
⋃

Q∈Θ0
I ′
Q(T1(Q)) + L2

0(PZX) with L2
0(PZX) ≡ {f ∈ L2(PZX) :
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EP [f(Z,X)] = 0}; and (ii) I (as in (56)) is the adjoint of I ′
Q : T1(Q) → L2(P ).

Proof. For any Q ∈ Θ0 let T (Q) ≡ {g ∈ L2(Q) : η 7→ Qη,g is a submodel with Q0,g = Q}
and note Lemma A.12, QZX = PZX , and the linearity of I ′

Q : L2(Q) → L2(P ) imply

I ′
Q(T (Q)) = I ′

Q(T1(Q)) + I ′
Q(L

2
0(PZX)) = I ′

Q(T1(Q)) + L2
0(PZX). (A.98)

To establish part (i), then note that Proposition 4 in Le Cam and Yang (1988) implies

that any submodel η 7→ Qη,g induces a path η 7→ Pη,s with score s = I ′
Q0,g

(g). Therefore

part (i) of the lemma follows from (A.98) and the definition of T (P ).

In order to establish part (ii), first note that for any s ∈ L2(P ) and Q ∈ Θ0 we can

conclude from the definition of I in (56) and Corollary A.1 that

I(s) = EQ[s(Y, T, Z,X)|Y ⋆, T ⋆, X]− EP [s(Y, T, Z,X)|X]. (A.99)

Hence, since (Y ⋆, T ⋆) ⊥⊥ X|Z under Q and Q induces P due to Q ∈ Θ0, result (A.99)

and the law of iterated expectations imply that I(s) ∈ T1(Q) for any s ∈ L2(P ). Next,

let g ∈ T1(Q) and s ∈ L2(P ) be arbitrary, and note that the definition of I ′
Q, the law of

iterated expectations, and g ∈ T1(Q) allow us to conclude that

⟨I ′
Q(g), s⟩P = EQ[g(Y

⋆, T ⋆, X)(s(Y, T, Z,X)− EP [s(Y, T, Z,X)|Z,X]] = ⟨g, I(s)⟩Q,

where the final equality follows from the law of iterated expectations, (Y ⋆, T ⋆) ⊥⊥ Z|X
under Q, and (A.99). Hence, I : L2(P ) → T1(Q) is indeed the adjoint of I ′

Q : T1(Q) →
L2(P ), which establishes part (ii) of the lemma.

Lemma A.12. Let Assumptions 2.1 and 2.2(i)(ii) hold, µ be known, Q ∈ Θ0, and set

T1(Q) ≡ {g ∈ L2(QY ⋆T ⋆X) : EQ[g(Y
⋆, T ⋆, X)|Z,X] = 0}

T (Q) ≡ {g ∈ L2(Q) : η 7→ Qη,g is a submodel with Q0,g = Q}.

Then T (Q) = T1(Q) + L2
0(PZX), where L2

0(PZX) ≡ {f ∈ L2(PZX) : EP [f(Z,X)] = 0}.
Moreover, the lemma also holds if when defining T (Q) we require Qη,g ≪ Q0,g for all η.

Proof. Fix g ∈ T (Q) and note that Lemma A.13 implies that g = g1 + g2, where

g1(Y
⋆, T ⋆, X) = EQ[g(Y

⋆, T ⋆, Z,X)|Y ⋆, T ⋆, X]− EQ[g(Y
⋆, T ⋆, Z,X)|X]

g2(Z,X) = EQ[g(Y
⋆, T ⋆, Z,X)|Z,X].

Moreover, since (Y ⋆, T ⋆) ⊥⊥ Z|X under Q and QZX = PZX because Q ∈ Θ0, it follows

from the law of iterated expectations and EQ[g(Y
⋆, T ⋆, Z,X)] = 0 that g1 ∈ T1(Q) and

g2 ∈ L2
0(PZX). It thus follows that T (Q) ⊆ T1(Q) + L2

0(PZX). In order to establish the
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reverse inclusion, we rely on a construction from Example 3.2.1 in Bickel et al. (1993).

Specifically, let g1 ∈ T1(Q) and g2 ∈ L2
0(PZX) be arbitrary and set

dQη

dµ
≡ dQ

dµ

Ψ(ηg1)Ψ(ηg2)

c(η)
c(η) ≡

∫
Ψ(ηg1)Ψ(ηg2)dQ (A.100)

where Ψ : R → (0,∞) is any continuously differentiable function with Ψ(0) = Ψ′(0) = 1

and Ψ, Ψ′, and Ψ′/Ψ bounded. Next define π(η,X) ≡ EQ[Ψ(ηg1(Y
⋆, T ⋆, X))|X] and

note that (A.100), the law of iterated expectations, and (Y ⋆, T ⋆) ⊥⊥ Z|X under Q yield

EQη [1{(Z,X) ∈ A}] = EQ[1{(Z,X) ∈ A}Ψ(ηg2(Z,X))
π(η,X)

c(η)
] (A.101)

for any measurableA. In particular, (A.101) impliesQη,ZX ≪ QZX and dQη,ZX/dQZX =

Ψ(ηg2)π(η, ·)/c(η). Moreover, for any h ∈ L∞(Qη,ZX) and f ∈ L1(Qη,Y ⋆T ⋆X), definition

(A.100), the law of iterated expectations, (Y ⋆, T ⋆) ⊥⊥ Z|X under Q, and (A.101) yield

EQη [h(Z,X)f(Y ⋆, T ⋆, X)]

= EQ[h(Z,X)
Ψ(ηg2(Z,X))

c(η)
EQ[f(Y

⋆, T ⋆, X)Ψ(ηg1(Y
⋆, T ⋆, X))|X]]

