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Abstract

Regulators often promote financial inclusion by restricting prices. In response, firms may reduce the supply

of their product, implying that some households lose from reduced access. This paper explores this tradeoff

in the context of national price setting regulation in the US life insurance industry. I collect a new data

set with over one million insurer-agent links across a subset of US commuting zones and document that

poor commuting zones have fewer agents per household, fewer active insurers, and smaller and lower-rated

insurers relative to rich commuting zones. Motivated by the data, I build a spatial model with multi-

region insurers and households with heterogeneous preferences for differentiated life insurance products.

The model captures the empirical spatial sorting patterns and admits clear predictions for how insurer

location choices change in response to national pricing. I take the model to the data and estimate price

elasticities for low- and high-income households. Under flexible pricing, welfare differences between the

poorest commuting zones and the richest commuting zone are between 0.4-0.95% of yearly income, most

of which comes from differential access to insurers. National pricing amplifies spatial access disparities due

to the geographic reallocation of insurers toward richer markets. Place-based tax policies that target the

access margin reduce welfare differences between poor and rich commuting zones by 10.3-20.6%.
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1 Introduction

Regulators often try to promote financial inclusion through price regulation: if regulators feel that

prices faced by one group of households are unfair, they may restrict firms’ price-setting behavior

to protect households from discrimination. For example, this is the motivation behind credit card

interest rate caps (Guenette (2020)), fixed-rate disaster lending (Begley et al. (2023)), and ratings

areas in the ACA health insurance marketplace (Fang and Ko (2020)), to name a few. However,

these policies may have adverse effects if firms optimally respond by reducing the availability of

their products for certain households. This paper explores this tradeoff in the context of national

price setting, a particular type of price control that prohibits geographic price discrimination in

the United States life insurance industry. More concretely, how might national pricing affect the

availability of life insurance products across geographic markets?

To fix ideas, suppose that low-income households are less price sensitive than high-income house-

holds, a relationship consistent with my results that I will discuss later. Consider the case of Metlife,

a large life insurer in the United States. Absent regulation, Metlife would optimally set a high

markup in poor markets like Detroit and a low markup in rich markets like New York City. Under

national pricing, Metlife’s markups fall in Detroit and rise in New York City. The policy is success-

ful on this margin: life insurance is now more affordable for poor households in Detroit. However,

since their Detroit markup is no longer optimal, Metlife may respond to the policy by reducing

their operations in Detroit, perhaps by laying off their insurance agents or closing a branch, and

reallocate their efforts to the relatively profitable New York. Therefore, although Metlife’s prices

in Detroit are lower, households in Detroit will be less able to access Metlife’s products at all. The

goal of this paper is to quantify the welfare effects of each of these margins.

I set the stage for the paper in Section 2 by examining which locations life insurers choose to

enter. Life insurance is a primarily local industry, with over 90% of sales coming from life insurance

agents (Insurance Information Institute (2022)). I therefore build a novel data set of over one

million insurer-agent links across a sample of US commuting zones, resulting in a comprehensive

map of local life insurance availability. I use the data to document two stylized facts. First, the

poorest quintile of commuting zones have 33% fewer life insurance agents per household and 50%

fewer active insurers than the richest quintile. Second, the average insurer in the poorest quintile of

commuting zones is smaller and has a lower financial rating than the average insurer in the richest

quintile. Taken together, the facts point to spatial disparities in life insurance availability in terms

of agent accessibility, number of varieties, and insurer quality.

The remainder of this paper explores how these disparities are affected by national pricing

regulation. Motivated by the stylized facts, Section 3 outlines a theoretical model with three

key ingredients: a set of spatially differentiated locations, households with heterogeneous price

elasticities and idiosyncratic tastes over differentiated life insurance varieties, and multi-region life
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insurers. Insurers hire local sales agents to reach customers. The costs of hiring and managing the

agents depend on local hiring costs, an insurer’s marketing productivity, and an insurer’s overall

size through span of control costs. With enough structure on hiring costs, these ingredients generate

spatial sorting in a distributional sense: relative to unproductive insurers like Continental, Metlife

is more active in large and rich locations like New York, but due to heightened span of control costs

is less active in poor locations like Detroit.

National pricing has bite when the composition of household types varies across locations. Under

flexible pricing, Metlife tailors its prices to the composition of households in each location. But

under national pricing, Metlife biases its price toward demand conditions in its most profitable

locations. Since Metlife and Continental are active in different types of locations, national pricing

generates price dispersion across insurers even in the absence of marginal cost differences: Metlife’s

prices reflect demand conditions in New York, while Continental’s prices reflect demand conditions

in Detroit.

Changes in local markups induced by national pricing regulation drive changes in local operating

profitability, which directly impact insurers’ agent location choices. In locations where Metlife’s

markups fall (Detroit), it hires fewer local agents and reaches fewer households relative to flexible

pricing. Metlife reallocates its activity to locations where its markups rise (New York), hiring more

local sales agents and reaching more households.

National pricing therefore generates two competing household welfare effects. Relative to flexible

pricing, the average Detroit household benefits from Metlife’s lower prices, but is less likely to

be aware of Metlife’s products. The price elasticity of a given household determines which effect

dominates: price effects matter more for high-elasticity households, while access effects matter more

for low-elasticity households. Depending on the extent of spatial agent reallocation, the access effect

may reverse the pricing effect, especially for low-elasticity households, leaving them worse off relative

to flexible pricing.

Whether or not the access effect dominates for households of each type in each location is

ultimately an empirical question. I therefore estimate the model in Section 4. First, I use data

on state-level life insurer sales to estimate elasticity differences across households using variation

in household type composition across states. The baseline estimation assumes household price

elasticities are solely a function of income. I find that low-income households are less price elastic

than high-income households, a pattern also found in other financial services such as privatized social

security as in Hastings et al. (2017). The estimates are robust to using two different instruments

and a variety of specifications. I estimate the remainder of the model internally using a combination

of model inversion and simulated method of moments. I test the model by predicting agent growth

across commuting zones between 2010 and 2022, exploiting variation in population growth across

commuting zones. The correlation between the model and the data is 78.1%, suggesting that the

model extrapolates well to other settings.
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In Section 5, I first use the model to understand which margins drive spatial inequality in

welfare under flexible price setting. I evaluate welfare differences across commuting zones using

compensating differentials. For example, how much does a given household in Detroit need to be

compensated to equate their welfare with an identical household in the best-off commuting zone?

I find that low-income households in the poorest decile of commuting zones on average need to be

compensated $351 per year, or 0.95% of their yearly income, and high-income households need to be

compensated $506 per year, or 0.4% of their yearly income. These magnitudes are comparable to the

literature on underdiversification (e.g. Calvet et al. (2007)) and suboptimal long-term investment

choices (e.g. Koijen et al. (2016)).

Differences in access to insurers, as opposed to differences in prices, drive the results: in the

poorest decile of commuting zones, 94.3% of low-income household compensation and 81.8% of high-

income household compensation is due to the access margin. This implies that part of what drives

suboptimal investment choices is the inability of some households to access investment opportunities

at the local level.

Next, I evaluate the welfare effects of the national pricing policy. By design, national pricing

eliminates the pricing disparities across commuting zones. However, in response to the policy, insur-

ers reallocate their agents toward high-income commuting zones, exacerbating the access disparities

in poorer regions. The effects are strong enough to amplify spatial inequality for low-income house-

holds: in the poorest decile of commuting zones, the average compensating differential increases

by $10 per year relative to the flexible pricing equilibrium. Since high-income households are less

sensitive to the access margin, spatial inequality amongst high-income households declines: their

compensating differential decreases by $16 per year in the poorest decile of commuting zones.

Motivated by the access consequences of the national pricing policy, I study a complementary

and revenue neutral place-based policy designed to target the access margin. The policy reduces

tax rates on insurer premium revenues in the poorest third of commuting zones and finances the

loss in tax revenues with tax hikes in the remaining commuting zones. I find that the policy is

effective at incentivizing insurer expansion into poorer regions. In the treated commuting zones,

low-income compensating differentials decline on average by $40-$70 (11.1-19.4%) and high-income

compensating differentials decline on average by $50-$100 (10.3-20.6%) relative to national pricing

alone, depending on the size of the policy. Losses are small for non-treated commuting zones,

with compensating differentials increasing by at most $1 per year for both low- and high-income

households.

Taken together, the results suggest that access, rather than price discrimination, is the primary

disparity in the life insurance industry. While national pricing removes spatial disparities in available

prices, it exacerbates disparities in access, leaving households worse off in poor locations. Place-

based policies, in tandem with national pricing, are effective at targeting the access disparity.
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Literature This paper is closest in spirit to the growing literature on uniform pricing. While

most papers on uniform pricing focus on retail (DellaVigna and Gentzkow (2019), Aparicio et al.

(2021), Butters et al. (2022), Daruich and Kozlowski (2023)), there is also evidence of uniform

pricing in other industries like banking (Hurst et al. (2016)), health insurance (Dickstein et al.

(2015), Fang and Ko (2020)) and annuities (Finkelstein and Poterba (2004)) which result as a

byproduct of government regulation or reputational concerns. The mechanism in this paper is

closest to Fang and Ko (2020), who document that health insurers geographically segment within

ACA marketplace ratings areas where uniform pricing is enforced. However, they do not discuss the

effects on household participation or welfare. In all other work, the literature has entirely focused

on the welfare effects of uniform pricing conditional on firms’ ex-ante location choices, and do not

assess how firms would adjust geographically under uniform pricing relative to a flexible pricing

setting. I contribute to this body of literature by taking seriously the location choices of firms

and informing how their geographic responses may mitigate or offset the welfare consequences of

uniform pricing.

I also contribute to a broader literature on firm responses to price controls. This tradeoff has

been studied in several contexts, such as the effects of the minimum wage on hiring dynamics (Pries

and Rogerson (2005), Brochu and Green (2011), Kudlyak et al. (2023), among many others), interest

rate caps on credit supply and bank branch density (Jambulapati and Stavins (2014), Agarwal et al.

(2015), Ferrari et al. (2018), Burga et al. (2023), Nelson (2023)), and many more. I contribute by

studying the effect of geographic pricing restrictions and analyzing the effects on firm location

choices.

My emphasis on the location decisions of firms also relates to a growing literature on the geo-

graphic organization of firms. Several papers have analyzed how firms sort across markets. Gaubert

(2018), Ziv (2019), and Lhuillier (2023) focus on single-establishment firms, while Oberfield et al.

(2023a) and Kleinman (2023) focus on multi-establishment firms. Oberfield et al. (2023b) builds on

Oberfield et al. (2023a) by looking at how multi-region bank sorting changed following geographic

deregulation. This paper contributes by examining how pricing frictions affect spatial sorting and

location decisions, highlighting that sorting may also be a byproduct of regulation.

The link between spatial sorting and pricing is one margin absent from the literature on life

insurance pricing. Many papers point to financial frictions being an important driver of insurance

prices, e.g. Koijen and Yogo (2015), Koijen and Yogo (2016), and Ge (2022). I document that

life insurance prices may also be sensitive to the geographic distribution of insurer activity. This

channel is strong as well, explaining a large fraction of cross-sectional variation in prices across

insurers.

Finally, I contribute to the literature on financial inclusion. Local financial services are important

for understanding differences in financial participation, such as bank branch density (Célerier and

Matray (2019)) or access to retirement accounts through local firms (Yogo et al. (2023)). Many de-
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veloping countries also feature alternative forms of financial access such as mobile banking (Agarwal

et al. (2017), Ouyang (2023), Brunnermeier et al. (2023)). The mobile banking literature empha-

sizes the importance of geography as well, with households out of range of mobile towers unable

to participate. Brunnermeier et al. (2023) specifically show that encouraging competition through

regulation reduces the supply of mobile towers in underserved locations. This paper combines local

services with pricing regulation in a structural model that gives similar findings.

2 Geography and Pricing in the Life Insurance Industry

This section describes the institutional details of the life insurance industry. First, I discuss the

institutional setting and why regulators impose national pricing restrictions. I then discuss the data

sets I use and document three key facts about the geography of the life insurance industry and the

relationship between life insurance pricing and insurer location decisions.

2.1 Institutional Setting

2.1.1 Price Discrimination and National Pricing Regulation

Life insurers must demonstrate to regulators that their products only reflect the operating costs

of the company and the mortality risk of their customers. Prices are allowed to vary by factors

directly related to mortality risk, such as age: older people have higher short-term mortality risk

than young people, so premiums are increasing in the age of the insured. Health status, gender,

occupation, and smoking patterns are also used to price life insurance.1

Anti-discrimination laws set by the National Association of Insurance Companies (NAIC), the

regulatory body for US insurance companies, prevent further discrimination along protected factors

such as race, marriage status, or religion. At the neighborhood level, race in particular is strongly

correlated with factors that may be desirable to price, such as income, crime, or pollution.2 These

geographic factors may therefore be viewed as proxies for racial composition, and are therefore

prohibited. Life insurance prices are therefore required to be set at the national level.

Life insurers could theoretically discriminate against households along other margins. For exam-

ple, Metlife could offer two seemingly identical products that only differ by the legal identification

of the product and in the premium rate. Regulators anticipate this behavior and have also imposed

strict guidelines on the creation of new products. Metlife must demonstrate that price differences

across their products are actuarially sound and reflect well-defined costs and mortality risk; given

1Insurance companies may also collect credit scores, but they are only allowed to set prices based on a household’s
previous bankruptcy status. This is motivating by findings that households that file bankruptcy are more risky in
the sense that they are less likely to repay their premiums.

2The correlation coefficient between per-capita income and non-white household share is -38% at the census tract
level using the 2016-2020 wave of the American Community Survey. For crime, see Lodge et al. (2021). For pollution,
see Jbaily et al. (2022) and Currie et al. (2023).
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an existing approved product, Metlife is not permitted to create near-replicas of the product. Reg-

ulators also enforce that every agent licensed by a company must offer the full menu of products,

further limiting the ability to price discriminate through product differentiation.

A life insurer may also attempt to price discriminate through its organizational structure. Life

insurance companies are often a part of a group, the insurance equivalent of a holding company. A

group could theoretically consist of multiple life insurance subsidiaries that serve distinct geographic

markets and set prices that reflect their respective local demand conditions. However, this type of

organization would likely be prohibitively costly for insurance groups due to regulatory frictions in

capital requirements and costly internal capital transfers between subsidiaries. Statutory capital

regulation requires that each insurance company within a group be adequately diversified. By

concentrating in economically similar regions, a subsidiary is more exposed to idiosyncratic regional

mortality risk, pushing them closer to their statutory capital constraints. These constraints, along

with the fixed costs of creating and managing distinct companies, would likely outweigh the benefits

of geographic price discrimination.3

2.1.2 The Role of Insurance Agents in Product Distribution

As with many forms of insurance, life insurance is primarily sold through local life insurance agents.

According to the Insurance Information Institute, 90% of life insurance premiums in 2022 were

generated through life insurance agents, with only 6% coming from purely direct sales through

online platforms with no agents involved (Insurance Information Institute (2022)). According to

the Life Insurance Marketing and Research Association (LIMRA), while some households choose to

learn about products online, the majority ultimately purchase insurance through an agent (LIMRA

(2022)).

Agent sales are predominantly local. For example, although many agents are licensed to sell

products in multiple states, Bhattacharya et al. (2020) document that approximately 48% of sales in

the variable annuities market come from within the county an agent is located in. Since many agents

sell both life insurance and annuities, I consider this to be a reasonable proxy for the life insurance

setting. This sales share grows even more when expanding to neighboring counties, and the authors

further document a very small share of sales coming from distant transactions. Motivated by their

findings, I use the commuting zone as my geographic unit of analysis and interpret local agent

availability as a proxy for life insurance accessibility.4

3In Appendix D.1, I test for the possibility of within-group price discrimination by regressing company-level
prices on a company and a group fixed effect. In all specifications, 80-90% of the explained variation in prices are
attributed to the group fixed effect. This implies that even if groups do discriminate through disaggregation, the
effects are not strong.

4In Appendix D.2, I test for the importance of local (in-state) agents versus out-of-state agents using a two-way
fixed effect design. I find that local agents are significantly more important for generating sales at the state level and
explain substantially more variation in sales than out-of-state agents.
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Survey evidence also points to local agent supply as a factor preventing households from obtain-

ing life insurance. According to LIMRA (2022), of the households that do not own life insurance,

35% report that they simply have not been approached by an agent. 52% also report uncertainty

about the type and amount of life insurance to buy, information that agents specialize in. Both of

these facts speak to agent supply as being an important driver of life insurance ownership. This is

echoed in a report by Casparus Kromhout, the CEO of Shriram Life Insurance Company, on the

Indian economy Kromhout (2023). The report emphasizes that agent supply disparities are a key

reason for the rural-urban gap in life insurance coverage.

