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PRELIMINARY AND INCOMPLETE

As climate risk escalates, property insurance has a critical role to play in helping households
and firms reduce risk exposure, and to recover from natural disasters when they strike. To per-
form these functions efficiently, insurers need to access high quality information about disaster
risk and set prices that accurately reflect the costs to insure it. We use proprietary data on
parcel-level wildfire risk, together with insurance premiums derived from insurers’ regulatory
filings, to investigate how insurance is priced and provisioned in a large market for homeowners
insurance. We document striking variation in insurers’ risk pricing strategies. Firms that rely
on coarser measures of wildfire risk charge relatively high prices in high-risk market segments
– or choose not to serve these areas at all. Empirical results show evidence of a winner’s curse,
where firms with less granular pricing strategies face higher expected losses. A theoretical
model of a market for natural hazard insurance that incorporates both price regulation and
asymmetric information across insurers helps rationalize the empirical patterns we document.
Our results highlight the underappreciated importance of the winner’s curse as a driver of high
prices and limited participation in insurance markets for large, hard-to-model risks.
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1 Introduction

As the climate changes, natural disasters are increasing in frequency and intensity (Summers

et al. 2022). Annual losses from natural disasters in recent years have been increasing and

now exceed $120 billion.1 Property insurance markets have an essential role to play in

helping households and businesses reduce exposure to financial impacts of disasters (Field

2012). But there are mounting concerns that private property insurance markets are not

prepared to manage escalating climate risk (U.S. Department of the Treasury 2023).

In the United States, the public conversation around this issue has focused on two challenges

in particular. First, damages from extreme weather events are more difficult to predict than

for other insurable risks such as health outcomes or car accidents, as disaster losses are

infrequent, spatially correlated, and often catastrophic (Wagner 2022b). Second, insurance

markets in the United States are subject to extensive regulations that were not designed with

climate change in mind. These regulations could constrain insurers’ ability to set premiums

at levels that keep pace with increasing climate risk exposure (Oh, Sen, and Tenekedjieva

2022).

In addition to these concerns, we elevate the consideration of a third complication. Because it

is both challenging and costly to assess and price climate catastrophe risk, insurers competing

in the same market may bring different risk information to their pricing and underwriting

decisions. If an insurer finds it is offering a customer a lower price than its competitors, this

could indicate that competitors have superior information about climate risk exposure. These

information asymmetries subject firms with less sophisticated price schedules to potentially

severe adverse selection, analogous to the winner’s curse in the literature on common-value

auctions with asymmetric information (Milgrom and Weber 1982; Engelbrecht-Wiggans,

Milgrom, and Weber 1983; Hendricks and Porter 1988). Given increased climate risk and

rapid innovation in risk modeling, asymmetric information between insurers could be an

important factor in market responses to climate risk.

In this paper, we investigate how this form of adverse selection, together with economic

regulations, affects prices and availability in a large market for natural hazard insurance.

We focus on wildfire risk, the fastest-growing source of catastrophe-related damages in the

United States.2 Over the past two decades, U.S. wildfires have quadrupled in size and tripled

in frequency (Iglesias, Balch, and Travis 2022). Catastrophic wildfires are now understood

1. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Cli-
mate Disasters (2024). https : //www.ncei.noaa.gov/access/billions/,DOI : 10.25921/stkw − 7w73

2. Swiss Reinsurance. (2023). Continued high losses from natural catastrophes in 2022. https://www.
swissre.com/institute/research/sigma-research/sigma-2023-01/5-charts-losses-natural-catastrophes.html.
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to be a material risk that can threaten the solvency of private property insurers.3 This

materiality notwithstanding, wildfire risk has been underexplored in the economics literature

that investigates insurance market pricing, underwriting, and competition.

Our empirical setting is California’s private market for homeowners insurance. California is

home to an estimated 4.6 million properties with moderate to high wildfire risk exposure,

a number that is expected to increase to 5.5 million – or 7.6 percent of all properties – by

2050 (First Street Foundation 2022). Since 2017, the state has seen a significant increase

in average annual wildfire losses as compared to previous decades.4 The wildfire seasons

of 2017 and 2018 were particularly devastating, raising concerns about the insurability of

catastrophic wildfire risk (Cignarale et al. 2019).

We begin with a descriptive analysis of California’s homeowners insurance market over the

period 2009 to 2020. In the years following the 2017 and 2018 wildfire seasons, premiums have

risen, the rate of policy cancellations in high-hazard areas has escalated, and participation

in the California FAIR plan (a quasi-private insurer of last resort) has increased rapidly.

Over this same period, we observe significant variation in the sophistication of wildfire risk

modeling tools used by the largest insurers in the market.

Rising premiums and stricter underwriting practices in high-hazard areas could reflect an

efficient industry response to increases in assessed wildfire risk exposure. Alternatively,

market and/or regulatory failures could explain these trends. Disentangling these alternative

explanations is critical at a time when industry regulators are under mounting pressure to

modernize and reform insurance market regulations. Our analysis of the underlying drivers

proceeds in three steps.

First, we develop a stylized model of cost-based insurance pricing. Canonical work on in-

surance markets (e.g. Stone 1973; Kreps 1990; Kunreuther 1996; Jaffee and Russell 1997)

provides a relatively clear prescription for “fair and adequate” pricing in a competitive mar-

ket for catastrophic risk insurance.5 Building on these theoretical foundations, we assess the

cost of providing wildfire risk insurance in terms of the expected losses, operating costs, and a

loading factor that reflects the costs of protecting insurer solvency through capital surplus or

reinsurance. Within the context of our model, we derive and calibrate cost-based insurance

pricing schedules using probabilistic estimates of expected, parcel-level wildfire losses. These

risk price gradients serve as benchmarks in our empirical analysis of the pricing behavior we

3. CoreLogic. (2022). The 2022 Wildfire Risk Report. https://www.corelogic.com/intelligence/
the-2022-wildfire-report.

4. The average annual loss from 2009 to 2018 was almost $1 billion, compared to $0.40 billion from 1999
to 2008, $0.19 billion from 1989 to 1998, and $0.03 billion from 1979 to 1988 (Buechi et al. 2021).

5. For a summary of these issues, an interested reader could refer to Kunreuther and Michel-Kerjan (2011).
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observe in the market.

Our main empirical exercise leverages detailed rate cases filed with California’s insurance

market regulator and the proprietary information firms are using to assess risk exposure, to

construct parcel-specific insurance premiums charged by several large insurers. These rate

schedules specify a complete mapping between home or parcel characteristics and insurers’

premiums. This mapping allows us to isolate the underlying relationships between firms’ risk

pricing and assessed wildfire risk exposure. Careful comparisons between these empirical risk

price gradients and our cost-based benchmarks reveal notable differences. For the insurer

with the most granular wildfire risk information, we find that insurance prices increase

commensurately with assessed wildfire risk. This relationship looks quite different among

insurers that use relatively coarse information to assess wildfire risk. Implicit risk prices rise

faster than assessed levels of wildfire risk exposure across otherwise similar parcels in higher

wildfire risk segments. In the highest-risk segments, we see a pricing pattern consistent with

rate suppression that can manifest under binding rate regulations (Harrington 1992; Jaffee

and Russell 1998).

In the third part of the paper, we investigate possible explanations for the wildfire risk

pricing patterns we observe. The first is information asymmetries which could lead to adverse

selection. If relatively uninformed firms understand that they serve an adversely selected

share of homes in a market segment, they should adjust their prices to account for this

selection (Milgrom andWeber 1982; Hendricks and Porter 1988). Because we directly observe

the pricing rules and formulas that firms use to set insurance premiums, we are uniquely

positioned to assess the size of the winner’s curse in a pricing game where firms differ in

the sophistication of their pricing formulas. Using a stylized Bertrand duopoly model of

competition, we assess the extent of the adverse selection implied by the pricing strategies

we observe. Our results suggest that adverse selection could be an important factor driving

price mark-ups over average costs in high risk segments.

A second factor to consider is economic regulation. California’s regulatory regime has been

criticized for being outdated or overly restrictive.6 Binding economic regulations could help

explain some of the concave pricing patterns we document in the highest-risk segments of the

market. We present empirical evidence that economic price regulation has limited insurers’

ability to raise prices.

If firms require prices well above average expected losses to take on additional wildfire

6. See, for example, industry commentary: American Property Casualty Insurance Association. (2023).
Wildfire-prone California to consider new rules for property insurance pricing. Associated Press. https://
apnews.com/article/california-home-insurance-wildfire-risk-premiums-cf40911606e8e4d9c7c35ca57ca733e8.
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risk, economic regulation that limits insurance price increases could have unintended con-

sequences. We develop an equilibrium model of the property insurance market to analyze

interactions between information asymetries and economic regulation. In the model, as in the

California homeowners insurance market, property owners are relatively uninformed about

their wildfire risk exposure, but insurers can access more detailed risk information through

the adoption of sophisticated modeling at a license cost. We show how the value of more

sophisticated information increases with a firm’s insurance market share. If the costs of

adopting and using more sophisticated risk information are sufficiently high, only the firm

with the largest market share adopts the more sophisticated information. The resulting in-

formation asymmetries expose less-informed firms to adverse selection. The model predicts

that the more-informed firm captures the low-risk customers within a risk segment while

the relatively less informed firms raise their prices to avoid selling unprofitable policies to

high-risk customers.7 It also elucidates how information asymmetries can exacerbate the

effects of price regulation for relatively uninformed firms, and accelerate exit from high-risk

segments. Finally, we show that price regulation can be ineffective at limiting price increases

in the face of escalating risk. Improving access to better risk information may be a more

effective approach to ensuring that insurance is fairly priced and available.

This paper’s findings are relevant to the ongoing public conversation about climate risk in-

surance regulation (U.S. Department of the Treasury 2023). Rising insurance premiums

are being attributed to escalating wildfire risk, in addition to other important cost drivers

such as construction cost inflation.8. In California, many industry observers and trade as-

sociations have attributed the lack of insurance availability in high wildfire hazard areas to

regulations that restrict prices below the expected cost of covering high-hazard homes.9 We

argue that this characterization is incomplete. Our results point to a more nuanced story

in which adverse selection, together with increasing wildfire risk, puts upward pressure on

the insurance prices charged by relatively uninformed insurers. Winner’s curse adjustments

interact with binding economic regulations to exacerbate the effects on insurance availability

in high-hazard areas. Reforms that fail to account for these interactions will not have the

intended effects on insurance pricing and availability.

Our work is also related to several areas of the economics literature. First, we contribute

7. Throughout the paper, we use the shorthand “more-informed” and “less-informed” to indicate the
sophistication of the information actually used by firms in pricing.

8. See, for example: CBS News (2023). Homes in parts of the U.S. are ”essentially uninsurable” due to
rising climate change risks. HomesinpartsoftheU.S.are”essentiallyuninsurable”duetorisingclimatechangerisks

9. See, for example: American Agents Alliance. (2023). California Needs Regulatory Reform and Quick
Rate Review to Halt Personal Lines Meltdown. https://www.insurancejournal.com/news/west/2023/06/02/
723845.htm.
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to the literature on natural disaster insurance. Early work by Jaffee and Russell (1997) and

Kunreuther (1996) examines the causes of private market failures in catastrophe insurance

and the conditions that must be established to make these markets viable. Related work has

investigated the response of insurance markets to catastrophic events (Klein and Kleindorfer

1999; Born and Viscusi 2006), the pricing of climate risks (Gourevitch, Kousky, and Liao

2023), and the performance of public markets for catastrophic flood insurance (Gallagher

2014; Wagner 2022a; Bradt, Kousky, and Wing 2021; Hennighausen et al. 2023; Mulder

2021). Building on this prior work, we study the pricing and availability of wildfire risk

insurance in a private, albeit regulated, market setting.

This paper also contributes to an expansive literature on asymmetric information and ad-

verse selection in selection markets (Akerlof 1970; Einav, Finkelstein, and Cullen 2010).

Innovations in generative artificial intelligence and associated analytics are increasing the

sophistication of proprietary assessment tools(Einav, Finkelstein, and Mahoney 2021). Prior

work has examined the impacts of proprietary risk information on less informed competitors

who face an adversely selected pool of customers in markets for auto loans (Einav, Jenkins,

and Levin 2012) and auto insurance (Jin and Vasserman 2021). We extend this line of em-

pirical inquiry to markets for wildfire risk insurance. In other settings, it has been shown

that asymmetric information can lead to market unraveling (see, for example, Einav and

Finkelstein 2011). In our setting where the purchase of insurance is effectively mandatory,

we show how information asymmetries on the supply side can lead to higher premiums and

increased market concentration.

Lastly, we contribute to the literature that investigates the economic regulation of insurance

markets. Past work has explored supply-side implications of capital requirements and dy-

namic pricing regulations across a range of insurance market contexts (Ge 2022; Koijen and

Yogo 2015; Aizawa and Ko 2023). Our paper is closely related to work that investigates how

private property insurers respond to economic regulation (Born and Klimaszewski-Blettner

2013; Oh, Sen, and Tenekedjieva 2022; Taylor, Turland, and Weill 2023). Whereas prior

work has used aggregated data to study the effects of regulation on market outcomes, we

leverage parcel-level data to show how economic regulations interact with asymmetries in

risk information across insurers.

The remainder of this paper is organized as follows. Section 2 provides background and in-

stitutional detail on wildfire risk and homeowners insurance regulation. Section 3 introduces

data and documents important descriptive trends in homeowners insurance and risk pricing.

Section 4 introduces a theoretical benchmark for the fair price of wildfire risk, which guides

the empirical analysis. Section 5 estimates the empirical relationship between offered premi-
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ums and assessed wildfire risk. Section 6 explains these price-risk gradients using empirical

evidence on adverse selection and regulation. Section 7 introduces an equilibrium model of

a regulated insurance market where access to more sophisticated risk information is costly.

Section 8 concludes.

2 Institutional Background

2.1 Homeowners insurance in the United States

We study the market for homeowners (HO) multi-peril insurance. Under standard HO

insurance contracts, coverage for wildfire losses is bundled with other perils. HO multi-peril

premiums exceed $125 billion annually in the United States, with California representing 9.4

percent of the market.10

Most mortgage lenders require HO insurance coverage as a mortgage precondition. If a

homeowner neglects to purchase and hold HO insurance, their lender will purchase “force-

placed insurance” which is typically more expensive and only covers the bank’s interest in

the house. The homeowner is ultimately responsible for covering these costs. Given these

incentives, a large majority of U.S. homeowners hold HO insurance each year.11 Multi-peril

HO policy terms typically last for one year. Holders receive annual renewal statements that

include information about any changes to rates or policy terms. Contracts are automatically

renewed unless they are canceled by insurers or homeowners.

2.2 Insurance market regulation

State regulators exercise considerable authority over insurers’ entry, exit, insurance premium

setting, underwriting, and claims settlement choices. Regulations fall under two broad cat-

egories. Prudential regulations are designed to ensure that insurers can meet their financial

obligations. Market conduct regulations aim to ensure that consumers are charged fair in-

surance prices and have access to compliant insurance products.

Regulatory intervention in insurance markets is partly rationalized based on market failures.

Given the complexity of property insurance contracts, households face significant challenges

10. See: National Association of Insurance Commissioners (NAIC). (2023). 2022 Market Share Reports
For Property/Casualty Groups and Companies by State and Countrywide. https://content.naic.org/sites/
default/files/publication-msr-pb-property-casualty.pdf.
11. In a 2023 survey conducted by the Insurance Information Institute (III), it was estimated that 88 percent

of U.S. homeowners purchased multi-peril homeowners insurance. This is down from 92-95 percent reported
in past years. https://www.iii.org/sites/default/files/docs/pdf/2023 q2 ho perception of weather risks.pdf.
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in judging the financial risk of insurers and in understanding contract terms. In addition

to these information-related market failures, there is also the possibility that insurers could

acquire sufficient market power to restrict competition and earn excess profits.

There are also features of the market that are not failures in the economic sense, but rather

undesirable market outcomes that motivate regulatory intervention. Unequal bargaining

power between homeowners and insurance companies, together with the complexity of in-

surance underwriting, can result in HO premiums that are higher than necessary.12 Although

high consumer prices will not generate deadweight loss in a market where the purchase of

insurance is effectively mandatory, they can lead to undesirable transfers from consumers

to producers. High prices are a leading concern that has motivated regulatory oversight of

firms’ underwriting practices.

The stated objective of California’s Department of Insurance (CDI) is to promote solvency,

affordability, and availability of insurance. Under the provisions of Proposition 103, CDI

is required to review and approve rates for most property and casualty lines of insurance

to ensure that they are “fair” (i.e. not excessive, inadequate, or unfairly discriminatory).13

These market conduct regulations can constrain the overall rate of increase that an insurer

can implement within a rate case. Requests for overall rate increases that exceed 6.9 percent

are subject to costly public rate hearings.14

In addition, insurers are limited in how they can make use of simulation-based stochastic

risk models. Insurers can – and do – use these models to segment risks or adjust prices on

the basis of assessed wildfire risk exposure.15 But they cannot use these models to justify

an overall rate of increase in earned premiums. Instead, they must appeal to the historical

record of their past catastrophe claims. This catastrophe load is assessed based on loss

history and then used to calculate the actuarially justified rate, which may be greater than

the 6.9 percent threshold.16

12. Insurance contracts are generally recognized to be “contracts of adhesion” in which the consumer must
either accept the terms of the policy as written or reject the terms and accept similar terms from another
insurance company.
13. California’s underwriting regulations apply to the “admitted market” insurers who comprise the major-

ity of the California insurance market. If an admitted insurer fails financially, the state will make payments
on claims as necessary. A relatively small group of insurers operates outside the admitted market who are
not subject to the same regulations and are not backed by state guaranty funds. These “surplus line” carriers
cover risks that are too high or too complex for standard home insurance providers to cover.
14. For example, if a company earns $100 million statewide and would like to increase its revenue, it could

increase it to $106.9 million without a public hearing.
15. One possible complication is that information used to design and run catastrophe models may be

considered trade secret or proprietary. This can limit an insurance company’s ability to utilize catastrophe
models in a rate filing.
16. Section 6.2 presents evidence of bunching at this constraint.
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2.3 Wildfire risk modeling

As wildfire damages escalate, more resources are being allocated to the modeling and analysis

of wildfire risk. Catastrophe (“CAT”) models are increasingly used to simulate catastrophic

event probabilities using factors that predict wildfire damages such as meteorology, topog-

raphy, vegetation type, and dwelling characteristics.

