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Abstract

This paper investigates exchange rate dynamics and its forecast errors by incorpo-

rating bounded rationality in a small open-economy New Keynesian model. Decision-

makers possess limited foresight, capable of planning only up to a finite distance into

the future. This yields dynamic overshooting of forecast errors in the real exchange rate

across different time horizons. It also distinguishes between short- and long-term ex-

pectation formations, where the Law of Iterated Expectations breaks. This framework

provides a micro-foundation for understanding time- and forecast-horizon variability in

uncovered interest parity (UIP) puzzles. Our model predictions on these UIP violations

align both qualitatively and quantitatively with empirical estimates.
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1 Introduction

The uncovered interest rate parity (UIP) condition is the rational expectations (RE)-based

asset pricing condition in the currency market and is a cornerstone in models of interna-

tional macroeconomics and finance. It states that countries with higher interest rates should

experience future currency depreciation, thereby preventing arbitrage profits solely from in-

terest rate differentials. The RE-UIP condition implies unpredictable excess currency returns

across different time horizons and also predicts identical responses of the exchange rate to

anticipated future interest rate differentials across different forecast horizons.

However, these theoretical foundations have encountered substantial empirical challenges,

known as the UIP puzzles. On the one hand, the literature documents predictable short-run

excess returns for higher interest rate currency bonds (e.g., Fama, 1984; Eichenbaum and

Evans, 1995), with the reversal of the predictability over longer time horizons (e.g., Bacchetta

and van Wincoop, 2010; Engel, 2016; Valchev, 2020). On the other hand, exchange rates

asymmetrically respond to expected short- and long-term interest rate differentials (Gaĺı,

2020). Recent empirical literature further suggests that the main driver of these puzzles

for advanced economies is subjective expectations, deviating from the common assumption

of RE (e.g., Kalemli-Özcan and Varela, 2022; Candian and De Leo, 2023). Despite this

empirical evidence, a comprehensive theory incorporating subjective expectations that can

uniformly address these puzzles remains missing.

This paper fills this gap by developing a theory with bounded rationality, addressing

the time- and forecast-horizon aspects of the UIP puzzles in a unified manner. We propose

a small open-economy New Keynesian (SOE-NK) model where decision-makers optimize

and form expectations under a finite planning horizon (FH). This modeling approach, first

introduced by Woodford (2019), has sound empirical support from both survey evidence and

macroeconomic aggregates.1

Specifically, we assume decision-makers can plan for only a finite distance into the future

and use a coarse value function learned from past experiences to evaluate potential situations

at the end of their planning horizons. This feature of limited foresight leads to dynamic

overshooting of forecast errors in the real exchange rate (RER) across different time horizons,

while also distinguishing the term structure between short- and long-term expectations.

The value function used by decision-makers to approximate continuation values and its

1Coibion et al. (2023) present survey evidence suggesting that household planning horizons in the U.S.
are no more than two years and they may well be capable of planning forward about three or four quarters.
Gust, Herbst and López-Salio (2022), utilizing Bayesian estimation with aggregate U.S. data, estimate several
behavioral models and establishes the superiority of limited foresight in terms of fitting aggregate dynamics
in a closed economy and its ability to deliver aggregate persistence without resorting to habits or price
indexation.
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associated updating behavior are pivotal elements in determining equilibrium dynamics.

First, we assume the value function does not contain all state variables of the economy—it

only includes individual state variables, excluding aggregate state variables such as aggregate

stochastic shocks. As a consequence, when envisioning the future beyond their planning

horizons, decision-makers do not factor in the evolution of these aggregate state variables.

Second, the construction of the coarse value function is backward-looking, extended over time

through updating based on past experiences, following a constant-gain learning process.

When the fundamentals of the economy change due to aggregate shocks, the long-run

beliefs of decision-makers, captured by their coarse value function, display different patterns

over time. Initially, these beliefs underreact to the shocks due to the coarseness of the value

function and the finite planning horizon. However, over time, learning in the value function

leads to over-extrapolation, causing overreaction in beliefs. This initial underreaction, fol-

lowed by overreaction, generates dynamic overshooting of the forecast error for the RER in

our model. This mechanism is crucial for understanding the predictability of excess return

on currency investment and its sign reversal across time horizons.

