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Abstract

In macroeconomic forecasting, principal component analysis (PCA) has been the

most prevalent approach to the recovery of factors, which summarize information in a

large set of macro predictors. Nevertheless, the theoretical justification of this approach

often relies on a convenient and critical assumption that factors are pervasive. To incor-

porate information from weaker factors, we propose a new prediction procedure based

on supervised PCA, which iterates over selection, PCA, and projection. The selection

step finds a subset of predictors most correlated with the prediction target, whereas

the projection step permits multiple weak factors of distinct strength. We justify our

procedure in an asymptotic scheme where both the sample size and the cross-sectional

dimension increase at potentially different rates. Our empirical analysis highlights the

role of weak factors in predicting inflation, industrial production growth, and changes in

unemployment.
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1 Introduction

Starting from the seminal contribution of Stock and Watson (2002), factor models have played

a prominent role in macroeconomic forecasting. Principal component analysis (PCA), advo-

cated in that paper, has been the most prevalent approach to the recovery of factors that

summarize the information contained in a large set of macroeconomic predictors, and reduce

the dimensionality of the forecasting problem.

The theoretical justification for the PCA approach to factor analysis often relies on a

convenient – but critical – assumption that factors are pervasive (strong), see for example

Bai and Ng (2002) and Bai (2003). In that case, the common components of predictors

can be extracted consistently by PCA and separated from the idiosyncratic components.

Recently, Bai and Ng (2021) relax this condition, showing that PCA can consistently recover

the underlying factors under weaker assumptions.

Nevertheless, PCA is an unsupervised approach, and by its nature, this poses some limits

to its ability to find the most useful low-dimensional predictors in a forecasting context.

Specifically, if the signal-to-noise ratio is sufficiently low, the factor space spanned by the

principal components is inconsistent, or even nearly orthogonal to the space spanned by true

factors, see Hoyle and Rattray (2004) and Johnstone and Lu (2009). In such instances, we

refer to the underlying factors as weak.

In this paper we study a setting in which factors are sufficiently weak that PCA fails to

recover them. We propose a new approach to dimension reduction for forecasting, based on

supervised PCA (SPCA). The key idea of supervised PCA is to select a subset of predictors

that are correlated with the prediction target before applying PCA. The concept of super-

vised PCA originated from a cancer diagnosis technique applied to DNA microarray data by

Bair and Tibshirani (2004), and was later formalized by Bair et al. (2006) in a prediction

framework, in which some predictors are not correlated with the latent factors that drive the

outcome of interest. Bai and Ng (2008) generalize this selection procedure (i.e., a form of hard-

thresholding) to what they call the use of targeted predictors (that include soft-thresholding

as well), and find it helpful in a macroeconomic forecasting environment.

Unlike Bair et al. (2006), our supervised PCA proposal involves an additional projection

step, and a subsequent iterative procedure over selection, PCA, and projection to extract

latent factors. More specifically: we first select a subset of the predictors that correlate with

the target, and extract a first factor from that subset using PCA. Then, we project the target

and all the predictors (including those not selected) on the first factor, and take the residuals.

We then repeat the selection step using these residuals, extract a second factor from the new

subset using PCA, and then project again the residuals of the target and all predictors on
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this second factor. We keep iterating these steps until all factors are extracted, each from a

different subset of predictors (or their residuals). We provide examples to illustrate that our

iterative procedure is necessary in general settings where factors can grow at distinct rates

(that is, they are of different strength) and factors are not necessarily marginally correlated

with the target. The final step of our procedure is to make predictions with estimated factors

via time-series regressions.

We justify our procedure in an asymptotic scheme where both the sample size and the

cross-sectional dimension increase but at potentially different rates. We show that our iterative

procedure delivers consistent prediction of the target. While our procedure can extract weak

factors, we do not have asymptotic guarantee for recovery of the factor space that is orthogonal

to the target. Importantly, this is irrelevant for consistency in prediction. Intuitively, using

information about the correlation between each predictor and the target, we gain additional

information useful to extract some of the factors even when they are weak. As a result,

the factor space that we may fail to recover must be orthogonal to the target, and therefore

missing it does not affect the consistency of the prediction.

The weak factor problem in our setting arises from the factor loading matrix, whose sin-

gular values increase but at a potentially slower rate than the cross-sectional dimension. The

factors we consider are weaker than those discussed in Bai and Ng (2021); as we show in the

paper, PCA cannot consistently recover them, and prediction via PCA is biased. Interestingly,

in this setting even supervised procedures may in general fail to recover the relevant factors:

specifically, we show that a widely used supervised procedure, partial least squares (PLS), is

in fact subject to the same bias as PCA. That said, our procedure will miss factors that are

extremely weak. These are the kind of factors studied by Onatski (2009) and Onatski (2010),

cases in which the eigenvalues corresponding to the factor component are of the same order

of magnitude as those of the idiosyncratic component. In this context, while it is possible to

infer the number of factors, Onatski (2012) show that the factor space cannot be recovered

consistently (and neither SPCA will be able to do so).

Finally, beyond consistency (which requires weaker assumptions), if we make an additional

assumption that each of the latent factors is correlated with at least one of the variables in a

multivariate target, we can obtain stronger results: we can estimate the number of weak factors

consistently, recover the space spanned by all factors, as well as provide a valid prediction

interval on the target. Our asymptotic result does not rely on a perfect recovery of the set of

predictors that are correlated with the factors, unlike Bair et al. (2006). Moreover, our result

accounts for potential errors accumulated over the iterative procedure.

Supplementary evidence, collected in Giglio et al. (2022) for space reasons, illustrates the
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use of SPCA with an empirical application to macroeconomic forecasting. There, we combine

the standard Fred-Md dataset of 127 macroeconomic and financial variables with the Blue

Chip Financial Forecasts dataset, that contains hundreds of forecasts of various variables (like

interest rates and inflation) from professional forecasters, thus obtaining a large dataset of

predictors. We then apply different prediction and dimension reduction methods to forecast

quarterly inflation, industrial production growth, and changes in unemployment. We com-

pare the results using SPCA to those obtained using PCA (as in Stock and Watson (2002))

and PLS (as in Kelly and Pruitt (2013)). We show that in a setting with a large number of

(potentially noisy and/or redundant) predictors, SPCA performs well in forecasting macroe-

conomic quantities out of sample. We also investigate the selection that SPCA operates, and

find that it isolates, for each target, a different group of useful predictors; it also focuses on

a few financial forecasters, whose survey responses are selected particularly often. Finally, we

illustrate the use of SPCA with multiple targets at the same time (macroeconomic variables

forecasted at different horizons: 1, 2, 3, 6 and 12 months).

Our paper relates to several strands of the literature on forecasting and on dimension

reduction. Within the context of forecasting using latent factors, it focuses on static ap-

proximate factor models. Dynamic factor models are developed in Forni et al. (2000), Forni

and Lippi (2001), Forni et al. (2004), and Forni et al. (2009), in which the lagged values

of the unobserved factors may also affect the observed predictors. It is possible to extend

our approach to the dynamic factor setting, which is beyond the scope of this paper. Chao

and Swanson (2022) study estimation and forecasting within a weak-factor-augmented VAR

framework. They also use a pre-selection step since factors only have influence on a subset

of predictors. A unique contribution of theirs is a self-normalized score statistics for selection

in place of correlation screening as in supervised PCA, which ensures consistent selection of

marginally correlated predictors with vanishing Type I and II errors. Similar to Bair et al.

(2006), they assume all factors to have the same order of strength and all important predictors

to be marginally correlated with the target, which our iterative procedure is designed to avoid.

Our paper is also related to a strand of the literature on spike covariance models defined

in Johnstone (2001), where the largest few eigenvalues in the covariance matrix differ from

the rest in population, yet are still bounded. In this setting, Bai and Silverstein (2006),

Johnstone and Lu (2009) and Paul (2007) show that the largest sample eigenvalues and their

corresponding eigenvectors are inconsistent unless the sample size grows at a faster rate than

the increase of the cross-sectional dimension. Wang and Fan (2017) extend this setting to the

case of diverging eigenvalue spikes, and characterize the limiting distribution of the extreme

eigenvalues and certain entries of the eigenvectors in a regime where the sample size grows
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much slower than the dimension. All these papers shed light on the source of bias with the

standard PCA procedure in various asymptotic settings.

Besides supervised PCA, an alternative route taken by an adjacent literature to resolving

the inconsistency of PCA is sparse PCA, which imposes sparsity on population eigenvectors,

see, e.g., Jolliffe et al. (2003), Zou et al. (2006), d’Aspremont et al. (2007), Johnstone and Lu

(2009), and Amini and Wainwright (2009). Uematsu and Yamagata (2021) adopt a variant of

the sparse PCA algorithm proposed in Uematsu et al. (2019) to estimate a sparsity-induced

weak factor model. Bailey et al. (2020) and Freyaldenhoven (2022) adopt a similar framework

for estimating factor strength and number of factors. Because sparsity is rotation dependent,

such weak factor models require rotation-specific identification assumptions, whereas standard

factor models do not. The weak factor models we consider, for instance, avoid such a sparsity

assumption, which makes our approach distinct from the sparse PCA.

In a companion paper, Giglio et al. (2020) incorporate a similar supervised PCA algorithm

into the two-pass cross-sectional regression and study its parameter inference in an asset

pricing context. In contrast, this paper focuses on predictive inference and provides asymptotic

guarantee on the convergence of extracted factors. Our approach also shares the spirit with

Bai and Ng (2008) and Huang et al. (2021). The former suggests a hard or soft thresholding

procedure to select “targeted” predictors to which PCA is then applied, without providing

theoretical justification. The latter suggests scaling each predictor with its predictive slope on

the prediction target before applying the PCA. Our procedure and its asymptotic justification

are more involved because the eigenvalues of the factor loadings in our setting can grow at

distinct and slower rates.

The rest of the paper is organized as follows. In Section 2 we introduce the model, provide

examples to illustrate the impact of weak factors on prediction, and develop our supervised

PCA procedure. In Section 3, we present our approach in general settings and provide asymp-

totic theory for our procedure. Section 4 provides Monte Carlo simulations demonstrating the

finite-sample performance. Section 5 concludes. The appendix provides mathematical proofs

of the main theorems in the paper. The online appendix presents details on the asymptotic

variance estimation and proofs of propositions and technical lemmas.

2 Methodology

2.1 Notation

Throughout the paper, we use (A,B) to denote the concatenation (by columns) of two matrices

A and B. For any time series of vectors {at}Tt=1, we use the capital letter A to denote the
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matrix (a1, a2, · · · , aT ), A for (a1+h, a2+h, · · · , aT ), and A for (a1, a2, · · · , aT−h), for some h.

We use 〈N〉 to denote the set of integers: {1, 2, . . . , N}. For an index set I ⊂ 〈N〉, we use |I|
to denote its cardinality. We use A[I] to denote a submatrix of A whose rows are indexed in

I.

We use a ∨ b to denote the max of a and b, and a ∧ b as their min for any scalars a and

b. We also use the notation a . b to denote a ≤ Kb for some constant K > 0 and a .P b to

denote a = OP(b). If a . b and b . a, we write a � b for short. Similarly, we use a �P b if

a .P b and b .P a.

We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A, and

use λi(A) to denote the i-th largest eigenvalue of A. Similarly, we use σi(A) to denote the ith

singular value of A. We use ‖A‖ and ‖A‖F to denote the operator norm (or `2 norm), and

the Frobenius norm of a matrix A = (aij), that is,
√
λmax(A′A), and

√
Tr(A′A), respectively.

We also use ‖A‖MAX = maxi,j |aij| to denote the `∞ norm of A on the vector space. We use

PA = A(A′A)−1A′ and MA = Id− PA, for any matrix A with d rows and rank d, where Id is a

d× d identity matrix.

2.2 Model Setup

Our objective is to predict a D × 1 vector of targets, yT+h, h-step ahead from a set of N

predictor variables xt with a sample of size T .

We assume that xt follows a linear factor model, that is,

xt = βft + βwwt + ut, (1)

where ft is a K × 1 vector of latent factors, wt is an M × 1 vector of observed variables, ut

is an N × 1 vector of idiosyncratic errors satisfying E(ut) = 0, E(ftu
′
t) = 0, and E(wtu

′
t) = 0.