Because wildfires have only recently have become a material focus for insurers, the science

and data required to model and assess wildfire risk is less advanced as compared with other

disasters, such as hurricanes and earthquakes. A relatively small number of CAT modeling

firms cater to the insurance sector, offering modeling tools and analytics that are well-suited

to underwriting and risk exposure assessment. These models generate dollar-denominated

predictions of annual expected losses, probabilistic measures of maximum expected losses,

and simulated probability distributions of insured losses associated with a given property or

an entire book of business.

3 Data and Descriptive Facts

We leverage several sources of data in our analysis. In what follows, we introduce these

data and highlight some empirical facts. Datasets are described in more detail in Ap-

pendix A.

3.1 Annual insurer profits are variable

The National Association of Insurance Commissioners (NAIC) tracks industry profits by

state and by insurance line.17 Figure 1 summarizes state-level data on insurer profits in

the U.S. homeowners insurance market over the period 1985 to 2021. In states that are

affected by high-severity, low-frequency weather events, property insurers must build up

surplus capital during uneventful years so as to be able to cover losses incurred during

a catastrophe. California’s homeowners insurance line profits are shown in red. The figure

shows how California’s catastrophic wildfires in 2017 and 2018 erased several years of insurer

profits. It also illustrates the losses insurers have realized in other parts of the country due

to other natural catastrophes, such as hurricanes.

17. Because most insurers are multi-line and multi-state operations, the allocation of profits to a single line
or state is approximate at best. This caveat notwithstanding, these data provide a useful measure of insurer
profits across states and time.
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3.2 Insurance premiums are rising

We use zip code-level data collected by the California Department of Insurance (CDI) to

summarize trends in homeowners insurance premiums, admitted market participation, and

policy cancellations over time. Beginning in 2018, insurers writing more than $10 million in

premiums were required to report zip code-level information about the assessed wildfire risk

exposure of the properties they insure. This includes information about the distribution of

insured parcels across wildfire risk categories. We use these data to classify zip codes into

wildfire risk quantiles. We will later show that assessed wildfire risk varies significantly within

zip codes, so these measures should be interpreted as coarse measures of wildfire risk.

Figure 2 summarizes zip-code level average increases in HO insurance premiums over time,

in 2020 dollars.18 Across all wildfire risk quantiles, real premiums increased noticeably after

the destructive 2017 and 2018 wildfire seasons. Statewide, premiums rose 16.4 percent from

2017 to 2020; in the lowest-risk zip codes, premia grew only 13.2 percent, while premia in

the two highest-risk quintiles grew 20.0 percent and 13.6 percent over the same period.

3.3 Insurance availability is declining

The CDI also collects information on the number of housing units insured by the admitted

market. The second panel of Figure 2 shows that the size of the admitted market had

been increasing in all but the highest-hazard zip codes over the period 2009 to 2016. Policy

counts fell across all categories during the 2017 and 2018 fire seasons; these reductions were

particularly significant in the highest-risk zip codes.

The third graphic in Figure 2 tracks participation in the California FAIR Plan, which provides

basic backstop coverage for properties that struggle to find coverage in the admitted market.19

Growth in FAIR Plan participation has been increasing since 2018. Increases are most

pronounced in the highest risk areas.

3.4 Rates of consumer switching are low

The bottom panels of Figure 2 summarize trends in insurance policy cancellations. Prior

to 2019, insurer-initiated cancellations averaged around 2 to 3 percent. Since 2019, insurers

18. To construct this figure, we use zip code-level average annual HO premiums reported by CDI, data
which have complete coverage for insurers in the admitted market in California.
19. While the FAIR Plan is instituted at the state level, it is financially backed by all private insurers

licensed to write insurance in California. Each company shares in FAIR Plan profits, losses, and expenses
in an amount proportionate to its market share in the state.
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have been canceling policies at higher rates in high-hazard areas.20

The bottom right-hand panel shows customer-initiated policy cancellations. These rates have

historically hovered around 8 percent. Low rates of switching despite significant variation

in premiums across insurers and across time suggests that consumers may be inattention to

insurance pricing. We note, however, that the purchase of a new home induces an active in-

surance choice because households must purchase multi-peril insurance to qualify for a mort-

gage. The rates of consumer switching we observe align with the rate at which homeowners

move; median homeowner tenure ranged from 11-13 years over our study period.21

In recent years, consumer-initiated switching has increased noticeably in the highest-hazard

areas. This could be driven in part by rising premiums inducing homeowners to search for

lower-cost options.

3.5 Risk pricing strategies vary across insurers

The regulatory filings submitted to CDI provide detailed documentation of the information

insurers use to assess and price wildfire risk.22 Table 1 summarizes some of this information

for the ten largest insurance groups and the FAIR Plan. Column (1) reports insurer market

shares across the state of California, while column (2) focuses on market share in the highest

quintile of zip code-level wildfire risk. The three insurers with the largest market presence

in California – State Farm, Farmers, and the CSAA Insurance Group – are also the firms

with the largest market presence in high-risk areas.

Column (3) of Table 1 provides a rough summary measure of the level of granularity or

complexity in wildfire risk pricing strategies. To build this measure, we count the number

of risk-rating variables that each insurer uses to assess the likelihood of wildfire damages.23

The wildfire risk pricing strategies we observe vary significantly across insurers. Some price

wildfire risk at the zip code level. Other insurers use parcel-level categorical wildfire risk

scores based on qualitative factors such as slope, vegetation, fuel load, and road access.

Finally, some insurers use more granular measures generated using relatively sophisticated

approaches, including probabilistic CATmodels. In general, the firms with the largest market

20. This increase coincides with the introduction of Senate Bill 824 which imposed a one-year moratorium
on insurance companies canceling insurance policies in or adjacent to wildfire perimeters.
21. Source: “The Typical U.S. Home Changes Hands Every 13.2 Years” March 2, 2022 by Dana Anderson.

https://www.redfin.com/news/2021-homeowner-tenure/
22. All rate filings are publicly available through CDI’s website. California Department of Insurance

(CDI). Web Access to Rate and Form Filings (WARFF). http://www.insurance.ca.gov/0250-insurers/
0800-rate-filings/0050-viewing-room.
23. More information on the measurement of risk-rating variables is available in Appendix A.

10

https://www.redfin.com/news/2021-homeowner-tenure/
http://www.insurance.ca.gov/0250-insurers/0800-rate-filings/0050-viewing-room
http://www.insurance.ca.gov/0250-insurers/0800-rate-filings/0050-viewing-room


share in high hazard zip codes also have the most granular risk rating regimes.

Why do all firms not use the most advanced and most granular models to inform their risk-

based pricing? The reasons are likely cost-related. First, there are direct costs; purchasing a

license to use a state-of-the-art CAT model has been reported to cost millions of dollars per

year.24 In addition to licensing costs, it can be costly to develop and maintain the resources

required to use these models internally, and negotiate the extensive regulatory and validation

requirements. Once licensed, an insurer needs to have professional staff to use the model

effectively within the context of a state’s particular regulatory environment. Firms must

also secure regulatory approval to use these models for pricing. These rules may limit firm’s

ability to mimic observed prices from other firms, since each insurer must furnish data to

demonstrate that its prices are actuarially justified for its own book of business.25 Taken

together, these costs could deter firms which serve relatively small shares of the high-hazard

market.

3.6 Assessed risk exposure varies across homes

Our fourth source of data is a leading provider of property information and risk-based an-

alytics. Through a data-sharing agreement with CoreLogic, Inc., we obtained proprietary

information for a sample of 100,000 single-family homes. To draw this sample, we identi-

fied 400 California zip codes with high variation in parcel-level wildfire risk exposure and

received a sample of 250 houses from each of these zip codes. Details are provided in Ap-

pendix A.

We purchased three related but distinct sets of data from CoreLogic. The first includes

detailed information about property characteristics and reconstruction costs. The second

contains CoreLogic’s proprietary, parcel-level Wildfire Risk Scores (WRS) that are used by

some insurers in California. The WRS is a 5-to-100 integer score that incorporates factors

influencing wildfire hazard, such as slope, aspect, fuel, surface composition, drought and

wind, at a 30-meter resolution. Third, we obtained risk metrics generated by CoreLogic’s

2021 probabilistic CAT model. For each property, we have probabilistic measures of the

annual average loss, the standard deviation of losses, and aggregate exceedance probability

24. Jergler, Don. (2021). Grim California Wildfire Outlook Has Insurers Forking Over Big Bucks for
Modeling. The Insurance Journal. https://www.insurancejournal.com/magazines/mag-features/2021/07/
05/621088.htm.
25. To simplify a complicated body of regulation, use of catastrophe models for setting relative prices

across customer classes is generally allowable in California, but firms must demonstrate that the resulting
relativities are actuarially sound. Use of catastrophe models is not allowed when justifying the requested
overall increase in revenue from the book of business.
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(AEP) losses over return periods of 50, 100, 250, and 500 years.

Our preferred summary measure of assessed, parcel-level risk exposure will be the CoreLogic

measure of average annual loss (AAL). This estimates the average yearly losses from wildfire

in dollars across thousands of simulated realizations for each property in the dataset. These

AAL measures represent the most granular measures of wildfire risk that CoreLogic makes

available to the most sophisticated insurers in the market. In ancillary analyses, we explore

an alternative measure of expected annual wildfire losses based on publicly available United

States Forest Service wildfire risk data. See Appendix Section B.1.

We observe significant variation in these average loss measures across parcels. Regressing

CoreLogic AAL measures on zip code fixed effects and categorical WRS scores explains 46

percent of the total variation in assessed AAL. Column (4) of Table 1 reports the R2 in a

regression of parcel-level AAL on risk rating factors for a subset of insurance groups. Firms

with more risk rating variables capture more of the variation in expected losses than firms

with fewer risk rating variables. One implication is that pricing strategies based on zip code

or categorical scores capture a relatively small fraction of the underlying variation in risk

exposure.

4 Theoretical Cost-Based Benchmark

Fair, adequate, and affordable insurance prices are guiding principles for insurance market

regulation. In this section, we formulate a wildfire risk price benchmark consistent with

these principles. We present a model of insurance costs that incorporates not only expected

damage claims, but also administrative costs, fixed costs, and risk load. We first consider

a full-information scenario wherein all premiums are set to reflect parcel-level insurance

costs. We then extend the model to account for the risk-based market segmentation that

insurers use to price risk in the California market. We define the “fair” price to be that

which reflects insurers’ expected costs. We formulate a cost-based gradient to summarize

how these costs increase with expected wildfire losses. For now, we ignore the potential for

adverse selection; we assume all firms have access to the same information. In Section 7, we

extend our modeling framework to accommodate asymmetric information across firms and

binding market conduct regulation.

4.1 Cost-based insurance pricing under full information

We consider an insurance market in which firms offer a single insurance contract that covers

property damages. In the spirit of Akerlof (1970), insurers compete on prices but do not
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compete on contract features. Households indexed by i must buy insurance for disaster losses

from insurers indexed by j. Households vary in terms of how costly they are to insure. The

random variable Li gives i’s disaster losses during the contract period, with mean li and

variance σ2
i . In the baseline model, insurers have complete information about households’

wildfire risk profiles. In contrast, households are relatively uninformed about their risk

exposure.

When purchasing a home, households must purchase insurance to qualify for a mortgage.

Thus, the purchase of a home places a household into an active insurance choice situation.

Additional factors that could induce a homeowner to search for insurance actively include

policy cancellation or a price shock. We assume that households making an active choice se-

lect a single contract to maximize indirect utility uij, where uij = −pij+δj. The price charged
by insurer j to insure property i is pij. The δj term represents average brand preferences for

insurer j and switching costs for those households who already hold insurance.26

We define i’s choice set Ψi to include all firms willing to insure i. The value associated with

choosing a firm other than j is given by ūij = max
k∈Ψi,k ̸=j

(δk − pik). Demand for firm j in time

t thus:

Qj =
∑
i|j∈ψi

1[δj − pij ≥ ūij]. (1)

Insurer j’s book of business, Ωj, is comprised of the group of customers who are choosing

(actively or passively) to purchase insurance from insurer j.

When thinking about the costs to insure customer i, the expected value of insurance payouts

provides a useful point of departure. However, setting insurance prices at expected payouts

will not in general be economically sustainable because insurers must also cover operating

expenses and the costs of holding sufficient capital reserves to pay out claims with an ac-

ceptably low probability of default. The amount of surplus capital or reinsurance that a firm

needs to hold will depend on the risk characteristics of its book of business Ω.27

The cost of holding the required capital surplus or reinsurance is often referred to as “catas-

trophe load” or “risk load” in the insurance literature (Jaffee and Russell 1997; Kunreuther

and Michel-Kerjan 2011). Let ϕ(Ωj) denote risk load, and define the firm’s total annual cost

function as:

26. When two firms yield identical utility, we assume the household randomizes which to buy.
27. As an example, solvency regulations may require firms to hold sufficient reserves or reinsurance to cover

their full losses in a 1-in-200 loss year (that is, a 99.5th percentile realization of total losses).
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Cj =
∑
i|j∈ψi

(li + ai)1[δj − pij ≥ ūij] + ϕ(Ωj) + Fj, (2)

where li is expected annual value of disaster claims by household i and ai captures a cus-

tomer’s administrative costs plus the expected costs for non-catastrophe losses such as burst

pipes or liability claims. Fj represents any fixed costs, such as the costs to license more

granular risk analytics.

A cost-based insurance price ρi reflects the expected marginal cost to insurer j from adding

customer i to its portfolio plus a cost component fi that allows the firm to prudently recovery

fixed costs:

ρi(Ωj) = li + ai + ϕ′
ij(Ωj) + fi. (3)

4.2 Cost-based pricing under incomplete information

Due to modeling limitations and feasibility constraints, many insurers use risk proxies, such

as categorical wildfire risk scores, to price wildfire risk. Consider a symmetric limited-

information case in which all insurers observe a discrete signal γ(li) ∈ {γ0, γ1, ..., γK}. If

insurers cannot differentiate customer-level risk costs beyond this discrete signal, they must

charge a single price to all customers with signal k (hereafter, risk segment k). Let L̄k denote

the mean of li in group γk. The expected cost associated with parcel i in segment k is now

given by:

ρk(Ωj) = L̄k + ai + f + ϕ′
ij(Ωj). (4)

If insurers set prices to reflect segment-specific average costs, parcel-level risk exposure will

be priced with error ϵi = Li − L̄k. A parcel that is exposed to lower (higher) risk than

the segment-average level of risk will thus pay a higher (lower) premium vis-à-vis the full

information pricing regime summarized by Equation 3.

To motivate our analysis of the empirical relationship between insurance premiums and

assessed wildfire risk, consider the difference in insurance costs for a home assigned to the

lowest risk category (l0 = 0; a0 = a) and an otherwise identical home with that is associated

with a higher risk classification (li > 0; ai = a). Comparing premiums across these two

homes, the cost-based price gradient βjk can be formulated as:

L̄k(i) + a+ ϕ′
ij(Ωj)− (L̄0 + a)

L̄k(i) − L̄0

= 1 +
ϕ′
ij(Ωj)

L̄k(i)
≡ βjk. (5)
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The βij parameter measures the increase in the segment-average insurance costs associated

with a unit increase in the segment-average expected loss. We will refer to this subsequently

as the risk price gradient. If we assume that the fixed cost component fi does not vary

across otherwise similar homes, and we assume that all California wildfire-exposed homes

have the same covariance with the firm’s remaining book of business, the cost-based risk

price gradient has a slope of 1 plus the average marginal surplus term
ϕ′ij(Ωj)

li
.

4.3 Marginal surplus calculations

To calibrate Equations 5, we must estimate marginal surplus costs. Following Kreps (1990),

we formulate this cost component as the product of the insurer’s costs of capital, a “distri-

bution statistic” z, and the change in the standard deviation of the firm’s loss distribution

after adding parcel i to the risk portfolio:

ϕ′
ij(Ωj) =

y

1 + y︸ ︷︷ ︸
capital cost

× z︸︷︷︸
“distribution statistic”

× (2SC + σ)σ

S + S ′︸ ︷︷ ︸
change in s.d. of firm’s losses

. (6)

The y parameter denotes the market cost of capital and z is a distribution statistic that

indicates the number of standard deviations above a mean loss year that the firm can survive.

The change in the standard deviation of the firm’s annual total losses after adding parcel i

to the portfolio is expressed in terms of the standard deviation of losses from the existing

book of business S, the standard deviation of losses from the combined book of business S ′

with the addition of parcel i, the standard deviation of annual losses associated with parcel

i, σ, and the correlation of losses between the new parcel and the existing book of business,

C (Kreps 1990).

We approximate the risk load associated with covering successively larger portfolios of HO

policies in high wildfire hazard areas of California using CoreLogic’s parcel-specific AAL

distributions. Appendix C describes how we build a statewide pseudosample to explore the

relationship between risk load and market share. We calibrate measures of marginal surplus

under a range of assumptions about the correlation in risks across homes and the risk profile

of an insurer’s country-wide book of business.

Table 2 shows how the calibrated marginal catastrophe load costs per dollar of assessed AAL

increase with market share. Intuitively, firms with a higher concentration of customers in

high-hazard areas have higher surplus requirements due to spatially correlated risks. We

estimate that a representative 5 percent market share in high-hazard zip codes is associated

with $30 million in expected annual losses. At this 5 percent share, taking on an additional
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dollar of California wildfire risk exposure increases surplus requirements by about $0.03. At
a market share of 30 percent, this marginal risk load increases to $0.18.28

The marginal change in risk load associated with adding a high-hazard parcel to a firm’s

book of business depends not only on the riskiness of the property, but also its covariance

with other properties in the firm’s risk portfolio. Firms with a larger share of business

outside of California will have lower surplus requirements because the correlation between a

high-hazard property in California and insured risks outside of California is lower.

Panel B of Table 2 illustrates how the marginal surplus measures vary with exposure to

other catastrophe perils. To generate these results, we focus on hurricanes and assume a

high-hazard market share of 10 percent. If an insurer has no exposure to hurricane risk (such

that the variability of non-wildfire losses is driven exclusively by non-catastrophe homeowners

and auto losses), the variability of wildfire losses dominates the overall portfolio and the risk

load can reach 48 cents per dollar of AAL. Adding hurricane exposure significantly decreases

this risk load. Given the larger magnitude of hurricane risk compared to wildfire risk across

the United States, an insurer that is adequately capitalized against hurricane losses is well-

positioned to manage wildfire risk. More generally, these calculations help to illustrate how

variation in insurers’ overall risk profile can generate meaningful variation in marginal surplus

costs.

