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Both researchers and policymakers have long recognized innovation as a key driver of

long-term economic growth. From a policy perspective, one of the most common ways in which

governments attempt to promote innovation is through subsidizing research and development

(R&D) investments, either through providing direct government funding for R&D or via tax

provisions that change the after-tax price of private R&D with the goal of changing the rate

and/or composition of privately funded research.

The research literature – both theoretical and empirical – has provided a variety of support for

the idea that R&D tax and subsidy policies can generate statistically and economically

significant effects on innovation- and growth-related outcomes. While the research literature

historically evolved in somewhat separate strands of macroeconomic theory and microeconomic

evidence, in recent years progress has been made on stitching together micro evidence with

macro aggregates in a way that allows this literature to speak more clearly and credibly to an

evidence-based view of how changes to R&D tax and subsidy policies would be expected to

affect productivity and economic growth.

This progress in the research literature is fortuitously coincident with active Congressional

interest in various R&D-related legislative provisions, including changes to federally funded

research investments, such as the CHIPS and Science Act (117th Congress, H.R. 4346), and

changes to R&D-related tax incentives, such as the 2017 tax act (115th Congress, H.R. 1). But

unfortunately, the research evidence on the economic effects of R&D investments has largely

been absent from these policy debates.

If this research literature had been incorporated into recent policy discussions around the

CHIPS and Science Act, it is possible that Congress’s decisions over whether to fully fund the

investments authorized in the CHIPS Act would have been different. Given the information that

was provided, Congressional appropriations for the federal research agencies in 2023 and 2024

fell below the levels authorized by CHIPS. For example, in fiscal year 2024, the gap between

appropriations and authorizations was over $7 billion (Hourihan 2023). Congressional decisions

of whether to fulfill authorizations with appropriations are a policy choice. As far as we are

aware, federal agencies such as the Congressional Budget Office (CBO) have never been

asked to provide Congress with publicly disclosed quantitative estimates–based on the research

literature–of the expected effects of such policy choices on the US economy and the federal

budget. In addition, CBO’s projections of the economic and follow-on budgetary effects of
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federally funded R&D are not included in the standard cost estimates that CBO provides to

Congress when they are considering legislative provisions related to federally funded R&D.

The paper is organized as follows. Section I provides a brief background on federally funded

R&D as well as some key aspects of private R&D relevant to tax provisions. Section II exposits

a concrete example of how federal agencies currently model R&D – namely, the framework

used by CBO to evaluate the economic effects of federal investments, including R&D – and,

within the context of that framework, takes stock of the evidence from the research literature on

the economic effects of R&D investments. Section III then discusses how and where this

evidence from the research literature could potentially inform three additional applications:

CBO’s cost estimates of legislative provisions related to federally funded R&D, JCT’s revenue

estimates of R&D-related tax provisions, and modeling of R&D in baseline budgetary and

economic projections such as the total factor productivity projections generated by the Federal

Reserve and by CBO. Throughout the paper, we highlight connections to the research literature

and illustrative examples of how this research might be communicated to Congress and the

public in discussions about R&D-related policies.

I. Preliminaries: Federally funded and private R&D

Governments frequently subsidize research and development (R&D) investments both directly,

through the direct provision of government funding for R&D, and indirectly via tax provisions that

change the after-tax price of private R&D.

When discussing private R&D investments it is important to keep in mind that, by default, R&D

is treated in business and tax accounting – and was treated in the US National Economic

Accounts until 2013 – as a current expense item for businesses, with expenses like scientists’

wages and lab materials being deducted as a current cost of production rather than over time in

the form of depreciation as with investment in physical capital (Moylan and Okubo 2020). As

described by Bloom et al. (2019), this implies that the tax code automatically treats private R&D

more generously than physical capital investment, because most R&D expenses are current

costs that can be written off in the year in which they occur, whereas investments in physical

capital must be written off over several years. But in addition to this structural advantage in the

tax code, many countries provide additional direct fiscal incentives for private R&D investments,

such as allowing additional deductions to be made against tax liabilities.
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Figure 1 provides a very rough characterization – using data from OECD countries in 2017 – of

the cross-country variation in direct government funding for R&D and tax support for private

R&D, as defined in OECD (2015). Tax support is a small share of total government support for

R&D in some countries like New Zealand and Finland, whereas direct government funding is a

small share of total government support in some countries like Australia and the Netherlands.

Figure 1. Direct government spending and government tax support for business R&D in 2017

Notes: Reprinted from Figure 4 in Bryan and Williams (2021). Government tax support combines national
and sub-national tax support for business R&D expenditure. Data on national tax support is not available
in Israel. Data on sub-national tax support is not available in the US and Spain. Source: Organization for
Economic Co-operation and Development (2020).

Focusing on the US, estimates by the staff of the Joint Committee on Taxation (JCT) and the US

Treasury suggest the tax credit for increasing research activities (26 U.S. Code § 4) has been,

in recent years, one of the largest US tax expenditures in terms of total projected revenue
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effects – roughly $20 billion (according to JCT) to $25 billion (according to Treasury) in 2023.2 In

terms of direct spending, in 2015 the US federal government was responsible for around $128

billion of R&D (NSF 2018, Table 4-17). Historically, federally funded R&D – as defined in OMB

Circular A-11 (2024) – used to be the largest component of US R&D spending. However, as

shown in Figure 2, continuously since 1980 business-funded R&D has outpaced federally

funded R&D as a share of GDP.

Figure 2. US R&D as a share of GDP, by source of funds: 1953-2015

Notes: Reprinted from Figure 2 in Bryan and Williams (2021). This figure shows US R&D spending – total
and by source – as a share of GDP from 1953 to 2015. Source: Appendix Table 4-1 of National Science
Foundation (2018).

2 For example, see https://www.jct.gov/publications/2023/jcx-59-23/ for JCT’s estimates from December
2023. The first US federal R&D tax credit was introduced in 1981, although as noted by Bryan and
Williams (2021) R&D tax policy was in fact the first recommendation in Vannevar Bush’s Science: The
Endless Frontier (1945).

https://www.jct.gov/publications/2023/jcx-59-23/
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Looking at US federally funded R&D in more detail, Table 1 lists federal obligations for R&D by

agency for the six agencies with the largest R&D obligations in fiscal year 2015. While federal

research support involves many different federal government departments and agencies, the

largest in dollar terms were the Department of Defense (DOD) and the Department of Health

and Human Services (HHS, which includes the National Institutes of Health, or NIH).