Without loss of generality, we also impose that E(ftw
′
t) = 0.1

We assume that the target variables in y are related to x through factors f in a predictive

model:

yt+h = αft + αwwt + zt+h, (2)

where zt+h is a D × 1 vector of prediction errors.

Using the aforementioned notation, we can rewrite the above two equations in their matrix

1Otherwise, we can define f̃t = ft − E(ftw
′
t)E(wtw

′
t)
−1wt and β̃w = βw + βE(ftw

′
t)E(wtw

′
t)
−1, then

E(f̃tw
′
t) = 0 and xt satisfies a similar equation to (1): xt = βf̃t + β̃wwt + ut.
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form as

X = βF + βwW + U,

Y = αF + αwW + Z.

We now discuss assumptions that characterize the data generating processes (DGPs) of

these variables. For clarity of the presentation, we use high-level assumptions, which can

easily be verified by standard primitive conditions for i.i.d. or weakly dependent series. Our

asymptotic analysis assumes that N, T →∞, whereas h,K,D, and M are fixed constants.

Assumption 1. The factor F , the prediction error Z, and the observable regressor W , satisfy:

∥∥T−1FF ′ − Σf

∥∥ .P T
−1/2, ‖F‖MAX .P (log T )1/2,

∥∥T−1WW ′ − Σw

∥∥ .P T
−1/2,

‖WF ′‖ .P T
1/2, ‖Z‖ .P T

1/2, ‖Z‖MAX .P (log T )1/2,
∥∥ZF ′∥∥ .P T

1/2,
∥∥ZW ′∥∥ .P T

1/2,

where Σf ∈ RK×K, Σw ∈ RM×M are positive-definite matrices with λK (Σf ) & 1, λM (Σw) & 1,

λ1 (Σf ) . 1, and λ1 (Σw) . 1.

Assumption 1 imposes rather weak conditions on the time series behavior of ft, zt, and

wt. Since all of them are finite dimensional time series, the imposed inequalities hold if these

processes are stationary, strong mixing, and satisfy sufficient moment conditions.

Moreover, Assumption 1 implies that the K left-singular values of F neither vanish nor

explode. Therefore, it is the factor loadings that dictate the strength of factors in our setting.

This is without loss of generality because F can always be normalized to satisfy this condition.

Next, we assume

Assumption 2. The N ×K factor loading matrix β satisfies

‖β‖MAX . 1, λK(β′[I0]β[I0]) & N0,

for some index set I0 ⊂ 〈N〉, where N0 = |I0| → ∞.

Assumption 2 implies that there exists a subset, I0, of predictors within which all latent

factors are pervasive. This is a much weaker condition than requiring factors to be pervasive in

the set of all predictors, in which case λ1(β′β) � . . . � λK(β′β) � N . In contrast, Assumption

2 allows for distinct growth rates for these eigenvalues, in that no requirement is imposed on

β[Ic0 ]. Moreover, these eigenvalues can grow at a slower rate than N , since N0/N is allowed to

vanish very rapidly. We will make precise statement about the relative magnitudes of these

quantities when it comes to our asymptotic results.
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Since the number of factors, K, is assumed finite, even if each factor is pervasive in

some separate (and potentially non-overlapping) index set, it is possible to construct a

common index set I0 within which all factors are pervasive.2 Assumption 2, nevertheless,

rules out a somewhat extreme case where all entires of β are uniformly vanishing, i.e.,

supI,|I|→∞ |I|−1λK

(
β′[I]β[I]

)
= oP(1), to the extent that the desired subset I0 does not ex-

ist.

Next, we need the following moment conditions on U .

Assumption 3. The idiosyncratic component U satisfies:

‖U‖MAX .P (log T )1/2 + (logN)1/2.

In addition, for any given non-random subset I ⊂ 〈N〉,

∥∥U[I]

∥∥ .P |I|1/2 + T 1/2.

Assumption 3 imposes restrictions on the time-series dependence and heteroskedasticity

of ut. The first inequality is a direct result of a large deviation theorem, see, e.g., Fan et al.

(2011). The second inequality can be shown by random matrix theory, see Bai and Silverstein

(2009), provided that ut is i.i.d. both in time and in the cross-section. While it is tempting

to impose a stronger inequality that bounds supI⊂〈N〉
∥∥U[I]

∥∥ uniformly over all index sets of

a given size |I|, the rate |I|1/2 + T 1/2 we desire may not hold. In fact, assuming |I| is small,

Cai et al. (2021) establish a uniform bound that differs from our non-uniform rate only by a

log factor. When |I| is large, the result on uniform bounds no longer exists to the best of our

knowledge. We thereby avoid making any assumption on uniform bound over all index sets.

For the same reason, we make the following moment conditions with any given non-random

set I. The conditions should hold under weak dependences among U , F , W , and β.

Assumption 4. For any non-random subset I ⊂ 〈N〉, the factor loading β[I], and the id-

iosyncratic error U[I] satisfy the following conditions:

(i)
∥∥U [I]A

′∥∥ .P |I|1/2T 1/2,
∥∥U [I]A

′∥∥
MAX

.P (logN)1/2T 1/2,

(ii)
∥∥β′[I]U[I]

∥∥ .P |I|1/2T 1/2,
∥∥β′[I]U[I]

∥∥
MAX

.P |I|1/2(log T )1/2,
∥∥β′[I]U [I]A

′∥∥ .P |I|1/2T 1/2,

2To see a concrete example, suppose that β has a block diagonal structure, such that its kth column βk
is supported on an index set Jk, and the intersection of all Jks is empty. Suppose the non-zero entries of β
follow standard normal. Then we can find k? := mink |Jk|, and build up I0 from Jk? (so that |I0| ≥ |Jk? |) by
arbitrarily adding |Jk? | number of predictors from each Jk, k = 1, 2, . . . ,K, k 6= k?. We can take a union of
all such subsets of Jk. The resulting index set I0 contains K × |Jk? | number of predictors, and all factors are
pervasive within this common set.
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(iii)
∥∥(uT )′[I]U [I]A

′∥∥ .P |I|+ |I|1/2T 1/2,
∥∥∥β′[I] (uT )[I]

∥∥∥ .P |I|1/2,

where A is either F , W or Z.

The `2-norm bounds in Assumption 4(i) and (ii) are results of Assumptions D, F2, F3 of

Bai (2003) when I = 〈N〉, and Assumption 4(iii) is implied by Assumptions A, E1, F1 and C3

in Bai (2003), except that here we impose a stronger version which holds for any non-random

subset I ⊂ 〈N〉. The MAX-norm results can be shown by some large deviation theorem as in

Fan et al. (2011).

Assumptions 2 and 3 are the key identification conditions of the weak factor model we

consider. It is helpful to compare these conditions with those spelled out by Chamberlain and

Rothschild (1983). We do not require that ut is stationary, but for the sake of comparison

here, we assume that the covariance matrix of ut exists, denoted by Σu and that βw = 0. By

model setup (1), we have Σ := Cov(xt) = βΣfβ
′ + Σu. Chamberlain and Rothschild (1983)

show that the model is identified if ‖Σu‖ . 1 and λK →∞, which guarantees the separation

of the common and idiosyncratic components in the population model. To implement this

strategy, Bai (2003) provides an alternative set of conditions (Assumption C therein) on the

time-series and cross-sectional dependence of the idiosyncratic components that ensure the

consistency of PCA, but in the case of pervasive factors, that is λK(β′β) & N .

In fact, PCA can separate the factor and idiosyncratic components from the sample co-

variance matrix under much weaker conditions. To see this, note that from (1) and βw = 0, we

have XX ′ = βFF ′β′+UU ′+βFU ′+UF ′β′. Using random matrix theory from Bai and Silver-

stein (2009), λ1(UU ′) .P T+N , if ut is i.i.d. with ‖Σu‖ . 1. Since TλK(β′β) �P λK(βFF ′β′)

and because of the weak dependence between U and F as in Assumption 4, the eigenvalues

corresponding to the factor component βFF ′β′ dominate the three remainder terms that are

related to the idiosyncratic component U asymptotically, if (T + N)/(TλK(β′β)) → 0, en-

abling the factor components to be identified from XX ′. Wang and Fan (2017) and Bai and

Ng (2021) study the setting N/(TλK(β′β)) → 0, in which case PCA remains consistent de-

spite the fact that factor exposures are not pervasive. Wang and Fan (2017) also study the

borderline case N � TλK(β′β), and document a bias term in the estimated eigenvalues and

eigenvectors associated with factors.

In this paper, we consider an even weaker factor setting in which N/(TλK(β′β)) may

diverge. In this case, PCA generally fails to recover the underlying factors (except for the

special case in which errors are homoscedastic). We will require, instead, the existence of a

subset I0 ⊂ 〈N〉, for which |I0|/(TλK(β′[I0]β[I0])) → 0, to ensure the identification of factors
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on this subset.3 In what follows, we introduce our methodology to deal with this case.

2.3 Prediction via Supervised Principal Components

One potential solution to the weak factor problem was proposed by Bair and Tibshirani (2004),

namely, supervised principal component analysis. Their proposal is to locate a subset, Î, of

predictors via marginal screening, keeping only those that have nontrivial exposure to the

prediction target, before applying PCA. Intuitively, this procedure reduces the total number

of predictors from N to |Î|, while under certain assumptions it also guarantees that this subset

of predictors has a strong factor structure, i.e., λmin(β′
[Î]
β[Î]) � |Î|. As a result, applying PCA

on this subset leads to consistent recovery of factors.

We use a simple one factor example to illustrate the procedure, before explaining its

caveats with the general multi-factor case. To illustrate the idea, we consider the case in

which D = K = 1, αw = 0, and βw = 0. We select a subset Î that satisfies:

Î =
{
i
∣∣∣T−1|X [i]Y

′| ≥ c
}
, (3)

where c is some threshold. Therefore, we keep predictors that covary sufficiently strongly

(positively or negatively) with the target. This step involves a single tuning parameter, c,

that effectively determines how many predictors we use to extract the factor. The fact that

Î incorporates information from the target reflects the distinctive nature of a supervised

procedure. Given the existence of I0 by Assumption 2, there exists a choice of c such that

predictors within the set Î have a strong factor structure. The rest of the procedure is a

straightforward application of the principal component regression for prediction. Specifically,

we apply PCA to extract factors {f̂t}T−ht=1 from X [Î], which can be written as f̂t = ζ̂ ′xt for some

loading matrix ζ̂, then obtain α̂ by regressing {yt}Tt=1+h onto {f̂t}T−ht=1 based on the predictive

model (2). The resulting predictor for yT+h is therefore given by: ŷT+h = α̂f̂T = α̂ζ̂ ′xT .

Bair et al. (2006)’s proposal proceeds in the same way when it comes to multiple factors,

with the only exception that multiple factors are extracted in the PCA step. Yet, to ensure that

marginal screening remains valid in the multi-factor setting, they assume that predictors are

marginally correlated with the target if and only if they belong to a uniquely determined subset

I0, outside which predictors are assumed to have zero correlations with the prediction target,

i.e., they are pure noise for prediction purpose. Given this condition, they show marginal

3The aforementioned settings all require λK(β′β)→∞, in contrast with the extremely weak factor model
that imposes λK(β′β) . 1. As such, eigenvalues of factors and idiosyncratic components do not diverge as
dimension increases. While Onatski (2009) and Onatski (2010) develop tests for the number of factors, Onatski
(2012) shows that factors cannot be consistently recovered in this regime.
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screening can consistently recover I0, and all factors can thereby be extracted altogether with

a single pass of PCA to this subset of predictors.

In contrast, we assume the existence of a set I0 within which predictors have a strong

factor structure, yet we do not make any assumptions on the correlation between the target

and predictors outside this set I0, nor on the strength of their factor structure. As a result,

I0 under our Assumption 2 needs not be unique, and we will show that the validity of the

prediction procedure does not rely on consistent recovery of any pre-determined set I0. More

importantly, since marginal screening is based on marginal covariances between Y and X, in a

multi-factor model the condition that marginal screening can recover a subset within which all

factors are pervasive (even if such a subset is uniquely defined as in Bair et al. (2006)) is rather

strong. On the one hand, marginal screening can be misguided by the correlation induced by

a strong factor to the extent that weak factors after screening remain unidentifiable. On the

other hand, predictors eliminated by marginal screening can be instrumental or even essential

for prediction. We illustrate these points using examples of two-factor models below.