2.2 Data Construction

Life Insurance Agents Life insurance agent information is from the National Association of

Insurance Commissioners State-Based Systems (NAIC-SBS). The NAIC-SBS data provide a snap-

shot of the agents licensed at the time of data collection. At the time of data collection in August

2022, 28 states had opted in to NAIC-SBS, 18 of which provide detailed information about each

agent.5 The data provide a full mapping of life insurers to agents operating in the states available.

Importantly, the data include information on agents’ business locations at the zip code level which

I match to 1990 commuting zones.

Financial Statements Life insurer balance sheet data are from A.M. Best Financial Suite (AMB)

from 2007-2019. I use data on liabilities, leverage, financial ratings, return on equity, organizational

structure, and state-level life insurance premiums.

Life Insurance Prices Life insurance premiums are from Compulife, a quotation software used

by life insurance agents. I pull data for 10-, 20-, and 30-year term life insurance products from

2007-2018 that pay out $250,000 upon the death of the insured. I focus on non-smoking males and

females aged 30-50 (in 10-year increments) in the regular health category.

Life insurance premiums vary substantially across maturity lengths, age groups, and gender

due to differences in expected returns and mortality rates. I follow Koijen and Yogo (2016) and

normalize the premiums by the actuarially fair value for each product, which takes the form

vagm =

(
1 +

m−1∑
k=1

R−k(k)
k−1∏
ℓ

ρga+ℓ

)−1( m∑
k=2

R−k(k)
k−2∏
ℓ=0

ρga+ℓ(1− ρga+k−1)

)
(1)

where ρga+ℓ is the survival probability conditional on a 5% lapsation rate for an individual at age

5The states available are AL, AR, CT, IA, MA, MT, NC, ND, NE, NH, NJ, NM, OK, SC, TN, VT, WI, and WV.
Delaware also provides agent-insurer links, but 90% of their agents are listed as inactive. Delaware is a relatively
small state, and their active agents totalled only 0.05% of the sample, so I exclude Delaware from the analysis. See
Appendix Table C.1 for more details about the data.
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a+ℓ and gender g, and R(k) is the zero-coupon Treasury yield at maturity k.6 Survival probabilities

are taken from the 2015 Valuation Basic Table provided by the American Society of Actuaries.7

Treasury yields are taken from the zero-coupon Treasury yield curve in June of each year, the same

month as the reported life insurance quotes. I define the price of an insurance product pamg
j as its

premium rate divided by the fair value, (1).

Market Characteristics I use household populations, high-income population shares, and de-

mographics from the 2016-2020 American Community Survey five-year estimates (ACS). I define a

high-income household as one whose income is above the 2020 national median income, $75,000.

Summary Statistics The NAIC-SBS sample includes 211,203 local agents operating in 280 com-

muting zones and representing 438 life insurers. This sample of life insurers accounts for 97.6% of

the life insurance industry by premiums, and the premiums of these life insurers in the states in my

sample make up 23% of all life insurance premiums in the United States.

The Compulife pricing data contain only 70 of the 438 insurance companies in the NAIC-SBS

sample. Longer maturity products have fewer insurers, with 68 insurers offering 10-year term life

products and 55 insurers offering 30-year term life products. The insurers in the Compulife sample

are relatively large: of the insurers in the NAIC-SBS sample, the Compulife insurers account for

44% of all agents, 53.6% of premiums, and 41.3% of liabilities.

The average price across categories is 1.00, the minimum is 0.47, and the maximum is 3.02.8

Note that prices below 1 do not necessarily imply that insurers are losing money on these products.

Many policies lapse, which is equivalent to a premature termination of the product and acts as a

windfall of profits to the insurer. The fair value I compute in equation (1) only takes into account

average lapsation rates, and does not include variation in lapsation probabilities across age groups

and maturity lengths. However, as long as the lapsation mismeasurement is stable in the cross

section of firms and product categories, this should not affect subsequent estimates.9

2.3 Stylized Facts

This section highlights three stylized facts that I incorporate into the model. The first fact focuses

on the geographic allocation of insurers and agents across commuting zones. The second fact

documents spatial sorting patterns. Finally, the third fact documents the relationship between

insurers’ prices and their geographic footprints.

6I choose a 5% lapsation rate based on the national average lapsation rate in 2018. This measure is consistent
if lapsation rates do not differ across firms. I run all subsequent analysis with an assumed lapsation rate of 0% and
find similar results.

7These probabilities are computed from insured pools, and therefore account for adverse selection.
8See Appendix Table C.2 for a more detailed breakdown of the pricing data.
9I perform a sensitivity analysis with respect to the assumed lapsation rate in Appendix D.3. The results are

nearly identical to the baseline lapsation assumption of 5%.
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Table 1: Agents in the Cross Section of Commuting Zones

CZ High-Income Share Quintile

Average... All CZs 1 2 3 4 5

Number of Insurers 135 97 127 135 159 176

Number of Agents 754 146 333 424 930 2349

Agent Density 6.30 4.73 6.06 6.90 7.50 7.00

Insurers Per Agent 4.15 3.25 3.94 4.45 4.52 5.04

Note: This table reports summary statistics about the life insurance across US commuting zones. The CZ high-
income share quintile is calculated based on the commuting zones in the NAIC-SBS sample. Agent density is defined
as the number of agents per thousand households in a commuting zone.

Fact 1: Poor Commuting Zones Have Fewer Life Insurance Options than Rich Commuting Zones

As I highlight in Section 2.1, life insurance is predominantly accessed locally. To what extent are

life insurance services available across commuting zones? Do poor places have the same access to

life insurance as rich places?

Table 1 documents variation in agent and insurer availability across commuting zones. On

average, there are about 786 licensed agents and 138 insurance companies licensing at least one

agent in a commuting zone. The richest quintile of commuting zones have on average nearly

twice the number of active insurers and 16 times the number of licensed agents relative to the

poorest quintile of commuting zones. These differences persist even after controlling for household

population: the richest commuting zones have on average 48% more agents per household relative

to the poorest commuting zones.

Households may also learn about different insurer varieties after matching with a life insurance

agent if the agent offers products from multiple companies. In the poorest quintile of commuting

zones, the average agent offers products from 3.25 different insurance companies. In the richest

quintile, the average agent offers products from 5.04 different companies, 55% more than the poorest

quintile. Taken together, the data suggest large disparities across commuting zones in terms of

accessing life insurance services through agents, as well as disparities in the varieties available both

unconditionally and conditional on matching with an agent.

Fact 2: Large Insurers Are Biased Toward Denser and Richer Commuting Zones

Fact 1 emphasized differences in life insurance supply across commuting zones. But life insurers have

characteristics that may be more or less desirable, e.g. their financial rating or outstanding leverage,

which implies a relevant quality dimension to local life insurance supply. Are there systematic
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differences in which insurers are available across geographic markets? More concretely, do large

firms like Metlife disproportionately license agents in large or rich markets relative to small firms

like Continental?

I test for the presence of sorting by estimating the following regression:

log(agentsj,cz) = βX
inc log(incomecz)×Xj + βX

pd log(densitycz)×Xj + γj + γcz + ujs (2)

I interpret positive βX
m coefficients as evidence for sorting along their respective margins m. In this

regression, incomecz is the share of high-income households in commuting zone cz and densitycz is

the household population density of commuting zone cz. The firm-level variable Xj is either the

log of firm j’s liabilities — a measure of insurer size — or their financial rating converted to a

numerical scale following A.M. Best Company (2016) — a measure of insurer quality. I standardize

each independent variable.

Note that many agents in the NAIC-SBS data are licensed to sell the products of multiple firms:

38.2% of the agents in my sample are licensed to sell products from a single insurer, 46.7% are

licensed to sell products for 2-10 insurers, and the remaining 15.1% are licensed to sell more than

10. I therefore consider a fractional measure of agents that accounts for within-agent competition.

For example, if an agent sells both Metlife and Continental products, I assign each insurer a value

of 1/2 for that agent. The measure agentsj,cz is the sum of firm j’s fractional agents in commuting

zone cz.

For insurer size, I estimate βsize
inc = 0.128 and βsize

pd = 0.238 with t-statistics 17.95 and 28.37

respectively. For insurer quality, I estimate βqual
inc = 0.109 and βqual

pd = 0.123 with t-statistics

14.04 and 13.63, respectively. These estimates imply that richer and denser commuting zones

have a greater share of large and high-quality insurers relative to poorer, rural commuting zones.

Therefore, beyond having access to fewer life insurance varieties, low-income commuting zones may

have lower access to higher quality and more established insurance companies and products relative

to high-income commuting zones.

Fact 3: Prices Reflect Differences in Local Household Characteristics

Despite national pricing regulation, insurers may still have motives to price discriminate based

on the characteristics of households in their active markets. Having established that insurers sort

into different types of markets, I test whether the observed sorting differences matter for insurance

prices.

I begin by documenting correlations between prices and average geographic characteristics of

insurers’ agents’ locations. The variables of interest are the average share of high-income households,

average share of non-white households, and population density of each insurer’s active commuting

zones weighted by the distribution of their fractional agents. I subsequently add firm characteristics
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and proxies for local competition into the analysis to account for differences in costs and market

power, which could also explain price differences across insurers. With all of the controls accounted

for, the regression specification is

log(pamj ) = θinclog(incomej)+θnwlog(non-whitej)+θpdlog(densityj)+θ′
fX

f
j +θ′

cX
c
j+γam+ϵjam (3)

The price pamj is firm j’s premium rate divided by actuarial value for households of age a and

maturity m averaged across gender groups. Firm characteristics Xf
j include variables commonly

associated with other aspects of life insurance demand and insurer costs. I include log liabilities

(size), leverage, financial rating, return on equity, and an indicator for whether firm j is a stock

company. The local competition proxies Xc
j account for local market power and agent incentives

across an insurer’s active markets. The first variable is the average fractional agent for each insurer.

An independent agent that sells products for multiple insurers may have incentives to push more

expensive products on customers since they would receive a higher commission, incentivizing insurers

to set higher prices. Conversely, insurers that use captive agents may set lower prices since they do

not have to compete with other insurers after their agent matches with a household. The second

variable is the average market share of an insurer’s fractional agents which captures average local

market power across insurers. I cluster standard errors at the insurer level.

Table 2 displays the results. Column (1) only includes geographic variables, column (2) adds in

firm characteristics, and column (3) adds in the competition proxies. I standardize all independent

variables. For brevity, I only report the estimates for the geographic variables since they are the

point of interest. Table C.3 in the appendix provides the full set of results.

Local income is consistently negatively associated with prices and is significant at the 1%,

10% and 5% levels across specifications, respectively. The negative correlation potentially reflects

stronger price sensitivity for high-income households. This interpretation is in line with other work

on financial services, e.g. privatized social security in Hastings et al. (2017), that attribute the

relatively low price sensitivity of low-income households to differences in financial literacy. If high-

income households are more financially literate, then they may be more inclined to shop around the

for the cheapest policy. Low-income households may instead take the advice of their life insurance

agent without question, trusting that the agent’s knowledge is greater than their own.

Non-white share is consistently positively associated with prices and is always significant at the

1% level. This relationship could reflect three things. First, it could imply that non-white households

are less price elastic than white households. Second, it could reflect differences in mortality rates

across racial groups. However, since insurers are required to use aggregate mortality tables when

calculating prices, this seems unlikely to be the case. Third, it could reflect explicit discrimination.

Density is consistently insignificantly related to prices, suggesting that differences in prices are

reflecting differences in local household characteristics rather than local costs. If dense commuting

zones lead to agglomeration effects for insurers as they do in other industries, then we might expect
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Table 2: The Determinants of Cross-Sectional Price Dispersion

(1) (2) (3)

Income −0.117 −0.083 −0.096

(0.038) (0.046) (0.047)

Non-White 0.081 0.089 0.101

(0.024) (0.026) (0.027)

Density 0.009 −0.014 −0.017

(0.047) (0.052) (0.055)

Firm Controls ✓ ✓

Competition Controls ✓

Age × Maturity Fixed Effects ✓ ✓ ✓

Observations 746 746 746

Within R2 0.32 0.35 0.37

% of Explained Variation:

Income 61.2 20.9 15.7

Non-White 38.5 50.2 41.5

Density 00.3 03.8 04.3

Other Controls — 25.1 38.5

Note: This figure reports the regression results for equation (3). The independent variable is the log premium for an
individual of age a and product maturity m normalized by the fair value. Income is the agent-weighted share of high-
income households, Non-White is the agent-weighted share of non-white households, and Density is agent-weighted
log density. Firm controls include log liabilities, leverage, financial rating, return on equity, and an indicator for stock
companies. Competition controls include average fractional agents and average local agent market share. Standard
errors are clustered by company and reported in parentheses.

a significant negative relationship. The estimates do not support this notion.

I perform a variance decomposition of equation (3) to understand which variables are the most

important for price differences across insurers. I calculate the implied sum of squared variation

coming from each of the variables, then calculate the share of variation for each variable out of the

total explained variation. The results are reported in the bottom of Table 2. Non-white household

share and local income consistently explain the majority of the variation in prices, with density

being relatively unimportant. This result emphasizes that geographic variation in insurers’ active

markets is an important factor for understanding cross-sectional price dispersion and points to

potential price discrimination motives in the industry.
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Recap of the Facts

The stylized facts suggest that (1) low income commuting zones have fewer agents and insurers

relative to high-income commuting zones, (2) insurers in low-income commuting zones are on average

smaller and lower quality than insurers in high-income commuting zones, and (3) life insurance prices

correlate strongly with local household characteristics, suggesting a motive for price discrimination.

The next section builds a theoretical framework that incorporates Facts 1-3.

3 A Spatial Model of Life Insurance Distribution

The forthcoming model is designed to rationalize stylized Facts 1 (spatial disparities in supply)

and 2 (spatial disparities in quality). Fact 3 (spatially-biased pricing) emerges as a consequence

of Fact 2. I start with an otherwise standard model of monopolistic insurers that tailor prices to

local demand conditions. I enrich the model with two additional costs that, with enough structure,

generate spatial sorting patterns in line with the data. I then demonstrate how pricing frictions

interact with insurer location choices and highlight how these interactions affect household welfare.

3.1 Model Setup

Fundamentals There is a large number of monopolistically competitive insurers indexed by j ∈
J , each producing a differentiated variety. The total number of insurers is J = |J |. There is a

finite set of locations s ∈ S endowed with a mass of households Ns. Within each location s, there

are two types of households, k ∈ {ℓ, h}, with population shares ηks and expenditure shares χk
s .

10 In

the quantification, I assume that types are associated with household income.

Insurers An insurer reaches households in a location by hiring agents, ajs, which market the

insurer’s product to local households.11 Insurers are heterogeneous in their efficiency at reaching

local households, θj. I refer to θj as j’s productivity. The probability that a given household in

location s includes insurer j’s product in its choice set is κ(ajs, θj, Ns), which I refer to as insurer

j’s market penetration in s. Market penetration is increasing and concave in the insurer j’s agents,

ajs, increasing in j’s productivity, θj, and decreasing in the size of market s, Ns. For brevity, I

use the shorthand κjs(ajs) ≡ κ(ajs, θj, Ns). In the quantatitive extension of the model, I use the

functional form

κjs(ajs) = 1− exp
(
− θjajs/N

α
s

)
. (4)

10I assume only two types for expositional simplicity and to map the model the data for estimation. I show in
Appendix B.1 how to extend the framework to a continuum of types.

11I show in Appendix B.8 how the framework can be extended to include digital platforms as a form of customer
acquisition. Since I do not have data on online sales, I load everything on local agents for the benchmark model.
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Arkolakis (2010) provides an explicit microfoundation for (4), which I explain in Appendix B.2. The

parameter α governs the strength of the market size penalty. When α = 0, a given mass of agents

a reaches the same fraction of households in small markets like Frankfurt, KY and large markets

like New York City. As α increases, an insurer needs more agents to reach the same fraction of

households in larger markets.

Insurers face a constant marginal cost ξ > 0 for each unit of the good they produce. In the life

insurance industry, marginal costs come from the generation of insurance policies. These costs may

include commissions paid to agents, underwriting costs, premium taxes, or regulatory and financial

frictions. I hold marginal costs constant across insurers throughout the theory for simplicity, but

allow for insurer-level marginal cost heterogeneity when I estimate the model.