Table 1. Federal obligations for R&D, by agency and type of work: 2015

Agency Total R&DBasic research
Applied
research Development

Percentage of total R&D

Basic research

Applied

research Development

All agencies 128,573.2 31,527.1 32,118.2 64,927.8 24.5 25.0 50.5

Department of

Defense 61,513.5 2,133.4 4,558.1 54,822.1 3.5 7.4 89.1

Department of

Health and

Human

Services 30,272.1 15,076.9 15,119.9 75.4 49.8 49.9 0.2

Department of

Energy 11,391.0 4,460.4 4,181.1 2,749.5 39.2 36.7 24.1

National

Aeronautics

and Space

Administration 11,360.7 3,209.7 2,329.7 5,821.3 28.3 20.5 51.2

National

Science

Foundation 5,669.7 4,973.9 695.8 0.0 87.7 12.3 0.0

Department of

Agriculture 2,341.0 924.5 1,203.9 212.7 39.5 51.4 9.1

Notes: Source: Table 4-17 of National Science Foundation (2018). Millions of current dollars. This table
lists the six agencies with the largest R&D obligations in fiscal year 2015.

Table 1 also reports, for each of these agencies, federal obligations for R&D across three

categories referred to as type of work: basic research, applied research, and development. On

average, federal R&D is around 25% basic research, around 25% applied research, and around

50% development research. However, these averages mask sharp differences across these

agencies in the type of work they support. Around 89% of DOD’s R&D is development, whereas

88% of NSF’s R&D is basic research. HHS’s R&D (which, again, includes NIH) is nearly evenly
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split between basic research and applied research, and the Department of Energy’s portfolio is

roughly evenly split across all three categories. NASA’s portfolio mirrors the overall federal

averages quite closely, while the Department of Agriculture primarily supports applied research

(51%) and basic research (40%).

II. Connecting evidence on the economic effects of R&D with policy analysis

In order to ground our discussion of the research literature on the economic effects of R&D

investments in the context of a specific example, in this section we start by expositing (briefly)

the framework used by the Congressional Budget Office (CBO) to evaluate the economic effects

of federal investments, including R&D.

CBO’s work is a useful example in part because CBO’s published reports provide a particularly

clear and transparent description of their framework around which we can structure our

discussion. While this framework is of course specific to CBO, our understanding is that, like

CBO, many if not most federal agencies model R&D – by default – as if it were the same as any

other form of investment. Note that this modeling of R&D as investment is natural in part

because it dovetails with the fact that, starting in 2013, R&D was incorporated into the US

National Economic Accounts as investment, after the National Income and Product Accounts

(NIPAs) were revised to count expenditures on intellectual property – including R&D – as

investment.3

II(a). CBO’s 2021 framework for modeling federal investments

CBO models the macroeconomic and budgetary effects of federal investment in physical capital,

education, and R&D in a unified framework (see, for example, CBO 2013, 2014b, 2016, 2019,

2021a). This unified framework offers consistency across the wide variety of goods and services

3 Patrick Driessen thoughtfully pointed us to BEA (2013), which notes that this change to recognize R&D
as investment increased GDP by the amount of business R&D investment and by the consumption of
fixed capital (CFC) associated with R&D investment by non-profit institutions serving households (NPISH)
and by general governments; BEA’s preliminary estimates suggested this change increased GDP by
about 2 percent, or 300 billion. Eaton and Kortum (2021) argue that this current practice of treating R&D
as investment and incorporating the stock of R&D into the stock of physical capital inappropriately treats
R&D as a rival factor of production, even though R&D is typically modeled as non-rival. They develop a
theoretical framework based on that insight and draw out implications for measuring intangibles and
productivity growth.
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funded by the federal government with the intention of increasing private sector productivity and

economic growth in the future.

In 2021, CBO published (2021b) a report titled Effects of Physical Infrastructure Spending on

the Economy and the Budget Under Two Illustrative Scenarios.4 At a conceptual level, the

framework presented in this 2021 report is essentially unchanged from CBO’s previous

descriptions of their framework for analyzing the macroeconomic and budgetary effects of

federal investments. What was new in the 2021 report is that it laid out in much more concrete

terms how the agency would tailor that framework to specific applications, which the 2021 report

illustrated with the example of physical infrastructure investments. This step forward was

valuable in part because it clarifies what assumptions need to be made in order to apply this

framework to a given example, such as R&D.

The 2021 report focuses on two illustrative scenarios that would increase federal investment in

physical infrastructure by $500 billion over 10 years: scenario 1 is deficit-neutral, financing the

infrastructure investment by reducing the government’s noninvestment purchases; scenario 2

finances the infrastructure investment by increasing federal borrowing. For both scenarios, CBO

models the increase in economic output stemming from changes in productivity; in the second

scenario, CBO also models how the increased spending affects overall demand and output in

the short-term, and the effect of increased federal borrowing on private investment (so-called

“crowding out,” which dampens output). Figure 3 summarizes CBO’s estimates of the effects of

these illustrative scenarios on GDP.

4 As discussed by Elmendorf et al. (2024), this report was prepared in response to a request from
then-Senator Robert Portman, who wanted to bring a more comprehensive – that is, dynamic – analysis
to bear in discussions of the bipartisan Infrastructure Investment and Jobs Act (Bolton 2021). Section
III(a) discusses dynamic scoring in more detail.
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Figure 3. CBO (2021) estimates of changes in real GDP from two illustrative scenarios

Notes: Reprinted from Figure 1 in CBO (2021b). See www.cbo.gov/publication/57327#data. Under both
scenarios, funding for physical infrastructure would increase by $50 billion annually for 10 years. Under
Scenario 1, the resulting increase in outlays would be fully offset by a reduction in the government’s
noninvestment purchases; under Scenario 2, it would be financed by increased borrowing. Effects are
estimated relative to CBO’s July 2021 economic projections. Real GDP is gross domestic product
adjusted to remove the effects of inflation. Years are calendar years.