Example 1: Suppose xt and yt satisfy the following dynamics:

xt =


β11 β12

β21 0

 ft + ut, yt+h =
[

1 1
]
ft, (4)

where β11 and β12 are N0 × 1 vectors, β21 is an (N −N0)× 1 vector, satisfying ‖β12‖ � N
1/2
0

and ‖β21‖ � (N −N0)1/2, and N0 is small relative to N .

In this example, the first factor is strong (all predictors are exposed to it) while the

second factor is weak, since most exposures to it are zero. In addition, the target variable

y is correlated with both factors and hence potentially with all predictors. As a result, the

screening step described above may not eliminate any predictors: all predictors may correlate

with the target (through the first factor). But because the second factor is weak, a single pass

of PCA, extracting two factors from the entire universe of predictors, would fail to recover it:

we can show that λmin(β′β) ≤ ‖β12‖2 . N0, so that PCA would not recover the second factor

consistently if N/(N0T ) does not vanish.

The issue highlighted with this example is that the (single) screening step does not elimi-

nate any predictors, because their correlations with the target are (at least partially) induced

by their exposure to the strong factor, and therefore PCA after screening cannot recover the

weak factor. The assumptions proposed by Bair et al. (2006) rule this case out, but we can
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clearly locate an index set I0 (say, top N0 predictors), within which both factors are strong.

In other words, our assumptions can accommodate this case.

We provide next another example, that shows that in some situations screening can elimi-

nate too many predictors, making a strong factor model become weak or even rank-deficient.

Example 2: Suppose xt and yt satisfy the following dynamics:

xt =


β11 β11

0 β22

 ft + ut, yt+h =
[

1 0
]
ft, (5)

where β11 and β22 are N/2 × 1 non-zero vectors satisfying ‖β11‖ � ‖β22‖ �
√
N and f1t and

f2t are uncorrelated.

In this example, there are two equal-sized groups of predictors, so that β is full-rank and

both factors are strong and that I0 can be the entire set 〈N〉 (therefore, a standard PCA

procedure applied to all predictors will consistently recover both factors). But two features of

this model will make supervised PCA fail, if the selection step based on marginal correlations is

applied only once (as in the original procedure by Bair et al. (2006)). First, yt+h is uncorrelated

with the second half of predictors (since only the first group is useful for prediction). Second,

the exposure of the first half of predictors to the first and second factors are the same (both

equal to β11).

After the screening step the second group of predictors would be eliminated, because

they do not marginally correlate with yt+h. But the remaining predictors (the first half) have

perfectly correlated exposures to both factors, so that only one factor, f1t+f2t, can be recovered

by PCA. Therefore, the one-step supervised PCA of Bair et al. (2006) would fail to recover

the factor space consistently, resulting in inconsistent prediction. This example highlights an

important point that marginally uncorrelated predictors (the second half) could be essential

in recovering the factor space. Eliminating such predictors may lead to inconsistency in

prediction.

Both examples demonstrate the failure of a one-step supervised PCA procedure in a general

multi-factor setting. Such data generating processes are excluded by the model assumptions

in Bair et al. (2006), whereas we do not rule them out. We thus propose below a new and

more complete version of the supervised PCA (SPCA) procedure that can accommodate such

cases.
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2.4 Iterative Screening and Projection

To resolve the issue of weak factors in a general multi-factor setting, we propose a multi-step

procedure that iteratively conducts selection and projection. The projection step eliminates

the influence of the estimated factor, which ensures the success of the screening steps that

occur over the following iterations. More specifically, a screening step can help identify one

strong factor from a selected subset of predictors. Once we have recovered this factor, we

project all predictors xt (not just those selected at the first step) and yt+h onto this factor,

so that their residuals will not be correlated with this factor. Then we can repeat the same

selection procedure with these residuals. This approach enables a continued discovery of

factors, and guarantees that each new factor is orthogonal to the estimated factors in the

previous steps, similar to the standard PCA.

It is straightforward to verify that this iterative screening and projection approach suc-

cessfully addresses the issues with the aforementioned examples. Consider first Example 1. In

this case, the first screening does not rule out any predictor, and the first PC will recover the

strong factor f1; after projecting both X and y onto f1, the residuals for the first N0 predictors

still load on f2, whereas the remaining N − N0 predictors should have zero correlation with

the residuals of y. Therefore, a second screening will eliminate these predictors, paving the

way for PCA to recover the second factor f2 based on the residuals of the first N0 predictors.

Similarly, for Example 2, the first screening step eliminates the second half of the predictors,

so that the first pass of PCA will recover the only factor left over in the remaining predictors,

namely, f1 + f2. The residuals of the first half of predictors consist of pure noise after the

projection step, whereas the residuals of the second half of predictors are spanned by f1− f2,

which a second PCA step will recover. Therefore, the iterated supervised PCA will recover

the entire factor space. This example illustrates that marginal screening can succeed as long

as iteration and projection are also employed.

Formally, we present our algorithm for the general model given by (1) and (2):

Algorithm 1 (Prediction via SPCA).

Inputs: Y , X, W , xT , and wT . Initialization: Y(1) := YMW ′, X(1) := XMW ′.

S1. For k = 1, 2, . . . iterate the following steps using X(k) and Y(k):

a. Select an appropriate subset Îk ⊂ 〈N〉 via marginal screening.

b. Estimate the kth factor F̂ (k) = ς̂ ′(k)

(
X(k)

)
[Îk]

via SVD, where ς̂(k) is the first left

singular vector of
(
X(k)

)
[Îk]

. F̂ (k) can also be rewritten as F̂ (k) = ζ̂ ′(k)XMW ′, where

ζ̂(k) =
(
IN −

∑k−1
i=1 β̂(i)ζ̂

′
(i)

)′
[Îk]

ς̂(k) is constructed recursively using β̂(k−1) (defined in
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c.).

c. Estimate the coefficients α̂(k) = Y(k)F̂
′
(k)(F̂ (k)F̂

′
(k))
−1 and β̂(k) =

X(k)F̂
′
(k)(F̂ (k)F̂

′
(k))
−1.

d. Obtain residuals Y(k+1) = Y(k) − α̂(k)F̂ (k) and X(k+1) = X(k) − β̂(k)F̂ (k).

Stop at k = K̂, where K̂ is chosen based on some proper stopping rule.

S2. Obtain f̂T = ζ̂ ′(xT−β̂wwT ), where ζ̂ := (ζ̂(1), . . . , ζ̂(K̂)) and β̂w = XW ′(WW ′)−1, and the

prediction ŷT+h = α̂f̂T + α̂wwT = γ̂xT + (α̂w− γ̂β̂w)wT , where α̂ := (α̂(1), α̂(2), . . . , α̂(K̂)),

γ̂ = α̂ζ̂ ′, and α̂w = YW ′(WW ′)−1.

Outputs: the prediction ŷT+h, the factors F̂ := (F̂
′
(1), . . . , F̂

′
(K̂))

′, their loadings, β̂ :=

(β̂(1), . . . , β̂(K̂)), and the coefficient estimates α̂, ζ̂, α̂w, β̂w, and γ̂.

We discuss the details of the algorithm below.

Step S1. of Algorithm 1 requires an appropriate choice of Îk and a stopping rule. One

possible choice for Îk is:4

Îk =
{
i
∣∣∣T−1

∥∥(X(k))[i]Y
′

(k)

∥∥
MAX

≥ ĉ
(k)
qN

}
,

where ĉ
(k)
qN is the (1− q)th-quantile of

{
T−1

∥∥∥(X(k))[i]Y
′

(k)

∥∥∥
MAX

}
i=1,...,N

. (6)

The reason we suggest using the top qN predictors based on the magnitude of the covariances

between X(k) and Y(k) is that the factor estimates tend to be more stable and less sensitive to

this tuning parameter q, compared to a conventional hard threshold parameter adopted in a

marginal screening procedure. Moreover, at each step, a subset of a fixed number of predictors

are selected, which substantially simplifies the notation and the proof.

Correspondingly, the algorithm terminates as soon as

ĉ
(k+1)
qN < c, for some threshold c. (7)

Thus, the resulting number of factors is set as K̂ = k. As a result, the tuning parameter, c,

effectively determines the number of factors extracted out of our procedure.

4Using covariance for screening allows us to replace all Y(k) in the definition of Îk and Algorithm 1 by Y(1),
that is, only the projection of X(k) is needed, because this replacement would not affect the covariance between
Y(k) and X(k). We use this fact in the proofs, which simplifies the notation. We can also use correlation instead

of covariance in constructing Îk, which does not affect the asymptotic analysis. That said, we find correlation
screening performs better in finite samples when the scale of the predictors differs.
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For any given tuning parameters, q and c, we select predictors that have predictive power

for (at least one variable in) yt+h at each stage of the iteration. With a good choice of tuning

parameters, q and c, the iteration stops as soon as most of the rows of the projected residuals

of predictors appear uncorrelated with the projected residuals of yt+h, which implies that the

factors left over, if any, are uncorrelated with yt+h.

The last step of the algorithm needs more explanations. Step S1. provides a set of factor

estimates, F̂ , on the basis of Y and X. Moreover, a time series regression of Y on F̂ and W

yields an estimator of αw (coefficient defined in (2)). That is, α̂w = YM
F̂
′W ′

(
WM

F̂
′W ′
)−1

=

YW ′(WW ′)−1, since M
F̂
′W ′ = W ′ by construction, which explains the formula for α̂w in Step

S2.. Finally, with α̂, α̂w, and f̂T , it is sufficient to construct the predicted value of yT+h by

combining α̂f̂T with α̂wwT , which yields the final prediction formula for ŷT+h, a projection on

observables, xT and wT .

3 Asymptotic Theory

We now examine the asymptotic properties of SPCA. The analysis is more involved than

those of Bair et al. (2006) because of the iterative nature of our new SPCA procedure and the

general weak factor setting we consider.

3.1 Consistency in Prediction

To establish the consistency of SPCA for prediction, we first investigate the consistency of

factor estimation. In the strong factor case, e.g., Stock and Watson (2002), all factors are

recovered consistently via PCA, which is a prerequisite for the consistency of prediction. In

our setup of weak factors, we show that the consistency of prediction only relies on consistent

recovery of factors that are relevant for the prediction target.

Recall that in Algorithm 1, we denote the selected subsets in the SPCA procedure as Îk,

k = 1, 2, . . .. We now construct their population counterparts iteratively, for any given choice

of c and q. This step is critical to characterize the exact factor space recovered by SPCA.

For simplicity in notation and without loss of generality, we consider the case Σf = IK here,

because in the general case, we can simply replace β and α by β∗ = βΣ
1/2
f and α∗ = αΣ

1/2
f in

the following construction.

In detail, we start with a
(1)
i :=

∥∥β[i]α
′
∥∥

MAX
and define I1 := {i|a(1)

i ≥ c
(1)
qN}, where c

(1)
qN

is the bqNcth largest value in
{
a

(1)
i

}
i=1,...,N

. Then, we denote the largest singular value of

β(1) := β[I1] by λ
1/2
(1) and the corresponding left and right singular vectors by ς(1) and b(1).
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For k > 1, we obtain a
(k)
i :=

∥∥∥β[i]

∏
j<kMb(j)α

′
∥∥∥

MAX
, Ik := {i|a(k)

i ≥ c
(k)
qN}, and λ

1/2
(k) , ς(k),

b(k) are the leading singular value, left and right singular vectors of β(k) := β[Ik]

∏
j<kMb(j) .

This procedure is stopped at step K̃ (for some K̃ that is not necessarily equal to K or K̂) if

c
(K̃+1)
qN < c. In a nutshell, Ik’s are what we will select if we do SPCA directly on β ∈ RN×K

and α ∈ RD×K and they are deterministically defined by α, β,Σf , c, q, and N , whereas Îk’s

are random, obtained by SPCA on X ∈ RN×T and Y ∈ RD×T .