The largest HO insurer in California claims less than a 20 percent share in higher-hazard zip

codes (see Table 1). If we conservatively assume a market share of 30 percent, this implies

an upper bound on the risk price gradient slope βij of 1.18 and a lower bound of 1.00. In

other words, an additional dollar of wildfire risk exposure should increase insurance costs by

no more than $1.18.

4.4 An illustrative example

We use our estimate of marginal surplus costs, together with parcel-level AAL metrics and

categorical risk scores, to calibrate the relationship between wildfire risk and cost-based

insurance pricing under different market segmentation strategies. Because different insurers

use different risk groups or segments, we will calibrate Equation 5 differently for different

insurers in our data.

28. Kunreuther and Michel-Kerjan (2011) calibrate loading factors for insurance pricing in areas at high
risk for hurricanes that include both risk load and administrative costs. They calibrate a “loading factor”
of $0.50 which serves as a useful point of comparison. We should expect that risk loads for hurricane risk
should be significantly higher than wildfire risks given the magnitude of damages and high degree of spatial
correlation in these risks.
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Figure 3 illustrates the example of an insurer that uses CoreLogic’s categorical risk scores

to price wildfire risk. The horizontal box plots show the mean, interquartile range, and 10th

and 90th percentiles of parcel-level predicted losses (expressed in terms of expected losses

per $1,000 of insurance coverage) within each risk segment. Average losses increase with the

risk score values, making these categorical scores a valuable proxy for expected losses. The

box plots show the extent to which these individual predicted losses vary within a risk score

segment or category. This variation is more significant in the higher-risk segments.

Suppose that this hypothetical insurer sets the segment-specific prices equal to segment-

specific average losses plus an 18 percent risk load. This pricing rule is a cost-based risk

pricing strategy insofar as it reflects the insurer’s best estimates of wildfire risk-related costs.

The vertical axis measures the price per $1,000 of insurance coverage. The black fitted line

shows a locally-weighted regression of risk prices on segment-mean expected losses. The

slope of this segment average price gradient is βjk = 1.18.

The dashed line in Figure 3 shows a locally-weighted regression of these risk segment-based

prices on parcel -level AAL values. This concave relationship between segment-based pricing

and parcel -level risk exposure deviates significantly from the full-information, cost-based

price gradient. On average, higher-risk (lower-risk) households pay insurance prices that are

lower (higher) than what it actually costs to insure them. These parcel-level pricing ‘errors’

result from using segment-average AAL to proxy for parcel-level risk exposure. More granular

risk pricing would lower (increase) prices on average for low-risk (high-risk) customers. Thus,

pricing wildfire risk on the basis of more granular information would change the distribution

of insurance costs across households.

The efficiency implications of the errors introduced by segment-based wildfire risk pricing will

depend on the elasticity of HO insurance demand and the exogeneity of wildfire risk exposure.

Because the purchase of insurance is required by mortgage lenders, insurance demand is

highly price-inelastic. If we further assume that wildfire risk exposure is independent of

insurance pricing, pricing errors will not generate deadweight loss. Alternatively, if insurance

pricing plays a significant role in determining households’ location choices or investments

in self-protection (such as investments in maintaining defensible space around the home),

pricing errors could undermine efficiency along these dimensions.

Figure 3 illustrates a cost-based risk pricing gradient benchmark for one particular risk

pricing strategy. In what follows, we will construct benchmarks for each of the insurers in our

data according to their risk segmentation strategy. Absent selection concerns, segment-level

average costs provide a reasonable proxy for an insurer’s expected costs. We later extend our
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analysis to consider the potential cost implications of risk information asymmetries.

5 Empirical Analysis of Wildfire Risk Pricing

In this section, we analyze the empirical relationship between insurance prices and assessed

wildfire risk exposure using data from California’s HO insurance market. We first explain

how we recover the parcel-level premiums charged by insurers in this market. Next, we

establish the risk segmentation strategy used by each insurer in our data. Finally, we esti-

mate empirical risk price gradients for each insurer, respectively, and compare these against

corresponding, cost-based benchmarks.

5.1 Parcel-level insurance premiums

Insurers in California’s admitted market must submit detailed documentation of the data

sources, formulas, and risk factors they use to set insurance premiums.29 We extract the

pricing formulas used by the six major California insurance groups that price wildfire risk

using Core Logic wildfire risk scores and/or geographic territory factors.30 We use these

formulas to construct the prices that each insurer would charge each of the homes in our

data. This generated dataset is unique in that it includes complete sets of offered prices,

versus the subset of transaction-based prices paid by existing customers.31

The six insurers we analyze can be grouped into three risk pricing strategy types:

• Type 1 firms are AAA of Southern California and Liberty Mutual. These insurers use

relatively coarse, zip code-level rating factors to calibrate their insurance premiums.

• Type 2 firms are Allstate and Nationwide. Both insurance groups rank in the top

ten largest property insurance companies in the United States, and both use CoreLogic

wildfire risk scores to segment the market, price insurance, and define eligibility criteria.

• Type 3 firms include USAA and State Farm. USAA uses wildfire-specific zip code

factors that are calibrated using granular, probabilistic wildfire catastrophe model

29. This information is publicly available from: California Department of Insurance (CDI). (2024). Web
Access to Rate and Form Filings (WARFF). http://www.insurance.ca.gov/0250-insurers/0800-rate-filings/
0050-viewing-room.
30. Because our parcel-level wildfire risk data correspond to modeling and risk analytics generated for 2021,

we focus on rate cases that leverage 2021 risk information.
31. Not all of the prices we construct will be offered to customers in the market. As we discuss below, over

the time period we study, some insurers had stopped offering insurance in some market segments. Thus,
some of the prices we calibrate would be available to existing customers, but not offered to new customers.
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predictions. State Farm assesses wildfire risk at a 1 square km resolution using wildfire

CAT model predictions.

These six large insurers collectively represent approximately 45 percent of the homeowners

insurance market. We are unable to replicate the pricing formulas for other large insur-

ers because they use wildfire analytics from other data providers such as Verisk FireLine

scores.

HO insurance prices depend on parcel-level characteristics we can observe, such as the age of

the home, construction materials, roof type, distance to vegetation, and other factors. The a

component of insurance premiums (see Equation 2) also depends on occupant characteristics

and coverage choices that we cannot observe. To construct insurer-level premiums, we assume

constant values for these occupant characteristics.32 Appendix A describes how we construct

these insurance prices in more detail.

5.2 Market segmentation strategies

We use a regression-based variance decomposition exercise to elucidate how different insurers

segment the market for the purpose of wildfire risk pricing. Let i index properties or parcels.

For each insurer j, we regress insurance premiums pijk on a set of control variables and an

increasingly granular set of risk segment indicators indexed by k:

pijk = gj(Ri) +Xiψj +
∑
k

γjkDk + f(Li; βj) + ηijk. (7)

We parameterize a flexible function of parcel-specific CoreLogic AAL values f(Li) using a

step-wise function of Li with bin widths of $25. To isolate the effects of variation in assessed

wildfire risk as opposed to reconstruction costs, we include a polynomial function gj(Ri),

where Ri is demeaned reconstruction cost. The vector Xi includes additional controls such

as 5 year bins for the age of the home (with single bins for homes built before 1950 or after

2015), categorical variables for roof type, and categorical variables for public protection class.

We define D to be a vector of k− 1 market segment dummies. The variable βj is an insurer-

specific vector of coefficients that summarize the relationship between residual variation in

assessed AAL and insurance premia.

32. For example, we assume that a homeowner purchases coverage equal to the reconstruction cost of the
home (which is generally advised by insurers), chooses a $1,000 deductible, has not had a recent claim,
and bundles their homeowners and automobile insurance policies. As of 2015, 78 percent of consumers
bundled their homeowners and auto policies. See: J.D. Power. 2015 US Household Insurance Study.https:
//www.jdpower.com/business/press-releases/2015-us-household-insurance-study.
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We estimate Equation 7 using increasingly granular sets of risk segmenting variables Dk. The

relationship between a firm’s insurance prices and assessed wildfire risk Li will be completely

absorbed by the segmenting variables used by the firm to price wildfire risk.

Figure 4 summarizes this variance decomposition graphically for the Type 2 insurers that

segment the market using CoreLogic’s categorical scores, in addition to adjustments for fire

protection class. The red lines in these figures summarize the average relationship between

insurance premiums and assessed AAL, controlling only for the reconstruction cost polyno-

mial. Intuitively, higher levels of wildfire risk exposure are associated with higher insurance

premiums. The blue lines add controls for structure characteristics, including age of home,

fire protection class (a measure of fire department quality), and an indicator for Class A roof.

The green lines, which add zip code dummies, summarize within-zip code relationships be-

tween parcel-level wildfire risk and insurance premiums, conditional on reconstruction costs.

The green lines in these figures are an empirical analog to the dashed line in Figure 3 insofar

as they are estimated using variation in insurance prices across otherwise similar parcels that

vary along the wildfire risk dimension.

The purple lines in Figure 4 summarize the βj coefficient estimates from regression specifica-

tions that include indicators for the full set of CoreLogic wildfire risk dummies, in addition

to protection class and reconstruction costs. For Type 2 firms, adding the CoreLogic wildfire

risk score indicators absorbs all of the variation in pij because these controls capture all of

the risk information that these firms use to price wildfire risk.

Type 1 firms, Liberty Mutual and AAA Southern California, are shown in the second row

of Figure 4. Because these firms use relatively coarse market segmentation strategies, the

strength of the correlation between insurance prices and CoreLogic’s parcel-level AAL is

attenuated. Once zip code fixed effects and protection class controls are included, the residual

price variation that remains is uncorrelated with AAL values.

The lower panel of Figure 4 summarizes results for the two firms that use the most sophisti-

cated risk pricing strategies: USAA and State Farm. USAA uses granular CAT modeling to

calibrate zip code-level wildfire pricing factors. As compared to the zip code factors used by

Liberty Mutual and AAA Southern California, these factors capture more of the variation

in parcel-level AAL. Still, controlling for zip code dummies and fire protection class fully

absorbs the relationship between Li and USAA’s prices. State Farm uses parcel-specific

CAT modeling outputs to calibrate highly granular, 1 square km risk segments. This risk

measurement strategy explains why a significant residual relationship between State Farm

premiums and Li remains, even after controlling for wildfire risk scores and zip code dum-
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mies. Including dummies for each of the 1 km grid cells used by State Farm to segment the

market fully eliminates the relationship between Li and insurance premiums, as shown by

the yellow lines.

Overall, this variance decomposition helps elucidate the risk segmentation strategies used

by insurers to price wildfire risk. It also hints at the superior information that informs

State Farm’s more granular pricing strategy. We will investigate the implications of this

information advantage in more detail in Section 6.

5.3 Econometric specifications and identification

Having identified the risk segmentation strategies used by each insurer, we can now estimate

the empirical analog of Equation 5. We follow separate empirical approaches for insurers

based on their risk segmentation strategy.

5.3.1 Empirical specification for Type 2 insurers

For Type 2 insurers, Allstate and Nationwide, we have many parcel observations within each

risk segment. This allows us to measure segment-level average AAL values with sufficient

precision. Let D∗
jk be indicator variables for the k segments that firm j uses to price wildfire

risk. For each insurer, we estimate the following two equations:

Lik = ψj +

Kj∑
k=1

λjkD
∗
jk +Xiθ1j + hj(Ri) + ζijk; (8)

pijk = αj +

Kj∑
k=1

γjkD
∗
jk +Xiθ2j + fj(Ri) + uijk, (9)

where Lik denotes the CoreLogic parcel-level AAL and pijk denotes the insurance premium

charged by insurer j for parcel i. The hj(Ri) and fj(Ri) are flexible polynomial functions

of demeaned reconstruction costs. The λjk parameters estimate the average assessed AAL

value in pricing segment k used by firm j, conditional on the reconstruction cost polynomial

values and other factors. The γjk coefficients recover the average insurance price charged by

firm j in segment k, controlling for reconstruction cost and other controls. We choose the

lowest-risk wildfire segment as the omitted D∗
jk category. Thus, the ψj and αj estimate the

average AAL and annual premiums, respectively, in the lowest wildfire risk segment.

We are primarily interested in estimating the empirical relationship between assessed risk

and the risk price (i.e. the βjk parameters defined by Equation 5). These βjk parameters can
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be estimated using the ratio of the γjk and λjk provided that our control variables effectively

capture the variation in non-catastrophe losses and other price components (e.g., fixed cost

recovery) that generate variation in insurance premiums. Equations 8 and 9 control flexibly

for reconstruction costs and other factors we can observe, denoted by Xi, such as the age of

the home, the roof type, and public protection class. However, after conditioning on these

observables, the residual variation in assessed wildfire risk exposure could still be correlated

with unobserved insurance cost drivers such as local crime rates.

We estimate a second set of specifications that include a full set of zip code fixed effects.

In the rate filings we analyze, for all insurers but State Farm, wildfire risk is the only peril

that is priced at the sub-zip code level. Other perils, such as crime or water pipe failures,

are priced at the zip code level or higher. The advantage of this approach is that, with

the possible exception of State Farm, this strategy will absorb variation in all cost drivers

assessed by the firm that we cannot observe directly. A limitation of this approach is that

it cannot be used to analyze prices charged by Type 1 firms because zip code fixed effects

absorb all risk price variation.

In addition to Equations 8 and 9 above, we estimate a more parsimonious specification

wherein the dependent variable is the parcel-level insurance premium net of assessed parcel-

level AAL:

(pijk − Lik) = aj +
∑
k

ωjkD
∗
jk +Xiρ3j + zj(Ri) +

∑
b

πbBb + νijk. (10)

The ωjk parameters recover the average difference between insurance prices and parcel-level

measures of AAL within a risk segment. We assign parcels to AAL bins Bb. The π coefficients

estimate the average residual difference in net revenues relative to the omitted lowest wildfire

risk category. Within a market segment, parcels associated with wildfire risk will yield lower

net revenues.

5.3.2 Empirical specification for Type 1 and Type 3 insurers

For the Type 1 and Type 3 firms that use a larger number of risk segments, i.e. zip codes

or location rating factors, we observe a small number of parcels in each risk segment. As a

result, sampling error attenuates our λjk coefficient estimates from Equation 8 and biases

our risk gradient estimates towards zero. To mitigate this problem, we use a two stage least

squares (2SLS) approach to instrument for variation in segment-level AAL using the CDI

measures of wildfire risk introduced in Section 3.2. In the first stage, we regress segment-
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level AAL average values on CDI-reported measures of zip-code average wildfire risk and the

covariates included in Equation 8 above. We then estimate Equation 8 using the predicted

mean AAL values from the first stage. Section D of the online appendix discusses this IV

estimator and how it mitigates measurement error.

5.4 Empirically estimated risk price gradients

The empirical exercises described above generates a large number of risk segment-specific

parameter estimates for each of the insurers in the dataset. We are most interested in

understanding what the γjk and λjk estimates imply for the slope of the empirical risk price

gradients, i.e. the βjk parameters.

5.4.1 Empirical risk price gradients for Type 2 insurers

Figure 5 summarizes the γjk and λjk coefficient estimates for the Type 2 firms, Allstate and

Nationwide. The vertical axis plots the λjk coefficient estimates with confidence intervals

from Equation 9. The horizontal axis plots the γjk estimates with confidence intervals from

Equation 8. Each marker corresponds to a different market segment. In the top panel of

Figure 5, all regressions include indicators for Allstate’s market segments. The bottom panel

summarizes a similar exercise that includes indicators for Nationwide’s market segments,

which are defined more coarsely.

Panels (a) and (d) report results from the specifications that omit zip code fixed effects.

In these specifications, the average annual premiums charged in the lowest wildfire risk

segments provide an estimate of the average per-customer non-catastrophe losses (e.g., theft

risk) and administrative costs as well as profit margins and the fixed cost component (f).

These average premiums, which are in the range of $1,500 to $1,750, define the anchor point
for the cost-based risk pricing benchmarks derived in Section 4. The grey wedges span the

upper and lower bounds of the cost-based gradients given the market segmentation strategy

used by Allstate and Nationwide, respectively.

To facilitate a comparison of the empirical gradients against the cost-based risk gradients,

we run a linear OLS regression of the λjk estimates on the corresponding γjk estimates,

weighting by the number of homes in each risk segment. The estimated slope parameters are

reported, along with standard errors which are estimated by bootstrapping the full estimating

procedure using a zip code-level block bootstrap. For both Allstate and Nationwide, the

estimated slope parameters are significantly steeper than our 1.18 benchmark. Whereas we

fit a linear approximation to the segment-level risk price gradient to facilitate comparisons
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with the benchmark measure, the relationships we observe between segment-level average

prices and segment-level average AAL are concave.

Panels (b) and (e) in Figure 5 report the coefficient estimates from the more saturated speci-

fications that include zip code fixed effects. In these figures, the estimated γjk parameters in

very low-risk segments are close to zero because the zip code fixed effects absorb the average

costs of insuring homes in these segments. Comparing the risk price gradients from these

more saturated regressions against the cost-based benchmarks, we observe similar qualitative

patterns as above.

For comparison, panels (c) and (f) report results from estimating the regression equations

reported in panels (b) and (e) using State Farm’s prices as the dependent variable in Equa-

tion 9. The linear approximation to State Farm’s gradient parameters is noticeably less

steep. This estimated gradient falls within the benchmark range if we omit the highest

wildfire risk score bins. See Appendix Table 2.

5.4.2 Empirical risk price gradients for Type 1 and Type 3 insurers

Table 3 reports the results of the 2SLS estimation described in Section 5.3.2 for all six firms

in our data. In the top panel, we regress an insurer’s segment-level average prices on the

corresponding segment-level average AAL predicted values. The 2SLS β estimates for the

Type 2 firms, Allstate and Nationwide, are very similar to those reported in Figure 5. This

result suggests minimal attenuation bias given the large number of parcels we observe in

the risk segments used by these firms. The risk price gradient estimates for USAA and

Liberty Mutual are 2.17 and 2.46, respectively. Both are significantly steeper than the

corresponding cost-based benchmarks. AAA Southern California uses the least granular

risk pricing strategy of all the insurers we study. We estimate a very noisy relationship

between zip code average AAL measures and risk pricing for this firm because this insurer

does not risk price discriminate within coarsely defined market segments. The State Farm

price gradient estimate is very close to our cost-based gradient benchmark; we fail to reject

a slope of 1.18.