= EQη [h(Z,X)
EQ[f(Y

⋆, T ⋆, X)Ψ(ηg1(Y
⋆, T ⋆, X))|X]

π(η,X)
]. (A.102)

Hence, since (A.102) holds for any bounded h, it follows for any f ∈ L1(Qη,Y ⋆T ⋆X) that

EQη [f(Y
⋆, T ⋆, X)|Z,X] = EQη [f(Y

⋆, T ⋆, X)|X]

=
EQ[f(Y

⋆, T ⋆, X)Ψ(ηg1(Y
⋆, T ⋆, X))|X]

π(η,X)
;

see, e.g., Definition 10.1.1 in Bogachev (2007). Therefore, since f ∈ L1(Qη,Y ⋆T ⋆X)

was arbitrary, we can conclude that (Y ⋆, T ⋆) ⊥⊥ Z|X under Qη. Finally, note that if

g1 = g2 = 0, then trivially g1 + g2 ∈ T (Q). On the other hand, if either g1 or g2 do

not equal zero, then Proposition 2.1.1 in Bickel et al. (1993) implies η 7→ dQη/dµ is a

regular parametric model in a neighborhood of zero. Moreover, by direct calculation

d

dη
log(

dQη

dµ
)
∣∣∣
η=0

= g1 + g2

due to Ψ(0) = Ψ′(0) = 1 and therefore g1 + g2 ∈ T (Q). Thus, we can conclude

T1(Q) + L2
0(PZX) ⊆ T (Q), and the claim of the lemma follows.

Lemma A.13. Let Assumptions 2.1 and 2.2(i)(ii) hold, µ be known, η 7→ Qη,g be a

submodel with Q0,g = Q ∈ Θ0, and let V ≡ (Y ⋆, T ⋆, Z,X). Then, it follows that:

g(V ) = EQ[g(V )|Y ⋆, T ⋆, X] + EQ[g(V )|Z,X]− EQ[g(V )|X].
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Proof. For notational simplicity we first define the function ∆Q ∈ L2(Q) to be given by

∆Q(V ) ≡ g(V )− EQ[g(V )|Y ⋆, T ⋆, X]− EQ[g(V )|Z,X] + EQ[g(V )|X]. (A.103)

Next note that since Q ∈ Θ0 we must have (Y ⋆, T ⋆) ⊥⊥ Z|X under Q and therefore

EQ[h(Z,X)− EQ[h(Z,X)|X]|Y ⋆, T ⋆, X] = 0

EQ[f(Y
⋆, T ⋆, X)− EQ[f(Y

⋆, T ⋆, X)|X]|Z,X] = 0 (A.104)

for any bounded functions h and f . In particular, definition (A.103), result (A.104), the

law of iterated expectations, and Lemma A.14 imply that

EQ[∆Q(V )(h(Z,X)− EQ[h(Z,X)|X])(f(Y ⋆, T ⋆, X)− EQ[f(Y
⋆, T ⋆, X)|X])] = 0.

(A.105)

Moreover, the law of iterated expectations and (Y ⋆, T ⋆) ⊥⊥ Z|X under Q also yield that

EQ[∆Q(V )|Y ⋆, T ⋆, X] = EQ[∆Q(V )|Z,X] = 0. (A.106)

Therefore, results (A.105) and (A.106) imply that for any bounded f and h we have

EQ[∆Q(V )h(Z,X)f(Y ⋆, T ⋆, X)] = 0. (A.107)

We next establish the lemma by showing that result (A.107) implies that ∆Q(V ) = 0.

To this end, we let F denote the σ-field generated by (FY ⋆ ×FT ⋆ ×FZ ×FX) which, as

in the rest of the literature, we assume equals the σ-field on which Q is defined (here,

FU denotes the σ-field on which QU is defined). We also define the class of sets

A ≡ {A ∈ F : EQ[1{(Y ⋆, T ⋆, Z,X) ∈ A}∆Q(V )] = 0}

and note (A.107) implies Y⋆ ×T⋆ ×X×Z ∈ A. Also, if A1, A2 ∈ A and A1 ⊆ A2 then

EQ[∆Q(V )1{(Y ⋆, T ⋆, Z,X) ∈ A2 \A1}]

= EQ[∆Q(V )(1{(Y ⋆, T ⋆, Z,X) ∈ A2} − 1{(Y ⋆, T ⋆, Z,X) ∈ A1})] = 0,

which implies A2 \ A1 ∈ A. Similarly, if {Ai}∞i=1 ⊂ A is a sequence of pairwise disjoint

sets, then the dominated convergence theorem implies that

EQ[∆Q(V )1{(Y ⋆, T ⋆, Z,X) ∈
∞⋃
i=1

Ai}] = lim
n→∞

EQ[∆Q(V )1{(Y ⋆, T ⋆, Z,X) ∈
n⋃

i=1

Ai}]

= lim
n→∞

n∑
i=1

EQ[∆Q(V )1{(Y ⋆, T ⋆, Z,X) ∈ Ai}] = 0, (A.108)
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where the second and third equalities follow from {Ai}∞i=1 being disjoint and Ai ∈ A.