To ensure that the singular vectors b(j)’s are well defined and identifiable, we need that the

top two singular values of β(k) are distinct at each stage k. We also need distinct values of c
(k)
qN

to ensure that Ik’s are identifiable. More precisely, we say that two sequences of variables aN

and bN are asymptotically distinct if there exists a constant δ > 0 such that |aN − bN | ≥ δ|bN |
for sufficiently large N . In light of the above discussion, we make the following assumption:

Assumption 5. For any given k, the following three pairs of sequences of variables, σ1(β(k))

and σ2(β(k)), c
(k)
qN and c

(k)
qN+1, and c

(K̃+1)
qN and c are asymptotically distinct, as N →∞.

This assumption is rather mild as it only rules out corner cases, despite the fact that

this is not very explicit. Excluding such corner cases is common in the literature on high

dimensional PCA, see, e.g., Assumption 2.1 of Wang and Fan (2017). Assumption 5 is closely

tied to our choice of the number of predictors qN and the parameter c in the stopping rule.

In particular, the current algorithm adopts a strategy where the same number of predictors is

selected at each step, representing one version of SPCA. An alternative approach may involve

selecting predictors based on a predetermined threshold for their covariances and stopping

the selection process when |Ik| becomes smaller than another threshold. By allowing for the

flexibility of using varying numbers of predictors at each step, this alternative approach can

be particularly useful in addressing certain corner cases ruled out by the current version of

Assumption 5.5 Similar asymptotic results, akin to those presented in Theorem 1 through

3 below, can be derived with more intricate conditions regarding the rate of convergence,

etc. However, the current version of SPCA, with its more concise theorems and superior

performance in simulation, is the primary focus of our discussion in the main text. We now

are ready to present the consistency of the estimated factors by SPCA:

Theorem 1. Suppose that xt follows (1) and yt satisfies (2), and that Assumptions 1-5 hold.

If log(NT )(N−1
0 + T−1)→ 0, then for any tuning parameters c and q that satisfy

c→ 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2)→ 0, qN/N0 → 0, (8)

5A concrete example may be the case where all a
(1)
i s defined above are identical, resulting in c

(1)
qN = c

(1)
qN+1.

By adopting the alternative algorithm, we only need an assumption on a non-vanishing lower bound of a
(1)
i ,

i.e., a
(1)
i > c > 0. Correspondingly, this alternative procedure will select all predictors in this iteration.
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we have K̃ ≤ K, P(Îk = Ik) → 1, for any 1 ≤ k ≤ K̃, and P(K̂ = K̃) → 1. Moreover, the

factors recovered by SPCA are consistent. That is, for any 1 ≤ k ≤ K̃,∥∥∥F̂ (k)

∥∥∥−1 ∥∥∥F̂ (k) − F̂ (k)PF ′
∥∥∥ .P q

−1/2N−1/2 + T−1. (9)

We make a few observations regarding this result. First, the assumptions in Theorem 1 do

not guarantee a consistent estimate of the number of factors, K, because the SPCA procedure

cannot guarantee to recover factors that are uninformative about y. At the same time, the

factors recovered by SPCA are not necessarily useful for prediction, because it is possible

that some strong factors with no predictive power are also recovered by SPCA. Ultimately,

the factor space recoverable is determined by β, α, Σf , c, q, and N . For this reason, we

have consistency of factor estimates up to the first K̃ factors. Moreover, K̂ is a consistent

estimator of K̃, which we prove satisfies K̃ ≤ K. That is, SPCA omits K − K̃ factors. Also,

the inequality (9) has a clear geometric interpretation. The left-hand-side is exactly equal to

sin(Θ̂(k)), where Θ̂(k) is the angle between the estimated factor at each stage k and the factor

space spanned by the true factors, PF ′ . (9) shows that this angle vanishes asymptotically.

Second, with respect to the tuning parameters, the condition (8) implies that c → 0,

c
√
T →∞, and c

√
qN →∞. On the one hand, the threshold c needs be sufficiently small so

that the iteration procedure continues until selected predictors have asymptotically vanishing

predictive power; on the other hand, c needs be large enough that dominates error in the

covariance estimates from the screening step. The estimation error consists of the usual

error in the construction of the sample covariances between X(1) and Y(1), which introduces

an error of order T−1/2, as well as the construction of residuals in the projection step, X(k)

and Y(k), for k > 1, as soon as multiple factors are involved (i.e., K̃ > 1). As we show

next, the factor estimation error is of order (qN)−1/2 + T−1, which pollutes the residuals and

hence affects screening. Taking these two points into consideration, the choice of c needs

dominate T−1/2 + (qN)−1/2. In terms of q, it appears that the maximal number of selected

predictors, bqNc, allowed for should be of the same order as N0. Nevertheless, since N0 given

by Assumption 2 is not precisely defined, in the sense that the assumption holds if N0 is scaled

by any non-zero constant, we require qN/N0 → 0 to ensure that the scaling constant of N0

does not matter for the choice of q and that the selected bqNc predictors are within the subset

of N0 predictors that guarantee a strong factor structure.

Third, the estimation error of factors are bounded from the above by q−1/2N−1/2 + T−1.

Recall that in the strong factor case, the factor space can be recovered at the rate of N−1/2 +

T−1, see, e.g., Bai (2003). In our result, qN plays the same role as N in the strong factor

case. Nevertheless, our Assumption 2 does not require all factors to have the same strength.
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It is possible that some factors could be recovered with a higher convergence rate, should

we select a different number of predictors for each factor based on its strength. In fact, an

alternative choice of Îk based on (3) allows different numbers of predictors to be selected at

each stage, since the threshold itself is a fixed level. While this approach may achieve a faster

rate for relatively stronger factors, the prediction error rate is ultimately determined by the

estimation error of the weakest factor. Yet, we find that the approach based on (6) offers more

stable prediction out of sample, whereas prediction based on (3) can be sensitive to the tuning

parameters. Given that our ultimate goal is about prediction rather than factor recovery, we

prefer a more stable procedure and thereby focus our analysis on the former approach.

With no relevant factors omitted, our prediction ŷT+h is consistent, as we show next.

Theorem 2. Under the same assumptions as in Theorem 1, we have α̂w − αw
P−→ 0,

‖γ̂β − α‖ P−→ 0, and consequently, ŷT+h
P−→ ET (yT+h) = αfT + αwwT .

Theorem 2 first analyzes the parameter estimation “error” measured as α̂w − αw and

γ̂β − α. The reason the latter quantity matters is that there exists a matrix H such that

γ̂β = α̂H. In other words, the first statement of the theorem implies that we can consistently

estimate α, up to a matrix H. This extra adjustment matrix H exists due to the fundamental

indeterminacy of latent factor models. In fact, we can define H ∈ RK̂×K as ζ̂ ′β, where ζ̂ is

given by Algorithm 1. Then, it is straightforward to see from the definition of γ̂ that

γ̂β = α̂H, so that by Theorem 2 ‖α̂H − α‖ = oP(1). (10)

On the other hand, the proof of Theorem 1 also establishes that for k ≤ K̃:∥∥∥F̂ (k)

∥∥∥−1 ∥∥∥F̂ (k) − hkF
∥∥∥ .P q

−1/2N−1/2 + T−1, (11)

where hk is the kth row of H. Therefore, α̂F̂
by(11)
≈ α̂HF

by(10)
≈ αF , which, together with

α̂w − αw = oP(1), leads to the consistency of prediction.

The consistency result in Theorem 2 does not require a full recovery of all factors. In

other words, K̂ is not necessarily equal to K. On the one hand, factors omitted by SPCA

are guaranteed to be uncorrelated with yt+h; on the other hand, some factors not useful for

prediction may be recovered by SPCA. Obviously, missing any uncorrelated factors or having

extra useless factors (for prediction purposes) do not affect the consistency of ŷT+h.

Moreover, this result does not rely on normally distributed error nor on the assumption

that all factors share the same strength with respect to all predictors. The assumption on the

relative size of N and T is also quite flexible, in contrast with existing results in the literature
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in which N cannot grow faster than a certain polynomial rate of T , e.g., Bai and Ng (2021),

Huang et al. (2021).

3.2 Recovery of All Factors

In this section we develop the asymptotic distribution of ŷT+h from Algorithm 1. Not sur-

prisingly, the conditions in Theorem 2 are inadequate to guarantee that ŷT+h converges to

ET (yT+h) at the desirable rate T−1/2. The major obstacle lies in the recovery of all factors,

which we will illustrate with a one-factor example.

Example 3: Suppose that xt follows a single-factor model with sparse β:

xt =


β1

0

 ft + ut, yt+h = αft + zt+h,

where β1 is the first N0 entries of β with ‖β1‖ � N
1/2
0 and α � T−1/2.

Recall that we use the sample covariance between xt and yt+h to screen predictors. Even if

yt+h is independent of xt, their sample covariance can be as large as T−1/2(logN)1/2. Therefore,

the threshold c needs be strictly greater than T−1/2(logN)1/2 to control Type I error in

screening. However, the signal-to-noise ratio in this example is rather low, i.e., α � T−1/2, that

is, yt+h is not too different from random noise. Consequently, screening will terminate right

away because the covariances between yt+h and xt are at best of order T−1/2(logN)1/2 < c,

which in turn leads to no discovery of factors. Our procedure thereby gives ŷT+h = 0, which

is certainly consistent as the bias |ET (yT+h)− 0| � T−1/2, but the usual central limit theorem

(CLT) fails.

Generally speaking, this issue arises because of the potential failure to recover all factors in

the DGP. As long as all factors are found, the bias is negligible and the central limit theorem

holds regardless of the magnitude of α. So to go beyond consistency and make valid inference

we need a stronger assumption that rules out cases like this, in order to insure against a higher

order omitted factor bias that impedes the CLT even if it does not affect consistency. It turns

out that as long as α ∈ RD×K satisfies λmin(α′α) & 1, we can rule out the possibility of missing

factors asymptotically. On the one hand, in this case the dimension of target variables, D,

must be no smaller than the dimension of the factors, K; and for each factor there exist at

least one target variable in y that is correlated with the factor; together they guarantee that
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no factors would be omitted. On the other hand, our algorithm will not select more factors

than needed asymptotically, because the iteration is terminated as soon as all covariances

vanish. With a consistent estimator of the number of factors, we can recover the factor space

as well as conduct inference on the prediction targets.

The inference theory on strong factor models also relies on a consistent estimator of the

count of (strong) factors, e.g., Bai and Ng (2006). Our assumptions here are substantially

weaker than the pervasive factor assumption adopted in the literature. That said, in a finite

sample, a perfect recovery of the number of factors may be a stretch. In Section 3.4, we

show that our version of the PCA regression is more robust than the procedure of Stock and

Watson (2002) with respect to the error due to overestimating the number of factors. We also

provide simulation evidence on the finite sample performance of our estimator of the number

of factors.

The next theorem summarizes a set of stronger asymptotic results under conditions that

guarantee perfect recovery of all factors:

Theorem 3. Under the same assumptions as Theorem 2, if we further have λmin(α′α) & 1,

then for any tuning parameters c and q in (6) and (7) satisfying

c→ 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2)→ 0, qN/N0 → 0,

we have

(i) K̂ defined in Algorithm 1 satisfies: P(K̂ = K)→1.

(ii) The factor space is consistently recovered in the sense that∥∥∥PF̂ ′ − PF ′
∥∥∥ = OP

(
q−1/2N−1/2 + T−1

)
.

(iii) The estimator γ̂ constructed via Algorithm 1 satisfies

∥∥γ̂β − α− T−1ZF ′Σ−1
f

∥∥ = OP(q−1N−1 + T−1).

Theorem 3 extends the strong factor case of Bai and Ng (2002) and Bai (2003). In par-

ticular, (i) shows that our procedure can recover the true number of factors asymptotically,

which extends Bai and Ng (2002) to the case of weak factors. Combining this result with

Theorem 1(i) suggests that K̃ = K under the strengthened set of assumptions. We thereby

do not need distinguish K̃ with K below. Our setting is distinct from that of Onatski (2010),

and as a result we can also recover the space spanned by weak factors, as shown by (ii). This
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result also suggests that the convergence rate for factor estimation is of order (qN)1/2 ∧ T , as

opposed to N1/2 ∧ T given by Theorem 1 of Bai (2003). (iii) extends the result of Theorem

2, replacing the target α by α + T−1ZF ′Σ−1
f . Note that the latter is precisely a regression

estimator of α if F were observable. (iii) thereby points out that the error due to latent factor

estimation is no larger than OP(q−1N−1 + T−1).