For comparison purposes, the bottom panel estimates the average State Farm premium for

each risk segment used by the other insurers and regresses the segment-level average prices

on the corresponding instrumented mean AAL values. This exercise illustrates the stark

difference in pricing strategies across more- versus less-informed firms.
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5.4.3 Empirical net revenue gradients

Appendix Table 3 reports the results from estimating Equation 10, in which the dependent

variable is the difference between an insurer’s price and the corresponding CoreLogic AAL. In

each regression specification, we control for the segmentation strategy used by an insurer.33

The omitted AAL category contains parcels associated with assessed AAL values in the range

of 0-50. As noted above, the AAL bin indicators are identified using residual, within-risk

segment variation.

In columns (1) and (2), given the significant variation in AAL within risk segments used

by Allstate and Nationwide, increases in risk exposure within a segment are associated with

commensurate decreases in the dependent variable. We see a distinctly different pattern

when we estimate this regression using State Farm premiums to construct the net revenue

variable, but conditioning on Allstate market segments. Because State Farm uses a much

more granular risk pricing strategy, a higher AAL value within an Allstate risk segment

is associated with a commensurately higher State Farm premium. We see no significant

variation in revenues net of assessed AAL across the range of AAL that includes 75 percent

of homes in column (3) – that is, the coefficients for AAL bin 50-99 through AAL bin 200-299

are not statistically different from zero. A similar pattern holds for column (7), a comparison

of State Farm versus zip code pricers. Notably, we do see a reduction in net revenues for

the highest-risk homes. This empirical result is consistent with, but not proof of, binding

regulations that constrain premiums charged to the riskiest homes.

6 Empirical Evidence of Adverse Selection and Bind-

ing Price Regulation

We have documented some significant differences in the risk pricing strategies used by major

insurers in the California market. The empirical gradient associated with the most sophisti-

cated firm, State Farm, tracks our cost-based benchmark closely. In contrast, for most of the

firms that use relatively less granular pricing strategies, the empirical risk pricing gradients

are significantly steeper. In addition, in Figure 5, we estimate concave relationships between

segment-level average prices and average AAL measures. In what follows, we investigate

some possible explanations for these findings.

33. For example, in column (1) of Appendix Table 3, Equation 10 conditions on reconstruction costs, the
age of the home, protection class, roof type, and an indicator for each wildfire risk segment used by Allstate
to price wildfire risk.
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6.1 Adverse selection

The cost-based gradients we have been using to define our risk pricing benchmarks are based

on risk segment-level average measures of wildfire risk exposure. These average cost measures

could significantly underestimate the costs that a firm will face in a market segment if it is

at an information disadvantage vis-à-vis its competitors. When there are asymmetries in the

risk information held by competing firms, the probability that a relatively uninformed firm

will win a customer is correlated with expected disaster claims Li. The average expected

losses incurred by a relatively less-informed firm in a given market segment sjk will be larger

than the average losses associated with all customers in that segment:

E[Li|sjk, pij < pi(−j)] > E[Li|sjk], (11)

where pi(−j) denotes the price offered by the firm’s relatively more informed competitor.

Equation 11 summarizes the insurance market analog of the winner’s curse in common value

auctions. Intuitively, adverse selection will reduce profits relative to the no-selection scenario

for the uninformed firms and increase profits for the firm with superior information.

Estimating the degree of adverse selection in this market would require detailed information

about which firms are insuring which homes. Unfortunately, we do not have access to the

proprietary details of insurers’ books of business. We can, however, use the data we have

to assess the extent of the winner’s curse that an uninformed firm could face given the

underlying distribution of assessed AAL. We can also explore the potential cost implications

of the risk information asymmetries we observe across insurers.

6.1.1 Can empirically estimated risk price gradients be rationalized by adverse

selection?

To contextualize the empirically estimated risk price gradients, we compare the insurance

prices we observe insurers charging across different risk segments with the corresponding

conditional quantiles of the distribution of assessed wildfire AAL values. These quantiles

summarize the distribution of expected wildfire insurance costs in each risk segment bin,

holding constant the controls in our main regressions.

Results are summarized in Figure 6. The colored markers denote the average wildfire prices

charged by Allstate, Nationwide, and State Farm within each WRS category. The solid

black line shows the mean wildfire AAL (multiplied by 1.18 to reflect assumed risk load).

The dashed lines show the 90th and 95th conditional quantiles of 1.18 × wildfire AAL in
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each segment.

For wildfire score segments below 50 (the level CoreLogic considers “low”), all three firms

charge prices that are very close to wildfire risk segment mean AAL plus risk load. For

higher risk scores, State Farm continues to price close to segment mean cost, whereas Allstate

and Nationwide charge much higher prices. Allstate’s prices approximately follow the 90th

percentile of customer AAL, while Nationwide’s are between the 90th and 95th. Recall that

Allstate and Nationwide hold low single-digit market shares in high-hazard areas. Thus, the

risk pricing gradients we observe for Nationwide and Allstate could possibly be rationalized

by high levels of adverse selection in this market.34

6.1.2 Adverse selection under stylized Bertrand competition

A static Bertrand duopoly model provides a useful – albeit stylized – framework to further

explore the insurance cost implications of the risk pricing strategies that we observe in this

market. We assess the degree of adverse selection that would manifest in a series of duopoly

scenarios that feature State Farm in the role of the more informed firm competing with less

informed firms in our data.

We begin with a homogeneous product duopoly model in which the δj in Equation 1, which

captures switching costs and average brand preferences, are assumed to be zero. In this

simple model, the insurer offering the lowest price pij “wins” parcel i. To analyze this simple

duopoly scenario, we reformulate Equation 8 to explore the potential selection implications

of the pricing strategies we observe. We add an indicator variable 1[Win]ij that equals 1

if firm j offers a lower insurance premium to parcel i, as compared to State Farm. When

log(Wildfire AAL) is used as the left-hand side variable, the coefficient for 1[Win]ij can be

interpreted as the percentage increase in assessed AAL for a property won by firm j, relative

to the AAL values won by the more sophisticated rival.

Table 5 summarizes the results. The coefficient on the 1[Win]ij indicator shows the extent to

which adverse selection increases the wildfire risk exposure of relatively less-informed firms in

this static duopoly setting. For example, the households to whom Allstate offers a lower price

in duopoly competition with State Farm have AAL values that are approximately 50 percent

higher, on average, than the properties it loses to State Farm. Although the magnitude of this

winner’s curse varies across insurers, all estimated values are all economically and statistically

significant. The bottom panel reports the fraction won by the relatively uninformed firms

34. We cannot extend this analysis to the firms that price at the zip code level because zip code fixed effects
absorb all the insurance price variation.
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in these Bertrand duopoly games. The market is roughly evenly split between the two firms

(with State Farm winning lower-risk homes on average).

Recall that the rate of consumer switching is quite low in this insurance market. Table 5 will

overstate the extent of adverse selection if choice frictions limit switching behavior. Prior

work has documented substantial search and switching costs in insurance markets. In auto

insurance markets, for example, Honka (2014) finds that consumer search costs (versus high

rates of consumer satisfaction) explain high customer retention rates. She estimates search

costs in the range of $35 to $170 and average switching costs of $40. In a health insurance

context, Heiss et al. (2021) leverage the structure of Medicare Part D to separate the effects

of consumer inattention from switching costs. These authors estimate switching costs in the

range of $300 to $600.

We extend the Bertrand duopoly model to assess how the degree of adverse selection varies

under alternative assumptions about choice frictions. In a first stage, we assume that all

firms use the same coarse information to price wildfire risk. In this initial period, households

are randomly assigned to one of the two duopolists. After this first stage, the dominant firm

invests in more granular risk information which induces changes in both firms’ pricing strat-

egy. State Farm implements a more sophisticated risk pricing strategy, and the competing

firm alters its pricing in response. We assume the prices we observe in the market prevail

over a period of time during which all households are induced to evaluate their insurance

choice actively at some point. The cost of switching insurers, as perceived by a household

making an active choice, is given by δ.

Table 6 shows how the degree of adverse selection in this stylized Bertrand duopoly setting

varies with our assumptions about switching costs. Intiutively, the degree of adverse selection

is declining with switching costs (or brand preferences). With δ values of $500, households
won by less informed firms have AAL values that are 5 to 10 percent higher, on average,

than the properties lost by State Farm.

The distribution of assessed AAL measures within market segments, together with the risk

pricing strategies used by more versus less informed firms, suggest that the potential for ad-

verse selection is significant. Absent proprietary information about which firms are insuring

which parcels, we cannot directly ascertain the extent to which adverse selection is actually

happening in this market. We have shown that it is possible to rationalize the large mark-

ups over average-cost-based benchmarks in high-risk segments as purely a winners’ curse

correction. However, a stylized model of consumer switching behavior shows how the degree

of adverse selection that manifests in insurance markets can be significantly attenuated by
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choice frictions.

Premium markups in high-risk market segments could additionally represent a conservative

pricing response to poorly-understood loss probabilities. Relatively uninformed firms may

lack information about how wildfire risk exposure is distributed within risk segments. Re-

search that explores pricing decisions for risk involving low-probability events suggests that

insurers set higher premiums than would be predicted by standard economic theory because

of special concerns with both ambiguity of probability and uncertainty of losses. For example,

Kunreuther et al. (1995) and Mumpower (1991) present evidence that actuaries and under-

writers demand premiums higher than expected cost when loss probabilities are ambiguous.

Related work has shown how insurers who rely on simple heuristics to price risk, and who

are sensitive to how ambiguity affects damage risk, will charge higher premiums under am-

biguity (see, for example, Dietz and Niehörster (2021). This potential behavioral response

would result in premiums being set at levels that exceed expected insurance costs.

6.2 Market conduct regulation

We have presented evidence to show that asymmetric information, and associated adverse

selection, could help rationalize the steep risk price gradients we observe among relatively

less-informed insurers. But adverse selection cannot explain why risk pricing gradients ap-

pear concave across the highest-risk market segments. Binding price regulations could po-

tentially rationalize these empirical patterns. Industry representatives cite wildfire losses, in

addition to increasing trends in liability claims and reconstruction costs, among factors that

have increased costs faster than premiums can rise.35 In what follows, we provide further

suggestive evidence that price regulation binds in this market.

First, if price regulations are a limiting factor, we should see firms constrained by the reg-

ulated threshold of 6.9 percent, a level beyond which they face costly public rate hearings.

Panel (a) of Figure 7 summarizes 636 requested rate increases to CDI from 2008 to 2023

for owner-occupied homeowners’ insurance (HO-3) policies. The figure shows that the vast

majority of rate increases are bunched at the 6.9 percent threshold. This suggests that,

historically, the pricing regulation has been a limiting factor in this market. More recently,

firms have been requesting increases of 10 percent or more. Presumably, in these cases,

the expected costs of limiting premium increases to 7 percent exceed the cost of a public

hearing.

35. Reinsure Pro. “The implications of rising construction costs on property insur-
ance”. March, 2024. https://www.insurancebusinessmag.com/us/news/breaking-news/
the-implications-of-rising-construction-costs-on-property-insurance-480252.aspx
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Although firms are limited in the size of the premium increase they can request with a rate

case, they are not limited in the number of rate cases they can sequentially file. Thus, firms

could serially file rate cases to ratchet up earned premiums over time. Panels (b) and (c)

of Figure 7 document evidence that is consistent with this kind of behavior. To construct

these figures, we build price schedules from sequential rate cases filed over time by the same

insurer. We regress these prices on binned parcel-level AAL values.36 These figures should

be interpreted carefully as some of the price variation in rates across years could be due to

increases in assessed AAL over time. This caveat notwithstanding, we do see that many

insurers are serially filing rate increase requests over time.

Finally, we have shown that when an insurer finds itself competing with a rival that holds

superior information, the firm should adjust prices upwards to account for adverse selection.

However, if price regulations limit firms’ ability to shade up premiums, uninformed firms may

instead elect to exit high-risk market segments. Empirically, this pattern is what we observe.

For a subset of insurers in our data, we can reconstruct eligibility rules for new policies at a

parcel level. Figure 8 plots the fraction of homes in the dataset by wildfire risk score that

would have been eligible for a new policy in 2021. Allstate and Nationwide generally do not

offer new policies to parcels with risk scores above 30, whereas State Farm has historically

maintained much higher acceptance rates in higher risk categories. Presumably, this is

because State Farm can distinguish between above and below-average risk parcels in these

market segments.

In sum, the risk pricing behavior we observe suggests that adverse selection, together with

binding market regulation, are important forces shaping insurers’ risk pricing and manage-

ment strategies. In what follows, we formalize this reasoning with an equilibrium model of

a regulated insurance market.

7 An Equilibrium Model of Asymmetric Information

and Binding Regulation

We develop an equilibrium model of an insurance market to explore the implications of our

empirical findings. We analyze a single risk segment, such as a geographic area (e.g. a zip

code) or a set of properties assigned to a particular risk score, and assume that risk, mea-

sured by AAL, is uniformly distributed across properties. The key features of the model are

costly investment by firms in risk information, consumers who face costs of switching insur-

36. These cross-sectional regressions do not condition on wildfire risk segments.
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ers (alternatively, have brand loyalty), and regulatory constraints on pricing. Initially, we

assume that firms’ prices are unconstrained by regulation. We derive the market equilibrium

and the value of information associated with the adoption of risk information. Our results

rationalize many of the empirical results presented above. We then extend the model by in-

corporating regulatory constraints and consider the affordability and availability implications

of alternative policy reforms.

7.1 Setup

Firms offer insurance to a group of property owners within a risk segment. Structure values

are assumed to be identical, but risk varies among properties. Property risk is defined as the

expected loss l and uniformly distributed according to U(0, l∗), with mean risk l̄ and variance

σ2. A firm charges P for a homeowners policy and makes expected profits π = P−l. Because
the relevant variation in costs for our model comes from differences in risk, we normalize

a, ϕ′, and f in Equation 3 to zero. We assume that firms can charge different prices to

different consumers, but that regulation requires a given firm to charge the same price to all

consumers with the same risk.37

Consumers buy one unit of insurance to maximize utility u = −P + I(0, δ). Once consumers

purchase insurance coverage from a particular firm, they face costs of switching to other firms:

I(0, δ) is an indicator function equal to −δ if the consumer switches insurers, 0 otherwise.

Specifically, after time t, consumers need to be offered a price more than δ below another

firm’s price to induce them to switch. Alternatively, switching costs could be interpreted as

brand loyalty. A consumer may have had a positive experience with an insurer and need to

compensated by δ to switch to another firm. The total number of consumers within the risk

segment is normalized to 1.

Similar to the Bertrand model introduced above, we specify a two-stage model. In an initial

stage, all firms know the risk distribution within a market segment, but not the specific

risk of any individual property. In time t, a risk modeling technology (e.g., a probabilistic

catastrophe model) becomes available at cost F that provides perfect information about the

risk of properties.38 We characterize the decision by a firm to adopt the technology in terms

of the additional profits it can earn (i.e., the value of information).

37. This is consistent with California’s insurance regulations. Insurers must propose rate structures that
amount to an algorithm mapping risk of a given property to a price for a homeowners policy.
38. The assumption of perfect information allows us to derive pure-strategy equilibria, which accord with

the rate filings by insurers in California that map house characteristics to a single price.
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7.2 Initial conditions

In the initial period, new consumers enter the market. Firms compete in prices knowing

only the risk distribution U(0, l∗). In equilibrium, firms make zero expected profits, which

occurs at the price P0 = l̄. Between time 0 and t, once a consumer has selected an insurer,

it has no incentive to switch insurers because there is a single price for insurance.

To approximate the market structure we observe, we assume that one firm captures a rela-

tively large share α of the market and remaining ‘fringe’ of competing insurers share the rest

of the market. The dominant firm may have “brand recognition” due to past advertising

investments. Brand recognition does not give the firm a pricing advantage, but consumers

may be more likely to select them when indifferent on the price dimension.39 We assume

that the dominant firm’s customers are distributed over risk according to αU(0, l∗), implying

that the fringe’s customers are distributed according to (1− α)U(0, l∗).

7.3 The value of information

In time t, firms decide whether to adopt a more sophisticated information technology, ac-

counting for the cost of adoption and expected equilibrium profits. In this section, we assume

no regulatory constraints on pricing.

7.3.1 Pricing by the dominant firm at the initial equilibrium

If only the dominant firm adopts the technology, it can segment customers by risk and

charge them different prices. At the initial equilibrium, the dominant firm will either set a

price at PD = l̄ + δ to earn positive expected profits on its existing customers or a price at

PD = l̄ − δ to capture the whole market. The latter strategy is more profitable for low-risk

customers provided δ is not too large. In particular, at l = 0, profits from selling to all

customers, πD = 1
l∗
(l̄ − δ), are larger than those from selling only to its original customers,

πD = α
l∗
(l̄+δ), provided that l̄ > δ 1+α

1−α , an assumption we adopt hereafter.40 As risk rises, the

difference in profits shrinks until at l̃ = l̄− δ 1+α
1−α , the dominant firm earns equal profits with

the two pricing strategies. As shown by the red line in Figure 9, below l̃ the dominant firm

prices at PD = l̄− δ and captures both types of consumers. Above l̃, it prices at PD = l̄+ δ

and sells only to its existing consumers. However, the strategy PD = l̄+ δ is only profitable

up to l1 = PD + δ and so the dominant firm elects not to sell to any consumers with risk

39. In the classic dominant firm-competitive fringe model, the dominant firm has a cost advantage. In our
model, we will allow the dominant firm to have an information advantage relative to the competitive fringe.
40. We expect prices for insurance policies to be large relative to switching costs, suggesting P0 = l̄ ≫ δ.

As well, for market share values in Table 1, the term 1+α
1−α is at most 1.44.
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above l1.