In expositing how to apply this framework to a different policy change, the report lists five factors

that need to be modeled:

1. How quickly funding leads to outlays

2. How outlays are financed

3. How much outlays increase productivity

4. How quickly outlays increase productivity

5. How state and local governments respond to additional federal funding

As we will describe in Section III, modeling of the first factor need not draw on the research

literature but rather would be drawn directly from the legislative text or analogous sources for

whatever specific policy is being modeled. Likewise, the second factor can be analyzed in

CBO’s standard frameworks. For example, for legislative spending provisions without explicit

funding provisions, CBO typically applies estimates such as those from Huntley (2014) to

quantify the extent to which larger deficits would crowd out private capital. Models such as

CBO’s budgetary feedback model (Frentz et al. 2020) can be applied to estimate how changes

in the macroeconomy are expected to affect the federal budget. Hence, the remainder of this

http://www.cbo.gov/publication/57327#data
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section focuses on summarizing the evidence relevant to the remaining three factors for the

case of federally funded R&D.5

II(b). How do R&D outlays affect productivity?

The research literature on this question historically evolved in somewhat separate strands of

macroeconomic theory and microeconomic evidence. On the macroeconomic theory side, the

Solow-Swan model (Solow 1956, Swan 1956) exposited a framework within which there would

be no sustained economic growth in the absence of improvements in the state of technology.

However, the Solow-Swan model generates growth only by introducing an exogenous rate of

technological progress.6 Subsequent work focused on innovation-based endogenous growth

models (e.g., Romer 1990, Aghion and Howitt 1992, Grossman and Helpman 1991) which

instead modeled technological progress as a function of incentives, so that new ideas did not

just fall from the sky but instead were the product of very intentional, endogenous decisions

about research investments made by firms and researchers. This type of setup naturally allows

for government policies that affect research investments – such as federally funded subsidies to

R&D as well as R&D-related tax provisions – to affect productivity and growth.

The traditional justification that economists have exposited for why such government policies

could be welfare improving rests on an assumed market failure: because ideas are public

goods, we expect them to be under-provided by the private market (see, e.g., Nelson 1959 and

Arrow 1962). Consistent with this idea, Jones and Summers (2022) argue that a calibration of

modern growth theory models implies a social rate of return to R&D that is likely to be quite

high. Bloom, Schankerman, and Van Reenen (2013) present evidence from a more structural,

production-function based approach that leverages cross-state variation in R&D tax credits, and

estimate that the social returns to R&D are 2-4 times as large as the private returns.

Taken together, these macroeconomic theory approaches and these two more quantitative

papers (Jones and Summers 2022; Bloom, Schankerman, and Van Reenen 2013) suggest that

6 Contemporaneously, the empirical literature on so-called “growth accounting” by Solow (1957) and
others suggested that the share of long-run economic growth that could not be explained by changes in
capital and labor inputs was quite high; subsequent work argued that the bulk of this “Solow residual”
could be explained by technological progress.

5 See also CBO (2018a), which is essentially a call for research on some R&D-specific parameters
needed to apply such a framework to the case of R&D. For an earlier treatment of federally funded R&D
by CBO, see also CBO (2007).
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knowledge spillovers exist, are quantitatively important in magnitude, and are a key driver of

productivity and growth. However, this type of indirect evidence does not itself provide guidance

on what types of policy changes might change knowledge spillovers and productivity growth in

practice. This is where the microeconomic literature has made progress over – say – the last

decade.

A series of papers by Pierre Azoulay, Joshua Graff Zivin, Danielle Li, and Bhaven Sampat –

perhaps most notably Azoulay et al. (2019) – carefully stitched together data on federal R&D

funding from the US National Institutes of Health (NIH) to citations of those NIH grants in

patents linked to new drug approvals, combined with quasi-experimental variation in NIH

funding, in order to quantify the contribution of NIH funding to the development of new drugs. In

a similar spirit, Myers and Lanahan (2022) combined variation in state-specific matching policies

for US Department of Energy grants with carefully constructed data on geographic and

technological linkages across firms to quantify R&D spillovers. Both papers conclude that

spillovers from federally funded R&D are substantial – with firms capturing at most half of the

returns. However, neither paper was able to trace the quasi-experimental variation in federal

R&D through to quantify effects on productivity and growth.

Most relevant to our work here are two recent papers – Fieldhouse and Mertens (2023) and

Dyevre (2023) – which build on this literature and directly tackle the challenge of estimating the

relationship between federally funded R&D and productivity. Notably, while the two papers rely

on quite different empirical approaches, they end up reaching quantitatively similar conclusions

which, together with the evolution of the literature described above, increases our confidence in

their estimates.

Fieldhouse and Mertens (2023) build on the work of Romer and Romer (1989) and others in

constructing a narrative classification of the universe of significant postwar changes in R&D

appropriations for five major federal agencies from 1947-2019: the Department of Defense

(DOD), Department of Energy (DOE), National Aeronautics and Space Administration (NASA),

National Institutes of Health (NIH) within the Department of Health and Human Services,

National Science Foundation (NSF), and their historical precursors. As we will discuss, the

nature of this data – being built directly from information on appropriations – is in many ways

ideal for mapping the structurally estimated returns from this approach to various policy

applications. Taken at face value, Fieldhouse and Mertens’ estimates imply net returns of
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180-204 percent, and suggest that federally funded R&D is responsible for around 25 percent of

post-war productivity growth in the US.

Dyevre (2023) constructs a more micro-based approach, linking data on US firms over a similar

time period (1950-2020) to two sources of quasi-experimental variation. First, building on the

work of Jaffe (1986), he constructs measures of the exposure of firms to different US federal

agencies’ R&D investments based on the distribution of firms’ patents across technological

areas. Second, building on Kling’s (2006) foundational work on judge leniency, Dyevre extends

the work of Sampat and Williams (2019), which leveraged quasi-random variation in the

assignment of patent applications to patent examiners at the US Patent and Trademark Office.