3.3 Inference on the Prediction Target

In the case without observable regressors w, the prediction error can be written as ŷT+h −
ET (yT+h) = (γ̂β − α)fT + γ̂uT , where the second term γ̂uT is of order (qN)−1/2. In light

of Theorem 3(iii), if q−1N−1T → 0, then the second term is asymptotically negligible (i.e.,

oP(T−1/2)) compared to the first term, (γ̂β − α)fT = T−1ZF ′Σ−1
f fT + OP(T−1), in which

case we can achieve root-T inference on ET (yT+h). Nevertheless, we strive to achieve a better

approximation to the finite sample performance by taking into account both terms of the

prediction error altogether, without imposing additional restriction on the relative magnitude

of qN and T .

To do so, we impose the following assumption:

Assumption 6. As N, T →∞, T−1/2ZF ′, T−1/2ZW ′, and (qN)−1/2ΨuT are jointly asymp-

totically normally distributed, satisfying:vec(T−1/2ZF ′)

vec(T−1/2ZW ′)

(qN)−1/2ΨuT

 d−→ N


0

0

0

 ,Π =

Π11 Π12 0

Π′12 Π22 0

0 0 Π33


 ,

where Ψ is a K ×N matrix whose kth row is equal to b′(k)β
′
[Ik](IN)[Ik] and b(k) is the first right

singular vector of β(k) = β[Ik]

∏
j<kMb(j) as defined in Section 3.1.

Assumption 6 characterizes the joint asymptotic distribution of ZF ′, ZW ′ and ΨuT . For

the first two components, as the dimensions of these random processes are finite, this CLT is

a direct result of a large-T central limit theory for mixing processes. With respect to ΨuT ,

its large-N asymptotic distribution is assumed normal, asymptotically independent of the

distribution of the other two components. This holds trivially if uiT ’s are cross-sectionally

i.i.d., independent of zt, wt, and ft for t < T , so that the kth row of ΨuT , b′(k)β
′
[Ik](uT )[Ik], is

a weighted average of uiT for i ∈ Ik. The convergence rate (qN)1/2 for ΨuT arises naturally

because |Ik| = qN .

Before we present the CLT next, we need define a K ×K matrix Ω = (ω1, . . . , ωK) with

ω1 = e1 and ωk = ek −
∑k−1

i=1 λ
−1
(i) b
′
(k)β

′
[Ik]β[Ik]b(i)ωi, where ek is a K-dimensional unit vector
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with 1 on the kth entry and 0 elsewhere.

Theorem 4. Suppose the same assumptions as in Theorem 3 hold. If in addition, Assumption

6 holds, we have

Φ−1/2(ŷT+h − ET (yT+h))
d−→ N (0, ID),

where Φ = T−1Φ1 + q−1N−1Φ2 and Φ1 and Φ2 are given by

Φ1 =
(
(f ′T , w

′
T )Σ−1

f,w ⊗ ID
)(Π11 Π12

Π′12 Π22

)(
Σ−1
f,w(f ′T , w

′
T )′ ⊗ ID

)
,

Φ2 = αB(Λ/qN)−1Ω′Π33Ω(Λ/qN)−1B′α′,

Πij is specified by Assumption 6, Σf,w = diag(Σf ,Σw), Λ = diag(λ(1), . . . , λ(K)), and B is a

K × K matrix whose kth column is given by b(k), where λ
1/2
(k) is the largest singular value of

β(k) and b(k) is the corresponding right singular vector as defined in Section 3.1.

The convergence rate of ŷT+h depends on the relative magnitudes of T and qN . For

inference, we need construct estimators for each component of Φ1 and Φ2. Estimating Φ1

is straightforward based on its sample analog, constructed from the outputs of Algorithm 1.

Estimating Φ2 is more involved, in that Π33 depends on the large covariance matrix of uT .

We leave the details to the appendix.

Algorithm 1 (Step S2.) makes predictions by exploiting the projection of yT+h onto xT

and wT , with loadings given by γ and αw− γβw. This is convenient and easily extendable out

of sample, as both xT and wT are directly observable, unlike latent factors. The next section

investigates potential issues with plain PCA and PLS, as well as an alternative algorithm

based on Stock and Watson (2002), which does not involve the projection parameter γ.

3.4 Alternative Procedures

In this section, we at first discuss the failure of PCA and PLS in the presence of weak factors.

To illustrate the issue, it is sufficient to consider a one-factor model example:

Example 4: Suppose that xt follows a single-factor model with sparse β:

xt =


β1

0

 ft + ut, yt+h = αft,
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where β1 is the first N0 entries of β with ‖β1‖ � N
1/2
0 . Moreover, ft

i.i.d.∼ N (0, 1) and U = εA,

where ε is an N × T matrix with i.i.d. N (0, 1) entries and A is a T × T matrix satisfying

‖A‖ . 1.

3.4.1 Principal Component Regression

Formally, we present the algorithm below:

Algorithm 2 (PCA Regression).

Inputs: Y , X, W , xT , and wT .

S1. Apply SVD on XMW ′ and obtain the estimated factors F̂ PCA = ς̂ ′XMW ′, where ς̂ ∈
RN×K are the first K left singular vectors of XMW ′. Estimate the coefficients α̂ =

Y F̂
′
PCA

(
F̂ PCAF̂

′
PCA

)−1

.

S2. Obtain γ̂ = α̂ς̂ ′ and output the prediction ŷPCAT+h = γ̂xT + (α̂w − γ̂β̂w)wT , where α̂w =

YW ′(WW ′)−1 and β̂w = XW ′(WW ′)−1.

Outputs: ŷPCAT+h , F̂ PCA, α̂, α̂w, β̂w, and γ̂.

Proposition 1. In Example 4, suppose that N/(N0T )→ δ ≥ 0 and ‖β‖ → ∞ and define M

as M := T−1F ′F + δA′1A1, where A1 is the first T −h columns of A. Then, if the two leading

eignvalues of M are distinct in the sense that (λ1(M) − λ2(M))/λ1(M) &P 1, the estimated

factor F̂ PCA satisfies ∥∥∥PF̂ ′PCA
− PηPCA

∥∥∥ P−→ 0,

where ηPCA is the first eigenvector of M . In the special case that A′1A1 = IT−h, it satisfies

that ∥∥∥PF̂ ′PCA
− PF ′

∥∥∥ P−→ 0.

Proposition 1 first shows that even if the number of factors is known to be 1, the factor

estimated by PCA is in general inconsistent, because the eigenvector ηPCA deviates from that

of T−1F ′F , as the latter is polluted by A. In the special case where error is homoskedastic and

has no serial correlation, i.e., A′1A1 = IT−h, the estimated factor becomes consistent, in that

δA′1A1 in M does not change the eigenvectors of T−1F ′F . This result echoes a similar result

in Section 4 of Bai (2003), who established the consistency of factors with homoskedasticity

and serially independent error even when T is fixed. That said, while factors can be estimated

consistently in this special case, the prediction of yT+h based on Algorithm 2 is not consistent.
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Proposition 2. Under the same assumptions as in Proposition 1, if we further assume

A′1A1 = IT−h, then we have ŷPCAT+h
P−→ (1 + δ)−1ET (yT+h).

The reason behind the inconsistency is that even though F̂ PCA, (effectively the right

singular vector of X) is consistent in the special case, the left singular vector, ς̂ and the

singular values are not consistent, which lead to a biased prediction. This result demonstrates

the limitation of PC regressions in the presence of weak factor structure.

3.4.2 Partial Least Squares

PCA is an unsupervised approach, in that the PCs are obtained without any information

from the prediction target. Therefore, it might be misled by large idiosyncratic errors in xt

when the signal is not sufficiently strong. In contrast with PCA, partial least squares (PLS) is

another supervised technique for prediction, which has been shown to work better than PCA

in other settings, see, e.g., Kelly and Pruitt (2013). Unlike PCA, PLS uses the information

of the response variable when estimating factors. Ahn and Bae (2022) develop its asymptotic

properties for prediction in the case of strong factors. We now investigate its asymptotic

performance in the same setting above.

The PLS regression algorithm is formulated below:

Algorithm 3 (PLS). The estimator proceeds as follows:

Inputs: Y , X, W , xT , and wT . Initialization: Y(1) := YMW ′, X(1) := XMW ′.

S1. For k = 1, 2, · · · , K, repeat the following steps using X(k).

a. Obtain the weight vector ς̂(k) from the largest left singular vector of X(k)Y
′

(k).

b. Estimate the kth factor as F̂ (k) = ς̂ ′(k)X(k).

c. Estimate coefficients α̂(k) = Y(k)F̂
′
(k)

(
F̂ (k)F̂

′
(k)

)−1

and β̂(k) =

X(k)F̂
′
(k)

(
F̂ (k)F̂

′
(k)

)−1

.

e. Remove F̂ (k) to obtain residuals for the next step: X(k+1) = X(k) − β̂(k)F̂ (k) and

Y(k+1) = Y(k) − α̂(k)F̂ (k).

S2. Obtain γ̂ = α̂ς̂ ′ and the prediction ŷPLST+h = γ̂xT + (α̂w − γ̂β̂w)wT , where α̂w =

YW ′(WW ′)−1 and β̂w = XW ′(WW ′)−1.

Outputs: ŷPLST+h , F̂ PLS := (F̂
′
(1), . . . , F̂

′
(K̂))

′, α̂, α̂w, β̂w, and γ̂.
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The PLS estimator has a closed-form formula if Y is a 1 × T vector and a single factor

model is estimated (K = 1):

ŷPLST+h =
∥∥Y X ′X∥∥−2

Y X ′XY
′
Y X ′xT .

While the PLS procedure is intuitively appealing, the next propositions show that this

approach produces biased prediction results in the presence of weak factors.

Proposition 3. In Example 4, suppose that N/(N0T ) → δ ≥ 0 and ‖β‖ → ∞, then the

estimated factor F̂ PLS satisfies ∥∥∥PF̂ ′PLS
− PηPLS

∥∥∥ P−→ 0,

where ηPLS = (IT−h + δA′1A1)F ′. In the special case that A′1A1 = IT−h, it satisfies∥∥∥PF̂ ′PLS
− PF ′

∥∥∥ P−→ 0.

Proposition 4. Under the assumptions of Proposition 3, if we further assume that A′1A1 =

IT−h, then we have ŷPLST+h
P−→ (1 + δ)−1ET (yT+h).

Therefore, the consistency of the PLS factor also depends on the homoskedasticity as-

sumption A′1A1 = IT−h and the forecasting performance of PLS regression is similar to PCA

in our weak factor setting. The reason is that the information about the covariance between

X and Y used by PLS is dominated by the noise component of X, hence PLS does not resolve

the issue of weak factors, despite it being a supervised predictor.

Finally, before we conclude the analysis on PLS, we demonstrate a potential issue of PLS

due to “overfitting.” It turns out that PLS can severely overfit the in-sample data and perform

badly out of sample, because PLS overuses information on y to construct its predictor. We

illustrate this issue with the following example:

Example 5: Suppose xt and yt+h follow a “0-factor” model:

xt = ut, yt+h = zt+h,

where uts follow i.i.d. N (0, IN) and zts follow i.i.d. N (0, 1).

Proposition 5. In Example 5, if we use K̂ = 1, then we have ŷPLST+h &P N
3/2T 1/2/(N2 + T 2)

while ŷPCAT+h .P 1/(N1/2 + T 1/2). Specifically, in the case of N � T , ŷPLST+h &P 1 and ŷPCAT+h .P

N−1/2.
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The conditional expectation of yT+h is 0 in this example, but ŷPLST+h can be bounded away

from 0 when using more factors than necessary. In contrast, ŷPCAT+h remains consistent. The

failure of PLS is precisely due to that it selects a component in x that appears correlated

with y, despite the fact that there is no correlation between them in this DGP. While SPCA’s

behavior is difficult to pin down in this example, intuitively, it falls in between these two cases.

When q is very large, SPCA resembles PCA as it uses a large number of predictors in x to

obtain components. When q is too small, SPCA is prone to overfitting like PLS. With a good

choice of q by cross-validation, SPCA can also avoid overfitting.