Insurers must also pay local hiring costs fs for each agent they hire. Since life insurance agents

are generally compensated through commissions, I interpret these costs as search and licensing costs.

This assumption is reasonable due to the high turnover rate of insurance agents: on average, 90%

of agents quit within their first three years (A.M. Best Company (2021)). Insurers may therefore

incur significant hiring costs over short time periods as they consistently rebuild their agent base.

In the quantification, I capture the potential increasing costs of hiring volume by assuming fs is a

function of market size and market income, fs ≡ f(ηhs , Ns).

Last, insurers incur span of control costs C(āj, θj), where āj is the total mass of agents licensed

by insurer j across its active locations. These costs reflect the managerial capacity of insurers. I

assume C(·, θj) is increasing, strictly convex, and is equal to 0 if āj = 0. I write Cj(āj) ≡ C(āj, θj)

when convenient.

Hiring costs and span of control costs are important ingredients for the model to generate realistic

spatial sorting patterns. When hiring costs are identical across regions, every insurer will be active

in the most profitable markets since high-volume locations will always allow them to overcome local

costs. As I showed in Section 2.3, this is not the case for life insurance: small life insurers are

disproportionately present in small markets relative to large insurers. Conversely, span of control

costs control which insurers enter the small markets. When span of control costs are small, large

insurers will always be more active in smaller markets than small insurers, which is also not the

case in the data. I demonstrate this intuition formally in Section 3.3.

Given a mass of licensed agents ajs and price pjs, insurer j’s variable profits in location s can

be written

πjs(pjs, ajs) = (pjs − ξ)
∑
k

Qk
s

(
pjs, κjs(ajs), P

k
s

)
− fsajs (5)

where {Qk
s(·)}k are the demand curves for type k households. The demand curves are the result of

households’ discrete choices, which I outline in the next section. Under monopolistic competition

with a large number of insurers, insurers choose the price of their variety taking the price indices
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as given. The set of prices chosen by an insurer are restricted to be in a given set P . I refer to P
as the regulatory regime, which can either be flexible pricing (Pflex) or national pricing (Pnatl).

Insurer j’s problem is to choose a vector of agents aj and a vector of prices pj to maximize its

total profits subject to the regulatory regime P :

Πj(P) = max
aj ,pj

{∑
s∈S

πjs(pjs, ajs)− C(āj, θj)

∣∣∣∣∣ aj ≥ 0

pj ∈ P

}
. (6)

Demand Households make a discrete choice over available insurance products. Household-level

choice sets, Jis ⊂ J , are a random variable: a given household i in location s is aware of insurer j

with probability κjs. Households may also choose to consume an outside option o, which I assume

is always available for all households and locations and is provided at a price po = 1.12 Household

i of type k(i) in location s receives indirect utility from purchasing life insurance from insurer j

according to

uijs = log ιk(i) − (εk(i) − 1) log pjs + νij (7)

where ιk(i) is the value of being insured relative to the outside option for households of type k(i)

and νij is an idiosyncratic taste shock over the set of available insurers and outside options and is

distributed according to an Extreme Value Type I distribution with zero mean and unit variance.

I assume price elasticities εk are heterogeneous across household types, εh > εℓ, and I impose the

restriction εk > 1 for each k. In the quantification, I also allow preferences to depend on a vector of

insurer characteristics to account for differences in insurer quality. This is an important additional

channel for understanding how insurer sorting patterns affect equilibrium household welfare.

Price elasticity heterogeneity may capture several aspects of household preferences. For example,

high-income households may have stronger preferences for leaving bequests. Bequest motives boost

households’ effective discount factors and increases the value of life insurance, therefore increasing

their price sensitivity to life insurance products. I microfound this bequest motive in Appendix

B.4 and show that indirect utility takes the same form as (7). Price elasticities may also capture

differences in financial literacy (Hastings et al. (2017)), search costs (Hortaçsu and Syverson (2004)),

or non-homotheticities (Handbury (2021)). I do not take a stand on which channel is active, and

instead take the price elasticities as given and infer them from the data in Section 4.

A household’s problem is to choose j ∈ Jis ∪ {o} to maximize uijs. The solution to this

optimization problem with a large number of insurers implies type-specific residual demand curves

facing insurer j in market s,13

12A unit price can be rationalized if the outside option is defined as an alternative savings instrument that is priced
at fair value such as a government bond. Appendix B.3 shows how to define the problem with this microfoundation.
In this case, insurer prices can be interpreted as markups over the actuarially fair value.

13With a small number of insurers, this demand system is a high-dimensional combinatorial problem that is not

16



Qk
js

(
pjs, κjs, P

k
s

)
= ιk

(
pjs
P k
s

)1−εk Ek
sκjs
pjs

, P k
s =

(
1 + ιk

∑
j∈J

κjsp
1−εk
js

) 1
1−εk

(8)

where Ek
s = Bk × ηksNs are total expenditures by type k households across varieties in market s

and Bk is the savings that type k households are choosing to allocate between the outside option

and life insurance.14 With preferences as in (7), the average welfare of a type k household in

location s is Bk/P
k
s . Note that the market-type price index P k

s depends on both the distribution of

prices {pjs}j∈J and the distribution of market penetration {κjs}j∈J across insurers which implies a

welfare margin associated with insurers’ local operating intensity. Under the assumption of random

meetings, κjs is equivalently the share of local households that consider j in their choice set. If

Metlife hires more agents in location s, then a higher share of households will include Metlife in

their choice set, inducing a love of variety effect.

Equilibrium I treat the life insurance industry as small relative to the economy and therefore

take local household fundamentals {Ns, {ηks}}s∈S and {Bk}k=ℓ,h as given. I also take local hiring

costs {fs} as given, though I outline an extension that endogenizes hiring costs in Appendix B.6.

A formal definition of the model equilibrium is as follows.

Definition 1: Industry Equilibrium

Given local fundamentals {Ns, ηs, fs}s∈S , household fundamentals {ιk, εk, Bk}k=ℓ,h, and regula-

tory regime P, an industry equilibrium is such that

1. Households make discrete choices over products consistent with utility maximization

2. Insurers maximize profits taking price indices {P ℓ
s , P

h
s }s∈S as given

3. Local price indices are consistent with insurers’ optimal choices {aj,pj}j

In Appendix B.7, I also consider a setting in which there are a small number of insurers and allow

insurers to internalize how their price and agent decisions affect local price indices. As the number

of insurers grows, the two equilibria coincide, so I only consider the monopolistically competitive

market structure for the remainder of the theory.

feasible to solve; however, the problem converges to (8) when J → ∞.
14I set Bk to be 1.5% of type-k households’ yearly wage, which corresponds to financial advisors’ advice on optimal

insurance coverage. I discuss this choice in more depth in Section 4.
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3.2 Optimal Price Setting

This section analyzes how insurers set prices across the two regulatory regimes. Before doing so, it

will be helpful to describe some notation. Let Sk
js ≡ pjsQ

k
js be insurer j’s sales to type k households

in market s, and define the shares

δwk
js =

Sk
js∑

k′ S
k′
js

, δbjs =

∑
k S

k
js∑

s′
∑

k S
k
js′
. (9)

δwk
js is the share of insurer j’s sales in location s that come from type k households. I refer to this as

the within-market-type sales share of insurer j. δbjs is insurer j’s sales share between markets and

types. With these definitions in place, the following proposition characterizes an insurer’s optimal

price for a given regulatory regime P .

Proposition 1: Optimal Price Setting

Insurer j’s optimal price is given by

pjs =

(
ζjs(P)

ζjs(P)− 1

)
ξ, ζjs(P) ≡


∑
k

δwk
js εk, if P = Pflex

∑
s′∈S

δbjs′
∑
k

δwk
js′ εk, if P = Punif

(10)

Proof: See Appendix A.1.

This result is standard in the uniform pricing literature. Absent pricing restrictions, prices are

tailored to the elasticity of the dominant household type in a given location. I refer to this elasticity

as the local elasticity of demand. Under national pricing, an insurer’s price reflects local elasticities

across all of its active markets, with the most weight put on the locations in which it receives the

most sales.

Proposition 1 shows why accounting for spatial sorting patterns is important for understanding

dispersion in prices under national pricing beyond differences in insurer characteristics and compe-

tition discussed in Section 2.3. Sorting is reflected in differences in the spatial sales distributions

across insurers, {δb
j}j. If Metlife locates in high-type markets relatively more than Continental,

then ζMetlife
js > ζContinental

js , implying that Metlife sets a lower markup than Continental. The next

section details how these spatial sorting patterns are determined.
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3.3 The Determinants of Spatial Sorting

Insurers trade off the costs of adding agents in a location with the increase in revenues that the

agents would bring. Define the local profitability of insurer j in location s as

Φjs(pjs) = (pjs − ξ)
∑
k=ℓ,h

ιk

(
pjs
P k
s

)1−εk Ek
s

pjs
. (11)

The mass of agents hired by insurer j in location s is determined by the optimality condition

Φjs(pjs)κ
′
js(ajs)︸ ︷︷ ︸

profitability of
the marginal agent

≤ fs + C ′
j(āj)︸ ︷︷ ︸

costs of
the marginal agent

. (12)

The insurer sets ajs = 0 when Φs(pjs)κ
′
js(0) < fs+C

′
j(āj), which may be the case given the functional

form (4) used in the quantitative section. This condition features a typical cost-benefit tradeoff for

insurer j. If j increases its number of agents in market s, it earns profits Φs(pjs) times the change in

the share of households reached, κ′js(ajs). On the cost side, the insurer incurs additional hiring costs

fs for the marginal agent and incurs a higher span of control cost, C ′
j(āj). The span of control term

can be viewed as an opportunity cost: if Metlife adds an agent in Detroit, any additional agents

in New York will be increasingly costly to manage. Metlife therefore internalizes how operating in

one market affects its operations in all other markets.

How does productivity affect how insurers place agents across markets? In order to characterize

the agent location decisions, I impose the following structure on insurers’ technology:

Assumption 1: Insurer Technology Structure

Define a insurer’s local efficiency units as Ajs ≡ θjajs, and let Āj ≡
∑

sAjs. Span of control

costs and market penetration can be written as

C(āj, θj) = C̃(Āj), κ(ajs, θj, Ns) = κ̃(Ajs, Ns)

where C̃ : R+ → R+ is increasing and strictly convex and κ̃ : R2
+ → [0, 1] is increasing and

strictly concave in the first argument and decreasing in the second argument.

Assumption 1 implies that market penetration and span of control costs are a function of efficiency

units, Ajs ≡ θjajs, rather than raw agents. Though the span of control assumption is primarily

technical, it can also be justified if advertising expenditures and organization are correlated with

agent marketing productivity. If Metlife devotes a larger amount of management time to advertising

strategy, they have fewer managerial resources to devote to monitoring and training their agents.

19



Figure 1: The Single-Crossing Property

θj

θj′

ajs

fs
f ∗
jj′

Note: This figure displays the single-crossing property for two insurers with θj > θj′ . The cutoff f∗
jj′ marks the

point at which the two insurers operate with the same number of efficiency units.

As a result, they face stronger span of control costs than Continental, who may not invest as much

time in advertising. Under this assumption, I prove the following result.

Proposition 2: Single-Crossing Condition

Suppose θj > θj′ and suppose Assumption 1 holds. Then for each pricing regime P, there exist

a threshold f ∗
jj′(P) such that Ajs(P) > Aj′s(P) when fs > f ∗

jj′(P) and Ajs(P) < Aj′s(P) when

fs < f ∗
jj′(P). Further:

1. if P = Pflex, this threshold is unique;

2. if P = Pnatl, this threshold is unique conditional on {χs, P
h
s , P

ℓ
s}. Additionally, the

threshold is strictly decreasing in χs.

Proof: See Appendix A.2.

Proposition 2 is a result about spatial sorting. We can think of the unproductive insurer as Conti-

nental and the productive insurer as Metlife. The proposition says that in low hiring cost locations,

Continental is relatively more active than Metlife, despite the fact that Metlife is more productive.

This is driven by differences in span of control costs: Metlife, having more efficiency units, finds

it relatively more costly to manage the marginal agent and therefore allocates the marginal agent

to the large hiring cost locations where Continental is not able to serve. These two forces together

generate spatial sorting in a distributional sense, as I depict in Figure 1.
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The proposition does not specify which locations are low- or high-cost. However, I observe very

specific spatial sorting patterns in the data that the model can replicate with more structure on fs.

The following corollary emphasizes sorting along local income.

Corollary 2.1: Sorting Along Local Fundamentals

Suppose θj > θj′ and suppose Assumption 1 holds. Suppose further that fs is only a function

of ηhs and is strictly increasing in ηhs . Then Ej[η
h
s ] > Ej′ [η

h
s ], where

Ej[η
h
s ] =

∑
s∈S

(
ajs∑
s′ ajs′

)
ηhs

is insurer j’s agent-weighted average local income.

Proof: See Appendix A.3.

The corollary is consistent with the empirical sorting patterns I report in Section 2.3. For example, if

hiring costs are increasing in market sizeNs, then the efficient insurers sort toward the large markets,

while the inefficient insurers sort toward small markets. Similarly, if hiring costs are increasing in

the share of high-type households ηhs , then efficient insurers also sort toward high-elasticity markets,

while inefficient insurers sort toward low-elasticity markets. This particular dimension of sorting

implies an additional corollary relevant for pricing patterns across insurers.

Corollary 2.2: Price Dispersion

Suppose θj > θj′ and suppose Assumption 1 holds. Suppose further that fs is only a function

of ηhs and is strictly increasing in ηhs . Then under national pricing, pj < pj′ . Under flexible

pricing, pjs = pj′s for all j and all s.

Proof: See Appendix A.4.

Corollary 2.2 is consistent with the spatially biased pricing patterns documented in Section 2.3: if

high-income households have higher elasticities than low-income households, then insurers sorting

toward richer markets should also set lower prices.

3.4 The Effect of National Price Setting on the Spatial Distribution of Agents

National pricing affects insurer profitability through two margins. First, national pricing affects

equilibrium markups in every location. Second, with heterogeneous insurers and an outside option,

equilibrium price changes also affect sales volumes. The two effects compete with each other: if
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Figure 2: The Effect of National Pricing on Insurer Location Decisions

ajs

ηhsη∗j

flexible
pricing

national
pricing

Note: This figure displays agent distributions across regulatory regimes for a given insurer. The cutoff ηh∗j corresponds
to the respective local high-income shares in which the insurers place an equal number of agents across regimes. Solid
lines correspond to the flexible pricing regime and dashed lines correspond to the uniform pricing regime. The figure
is conditional on market size Ns.

prices decline in a location relative to flexible pricing, markups fall unambiguously, while volume

may rise or fall depending on the price responses of all other insurers.

The magnitude of the volume effect is difficult to characterize with insurer-level heterogeneity.

Nevertheless, I can prove the following result in a simple case with homogeneous firms and some

structure on hiring costs:

Proposition 3: Geographic Responses to National Pricing

Suppose ι → ∞, θ → θ, and fs is solely a function of market size, fs = f(Ns), with f
′(N) > 0.

Then there exists a unique threshold schedule ηh∗j (N) such that, conditional on N , anatljs < aflexjs

if ηhs < ηh∗j (N) and anatljs > aflexjs if ηhs > ηh∗j (N).

Proof: See Appendix A.5.

While the assumptions required for Proposition 3 are strong, the implications are important: na-

tional pricing induces a shift in in the geographic allocation of agents away from low-type locations

and towards high-type locations. This reallocation is directly due to changes in equilibrium markups.

Markups in low-type locations fall relative to flexible pricing since insurers average local elasticities

across locations. Insurers are therefore less profitable and, as a result, they reduce the number of

agents in low-type locations. They reallocate activity to high-type markets, where their markups

and profitability increase. Figure 2 visualizes this reallocation.

This result has important implications for household welfare. Market penetration changes are
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positively correlated with price changes: lower prices (higher welfare) imply fewer agents and fewer

households reached (lower welfare). The next section formalizes the way that welfare changes across

these two margins and analyzes which households gain and which households lose.

3.5 The Welfare Consequences of National Pricing

Which households lose and which households gain from national pricing regulation? Taking the log

difference in consumer welfare of type k households in market s across regulatory regimes, we have

∆ log

(
Bk

P k
s

)
= logP k,flex

s − logP k,natl
s . (13)

The next proposition decomposes the consumer welfare effects to first order into two components: a

pricing margin component that comes from the change in prices, and an access margin component

that comes from changes in agent placement and market penetration.