Result (A.108) implies
⋃∞

i=1 ∈ A and therefore that A is a λ-system. On the other hand,

if AY ⋆ ∈ FY ⋆ , AT ⋆ ∈ FT ⋆ , AZ ∈ FZ , and AX ∈ FX , then setting h(Z,X) = 1{(Z,X) ∈
AZ ×AX} and f(Y ⋆, T ⋆, X) = 1{(Y ⋆, T ⋆) ∈ AY ⋆ ×AT ⋆} in (A.107) yields

EQ[∆Q(V )1{(Y ⋆, T ⋆, Z,X) ∈ AY ⋆ ×AT ⋆ ×AZ ×AX}]

= EQ[∆Q(V )1{(Y ⋆, T ⋆) ∈ AY ⋆ ×AT ⋆}1{(Z,X) ∈ AZ ×AX}] = 0.

In particular, we obtain that (FY ⋆ ×FT ⋆ ×FZ ×FX) ⊆ A. Hence, since (FY ⋆ ×FT ⋆ ×
FZ × FX) is a π-system and F is generated by (FY ⋆ × FT ⋆ × FZ × FX), the π − λ

theorem (see, e.g., Theorem 2.38 in Pollard (2002)) yields that A = F . Thus, we obtain

EQ[|∆Q(V )|] = EQ[∆Q(V )1{∆Q(V ) ≥ 0}]− EQ[∆Q(V )1{∆Q(V ) < 0}] = 0,

which establishes the claim of the lemma.

Lemma A.14. Let Assumptions 2.1 and 2.2(i)(ii) hold, µ be known, and η 7→ Qη,g be

a submodel with Q0,g = Q ∈ Θ0. Then, for any h ∈ L∞(µZX) and f ∈ L∞(µY ⋆T ⋆X):

EQ[g(Y
⋆, T ⋆, Z,X)(h(Z,X)−EQ[h(Z,X)|X])(f(Y ⋆, T ⋆, X)−EQ[f(Y

⋆, T ⋆, X)|X])] = 0.

Proof. In what follows we write Eη in place of EQη,g and E in place of EQ. Next note

that f and h being bounded and Lemma F.1 in Chen and Santos (2018) imply

lim
η↓0

1

η
{Eη[h(Z,X)f(Y ⋆, T ⋆, X)]− E[h(Z,X)f(Y ⋆, T ⋆, X)]}

= E[h(Z,X)f(Y ⋆, T ⋆, X)g(Y ⋆, T ⋆, Z,X)]. (A.109)

Moreover, a second application of Lemma F.1 in Chen and Santos (2018) also yields

lim
η↓0

1

η
{Eη[h(Z,X)Eη[f(Y

⋆, T ⋆, X)|X]]− E[h(Z,X)Eη[f(Y
⋆, T ⋆, X)|X]]}

= lim
η↓0

E[h(Z,X)Eη[f(Y
⋆, T ⋆, X)|X]g(Y ⋆, T ⋆, Z,X)]

= E[h(Z,X)E[f(Y ⋆, T ⋆, X)|X]g(Y ⋆, T ⋆, Z,X)] (A.110)

where the final result follows from the Cauchy-Schwarz inequality and Lemma A.15.

Next note that the law of iterated expectations and similar arguments also yield

lim
η↓0

1

η
{Eη[E[h(Z,X)|X]f(Y ⋆, T ⋆, X)]− E[E[h(Z,X)|X]Eη[f(Y

⋆, T ⋆, X)|X]]}

= lim
η↓0

E[E[h(Z,X)|X]Eη[f(Y
⋆, T ⋆, X)|X]g(Y ⋆, T ⋆, Z,X)]

= E[E[h(Z,X)|X]E[f(Y ⋆, T ⋆, X)|X]g(Y ⋆, T ⋆, Z,X)], (A.111)
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while a final application of Lemma F.1 in Chen and Santos (2018) further implies that

lim
η↓0

1

η
{Eη[E[h(Z,X)|X]f(Y ⋆, T ⋆, X)]− E[E[h(Z,X)|X]f(Y ⋆, T ⋆, X)]}

= E[E[h(Z,X)|X]f(Y ⋆, T ⋆, X)g(Y ⋆, T ⋆, Z,X)]. (A.112)

To conclude, note that since (Y ⋆, T ⋆) ⊥⊥ Z|X under Qη,g for all η ≥ 0 we must have

Eη[h(Z,X)Eη[f(Y
⋆, T ⋆, X)|X]] = Eη[h(Z,X)f(Y ⋆, T ⋆, X)] (A.113)

for any η ≥ 0. In particular, since Q0,g = Q, result (A.113) allows us to conclude that

lim
η↓0

1

η
{Eη[h(Z,X)Eη[f(Y

⋆, T ⋆, X)|X]]− E[h(Z,X)E[f(Y ⋆, T ⋆, X)|X]]}

= lim
η↓0

1

η
{Eη[h(Z,X)f(Y ⋆, T ⋆, X)]− E[h(Z,X)f(Y ⋆, T ⋆, X)]}. (A.114)

The claim of the lemma therefore follows from combining the equality in (A.114) with

results (A.109), (A.110), (A.111) and (A.112).

Lemma A.15. If µ is known, η 7→ Qη,g is a path, and f ∈ L∞(µ), then it follows that

lim
η↓0

EQ0,g [(EQη,g [f(Y
⋆, T ⋆, Z,X)|X]− EQ0,g [f(Y

⋆, T ⋆, Z,X)|X])2] = 0.

Proof. Set V ≡ (Y ⋆, T ⋆, Z,X) for notational simplicity and define the sets A+
η ≡ {X :

EQη,g [f(V )|X] ≥ EQ0,g [f(V )|X]} and A−
η ≡ {X : EQη,g [f(V )|X] < EQ0,g [f(V )|X]}.