3.4.3 PCA Regression of Stock and Watson (2002)

Stock and Watson (2002) adopt an alternative version of the PCA regression algorithm (here-

after SW-PCA) to what we have presented in Algorithm 2. The key difference is that SW-PCA

conducts PCA on the entire X instead of X. Therefore, they can obtain f̂T directly from this

step, instead of reconstructing it using the estimated weights in-sample. While our focus is

not on PCA, the PCA algorithm is part of our SPCA procedure. Given the popularity of

SW-PCA, we explain why we prefer our version of PCA regression given by Algorithm 2.

Formally, we present their algorithm below:

Algorithm 4 (SW-PCA).

Inputs: Y , X, and W .

S1. Apply SVD on X, and obtain the estimated factors F̂SW = ς̂ ′∗XMW ′, where ς̂∗ ∈ RN×K

are the first K left singular vectors of X. Estimate the coefficients by time-series regres-

sion: α̂ = YMW ′F̂
′
SW

(
F̂ SWMW ′F̂

′
SW

)−1
6 and α̂w = YM

F̂
′
SW
W ′
(
WM

F̂
′
SW
W ′
)−1

.

S2. Obtain the prediction ŷSWT+h = α̂f̂T + α̂wwT , where f̂T is the last column of F̂SW and

α̂w = YW ′(WW ′)−1.

Outputs: ŷSWT+h, F̂SW , α̂, and α̂w.

The advantage of SW-PCA is that the consistency of factors is sufficient for the consistency

of the prediction, unlike PCA as shown by Proposition 2. In other words, even though this

is not true in general, ŷSWT+h can be consistent in the special case A′A = IT . Additionally,

SW-PCA is more efficient for factor estimation in that it uses the entire data matrices X and

W .

Nevertheless, the negative side of the SW-PCA is that it can be unstable because it is

more prone to overfitting. We illustrated this issue using the example below.

6Unlike Algorithm 1, F̂SW is not orthogonal to W .
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Example 6: Suppose xt and yt+h follow a “0-factor” model:

xt = ut, yt+h = zt+h,

where uts are generated from mean zero normal distributions independently with Cov(ut) = IN
for t < T and Var(uT ) = (1 + ε)IN for some constant ε > 0, and zts follow i.i.d. N (0, 1).

Proposition 6. In Example 6, suppose that T/N → 0, if we use K̂ = 1, then we have

Var(ŷSWT+h)→∞ and ŷPCAT+h
P−→ 0.

Intuitively, SW-PCA uses in-sample estimates of the eigenvectors based on data up to T as

factors for prediction, whereas PCA uses out-of-sample estimates of the factors, constructed

at time T but based on weights estimated up to T − h. Because of this, SW-PCA may

suffer more from “overfitting” compared to PCA, if the statistical properties of the data differ

from T − h to T . Example 6 investigates the case with heteroskedastic uT in the scenario

of overfitting K̂ = 1 > K = 0, in which case SW-PCA could perform rather wildly. This

example appears contrived, but in practice macroeconomic data are often heterogenous and

the number of factors is difficult to pin down. Such an issue is thereby relevant and we hence

advocate Algorithms 2 for robustness.

3.5 Tuning Parameter Selection

Along with the gain in robustness to weak factors comes the cost of an extra tuning parameter.

To implement the SPCA estimator, we need to select two tuning parameters, q and c. The

parameter q dictates the size of the subset used for PCA construction, whereas the parameter

c determines the stopping rule, and in turn the number of factors, K. By comparison, PCA

and PLS, effectively, only require selecting K. We have established in Theorem 3 that we can

consistently recover K, provided q and c satisfy certain conditions.

In practice, we may as well directly tune K instead of c, given that K is more interpretable,

that K can only take integer values, and that the scree plot is informative about reasonable

ranges of K. Moon and Weidner (2015) demonstrate that, within the context of linear panel

regression with interactive fixed effect, the inference on regression coefficients remains robust

even with the inclusion of noise as factors. With respect to q, a larger choice of q renders the

performance of SPCA resemble that of PCA, and hence becomes less robust to weak factors.

Smaller values of q elevate the risk of overfitting, because the selected predictors are more

prone to overfit y. We suggest tuning bqNc instead of q, because the former can only take

integer values, and that multiple choices of the latter may lead to the same integer values of
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the former.

In our applications, we select tuning parameters based on 3-fold cross-validation that

proceeds as follows. We split the entire sample into 3 consecutive folds. Because of the time

series dependence, we do not create these folds randomly. We then use each of the three

folds, in turn, for validation while the other two are used for training. We select the optimal

tuning parameters according to the average R2 in the validation folds. With these selected

parameters, we refit the model using the entire data before making predictions. We conduct a

thorough investigation of the effect of tuning on the finite sample performance of all procedures

below.

4 Simulations

In this section, we study the finite sample performance of our SPCA procedure using Monte

Carlo simulations.

Specifically, we consider a 3-factor DGP as given by equation (1) with two strong factors

f1t, f2t and one potentially weak factor f3t. For strong factors f1t and f2t, we generate exposure

to them independently from N (0, 1). To simulate a weak factor f3t, we generate exposure to

it from a Gaussian mixture distribution, drawing values with probability a from N (0, 1) and

1 − a from N (0, 0.12). The parameter a determines the strength of the third factor and it

ranges from {0.5, 0.1, 0.05} in the simulations.

Our aim is to predict yT+1, or equivalently, estimate ET (yT+1) = αfT + αwwT , where w

includes an intercept term and a lagged term of y. We consider two DGPs for y. In the

first scenario, we set αw = (0, 0.2) and α = (0, 0, 1), i.e., yt+1 = f3t + 0.2yt + zt+1. Since

y is a univariate target, there is no guarantee that we can recover all factors. We thus

examine the consistency of the prediction, as shown in Theorem 2, on the basis of MSE

and ‖γ̂β − α‖. In the second scenario, we examine the quality of factor space recovery and

inference. We thereby simulate a multivariate target with α = I3 and αw = (03×1, 0.2I3), i.e.,

yi,t+1 = fit + 0.2yit + zi,t+1, for i = 1, 2, 3.

We generate realizations of fit, zit independently from the standard normal distribution. To

generate uit, we first draw εits from N (0, 3) independently and construct the matrix A = SΓ,

where S is a (T + 1)× (T + 1) diagonal matrix with elements drawn from Unif(0.5, 1.5) and

Γ is a (T + 1) × (T + 1) rotation matrix drawn uniformly from a unit sphere. Therefore, uit

as constructed by U = εA features heteroskedasticity.

Table 1 compares the finite sample performance of SPCA, PCA, and PLS in the first

scenario. In both panels, the sample size is T = 60, 120, and around aN = 100 predictors

28



have exposure to the factor f3t. We simulate N = 200 (a = 0.5) predictors in the upper panel,

so that f3t is exposed to half of them and is thereby strong, and set N = 2, 000 (a = 0.05) in

the lower panel, where f3t becomes much weaker due to the large number of predictors that

do not load on it.

To highlight the sensitivity of all estimators to the number of factors, we separately report

results for each choice of K from 1 to 5 (not tuned), while only selecting the other tuning

parameter q for SPCA via cross-validation. We also report results with both parameters tuned

jointly for SPCA, and the single parameter K tuned for PCA and PLS, respectively.

The simulation results in Table 1 square well with our theoretical predictions. In the

strong factor case (upper panel), PCA and SPCA perform similarly. They achieve minimum

prediction error when K is set at the true value 3 in that the first two factors do not predict y.

This suggests that tuning q does not worsen the performance of SPCA. PLS can also achieve

desirable performance but typically with K smaller than 3. Interestingly, its performance

deteriorates rapidly as K increases and surpasses the true value. The reason, as we explain in

Proposition 5, is that PLS is more likely to overfit as it uses information about y to directly

construct predictors. In contrast, PCA based approaches are more robust to noisy factors

used in prediction.

As to the weak factor case (lower panel), SPCA outperforms both PLS and PCA as

predicted by our theory. Moreover, SPCA tends to achieve optimal performance when K = 2.

Recall that in this case, we do not have asymptotic guarantee that SPCA can recover the entire

factor space. For this reason, it is possible that a third factor out of this procedure contributes

more noise than signal, hence the performance of SPCA deteriorates with an additional factor.

Both panels show that tuning K in most cases slightly deteriorates the optimal prediction

MSE and estimation error. That said, the resulting errors remain smaller than what the

second best choice of K can achieve.

Furthermore, Table 2 reports the performance of SPCA, PCA, and PLS for each entry

of y in the multi-target scenario. In this case we only report results with parameters tuned.

As discussed previously, we expect the recovery of all factors using SPCA, because to each

factor, at least one entry of yt has exposure. We first report the distance between F̂ and

the true factors F , defined by d(F̂ , F ) =
∥∥PF̂ ′ − PF ′

∥∥. We also report the MSEis for ŷi,T+1,

i = 1, 2, 3, where MSE3 is based on y3,T+1, which depends on the potentially weak factor f3T

by construction. Again, we vary the value of a and N , while maintaining aN = 100, so that

the number of predictors with exposure to the third factor is fixed throughout.

The findings here are again consistent with our theory. In particular, as a varies from 0.5

to 0.05, the third factor becomes increasingly difficult to detect. Both PCA and PLS report
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Table 1: Finite Sample Comparison of Predictors (Univariate y)

MSE ‖γ̂β − α‖
K 1 2 3 4 5 K̂ 1 2 3 4 5 K̂

T Panel A: N = 200 a = 0.5

60
SPCA 0.91 0.52 0.15 0.17 0.17 0.16 0.92 0.59 0.24 0.25 0.25 0.25
PCA 1.05 1.08 0.15 0.15 0.15 0.15 1.01 1.02 0.26 0.26 0.25 0.26
PLS 0.34 0.17 0.37 0.51 0.70 0.21 0.50 0.22 0.28 0.27 0.27 0.25

120
SPCA 0.89 0.49 0.09 0.11 0.11 0.10 0.92 0.55 0.17 0.17 0.17 0.17
PCA 1.04 1.06 0.09 0.09 0.09 0.09 1.00 1.01 0.17 0.17 0.17 0.17
PLS 0.25 0.10 0.31 0.40 0.66 0.11 0.38 0.16 0.26 0.18 0.19 0.16

Panel B: N = 2000 a = 0.05

60
SPCA 0.75 0.29 0.41 0.52 0.58 0.36 0.78 0.32 0.42 0.45 0.47 0.36
PCA 1.11 1.14 0.69 0.67 0.65 0.67 1.01 1.03 0.75 0.74 0.73 0.74
PLS 1.14 0.55 0.52 0.67 0.75 0.55 1.00 0.56 0.50 0.49 0.47 0.51

120
SPCA 0.55 0.13 0.18 0.26 0.27 0.16 0.65 0.19 0.28 0.34 0.35 0.22
PCA 1.05 1.08 0.27 0.27 0.27 0.27 1.01 1.02 0.44 0.44 0.44 0.44
PLS 0.94 0.24 0.26 0.45 0.55 0.23 0.92 0.34 0.30 0.32 0.30 0.29

Notes: We evaluate the performance of SPCA, PCA, and PLS in terms of prediction MSE and ‖γ̂β − α‖. All numbers reported
are based on averages over 1,000 Monte Carlo repetitions. We highlight the best values based on each criterion in bold.

a substantially larger distance d(F̂ , F ) than SPCA. In the mean-time, the distortion in the

factor space translates to larger prediction errors for the third target y3, in that it loads on

the weak factor f3 besides its own lag. Throughout this experiment, SPCA maintains almost

the same level of performance as a varies, demonstrating its robustness to weak factors.

Table 2: Finite Sample Comparison of Predictors (Multivariate y)

SPCA PCA PLS

a d(F̂ , F ) MSE1 MSE2 MSE3 d(F̂ , F ) MSE1 MSE2 MSE3 d(F̂ , F ) MSE1 MSE2 MSE3

T = 60
0.5 0.40 0.14 0.16 0.20 0.40 0.14 0.15 0.21 0.41 0.14 0.15 0.19
0.1 0.44 0.13 0.14 0.25 0.55 0.12 0.12 0.55 0.54 0.12 0.13 0.38
0.05 0.45 0.14 0.13 0.27 0.66 0.12 0.11 0.72 0.59 0.12 0.12 0.53

T = 120
0.5 0.30 0.07 0.08 0.10 0.30 0.07 0.08 0.10 0.31 0.08 0.08 0.10
0.1 0.31 0.07 0.07 0.12 0.36 0.06 0.06 0.22 0.39 0.07 0.06 0.17
0.05 0.31 0.07 0.07 0.11 0.39 0.06 0.06 0.29 0.44 0.06 0.06 0.22

Notes: We evaluate the performance of SPCA, PCA, and PLS in terms of the distance between estimated factor space and the
true factor space, d(F̂ , F ) =

∥∥P
F̂ ′ − PF ′

∥∥, as well as MSEi for predicting the ith entry of y. All numbers reported are based on
averages over 1,000 Monte Carlo repetitions. We vary the value a takes, while fixing aN = 100.