Furthermore, the behavior of value function learning results in the breakdown of the

Law of Iterated Expectations (LIE). The reason is that expectations formed at any time are

contingent on the value functions at that same time. Thus, expectations of future endogenous

variables could differ from the expectations of expected future endogenous variables, as

long as decision-makers’ value functions are not time-invariant. This feature breaks the

relationship in an RE model that the RER is equal to the sum of the expected future

real interest rate differentials, a result coming from the LIE. This mechanism is crucial for

understanding the asymmetric response of the RER to anticipated interest rate differentials

across different forecast horizons.

The rest of the model remains conventional and it includes the domestic productivity

shock and the foreign interest rate shock as aggregate shocks. We calibrate the FH model by

disciplining structural parameters to match key macro-international aggregates in Canada, in

conjunction with the U.S. data. Comparing the impulse responses of equilibrium dynamics

between the FH model and its RE counterpart reveals that, the learning behavior of the

value function in the FH model leads to more persistent and hump-shaped movements in

aggregate variables and a dynamic overshooting of forecast errors.

To evaluate the external validity of the FH model in addressing the UIP puzzles, we use

model-simulated data to run the same regressions commonly used in the empirical literature.

Our model aligns well with empirical patterns, matching the UIP violations using Canada

as an example. The model produces predictable excess currency returns over the short-run

time horizon and predictable returns with an opposite sign across long-run horizons. It also
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generates asymmetric reactions of the real exchange rate to the forecasts of future short- and

long-term interest rate differentials. Notably, despite the fact that the UIP violations are

not targeted in model calibration, the FH model successfully matches the empirical pattern

both qualitatively and quantitatively. We also observe that the foreign interest rate shock is

the primary driver for the model’s quantitative success.

Related Literature. This paper contributes to the recent literature that challenges the

full-information RE assumption by considering behavioral biases to assess their policy impli-

cations and empirical relevance.2 In this context, our focus is on exploring the consequences

of limited foresight in an open-economy setting. Compared with other popular behavioral

variants, the FH approach naturally distinguishes between expectation biases arising from

finite planning horizons and those originating from the approximating behavior of the value

function. The feature of initial underreaction to new information, followed by overreaction

due to value function learning, distinctly sets our model apart from others that emphasize

only one direction.3 Compared to those that also discuss underreaction followed by overre-

action (e.g., Angeletos, Huo and Sastry, 2021), the distinct characteristic of our FH model is

that the behavioral bias and its associated subjective expectations originate from imperfect

optimization, akin to the concept described by Ilut and Valchev (2022), rather than arising

from imperfect expectations, which distort the perceived true probability of states.

Our paper directly contributes to the literature studying the UIP puzzles by incorpo-

rating bounded rationality. As previously noted, a vast body of research highlights the

importance of forecast errors derived from survey-based expectation data in explaining the

UIP violations in advanced countries (e.g., Froot and Frankel, 1989; Chinn and Frankel,

2019; Kalemli-Özcan and Varela, 2022; Candian and De Leo, 2023). These findings suggest

that the expectation channel can be the main driver of the UIP puzzles associated with

ex-post realization data, on top of alternative explanations such as risk premia or financial

frictions.4 Our FH model offers a unified theoretical framework capable of explaining both

the time- and forecast-horizon aspects of the UIP violations. Furthermore, by focusing on

2The literature has developed several approaches to model bounded rationality that address the forward
guidance puzzle, such as cognitive discounting (Gabaix, 2020), lack of common knowledge (Angeletos and
Lian, 2018), level-k thinking (e.g., Garćıa-Schmidt and Woodford, 2019; Farhi and Werning, 2019), and finite
planning horizons (Woodford, 2019).

3Models featuring underreaction to new information include cognitive discounting, lack of common knowl-
edge, level-k thinking, imperfect common knowledge (Woodford, 2002), sticky information (Mankiw and Reis,
2002), and rational inattention (Sims, 2003). For modeling overreaction, one leading approach is diagnostic
expectations (e.g., Bordalo, Gennaioli and Shleifer, 2018; Bordalo et al., 2020).