The dominant firm’s pricing strategy yields profits given by:

πD =
1

2

{
l̄2 − 2δl̄ +

δ2

(1− α)2
[1 + 2α− 3α2]

}
. (12)

Given the dominant firm’s pricing, the competitive fringe earns positive expected profits on

the interval [l̃, l̄] and negative profits on the interval (l̄, l∗]. Because the fringe firms cannot

distinguish risks, they cannot avoid losing money on high-risk customers. In the aggregate,

the fringe’s profits are given by:

πF =
1

2

{
δ2
1 + 3α

1− α
− l̄2

}
. (13)

Given the assumption l̄ > δ 1+α
1−α , the fringe’s profits are negative. Thus, once the dominant

firm has adopted the technology, the initial equilibrium cannot be supported.

7.3.2 Equilibrium and the value of information

We define market equilibrium in a risk segment as the set of prices that yield zero profits

for the competitive fringe and maximum profits for the dominant firm conditional on the

fringe’s price. Formally, market equilibrium is given by:

Definition I: Market equilibrium is the set of prices P F and PD(P F ) such that 1) the com-

petitive fringe earns zero profits at P F and 2) PD(P F ) is the best response by the dominant

firm to the price P F .

Because the competitive fringe cannot distinguish customers by risk, it charges a single price

P F . However, given its information advantage, the dominant firm can charge different prices

to different customers and decline coverage to a subset of customers. At a given risk level

l, the dominant firm ensures it will have no customers with a price PD(l) > P F + δ.41 The

fringe firms have no such ability to limit coverage and so accept all customers willing to buy

policies at the price P F .

For the uniform risk distribution, the following proposition defines the market equilib-

rium:

Proposition I: If a) l ∼ U(0, l∗) and b) l̄ > δ 1+α
1−α , then market equilibrium is given by: 1)

P F = l∗ − δ
√

1+3α
1−α and 2) PD = P F − δ for l ∈ [0, l̃), PD = P F + δ for l ∈ [l̃, l1), and

41. In practice, an insurer would simply decline coverage to given customers.
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PD > P F + δ for l ∈ [l1, l
∗] where l̃ = P F − δ 1+α

1−α and l1 = P F + δ.

Proof: See Appendix.

Condition b) ensures that the dominant firm can set a low enough price on the interval

[0, l̃) to take the whole market. This requires that δ and/or α not be too large.42 On the

interval [l1, l
∗], the dominant firm ensures it gets no customers by charging any price above

PD + δ.

The equilibrium prices are represented in Figure 9. It can be shown that P F > l̄, indicating

that the competitive fringe must raise it price in order to break even in a risk segment with

a better-informed dominant firm. The dominant firm exploits its information advantage by

serving low-risk customers43 and declining coverage to high-risk customers. It earns positive

profits given by:

πD =
1

2

{
l̃(2P F − 2δ − l̃) + α(P F + δ − l̃)2

}
. (14)

The competitive fringe, on the other hand, sells money-losing policies to the high-risk portion

of the segment and only breaks even with profitable policies sold to medium-risk customers.

Its profits are given by:

πF =
1

2

{
(1− α)(P F − l̃)2 − (l∗ − P F )2 + αδ2

}
. (15)

Since the dominant firm makes zero profits when it does not adopt the technology, the value

of information (V OI) is given by the equilibrium profits in (14). Although the V OI is always

positive, it is only profitable for the dominant firm to adopt the technology when V OI > F .

Since V OI is a function of market share, we consider how it varies with α. It may seem

intuitive that a larger firm has more to gain from adopting the technology, but it turns out

to depend on particular parameter values, as stated in the following proposition:

Proposition II: The value of information is increasing in market share (∂V OI
∂α

> 0) if and

42. The competitive fringe can only earn non-negative profits at a price PF > l̄. Together with condition
b), this implies l̃ > 0 and that a two-tiered pricing strategy is optimal for the dominant firm.
43. Although the lowest-risk consumers pay the lowest prices, the dominant firm faces no competition for

these consumers as long as its price is at or below PF − δ. In practice, a firm like State Farm is likely to
face competition from other large, well-informed firms (e.g., Farmers) operating in a given market segment.
Although we do not formally consider this extension, we would expect competition among well-informed firms
to drive down prices closer to expected cost (l in our model), yielding a positive relationship between price
and risk at low prices. This is consistent with Radner (2003), who finds in a model with sticky adjustment
of consumers among firms (“viscous demand”) that duopoly equilibria tend to be more competitive than the
monopoly outcome.
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only if:
1 + 3α

1− α
>

(
γ − 1

2

)2

, (16)

where γ = l̄
δ
.

Proof: Differentiate 14 with respect to α and rearrange, making use of the definitions P F =

l∗ − δ
√

1+3α
1−α and l̃ = P F − δ 1+α

1−α .

γ measures the relative magnitude of switching costs, specifically the size of δ compared to

the average AAL (l̄) in the segment. For the parameter values α = 0.2 and γ = 7, the

condition in (16) holds and ∂V OI
∂α

> 0. However, if α is lowered to 0.1, ∂V OI
∂α

< 0. For α < 1,

the left-hand side of (16) is increasing in α and, thus, we find that V OI is more likely to

increase in market share when the market share is relatively large to begin with.

The model generates the following predictions that are consistent with empirical findings

presented above: 1) the high-information firm uses a more granular pricing strategy than

low-information firms, 2) the high-information firm uses its superior information to take the

low-risk customers within a risk segment, 3) the high-information firm only sells profitable

policies, 4) low-information firms set high prices to avoid selling money-losing policies to

high-risk consumers, 5) for some parameter values, the value of adopting the information

technology is increasing in market share.

7.4 Equilibrium with price regulation

In California, insurance prices are constrained by the historical loss experience of firms. In

this section, we approximate price regulation with an upper bound on the average price of

the dominant firm and the competitive fringe. We continue to examine a single risk segment

and assume a uniform risk distribution.

The dominant firm and the competitive fringe may have different historical losses due simply

to the randomness of wildfire events. If the fringe firms have a tight constraint on their prices,

then the adoption of the new information technology by the dominant firm may result in

them dropping out of a risk segment. As shown above, once the dominant firm has superior

information, the fringe firms must raise their price in order to remain profitable. If they

cannot raise it sufficiently, their profits will be negative and they will elect to not sell any

policies in the risk segment.

We consider formally the effect of a price constraint on the dominant firm. The average price
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of the dominant firm is given by:

P̄D = η(P F − δ) + (1− η)(P F + δ), (17)

where η = l̃
l̃+α(PF+δ−l̃) . Suppose that the firm’s average price cannot exceed P̄R under the

regulation. Then the maximization problem for the dominant firm is:

max
l̃
πD s.t. P̄D ≤ P̄R, (18)

where πD and P̄D are given in (14) and (17), respectively. The maximization is over l̃, the

risk level at which the dominant firm switches from selling to the whole market at P F − δ

and selling to the share α of the market at P F + δ. When the constraint is binding, we can

use (17) to derive the chosen value of l̃ as:

l̃ =
P̄Rα(P F + δ)− α(P F + δ)2

P F (1− α)− δ(1 + α)− P̄R(1− α)
. (19)

The regulation forces the dominant firm to depart from the unconstrained pricing rule under

which the low and high prices earn the same profits at l̃.

The fringe’s profits change when the dominant firm adjusts l̃. Thus, to define the market

equilibrium we need a new value of P F that makes the fringe’s profits equal to zero. In

general, this is given by44:

P F =
l∗ − l̃(1− α)

α
− 1

α

√
(1− α)(l∗ − l̃)2 + α2δ2. (20)

For a given value of P̄R, the constrained market equilibrium is given by the values {P F∗, l̃∗}
that satisfy (19) and (20). The equilibrium can be illustrated with isoclines in {P F , l̃} space

corresponding to the zero profit and average price conditions (Figure 10). We show in the

Appendix that at the unconstrained equilibrium45 the isoclines are upward sloping and that

the relative magnitude of the average price and zero profit isocline slopes is indeterminate.

Numerical analysis shows that except for small values of γ, requiring large values of δ relative

to l̄, the zero profit isocline has a steeper slope than the average price isocline (Figure 10). We

adopt this as the empirically relevant case, although we also consider the alternative.

44. In (20), PF is the solution to a quadratic equation. We can rule out one of the solutions because it
implies a value of PF that exceeds l∗.

45. The unconstrained equilibrium is the values {PF∗, l̃∗} such that l̃∗ is freely chosen in (18). Associated
with this value of l̃∗ is an average price P̄D according to (17).
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An admitted market insurer in California who experiences losses can raise its prices through

the rate filing process. We represent this in our model as an increase in P̄R, which shifts up

the P̄D isocline (see Appendix). As shown in Figure 10, when the constraint on the dominant

firm’s average price is relaxed (P̄R
1 > P̄R

0 ), the equilibrium values of P F and l̃ increase. This

has important implications for insurance availability. Profits for the fringe are increasing

in the fringe’s price P F (see Equation 15), implying that a regulatory constraint on the

fringe’s price can be at most weakly binding, because otherwise fringe profits are negative

and fringe firms will exit the risk segment. Thus, as long as fringe firms cannot raise their

own prices, relaxing the regulatory constraint on the dominant firm will have the effect of

lowering availability as fringe firms decline coverage to their current customers. After the

exit of the fringe, the dominant firm would want to pick up some, but not all, of the fringe’s

customers if its price remains constrained at P̄R
1 .

There is abundant evidence that wildfire risk has increased recently in California. In our

model, we can represent this by a shift in the risk distribution from U(0, l∗) to U(a, l∗ + a),

which raises the mean risk within the segment while holding constant the variance. We

assume that the constraint on the dominant firm’s average price (P̄D = P̄R) is unchanged.

As shown in Figure (11), the increase in risk shifts up both the zero profit and the average

price isoclines (see Appendix). When the zero profit isocline is steeper than the average

price isocline (top figure), the equilibrium values of P F and l̃ decline. Nevertheless, we find

that the overall average price can increase even though P F declines and P̄D remains the

same.46 The reason is that the decline in l̃ lowers the share of the market that had been

served exclusively by the dominant firm at a relatively low price of P F − δ. Under the new

equilibrium, the fringe firms capture some of these customers at a higher price.

When the magnitude of the relative slopes is reversed (Figure 11, bottom), equilibrium values

of P F and l̃ increase. Numerical analysis shows that the overall average price can increase in

this case as well.47 The two sets of results illustrated in Figure (11) indicate that in insurance

markets with asymmetric information, price caps may be ineffective at controlling prices in

the face of increasing risk. Moreover, in this second case shown in the bottom figure, rising

risk may result in the fringe firms exiting the segment if regulatory constraints prevent their

prices from increasing.

As an alternative to price constraints, the government could instead provide public risk

46. For example, for parameter values α = 0.2, δ = 10, and l∗ = 100, the overall average price increases
when the risk distribution shifts by a = 5.
47. For example, for parameter values α = 0.2, δ = 30, and l∗ = 100, the overall average price increases

when the risk distribution shifts by a = 5.
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information, as is done for hurricanes in Florida.48 We consider how the market equilibrium

changes when information provision allows fringe firms to distinguish properties with risk

distributed as U(0, l̄ or U(l̄, l∗), compared to the original case in which they know only that

risk is distributed U(0, l∗). There are two cases according to whether a) l̃ > l̄ or b) l̃ < l̄ under

the original equilibrium (Figure 12). In case a), the overall average price unambiguously

declines. Prices do not change on the interval [l̃, l∗] and they are lower on the interval [0, l̃).49

In case b), the effect on the overall average price is unclear, however, we provide numerical

results showing that average price falls for a large range of parameter values (see Appendix).

Although the cost of information provision would need to be considered, our results show

that this may be a more effective way to address affordability and availability objectives

than price caps.

8 Conclusion

In the face of escalating climate risk, well-functioning property insurance markets can provide

households and businesses with crucial protection from economic losses as well as incentives

to reduce risk exposure. However, there are signs that property insurance markets are not

adapting well to climate change pressures. This study investigates some of the reasons that

private insurance markets are struggling to manage climate change risk, with a focus on

wildfire risk and homeowners insurance in California.

We begin with an empirical analysis that combines proprietary parcel-level wildfire risk

scores with information in insurers’ public rate filings to reconstruct insurers’ price and

eligibility schedules. We compare these premiums to a cost-based benchmark that accounts

for expected losses, operating costs, and a loading factor that reflects the costs of ensuring

insurer solvency. Measures of expected losses are derived from a state-of-the-art catastrophe

model that estimates property-level risk from wildfire.

Our findings suggest a potentially important role for asymmetric information in this insur-

ance market. Given the significant differences in the granularity of wildfire pricing informa-

tion used by insurers to price risk, less-informed firms face a winner’s curse in high-wildfire

risk market segments. We show that relatively less informed insurers should charge signif-

icantly higher prices in high risk market segments to account for this curse, creating an

opportunity for well-informed firms to raise prices above costs. If less-informed insurers are

48. Florida Public Hurricane Loss Model: https://fphlm.cs.fiu.edu.

49. On the interval [0, l̃), the fringe price is PF = l̄ − δ
√

1+3α
1−α . Since the original fringe price is greater

than l̄, we know that all prices are lower on [0, l̃), which lowers the overall average price.
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unable to increase prices due to regulatory constraints, they may decline coverage to any

homes within the market segment. A critical policy question for future research is to under-

stand why there is such wide dispersion of wildfire risk model quality across insurers.

To explore the implications of these empirical findings, we develop an equilibrium model

of the property insurance market that incorporates both asymmetries in information across

insurers and binding economic regulation. In the model, insurers can access detailed risk

information through the costly adoption of sophisticated model tools. We show that if the

costs of adopting and using more sophisticated risk information is sufficiently high, only

the firms with the largest market share adopts the more sophisticated information. This

is consistent with what we observe in the California market. The model also predicts that

the high-information firm will use its superior information to win the lower-risk customers

within a risk segment, and that low-information firms will set high prices to mitigate effects

of adverse selection. If regulation prevents these upward price adjustments, insurers wary of

the winner’s curse may use eligibility rules to limit exposure to high-risk customers. Thus,

in markets characterized by asymmetric information, regulations limiting premium increases

can have unintended consequences. Policies that improve market-wide understanding of

wildfire risk could provide a more effective way to improve affordability without sacrificing

availability.

Our findings are relevant to current policy discussions about property insurance market re-

form in California and elsewhere. As of 2024, several leading insurers (including State Farm

and Allstate) have begun to limit the writing of new policies and tightened underwriting

standards for existing customers. Increases in assessed wildfire risk exposure is one factor

driving these decisions. Other factors include increases in increases in non-catastrophe lia-

bility claims, construction cost inflation, higher prices for reinsurance, and regulations that

limit premium increases that are commensurate with cost increases. To date, the public

conversation around this emerging crisis has focused on increased climate risk and out-dated

economic regulation. Our results highlight the underappreciated importance of the win-

ner’s curse as a barrier to participation in insurance markets for large, hard-to-model risks.

Further investigation of the potential for adverse selection, the implications for insurance

pricing and underwriting, and the policy changes that could be warranted will be critical to

informing insurance market policies in an era of climate change.
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Figure 1: Profitability of homeowners insurers by state and year
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Notes: Figure reports state-level summaries of insurer profitability in homeowners insurance. California is in red; all
other states are in gray. The data represent profit on insurance transactions, which accounts for underwriting profit,
investment gains, and federal taxes. Data are from National Association of Insurance Commissioners “Report on
Profitability by Line by State” for the years 1985 to 2021. See Appendix A for a data description.
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Figure 2: California homeowners insurance by year
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Notes: Figure summarizes zip code-level outcomes over time. Zip codes are classified into wildfire risk quintiles on
the basis of zip code average risk. Risk scores are derived from California Department of Insurance Wildfire Risk
Information Reporting, which lists proportions of insurance policies in various hazard categories (Negligible = 0,
Low = 1, Moderate = 2, High = 3, Very High = 4). Annual zip code-level premiums, policy growth, and dropped
policies are reported by the California Department of Insurance. Premium is in 2020 dollars.
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Figure 3: Regression of a cost-based, segment-level price on segment expected loss versus on
parcel expected loss
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Notes: Horizontal box plots show the distribution of individual expected losses within each wildfire risk
score. Whiskers show the 10th and 90th percentiles; notches show the interquartile range; circular markers
are means. The vertical axis shows prices for a hypothetical firm that pools customers by wildfire score and
prices at segment-mean expected loss plus 18 percent risk load. The solid line is a locally-weighted regression
of these prices on segment-mean expected loss. The dashed black line is a locally-weighted regression of prices
on individual expected loss. The gray line has a slope of 1. The histogram at bottom shows the overall
distribution of expected losses for homes in the data. The contrast between the solid line and the dotted
line shows that, under a segment pricing regime, parcels with high risk pay less than expected losses.
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Figure 4: Validating firms’ reported pricing variables

AAA Southern California State Farm

USAA Liberty Mutual

Allstate Nationwide

0 250 500 750 0 250 500 750

0

400

800

1200

0

400

800

1200

0

400

800

1200

Wildfire AAL

P
re

m
iu

m

Included Variables

No Controls
Structure Characteristics

Structure Characteristics, Zip
Structure Characteristics, WF Score

Grid Cells

Notes: Each panel shows coefficients from multiple separate regressions of annual premium on a binned
specification of wildfire AAL. All regressions (including “no controls”) include a polynomial in demeaned
reconstruction cost. Structure characteristics include age of home, protection class (a measure of fire depart-
ment quality), and an indicator for Class A roof. Standard errors are clustered by zip code.
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Figure 5: Wildfire price gradients for Allstate and Nationwide
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(b) Allstate, with FE
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(c) State Farm, with FE

β = 0.83 (0.09)
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Panel B. Nationwide

(d) Nationwide, no FE

β = 3.82 (0.33)
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(e) Nationwide, with FE

β = 3.57 (0.34)
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(f) State Farm, with FE

β = 0.96 (0.11)
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Notes: Each panel shows a separate regression of annual premium on wildfire score dummies, with additional
controls for fire protection class and reconstruction cost. The regressions used to create the figures in the
second and third columns also include zip code fixed effects. Vertical bars represent confidence intervals for
prices; horizontal bars represent confidence intervals for mean AAL. Standard errors are clustered by zip
code to allow for arbitrary within-zip code shocks to residuals. The gray shaded regions show slopes between
1 and 1.18, the cost-based benchmark. 48