Combining both estimates in a general equilibrium model in the spirit of Luttmer (2007) and

Jones and Kim (2018), Dyevre estimates that the decline in federally funded R&D can explain

around a third of the decline in US TFP growth from 1950-2018.

Connecting back to the 2021 CBO infrastructure report, let us emphasize a few key implications

of this literature for that framework.

First, the returns to federally funded R&D appear to be substantially higher than the returns to

other forms of federal investment such as physical infrastructure. In the absence of evidence to

the contrary, CBO and other agencies appear to – by default – often model R&D as if it has the

same returns as any other form of investment, such as physical capital investment. For

example, CBO (2016) acknowledges that rates of return can be different for different types of

federal investment, but notes that because the empirical literature at that time did not – in CBO’s

assessment – offer a satisfactory way to estimate different rates of return for different types of

federal investment, CBO applied a single rate of return that was meant to capture the average

return on different types of federal investments. CBO (2021b) states that on the basis of

published studies of the US economy, CBO projects that an additional dollar of federally funded

infrastructure capital increases real potential GDP by 12.4 cents on average. The agency

estimates that the stock of public capital depreciates over time at an annual rate of 3.2 percent,

so the net effect is an increase of 9.2 cents.
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The available literature suggests that the returns to federally funded R&D are notably higher

than this estimate.7 Consider as an example the Fieldhouse and Mertens estimate; we will

return below to discuss this estimate in the context of other estimates in the literature.

Fieldhouse and Mertens (2023) apply a depreciation rate of 16 percent, and estimate that even

after applying that higher depreciation rate that their estimated returns to R&D (Table 2)

substantially exceed those for public infrastructure assumed by CBO. Their preferred estimate is

a net rate of return of 197%, or nearly two dollars on average for each additional dollar of

federally funded R&D (as opposed to the 9.2 cents net effect used by CBO by default for federal

investments).8

In part because Fieldhouse and Mertens (2023) document (Appendix D.5) that their estimates

are quite sensitive to the assumed depreciation rate, the appropriate depreciation rate is itself

worth discussing. What the appropriate depreciation rate is for R&D – sometimes referred to as

the “Griliches problem” (Griliches 1979) – is a classic question in the economics of productivity.

Fieldhouse and Mertens cite the 16% depreciation rate as the average depreciation rate for

government R&D calculated by the Bureau of Economic Analysis (BEA). However, that 16%

figure is generally attributed to Li (2012), where Table 4 suggests a 16% depreciation rate of

business R&D assets for “scientific research and development.” At a conceptual level, this figure

is perhaps most accurately described as a private returns depreciation rate for applied R&D (or

for development investments). One can imagine heterogeneity along two relevant dimensions

that would be relevant for contrasting that 16% figure with the rate that is conceptually

appropriate for federally funded R&D. First is the basic research versus applied (or

development) distinction, if there is reason to think (as BEA has itself noted) that basic R&D

depreciates more slowly. Second is the distinction between private and social returns, which

may differ in both timing and levels.9

9 As an extreme example, the private returns to R&D on a pharmaceutical drug largely end when the drug
comes off patent, and in levels would include product market spillovers to other firms (which would not be
included in a social returns estimate); in contrast, social returns to the same R&D investment may be
higher post-patent expiration (if generic entry expands access), and may in many cases continue for
years beyond patent expiration.

8 Note that Fieldhouse and Mertens’ estimate is not a direct mapping to returns to potential GDP as in
CBO’s estimate, but the impulse response functions reported for TFP and potential GDP in Figures 6 and
7 are qualitatively similar.

7 Note that the 12.4 cents estimate was framed by CBO (2021b) as being specific to physical
infrastructure, rather than as an average rate of return across different types of federal investments
(which could have included R&D).
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Our read is that BEA has not consistently defined nor applied different depreciation rates for

government R&D and private R&D, and when different depreciation rates have been proposed

by BEA they have often been motivated by differing investment portfolios rather than differences

in depreciation rates of a given portfolio of investments funded by a different source.10 For

example, Moylan and Okubo (2020) initially apply a depreciation rate of 11% for R&D

investment, and later exposit a scenario which assumes a 20 percent depreciation rate for

business R&D and an 8.3 percent depreciation rate for R&D by non-profits and general

government; they note that public R&D is “closer to basic research and would be likely to

obsolesce more slowly.” The cross-agency variation in basic, applied, and development

research reported in Table 1 could form the basis for assigning agency-specific depreciation

rates that vary as a function of these differences.11

Our discussion in this section thus far has focused attention on evidence from one paper,

Fieldhouse and Mertens. But of course, federal agencies generally prefer not to base their

projections on estimates from a single paper. In this case, the implied returns estimates in

Dyevre (2023) are a similar order of magnitude. But rather than simply choosing between these

two estimates, or taking a simple average, agencies may prefer to collate information from a

broader set of studies.

One methodology for doing this would be to construct a broader distribution of estimates based

on what could be called “surrogate endpoints” for productivity, drawing on an analogy with

clinical trials.12 Traditionally, clinical trials are required to show that a drug induces statistically

significant improvements in survival. However, in some cases, regulators such as the US Food

and Drug Administration instead accept evidence that a drug improves an intermediate or

surrogate endpoint – such as the level of cancer in a patient’s blood or bone marrow – because

changes in that outcome are a reliable indicator that changes in mortality will be observed later.

12 On the clinical trials example, see Budish et al. (2015); see also Athey et al. (2024).

11 CBO (2021a) cites a 2013 BEA publication BEA Depreciation Estimates which reports separate
depreciation rates for different categories of federal defense and non-defense R&D – ranging from 7% for
NASA R&D to 19% for extramural defense R&D – but that publication does not clarify whether that
heterogeneity was modeled as a function of the mix of basic, applied, and development research across
agencies.