Then note that since f is bounded by hypothesis we can conclude that

EQ0,g [(EQη,g [f(V )|X]− EQ0,g [f(V )|X])2] ≲ EQ0,g [|EQη,g [f(V )|X]− EQ0,g [f(V )|X]|]

= EQ0,g [(1{X ∈ A+
η } − 1{X ∈ A−

η })(EQη,g [f(V )|X]− f(V ))], (A.115)

where the equality follows from the definitions of A+
η and A−

η and the law of iterated

expectations. However, by Lemma F.1 in Chen and Santos (2018) we have that

lim
η↓0

EQ0,g [(1{X ∈ A+
η } − 1{X ∈ A−

η })(EQη,g [f(V )|X]− f(V ))]

= lim
η↓0

EQη,g [(1{X ∈ A+
η } − 1{X ∈ A−

η })(EQη,g [f(V )|X]− f(V ))] = 0, (A.116)

where the final equality follows from the law of iterated expectations. Results (A.115)

and (A.116) together establish the claim of the lemma.

Lemma A.16. Let Assumptions 2.1, 2.2 hold, N(Υ) ≡ {s ∈ L2(P ) : ∥Υ(s)∥Q̄,2 = 0},
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and [L2(PZX)]⊥ ≡ {s ∈ L2(P ) : ⟨s, s̃⟩P = 0 for all s̃ ∈ L2(PZX)}. Then it follows that

N(I) = (N(Υ) ∩ [L2(PZX)]⊥)⊕ L2(PZX).

Proof. Let s1 ∈ N(Υ) ∩ [L2(PZX)]⊥ and s2 ∈ L2(PZX) be arbitrary and note that

I(s1 + s2) = I(s1) = −EP [s1(Y, T, Z,X)|X]

= −EQ̄[EQ̄[s1(Y, T, Z,X)|Y ⋆, T ⋆, X]|X] = 0

where in the first equality we used that I(s2) = 0 for any s2 ∈ L2(PZX), the second

equality follows from s1 ∈ N(Υ), the third inequality follows from Q̄ ∈ Θ0 and the law of

iterated expectations, and the final equality from Corollary A.1 and s1 ∈ N(Υ). Thus,

we must have (N(Υ) ∩ [L2(PZX)]⊥) ⊕ L2(PZX) ⊆ N(I). For the reverse inclusion let

s ∈ N(I) be arbitrary and set s1 ≡ s− s2 with s2 given by

s2(Z,X) ≡ EP [s(Y, T, Z,X)|Z,X].

Note that s2 ∈ L2(PZX), s1 ∈ [L2(PZX)]⊥, and by the law of iterated expectations

Υ(s2) =
∑
t∈T

EPZ|X [s2(Z,X)1{T ⋆(Z) = t}] = EP [s(Y, T, Z,X)|X].

Thus, since s ∈ N(I) we obtain that Υ(s1) = Υ(s) − Υ(s2) = I(s) = 0, which implies

s1 ∈ N(Υ)∩ [L2(PZX)]⊥. Hence, we conclude N(I) ⊆ (N(Υ)∩ [L2(PZX)]⊥)⊕L2(PZX)

and the claim of the lemma follows.

Lemma A.17. Suppose that the conditions of Theorem 5.1 (resp. Theorem 5.3) hold

with maxt δ
β
t ∨ δγt = o(1) (resp. δβ ∨ δγ = o(1)), the conditions of Theorem 5.5(i) hold

with a κ satisfying Assumption 5.1(ii) (resp. Assumption 5.3(ii)), and define

ψ̃(Y, T, Z,X) ≡ κ(Y, T, Z,X)− EP [κ(Y, T, Z,X)|Z,X] + EP [κ(Y, T, Z,X)|X]− λQ0 .

Then, it follows that the estimator λ̂ of Section 5.1 (resp. Section 5.2) satisfies

√
n{λ̂− λQ0}

d→ N(0,VarP {ψ̃(Y, T, Z,X)}).

Proof. We only establish the claim concerning Section 5.1, since the claim concerning

Section 5.2 follows by identical arguments. First note that by Assumption 5.1(iii),
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κ ∈ L∞(PTZX) and hence κ = ν/π, and the law of iterated expectations yield

ψ̃(Y, T, Z,X) =
∑
t∈T

κ(t, Z,X)(1{T = t} − P (T = t|Z,X))

+
∑
t∈T

EµZ|X [ν(t, Z,X)P (T = t|Z,X)]− λQ0 . (A.117)

For ψ as in (35), we then obtain from (A.117), maxt ∥b′βt∥∞ = O(1) by Assumption

5.2(i), ∥κ∥∞ ∨ ∥ν∥∞ <∞ by Assumptions 5.1(ii)(iii), and Jensen’s inequality that

EP [(ψ̃(Y, T, Z,X)− ψ(Y, T, Z,X))2] ≲
∑
t∈T

EP [(b(Z,X)′βt − P (T = t|Z,X))2

+
∑
t∈T

(b(Z,X)′γt − κ(t, Z,X))2] = o(1), (A.118)

where the final equality follows from maxt δ
β
t ∨ δγt = o(1) by hypothesis. Setting σ̃2 ≡

VarP {ψ̃(Y, T, Z,X)} and σ2 ≡ VarP {ψ(Y, T, Z,X)}, it then follows from (A.118) that

σ2 = σ̃2+o(1) and hence that σ2 = O(1) due to ∥κ∥∞ <∞. Thus, E[ψ̃(Y, T, Z,X)] = 0

due to Υ(κ) = ℓ and Lemma 4.2, Lemma A.7, σ2 = O(1), and (A.118) imply

E[(
1√
n

n∑
i=1

ψ(Yi, Ti, Zi, Xi)− ψ̃(Yi, Ti, Zi, Xi))
2]

= E[(ψ(Y, T, Z,X)− ψ̃(Y, T, Z,X))2] + o(1) = o(1). (A.119)

Thus, Theorem 5.1, σ2 = O(1), result (A.119), and Markov’s inequality yield that

√
n{λ̂− λQ0} =

1√
n

n∑
i=1

ψ̃(Yi, Ti, Zi, Xi) + oP (1),

which together with the central limit theorem establishes the claim of the lemma.