Last but not least, we report the histograms of the standardized prediction errors using the

CLT of Theorem 4 in Figure 1. The setting is identical to that of Table 2 with a = 0.05 and

T = 120. The histograms match well with the standard normal density for SPCA, and hence

verifies the central limit result we derive. As to PCA, there is visible distortion to normality

for y3, due to the presence of the weak factor f3.
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Figure 1: Histograms of the Standardized Prediction Errors
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Notes: We provide histograms of standardized prediction errors for each entry of y using SPCA and PCA, respectively, based
on 1,000 Monte Carlo repetitions. The dashed curve on each plot corresponds to the standard normal density.

5 Conclusion

The problem of macroeconomic forecasting is central in both academic research as well as for

designing policy. The availability of large datasets has spurred the development of methods,

pioneered by Stock and Watson (2002), aimed at reducing the dimensionality of the predictors

in order to preserve parsimony and achieve better out of sample predictions.

The existing methods that are typically applied to this problem aim to extract a common

predictive signal from the large set of available predictors, separating it from the noise and

reducing the problem’s dimensionality. What our paper adds to this literature is the idea that

the availability of a large number of predictors also allows us to discard predictors that are

not sufficiently informative. That is, predictors that are mostly noise actually hurt the signal

extraction because they contaminate the estimation of the common component contained in

other, more informative, signals.

How can one know which predictors are noisy and which are useful? The key idea of SPCA

is that one can discriminate between useful and noisy predictors by having the target itself

guide the selection. This idea, first proposed in Bair and Tibshirani (2004), naturally leads

to adding a screening step before factor extraction. But this original version of SPCA only

works in very constrained environments that they can all be extracted via PCA from the same

subset of predictors.

In practice, there is no guarantee for that to be the case. Whether a latent factor is strong

or weak (and how strong) depends on how exposed the various predictors are to it – and
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each empirical applications could feature a different mix of strong and weak latent factors.

Therefore, we propose a new SPCA approach that iterates a selection step, a factor extraction

step, and a projection step. As we demonstrate in the paper, this procedure can consistently

handle a whole range of latent factor strength. Our empirical analysis shows that indeed this

procedure fares well in an application with a large number of potentially noisy macroeconomic

predictors.

Two final points are worth noting. First, like any procedure, it will work best under some

DGPs, and worse under others. In particular, the procedure will potentially miss factors

that are extremely weak – no procedure can ever distinguish them from noise, because the

exposures of the predictors to these factors are simply too small.

Second, our theory highlights an interesting tradeoff that emerges when working with weak

factors. Detecting the weak factors using unsupervised methods (like PCA) is, by definition,

difficult or impossible: there is a wide range of strength of factors that will be missed by these

methods. Methods based on supervised selection can help extract additional signal, thanks to

the guidance from the target. This ability comes at a cost: the possibility of missing factors

that are not related to the target. Therefore, this procedure is most useful in applications,

like forecasting, where omitting factors not related to the target does not bias the prediction.

We leave to future work an additional exploration of other contexts in which SPCA can be

useful.

A Mathematical Proofs

For notation simplicity, we use X, F , U , Y , Z in place of X, F , U , Y , and Z, and use Th for

T − h. In addition, without loss of generality, we assume that Σf = IK in the proof, in that

we can always normalize the factors by Σ
−1/2
f and redefine β in (1) and α in (2) accordingly.

A.1 Proof of Theorem 1

Proof. We start with the DGP without wt first. Throughout the proof, we use X̃(k) :=(
X(k)

)
[Îk]

to denote the matrix on which we perform SVD in each step of Algorithm 1. The

first left and right singular vectors of X̃(k) are denoted by ς̂(k) and ξ̂(k), while the largest

singular value of X̃(k) is denoted by
√
Thλ̂(k). As a result, λ̂(k) = T−1

h

∥∥∥X̃(k)

∥∥∥2

. Moreover, by

definition

ς̂(k) = T
−1/2
h λ̂

−1/2
(k) X̃(k)ξ̂(k), ξ̂(k) = T

−1/2
h λ̂

−1/2
(k) X̃ ′(k)ς̂(k). (12)
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Therefore, our estimated factor at k-th step is F̂(k) = ς̂ ′(k)X̃(k) = T
1/2
h λ̂

1/2
(k) ξ̂

′
(k). Consequently,

the coefficients of regressing X and Y onto this factor are, respectively:

β̂(k) = T
−1/2
h λ̂

−1/2
(k) X(k)ξ̂(k) and α̂(k) = T

−1/2
h λ̂

−1/2
(k) Y(k)ξ̂(k). (13)

Then we define D̃(k) ∈ RqN×N iteratively by

D̃(k) = (IN)[Îk] −
k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i) X[Îk]ξ̂(i)ς̂

′
(i)D̃(i),

with D̃(1) = (IN)[Î1]. We can show by induction that X̃(k) = D̃(k)X. In fact, by Lemma 1, we

have ξ̂′(i)ξ̂(j) = 0 for i 6= j ≤ K̂ which suggests that F̂(k)’s for all k are pairwise orthogonal.

Using this property and the definition of X̃(k), we have

X̃(k) =
(
X(k)

)
[Îk]

= X[Îk]

k−1∏
i=1

MF̂ ′
(i)

= X[Îk]

(
ITh −

k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

)
, (14)

for k > 1 and when k = 1,

X̃(1) = X[Î1] = β[Î1]F + U[Î1].

Using (12), if X̃(i) = D̃(i)X for any i < k we can write (14) as

X̃(k) = X[Îk]

(
ITh −

k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

)
=X[Îk] −

k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i) X[Îk]ξ̂(i)ς̂

′
(i)X̃(i) = D̃(k)X.

Since X̃(1) = X[Î1] = D̃(1)X holds immediately by definition, we have X̃(k) = D̃(k)X by

induction. In light of this, the estimated factors satisfy

F̂(k) = ς̂ ′(k)X̃(k) = ς̂ ′(k)D̃(k)X, (15)

for all k, and by definition, we have ζ̂(k) = (ς̂ ′(k)D̃(k))
′. Moreover, using (13) the estimated

coefficient γ̂ can be written as

γ̂ =
K̂∑
k=1

α̂(k)ς̂
′
(k)D̃(k) =

K̂∑
k=1

T
−1/2
h λ̂

−1/2
(k) Y ξ̂(k)ς̂

′
(k)D̃(k). (16)
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We further define β̃(k) = D̃(k)β and Ũ(k) = D̃(k)U , then X̃(k) can be written in the form of

X̃(k) = β̃(k)F + Ũ(k). (17)

We also define the population analog of D̃(k) for each k by

D(k) = (IN)[Ik] −
k−1∑
i=1

λ
−1/2
(i) β[Ik]b(i)ς

′
(i)D(i), D(1) = (IN)[I1],

where
√
λ(k) is the leading singular value of β(k), ς(k) and b(k) are the corresponding left and

right singular vectors of β(k). By a similar induction argument, we can show that

β(k) = β[Ik]

∏
i<k

Mb(i) = D(k)β.

Intuitively, β̃(k) and D̃(k) are sample analogs of β(k) and D(k).

Similar representations to (17) can be constructed for Y(k) := Y
∏k−1

i=1 MF̂ ′
(i)

for each k.

Specifically, we have

Y(k) =Y

(
ITh −

k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

)
= α̃(k)F + Z̃(k), (18)

where α̃(k) ∈ RD×K and Z̃(k) ∈ RD×Th are defined as

α̃(k) := α−
k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i) Y ξ̂(i)ς̂

′
(i)β̃(i) and Z̃(k) := Z −

k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i) Y ξ̂(i)ς̂

′
(i)Ũ(i).

By Lemma 3, we have P(Îk = Ik) → 1 for k ≤ K̃ and P(K̂ = K̃) → 1. Thus, with

probability approaching one, we can impose that Îk = Ik for any k and K̂ = K̃ in what

follows.

To prove Theorem 1, using (17), the estimated factors can be written as

F̂(k) = ς̂ ′(k)X̃(k) = ς̂ ′(k)β̃(k)F + ς̂ ′(k)Ũ(k).

Using Lemma 5(i),
∥∥∥F̂(k)

∥∥∥ =
√
Thλ̂(k), and ‖MF ′‖ ≤ 1, we have

∥∥∥F̂(k)

∥∥∥−1 ∥∥∥F̂(k)MF ′

∥∥∥ ≤ ∥∥∥F̂(k)

∥∥∥−1 ∥∥∥ς̂ ′(k)Ũ(k)

∥∥∥ .P q
−1/2N−1/2 + T−1.
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A.2 Proof of Theorem 2

Proof. By definition of X(k) in Algorithm 1, we have

X(k) = X(k−1)MF̂ ′
(k−1)

= X

k−1∏
i=1

MF̂ ′
(i)

= X

(
ITh −

k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

)
.

Therefore, using (18), we have

X(k)Y
′

(k) = X

(
ITh −

k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

)
Y ′(k) = XY ′(k)

as Y(k)ξ̂(i) = 0 for i < k by Lemma 1. Therefore, the covariance
(
X(k)

)
[i]
Y ′(k) for each predictor

equals to X[i]Y
′

(k). Based on the stopping rule, if our algorithm stops at K̃, there are at most

qN−1 predictors among all satisfying T−1
h

∥∥∥X[i]Y
′

(K̃+1)

∥∥∥
MAX

≥ c. Let S denote the set of these

predictors. For i ∈ S, we have∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2

F
.
∥∥∥T−1

h X[i]Y
′

(K̃+1)

∥∥∥2

MAX
.P 1, (19)

where we use ‖β‖MAX . 1 from Assumption 2 and Lemma 3(vi) in the last step. On the other

hand, in light of the set I0 in Assumption 2, we have∑
i∈I0

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2

F
=
∑
i∈I0∩S

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2

F
+
∑

i∈I0∩Sc

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2

F

.P |I0 ∩ S|+ |I0 ∩ Sc|c2 ≤ qN + c2N0 = o(N0), (20)

where we use (19), |S| ≤ qN − 1, c → 0, and qN/N0 → 0. Consequently, (20) leads to∥∥∥Y(K̃+1)X
′
[I0]

∥∥∥ = oP(TN
1/2
0 ). Moreover, using (18) and that X = βF + U , we can decompose

Y(K̃+1)X
′
[I0] = α̃(K̃+1)FF

′β′[I0] + α̃(K̃+1)FU
′
[I0] + Z̃(K̃+1)F

′β′[I0] + Z̃(K̃+1)U
′
[I0]. (21)

Using (20), (21), Lemma 9(i)(ii), and the fact that
∥∥β[I0]

∥∥ . N
1/2
0 , we have∥∥∥α̃(K̃+1)

(
FF ′β′[I0] + FU ′[I0]

)∥∥∥ = oP

(
N

1/2
0 T

)
. (22)
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Also, using Assumption 4(i), Assumption 1(i) and Weyl’s theorem, we have

|σK(FF ′β′[I0] + FU ′[I0])− σK(Thβ[I0])| ≤
∥∥FU ′[I0]

∥∥+
∥∥T−1

h FF ′ − IK
∥∥∥∥Thβ[I0]

∥∥
.PN

1/2
0 T 1/2. (23)

Since Assumption 2 implies that σK(β[I0]) � N
1/2
0 , we have σK(FF ′β′[I0] + FU ′[I0]) � N

1/2
0 T .