10 Note that BEA is in the process of developing a new satellite account that measures research and
development activity in a framework consistent with the measurement of GDP and other BEA statistics;
the first milestone of this project – some experimental statistics – was issued in May 2024:
https://www.bea.gov/data/special-topics/research-and-development-satellite-account.

https://www.bea.gov/data/special-topics/research-and-development-satellite-account


14

In the case of policy changes affecting the level of federally funded R&D, some studies – such

as Fieldhouse and Mertens (2023) and Dyvere (2023) – quantify the effects of policy changes

on productivity directly. However, a broader set of studies quantify effects on outcomes that,

according to both theory and empirical evidence, co-move with productivity but are observed on

a shorter time-horizon; patents are one example.13 One could incorporate the literature

quantifying the effects of changes in federally funded R&D on patenting into estimates of the

effects of federally funded R&D on productivity in two ways:

1. First, one can infer an estimate of the relationship between R&D and patents, and –

separately – of the relationship between patents and productivity from the two studies

that analyze all three variables (Fieldhouse and Mertens 2023; Dyvere 2023)

2. Second, one can instead infer the relationship between patents and productivity from

studies such as Kogan et al. (2017), which estimate how patents affect productivity in a

non-R&D context, and apply that scaler to studies estimating the relationship between

federally funded R&D and patents (such as Azoulay et al. 2019 and Myers and Lanahan

2022)

While we are not aware of this approach having been applied in the past, it seems useful not

just for our example of federally funded R&D and productivity, but that it could be analogously

applied to other policy changes affecting any given factor (such as high skilled immigration)

thought to affect productivity as well. An analogy is CBO’s work on climate and temperature

(e.g. Herrnstadt and Dinan 2020), which applies a two-stage model to estimate the impact of

climate change on temperature, and the effect of changes in temperature on GDP.

Second, for the case of R&D, the literature does not support the standard assumption that

public investments are less productive than private investments.14

CBO (2016) notes that in CBO’s assessment the average productivity of public investment is

three-fourths as high as the average productivity of private investment, in general (that is, from

all types of investment, including R&D). CBO (2018a) indicates that productivity estimate is

based primarily on researchers’ estimates of the productivity of investment in public physical

capital because there are (or were, at the time) few estimates of the direct effect on output of

14 We are particularly grateful to Kevin Bryan, Matt Clancy, Lisa Larrimore Ouellette and Bhaven Sampat
for discussions that shaped this section.

13 For example, CBO (2016) notes – correctly, in our view – that as of that time researchers had estimated
the effect of federal investment in R&D on various outcomes such as the number of patents granted, but
that there was little evidence of how those outcomes affect output.
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federal investment in R&D. However, there are both theoretical reasons and indirect empirical

observations, discussed below, suggesting that for the case of R&D the average productivity of

public investment is greater than private investment. A null hypothesis of equal returns on the

margin to public or private R&D is very difficult to reject given the state of the evidence.

Public R&D and private R&D, on average, differ on a number of dimensions. For the case of

drug development, a common characterization is that federal R&D – largely through the NIH –

supports basic research at universities, which then generates a risk set of clinical compounds

from which private firms can choose to invest additional applied and experimental development

R&D in, such as through clinical trials, to bring a subset of those compounds through the

process of testing safety and efficacy on the path towards a subset of drugs actually reaching

patients. Of course, interactions across public and private R&D differ tremendously across

sectors, and it is important not to over-generalize from one example such as the drug

development case. However, a roughly similar characterization emerges from aggregate data

on private and public R&D by performing sector (NSF 2018, Table 4-3): around 7% of private

R&D and 30% of federal R&D go towards basic research, whereas around 78% of private R&D

and 41% of federal R&D go towards experimental development research, with the remainder

(15% and 28%, respectively) going towards applied R&D.15

That difference across public and private R&D in what share is basic versus

applied/development research matters in part because work dating back to Nelson (1959) has

argued that basic R&D is less patentable, less easy to appropriate, and generates larger

spillovers – and hence, in expectation, generates larger returns in terms of productivity growth.

Aghion, Dewatripont, and Stein (2008) present a theoretical model clarifying the respective

advantages of academic (implicitly, publicly-financed) and private-sector research, from which

they argue it is socially optimal to have earlier stage, more “basic” research takes place in

academia even without relying on differences in spillovers or differences in patentability in terms

of having a larger number of candidate projects explored.

In terms of empirical data points, Dyevre (2023) documents a number of relevant facts from

which he argues – somewhat indirectly – that public R&D is likely to generate larger spillovers

than private R&D. First, he documents that public R&D tends to produce patents that rely more

15 NSF (2018, Table 4-3) also reports analogous statistics for non-federal public R&D, which are even
more heavily skewed towards basic research (55%) than federal public R&D (30%).
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heavily on basic science than does private R&D. Second, he documents that public R&D tends

to produce higher impact patents, as measured by contributing to the opening of a new

technological field in the patent data. Third, and most directly relevant for productivity spillovers,

he estimates that public R&D tends to generate spillovers across a wider range of patent

classes than private R&D.

These findings resonate with a broader literature that has – for example – generally estimated

lower returns to defense R&D relative to non-defense R&D, given that as noted in Table 1

defense R&D tends to be applied/development (96.5%) rather than basic (3.5%). CBO (2018a)

notes that the agency typically distinguishes between defense and nondefense R&D, noting that

while defense research sometimes provides civilian benefits, the majority of defense R&D does

not provide spillover benefits to the private sector, and – as a result – does not substantially

influence CBO’s analysis of macroeconomic outcomes. The literature generally provides support

for such a distinction. For example, Fieldhouse and Mertens note that they find little evidence

that a positive shock to defense R&D leads to any persistent productivity effect, at least on a

15-year time horizon, and Moretti, Steinwender, and Van Reenen (2023) – who focus

exclusively on defense R&D – estimate smaller productivity effects than Fieldhouse and

Mertens estimate for non-defense R&D.

II(c). How quickly do R&D outlays affect productivity?

CBO (2021b) notes that the agency expects that additional federal spending on physical

infrastructure would increase productivity with the following lag structure: 40 percent of the effect

occurring in the first year after the spending, 80 percent occurring by the second year after the

spending, and 100 percent occurring by the seventh year after the spending.