A.4 Additional Details for Section 3

The MTO experiment offered incentives to households that were socially disadvan-

taged, encouraging them to relocate from economically deprived areas to more affluent

neighborhoods. The experiment was conducted over a period of four years, from June

1994 to July 1998, as documented by Orr et al. (2003). Eligible households were those

that belonged to the low-income group and had children under the age of 18, residing

in the most impoverished housing projects of five major US cities, namely Baltimore,

Boston, Chicago, Los Angeles, and New York. The majority of these households, i.e.

75%, relied on welfare, while only a third had completed high school. African Americans

comprised the majority of the sample, constituting 62%, followed by Hispanics at 30%.
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Female-headed households made up 92% of the participants.

Our dataset comprises 3039 families residing in high-poverty neighborhoods at the

onset of the intervention. These families were randomly assigned to either the con-

trol group, consisting of 1310 families, or the experimental group, comprising of 1729

families. The experimental group received a rent-subsidizing voucher that incentivized

families to relocate from the high-poverty public housing they lived in to low-poverty

communities, namely, neighborhoods where less than 10% of households were living be-

low the poverty line according to the 1990 US Census. Families in the control group did

not receive any voucher. The Department of Housing and Urban Development (HUD)

set the subsidy amount and unit eligibility based on the Applicable Payment Standard

(APS). Landlords could not discriminate against a voucher recipient, and leases were

automatically renewed. Families that decided to use the experimental voucher were

required to live in the low-poverty neighborhood for a year but could move afterward.

HUD paid rent directly to the landlord and required that households pay 30% of their

monthly adjusted gross income to offset the cost of rent and utilities. A total of 818 out

of the 1,729 experimental families agreed to use the voucher to relocate to low-poverty

neighborhoods. Experimental families that did not use the voucher and control families

were also allowed to move to low-poverty neighborhoods.

We investigate labor market outcomes surveyed at the MTO interim evaluation in

2002 (Orr et al., 2003). For control variables X we follow the literature in employing:

1. Experimental site indicators.

2. Indicator for whether a household member had a disability.

3. Indicator for no teens (ages 13-17) in the household at the onset of the intervention.

4. Indicator for whether the family had previously applied for a Section 8 voucher.

5. Indicator for whether the family had moved more than three times in the five years

prior to the onset of the intervention.

6. Indicator for whether respondent reported not having friends in the neighborhood.

7. Indicator for whether respondent was very likely to tell a neighbor if he/she saw

a neighbor’s child getting into trouble.

8. Indicator for whether a family member had been assaulted during the six months

preceding the baseline survey.

9. Assessment of whether the streets near home were very unsafe at night.

10. Baseline respondent’s primary or secondary reason for wanting to move was to get

away from gangs or drugs.
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All our estimates rely on the person-level weights, denoted by {ωi}ni=1, for the adult

survey of the interim analyses, as described in the MTO Interim Impacts Evaluation

manual, 2003, Appendix B. We drop any observations with a missing value for any of

the outcomes of interest, treatment status, or baseline characteristics.

A.4.1 Additional Details for Section 3.1

All functionals about types fall within the framework of Section 5.1. Moreover, since

the instrument Z ∈ {0, 1} and treatment T = (D,M) ∈ {0, 1} × {0, 1} are discrete,

the estimation algorithm may be implemented in the manner discussed in Example

2.4. To map this problem into the notation of Example 2.4 simply interpret T ∗ ≡
(D∗(0), D∗(1),M∗(0),M∗(1)) as a vector in R4 and require that µ(T ∗ ∈ R∗) = 1 where

R∗ ≡




0

0

0

0

 ,


0

0

1

1

 ,


0

1

0

0

 ,


0

1

0

1

 ,


0

1

1

1

 ,


1

1

0

0

 ,


1

1

1

1




Due to the sample size, we do not employ sample splitting – a modification to the

algorithm of Section 5.1 that is justified under appropriate sparsity assumptions. We

additionally incorporate the weights {ωi}ni=1 in estimation by proceeding as follows:

Step A.1. Set b(Z,X) ∈ Rp to consist of the functions generated by interacting Z and

(1− Z) with every coordinate of the baseline covariates X.

Step A.2. For each treatment value t ∈ T we estimate the following LASSO regression

β̂t ∈ arg min
β∈Rp

n∑
i=1

ωi(1{Ti = t} − b(Zi, Xi)
′β)2 + α∥β∥1,

where the penalty α is chosen through leave-one-out cross validation. We also compute

γ̂t ∈ arg min
γ∈Rp

n∑
i=1

ωi{
1

2
(b(Zi, Xi)

′γ)2 − EµZ|X [ν(t, Z,Xi)b(Z,Xi)
′γ]}+ α∥γ∥1,

where α is again chosen by leave-one-out cross validation and, since p < n, we follow

Remark A.0.1 below to compute γ̂t through a LASSO regression.

Step A.3. We estimate λQ0 = EQ0 [ℓ(T
∗, X)] by employing the plug-in estimator

λ̂ ≡
n∑

i=1

ωi{
∑
t∈T

b(Zi, Xi)
′γ̂t(1{Ti = t} − b(Zi, Xi)

′β̂t) + EµZ|X [ν(t, Z,Xi)b(Z,Xi)
′β̂t]}.
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Recall λ̂ is simply a sample analogue to the moment condition in (32).