Proposition 4: Consumer Welfare Decomposition

To first order, the log change in consumer welfare in location s for type k households when

moving from flexible to national pricing satisfies

∆ log

(
Bk

P k
s

)
≈ ιk
εk − 1

[ ∑
j∈J

κflexjs

(
(pnatljs )1−εk − (pflexjs )1−εk

)
︸ ︷︷ ︸

pricing margin effect

+
∑
j∈J

(
κnatljs − κflexjs

)
(pnatljs )1−εk

︸ ︷︷ ︸
access margin effect

]

Proof: See Appendix A.6.

The uniform pricing literature focuses on the pricing margin, e.g. Aparicio et al. (2021) and Daruich

and Kozlowski (2023). Conditional on the location choices of each insurer, the pricing component

measures the direct impact of national pricing regulation on welfare through price changes. The

effects are positive for low-elasticity locations and negative for high-elasticity locations.

The new component relative to the uniform pricing literature is the access margin, which deter-

mines how much welfare changes conditional on national prices when insurers adjust their agents.

From Proposition 3, market penetration changes in the opposite direction of prices, which dampens

the pricing margin effects. Both effects will be negligible around the cutoff regions ηh∗j , but may be

large in the tails of the spatial high-type distribution. In these cases, the access margin effects may

be large enough to fully offset or even reverse the pricing margin effects.

The relative strengths of the two effects depend crucially on a given household’s demand elas-

ticity. To give a stark example, let εℓ → 1. In this case, type ℓ households no longer have any
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disutility from prices and care only about their idiosyncratic tastes. The pricing margin effects

are therefore 0 for type ℓ households. When ∆κjs < 0 for the majority of insurers in location s, it

follows that ∆ logWs
ℓ < 0: national pricing reduces low-type consumer welfare in low-type locations

despite average prices being lower.

In general, the relative magnitude of the two effects are difficult to sign when not all insurers

behave in the same way. For example, consider the location with the median share of high-type

households. It may be that Metlife, who sorts toward high-type locations, lowers its price in the

median location relative to flexible pricing, while Contintental, who sorts toward low-type places,

increases their price in the same location. Additionally, if elasticity differences are large enough, the

volume component of profitability may dominate the markup component, which could lead insurers

to increase their market penetration in response to a decline in markups. The following proposition

therefore characterizes which households lose and which ones gain in response to a set of changes

for a particular insurer ∆pjs and ∆κjs.

Proposition 5: Welfare Effects Across the Type Distribution

Suppose pnatljs < pflexjs and κnatljs < κflexjs for insurer j. Consider a household with price elasticity

εi. There exists a threshold ε∗js such that the pricing margin dominates when εi > ε∗js and the

access margin dominates when εi < ε∗js.

Proof: See Appendix A.7.

The overall welfare effect depends on the exact distribution of price and market penetration changes

across insurers. The goal of the remainder of the paper is to estimate the model and the welfare

effects of national pricing, which I turn to now.

4 Model Estimation

This section begins by laying out the quantitative extension to the model. I then discuss estimation

strategy and present estimation results. Last, I test the model by predicting the number of agents

in each location in different time periods and assessing the extent to which the model correlates

with the data.

4.1 Quantitative Extension

I make three changes to the structure of the model. First, I allow household values to depend

on insurer characteristics. Prices are only one component that households may care about when

purchasing an insurance policy. Other factors, such as the size of the insurer, the financial rating of

the insurer, or leverage may be important for household decisions. I therefore modify preferences
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to take the form

uijs = log ιk(i) + logω(Xf
j )− (εk(i) − 1) log pj + νijs

where Xf
j is a vector of insurer characteristics. Second, I now allow for marginal cost heterogeneity

to capture differences in prices that cannot be explained by heterogeneous markups. Third, I incor-

porate observed state-level premium revenue taxes ts into the model.15 In Section 5, I manipulate

the premium revenue taxes when I study place-based policies. I rebate taxes and profits back to

households.

I also specify functional forms for hiring costs fs and the span of control function C(āj, θj).

Hiring cost are a function of market size and the share of high-income households, fs = τ0N
τ1
s η

τ2
s .

I restrict τ0 > 0, but leave τ1 and τ2 unrestricted. Market size could be positively related to hiring

costs through hiring volume: licensing a small number of agents may be simple, but hiring thousands

may be increasingly costly, especially if expected agent turnover is increasing in hiring volume. On

the other hand, market size may also be negatively correlated with hiring costs if it is generally more

difficult to locate agents in small places. Income could reflect differences in education attainment

for the average local agent. If less educated agents are more difficult to train, then we might expect

τ2 < 0. But if more educated agents are difficult to attract due to having better outside options, it

may also be that τ2 > 0.

Span of control costs take the functional form

C(āj, θj) =
γ0
γ1

(∑
s∈S

θjajs

)γ1

.

I assume γ0 > 0 and γ1 > 1 to satisfy the convexity assumption. A larger γ1 implies stricter

marginal span of control costs for large insurers, which generates stronger spatial sorting patterns.

4.2 Estimating Price Elasticities and Demand Components

I assume two household types: low-income and high-income. The choice of only 2 types is to

economize on statistical power. Households are considered low-income if their income is below the

national median, $75, 000, and are considered high-income if their income is above the median.16

To first order, insurer j’s sales to income group k in location s are

logSjs = log ajs + log θj︸ ︷︷ ︸
market penetration

+ logω(Xf
j )︸ ︷︷ ︸

insurer characteristics

− (εℓ − 1) log pj︸ ︷︷ ︸
low-income elasticity

+(εℓ − εh)χs log pj︸ ︷︷ ︸
relative elasticities

+FEs (14)

15See Appendix B.5 for the counterpart to Proposition 1 when tax rates are heterogeneous across locations.
16I also present results where I further disaggregate types by income and race which I discuss later in this section.
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where FEs is a location-specific fixed effect. The fixed effect absorbs the market size component of

market penetration, the type-specific price indexes, and the type-specific insurance values {ιk}. I

assume a log-linear structure for the insurer characteristics:

logω(Xj) =
N∑

n=1

ωnXjn. (15)

I follow Koijen and Yogo (2016) and include log liabilities, financial rating, return on equity, and an

indicator for whether insurer j is a stock company. I use 10-year term life insurance premiums for

40 year olds averaged across male and female categories as the representative price. Since prices are

endogenous, they are correlated with the error term. I therefore use two sets of supply shifters as

instruments. First, I use the log of insurers’ variable annuity reserve valuations. Insurers with high

reserve valuations face larger shadow costs of capital as shown in Koijen and Yogo (2022). They

may therefore reduce their life insurance prices to increase their immediate funds and push them

farther from their risk-based capital constraint. To the extent that households care only about the

liquidity and solvency of an insurer, the exclusion restriction is that reserve valuation is uncorrelated

with demand conditional on insurer characteristics.

My data for reserve valuations only span 2007-2015. As I discuss in Section 2, the NAIC-SBS

data only includes agents licensed in 2022. I therefore only observe the number of insurer-agent

pairs in a state in year t conditional on the agent being active at the time of data collection. While

this measure is stable throughout the mid- to late-2010s, it becomes much more unreliable during

the years before and after the financial crisis in 2008. I therefore do not include agent controls in

the baseline specification. However, for robustness I approximate productivity θj as an insurer’s

total sales per agent, θj ≈
∑

s Sjs/
∑

s ajs. Since this measure is aggregated across states for each

insurer, the long-run correlation is stronger than for the state-level agents.

I use a second Hausman et al. (1994) style instrument to address concerns that leaving out

agents from the regression biases the price elasticity estimates. I use annuity prices for a given

insurer from 2009 to instrument for life insurance prices from 2011-2018. Marginal costs share

a common component across an insurer’s product markets and should therefore be reflected in

both life insurance and annuity prices. Since insurers do not regularly change their organizational

structure, the cost component in both markets should also be correlated over time, justifying the

relevance of the instrument. The exclusion restriction is that demand for annuities in 2009, the

middle of the Great Recession, is uncorrelated with life insurance demand during the recovery.

Spatial variation in high-income expenditure shares is low at the state level relative to commuting

zones, varying from 60% to 85%. To avoid power issues, I group states into high- and low-income

bins using the median as the cutoff, and I refer to the indicator variable designating these two groups

as χ̃s = 1{χs ≥ median(χ)}. The estimates I report are the average elasticities of each of these

groups of states. I use these estimates as approximations for the elasticities of low- and high-income

26



households. This methodology underestimates the differences in demand elasticities across income

groups. This implies that the counterfactuals in Section 5 are underestimating the true effects of

national pricing since larger elasticity differences would imply a larger effect of national pricing on

markups and, therefore, a larger effect on local agent choices.

Table 3 displays the results with p-values reported in parentheses. In all specifications, I estimate

εℓ, εh > 1, implying that demand curves are downward sloping. The low-income elasticity is not

precisely estimated, but the difference between elasticities is consistently different from zero and

negative across specifications, implying εh > εℓ as in Hastings et al. (2017). The difference is always

significant at the 1% level under the annuity price instrument, and is significant at the 6% level

when using variable annuity losses.

I also consider a specification using insurer-year fixed effects that further addresses measurement

error in the number of agents and the productivity terms. This specification absorbs all observed

and unobserved insurer characteristics and the productivity term. However, because prices are set

at the insurer-year level, this specification also absorbs the price, so the low-income elasticity is not

identified. The estimates are reported in columns (3) and (6) of Table 3. In all specifications, the

difference in elasticities across income groups remain negative and statistically significant and have

similar magnitudes to the baseline estimates.

In Appendix D.5, I further group states by share of non-white households to capture different

elasticities across racial groups. The estimates continue to point to low-income households having

lower elasticities. The results across racial groups differ by instrument, however. Using the variable

annuity loss instrument, non-white low-income households have slightly higher elasticities than

white low-income households. While this is at odds with the stylized fact in Section 2.3, it could

reinforce the possibility that insurers do price discriminate on the basis of race. On the other hand,

using the Hausman et al. (1994) instrument, I find that non-white households have lower elasticities

than white households.

I use the results from column (4) in Table 3 for the remainder of the estimation for two reasons.

First, the annuity price instrument allows me to control for the number of agents per insurer in

each state, eliminating concerns that omitting agents biases the price elasticity results.17 Second,

the elasticity for the average household in the economy under (4) is approximately −3.48, which

is the closest estimate to other demand elasticity estimates in the literature, e.g. Koijen and Yogo

(2016) (−2.2) and Tang (2022) (−2.4). However, in Appendix E.2, I also estimate the model using

the results in column (1) and draw similar conclusions when conducting counterfactuals.

17Hastings et al. (2017) show that biased agents may reduce demand elasticities. When I omit agents from the
analysis, low-income elasticity estimates rise and high-income elasticities fall. This is consistent with Hastings et al.
(2017) if low-income households are more sensitive to agent advice than high-income households.
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Table 3: Demand Estimation Results

Variable Annuity Losses Annuity Prices

(1) (2) (3) (4) (5) (6)

Log Price −2.234 −3.154 −1.182 −0.304

(0.477) (0.308) (0.446) (0.542)

Log Price × χ̃s −2.676 −2.045 −1.828 −2.882 −2.541 −2.701

(0.055) (0.055) (0.032) (0.000) (0.000) (0.000)

Size 0.809 0.686 0.375 0.427

(0.000) (0.000) (0.022) (0.000)

Rating −1.420 −0.295 −1.703 −5.507

(0.431) (0.845) (0.582) (0.000)

Stock −1.399 −0.688 0.583 0.737

(0.213) (0.484) (0.193) (0.000)

ROE −1.149 −1.053 −0.308 −1.356

(0.006) (0.026) (0.852) (0.031)

Demand Controls ✓ ✓ ✓ ✓

Productivity Proxy ✓ ✓

Firm-Year FE ✓ ✓

Agents ✓ ✓ ✓

Obs 11326 10784 12190 949 949 949

Within R2 0.28 0.31 -0.01 0.29 0.75 0.09

F 105.0 111.4 484.7 36.5 56.9 115.6

Note: Estimation results for regression equation (14). Columns (1)-(3) use the variable annuity losses instrument
and do not include agents in the regression. Columns (4)-(6) use the annuity prices instrument and do include
agents in the regression. Columns (1) and (4) do not incorporate productivity proxies. Columns (2) and (5) add the
productivity proxies in. Columns (3) and (6) include insurer-year fixed effects. Standard errors are clustered at the
insurer-year level. P-values are reported in parentheses.

4.3 Estimating Marginal Costs, Productivities, and Insurance Values

I recover productivity estimates and marginal cost estimates from the optimization conditions. To

compute marginal costs, I input a guess for the model parameters ψ = (α, {γk}, {τk}) and {ιk} and

compute the implied hiring costs for each commuting zone and span of control costs for each insurer.
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I estimate sales shares for each insurer-commuting zone pair and aggregate across commuting zones

to get each insurer’s average elasticity. I then invert marginal costs from the optimal pricing

condition given in Proposition 1.

To recover productivities {θj}, I insert the marginal cost estimates and model parameters ψ

into the agent optimality condition (12). Summing across the commuting zones in the NAIC-SBS

sample, this condition can be written

Sj =
∑
s∈S

(
fs + C ′(āj, θj)

(1− ts)pj − ξj

)(
κ(ajs, θj, Ns)

1− κ(ajs, θj, Ns)

)
Nα

s .

The right-hand side is strictly increasing in θj, so there exists a unique productivity level that

rationalizes the observed agent and sales data given model parameters. When using parameter

guesses that imply Sj is less than the right hand side as θj → 0, I set θj = 0.001. In practice, this

restriction rarely binds.

Since the productivity estimates influence the sales shares of each insurer across commuting

zones, I continue to update {ξj, θj} until convergence. I then group insurers into deciles based on

their estimated demand components ω̂j and assign each representative insurer the average marginal

cost and productivity in each decile. I report the resulting estimates in Appendix D.4.

I then solve for equilibrium price indices. I recover the type-specific life insurance values {ιk}
by aggregating the outside option share for each household type across commuting zones:

(1− Participation Rate)k =
∑
s∈S

(
Ek

s∑
s′ E

k
s′

)(
1 + ιk

∑
j∈J

ωjκjsp
1−εk
j

)−1

. (16)

On the left hand-side, I use survey data on life insurance participation rates for each income type

from Annuity.org (2023). The right hand side varies between 0 and 1 and is strictly decreasing in

ιk. There is therefore a unique solution for each income group that perfectly rationalizes observed

participation rates in the data. Given the solution to (16), I restart the marginal cost-productivity

loop and repeat until {ιk} converges.

4.4 Estimating the Remaining Model Parameters

I now detail the simulated method of moments (SMM) procedure I use to solve for the model

parameters ψ. I choose moments to match the function of each parameter. I calibrate the span

of control parameters γ0 and γ1 to match the OLS slope parameters from the following sorting
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regressions:

∑
j∈J

(
ajs∑
j′ aj′s

)
logωj = βAS

0 + βAS
1 log ηs + errors

∑
s∈S

(
ajs∑
s′ ajs′

)
log ηs = βRS

0 + βRS
1 logωj + errorj

The first regression provides a measure of absolute sorting: as local income increases, so does the

size of the average insurer. The second regression is a measure of relative sorting: as the size of an

insurer increases, so does the average income of its agents’ markets.

Next, I calibrate hiring cost parameters τ1 and τ2 to match the relative allocation of agents

across the commuting zone population distribution. For each q ∈ {50, 45, . . . , 5}, I compute the

average number of agents in the top q% of locations by market size and the average number of

agents in the bottom q% of locations by market size and take the ratio of the two. The ratio is

decreasing exponentially in q, so I match the OLS coefficients from the regression

log

(
E[as|Ns in top q%]

E[as|Ns in bottom q%]

)
= β0 + β1(50− q) + errorq.

I calibrate τ0 to match the sales share of the top 20% of insurers. Since τ0 is a common cost

component for all insurers, increasing τ0 punishes small insurers relatively more than large insurers,

increasing the sales share of the large insurers. Finally, I calibrate the market penetration size effect

parameter α to match the average number of agent-insurer pairs per location.

Finally, I set Bk to be 1.5% of type-k households’ yearly wage. Financial advisors often rec-

ommend and ask their clients to purchase enough insurance to cover 10 times their yearly wage.

To calculate the fraction of income they need to devote to yearly premiums, I first calculate the

average premium in the Compulife data for a policy that pays out this amount. I then divide the

average premium by the yearly wage. Since premiums scale approximately linearly for coverage

large enough, this comes out to about 1.5% for both high- and low-income households.