Both common sense and empirical evidence suggest that federal investments in R&D translate

into changes in private sector productivity on a slower time scale. Consistent with that idea,

CBO (2018b) notes that in the absence of other evidence, the agency estimates that the

macroeconomic effects of spending on basic R&D begin only after 20 years, and that it will take

another 20 years to realize the full effect. For applied R&D, CBO models the effects as

beginning sooner – starting after 10 years – but still taking another 20 years to realize their full

macroeconomic impact. Development expenditures are expected to begin to have an impact

about a year after they are made, and are modeled as following a 20-year path to their full



17

effect. These assumed lags are important in part because they imply that only development

expenditures have the potential to affect economic outcomes during the so-called 10-year

budget window, which represents the current fiscal year and each of the 10 subsequent years,

and a time period over which information is often provided to Congress by CBO and other

agencies

In contrast with these estimates, our assessment of the literature is that federally funded R&D

appears to generate returns on a shorter time horizon, including within the 10-year budget

window. Both the micro-evidence in Azoulay et al. (2019) and the timing of the impulse

response function estimates in Fieldhouse and Mertens (2023) allow these lags to be measured

directly, and suggest shorter time lags between non-defense R&D shocks and outcomes

including labor productivity, total factor productivity, and potential output as well as intermediate

indicators which, as expected, show changes on shorter time horizons (such as patents,

researchers, and publication of technology-related books).

II(d). How do state and local governments respond to additional federally funded R&D?

CBO (2016) notes that in CBO’s assessment one-third of an increase in federal investment is

generally offset by a decrease in investment by states and localities (and, to a lesser extent, by

private entities). Footnote 6 in that report solely cites papers analyzing federal highway funding

as the basis for that assessment.

In contrast with that assumption, our assessment of the literature is that federally funded R&D

appears to be a complement – rather than a substitute – with private investment, and is unlikely

to substantially affect state and local R&D investments.

In 2025, only around 3% of government-funded R&D in the US was funded by non-federal

government institutions (NSF 2018, Table 4-3). Moreover, a not insignificant share of this state

and local spending was made through noncompetitive matching policies such as the Small

Business Innovation Research (SBIR) program (Myers and Lanahan 2022). Taken together, this

implies that the quantitative size of any response by state and local governments to changes in

federal R&D policies is likely to be small in magnitude relative to the level of federally funded

R&D, and if anything may be a complement with federally funded R&D by construction due to

matching policies.
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Federally funded R&D appears to have a small but not economically insignificant positive effect

on private R&D spending (De Lipsis et al. 2023; Fieldhouse and Mertens 2023). CBO (2007)

focuses on evidence from Guellec and van Pottelsberghe de la Potterie (2003), which estimates

based on cross-country panel regressions that a dollar of government R&D induces private

firms to spend 70 cents of private R&D. Fieldhouse and Mertens (2023) estimate a smaller but

nonetheless substantial complementarity, estimating that an increase in federal R&D spurs an

increase in private R&D roughly 20 percent as large. In our view, the literature here (see, e.g.,

David et al. 1999) is sufficient to provide a reasonable central estimate across papers over the

intervening two decades. In interpreting this literature, it is important to note that papers vary in

whether these follow-on / indirect effects are included or excluded from their returns estimates,

which is an important factor to account for when cross-comparing returns estimates across

studies.

III. Applications: Cost estimates, revenue estimates, and baseline projections

Building on the discussion in Section II, in this section we discuss how and where this evidence

from the research literature could potentially inform three additional applications: CBO’s cost

estimates of legislative provisions related to federally funded R&D, the staff of the Joint

Committee on Taxation (JCT)’s revenue estimates of R&D-related tax provisions, and modeling

of R&D in baseline budgetary and economic projections such as the total factor productivity

projections generated by the Federal Reserve and by CBO.

III(a). Cost estimates of legislation affecting federally funded R&D

For legislative proposals that have been approved by a Congressional committee, CBO

produces “cost estimates” which provide public estimates of how the legislation would affect the

federal budget, relative to a counterfactual represented by CBO’s baseline projection of

budgetary and economic outcomes that would occur under current law. For bills that would alter

the tax code, CBO incorporates “revenue estimates” produced by the staff of the Joint

Committee on Taxation (JCT), which also independently publishes some of their revenue

estimates.
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A technical but important distinction that is central to cost estimates of R&D-related legislation is

the distinction between discretionary spending bills and mandatory spending bills. Historically,

nearly all federal funding for investment activities – including nearly all federal R&D investment

– has been funded through annual discretionary appropriations acts. However, in recent years

there have been important exceptions to that trend, such as the CHIPS and Science Act (117th

Congress, H.R. 4346) which was legislation affecting mandatory (rather than discretionary)

funding.

Although the distinction between discretionary and mandatory funding may be unfamiliar to

most economists, this distinction matters in the federal budget process for a number of

reasons.16 For appropriation acts, Congress asks CBO to estimate the spending obligations

(outlays) that would result from the budget authority provided in the bills. That is, the

appropriators provide the budget authority amounts (the funding) and CBO estimates the

amount and timing of the resulting spending (outlays).17 As an example, consider Title VIII of the

American Recovery and Reinvestment Act (ARRA) of 2009 (111th Congress, H.R. 1). This

legislative provision provided the US National Institutes of Health (NIH) with approximately $10

billion in discretionary spending that was available for obligation for two years, through

September 2010. A statement from the NIH’s then-acting director Raynard Kington in February

2009 noted that NIH expected to spend as much of this stimulus spending as possible in fiscal

year 2009.

Consistent with the NIH Director’s statement, in CBO’s cost estimate for this discretionary

spending provision (CBO 2009) outlays for this provision were estimated to be fully obligated

within the two years and spent over several years, perhaps reflecting the five-year length of the

core R01 grants which are the bread and butter of NIH’s extramural research support.

In contrast, for some mandatory spending bills – so-called “major legislation” – Congress asks

CBO to provide more extensive information on the economic and budgetary impacts of the

legislative provisions. In Washington DC budget parlance, “major legislation” is eligible for

dynamic scoring as opposed to conventional scoring. The key distinction between conventional

17 Budget authority allows government agencies to incur obligations (for example, signing a contract for
provision of goods) that may lead to current or future outlays (for example, payments on delivery as
specified in the contract). While some discretionary budget authority is estimated, those are the
exceptions.