By applying the algorithm with ℓ(T ∗, X) = 1{T ∗ = t∗} for each possible type t∗ we

obtain estimates of the type probabilities. The standard error σ̂ for λ̂ then satisfies

σ̂2 =
n∑

i=1

ω2
i (
∑
t∈T

b(Zi, Xi)
′γ̂t(1{Ti = t}−b(Zi, Xi)

′β̂t)+EµZ|X [ν(t, Z,Xi)b(Z,Xi)
′β̂t]−λ̂)2

To estimate the expectation of a coordinate X(j) of the baseline covariates X conditional

on type t∗ (as in Table 1), we simply rely on the equality

EQ0 [X
(j)|T ∗ = t∗] =

EQ0 [X
(j)1{T ∗ = t∗}]

EQ0 [1{T ∗ = t∗}]

and construct a plug-in estimator by applying the preceding algorithm with ℓ(T ∗, X) =

X(j)1{T ∗ = t∗} and ℓ(T ∗, X) = 1{T ∗ = t∗}. Standard errors for these estimators are

obtained via the Delta method.

Remark A.0.1. Whenever the dimension p of b(Z,X) is smaller than n, the estimator

γ̂t can be computed through a LASSO regression. Specifically, by setting

Ỹi ≡ b(Zi, Xi)
′(

n∑
j=1

ωjb(Zj , Xj)b(Zj , Xj)
′)−1

n∑
j=1

ωjEµZ|X [ν(t, Z,Xj)b(Z,Xj)],

it is possible to show that γ̂t also equals the solution to the LASSO regression

min
γ∈Rp

n∑
i=1

ωi(Ỹi − b(Zi, Xi)
′γ)2 + α∥γ∥1.

This observation is helpful for computational purposes, because it allows us to rely on

readily available LASSO routines to compute the estimator γ̂t.

A.4.1 Additional Details for Section 3.2

All parameters examined in Section 3.2 depend on expectations with the structure

EQ0 [ρ(Y
∗(t))ℓ(T ∗, X)] (A.120)

and on type probabilities. Moreover, recall that a necessary and sufficient condition for

identification of (A.120) is that there exist a function κ satisfying

EQ0 [
∑
z∈Z

1{T ∗(z) = t}κ(z,X)P (Z = z|X)|V ∗(t), X] = EQ0 [ℓ(T
∗, X)|V ∗(t), X],

(A.121)
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where V ∗(t) = T ∗ if t ∈ {(0, 1), (1, 0)}, V ∗((0, 0)) = T ∗1{T ∗ /∈ {CN,CC}}, and

V ∗((1, 1)) = T ∗1{T ∗ /∈ {CA,CC}}. For certain choices of functions ℓ(T ∗, X), the

identifying equation in (A.121) has the structure assumed in Section 5.2. In particular,

EQ0 [ρ(Y
∗(t))1{T ∗ ∈ A}] with


t = (0, 0) and A = {NN} or {CN,CC}
t = (0, 1) and A = {NA} or {CA}
t = (1, 0) and A = {CN} or {AN}
t = (1, 1) and A = {CC,CA} or {AA}

(A.122)

are identified by EP [ρ(Y )1{T = t}κ(Z,X)] with κ(Z,X) = ν(Z,X)/π(Z,X) for some

known function ν that may be found by proceeding as in our discussion of Example 2.4.

For expectations that fall within the scope of (A.122) we therefore employ the algorithm

in Section 5.2 but without sample splitting and with the inclusion of person-level weights:

Step B.1. Set b(Z,X) ∈ Rp to consist of the functions generated by interacting Z and

(1− Z) with every coordinate of the baseline covariates X.

Step B.2. Compute the following two estimators through LASSO regressions

β̂ ∈ arg min
β∈Rp

n∑
i=1

ωi(ρ(Yi)1{Ti = t} − b(Zi, Xi)
′β)2 + α∥β∥1

γ̂ ∈ arg min
γ∈Rp

n∑
i=1

ωi{
1

2
(b(Zi, Xi)

′γ)2 − EµZ|X [ν(Z,Xi)b(Z,Xi)
′γ]}+ α∥γ∥1,

where the penalty α is chosen through leave-one-out cross validation and in computing

γ̂ we rely on Remark A.0.1.

Step B.3. We estimate λQ0 = EQ0 [ρ(Y
∗(t))ℓ(T ∗, X)] employing the plug-in estimator

λ̂ ≡
n∑

i=1

ωi{b(Zi, Xi)
′γ̂(ρ(Yi)1{Ti = t} − b(Zi, Xi)

′β̂) + EµZ|X [ν(Z,Xi)b(Z,Xi)
′β̂]}.

Certain parameters that are relevant for our analysis, however, fall outside the scope

of Section 5.2 and the preceding algorithm. These parameters have the structure

EQ0 [ρ(Y
∗(t))1{T ∗ = t∗}] with

{
t = (0, 0) and t∗ = CN

t = (1, 1) and t∗ = CA

and remain identified by the expectation EP [ρ(Y )1{T = t}κ(Z,X)], but the relevant

κ no longer satisfies κ(Z,X) = ν(Z,X)/π(Z,X) for some known ν. For instance, for

identifying EQ0 [ρ(Y
∗(0, 0))1{T ∗ = CN}] equation (A.121) implies the relevant κ solves

EPZ|X [1{t
∗(Z) = (0, 0)}κ(Z,X)] = 0 for all t∗ /∈ {CN,CC}
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and

EQ0 [1{T ∗(Z) = (0, 0)}κ(Z,X)|T ∗ ∈ {CN,CC}, X] = Q0(T
∗ = CN |T ∗ ∈ {CN,CC}, X).