Table 4 summarizes the parameters and moments and reports the results. Due to the strong

non-linearities in the model, I cannot match the moments exactly, though several moments come

close. The most mismatched moment is the average number of agent-insurer pairs per location.

Appendix D.2a documents the fit of the model. First, I regress total agents per commuting

zone in the model on total agents per commuting zone in the data. The R2 is 0.64 in logs and 0.70

in levels, which implies the model captures between 64-70% of the variation in agent availability

across commuting zones. I then regress the log difference between model and data on the log

population in each commuting zone. The slope is negative, implying that I overestimate agents

in small markets relative to large markets. From the welfare decomposition in Proposition 4, this
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Table 4: Internal Calibration Summary and Results

Moment Group Parameter Value Moment Data Model

Sorting γ0 0.024 Relative Sorting: βRS
1 0.019 0.016

γ1 1.536 Absolute Sorting: βAS
1 0.781 0.938

τ1 0.815 Agent Allocation: β0 2.206 1.901

τ2 -0.785 Agent Allocation: β1 0.096 0.042

Size τ0 0.112 Top 20% Sales Share 0.729 0.640

α 0.618 Agent-Firm Pairs per CZ 3982 5794

Participation ιh 0.501 High-Income Participation 0.597 0.597

ιℓ 0.096 Low-Income Participation 0.374 0.374

Note: The value column reports the parameters that minimize the sum of squared deviations between data and model
moments. The last two columns report the data-generated moments and the model-generated moments respectively.

implies that pricing margin welfare effects will be overestimated relative to access margin effects in

small markets relative to large markets.

I then test how well the model can match the allocation of agents across commuting zones in a

different time period. I solve the model using 2010 spatial fundamentals and compare the difference

in agents over time to the observed differences in agents in the data. Since the NAIC-SBS data is

not a true panel, I supplement the NAIC-SBS data with information on local brokers and financial

intermediaries from the Quarterly Census of Employment and Wages. Regardless of the choice

of intermediaries, the model can match changes in agents across commuting zones. I regress the

change in total commuting zone agents in the model on changes in total commuting zone agents in

the data and recover an R2 of 0.61.

5 The Welfare Effects of National Pricing Restrictions

I now use the estimated model to conduct a series of exercises. First, I provide a methodology

that converts welfare differences across locations into dollar amounts, and show how to decompose

this measure into a pricing and access margin effect. Next, I document the margins driving spatial

inequality under the flexible pricing regime, and show how national pricing affects both margins of

inequality. I then consider how regulators can target the access margin explicitly through place-

based tax policies. I wrap up with a discussion on robustness.
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5.1 The Drivers of Spatial Inequality in the Life Insurance Industry

I evaluate spatial differences in welfare by computing compensating differentials. First, I select

the commuting zone with the highest level of welfare under the flexible pricing regime. I refer to

this location as the optimal commuting zone, and denote it as cz∗. I then compute the level of

additional savings, B̂k
cz, necessary to equate welfare for each commuting zone cz to welfare in the

optimal location cz∗, conditional on household type. I refer to B̂k
cz as the compensating differential

for type k households in commuting zone cz.

Given the welfare expression for the average household in location cz, Bk/P
k
cz, the compensating

differential is implicitly defined by the relationship

Bk + B̂k
cz

P k
cz

=
Bk

P k
cz∗
. (17)

I also consider a counterfactual price index, P k,price
cz , that holds fixed the allocation of agents in the

optimal commuting zone and only considers changes in optimal markups across commuting zones.18

The compensating differential for this counterfactual price index is then

Bk + B̂k,price
cz

P k,price
cz

=
Bk

P k
cz∗
. (18)

I refer to B̂k,price
cz as the pricing margin of spatial inequality and refer to the difference in compen-

sating differentials, Bk
cz − B̂k,price

cz , as the access margin of spatial inequality.

Figure 3 reports the compensating differential for each margin, averaged by commuting zone

high-income population share deciles, for both low- and high-income households. Throughout this

section, I focus the discussion on the bottom decile of local income. Low-income households in the

bottom decile on average need to be given $351 per year to be as well off as the average low-income

household in the optimal commuting zone, and high-income households in the bottom decile need

to be given $506 per year. In percentage terms, low-income households need to be given 0.95% of

their yearly income, while high-income households need to be given 0.41% of their yearly income.

The access margin of spatial inequality is large relative to the pricing margin. The pricing margin

only reflects 5.7% of the compensating differential ($20 per year) for low-income households, and

18.2% ($92 per year) for high-income households. The remainder is attributed to differential access,

which in welfare terms includes both the general availability of insurers as well as differences in the

quality of insurers relative to the optimal commuting zone.

18This counterfactual price index is calculated as

P k,price
cz =

(
1 + ιk

∑
j∈J

ωjκj,cz∗p1−εk
j,cz

) 1
1−εk
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Figure 3: Compensating Differentials Under Flexible Pricing
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Note: This figure reports compensating differentials across commuting zone high-income population share deciles.
Dark purple bars reflect the pricing margin, while the light tan bars reflect the access margin. The pricing margin
values are reported in purple above the purple bars, and the total differentials are reported in black above each bar.
I condition on low-income households in the left section and high-income households in the right section.

These estimates are comparable to other estimates of under-diversification in the literature. For

example, Calvet et al. (2007) find that under-diversification in stock market equity leads to losses of

around 0.5% of lifetime income, and Koijen et al. (2016) find that deviations in optimal health and

life insurance coverage leads to losses of 3.2% of lifetime income. The similar magnitudes suggest

that part of what drives sub-optimal investment choices is differences in accessible investment

options across geographic regions.19

5.2 The Effects of National Pricing on Spatial Inequality

I now use the model to analyze the effects of national pricing on spatial inequality. I start by

analyzing how pricing and location decisions change after imposing national pricing restrictions.

Figure 4a shows how prices change for each insurer across the spatial income distribution in response

to the policy, and Figure 4b shows how market penetration changes. In each figure, the solid colored

line is a demand-component-weighted average of the changes, and each gray line represents one of

the ten insurer size deciles.

19These comparisons have two caveats: first, both of these studies consider dynamic frameworks and compare
to lifetime income, while this paper works in a static environment. However, if the effects are persistent over time,
these two measures should coincide. Second, both papers consider deviations in observed choices to a model-implied
optimal portfolio choice. Here, I’m comparing each commuting zone to the optimal location and do not account for
mistakes in optimal insurance participation. It is therefore likely that the compensating differentials would be much
larger if I conducted the same experiment.
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Figure 4: The Effect of Uniform Pricing Regulation on Firm Decisions

-6

-4

-2

0

2

4

Pe
rc

en
ta

ge
 C

ha
ng

e 
Re

la
tiv

e 
to

 F
le

xi
bl

e 
Pr

ic
in

g

.15 .25 .35 .45 .55 .65
CZ High-Income Population Share

Demand-Weighted Average

(a) Log Prices
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(b) Market Penetration

Note: This figure compares equilibrium insurer decisions under national pricing restrictions relative to flexible pricing.
Each subfigure plots the decisions for each of the ten deciles of insurers as well as a demand-component-weighted
average of the responses. All lines are local polynomials estimated with the Epanechnikov kernel. Panel (a) plots
the log change in price across regimes against commuting zone high-income population share. Panel (b) plots the
change in market penetration against commuting zone high-income population.

Both figures are consistent with the description of the theory. Prices fall in the poorest com-

muting zones by a little over 4% on average, while they rise by about 1.2% on average in the richest

commuting zones. The policy therefore makes households in low-income places better off and high-

income places worse off on the pricing margin, alleviating some of the spatial disparities reported

in Figure 3. However, due to the effects on local profitability, market penetration declines by 1 per-

centage points on average in the poorest commuting zones and increases by about 0.8 percentage

points on average in the richest commuting zones. This implies that the insurers’ agent adjustments

offset the welfare effects of price changes, reducing the effectiveness of the policy.

I next compute compensating differentials as in Section 5.1 but under national pricing regulation.

By definition, national pricing eliminates the pricing margin of spatial inequality: if cz has access

to the same insurers as cz∗, then under national pricing, pj,cz = pj,cz∗ for all active j. Differences in

spatial inequality across regulatory regimes are therefore driven by changes in the access margin.

Figure 5 reports the results. The access margin effects offset the effects of the pricing margin

for low-income households, but dampen them for high-income households. Taken together, na-

tional pricing increases spatial inequality for low-income households but reduces it for high-income

households. These between-type differences are related to Proposition 5 in Section 3.5: low-income

households, having lower price elasticities, are relatively more sensitive to the access margin than

high-income households.

The results imply that national pricing, while alleviating pricing inequality, does not necessarily

make low-income households better off relative to the optimal location. Further, the decomposition
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Figure 5: Change in Compensating Differentials Under National Pricing
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Note: This figure reports the effects of national pricing on compensating differentials relative to flexible pricing
across commuting zone high-income population share deciles. Dark purple bars reflect the pricing margin, while the
light tan bars reflect the access margin. I condition on low-income households in the left section and high-income
households in the right section.

in Figure 3 suggests that the returns to targeting the access margin should outweigh the returns of

targeting the pricing margin. I now turn to a policy that does just that.

5.3 A Complementary Place-Based Tax Policy

National pricing reduces pricing inequality but exacerbates access inequality. A potential policy

solution is to use local tax policies to improve the profitability of insurers in low-profitability lo-

cations, incentivizing insurers to place more agents in these locations and improve access to their

products.

I consider a policy that targets the bottom third of locations by local income. I eliminate

premium taxes in these locations and finance the loss in tax revenue by proportionately scaling up

tax rates in the rich locations. In practice, I solve for the tax scheme {t∗s}s that makes the policy

revenue neutral, ∑
s∈S

∑
j∈J

t∗sS
∗
js =

∑
s∈S

∑
j∈J

tsS
natl
js .

The policy can be scaled up by explicitly subsidizing insurers in poor places rather than simply

eliminating taxes. There is a tradeoff to scale: if the scale is too large, the negative effects of

the policy in high-income commuting zones may reverse the positive effects in the low-income
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Figure 6: Change in Compensating Differentials Under Place-Based Tax Policies
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Note: This figure reports the effects of the place-based policies on compensating differentials relative to flexible
pricing across commuting zone high-income population share deciles. Dark purple bars show the effects of national
pricing by itself. Pink bars reflect the additional effects of the no-tax policy, while the light tan bars reflect the
additional effects of the subsidy policy. I condition on low-income households in the left section and high-income
households in the right section.

commuting zones. To understand how well the policy scales, I also consider a policy in which I

convert observed tax rates to subsidies in the poor commuting zones. For example, if a commuting

zone has an observed tax rate of 2%, I replace the tax with a subsidy of 2%. I again offset the tax

revenue losses by increasing tax rates in the richer commuting zones.

Figure 6 reports the effects on spatial inequality for each policy. The figure also includes the

effects of national pricing alone for reference. The poorest commuting zones see a strong reduction

in their compensating differentials: the no-tax policy is equivalent to giving $20 per year to low-

income households in the poorest decile and $60 per year to high-income households in the poorest

decile. The policy scales almost linearly: the subsidy policy is equivalent to giving $50 per year

to low-income households and $100 per year to high-income households in the poorest decile of

commuting zones.

Importantly, the gains in the poor commuting zones do not result in substantial losses for

households in the richer commuting zones. For example, in the fifth decile of commuting zone

income, national pricing increases the compensating differential for low-income households by $7
per year, and the subsidy policy further increases this by only $1 per year. The policies therefore

do not substantially increase inequality in the middle of the distribution, but have strong effects at

the bottom of the distribution.
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5.4 The Effects of National Pricing at the Local Level

The analysis in Sections 5.1-5.3 focuses on spatial inequality. However, more spatial inequality does

not necessarily mean that households are worse off in these locations. For example, it may be that

national pricing makes low-income households better off in a commuting zone, but less so than the

optimal commuting zone, leading to more spatial inequality.

In Appendix E.1, I analyze the effects of national pricing on welfare relative to the flexible

pricing benchmark within a commuting zone. In other words, compared to flexible pricing, are

low-income households in Detroit better or worse off under national pricing? Are the effects similar

for high-income households or for households in New York City?

I focus the discussion on low-income households but include results for high-income households

in the appendix. I find that low-income households are worse off on average in each of the bottom

nine deciles of commuting zone income and better off in the top decile. For example, in the

poorest decile, national pricing reduces compensating differentials on the pricing margin by $2.90,
but increases compensating differentials on the access margin by $6.30. In the richest decile, low-

income households are better off by $3 on the access margin, but worse off by $1.50 on the pricing

margin.

The results imply that national pricing increases spatial inequality both by making households

in poor commuting zones worse off and by making households in the richest commuting zones better

off. This bolsters the motivation for place-based policies since they explicitly target the commuting

zones that fare the worst.

5.5 Robustness to Alternative Elasticity Estimates

The estimates in Sections 5.1-5.3 use the elasticity estimates from the Hausman et al. (1994)-style

annuity price instrument. However, these elasticity estimates are small relative to the estimates

using variable annuity losses, which could affect the magnitudes of the counterfactual estimates. I

therefore re-estimate the model with the variable annuity estimates in Section E.2 and compare the

results to the benchmark.

Larger elasticities reduce the magnitudes of spatial inequality as measured through compensat-

ing differentials. For example, using the variable annuity losses elasticities, low-income households

in the poorest decile of commuting zones need to be given $153 per year to equate their welfare to

the optimal location as opposed to $351 in the benchmark, a reduction of about 58%. However,

the relative effects between margins are similar: the access margin accounts for 92.8% of the com-

pensating differential under the VA losses estimates compared to 94.3% under the Hausman et al.

(1994) instrument.

Further, place-based tax policies have similar effects on welfare across instruments. Using the

variable annuity losses instrument, the subsidy policy reduces compensating differentials relative
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to flexible pricing by 20-25% in the poorest third of commuting zones, depending on the income

decile. This percentage reduction is greater than the benchmark estimates in which compensating

differentials decline by 15-20%.

6 Conclusion

This paper provides a framework to analyze how price regulation affects the spatial distribution

of firm activity. When price regulation has a geographic component, firms naturally adjust away

from the locations where the policy bites the most. In the life insurance industry — and the

financial services industry in general — these responses may exacerbate financial access disparities

and amplify, rather than dampen, inequality. I argue in this paper that regulators must take the

access margin into account and target it explicitly to promote financial inclusion in the industry.

Place-based policies are one potential set of tools that accomplish this.

That being said, the analysis in this paper ignores many aspects of discrimination that could be

present beyond household preferences. The purpose of national pricing in the life insurance industry

is to discourage racial discrimination. Even if minority households have similar tastes, insurers may

view minorities as having meaningful differences in risk conditional on observable characteristics

and may internalize this risk when setting prices. Incorporating this margin into the model would

strengthen the effects of the policy and perhaps lead to different conclusions.

Further, absent an observed change in regulation, this paper cannot test directly whether the

access channel is affected by the policy. However, there are two settings in which testing for

the access channel may be plausible. First, annuity providers in the United Kingdom recently

began pricing on postal codes, departing from observed national pricing documented in Finkelstein

and Poterba (2004). This setting would be ideal to understand whether national pricing causes

geographic segmentation.

Second, the Affordable Care Act (ACA) marketplace for health insurance enabled states to

enforce uniform pricing within state-defined “ratings areas” that consisted of bundles of counties.

Health insurers are not permitted to vary prices across counties within each of their ratings areas.

(Fang and Ko (2020)) document that health insurers geographically segment by local risk within

ratings areas, consistent with the mechanism in this paper. An extension to the Fang and Ko

(2020) study that explores how health insurance participation varies within ratings areas due to

this segmentation would inform the validity of the mechanism in the life insurance industry.
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A Proofs

A.1 Proof of Proposition 1

It will be convenient to prove this proposition for the general case of a small number of firms as in

Atkeson and Burstein (2008), as I use the results in Appendix B.7 below. To revert back to the

large number of firms case, simply replace the market share components of the elasticities to 0.

Begin by calculating the optimal price in the pricing-to-market regime, P = Pptm. Since firms

are optimizing location by location, I’ll do the calculation for an arbitrary location s ∈ S. Recall

that local profits for insurer j take the form

πjs = (pjs − ξ)
(
Qh

js +Qℓ
js

)
= (pjs − ξ)

{
ιh
κjsE

k
s

pjs

(
pjs
P h
s

)1−εh

+ ιℓ
κjsE

ℓ
s

pjs

(
pjs
P ℓ
s

)1−εℓ
}
.