Figure 6: Price and Cost by Risk Segment

(a) Allstate-State Farm Price Comparison
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(b) Nationwide-State Farm Price Comparison
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Notes: Figures compare price and cost across trisk segment bins, holding constant the controls in the
main regressions of the paper. The colored markers denote the average wildfire prices charged by Allstate,
Nationwide, and State Farm within each WRS category. The solid black line shows the mean wildfire AAL,
multiplied by 1.18 to reflect assumed risk load. The dashed lines show the 90th and 95th conditional quantiles
of 1.18 × wildfire AAL in each segment.
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Figure 7: Rate filing behavior
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Notes: Panel (a) of this figure displays the distribution of all 636 requested rate increases to CDI from 2008
to 2023 for owner-occupied homeowners’ insurance (HO-3) policies. These data cover rate requests from
companies belonging to all the insurers in California. Firms tend to request rate increases just below 7
percent, a threshold above which firms may face costly public rate hearings. Panels (b) and (c) plot the
results of two separate sets of regressions. The dependent variable is annual premium and the independent
variable is binned AAL, not conditioned on wildfire risk segment. Each regression corresponds to a different
rate case submitted by Allstate and State Farm. These regressions show, in the cross section, price increases
by each of the companies over several years.
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Figure 8: New policy eligibility versus parcel wildfire scores
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Notes: Figure reports the fraction of homes in each risk score bin that would have been eligible for a new
homeowners policy in 2021 from each firm.
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Figure 9: Equilibrium pricing by dominant firm and competitive fringe

Notes: The top figure shows the dominant firm’s best response at the initial equilibrium price P0. The price
charged by the dominant firm at each risk level l is shown in red, where the width of the line indicates
the firm’s market share (the widest line corresponds to a share of one). The competitive fringe’s price and
market shares are shown in blue. The lower figure shows the market equilibrium prices at which the profits
of the competitive fringe are zero.
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Figure 10: Market equilibrium with regulatory price constraints

Notes: The top figure shows the isoclines corresponding to the zero profit and average price conditions in
Equations (19) and (20). The intersection of the isoclines defines the equilibrium for P̄D = P̄R. The bottom
figure shows how the equilibrium changes when the average price constraint on the dominant firm is relaxed
(P̄R

1 > P̄R
0 ).
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Figure 11: Effects of risk increases on market equilibrium with regulatory price constraints

Notes: The two figures show how the market equilibrium changes when the risk distribution shifts from
U(0, l∗) to U(a, l∗ + a) and the constraint on the dominant firm’s average price remains at P̄D = P̄R. The
top figure corresponds to the case in which the zero profit isocline is steeper than average price isocline. In
this case, the increase in risk results in lower PF and l̃. This result is reversed in the bottom figure for the
case in which the slope of the average price isocline exceeds that of the zero profit isocline.
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Figure 12: Effects of information provision on market equilibrium

a) b)

Notes: The two panels show how equilibrium prices change when new information is provided to the com-
petitive fringe firms. In the top figures, the fringe firms know only that properties are distributed according
to U(0, l∗). In the bottom figures, the firms can distinguish whether properties are distributed according to
U(0, l̄) or U(l̄, l∗). There are two cases. Case (a) on the left corresponds to l̃ > l̄ in the initial equilibrium
and (b) on the right corresponds to l̃ < l̄ in the initial equilibrium.
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Table 1: Insurer market shares and granularity of wildfire rating

Market Share (Percent)

Insurer Statewide
High-Risk
Zip Codes

Wildfire
Hazard

Variables

Hypothetical
Best Fit

State Farm 18.0 18.4 434,252 0.82
Farmers 15.5 14.7 2,304 nd
CSAA 7.6 8.6 26,055 0.67
Mercury 7.1 0.9 2,248 nd
Auto Club Enterprises 6.9 0.2 22 0.13
Liberty Mutual 6.5 3.4 1,698 0.47
Allstate 5.8 3.3 111 0.18
USAA 5.3 5.9 838 0.43
Travelers 3.2 4.8 1,572 nd
Nationwide 2.5 2.5 59 0.16
FAIR Plan 2.5 20.4 736 nd
All Others 19.2 16.9

Notes: Market shares are based on CDI CSS exposures data for 2020 at the insurer group level for the HO
insurance line plus FAIR Plan. High-hazard zip codes are those falling into the highest quintile of average
wildfire risk as reported in the CDI Wildfire Risk Information Report for 2021. Wildfire hazard variables
count the number of factors an insurer uses to capture the likelihood of wildfire occurrence; more information
on wildfire hazard variables is available in Appendix A. Hypothetical best fit is the R2 from a regression
of catastrophe model wildfire risk (average annual loss or AAL) on rating variable indicator variables using
the 100,000 homes in the dataset. Firms with no data (“nd”) use proprietary information such as Verisk
FireLine scores or Zesty AI ratings, which were unavailable for regression.
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Table 2: Approximate risk load from marginal surplus

Panel A: Risk load versus market share in California wildfire zip codes

Market
Share
(%)

Policies
Wildfire
AAL
($M)

σ
($M)

S
($M)

S′

($M)

Risk
Load
($M)

Average Risk
Load per
AAL ($)

Marginal Risk
Load per
AAL ($)

1 27,825 6 8.9 550.1 550.1 0.0 0.00 NA
5 139,722 30 44.0 550.1 551.8 0.6 0.02 0.03

10 279,612 61 88.2 550.1 557.1 2.4 0.04 0.06
20 559,379 120 174.8 550.1 577.2 9.1 0.08 0.11
30 839,123 181 262.5 550.1 609.5 20.0 0.11 0.18
50 1,398,690 302 438.0 550.1 703.2 51.4 0.17 0.28

100 2,797,560 604 876.3 550.1 1,034.7 162.8 0.27 0.41

Panel B: Sensitivity of risk load to other catastrophe perils

Hurricane
AAL
($M)

Policies
Wildfire
AAL
($M)

σ
($M)

S
($M)

S′

($M)

Risk
Load
($M)

Average Risk
Load per
AAL ($)

Marginal Risk
Load per
AAL ($)

0 279,612 60 87.59 8.54 88.01 26.70 0.44 0.48
50 279,612 60 87.66 137.76 163.29 8.57 0.14 0.21

100 279,612 60 87.55 275.13 288.73 4.57 0.08 0.11
200 279,612 61 88.15 550.07 557.08 2.36 0.04 0.06
300 279,612 60 87.82 825.04 829.71 1.57 0.03 0.04
500 279,612 60 87.76 1,375.03 1,377.82 0.94 0.02 0.02

Notes: The table reports the marginal surplus and associated risk load required to cover various shares of
homes in wildfire areas of California for a hypothetical countrywide property insurer.
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Table 3: IV estimates of price gradients by firm

(1) (2) (3) (4) (5) (6)

Segment Definition
Allstate
Scores

Nationwide
Scores

USAA
Territories

Liberty Mutual
Territories

AAA SoCal
Territories

State Farm
Grid Cells

Own Price
Segment-Mean AAL 2.87*** 3.42*** 2.17*** 2.46*** -1.44 1.10
SE (0.26) (0.43) (0.40) (0.41) (1.78) (0.14)

State Farm Price
Segment-Mean AAL 0.95*** 0.95*** 1.01 0.91*** 1.99
SE (0.10) (0.13) (0.19) (0.15) (8.98)

First Stage F-Statistic 255.6 61.1 62.1 88.8 9.1 1694.2
Zip Code FE Yes Yes No No No No
Number of Segments 94 30 323 393 19 11946

Notes: ***/**/* denote estimate is significantly different from assumed risk price gradient slope of 1.18 at
the p < 0.01/0.05/0.10 level.
Table reports estimates of beta from a two-step estimation procedure that first calculates regression-adjusted
mean prices and wildfire risk by segment following equation 7, and then regresses these segment-level prices
against segment-level mean wildfire risk. The first-step estimation of segment means includes zip code
fixed effects for Allstate and Nationwide, where there is cross-cutting variation in zip codes and wildfire
segments. The second-step regression of mean price on mean wildfire AAL is estimated by two-stage least
squares when there are many territories to remove measurement error in segment-mean wildfire AAL due to
sampling variation. See text for details. Standard errors are calculated by bootstrapping the full estimation
procedure 500 times.
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Table 4: Revenue net of expected wildfire losses within rate segments

Within Risk Score Segments Zip code-based territories Grid

State Liberty AAA State State
Allstate Nationwide Farm USAA Mutual SoCal Farm Farm

(1) (2) (3) (4) (5) (6) (7) (8)

AAL 50-99 (13% of Homes) -62∗∗ -101∗∗ 0 -84∗∗∗ -35∗∗∗ -172∗∗∗ 49∗∗∗ -41∗∗∗

(27) (44) (35) (17) (11) (41) (18) (10)
AAL 100-199 (14% of Homes) -86∗∗∗ -113∗∗ -1 -141∗∗∗ -108∗∗∗ -200∗∗∗ 51∗∗ -109∗∗∗

(32) (48) (43) (22) (12) (51) (25) (13)
AAL 200-299 (8% of Homes) -159∗∗∗ -118∗ 8 -217∗∗∗ -214∗∗∗ -282∗∗∗ 46 -176∗∗∗

(37) (69) (48) (23) (15) (60) (33) (15)
AAL 300-499 (10% of Homes) -334∗∗∗ -269∗∗∗ -105∗∗ -341∗∗∗ -352∗∗∗ -418∗∗∗ -40 -289∗∗∗

(41) (61) (50) (25) (16) (66) (32) (18)
AAL 500-749 (6% of Homes) -550∗∗∗ -465∗∗∗ -230∗∗∗ -532∗∗∗ -545∗∗∗ -551∗∗∗ -172∗∗∗ -456∗∗∗

(43) (60) (56) (30) (21) (75) (35) (21)
AAL 750-999 (3% of Homes) -797∗∗∗ -743∗∗∗ -452∗∗∗ -746∗∗∗ -761∗∗∗ -774∗∗∗ -370∗∗∗ -649∗∗∗

(46) (69) (58) (38) (25) (94) (40) (25)
AAL 1000+ (7% of Homes) -1,842∗∗∗ -1,781∗∗∗ -1,453∗∗∗ -1,703∗∗∗ -1,675∗∗∗ -1,367∗∗∗ -1,296∗∗∗ -1,302∗∗∗

(80) (99) (94) (54) (49) (150) (59) (49)
Structure Characteristics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allstate Segments FE ✓ ✓
Nationwide Segments FE ✓
USAA Segments FE ✓ ✓
Liberty Segments FE ✓
AAA SoCal Segments FE ✓
State Farm Segments FE ✓

Observations 95,352 95,351 95,351 95,297 94,025 55,641 95,296 95,351
Dependent variable mean 2,059 2,163 2,014 2,168 2,090 2,520 2,014 2,014

Notes: Table reports eight separate regressions. The omitted AAL range is 0 to 50, which contains 39
percent of homes. Structure characteristics include reconstruction cost, age of home, class A roof indicator,
and public protection class. Standard errors are clustered by zip code.
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Table 5: The winner’s curse in stylized Bertrand duopoly

log(Wildfire AAL)
Allstate Nationwide USAA Liberty Mutual AAA SoCal

(1) (2) (3) (4) (5)

1[Win] 0.51∗∗∗ 0.33∗∗∗ 0.44∗∗∗ 0.39∗∗∗ 0.56∗∗∗

(0.08) (0.08) (0.03) (0.04) (0.09)
Structure Characteristics ✓ ✓ ✓ ✓ ✓

Allstate Segments FE ✓
Nationwide Segments FE ✓
USAA Segments FE ✓
Liberty Segments FE ✓
AAA SoCal Segments FE ✓

Observations 95,295 95,295 95,295 93,976 55,606
R2 0.36 0.32 0.74 0.77 0.28
Dependent variable mean 4.54 4.54 4.54 4.53 4.40
Fraction Won 0.54 0.56 0.50 0.44 0.50

Notes: 1[Win] is an indicator for the firm’s price being less than or equal to State Farm’s price for that cus-
tomer. Dependent variable in Panel A regressions is wildfire AAL. Dependent variable in Panel B regressions
is (Price - Wildfire AAL) using the challenger firm’s price. Structure characteristics include reconstruction
cost, age of home, class A roof indicator, and public protection class. Standard errors are clustered by zip
code.
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Table 6: Winner’s curse in Bertrand duopoly, alternative switching costs

Allstate
vs.

State Farm

Nationwide
vs.

State Farm

USAA
vs.

State Farm

Liberty Mutual
vs.

State Farm

AAA SoCal
vs.

State Farm

δ=0
1[Win] 0.52 0.33 0.44 0.39 0.56
SE (0.08) (0.08) (0.03) (0.04) (0.09)

δ=50
1[Win] 0.48 0.34 0.37 0.36 0.56
SE (0.08) (0.07) (0.03) (0.03) (0.08)

δ=100
1[Win] 0.24 0.22 0.15 0.12 0.27
SE (0.04) (0.04) (0.02) (0.01) (0.04)

δ=500
1[Win] 0.10 0.08 0.05 0.05 0.10
SE (0.02) (0.02) (0.01) (0.01) (0.02)

δ = ∞
1[Win] 0.01 0.00 0.00 0.00 -0.01
SE (0.01) (0.01) (0.01) (0.01) (0.01)

Mean AAL $302 $302 $302 $299 $236
Observations 95295 95295 95295 94241 55606

Notes: Table summarizes estimates from 25 OLS regressions following the specification in Table 5. In each
regression, each home is randomly assigned to one of the duopolists, so that the home’s perceived price for
the other firm is incremented by the indicated switching cost. Customers then choose the firm with the lower
perceived cost.
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A Data Documentation

We compile several sources of data. The first data source, taken from the National Associ-
ation of Insurance Commissioners (NAIC), provides state-level insurance company market
shares and earned premia for the United States. The second data source was obtained from
the California Department of Insurance (CDI) and contains zip code-level information on
annual insurance premiums, coverage, dropped policies, and company market share. Next,
we use a dataset on property-level information on house characteristics, categorical wild-
fire risk scores, and probabilistic wildfire risk distributions. Lastly, we use public insurer
rate requests made to CDI to develop price and eligibility schedules for the property-level
dataset.

A.1 National Association of Insurance Commissioners statewide

data

Since 1974, NAIC has produced annual reports on the profitability of insurance lines by
state.50 Specifically, these data report profit on insurance transactions, which accounts for
underwriting profit, investment gains, and federal taxes. We gather these reports for years
representing 1985 through 2021. The data are used to produce Figure 1, which shows the
profitability of HO insurance lines by state. The figure sheds light on losses incurred by
natural disasters.

A.2 California Department of Insurance zip code data

We obtained three datasets from CDI in a Public Records Act request.51 These data report
zip code-level information on insurer market share, premia, number of policies, total coverage,
deductible, insurer-initiated non-renewals, and customer-initiated non-renewals, for the years
2009 through 2020. In addition, we used a publicly available CDI dataset, Wildfire Risk
Information Reporting, which breaks down the distribution of wildfire risk within California
zip codes. Although these datasets do not capture sub-zip code variation in premium and
exposure, they can provide broader assessments of company behavior, market concentration,
competition, and industry trends.

The first dataset is the Community Service Statement (CSS) data, which reports company
by year by zip code information on total premium and number of policies, segmented by
policy type. All insurance companies licensed to operate in California in the admitted
market respond to this data collection survey. We use these data to impute zip code-level,
company-specific market shares, such as in Table 1.

The second dataset is the Personal Property Experience (PPE) data, which gives zip code-
level information on number of policies, total coverage, and deductibles, separated by policy

50. National Association of Insurance Commissioners (NAIC). (2021). Report on Profitability by Line and
by State. https://naic.soutronglobal.net/Portal/Public/en-US/RecordView/Index/7008.
51. The request numbers were PRA-2022-00204 and PRA-2023-00342.
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type. Insurers that wrote more than $5 million in premium for either dwelling fire or home-
owners insurance report this information. While most CDI data are reported for all years
from 2009 to 2020, the coverage and deductible data in PPE were linearly interpolated for
the years 2010, 2012, 2014, and 2016.

The third dataset is the Residential Property Experience Data (RPE). Beginning in 2015,
insurers with combined total written premiums of $5 million or more for dwelling fire or
homeowners lines of business were required to respond to an annual RPE data call. These
data report, at the zip code level, the number of new residential policies written, the number
renewed, the number of non-renewed policies, and the number of cancelled policies. These
data are used to show the cancellation panels of Figure 2.

The last zip code-level dataset from CDI is the Wildfire Risk Information Report. Starting
in 2018, all admitted insurers with at least 10 million dollars or more in written California
premium in dwelling fire or homeowners lines of business have submitted reports to CDI
on wildfire risk exposure. The dataset reports, at a zip code level, fire- or wildfire-incurred
losses, as well as the distribution of insured parcels across wildfire risk categories. We use
these data to coarsely classify zip codes into quantiles of risk, which are used in Table 1 and
Figure 2.

A.3 Wildfire risk and home characteristics

We obtained proprietary data from CoreLogic, LLC on parcel-level house characteristics and
wildfire risk. The parcel-level sample consists of 100,000 single family homes in California.
These data include standard assessor’s information such as the home address, geolocated
coordinates, reconstruction cost, and the year of construction. They also provide relevant
information related to wildfire risk, such as the construction material, the presence of fire
resistive siding or roofing, distance to high hazard vegetation, distance to a responding
fire station, and a public protection classification that rates community fire protection ser-
vices.

A key feature of these data is a set of deterministic categorical wildfire risk scores (WRS)
which are used by many insurers in the pricing and underwriting process. The main WRS is a
rating that ranges from 5 to 100. This measure is based on factors such as slope, aspect, fuel,
past burns, and distance to vegetation. Other risk scores are included, such as a brushfire
risk rating and a set of crime indices. None of these factors are derived from probabilistic
models but are commonly used by insurers in decision-making.

Separately, the data report a set of probabilistic catastrophe loss measures which are derived
from simulations. For each property we observe probabilistic measures of the annual average
loss (AAL), the standard deviation of losses, and aggregate exceedance probability (AEP)
losses over return periods of 50, 100, 250, and 500 years. The AAL is the average yearly loss
in dollars, which is roughly the probability of destruction times the reconstruction cost of
the home. The AEP describes the probability distribution of the sum of losses over various
return periods; for example, for a 250 year return period we might observe that a house has
a 1/250 = 0.4% chance of $k in total losses, where k is reported for each parcel.
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To develop the sample of 100,000 homes, we drew on zip code-level data from CoreLogic.
These data report the total number of single family homes in a zip code falling into categorical
wildfire risk scores of 1 to 50, 51 to 60, 61 to 80, and 81 to 100. We used this dataset to
identify 400 California zip codes with high variation in wildfire hazard; then, we received a
sample of 250 houses per zip code with the aforementioned parcel-level characteristics, giving
us 100,000 properties for the analysis.