16 We refer interested readers to CBO’s Frequently Asked Questions about CBO Cost Estimates:
https://www.cbo.gov/about/products/ce-faq and Frequently Asked Questions: https://www.cbo.gov/faqs.

https://www.cbo.gov/about/products/ce-faq
https://www.cbo.gov/faqs
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and dynamic scoring is that the former excludes – by design – any impacts on labor, capital,

productivity, and output. While dynamic scoring has most frequently been discussed for tax

legislation, the House of Representatives currently requires, under the House rules for the 118th

Congress, CBO and JCT to provide dynamic estimates, to the extent practicable, for all bills

(that is, not just tax bills) that exceed a threshold size (in terms of gross budgetary effects) in

any year of the budget window, or legislation that has been designated as “major” by the chair of

the House Budget Committee or of the Ways and Means Committee (Congressional Research

Service 2023); some version of that rule has been in effect for much of the past decade.

Elmendorf et al. (2024) provide a detailed discussion of dynamic scoring, and note that in

practice the major legislation rule has directed CBO to provide Congress with dynamic cost

estimates in a vanishingly small number of cases. Of note here is that, to the best of our

knowledge, R&D-related legislative provisions have never qualified for dynamic scoring under

the major legislation rule. However, our understanding is that there is no rule that would prevent

CBO from conducting and reporting this type of more extensive, dynamic analysis for federally

funded R&D-related provisions in the text of cost estimates for either mandatory spending bills

or in the text of cost estimates for annual appropriations acts, either at the request of the

Chairman or Ranking Member of the House Budget Committee or the Senate Budget

Committee, or if e.g. the Labor, Health and Human Services, Education, and Related Agencies

(Labor HHS) appropriations bill would qualify for dynamic analysis via the “major legislation”

rule.

Let us end by briefly commenting on two additional issues. First, CBO’s framework for federal

investment (CBO 2021b) that we focused on in Section II does not explicitly account for

potential changes in the US population which could arise as a result of changes in federal R&D.

At a conceptual level, this issue arises because the performers for a large share of federally

funded R&D are universities, non-profit organizations affiliated with universities, non-profit

research institutions, and government research institutions for which – unlike for private firms –

visas for foreign nationals are effectively uncapped. Two concrete examples are H-1B visas, for

which these institutions are exempt from the H-1B cap that applies to private firms, and J-1

exchange visitor visas which are also uncapped (Nice forthcoming).18 Given that a substantial

18 Glennon (2024) provides a discussion of partnerships between firms and such cap-exempt entities –
such as through the Open Avenues Foundation, a non-profit organization that partners with universities –
to exploit this arbitrage opportunity by matching cap-exempt employers with cap-subject employers. She
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share of federally funded R&D is spent on labor (such as training graduate students and

post-docs), and that a substantial share of graduate students and post-docs are foreign

nationals19 who express (in surveys20) a desire to stay in the US post-graduation if allowed to do

so, it seems plausible that changes in federally funded R&D could translate into changes in the

US population if funding (rather than trained scientists) is the key constraint on the size of

scientific labs at many universities and non-profits. In that case, changes in federal R&D could

retain graduate students and post-docs in the US population for a longer time than they would

have otherwise stayed in the country. Freeman and Van Reenen (2009) and Tham et al. (2024)

provide some evidence for the empirical relevance of this effect: the former documents

suggestive evidence that the doubling of NIH funding under the ARRA in 2009 generated an

increase in foreign national biomedical researchers at US universities; the latter documents

evidence that delays in NIH grant support induced by continuing resolutions result in some

foreign national scientists leaving the US, as measured by non-presence in Census data. To the

extent that changes in federally funded R&D induce changes in the US population (which are

not accounted for in CBO’s conventional cost estimates), that may have separate budgetary

effects including changes in outlays for federally funded benefits and tax revenues (primarily

income and payroll taxes).21 In addition, as illustrated in CBO’s recent work on immigration

(CBO 2024), the agency models total factor productivity as changing with the number of

immigrants who are STEM workers, which would also be a relevant follow-on effect to be

modeled in this case.

Second, Elmendorf et al. (2024) discuss some practical issues that would arise in implementing

more dynamic analysis of R&D in legislative provisions. Because federal R&D is generally

denominated in standardized units (dollars) with effects that are likely to scale mostly linearly

over relevant ranges, modeling the impact of such investment can be simplified. They give the

example of a spreadsheet that would report estimated dynamic effects for each dollar of

additional funding through different agencies (say, the National Institutes of Health versus the

21 See Elmendorf and Williams (2024) for one analysis of the budgetary effects of changes in the US
population of advanced degree holders in STEM (science, technology, engineering, and mathematics)
fields.

20 See Nice (forthcoming) for a discussion of the relevant literature, based on data from the National
Science Foundation’s Survey of Earned Doctorates and Survey of Doctorate Recipients.

19 See, for example, Smith et al. (2024), in a brief from the National Center for Science and Engineering
Statistics (NCSES) presenting data from the NCSES Survey of Graduate Students and Postdoctorates in
Science and Engineering (among other data sources), on trends in graduate enrollment and post-doctoral
appointments by citizenship status.

gives the creation of Microsoft Research (a separate nonprofit entity) as another example of how firms
can create separate nonprofit entities to hire skilled immigrants not subject to the H-1B visa cap.
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National Aeronautics and Space Administration) and for different purposes (say, basic R&D

versus applied R&D) that could be updated with each baseline and allow such effects to be

included in legislative cost estimates on compressed timelines.22

III(b). Revenue estimates of changes to the tax code affecting privately funded R&D

Expensing of research and experimentation expenditures has been a central topic of policy

discussions in recent years before, during, and after the implementation of the 2017 tax act

(115th Congress, H.R. 1). As noted in Section III(a), the staff of the Joint Committee on Taxation

(JCT) is responsible for producing revenue estimates for legislative provisions that would alter

the tax code, while CBO is responsible for incorporating the agency’s projections of both

budgetary and economic outcomes under current law (including current tax law) in their baseline

projections. Consistency would align both (1) JCT and CBO’s frameworks for modeling the

projected effects of tax provisions changing the after-tax price of private R&D, and (2) modeling

of private R&D with the projected effects of changes in federally funded R&D, adjusting for the

key differences between private R&D and federally funded R&D. An advantage of consistency is

that Congress and the public would receive the same information from each agency about

legislative provisions that would be equivalent in their budgetary and economic effects. A

disadvantage of such alignment is that Congress and the public would not receive signals about

divergence between the conclusions of the two agencies that can serve as checks and balances

in the estimation process.