Differentiating firm j’s profit function with respect to pjs gives

Qh
js+Q

ℓ
js−
(
pjs − ξ

pjs

) ∑
k=ℓ,h

{
ιkεk

κjsE
k
s

pjs

(
pjs
P k
s

)1−εk

+ ιk(1− εk)
κjsE

k
s

pjs

(
pjs
P ℓ
s

)1−εℓ
(
ιkκjsp

1−εk
js

(P k
s )

1−εk

)}
= 0

Next, note that we can write the last part of the bracketed term as

κjsp
1−εk
js

(P k
s )

1−εk
=

ιkκjsp
1−εk
js

1 +
∑

j′ ιkκj′sp
1−εk
j′s

=
pjs[ιkκjsE

k
s /(pjs(P

k
s )

1−εk)]p1−εk
js

Ek
s /(P

k
s )

1−εk +
∑

j′ pj′s[ιkκj′sE
k
s /(pj′s(P

k
s )

1−εk)]p1−εk
j′s

=
pjsQ

k
js

poQk
os +

∑
j′ pj′sQ

k
j′s

= σk
js.

It follows that we can rewrite the first order condition as

Qh
js +Qℓ

js −
(
pjs − ξ

pjs

) ∑
k=ℓ,h

ιk
Ek

sκjs
pjs

(
pjs
P k
s

)1−εk [
σk
js + (1− σk

js)εk

]
= 0.

Define the within-market-income elasticity, εkjs = (1 − σk
js)εk + σk

js, and the high-income within-

market sales share, δwh
js = Qh

js/(Q
h
js +Qℓ

js). Dividing both sides by Qh
js +Qℓ

js, we can now write

1−
(
pjs − ξ

pjs

)[
δwh
js ε

h
js + (1− δwh

js )ε
ℓ
js

]
= 1−

(
pjs − ξ

pjs

)
∆js = 0
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where ∆js ≡ σk
js + (1− σk

js)εk. Solving for pjs implies

pjs =

(
∆js

∆js − 1

)
ξ,

which is the correct result given in the proposition when σk
js = 0. Turning to the natlorm pricing

case, note that the first order condition is just the sum of the derivatives of each local profit function,

0 =
∑
s∈S

{
Qh

js +Qℓ
js −

(
pj − ξ

pj

) ∑
k=ℓ,h
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Multiplying and dividing through by pj and dividing through by
∑

s(Q
h
js +Qℓ

js), we can now write

∑
s∈S

(
pj(Q

h
js +Qℓ

js)∑
s′ pj(Q
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js′ +Qℓ
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(
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Once again solving for pj, we get the familiar formula

pj =

( ∑
s δ

b
js∆js∑b

s δ
b
js∆js − 1

)
ξ =

(
ζj

ζj − 1

)
ξ.

This completes the proof. □

A.2 Proof of Proposition 2

Due to differences in relative profitability across firms within a market, I’ll separate the proof into

two cases: flexible pricing and natlorm pricing.

Case 1: Flexible Pricing

Begin by comparing the optimality condition (12) across firm j and j′. Note that under flexible

pricing, pjs = pj′s for all s since they share the same marginal cost, so Φs(pjs) = Φs(pj′s). It follows

that when Ajs, Aj′s > 0,
κA(Ajs, Ns)

κA(Ajs, Ns)
=

fs/θj + λj
fs/θj′ + λj′

. (A.2.1)

Next, I need the following lemma.
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Lemma A.2.1

Suppose P = Pflex and θj > θj′. Then λj > λj′.

Proof: Suppose that instead, λj < λj′ . Then from (A.2.1), since θj > θj′ , we know that the

right-hand side is always less than 1. By concavity of κ(A, ·), it follows that Ajs > Aj′s for

all s ∈ S. But this implies Āj > Āj′ , so by convexity of C(·), it must be that λj = C ′(Āj) >

C ′(Āj′) = λj′ , which is a contradiction. □

To establish the proposition, note that by Lemma A.2.1, we have

lim
fs→0

fs/θj + λj
fs/θj′ + λj′

=
λj
λj′

> 1, lim
fs→∞

fs/θj + λj
fs/θj′ + λj′

=
θj′

θj
< 1.

Continuity implies there exists f ∗(j, j′) such that the right hand side of (A.2.1) is equal to 1, while

the monotonicity of the right hand side implies uniqueness. By concavity of κ(A, ·), it follows that
Ajs < Aj′s when fs < f ∗(j, j′) and Ajs > Aj′s when fs > f ∗(j, j′). □

Case 2: Uniform Pricing

For the natlorm pricing case, I need to highlight a bit more structure since prices are different across

firms and, as a consequence, local profitability is not equalized within a location. First, define

Ωs =
Φs(pj′)

Φs(pj)
=

(pj′ − ξ)p−εℓ
j′

(pj − ξ)p−εℓ
j

[
1 + χs(Rsp

εℓ−εh
j′ − 1)

1 + χs(Rsp
εℓ−εh
j − 1)

]
, Rs ≡

(P h
s )

1−εh

(P ℓ
s )

1−εℓ
.

The following lemma characterizes a couple useful properties of Ω.

Lemma A.2.2

The relative profitability function Ωs : R2
+ → R+ satisfies the following properties:

1. If pj < pj′ , then Ωs(pj, pj′) > 1 when χs = 0 and Ωs(pj, pj′) < 1 when χs = 1

2. Ωs is decreasing in χs and Rs.

Proof: When χs = 0, Φs(·) is optimized at pℓ = (1− ε−1
ℓ )−1ξ, and when χs = 1, the optimal

price is ph = (1− ε−1
h )−1ξ. Since pj < pj′ , we therefore have ph < pj < pj′ < pℓ. Hence, Ωs > 1

when χs = 0 and Ωs < 1 when χs = 1.

It remains to show that Ωs is decreasing in χs and Rs. First, fix Rs. Differentiating with
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respect to χs, we have

∂Ωs

∂χs

∝ (Rsp
εℓ−εh
j′ − 1)[1 + χs(Rsp

εℓ−εh
j − 1)]− (Rsp

εℓ−εh
j − 1)[1 + χs(Rsp

εℓ−εh
j′ − 1)]

= Rs(p
εℓ−εh
j′ − pεℓ−εh

j ) < 0.

Since this holds for any Rs, it must be that Ωs is strictly decreasing in χs. Next, fix χs. In

similar fashion, we have

∂Ωs

∂Rs

∝ χsp
εℓ−εh
j′ [1 + χs(Rsp

εh−εℓ
j − 1)]− χsp

εℓ−εh
j [1 + χs(Rsp
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= χs(1− χs)(p
εℓ−εh
j′ − pεℓ−εh

j ) < 0

as long as χs ∈ (0, 1). This completes the proof. □

It’s now useful to note that the first-order condition (A.2.1) becomes

κA(Ajs, Ns)

κA(Ajs, Ns)
= Ωs

(
fs/θj + λj
fs/θj′ + λj′

)
. (A.2.2)

With this in mind, I first prove the following claim.

Claim 1: There exists an f ∗ ∈ (0,∞) such that Ajs = Aj′s.

To prove the claim, suppose by way of contradiction that Ajs > Aj′s for all s. Then it follows that

λj > λj′ . But this also implies

lim
fs→0

lim
χs→0

Ωs

(
fs/θj + λj
fs/θj′ + λj′

)
= lim

χs→0
Ωs

(
λj
λj′

)
> 1

since Ωs > 1 by Lemma A.2.2. From the first order condition (A.2.2), it must be that for locations

such that fs → 0 and χs → 0, Ajs < Aj′s. But this is a contradiction, so it must be that Ajs < Aj′s

for some s.

Similarly, suppose Ajs < Aj′s for all s. Then we have

lim
fs→∞

lim
χs→1

Ωs

(
fs/θj + λj
fs/θj′ + λj′

)
= lim

χs→1
Ωs

(
θj′

θj

)
< 1.

which follows from the fact that θj > θj′ and Ωs < 1 by Lemma A.2.2. But this implies that in

these locations, Ajs > Aj′s, which is again a contradiction. Therefore, there exist locations in which

Ajs < Aj′s and Ajs > Aj′s. Continuity implies the existence of a f ∗ for some pair of fundamentals

(χ∗, N∗) such that Ajs = Aj′s. □
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I’ll now prove the claim in the proposition. First, given Rs, define χ(Rs) to be the χs that satisfies

Ωs(λj/λj′) = 1. Then for all χs < χ(Rs), it must be that

lim
fs→0

Ωs

(
fs/θj + λj
fs/θj′ + λj′

)
> 1.

It follows that Ajs < Aj′s for locations with small fs. Since this expression is monotonically

decreasing in fs, there exists at most one f ∗
jj′(χ,Rs) such that Ajs < Aj′s for fs < f ∗

jj′(χ,Rs) and

Ajs > Aj′s for fs > f ∗
jj′(χ,Rs). A similar argument follows for the other direction.

Next, I need to establish how f ∗
jj′(χ,R) changes with χ. Consider a χ such that f ∗

jj′(χ,R) ∈
(0,∞). Then we have

Ωs

(
f ∗
jj′(χ,R)/θj + λj

f ∗
jj′(χ,R)/θj′ + λj′

)
= 1.

Differentiating with respect to χ, we have

∂Ωs

∂χ

(
f ∗
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f ∗
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)
+ Ωs

∂f ∗
jj′

∂χ

(
λj′/θj − λj/θj′

(f/θj′ + λj′)2

)
= 0.

Rearranging and solving for ∂f ∗
jj′/∂χ, we have

∂f ∗
jj′

∂χ
= −∂Ωs/∂χ

Ωs

(f ∗
jj′/θj + λj)(f

∗
jj′/θj′ + λj′)

λj′/θj − λj/θj′
< 0

since λj′/θj − λj/θj′ < 0. It follows that the cutoff is decreasing in χ, as desired. □

A.3 Proof of Corollary 2.1

First, condition on x = {P h
s , P

ℓ
s}. Then by Proposition 2, there exists an f ∗

jj′(x) such that Ajs < Aj′s

if fs < f ∗
jj′(x) and Ajs > Aj′s if fs > f ∗

jj′(x). Define
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∑

s:fs<f∗
jj′ (x)

ajs/
∑

s ajs. It follows that

Ej[η
h
s |x] = ρj(x)Ej[η

h
s |x, fs < f ∗

jj′(x)] + (1− ρj(x))Ej[η
h
s |x, fs ≥ f ∗

jj′(x)]

≥ ρj′(x)Ej′ [η
h
s |x, fs < f ∗

jj′(x)] + (1− ρj′(x))Ej′ [η
h
s |x, fs ≥ f ∗

jj′(x)]

= Ej[η
h
s |x]
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since ρj(x) ≤ ρj′(x). It therefore follows from here that

Ej[η
h
s ] =

∑
x

(∑
s|x ajs(x)∑

s ajs

)
Ej[η

h
s |x] ≥

∑
x

(∑
s|x aj′s(x)∑

s aj′s

)
Ej′ [η

h
s |x] = Ej′ [η

h
s ]

as desired. □

A.4 Proof of Corollary 2.2

This proof follows from the fact that δjs is ordered the same as ajs/
∑

s ajs′ and the proof of the

previous corollary. □

A.5 Proof of Proposition 3

First note that when ι → 0 and θ → θ, pnatlj = pnatlj′ for all and j and κ̃js = κ̃j′s for all j and s.

Therefore, (
pnatlj

P k,natl
s

)1−εk

=
(pnatlj )1−εk∑

j∈J

κ̃j′s(p
natl
j′ )1−εk

=
1

Jκ̃js
.

The relative profitabilities for a given firm in a particiular location s as a result satisfy

Φnatl
js (pj)

Φflex
js (pjs)

=

(
1− ξ/pnatlj

1− ξ/pflexjs

)(∑
k E

k
s (p

natl
j /P k,natl

s )1−εk∑
k E

k
s (p

flex
js /P

k,flex
s )1−εk

)
=

∆js

ζj

κ̃flexjs

κ̃natljs

, (A.5.1)

where ∆js ≡ δwh,flex
js εh + (1− δwh,flex

js )εℓ is the local demand elasticity in location s which is strictly

increasing in ηhs . Since insurers are identical by assumption, the remainder of the proof drops the

j subscript from all insurer-specific variables. I also drop the subscript on Ns since I condition on

population.

Conditional on being active in a location s under both regimes, we can take logs of the agent

optimality condition (12) and write

−∆ log

(
κ̃A(As, N)

κ̃(As, N)

)
= ∆ log

(
∆s

ζ

)
−∆ log(fs/θ + λj). (A.5.2)

where I define ∆x ≡ xnatl−xflex for a given variable x and λ = C̃ ′(Ā). Therefore, the change in agents

comes from direct changes in profitability and indirect changes in span of control costs. These are the

two margins I focus on in the proof. It will also be useful to note that −∆(κ̃A(As, N)/κ̃(As, N)) > 0

if and only if ∆As > 0.

The proof proceeds as follows. First, I show that there exist locations in which agents fall and

agents rise relative to flexible pricing. Next, I show that span of control costs are lower under
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national pricing relative to flexible pricing. Finally, I establish a monotonicity result relating the

change in agents to differences in local income. The combination of these three results establishes

the proposition.

Claim 1: There exists locations in which agents decline under national pricing.

Suppose on the contrary that ∆As > 0 for all s, so that −∆(κ̃A(As, N)/κ̃(As, N)) > 0 for all

s. Let ∆ and ∆̄ be the optimal flexible pricing elasticities for the smallest and largest values of

ηhs , respectively. Then since Φnatl
s = 1/(ζκ̃natls ), there are no locations with As = 0, implying that

ζ ∈ (∆, ∆̄). For ηhs → 0, we therefore have ∆s < ζ.

From the assumption that ∆As > 0 for all s, it follows that λnatl > λflex; thus, ∆ log(fs/θ+λj) >

0. Therefore, as ηhs → ηh, we have

−∆ log

(
κ̃A(As, N)

κ̃(As, N)

)
= ∆ log

(
∆s

ζ

)
−∆ log(fs/θ + λj) < 0 < −∆ log

(
κ̃A(As, N)

κ̃(As, N)

)
where the last inequality follows from the assumption that ∆As > 0. This is a contradiction, and

thus, there must be at least one location such that ∆As < 0. □

Claim 2: There exists locations in which agents increase under national pricing.

This proof is nearly identical to the proof of Claim 1, so I omit many of the details. Suppose instead

that ∆As < 0 for all locations so the left-hand side of (A.5.2 is negative. It follows that ∆λ < 0,

implying ∆ log(fs/θ + λ) < 0. It follows that for ηhs → η̄h, ∆s > ζ, so

−∆ log

(
κ̃A(As, N)

κ̃(As, N)

)
= ∆ log

(
∆s

ζ

)
−∆ log(fs/θ + λj) > 0 > −∆ log

(
κ̃A(As, N)

κ̃(As, N)

)
which is again a contradiction. Therefore, there exists at least one location such that ∆As > 0. □

Claim 3: Changes in agents are strictly increasing in ηhs conditional on market size.

Note that conditional on Ns, log(fs/θ+λ) = log(fs′/θ+λ) since fs = f(Ns) = f(Ns′) = fs′ for any

two s, s′ ∈ S. Suppose ηhs > ηhs′ , so ∆s > ∆s′ . It follows that[
−∆ log

(
κ̃A(As, N)

κ̃(As, N)

)]
−
[
−∆ log

(
κ̃A(As′ , N)

κ̃(As′ , N)

)]
= log

(
∆s

∆s′

)
> 0

which implies ∆As > ∆As′ . □

It remains to put the claims together. From Claims 1 and 2, we know there exist locations such

that ∆As < 0 and ∆As > 0. From Claim 4, ∆As is strictly increasing in ηhs . Therefore, by the

intermediate value theorem, there exist a unique ηh∗s such that ∆As < 0 if ηhs < ηh∗s and ∆As > 0

if ηhs > ηh∗s . □
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A.6 Proof of Proposition 4

Using the definition of the local price indices, note that we can write

log(P k
s ) =

1

1− εk
log

(
1 + ιk

∑
j∈J

κjsp
1−εk
js

)
≈ − ιk

εk − 1

∑
j∈J

κjsp
1−εk
js

where the second line follows using the first-order approximation log(1 + x) ≈ x. It follows by

substituting this into the expression for ∆Wk
s that

∆ logWk
s ≈

[
− ιk
εk − 1

∑
j∈J

κflexjs (pflexjs )1−εk

]
−

[
− ιk
εk − 1

∑
j∈J

κnatljs (pnatljs )1−εk

]

=
ιk

εk − 1

[∑
j∈J

κnatljs (pnatljs )1−εk −
∑
j∈J

κflexjs (pflexjs )1−εk

]

=
ιk

εk − 1

[∑
j∈J

κnatljs (pnatljs )1−εk +

(∑
j∈J

κnatljs (pflexjs )1−εk −
∑
j∈J

κnatljs (pflexjs )1−εk

)
−
∑
j∈J

κflexjs (pflexjs )1−εk

]

=
ιk

εk − 1

[∑
j∈J

κnatljs

(
(pnatljs )1−εk − (pflexjs )1−εk

)
+
∑
j∈J

(
κnatljs − κflexjs

)
(pflexjs )1−εk

]
.