Based on these observations, it is then possible to obtain an orthogonal score for esti-

mating EQ0 [ρ(Y
∗(0, 0))1{T ∗ = CN}]. Specifically, defining the nuisance parameters

m(Z,X) ≡ E[ρ(Y )1{T = (0, 0)}|Z,X]

p00(Z,X) ≡ P (T = (0, 0)|Z,X)

p10(Z,X) ≡ P (T = (1, 0)|Z,X)

κc(Z,X) ≡ (
1{Z = 0}
P (Z = 0|X)

− 1{Z = 1}
P (Z = 1|X)

)

u(X) ≡ Q0(T
∗ ∈ {CC,CN}|X)

c(X) ≡ Q0(T
∗ = CN |T ∗ ∈ {CN,CC}, X),

it is possible to show that the orthogonal score for EQ0 [ρ(Y
∗(0, 0))1{T ∗ = CN}] equals

E[ρ(Y ∗(0, 0))1{T ∗ = CN}]

= E[(Y 1{T = (0, 0)} −m(Z,X))c(X)κc(Z,X)]

+ E[(m(0, X)−m(1, X))c(X)]

− E[
(m(0, X)−m(1, X))

u(X)
(1{T = (1, 0)} − p10(Z,X))κc(Z,X)]

− E[
(m(0, X)−m(1, X))

u(X)
(p10(0, X)− p10(1, X)]

− E[
(m(0, X)−m(1, X))c(X)

u(X)
(1{T = (0, 0)} − p00(Z,X))κc(Z,X)]

− E[
(m(0, X)−m(1, X))c(X)

u(X)
(p00(0, X)− p00(1, X))].

Given this orthogonal score, we then obtain an estimator by proceding as follows:

Step C.1. Set b(Z,X) ∈ Rp to consist of the functions generated by interacting Z and

(1− Z) with every coordinate of the baseline covariates X and compute

β̂m ∈ arg min
β∈Rp

n∑
i=1

ωi(ρ(Yi)1{Ti = (0, 0)} − b(Zi, Xi)
′β)2 + α∥β∥1

β̂00 ∈ arg min
β∈Rp

n∑
i=1

ωi(1{Ti = (0, 0)} − b(Zi, Xi)
′β)2 + α∥β∥1

β̂10 ∈ arg min
β∈Rp

n∑
i=1

ωi(1{Ti = (1, 0)} − b(Zi, Xi)
′β)2 + α∥β∥1

through LASSO regression and the penalty α selected by leave-one-out cross validation.
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Similarly, by relying on Remark A.0.1 we also compute the estimator

γ̂κ ∈ arg min
γ∈Rp

n∑
i=1

ωi{
1

2
(b(Zi, Xi)

′γ)2 − (b(0, Xi)− b(1, Xi))
′γ}+ α∥γ∥1,

through a LASSO regression and select α through leave-one-out cross validation.

Step C.2. Set f(X) ∈ Rq to equal X and compute the following penalized estimators

π̂cc ∈ arg min
π∈Rq

n∑
i=1

ωi(1{Ti ∈ {(0, 0), (1, 0)}}b(Zi, Xi)
′γ̂κ − f(Xi)

′π)2 + α∥π∥1

π̂cn ∈ arg min
π∈Rq

n∑
i=1

ωi(1{Ti = (1, 0)}b(Zi, Xi)
′γ̂κ + f(Xi)

′π)2 + α∥π∥1,

where the penalties α are selected by leave-one-out cross validation.

Step C.3. Using the estimators from Steps 1 and 2 define the following estimators

m̂(Zi, Xi) ≡ b(Zi, Xi)
′β̂m p̂00(Zi, Xi) ≡ b(Zi, Xi)

′β̂00

p̂10(Zi, Xi) ≡ b(Zi, Xi)
′β̂10 κ̂c(Zi, Xi) ≡ b(Zi, Xi)

′γ̂κ

û(Xi) ≡ f(Xi)
′(π̂cc + π̂cn) ĉ(Xi) ≡

f(Xi)
′π̂cn

û(Xi)
.

Employing these estimators we put them all together into the orthogonal score by setting

ψ̂(Yi, Ti, Zi, Xi) = (ρ(Yi)1{Ti = (0, 0)} − m̂(Zi, Xi))ĉ(Xi)κ̂c(Zi, Xi)

+ (m̂(0, Xi)− m̂(1, Xi))ĉ(Xi)

− (m̂(0, Xi)− m̂(1, Xi))

û(Xi)
(1{Ti = (1, 0)} − p̂10(Zi, Xi))κ̂c(Zi, Xi)

− (m̂(0, Xi)− m̂(1, Xi))

û(Xi)
(p̂10(0, Xi)− p̂10(1, Xi))

− (m̂(0, Xi)− m̂(1, Xi))ĉ(Xi)

û(Xi)
(1{Ti = (0, 0)} − p̂00(Zi, Xi))κ̂c(Zi, Xi)

− (m̂(0, Xi)− m̂(1, Xi))ĉ(Xi)

û(Xi)
(p̂00(0, Xi)− p̂00(1, Xi)).

Our estimator for EQ0 [Y
∗(0, 0)1{T ∗ = CN}] then equals λ̂ =

∑
i ωiψ̂(Yi, Ti, Zi, Xi).