The standard methodology that economists have used to summarize how features of the tax

system – and changes to those features – change the price of investing in an additional dollar of

R&D is to construct a so-called “user cost of R&D” (see, for example, Appendix A in Hall and

van Reenen 1999; CBO 2018b; Burnham and Carloni 2022). The tax system affects the cost of

R&D investments in two ways: taxing the revenue earned from the investment, and reducing the

cost of the investment to the firm by depreciation allowances and investment tax credits. The

net present value of a tax credit will depend on features such as whether the credit applies to

22 For example, the estimates in Dyevre (2023) Appendix C.2 illustrate how his descriptive facts vary
across federal agencies: NIH (HHS)-funded patents are much more closely linked to basic science
research than are NASA-funded patents, NASA-funded patents are much more likely to open new
technological fields in the patent data than are Department of Transportation-funded patents, and NIH
(HHS)-funded patents generate spillovers across a wider range of patent classes than do Department of
Energy-funded patents. While not directly translatable into agency-specific dynamic effects, this
conceptual approach and these types of estimates could form the basis for such tabulations.
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total or incremental expenditures, and how the base level of expenditure is defined in the

incremental case, among other factors.

Bloom et al. (2019) summarize the evidence on how R&D-related tax provisions affect various

outcomes, and argue that – taking the macro and micro studies together – a reasonable overall

conclusion would be that a 10 percent fall in the tax price of R&D results in at least a 10 percent

increase in R&D. With such an estimate of the elasticity of R&D with respect to tax-adjusted

user cost in hand, one could then draw estimates of the productivity effects of private R&D

directly from the literature (for example, Dechezleprêtre et al. 2023 directly test how changes in

R&D tax incentives affect firm-level productivity), or from the literature discussed in Section II.

Combining these estimates would enable an estimate of the effect of changes in R&D tax

provisions on productivity that would be consistent with the analogous effects that CBO would

estimate for federally funded R&D as detailed in Section II.

III(c). Accounting for R&D in baseline budgetary and economic projections

To the extent that R&D affects total factor productivity – as suggested by the research literature

– then it is natural to ask how R&D is currently accounted for in baseline budgetary and

economic projections, such as the total factor productivity (TFP) projections generated by the

Federal Reserve and by CBO.

A standard growth accounting framework calculates TFP growth as productivity growth minus

the contribution from capital deepening and minus an adjustment for changes in the composition

of the labor force. Before statistical agencies started capitalizing R&D in investment and capital

measures, any effects of R&D would implicitly land in the TFP growth term. However, after

statistical agencies changed to count R&D as a capital asset (which, as discussed in Section II,

BEA did for the US starting in 2013), R&D then changed to be a type of capital that would be

included in the contribution of capital deepening term subtracted off from productivity growth to

calculate TFP growth.

A number of measurement questions naturally arise: is it reasonable to measure the stock of

R&D by cumulating R&D spending with an adjustment for depreciation? BEA measures R&D

expenditures based on NSF survey data, such as the NCSES National Patterns of R&D

Resources survey of R&D performers. Given that roughly 60% of federally funded R&D goes to
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so-called “indirect” costs, there is a question of whether physical infrastructure (such as

scientific labs) funded via indirect costs would show up as private infrastructure investments

even if the returns to those private investments should potentially be attributed back to the

public R&D support. Of the roughly 40% of federally funded R&D which goes toward direct

costs, a substantial share pays for the labor (time) of faculty, post-docs, trainees, and students.

While faculty salaries seem appropriate to model as R&D investment, analogous to wages of

construction workers being modeled as physical investment, a question naturally arises of

whether spending on training (of post-docs, trainees, students) should instead be modeled as

human capital investments (with e.g. different estimates of depreciation), or parametrized

directly in a TFP adjustment.

Setting these types of measurement issues aside, there is a separate question of how this type

of measurement does currently or should ideally relate to how R&D (both private and federally

funded) is accounted for in forecasts of TFP.23 Standard TFP forecast approaches are historical,

and solely backward looking, in which case even large changes in federally funded R&D would

not affect the TFP forecast. For changes in R&D spending that are sufficiently different from the

historical trend, relative to the size of the economy, one could parametrize an off-model

adjustment to the TFP forecast; a natural basis for such an off-model adjustment would be the

framework presented in Section III (from CBO 2021b).

Alternatively, and more speculatively, one could move to a more factor-based TFP forecasting

model. To draw on an analogy, consider CBO’s current methodology for forecasting interest

rates (see, for example, Appendix C of Gamber 2020). CBO identifies a historical benchmark

period and a set of factors that economic theory has shown to be important in determining

interest rates, calculates the averages of those factors over the historical benchmark period and

estimates them over the projection period of interest, and then applies a set of parameters

derived from a Cobb-Douglas production function and the research literature to estimate how

the projected changes in each of the factors between the benchmark period and the projection

period would affect interest rates. Of course, forecasting productivity rates and forecasting

interest rates are two different problems that are perhaps difficult in different ways. In a recent

Journal of Economic Perspectives article, CBO staff (2024) expressed interest in additional

research on both topics.

23 One point of awkwardness in the literature is that the standard Basu-Fernald-Kimball (2006) method of
TFP forecasting uses quarterly growth rates of real government defense spending as instruments which is
problematic if defense R&D directly affects TFP, as that would be a violation of the exclusion restriction.
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V. Conclusions

Many US federal agencies model the economic and budgetary effects of R&D investments as if

R&D is the same as any other form of investment, such as physical capital investment. Our

reading of the research literature is that a broad base of evidence suggests that such modeling

may result in budgetary and economic projections that are not well-aligned with what would be

expected based on the evidence in the economic literature. This paper examines how the

research literature provides evidence about how changes to R&D tax and subsidy policies

would be expected to affect economic and budgetary outcomes.
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