This completes the proof. □

A.7 Proof of Proposition 5

This proof follows from rewriting the expression for each individual insurer’s component of the log

change in welfare, namely

κnatljs

(
(pnatlj )1−εk − (pflexjs )1−εi

)
= κnatljs (pptmjs )1−εm

(pptmjs

pnatljs

)εm−1

−
κptmjs

κnatljs

 .
First, under Assumptions in Proposition 4 [write out explicitly in the text], we know that sgn(pptmjs −
pnatljs ) = −sgn(κptmjs −κnatljs ). Therefore, it will be sufficient to characterize the case when pnatljs < pptmjs ,

since the analysis for the opposite case will be identical.

Under this case, it’s clear that (pptmjs /pnatljs )εm−1 is increasing in εm. Since type m households are

of measure 0 and don’t affect firm decisions, we can take the resulting prices and κ·js as constant.

Therefore, we know that the bracketed term is monotonically increasing in εm. Since this is the
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term that determines the sign of the total welfare effect, it suffices to simply show that the term

has different signs when evaluated at the bounds εm = 1 and εm → ∞.

The first is simple, since εm = 1 implies (pptmjs /pnatljs )εm−1 = 1, and so the sign of the bracketed

term is simply sgn(κnatljs − κptmjs ) = −1. On the other hand, note that with pptmjs > pnatljs , we have

that the bracketed term diverges toward positive infinity when ε → ∞. By the intermediate value

theorem, there must be ε∗jm such that the bracketed term is 0. Monotonicity ensures that the

remainder of the theorem holds. □
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B Model Extensions

B.1 Generalizing Household Type Heterogeneity

In the benchmark model there were two types of households, h and ℓ. This section generalizes the

type space to a continuum ε ∼ Gs(ε) with support (1,∞). Wages are then denoted as a function

of the type, w(ε).

For each individual type, residual demand and price indices stay the same, but the aggregation

at the local level changes. Now, total residual demand in location s facing firm j is

Qjs ≡
∫ ∞

1

Qjs(ε)dGs(ε) = κjs

∫ ∞

1

Es(ε)

pjs

(
pjs
Ps(ε)

)1−ε

dGs(ε). (B.1.1)

where Es(ε) ≡ βNsw(ε)ηs(ε) is the mass of type-ε household expenditure. The setup for each firm

and the definition of equilibrium are unchanged relative to the baseline model.

The main change comes from the pricing proposition. It follows that now we can define

∆js ≡
∫ ∞

1

εχjs(ε)dGs(ε), χjs(ε) ≡
pjsQjs(ε)∫ ∞

1

pjsQjs(ε
′)dGs(ε

′)

.

The remainder of the optimal pricing results remain true. Up to this point, the generalization has

seemed to only complicate the model. However, recall that in the benchmark model, it was a bit

complicated to sign the welfare effects in the case that prices and market penetration moved in the

same direction. Here, since each type is infinitesimal, Proposition 5 is an exact result and pinpoints

precisely which households gain and which households lose conditional on equilibrium outcomes.

B.2 Microfounding Market Penetration

This section derives a microfoundation for the market penetration function following Arkolakis

(2010). Let κ(A) denote the share of households reached with A ≡ θa efficiency units. The

microfoundation rests on the following assumptions:

Assumption 2: Market Penetration

1. Each agent hired in a location reaches N1−α households, α ∈ [0, 1].

2. The probability that a new efficiency unit reaches a household for the first time is given

by (1− κ(A))β, β ≥ 0.

The assumption uses the notation A = θθa for efficiency units. Under Assumption 2, the marginal
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change in the number of households reached through new agents is

κ′(A)N = N1−α[1− κ(A)]β. (B.2.1)

Integrating both sides with the initial condition κ(0) = 0, we get∫ A

0

κ′(x)

[1− κ(x)]β
dx = N−αA.

Define u = κ(x), so du = κ′(x)dx. Then we can rewrite the problem as

N−αA =

∫ κ(A)

0

[1− u]−βdu =
[1− κ(A)]1−β − 1

1− β
.

Solving for κ(A), we have

κ(A) = 1−
[
1− (1− β)

A

Nα

] 1
1−β

.

For the quantitative model, I use the limiting case β → 1. Going back to the differential equation

(B.2.1), we can substitute β = 1 to get∫ A

0

κ′(x)

1− κ(x)
dx = − log(1− κ(A)) = N−αA.

Solving for κ(A), we come to the function used in the main text:

κ(A) = 1− exp
(
− AN−α

)
.

B.3 Interpreting Demand As Relative to Actuarial Value

This section shows how to reinterpret the theoretical model using actuarial values. Starting with

demand, note that we can instead write the life insurance values ιk as

log ιk = log ι̃k + (εk − 1) log v,

where v is the actuarially fair value of a life insurance policy defined in Section 2 and ι̃k is the

residual. In this case, the residual demand curves can be written

Qk
s(pjs, κjs, P

k
s ) = ι̃k

(
pjs/v

P k
s

)1−εk Ek
sκjs
pjs

.
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Next, since v is essentially the expected payouts net of returns, write ξ = ξ̃v, where ξ̃ is now

interpreted as the cost markup over fair value. Substituting this demand curve into firm j’s profit

expression, we have

πjs = (pjs − ξ̃v)
∑
k

ι̃k

(
pjs/v

P k
s

)1−εk Ek
sκjs
pjs

− fsajs

=
(pjs
v

− ξ̃
)∑

k

ι̃k

(
pjs/v

P k
s

)1−εk Ek
sκjs
pjs/v

− fsajs.

Relabeling p̃js ≡ pjs/v, we are back to the original problem.

B.4 Microfounding Heterogeneous Price Elasticities with Bequest Motives

This section shows how price elasticity heterogeneity can emerge when households have hetero-

geneous preferences over leaving bequests. The derivation is very stylized, but admits a simple

log-linear structure that maps exactly to the specification in (7).

Consider a household that matches with an insurer that sets a price p. At time t = 0, the

household commits to paying premiums p in every period for q units of life insurance to leave to

its heirs. With probability π each period, the household passes away and leaves its bequests. With

probability 1 − π, the household survives and consumes their net-of-insurance earnings, w − pq.

Their preferences are then

U(β, ψ, w) = max
q≥0

log(w − pq) +
∑
t>0

βt
[
(1− π) log(w − pq) + πψ log(q)

]
, (B.4.1)

where β < 1 is the discount factor for this household and ψ ≥ 0 is their preferences for leaving

bequests. The pair (β, ψ) is heterogeneous across households. I assume that there is no wage growth

and that death is i.i.d. over time. With commitment, the problem reduces to

U(β, ψ, w) = max
q≥0

(
1− βπ

1− β

)
log(w − pq) +

βπψ

1− β
log(q).

With the log-log structure, optimal insurance expenditures are a constant fraction of the wage, with

the expenditure share given by

pq

w
=

βπψ

1 + βπ(ψ − 1)
. (B.4.2)

Substituting the expenditures back into the utility function (B.4.1), we have

U(β, ψ, w) = ι(β, ψ, w)−
(
ε(β, ψ)− 1

)
log(p), (B.4.3)
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where ε(β, ψ) = 1 + βπψ/(1− β) and the constant term ι(β, ψ, w) satisfies

ι(β, ψ) =

(
1− βπ

1− β

)
log

(
1− βπ

1 + βπ(ψ − 1)

)
+

(
βπψ

1− β

)
log

(
βπψ

1 + βπ(ψ − 1)

)
+

(
1 + βπ(ψ − 1)

1− β

)
log(w).

The household’s value for insurer j is then their indirect utility U(β, ψ) plus an idiosyncratic pref-

erence shock ν:

uij ≡ uj(βi, ψi, wi) = ι(βi, ψi, wi)−
(
ε(βi, ψi)− 1

)
log(pj) + νj, (B.4.4)

which is precisely the functional form given in the main text, (7). Given estimates of ι(β, ψ, w) and

ε(β, ψ) and values for w and π, I can invert the expressions to back out (β, ψ).

B.5 Optimal Pricing with Heterogeneous Costs

The benchmark model assumes that marginal costs are equalized across firms, interpreting them

solely as expected payouts to deceased claimants. However, as I note in the text, these costs could

be heterogeneous for a number of reasons. At the firm level, marginal costs could incorporate the

shadow cost of capital due to restrictive statutory capital constraints as in Koijen and Yogo (2015)

or differences in underwriting costs. At the geographic level, there may be differences in tax rates

across locations, or perhaps some locations have drastically different mortality rates for reasons

unattributable to age or gender.

The relevant case in Section 4 is heterogeneity in firm marginal costs, ξj, and spatially varying

premium tax rates, tspjs. Returning to the first-order condition for prices, we have

0 =
∑
s∈S

(Qh
js +Qℓ

js)

[
1− ts −

(
(1− ts)pj − ξj

pj

)
∆js

]
=
∑
s∈S

δbjs

[
(1− ts)pj − ((1− ts)pj − ξj)∆js

]
.

(B.5.1)

where ∆js ≡ δwℓ
js εℓ + δwh

js εh. Solving for pj, we now come to

pj =

( ∑
s∈S δ

b
js∆js∑

s∈S δ
b
js(1− ts)(∆js − 1)

)
ξj. (B.5.2)

When there is no spatial heterogeneity in taxes, this simply reduces to pj = (1 − 1/ζj)ξj as in the

benchmark case.

B.6 Endogenizing Local Hiring Costs

Assume there is a mass of life insurance agencies in the economy, n ∈ [0, 1], that search for agents in

each market. Each agency earns fees fs when insurers license an agent, but must pay training costs of
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ci for each agent i hired where ci is a random variable that could depend on household characteristics

such as income or education. If an agency hires Ls agents in location s, their operating profits are

(fs − Es[ci])Ls. Here, Es[ci] is the expected training cost of agents in i given the distribution of

household characteristics in location s.

Agencies also incur isoelastic search costs that they pay in units of the numeraire consumption

good. With these ingredients, a given agency n faces the optimization problem

πn
s = max

L

{
(fs − Es[ci])Ls −

Γs

ς + 1
Lς+1

}
.

I allow Γs to vary by location to potentially capture differences in search frictions across locations.

The solution to this problem satisfies

fs = Es[ci] + Γs

(
Ln
s

)ς
.

In a symmetric equilibrium, Ln
s = Ls for all n. Further, under market clearing, agent supply must

equal agent demand. Putting these two notions together gives the equilibrium hiring costs,

fs = Es[ci] + Γsa
ς
s, as ≡

∫
J
ajsdj.

B.7 Variable Markups and Oligopolistic Competition

The baseline model assumes that the number of firms is large enough to effectively render the

market structure to be monopolistic competition. I could instead assume that the set of firms is

small and allow firms to internalize the effect of their choices on equilibrium price indices {P k
s }s,k.

As I show in the proof of Proposition 1 in Appendix A.1, the key difference is that the firm-

location-specific elasticity ∆js now satisfies

∆js = χjsε
h
js + (1− χjs)ε

ℓ
js, εkjs ≡ εk − (εk − 1)σk

js︸ ︷︷ ︸
market power

where, as before, σk
js is firm j’s market share of location s, type k households. With finitely

many firms, the ones with high market shares face lower demand elasticities, which leads to higher

markups.

The other difference is in the agent placement decisions. Local profitability now must be written

Φs

(
pjs, {σk

js}k
)
= Es

[
χs(1− σk

js)ϕ
h
js(pjs) + (1− χs)(1− σℓ

js)ϕ
ℓ
js(pjs)

]
where the type-specific profitability terms {ϕk

js(pjs)}k are unchanged. Why do the market shares

56



show up in the agent placement decisions? Since the price indices are a function of the distribution

of market penetration {κjs}j, firms know that by increasing their presence in a market, they lower

the price index, making them relatively less profitable. Therefore, when their market share is high,

they have a weaker incentive to expand more in a location.

B.8 Incorporating Online Sales

This section outlines a framework that incorporates digital platforms into the market penetration

function. Let Dj denote some aggregate quality measure of insurer j’s digital platform. Dj could

potentially depend on advertising, website design, or integration with their agent force, and is

ultimately a choice variable for the insurer. Market penetration now takes the form

κjs(ajs, Dj) = ςκLAjs (ajs) + (1− ς)κDP
js (Dj),

where κLAjs is the market penetration of insurer j’s Local Agents, and κDP
js is the market penetration

of insurer j’sDigital P latform. The parameter ς ∈ [0, 1] dictates the importance of each distribution

system. For example, if ς = 1, then only local agents matter; this is the case in the benchmark

model. As ς tends to 0, then agents are not important on this margin at all, and everything is done

digitally.

The parameters can be calibrated with data on online versus agent-based sales, preferably at

the insurer-level, and survey data on household awareness of different distribution methods. The

latter is broadly available, but doesn’t necessarily translate into sales. According to LIMRA (2022),

households are increasingly likely to shop for insurance policies online. However, the strong per-

sistence of agent-based sales suggests that households don’t ultimately purchase the policy online,

and instead consult with an agent.
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C Additional Tables and Figures

Table C.1: Agents in Available US States

State
Number

of Insurers
Number
of Agents

Agent
Density

Agent-CZ
Concentration

Number
of CZs

Alabama 271 13783 7.30 0.10 19

Arkansas 271 9128 7.80 0.13 21

Connecticut 235 10997 7.94 — 1

Iowa 270 12161 9.55 0.09 26

Massachussetts 212 13021 4.92 0.73 6

Montana 253 2738 6.28 0.10 25

No. Carolina 297 33503 8.31 0.12 24

No. Dakota 220 2992 9.32 0.14 22

Nebraska 285 7365 9.61 0.28 27

New Hampshire 213 3239 6.01 0.76 4

New Jersey 247 26523 8.11 0.30 3

New Mexico 225 2362 2.98 0.32 16

Oklahoma 291 13652 9.14 0.24 22

So. Carolina 288 18799 9.58 0.08 11

Tennessee 352 27989 10.60 0.13 25

Vermont 180 959 3.65 0.30 5

Wisconsin 284 17648 7.42 0.11 19

West Virginia 255 3910 5.32 0.07 20

All States 443 221740 7.82 0.02 282

Note: This table reports summary statistics for the NAIC-SBS data across the states in the sample excluding
Delaware. Number of insurers refers to all insurance companies in my sample that license at least one local agent
in each state. Number of agents refers to the total number of unique local agents. Agent Density is the number
of agents per thousand households. Agent-CZ concentration is a measure of how concentrated agents are across
commuting zones within each state. Higher values correspond to more spatially concentrated markets. Number of
CZ’s refers to the total number of commuting zones accounted for in each state.
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Table C.2: Life Insurance Prices by Category

Category Insurers Mean SD Min Max

Age

. . . 30 y.o. 70 1.35 0.38 0.82 3.02

. . . 40 y.o. 70 0.90 0.24 0.55 1.73

. . . 50 y.o. 70 0.75 0.19 0.47 1.47

Sex

. . . Female 70 1.07 0.43 0.47 3.02

. . . .. Male 70 0.94 0.32 0.54 2.14

Maturity

. . . 10-year 68 1.15 0.45 0.54 3.02

. . . 20-year 67 0.90 0.31 0.47 2.16

. . . 30-year 55 0.94 0.29 0.54 1.98

All Categories 70 1.00 0.38 0.47 3.02

Note: This table reports summary statistics for the Compulife data. All prices are normalized by the respective
actuarial value. The data are reported for June of 2018.
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Table C.3: The Determinants of Cross-Sectional Price Dispersion

(1) (2) (3)

Income −0.117 −0.083 −0.096

(0.038) (0.046) (0.047)

Non-White 0.081 0.089 0.101

(0.024) (0.026) (0.027)

Density 0.009 −0.014 −0.017

(0.047) (0.052) (0.055)

Size −0.049 −0.017

(0.025) (0.027)

Leverage 0.025 0.014

(0.017) (0.019)

Stock −0.034 −0.022

(0.048) (0.048)

Return on Equity 0.017 0.028

(0.019) (0.023)

Agent Competition 0.026

(0.018)

Agent Market Share −0.047

(0.023)

Firm Controls ✓ ✓

Competition Controls ✓

Age × Maturity Fixed Effects ✓ ✓ ✓

Observations 746 746 746

Within R2 0.32 0.35 0.37

Note: This figure reports the full regression results for equation (3). The independent variable is the log premium
for an individual of age a and product maturity m normalized by the fair value. Income is the agent-weighted
share of high-income households, Non-White is the agent-weighted share of non-white households, and Density is
agent-weighted log density. Firm controls include log liabilities, leverage, financial rating, return on equity, and an
indicator for stock companies. Competition controls include average fractional agents and average local agent market
share. Standard errors are clustered by insurer and reported in parentheses.
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D Additional Details on Data and Model Estimation

D.1 Ruling Out Within-Group Price Discrimination

If insurers use their group structure to price discriminate, we should see significant differences in

their pricing strategies across insurers within the group. To test for this, I estimate the following

two regressions:

log pagmj = γg(j) + γagm + εjg

log pagmj = γj + γagm + εjg

Here, γg(j) is a group fixed effect, and γj is an insurer fixed effect. I consider prices from 2007-2018,

and restrict the analysis to insurers in which at least one other group member is present in the data

for a given product-year. The first regression recovers the variation in prices conditional on product

type (age, maturity, sex) that comes from group-level prices, and the second regression recovers

the variation in prices coming at the firm-level. If groups price discriminate through organizational

structure, we should expect a large jump in explanatory power in the second regression. I report

the within-product R2 values for each regression.