A.4 Insurer rate filings

To determine insurance pricing and eligibility we developed data from public insurance rate
filings. Because California is a prior approval state, any company in the admitted market
must submit rate increase requests for approval by CDI. As part of the rate request, insurers
must provide complete copies of their rate manuals which they use to set premiums and
eligibility for customers. All rate filings are publicly available through CDI’s website.52

We reviewed rate filings for dozens of large insurance companies. Rate requests can range
from several hundred pages to more than 10,000 pages. A typical rate request takes between
six months and two years from submission to approval and involves several rounds of corre-
spondence and objection letters from state rate specialists. There is no limit on how often
an insurer may file a new request, although an insurer cannot submit a new request for an
insurance line while another is pending.

Using the property and risk data, we develop the full insurance pricing and eligibility schedule
of the 100,000 home sample for six large insurers listed in Appendix Table 1. As a result of
this exercise we are able to observe the price a company would offer to any house, even if
the house is ineligible for a policy. For each company, we use the most recent rate filing as
of 2021; correspondingly, the premia are priced in 2021 dollars.

Several parcel-level characteristics affect the insurance premium or eligibility, such as the
age of the home, zip code, geocoordinates, construction, roof, proprietary wildfire risk score,
public protection class of the community, or distance to vegetation. To derive full prices,
we must make several assumptions about the policy. First, we assume that a homeowner
purchases coverage equal to the reconstruction cost of the home, which is generally advised
by insurers. In addition, we assume a $1,000 deductible. For all other coverages, such as
liability or loss of use, we assume default coverage for each insurer, which is summarized in
Appendix Table 1. We do not assume any additional coverages, such as for scheduled items
like furs and jewelry. Lastly, we assume the most standard homeowners policy, i.e. not a
deluxe or premium plan.

We must also make assumptions about the homeowner characteristics. We assume that
the customer has not had a recent claim, that they have been with the insurer for fewer
than two years, and that they bundle their homeowners and automobile insurance policies.53

52. California Department of Insurance (CDI). (2024). Web Access to Rate and Form Filings (WARFF).
http://www.insurance.ca.gov/0250-insurers/0800-rate-filings/0050-viewing-room.
53. As of 2015, 78 percent of consumers bundled their homeowners and auto policies. See:

J.D. Power. 2015 US Household Insurance Study. https://www.jdpower.com/business/press-releases/
2015-us-household-insurance-study.
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Appendix Table 1: Standard coverage levels for rate filings

Company filing
Coverage A -
Dwelling

Coverage B -
Other

Structures

Coverage C -
Personal
Property

Coverage D -
Loss of Use

Coverage E -
Personal
Liability

Coverage F -
Medical
Payments

Deductible

AAA SoCal 15-6084 Repl. cost 10% of Cov. A 75% of Cov. A 20% of Cov. A $100,000 $1,000 $1,000
Allstate 21-1436 Repl. cost 10% of Cov. A 50% of Cov. A 20% of Cov. A $100,000 $1,000 $1,000
Liberty Mutual 19-1562 Repl. cost 10% of Cov. A 50% of Cov. A 20% of Cov. A $100,000 $1,000 $1,000
Nationwide 20-612 Repl. cost 10% of Cov. A 55% of Cov. A No limit (24 months) $100,000 $1,000 $1,000
State Farm 21-1404 Repl. cost 10% of Cov. A 75% of Cov. A 30% of Cov. A $100,000 $1,000 $1,000
USAA 21-809 Repl. cost 10% of Cov. A 50% of Cov. A 20% of Cov. A $300,000 $5,000 $1,000

Notes: Coverage A is assumed as the structure replacement cost, which is recommended by insurers. De-
ductible is assumed as $1,000. All other values are standard for each rate filing. Rate filing identifiers
correspond to California Department of Insurance filing numbers, accessible through Web Access to Rate
and Form Filings (WARFF).

Protective devices also typically factor in to homeowners insurance; we assume the customer
has smoke detectors, dead bolt locks, and fire extinguishers, but no burglar alarm (local or
central-reporting), no central-reporting fire alarms, and no sprinklers. The homeowner is
assumed to be 45 years old and married without children. Importantly, these characteristics
are assumed constant when pricing every company’s premia.

Besides constructing premia, we also use the rate filings to assess the granularity of each firm’s
wildfire risk measurement. The count of each firm’s rating variables is reported in Table 1.
The following variables were counted as wildfire variables: (i) Numeric wildfire hazard scores
from firms such as CoreLogic or Verisk; (ii) Any custom territory, such as State Farm’s grid
ID, AAA Southern California’s brush fire territories, or a territory that aggregates several
zip codes; (iii) An administrative territory such as a zip code if there is wildfire-specific
information; if there is only a general zip code factor which is not explicitly related to
wildfire, it is not counted; (iv) Public protection class or any variable interacted with it,
such as construction type × protection class. Table 1 is constructed using the following rate
filings, which reflect the most recent filings as of 2021: State Farm 21-1404, Farmers 21-2410,
CSAA/AAA NorCal 20-4189, Mercury 20-3267, Auto Club Enterprises/AAA SoCal 15-6084,
Liberty Mutual 19-1562, Allstate 21-1436, USAA 21-809, Nationwide 20-612, Travelers 20-
887, FAIR Plan 21-2452.
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Appendix Table 2: Price gradients by firm and wildfire score range

Insurer
Price

Gradient
0–60

Price
Gradient
0–80

Price
Gradient
0–90

Price
Gradient
0–100

Allstate 1.47 (0.20) 1.74 (0.17) 2.74 (0.26) 2.67 (0.13)
Nationwide 1.66 (0.31) 2.80 (0.20) 3.94 (0.29) 2.85 (0.10)
State Farm 1.24 (0.29) 1.31 (0.10) 1.26 (0.16) 0.83 (0.09)

N 57272 76479 88776 95350

Notes: Table reports results of twelve separate regressions. Each table cell reports estimate and standard
error from the two-step price gradient estimation. Column (4) is identical to Figure 5. The other three
columns show price gradients for lower wildfire score ranges. All price regressions include zip code fixed
effects. Standard errors are calculated using block bootstrap by zip code.

B Additional Results
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Appendix Table 3: Wildfire risk pricing within rate segments

Within Risk Score Segments Zip code-based territories Grid

State Liberty AAA State State
Allstate Nationwide Farm USAA Mutual SoCal Farm Farm

(1) (2) (3) (4) (5) (6) (7) (8)

AAL 50-99 (13% of Homes) -17 -55 45 -57∗∗∗ -10 -128∗∗∗ 75∗∗∗ -27∗∗∗

(27) (44) (35) (17) (11) (41) (18) (9)
AAL 100-199 (14% of Homes) 28 2 114∗∗ -56∗∗ -24∗∗ -86∗ 136∗∗∗ -43∗∗∗

(32) (48) (44) (22) (12) (52) (25) (12)
AAL 200-299 (8% of Homes) 53 94 221∗∗∗ -40∗ -38∗∗ -68 222∗∗∗ -30∗∗

(37) (68) (48) (23) (15) (60) (32) (15)
AAL 300-499 (10% of Homes) 17 84 246∗∗∗ -26 -41∗∗∗ -62 274∗∗∗ -17

(41) (60) (50) (25) (15) (67) (31) (17)
AAL 500-749 (6% of Homes) 17 106∗ 337∗∗∗ -8 -29 20 351∗∗∗ 16

(42) (60) (55) (29) (20) (75) (33) (20)
AAL 750-999 (3% of Homes) 19 79 363∗∗∗ 15 -13 47 391∗∗∗ 51∗∗

(45) (68) (58) (37) (20) (94) (38) (23)
AAL 1000+ (7% of Homes) 37 109 426∗∗∗ 62∗ 57∗∗ 280∗ 469∗∗∗ 122∗∗∗

(54) (80) (75) (33) (24) (143) (40) (27)
Structure Characteristics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allstate Segments FE ✓ ✓
Nationwide Segments FE ✓
USAA Segments FE ✓ ✓
Liberty Segments FE ✓
AAA SoCal Segments FE ✓
State Farm Segments FE ✓

Observations 95,352 95,351 95,351 95,297 94,025 55,641 95,296 95,351
Dependent variable mean 2,362 2,466 2,317 2,470 2,389 2,756 2,316 2,317

Notes: Table reports eight separate regressions. The omitted AAL range is 0 to 50, which contains 39
percent of homes. Structure characteristics include reconstruction cost, age of home, class A roof indicator,
and public protection class. Standard errors are clustered by zip code.
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Appendix Table 4: The duopoly winner’s curse in 1-in-500-year wildfire losses

log(500-year loss)
Allstate Nationwide USAA Liberty Mutual AAA SoCal

(1) (2) (3) (4) (5)

1[Win] 0.67∗∗∗ 0.38∗∗∗ 0.43∗∗∗ 0.35∗∗∗ 0.43∗∗∗

(0.10) (0.11) (0.05) (0.05) (0.11)
Structure Characteristics ✓ ✓ ✓ ✓ ✓

Allstate Segments FE ✓
Nationwide Segments FE ✓
USAA Segments FE ✓
Liberty Segments FE ✓
AAA SoCal Segments FE ✓

Observations 95,295 95,295 95,295 93,976 55,606
R2 0.27 0.24 0.71 0.75 0.25
Dependent variable mean 7.87 7.87 7.87 7.86 7.53
Fraction Won 0.54 0.56 0.50 0.44 0.50

Notes: 1[Win] is an indicator for the firm’s price being less than or equal to State Farm’s price for that
customer. Dependent variable is the property-level 1-in-500 year wildfire loss from the wildfire catastrophe
model. Structure characteristics controls include reconstruction cost, age of home, class A roof indicator,
and public protection class. Standard errors are clustered by zip code.
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B.1 Alternative Models of Wildfire Risk

This section reproduces the adverse selection results using an alternative measure of parcel-
level wildfire risk. Instead of the CoreLogic wildfire CAT model used in the main text, we
here use publicly available structure risk information from the United States Forest Service
(USFS). The USFS has produced a “Risk to Potential Structures” model that reports the
annual wildfire destruction probability at a 30-meter resolution. For each home in our
dataset, we multiply its annual destruction probability from RPS by the reconstruction cost
(total insured value) of the home. This produces an alternative measure of average annual
wildfire loss for the homes in our data (henceforth, the USFS AAL).

Figure 1 reproduces Figure 4 using the USFS AAL. As in the main text, State Farm’s prices
display a clear information advantage. There is a strong residual relationship between State
Farm prices and USFS AAL even after controlling for zip code or wildfire risk score segment
dummies.
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Appendix Figure 1: Validating firms’ reported pricing variables, using USFS AAL
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Appendix Table 5: The winner’s curse in stylized Bertrand duopoly, in terms of USFS AAL

RPSAAL
Allstate Nationwide USAA Liberty Mutual AAA SoCal

(1) (2) (3) (4) (5)

1[Win] 752.68∗∗∗ 927.41∗∗∗ 790.29∗∗∗ 716.25∗∗∗ 883.05∗∗∗

(94.83) (101.27) (71.19) (70.43) (119.39)
Structure Characteristics ✓ ✓ ✓ ✓ ✓

Allstate Segments FE ✓
Nationwide Segments FE ✓
USAA Segments FE ✓
Liberty Segments FE ✓
AAA SoCal Segments FE ✓

Observations 95,292 95,292 95,292 93,973 55,604
R2 0.29 0.26 0.56 0.57 0.27
Dependent variable mean 1,263.06 1,263.06 1,263.06 1,269.50 1,620.67
Fraction Won 0.53 0.55 0.50 0.44 0.50

Notes: 1[Win] is an indicator for the firm’s price being less than or equal to State Farm’s price for that
customer. Dependent variable is USFS AAL. Structure characteristics include reconstruction cost, age of
home, class A roof indicator, and public protection class. Standard errors are clustered by zip code.

Table 5 reproduces Table 5 using USFS AAL as the dependent variable (in levels, because
there are some zero values of USFS AAL). Again, the Bertrand duopoly framework implies
economically and statistically significant adverse selection for the fringe firms in a duopoly
game with State Farm.
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C Risk Load

This section describes how we approximate the risk load associated with covering the high
wildfire hazard homes in our dataset. Our approach uses catastrophe model estimates of
the variance of property-level losses. We use this information to calibrate an analytical
“marginal surplus” risk load calculation (Kreps 1990). We first describe how we create a
statewide pseudosample that allows us to explore the relationship between risk load and
market share. We then present details on the marginal surplus calculation.

C.1 Constructing a statewide pseudosample

We calculate the risk load associated with successively larger portfolios of homeowners poli-
cies in high wildfire hazard areas of California. The following process generates a pseu-
dosample that approximately replicates the full population of wildfire-threatened homes in
California.

We start from our sample of 100,000 homes in 400 high-hazard zip codes. We augment
these data with summary counts of total homes and high-hazard (score > 50) homes for all
California zip codes from our data provider. In the course of this merge, we calculate that
the 400 zip codes in our detailed sample account for about 75 percent of the total homes
in California with wildfire scores above 50. We then define 800 zip code × hazard (score
above/below 50) bins. In each of these bins, we draw homes from that bin with replacement
until we reach the total number of homes reported for that bin in the zip code totals data.
This “builds up” a sample that approximately matches the wildfire risk distribution for
the true population of homes in these zip codes.54 We can then study the relationship
between risk load and market share by calculating risk loads associated with covering various
fractions of these homes (10 percent, 20 percent, etc.). This exercise assumes that insurers
equalize their market shares across zip codes, which is a reasonable approximation given the
diversification benefits of such a strategy.

C.2 Marginal surplus calibration

Our wildfire catastrophe model data report the mean (AAL), standard deviation, and 99th,
99.6th, and 99.8th percentiles of annual wildfire losses for each property in our dataset. We
do not observe information about the covariance of losses across properties. We assume a
conservatively high degree of correlation given our interest in benchmarking approximate
upper bounds on risk loads. Define each home i’s probability of being exposed to a wildfire
in a given year as fi. Define the probability of destruction, conditional on exposure, as di,
so home i’s annual probability of destruction is fidi. Let λij be the correlation in annual
wildfire experience between homes i and j. Assume d is independent across homes. One can

54. The need to stratify by high/low instead of simply resampling at the zip level arises because the process
originally used to select these 100,000 homes was not a simple random sample.
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show that the correlation in annual losses across homes i and j is

ρij =
didj

√
fi(1− fi)

√
fj(1− fj)

νiνj
,

where

νi =
√
fidi(1− di) + d2i fi(1− fi) + fi(1− fi)(di)(1− di).

See Section C.3 for the proof. We take di to be 0.5 for all i based on destruction probabilities
conditional on exposure reported in Baylis and Boomhower (2022). We assume conservatively
high annual exposure probabilities of 1 percent for all homes.55 We define a 20-by-20 km grid
over the state of California and assume that the correlation in annual wildfire occurrence
for two homes in the same grid cell is 0.5, and that this correlation is zero across grid cells.
These assumptions imply that ρij, the correlation in realized losses, is 0.25 for homes in the
same grid cell and 0 for homes in different grid cells.

Kreps (1990) derives the minimum necessary premium to add a portfolio of risks to an
existing book of insurance contracts as

p = µ+ Rσ + E,

where µ is the average annual loss of the contracts being added, σ is the standard deviation of
annual losses on the contracts being added, and E is a constant that captures administrative
costs. Let S be the standard deviation of losses from the existing book of business, S ′ the
standard deviation of losses from the combined book of business, C the correlation of losses
on the new contracts with the existinb book of business, y a market cost of capital, and z a
distribution statistic that reflects the firm’s “acceptable probability of ruin”. For example,
if annual losses are distributed normally, setting z = 2.65 implies the firm will cover losses
in 99.6 percent of years, enough for a 1-in-250 year event. Kreps shows that

R× σ =
y

1 + y︸ ︷︷ ︸
capital cost

× z︸︷︷︸
“distribution statistic”

× (2SC + σ)σ

S + S ′︸ ︷︷ ︸
change in s.d. of firm’s losses

.

The final term is the change in the standard deviation of the firm’s losses after adding the
new contracts to the portfolio. It can be derived by starting from the identity V ar(X+Y ) =
V ar(X) + V ar(Y ) + 2Csd(X)sd(Y ).

(S ′)2 = S2 + σ2 + 2CSσ

(S ′)2 − S2 = σ(σ + 2CS)

55. Based on data in Buechi et al. (2021), we estimate that the average annual share of acres in California
that experience a wildfire was 0.3 percent to 0.7 percent in each decade between 1979 and 2018.
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(S ′ + S)(S ′ − S) = σ(σ + 2CS)

(S ′ − S) =
σ(σ + 2CS)

(S ′ + S)
.

Given an assumed correlation structure across homes, the data allow us to calculate σ for
our portfolio of high wildfire hazard homes by summing standard deviations within and then
across grid cells, again using the variance sum rule. We calibrate S to match the distribution
of losses for an insurer with a countrywide portfolio of homeowners and automobile insur-
ance policies using aggregate loss statistics from the Insurance Information Institute (III).56

We assume that this insurer faces another catastrophe peril (e.g., hurricane, fire following
earthquake) with expected annual losses of $200 million and coefficient of variation of 2.5.57

We see these assumed hurricane/earthquake exposures as conservative for several reasons (1)
we only assume one other peril type; (2) the hurricane AAL values we can observe in 10K
filings are net of reinsurance (and so do not represent the full AAL); (3) we choose a coef-
ficient of variation on the small side of reported values. We assume that wildfire losses are
independent of all other types of losses. We set z equal to 2.65, so that the firm is required
to meet its obligations up to a 1-in-250-year loss total. We assume the market return y on
capital is 0.15.

Appendix Figure 2 shows the relationship between risk load Rσ and market share. There
is a clear convex relationship, reflecting the shrinking diversification benefit as the portfolio
becomes relatively more concentrated in wildfire risk.

Table 2 in the paper reports details of the marginal surplus calculations. A 1 percent market
share in the 400 high-hazard zip codes would represent about 28,000 insurance policies and
$6 million in expected losses. The standard deviation of wildfire losses (σ) would be $15.7
million. The standard deviation of losses on the rest of the portfolio (S) is $500.1 million,
and the addition of these 28,000 wildfire risks to the portfolio has only a small effect on
the overall standard deviation (S ′). The resulting risk load is about $100,000 dollars. This
equals about 1 cent per dollar of wildfire AAL, or $3 per wildfire policy. The size of this risk
load increases quickly with the number of wildfire policies. At a 20 percent market share,
the risk load is 25 cents per dollar of AAL, or $54 per policy. The rate of increase in risk
load with market share eventually slows as the variance of the portfolio becomes dominated
by wildfire losses.