Using this result, (22) and the inequality
∥∥∥α̃(K̃+1)

(
FF ′β′[I0] + FU ′[I0]

)∥∥∥ ≥ σK(FF ′β[I0] +

FU ′[I0])
∥∥∥α̃(K̃+1)

∥∥∥, we have
∥∥∥α̃(K̃+1)

∥∥∥ P−→ 0. That is, by definition of α̃(K̃+1) in (18),

∥∥∥∥∥∥α−
K̃∑
i=1

Y ξ̂(i)

ς̂ ′(i)β̃(i)√
Thλ̂(i)

∥∥∥∥∥∥ = oP(1). (24)

Next, (16) and β̃(k) = D̃(k)β imply that

γ̂β =
K̃∑
i=1

T
−1/2
h λ̂

−1/2
(i) Y ξ̂(i)ς̂

′
(i)β̃(i).

Therefore, (24) is equivalent to ‖γ̂β − α‖ = oP(1).

As shown in Lemma 12, Assumptions 1, 3, and 4 hold when we replace F , Z and U by

FMW ′ , ZMW ′ and UMW ′ . Therefore all of the lemmas and the result ‖γ̂β − α‖ = oP(1) also

hold when wt is included. We write the prediction error of yT+h as

ŷT+h − ET (yT+h) = γ̂xT + (α̂w − γ̂β̂w)wT − αfT − αwwT (25)

=(γ̂β − α)
(
fT − FW ′(WW ′)−1wT

)
+ γ̂(uT − UW ′(WW ′)−1wT ) + ZW ′(WW ′)−1wT .

Using (16) and ‖Y ‖ ≤ ‖αF‖+ ‖Z‖ .P T
1/2 by Assumption 1, we have

‖γ̂uT‖ ≤
∑
k≤K̃

T
−1/2
h λ̂

−1/2
(k) ‖Y ‖

∥∥∥ξ̂(k)

∥∥∥∥∥∥ς̂ ′(k)D̃(k)uT

∥∥∥ .P

∑
k≤K̃

λ̂
−1/2
(k)

∥∥∥ς̂ ′(k)D̃(k)uT

∥∥∥ , (26)

and

T−1
h ‖γ̂UW

′‖ ≤
∑
k≤K̃

T
−3/2
h λ̂

−1/2
(k) ‖Y ‖

∥∥∥ξ̂(k)

∥∥∥∥∥∥ς̂ ′(k)D̃(k)UW
′
∥∥∥ .P

∑
k≤K̃

T−1
h λ̂

−1/2
(k)

∥∥∥ς̂ ′(k)Ũ(k)W
′
∥∥∥ .
(27)

36



Using λ̂(k) �P qN from Lemma 3 and Lemma 5(ii)(iv), we have

T−1
h λ̂

−1/2
(k)

∥∥∥ς̂(k)Ũ(k)W
′
∥∥∥ .P q

−1N−1 + T−1, λ̂
−1/2
(k)

∥∥∥ς̂ ′(k)D̃(k)uT

∥∥∥ .P q
−1/2N−1/2 + T−1/2. (28)

Therefore, ‖γ̂uT‖ = oP(1). Furthermore, with ‖(WW ′)−1‖ .P T−1 from Assumption 1, we

have ‖γ̂UW ′(WW ′)−1‖ = oP(1). Together with ‖FW ′‖ .P T 1/2, ‖ZW ′‖ .P T 1/2 from

Assumption 1 and ‖γ̂β − α‖ = oP(1), we show that each term of (25) vanishes, and hence

ŷT+h − ET [yT+h]
P−→ 0.

A.3 Proof of Theorem 3

Proof. As in the proof of Theorem 1, we impose that K̂ = K̃ and Îk = Ik, since Lemma

3 shows that both events occur with probability approaching 1. As shown in Lemma 2(iv),

under the assumption that λK(α′α) & 1, we have K̃ = K. Together with P(K̂ = K̃)→ 1, we

have obtained (i) of Theorem 3. Below we directly impose that K̂ = K.

Again, following the same argument above (25), we only need analyze the case without wt.

As F̂(k) = T
1/2
h λ̂

1/2
(k) ξ̂

′
(k), Theorem 1 implies

∥∥∥ξ̂′(k)MF ′

∥∥∥ .P q
−1/2N−1/2 + T−1 for k ≤ K. Let v

denote F ′(FF ′)−1/2, we have∥∥∥ξ̂ − PF ′ ξ̂
∥∥∥ =

∥∥∥ξ̂ − vv′ξ̂∥∥∥ .P q
−1/2N−1/2 + T−1, (29)

where ξ̂ is a T ×K matrix with each column equal to ξ̂(k). (29) implies that
∥∥∥ξ̂′vv′ξ̂ − IK

∥∥∥ .P

q−1/2N−1/2 + T−1. By Weyl’s inequality, |σi(ξ̂′v) − 1| .P q−1/2N−1/2 + T−1, for 1 ≤ i ≤ K,

and thus ∥∥∥v − ξ̂ξ̂′v∥∥∥ ≤σ−1
K (v′ξ̂)

∥∥∥vv′ξ̂ − ξ̂ξ̂′vv′ξ̂∥∥∥ .P

∥∥∥vv′ξ̂ − ξ̂∥∥∥+
∥∥∥ξ̂(ξ̂′vv′ξ̂ − IK)

∥∥∥
.Pq

−1/2N−1/2 + T−1.

Then, using this, (29), and the fact that ‖v‖ = 1 and
∥∥∥ξ̂∥∥∥ = 1, we have

∥∥PF̂ ′ − PF ′
∥∥ =

∥∥∥ξ̂ξ̂′ − vv′∥∥∥ ≤ ∥∥∥ξ̂(ξ̂ − vv′ξ̂)′∥∥∥+
∥∥∥(ξ̂ξ̂′v − v)v′

∥∥∥ .P q
−1/2N−1/2 + T−1.

Next, we need a more intricate analysis of γ̂. Recall from the proof of Theorem 2 that

γ̂β =
K̃∑
k=1

T
−1/2
h λ̂

−1/2
(k) Y ξ̂(k)ς̂

′
(k)β̃(k). (30)
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Denote B1 = (b11, . . . , bK̂1) ∈ RK×K̂ , B2 = (b12, . . . , bK̂2) ∈ RK×K̂ , where

bk1 = T−1/2F ξ̂(k), bk2 = λ̂
−1/2
(k) β̃′(k)ς̂(k). (31)

By Lemma 6, ∥∥∥T−1/2
h Zξ̂(k) − T−1

h ZF ′bk2

∥∥∥ .P T
−1 + q−1N−1. (32)

As we impose that K̂ = K̃ = K, combining (30), (31) and (32), with ‖B1‖ .P 1, ‖B2‖ .P 1

from Lemma 10, we have

∥∥γ̂β − αB1B
′
2 − T−1

h ZF ′B2B
′
2

∥∥ .P T
−1 + q−1N−1. (33)

Using Lemma 10(iv)(v), we obtain
∥∥γ̂β − α− T−1

h ZF ′
∥∥ .P T

−1 + q−1N−1.

A.4 Proof of Theorem 4

Proof. As in the proof of Theorem 2, we have ‖FW ′(WW ′)−1‖ .P T−1/2 from Assump-

tion 1 and ‖γ̂UW ′(WW ′)−1‖ .P T−1 + q−1N−1 as shown in (27) and (28). Together with∥∥γ̂β − α− T−1
h ZF ′

∥∥ .P T
−1 + q−1N−1, we can derive from (25) that:

ŷT+h − ET (yT+h) = T−1
h ZF ′fT + ZW ′(WW ′)−1wT + γ̂uT +OP(T−1 + q−1N−1).

By Assumption 1, we have |λi
(
T−1
h Σ

−1/2
w WW ′Σ

−1/2
w

)
− 1| .P T

−1/2 and thus

∥∥ZW ′(WW ′)−1wT − T−1
h ZW ′Σ−1

w wT
∥∥ ≤ T−1

h ‖ZW
′‖
∥∥(T−1

h WW ′)−1 − Σ−1
w

∥∥ ‖wT‖
.PT

−1/2
h

∥∥T−1
h Σ−1/2

w WW ′Σ−1/2
w − ID

∥∥ = T
−1/2
h max

i≤D
|λi
(
T−1
h Σ−1/2

w WW ′Σ−1/2
w

)−1 − 1|

.PT
−1. (34)

For γ̂uT , by (16), we have γ̂uT =
∑K

k=1 α̂(k)ς̂
′
(k)D̃(k)uT and thus∥∥∥∥∥γ̂uT −

K∑
k=1

λ
−1/2
(k) αb(k)ς

′
(k)D(k)uT

∥∥∥∥∥ ≤
K∑
k=1

∥∥∥α̂(k)ς̂
′
(k)D̃(k)uT − λ−1/2

(k) αb(k)ς
′
(k)D(k)uT

∥∥∥ . (35)

Lemma 8(vi) gives

q−1/2N−1/2|ς̂ ′(k)D̃(k)uT − ς ′(k)D(k)uT | .P T
−1 + q−1N−1. (36)
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In addition, (13) and Lemma 1 give λ̂
1/2
(k) α̂(k) = T

−1/2
h Y ξ̂(k) = αbk1 + T

−1/2
h Zξ̂(k). With (32),

‖ZF ′‖ .P T
1/2 and ‖bk2‖ .P 1 from Lemma 10(i), this equation leads to∥∥∥λ̂1/2

(k) α̂(k) − αbk1

∥∥∥ ≤ ∥∥∥T−1/2
h Zξ̂(k) − T−1

h ZF ′bk2

∥∥∥+
∥∥T−1

h ZF ′bk2

∥∥ .P T
−1/2 + q−1N−1.

Using
∥∥bk2 − b(k)

∥∥ .P T−1/2 + q−1/2N−1/2 implied by Lemma 10(iii) and λ̂(k) �P qN from

Lemma 3(iii), we have∥∥∥α̂(k) − λ̂−1/2
(k) αb(k)

∥∥∥ ≤∥∥∥α̂(k) − λ̂−1/2
(k) αbk2

∥∥∥+
∥∥∥λ̂−1/2

(k) α(b(k) − bk2)
∥∥∥

.PT
−1/2q−1/2N−1/2 + q−1N−1. (37)

Also, with Lemma 3(iii), we have

|λ̂−1/2
(k) − λ

−1/2
(k) | ≤ λ̂

−1/2
(k) |λ̂

1/2
(k) /λ

1/2
(k) − 1| .P T

−1/2q−1/2N−1/2 + q−1N−1.

Since
∥∥b(k)

∥∥ = 1, the above two inequalities lead to∥∥∥α̂(k) − λ−1/2
(k) αb(k)

∥∥∥ ≤ T−1/2q−1/2N−1/2 + q−1N−1. (38)

For each term in the summation of (35), we have∥∥∥α̂(k)ς̂
′
(k)D̃(k)uT − λ−1/2

(k) αb(k)ς
′
(k)D(k)uT

∥∥∥
≤
∥∥∥α̂(k)(ς̂

′
(k)D̃(k)uT − ς ′(k)D(k)uT )

∥∥∥+
∥∥∥(α̂(k) − λ−1/2

(k) αb(k))ς
′
(k)D(k)uT

∥∥∥ . (39)

Note that (37) also implies
∥∥α̂(k)

∥∥ .P q
−1/2N−1/2 as λ̂(k) � qN , and that (36) implies the first

term in (39) is OP(T−1 + q−1N−1). Furthermore, |ς ′(k)D(k)uT | .P 1 from Lemma 5(iv) and

(38) show that the second term in (39) is also OP(T−1 + q−1N−1). Given this, (35) becomes∥∥∥∥∥γ̂uT −
K∑
k=1

λ
−1/2
(k) αb(k)ς

′
(k)D(k)uT

∥∥∥∥∥ .P T
−1 + q−1N−1. (40)

To sum up, we have established that

ŷT+h − ET (yT+h) =
ZF ′

Th
fT +

ZW ′

Th
Σ−1
w wT +

K∑
k=1

λ
−1/2
(k) αb(k)ς

′
(k)D(k)uT +OP

(
T−1 + q−1N−1

)
.

In the general case that Σf may not be IK , the first term becomes T−1
h ZF ′Σ−1

f fT . Using the
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fact ς(k) = λ
−1/2
(k) β(k)b(k) = λ

−1/2
(k) β[Ik]b(k) and the iterative definition of D(k), we can see that

λ
−1/2
(k) ς ′(k)D(k)uT is exactly the kth row of Λ−1Ω′ΨuT with Λ, Ω, and Ψ defined in Theorem 4.

Using Delta method and Assumption 6, it is straightforward to obtain the desired CLT.
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