The group fixed effect explains 57.7% of variation conditional on product-type, while the insurer-

level fixed effect explains 63.6%. In percentage terms, the group-level fixed effect alone explains

90.7% of the variation that the insurer-level fixed effect explains. This large share of explanatory

power suggests that the majority of the variation in prices is at the group-level.

D.2 The Importance of Local versus Remote Agents

As a check for whether local agents are important for generating sales, I estimate the following

regression:

log(salesjs) = β1 log(in-state agents)js + β2 log(out-of-state agents)js + γs + γj + εjs (D.2.1)

where j is an insurer, s is a US state, and the agents are broken down into licensed agents working

within state s and those licensed in state s but whose business address is in a different state than

s. If life insurers primarily use agents to file claims and to simply meet with households through

online platforms, then we should expect β2 ≥ β1.

Table D.4 reports the results. I also include two columns in which I replace the log of agents

with the inverse hyperbolic sine transformation, which has similar properties to logs but allows for

zeros. In all specifications, the coefficient on local (in-state) agents is substantially larger than the

coefficient on out-of-state agents, reflecting the relative importance of local agents. Additionally, I

can always reject that the two estimates are different from each other.
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Table D.4: Estimation Results for In- vs. Out-of-State Agent Sales Importance

Log IHS

In-State Agents 0.527∗∗∗ 0.467∗∗∗ 0.550∗∗∗ 0.647∗∗∗

(0.024) (0.020) (0.017) (0.019)

Out-of-State Agents 0.061∗∗ 0.069∗∗ 0.067∗∗∗ 0.157∗∗∗

(0.030) (0.028) (0.018) (0.019)

Raw Agents ✓ - ✓ -

Fractional Agents - ✓ - ✓

Obs 4,319 4,319 8,987 8,987

Within R2 0.17 0.18 0.26 0.27

Note: Estimation results for regression equation (D.2.1). Columns (1) and (2) use the log of agents and columns
(3) and (4) use the inverse hyperbolic sine to account for possible zeros. Columns (1) and (3) use the total number
of licensed agents for insurer j and columns (2) and (4) use fractional measures that account for within-agent
competition. Heteroscedasticity-robust standard errors are reported in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01.

D.3 Lapsation Sensitivity Analysis

This section reports alternative estimates for the demand estimation with no assumed lapsation

in the actuarial values. Table D.5 reports the results. Due to the similarities with the baseline

estimates, I omit the demand component estimates.

D.4 Firm Parameter Estimates

This section graphically reports the distribution of demand components, marginal costs, and pro-

ductivities of insurers for which I have price data. Figure D.1 reports the results.

I plot each measure as a function of insurer size, measured as the log of their total liabilities.

Productivities (Panel D.1a) are U-shaped in insurer size: neither small nor large insurers are very

productive, requiring many agents to acquire their sales. The middle of the distribution is the most

productive.

However, there is a linear relationship between size and demand components (Panel D.1b, with

large insurers having the largest demand components. This makes sense intuitively: small insurers

are simply not productive nor attractive, but large insurers may sacrifice investment in their agents’

productivity for investment along other dimensions such as advertising or brand value. The medium-

sized firms may not be able to invest as much in advertising, and therefore target agent training as

a way to build sales, making them more productive than the largest insurers.

Finally, marginal costs are weakly downward sloping in insurer size. This likely reflects a different
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Table D.5: Demand Estimation Results With No Lapsation

Variable Annuity Losses Annuity Prices

(1) (2) (3) (4) (5) (6)

Log Price −4.335 −4.526 −1.184 −0.311

(0.098) (0.062) (0.446) (0.533)

Log Price × χ̃s −2.825 −2.165 −1.922 −2.884 −2.543 −2.702

(0.048) (0.049) (0.028) (0.000) (0.000) (0.000)

Demand Controls ✓ ✓ ✓ ✓

Productivity Proxy ✓ ✓

Firm-Year FE ✓ ✓

Agents ✓ ✓ ✓

Obs 11561 11006 12443 949 949 949

Within R2 0.15 0.16 -0.02 0.29 0.75 0.09

F 132.0 149.6 494.7 36.4 56.8 115.5

Note: Estimation results for regression equation (14) when assuming no lapsation in policies. Columns (1)-(3) use
the variable annuity losses instrument and do not include agents in the regression. Columns (4)-(6) use the annuity
prices instrument and do include agents in the regression. Columns (1) and (4) do not incorporate productivity
proxies. Columns (2) and (5) add the productivity proxies in. Columns (3) and (6) include insurer-year fixed effects.
Standard errors are clustered at the insurer-year level. P-values are reported in parentheses.

form of productivity based on processing costs and underwriting, where large insurers have an

advantage.

D.5 Incorporating Racial Demographics in Demand Estimation

This table reports demand estimation results when I further disaggregate states into high- or low-

minority population share groups. I first calculate the median per-capita income and the median

non-white share across states. I then assign states to one of four groups based on whether they are

above or below each of those thresholds. The groups are close to balanced: of states below median

income, 14 are below median non-white share and 11 are above median non-white share; of states

above median income, 11 are below median non-white share and 13 are above median non-white

share.

I take the base group to be low-income states that are below median non-white share. The
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Figure D.1: Estimated Firm-Level Parameters

0

15

30

45

60

Es
tim

at
ed

 P
ro

du
ct

iv
ity

12 14 16 18 20
Log Liabilities

Estimates
Deciles

(a) Productivity

0

.05

.1

.15

.2

.25

.3

.35

.4

.45

Es
tim

at
ed

 D
em

an
d 

Co
m

po
ne

nt
s

12 14 16 18 20
Log Liabilities

Estimates
Deciles

(b) Demand Components
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(c) Marginal Costs

Note: This figure documents percentage changes in welfare induced by national pricing against commuting zone
high-income population share. All lines are local polynomials estimated with the Epanechnikov kernel. Dark areas
represent high-income household changes and transparent areas represent low-income household changes. Purple
areas represent the pricing margin and tan areas represent the access margin. Black lines reflect the sum of the
pricing and access margins. Panel (a) reports changes relative to flexible pricing. Panel (b) reports the change in
welfare relative to Santa Cruz.

regression specification is then

logSjs = log ajs + log θj + logω(Xf
j )− (εwℓ − 1) log pj +

∑
k

(εwℓ − εk)χ
k
s log pj + FEs (D.5.1)

where the summation over k refers to the remaining three groups. Table D.5.1 reports the results

of the regression for the six specifications in the main text. I omit estimates of the demand controls

since they change very little from the estimates in the main text.

D.6 Model Fit

This section reports the overall fit of the model. First, I simply regress the number of agent-insurer

pairs in the data against the number of agent-insurer pairs in the model. The R2 of this regression

is 0.61, and the correlation coefficient between the model and the data is 84%. Figure D.2a plots

the model against the data. The figure suggests that the model overestimates the number of agents

in smaller locations. This is confirmed in Figure D.2b, which plots the difference in agents between

model and data against log population and recovers a negative slope.

Next, I perform an over-ID check of the estimated model. The estimation uses data on Ns and

ηhs taken from the 2016-2020 wave of the ACS. I solve the model again using data instead from the

2006-2010 wave and use the model to predict the number of agents in each commuting zone with
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Table D.6: Demand Estimation Results With Racial Categories

Variable Annuity Losses Annuity Prices

(1) (2) (3) (4) (5) (6)

Low Inc × White −2.903 −3.172 −2.687 −1.783

(0.226) (0.139) (0.086) (0.000)

High Inc × White −4.362 −2.038 −3.175 −1.487 −1.374 −1.489

(0.026) (0.017) (0.004) (0.001) (0.000) (0.000)

Low Inc × Non-White −3.251 −3.069 −2.207 2.551 2.505 2.532

(0.049) (0.037) (0.012) (0.000) (0.000) (0.000)

High Inc × Non-White −4.163 −3.267 −2.652 −1.168 −0.607 −0.786

(0.032) (0.021) (0.012) (0.137) (0.367) (0.261)

Demand Controls ✓ ✓ ✓ ✓

Productivity Proxy ✓ ✓

Firm-Year FE ✓ ✓

Agents ✓ ✓ ✓

Obs 11561 11006 12443 949 949 949

Within R2 0.13 0.15 -0.06 0.29 0.75 0.09

F 65.8 74.4 164.3 18.0 26.1 35.2

Note: Estimation results for regression equation (D.5.1). Columns (1)-(3) use the variable annuity losses instrument
and do not include agents in the regression. Columns (4)-(6) use the annuity prices instrument and do include
agents in the regression. Columns (1) and (4) do not incorporate productivity proxies. Columns (2) and (5) add the
productivity proxies in. Columns (3) and (6) include insurer-year fixed effects. Standard errors are clustered at the
insurer-year level. P-values are reported in parentheses.

these fundamentals.

I compare the estimates of the model to the changes in agents across commuting zones in the

data. I use the NAIC-SBS data to infer agents in 2010 using initial licensing dates of each agent-

insurer pair. A caveat of this exercise is that the agent data is inaccurate for 2010 since the data do

not include the agents that exited between 2010 and 2022. I supplement the agent data with data

on broker and financial intermediary employment taken from the Quarterly Census of Employment

and Wages. The results are very similar, so I only report results from the baseline.

Figure D.3 displays the fit of the model in three ways. First, Panel D.3a plots the change in

agents in the model and data against the change in commuting zone high-income share. The model

underestimates the large gains in the stable locations, but is similar to estimates for commuting
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Figure D.2: Model Fit
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(b) Fit Against CZ Population

Note: This figure documents the fit of the model at the commuting zone level. Panel (a) plots the log number of
agents in each commuting zone in the model against the log number of agents in the data. Panel (b) plots the
difference between model and data against log commuting zone population.

zones that became significantly richer. Second, Panel D.3b plots the changes in agents against

change in commuting zone population. The model does much better on this dimension. Finally,

Panel D.3c plots the change in agents across commuting zone in the model against the data. The

R2 of the regression line is 0.61, implying that the model explains 61% of the variation in the data.

This is likely an underestimate due to the measurement error in the early agent data.
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Figure D.3: Results of the Over-ID Test
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Note: This figure plots changes in agents across commuting zone in the model and the data. Panel (a) reports the
changes in agents against the change in high-income population share, and Panel (b) reports the changes in agents
against the log change in commuting zone population. Panel (c) plots the model against the data. Panels (a) and
(b) plot both the data (purple/dashed line) and the model (tan/solid line) separately.

E Additional Counterfactual Exercises

E.1 Distributional Effects Within Commuting Zones

The analysis in Section 5 focuses on the effects of policy on spatial inequality. But this may mask

the effects on households relative to the flexible pricing benchmark. For example, it may be that

national pricing makes low-income households better off in a commuting zone, but less so than the

optimal commuting zone. This section focuses on these within-commuting-zone effects.

I analyze the effects of both the national pricing and place-based tax policies again using com-

pensating differentials. Here, I compute the necessary change in savings for the average household

of a given type that equates their welfare to that under flexible pricing.

Figure E.1.1 reports the effects of national pricing decomposed into pricing and access margins.

The figure shows that the increase in inequality for low-income households is driven by a decline

in welfare for all but the richest decile of commuting zones, driven by the reallocation of insurers’

agents. Similarly, the decline in spatial inequality for high-income households is driven by the

increase in welfare for high-income households in the majority of commuting zones.

The magnitudes of the welfare effects are small even ignoring the adverse access margin re-

sponses. At best, national pricing is equivalent to giving low-income households an additional $3.60
and high-income households an additional $20.40 on the pricing margin. In percentage terms, this

is equivalent to an increase in yearly income of 0.01% and 0.02%, respectively. This is due to the
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Figure E.1.1: Compensating Differentials Within Commuting Zones
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Note: This figure reports compensating differentials across commuting zone high-income population share deciles
using commuting zone welfare under flexible pricing as the benchmark. Dark purple bars reflect the pricing margin,
while the light tan bars reflect the access margin. I condition on low-income households in the left section and
high-income households in the right section.

fact that even in relatively poor locations, sales shares between household types lean toward high-

income households, so prices are relatively low even under flexible pricing. National pricing reduces

prices slightly, but not enough to induce large welfare changes.

Figure E.1.2 reports the total effects of also incorporating the place-based policies. As the figure

shows, the magnitudes of the place-based policy effects are substantially larger than that of national

pricing alone.

E.2 Welfare Using Elasticities From the VA Losses Instrument

For this section, I estimate the model using the elasticities from the variable annuity losses instru-

ment, {εVAk }, reported in Column (1) of Table 3. I do not use the alternative demand estimates,

however, as the estimated variance in total demand components {ωj} is substantially larger than in

the baseline estimates implied by Column (3). This comes with convergence problems for the SMM

routine. Nevertheless, the results provide useful implications about which features of the results are

robust to elasticity estimates and which are not.

I first consider how compensated differentials change in the flexible pricing regime between both

sets of elasticities. Figure E.2.3 shows the results broken down by margin. Generally, compensating

differentials are smaller with higher elasticities. However, the effects of the pricing and access

margins have similar proportions the baseline estimates. For low-income households, the access
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Figure E.1.2: Compensating Differentials Within Commuting Zones
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Note: This figure reports the change in compensating differentials across commuting zone high-income population
share deciles using commuting zone welfare under flexible pricing as the benchmark. Dark purple bars reflect the
effects of national pricing, pink bars reflect the effects of the no-tax policy, and the light tan bars reflect the effects
of the subsidy policy. I condition on low-income households in the left section and high-income households in the
right section.

margin accounts for 92% of the total differential in the poorest decile, which is similar to the

baseline (94%). The differences for high-income households are also similar.

Figure E.2.4 plots the relative effects of national pricing across specifications. Again, the effects

are smaller in magnitude, but the relative effects across household types keep the same sign. In

particular, low-income households are generally worse off relative to the optimal location, while

high-income households are generally better off.

Finally, Figure E.2.5 shows the proportional effects of the subsidy policy under both specifi-

cations. In fact, relative to national pricing alone, the effects using the variable annuity losses

instrument have a larger percentage increase than the annuity price instrument.
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Figure E.2.3: Welfare Dispersion Under Flexible Pricing
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Note: This figure documents compensating differentials across commuting zone income deciles for low- and high-
income households for both sets of elasticity estimates. Faded bars represent the estimates under the annuity price
instrument (AP) and solid bars represent the estimates under the variable annuity loss instrument (VA).

Figure E.2.4: Welfare Dispersion Under Flexible Pricing
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Note: This figure documents the change in compensating differentials under national pricing relative to flexible
pricing for both sets of elasticity estimates. Faded bars represent the estimates under the annuity price instrument
(AP) and solid bars represent the estimates under the variable annuity loss instrument (VA).
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Figure E.2.5: Welfare Dispersion Under Flexible Pricing
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Note: This figure documents the percentage change in compensating differentials under the subsidy policy relative
to national pricing for both sets of elasticity estimates. Faded bars represent the estimates under the annuity price
instrument (AP) and solid bars represent the estimates under the variable annuity loss instrument (VA).
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