56. Our hypothetical insurer has 4.5 million U.S. homeowners policies and 4.5 million U.S. auto insurance
policies. Based on III data on claims frequency and severity, homeowners insurance claims are an iid binomial
process with annual claim probability of 5.92 percent and loss amount per claim of $15,091, while auto
insurance claims are an iid binomial process with annual claim probability of 1.1 percent and loss amount
per claim of $18,204. See https://www.iii.org/table-archive/21296 and https://www.iii.org/fact-statistic/
facts-statistics-auto-insurance.
57. These numbers are calibrated to financial statements from real firms: Zurich Insurance Group (Farmers)

reports an AAL of $192 million for North America hurricane losses (see Zurich Insurance Group, Annual
Report 2022, page 136). The coefficient of variation is informed by publicly available catastrophe model
predictions for hurricane wind losses from insurer filings with the Florida Commission on Hurricane Loss
Projection Methodology. See page 205 of the RMS filing “North Atlantic Hurricane Models: Version 23.0
(Build 2250), May 19 2023” and page 191 of the CoreLogic filing “Florida Hurricane Model 2023, April 24,
2023 Version.”
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Appendix Table 6 illustrates the importance of other catastrophe exposures in this calcula-
tion. Our baseline scenario assumes an insurer with expected hurricane losses of $200 million
and a coefficient of variation of hurricane losses of 2.5. The rows of Appendix Table 6 hold
market share constant at 10 percent and vary the insurer’s expected hurricane losses (main-
taining the 2.5 hurricane coefficient of variation). If hurricane risk is zero, so that variability
of non-wildfire losses is driven only by non-catastrophe homeowners and auto losses, the
variability of wildfire losses dominates the overall portfolio and the risk load reaches 85 cents
per dollar of AAL. Adding even a small amount of hurricane exposure quickly decreases this
risk load. One interpretation of this pattern is that, given the larger magnitude of hurricane
risk compared to wildfire risk in the United States, an insurer that is adequately capitalized
against hurricane losses is well-positioned to handle wildfire risk.

Appendix Table 6: Sensitivity of risk load to other catastrophe perils

Hurricane
AAL
($M)

Policies
Wildfire
AAL
($M)

σ
($M)

S
($M)

S′

($M)

Risk
Load
($M)

Average Risk
Load per
AAL ($)

Marginal Risk
Load per
AAL ($)

0 279,612 60 87.59 8.54 88.01 26.70 0.44 0.48
50 279,612 60 87.66 137.76 163.29 8.57 0.14 0.21

100 279,612 60 87.55 275.13 288.73 4.57 0.08 0.11
200 279,612 61 88.15 550.07 557.08 2.36 0.04 0.06
300 279,612 60 87.82 825.04 829.71 1.57 0.03 0.04
500 279,612 60 87.76 1,375.03 1,377.82 0.94 0.02 0.02

Notes: Table shows the sensitivity of marginal surplus calculations to an insurer’s exposure to hurricane
or other catastrophe perils, holding constant California wildfire market share at 10 percent. See text and
appendix for details and assumptions.

C.3 Derivation of correlation in losses

Fi and Fj are Bernoulli random variables with success probabilities fi and fj and correlation
λij. Di and Dj are independent Bernoulli random variables with success probabilities di and
dj. The correlation of realized losses FiDi and FjDj is, by definition,

ρij =
COV (FiDi, FjDj)√

V AR(FiDi)
√
V AR(FjDj)

.

Bohrnstedt and Goldberger (1969) shows that the covariance term in the numerator has an
asymptotic approximation as

COV ∗(FiDi, FjDj) = E[Fi]E[Fj]COV (Di, Dj) + E[Fi]E[Dj]COV (Fj, Di)

+E[Fi]E[Dj]COV (Fj, Di) + E[Di]E[Dj]COV (Fi, Fj).
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The Ds are independent, so this simplifies to:

= E[Di]E[Dj]COV (Fi, Fj)

= didjλijsd(Fi)sd(Fj)

= didjλij
√
fi(1− fi)

√
fj(1− fj).

Goodman (1960) derives an exact formula for the variances in the denominator,

V AR(FiDi) = E[Fi]
2V AR(Di) + E[Di]

2V AR(Fi) + V AR(Fi)V AR(Di)

= f 2
i di(1− di) + d2i fi(1− fi) + fi(1− fi)di(1− di).

Putting things together yields

ρij =
didj

√
fi(1− fi)

√
fj(1− fj)

νiνj
,

where

νi =
√
fidi(1− di) + d2i fi(1− fi) + fi(1− fi)(di)(1− di).

Appendix Figure 2: Risk load versus market share in wildfire areas
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Notes: Figure shows total risk load expenses due to the addition of a portfolio of California wildfire risks to
a national property insurance portfolio. Horizontal axis shows fraction of total homes that the insurer covers
in 400 zip codes that represent most high-hazard California homes. Vertical axis is risk load in millions of
dollars. See text for details and assumptions.
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D Instrumenting to remove measurement error in segment-

mean wildfire risk

This section elaborates on the two-stage least squares specification for β. We first show
that sampling variation in structure-level wildfire risk generates biased β estimates when we
observe few homes per territory. We then show that instrumenting for territory mean risk
with an auxiliary risk measure alleviates this issue.

The issue

To estimate β for a given firm, we calculate average wildfire risk and insurance premium in
each of the firm’s wildfire pricing segments. Our estimates are potentially susceptible to bias
from measurement error in our reconstruction of segment-mean wildfire risk.58 The mean
wildfire risk for a territory k in our sample can be represented as l̃k = lk + ν, where νk is a
mean-zero sampling error whose variance is inversely proportional to sample size. An OLS
regression of pjk on l̃k will yield a biased estimate of βj, with the size of the bias depending
on ν and thus the number of segments that the firm uses for pricing. For example, Liberty
Mutual uses 393 wildfire segments, meaning that we observe 100,000 / 393 = 254 homes per
segment on average; while Nationwide uses 30 wildfire segments, meaning that we observe
3,333 homes per segment on average. Table ?? shows that OLS estimates of β for firms using
more than about one hundred pricing segments are notably smaller than the other estimates,
with values substantially below one. This suggests measurement error in segment-mean risk
due to sampling variation is causing attenuation in the OLS estimates for firms with many
segments.

Instrumenting for Measurement Error

A common approach to addressing measurement error is to instrument for the mis-measured
regressor with auxiliary data on the mis-measured quantity. In our setting, we observe a
zip code level measure from the California Department of Insurance that summarize the
distribution of wildfire risk for all homes in the zip code.59 Table ?? reports first-stage
regressions of our segment-mean wildfire risk on this auxiliary measure. The dependent
variable in these regressions is the regression-adjusted segment mean wildfire AAL that
comes from Equation XX. The independent variable is the weighted mean of CDI zip code
risk for the zip codes containing the homes that we observe in the segment. CDI zip-code risk
summaries strongly predict the mean risk in our data, with first stage F statistics exceeding
XX.

Table ?? shows OLS and 2SLS estimates of β for each firm. The OLS and 2SLS estimates

58. Measurement error in segment-mean price is less of an issue both because a firm’s prices do not vary
within its pricing segments (see Fig XX) and because the classical errors-in-variables model implies mea-
surement error in the dependent variable is less important.
59. These reports aggregate survey information from all major insurers, were required by SB 8XX, insert

info on what they are...
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Appendix Table 7: OLS vs IV price gradients

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Firm Segmentation Allstate Nationwide USAA Liberty Mutual AAA SoCal State Farm

OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV

Own Price
Segment-Mean AAL 2.67*** 2.87*** 3.57*** 3.42*** 0.67*** 2.17*** 0.65*** 2.46*** -0.32*** -1.44 0.36*** 1.10
SE (0.22) (0.26) (0.37) (0.43) (0.14) (0.42) (0.16) (0.40) (0.36) (1.82) (0.05) (0.14)

State Farm Price
Segment-Mean AAL 0.83*** 0.95** 0.96** 0.95** 0.48*** 1.01 0.45*** 0.91** 1.09 1.99
SE (0.09) (0.10) (0.11) (0.13) (0.08) (0.20) (0.08) (0.15) (0.31) (4.33)

First Stage F-Statistic 255.6 61.1 62.1 88.8 9.1 1694.2
Zip Code FE Yes Yes Yes Yes No No No No No No No No
Number of Segments 94 94 30 30 323 323 393 393 19 19 11946 11946

Notes: ***/**/* denote estimate is significantly different from assumed risk price gradient slope of 1.18 at
the p < 0.01/0.05/0.10 level.
Table reports estimates of beta from ordinary least squares and a two-step estimation procedure that first cal-
culates regression-adjusted mean prices and wildfire risk by segment following equation 7, and then regresses
these segment-level prices against segment-level mean wildfire risk. The first-step estimation of segment
means includes zip code fixed effects for Allstate and Nationwide, where there is cross-cutting variation in
zip codes and wildfire segments. The second-step regression of mean price on mean wildfire AAL is estimated
by two-stage least squares when there are many territories to remove measurement error in segment-mean
wildfire AAL due to sampling variation. See text for details. The ordinary least squares regression estimates
the effect of segment-level mean wildfire risk on segment-level prices. Standard errors are calculated by
bootstrapping the full estimation procedure 500 times.

are similar for firms with few territories (Allstate, Nationwide) and different for firms with
many territories (USAA, Liberty Mutual, State Farm). This is true for the relationship
between the firm’s own prices and territory risk (panel A) and State Farm’s prices and each
firm’s territory-level mean risk (panel B). The exception is AAA Southern California. For
this firm, the IV and OLS specifications differ meaningfully even though the firm only has 19
territories. Both slope estimates for AAA Southern California also have a negative sign. We
note that the first stage relationship for AAA is weak, with a first-stage F statistic of about
9. The AAA Southern California results may also be related to the general difference in
observed wildfire pricing behavior for AAA Southern California throughout the paper.

To further contextualize the two-stage least squares estimates, Figure ?? shows a graphical
version of the 2SLS estimator for each firm’s segments. The left-most column shows the
first-stage relationship between segment-mean risk in our data and the CDI zip code risk
measure. The right-hand columns show the reduced form relationship between insurance
prices and the CDI zip risk instrument.
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Appendix Table 8: IV First Stage Results

(1) (2) (3) (4) (5) (6)

Segmentation Definition
Allstate
Scores

Nationwide
Scores

USAA
Territories

Liberty Mutual
Territories

AAA SoCal
Territories

State Farm
Grid Cells

Segment-Mean Risk Coefficient 599.68*** 434.95*** 276.05*** 293.22*** 221.55*** 327.99***
SE (37.51) (55.63) (35.02) (31.11) (73.51) (7.97)
Zip Code FE Yes Yes No No No No
Number of Segments 94 30 323 393 19 11946

Notes: ***/**/* denote estimate is significantly different from 0 at the p < 0.01/0.05/0.10 level.
This table reports estimates of a regression of regression-adjusted segment-level prices against segment-level
mean wildfire risk. This is the first stage of the two-stage least squares approach explained in the text.
Standard errors are calculated by bootstrapping the estimation procedure 500 times.
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(a) Liberty Mutual
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(b) AAA Southern California
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E Proofs and Results for Equilibrium Model

1. Proof of Proposition I

The best-response of the dominant firm to a price P F set by the fringe firms is the set
of prices that maximize profits. For a given risk level l, the dominant firm can take all
customers at a maximum price of P F − δ or sell only to its current customers (a share α of
the market) at a maximum price of P F + δ. Any price below P F − δ reduces profits and any
price above P F + δ loses all customers. The low and high prices yield identical profits at l̃,
defined by:

πD = P F − δ − l̃ = α(P F + δ − l̃) (21)

(21) is rearranged as l̃ = P F − δ 1+α
1−α . For 0 < α < 1, |dπD

dl
| is greater for the low price than

the high price strategy and, therefore, the low price (high price) strategy yield higher profits
for l < l̃ (l > l̃). We next show that l̃ > 0, which implies that PD = P F − δ is the best
response for l ∈ [0, l̃). To establish this, we will a) solve for P F , the price that makes fringe
profits zero, and b) show that the condition l̄ > δ 1+α

1−α implies l̃ > 0. P F satisfies:

πF =
1− α

2
(P F − l̃)2 − 1

2
(l∗ − P F )2 +

α

2
δ2 = 0 (22)

Solving for P F yields P F = l∗ − δ
√

1+3α
1−α , which is result 1 of the Proposition. If P F > l̄,

then

l∗ − δ

√
1 + 3α

1− α
> l̄ (23)

l̄ > δ

√
1 + 3α

1− α
(24)

where l∗ − l̄ = l̄. The second inequality is established by showing that 1+α
1−α >

√
1+3α
1−α and

combining this with the condition l̄ > δ 1+α
1−α . Having established that P F > l̄, we have from

the definition of l̃:

P F = l̃ + δ
1 + α

1− α
> l̄ (25)

l̃ > l̄ − δ
1 + α

1− α
> 0 (26)

where the last inequality uses l̄ > δ 1+α
1−α . We have shown the first part of result 2: PD = P F−δ

is the dominant firm’s best response for l ∈ [0, l̃). The second part of result 2 is established
from (21), where it was shown that PD = P F + δ yields the highest profits for l > l̃.
PD = P F + δ maximizes profits for values of l > l̃ yielding positive profits. Dominant firm
profits, πD = P F + δ − l, are decreasing in l and equal zero at l1 = P F + δ. Therefore,
PD = P F + δ is a dominant firm’s best response for l ∈ [l̃, l1), the second part of result
2. Finally, for values of l > l1, dominant firm profits are negative and it maximizes profits
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by not selling any insurance policies. It achieves this by setting a sufficiently high price,
PD > P F + δ, so that all customers are served by the competitive fringe. Thus, we have
established the third part of result 2: PD > P F + δ is the dominant firm’s best response for
l ∈ [l1, l

∗].

2. Results for the Equilibrium Model with Regulation
We show that the zero profit and average price isoclines in (19) and (20), respectively, are
upward sloping at the unconstrained equilibrium. From (15), equilibrium profits for the
fringe firms are given by:

πF =
1

2

{
(1− α)(P F − l̃)2 − (l∗ − P F )2 + αδ2

}
= 0 (27)

Applying the Implicit Function Theorem, we obtain:

dP F

dl̃
= −

πF
l̃

πF
PF

=
(1− α)(P F − l̃)

(1− α)(P F − l̃) + l∗ − P F
> 0 (28)

where P F − l̃ > 0 and l∗ − P F > 0 from the results l̃ = P F − δ 1+α
1−α and P F = l∗ − δ

√
1+3α
1−α .

From (17), we have:

M = P̄ − η(P F − δ)− (1− η)(P F + δ) = 0 (29)

where η = l̃
PF−δ at the unconstrained equilibrium. Applying the Implicit Function Theorem,

we obtain:
dP F

dl̃
= − Ml̃

MPF

=
2δ(P F − δ)

2δl̃ + (P F − δ)2
> 0 (30)

Numerical analysis is used to show that at the unconstrained equilibrium the relative magni-
tudes of the isocline slopes in (28) and (34) is indeterminate. It can be shown that scaling δ
and l∗ by a constant factor leaves the slopes in (28) and (34) unchanged. Therefore, we need
only consider how the slopes vary with the ratio l∗

δ
or, equivalently, γ = l̄

δ
. Appendix Figure

(5) shows that for α = 0.2, the difference in slopes can be positive or negative. Except for
small values of γ, the slope of the zero profit isocline is greater than that of the average price
isocline.

An increase in P̄ shifts up the average price isocline in (17). Fixing P F and applying the
Implicit Function Theorem to (29), we obtain:

dl̃

dP̄
= −MP̄

Ml̃

= − [l̃ + α(P F + δ − l̃)]2

2δα(P F + δ)
< 0 (31)

The decline in l̃ for fixed P F gives the upward shift in the average price isocline depicted in
Figure (10).
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Appendix Figure 5: Difference in isocline slopes for different values of γ

Notes: Figure shows the slope of the zero profit isocline in (28) minus the slope of the average price isocline

in (34) for α = 0.2 and different values of γ = l̄
δ . Results show that the zero profit isocline is steeper than

the average price isocline at the unconstrained equilibrium for values γ ≥ 2.6.

When we redefine the risk distribution as U(a, l∗ + a), the zero profit condition in (27)
becomes:

πF =
1

2

{
(1− α)(P F − l̃)2 − (l∗ + a− P F )2 + αδ2

}
= 0 (32)

Holding P F constant, an increase in a shifts the zero profit isocline up, as shown in Figure
(11):

dl̃

da
= −π

F
a

πF
l̃

= − l∗ + a− P F

(1− α)(P F − l̃)
< 0 (33)

The average price condition is as written in (29) except that, at the unconstrained equilib-

rium, η is redefined as l̃−a
PF−δ−a . Holding P F constant, an increase in a shifts the average

price isocline down, as shown in Figure (11):

dl̃

da
= −Ma

Ml̃

= P F − δ − l̃ > 0 (34)

In case b depicted in Figure (12), l̃ < l̄. This means that when the segment is divided at
l̄, there will not exist values of l̃ below which the dominant firm wants to use the low price
strategy. Rather, the equilibrium in each segment will be defined by a P F that makes the
fringe profits zero, as before, and a price of P F + δ set by the dominant firm that retains
its current customers. We use numerical analysis to explore how the overall average price
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changes in this case. We set α = 0.2 and l̄ = 50 and calculate the overall average price with
and without information provision for δ values ranging from 18 to 34. The lower value of δ
yields an l̃ just below l̄ and the upper value yields an l̃ just above zero. Appendix Figure (6)
shows that information provision reduces average prices for all values of δ.

Appendix Figure 6: Difference in overall average prices with information provision

Notes: Figure shows differences in overall average prices with information provision for case b depicted in
Figure (12). Parameters values are α = 0.2 and l̄ = 50. The δ parameter is varied between 18, which yields
an l̃ value just below l̄, and 34, which yields an l̃ value just above zero. As shown, information provision
reduces the overall average price for all δ values.
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