An estimator for EQ0 [Y
∗(1, 1)1{T ∗ = CA}] can be obtained through similar steps:

Step D.1. Set b(Z,X) ∈ Rp to consist of the functions generated by interacting Z and
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(1− Z) with every coordinate of the baseline covariates X and compute

β̂m ∈ arg min
β∈Rp

n∑
i=1

(ρ(Yi)1{Ti = (1, 1)} − b(Zi, Xi)
′β)2 + α∥β∥1

β̂11 ∈ arg min
β∈Rp

n∑
i=1

(1{Ti = (1, 1)} − b(Zi, Xi)
′β)2 + α∥β∥1

β̂01 ∈ arg min
β∈Rp

n∑
i=1

(1{Ti = (0, 1)} − b(Zi, Xi)
′β)2 + α∥β∥1

γ̂κ ∈ arg min
γ∈Rp

n∑
i=1

{1
2
(b(Zi, Xi)

′γ)2 − (b(1, Xi)− b(0, Xi))
′γ}+ α∥γ∥1,

with α selected through leave-one-out cross validation.

Step D.2. Set f(X) ∈ Rq to equal X and compute the following penalized estimators

π̂cc ∈ arg min
π∈Rq

n∑
i=1

(1{Ti = {(0, 0), (1, 0)}}b(Zi, Xi)
′γ̂κ + f(Xi)

′π)2 + α∥π∥1

π̂ca ∈ arg min
π∈Rq

n∑
i=1

(1{Ti = (0, 1)}b(Zi, Xi)
′γ̂κ + f(Xi)

′π)2 + α∥π∥1

with α selected through leave-one-out cross validation.

Step D.3. Using the estimators from Steps 1 and 2 define the following estimators

m̂(Zi, Xi) ≡ b(Zi, Xi)
′β̂m p̂11(Zi, Xi) ≡ b(Zi, Xi)

′β̂11

p̂01(Zi, Xi) ≡ b(Zi, Xi)
′β̂01 κ̂c(Zi, Xi) ≡ b(Zi, Xi)

′γ̂κ

û(Xi) ≡ f(Xi)
′(π̂cc + π̂ca) ĉ(Xi) ≡

f(Xi)
′π̂ca

û(Xi)
.

Employing these estimators we put them all together into the orthogonal score by setting

ψ̂(Yi, Ti, Zi, Xi) = (ρ(Yi)1{Ti = (1, 1)} − m̂(Zi, Xi))ĉ(Xi)κ̂c(Zi, Xi)

+ (m̂(1, Xi)− m̂(0, Xi))ĉ(Xi)

− (m̂(1, Xi)− m̂(0, Xi))

û(Xi)
(1{Ti = (0, 1)} − p̂01(Zi, Xi))κ̂c(Zi, Xi)

− (m̂(1, Xi)− m̂(0, Xi))

û(Xi)
(p̂01(1, Xi)− p̂01(0, Xi))

− (m̂(1, Xi)− m̂(0, Xi))ĉ(Xi)

û(Xi)
(1{Ti = (1, 1)} − p̂11(Zi, Xi))κ̂c(Zi, Xi)

− (m̂(1, Xi)− m̂(0, Xi))ĉ(Xi)

û(Xi)
(p̂11(1, Xi)− p̂11(0, Xi)).

Our estimator for EQ0 [Y
∗(1, 1)1{T ∗ = CA}] then equals λ̂ =

∑
i ωiψ̂(Yi, Ti, Zi, Xi).
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All the parameters in Section 3.2 can be computed by employing plug-in estimators

based on the preceding algorithms. For instance, to estimate CDE0 we employ that

CDE0 =
EQ0 [Y

∗(1, 0)1{T ∗ = CN}]− EQ0 [Y
∗(0, 0)1{T ∗ = CN}]

Q0(T ∗ = CN)

and estimate EQ0 [Y
∗(1, 0)1{T ∗ = CN}] using Steps B.1-B.3, EQ0 [Y

∗(0, 0)1{T ∗ = CN}]
using Steps C.1-C.3, and Q0(T

∗ = CN) using Steps A.1-A.3. Similarly, noting

CDE1 =
EQ0 [Y

∗(1, 1)1{T ∗ = CA}]− EQ0 [Y
∗(0, 1)1{T ∗ = CA}]

Q0(T ∗ = CA)

we obtain a plug-in estimator by employing Steps D.1-D.3 to estimate EQ0 [Y
∗(1, 1)1{T ∗ =

CA}], Steps B.1-B.3 to estimate EQ0 [Y
∗(0, 1)1{T ∗ = CA}], and Steps A.1-A.3 to esti-

mate Q0(T
∗ = CA). Finally, to estimate CTE we observe that

CTE =
EQ0 [Y

∗(1, 1)1{T ∗ ∈ {CA,CC}}]− EQ0 [Y
∗(1, 1)1{T ∗ = CA})]

Q0(T ∗ = CC)

−
EQ0 [Y

∗(0, 0)1{T ∗ ∈ {CN,CC}}]− EQ0 [Y
∗(0, 0)1{T ∗ = CN}]

Q0(T ∗ = CC)
,

and compute EQ0 [Y
∗(1, 1)1{T ∗ ∈ {CA,CC}}] and EQ0 [Y

∗(0, 0)1{T ∗ ∈ {CN,CC}}]
employing Steps B.1-B.3, EQ0 [Y

∗(1, 1)1{T ∗ = CA}] and EQ0 [Y
∗(0, 0)1{T ∗ = CN}]

employing Steps D.1-D.3 and C.1-C.3 respectively, and Q0(T
∗ = CC) employing Steps

A.1-A.3. All standard errors are obatined through the Delta method.
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