4The literature has also developed various approaches in the RE framework to address some parts of
these UIP puzzles, such as by considering time-varying risk premia (Verdelhan, 2010), infrequent portfolio
adjustments (Bacchetta and van Wincoop, 2010), or the convenience yield (Valchev, 2020).
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the expectation channel, our model underscores a distinct perspective on the source of UIP

wedges compared to Itskhoki and Mukhin (2021). They consider a segmented financial mar-

ket with noise traders and risk-averse intermediaries, where limits-to-arbitrage results in a

wedge in the RE-UIP condition. In contrast, our model attributes endogenous deviations

from the RE-UIP condition to decision-makers’ behavioral responses to aggregate shocks.

Our paper also has distinct features compared to existing studies that attempt to explain

the UIP puzzles through expectation channels. Several studies employ distorted beliefs and

shock misperception to explain the time-horizon aspect of the UIP puzzles. Gourinchas and

Tornell (2004) consider investors with distorted beliefs, resulting in misperceptions about

the relative weight of persistent versus transitory interest rate shocks. Candian and De

Leo (2023) extend this work by incorporating investors’ extrapolation of underlying shocks.

Valente, Vasudevan and Wu (2021) similarly model decision-makers receiving noisy signals

and extrapolating an exogenous interest-rate process.

In contrast, decision-makers in our model do not misperceive underlying shocks; instead,

expectation biases stem from imperfect optimization that is inherent in limited foresight.

Our approach is also related to Molavi, Tahbaz-Salehi and Vedolin (2023), which employs

a model with constraints on the complexity of agents’ beliefs when addressing the UIP

puzzles. However, individuals’ subjective expectations satisfy the LIE in their model and

hence it does not explain the forecast-horizon aspect of the UIP puzzles. In addition, our

approach differs from that of Kolasa, Ravgotra and Zabczyk (2022), which tackles the UIP

puzzles by considering cognitive discounting.

Our paper also expands the scope of FH models by applying to an open-economy con-

text. Woodford and Xie (2019, 2022) emphasize the policy implications of limited foresight,

particularly under the zero lower bound. Xie (2020) posits that this method facilitates the

examination of equilibrium dynamics without having to tackle equilibrium selection issues.

Dupraz, Bihan and Matheron (2022) reconsider the effects of make-up policies by reconcil-

ing small inflation response with large response in asset prices. Our paper underlines the

implications of finite planning horizon for the dynamics of exchange rates and its forecasts.

Methodology-wise, the model in Woodford (2019) considers only the state variables asso-

ciated with agents’ continuation value functions. We introduce a method in this paper to

incorporate a larger set of endogenous state variables into his framework, which can also be

applied to extend the FH model to medium- or large-scale DSGE models.

This paper proceeds as follows. Section 2 illustrates an SOE-NK model in which decision-

makers are subject to limited foresight. Section 3 summarizes the full equilibrium conditions

when decision-makers share a homogeneous planning horizon and discusses the model so-

lution method. Section 4 analyzes the equilibrium dynamics of the FH model. Section 5
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applies the model to address the UIP puzzles. Section 6 discusses the robustness of the main

results by considering alternative setups of the model, including extending to heterogenous

planning horizons. Section 7 concludes.

2 A Small Open-Economy New Keynesian Model

under Limited Foresight

We develop an SOE-NK model in which decision-makers have bounded rationality. The small

open economy is subject to nominal price rigidities and incomplete international financial

market. The economy is populated by households and producers who optimize based on

finite-horizon planning à la Woodford (2019). The household consumption basket includes

both domestically produced goods and imported foreign goods. Producers of domestic goods

have market power and can set prices in the domestic currency (i.e., producer currency

pricing). We assume nominal rigidity in goods prices whereby firms have limited ability to

reset their prices à la Calvo (1983). There are two types of bonds: one is a domestic currency

bond that is only traded domestically, and the other is an international bond (denominated

in foreign currency) that is traded with the rest of the world (RoW). We consider two types

of shocks in the model: shocks to domestic productivity and the foreign interest rate.

2.1 Households

Let us begin with a description of the households’ forward planning problem. The small

open economy consists of infinitely many households indexed in the unit interval [0, 1]. At

any time t, household i seeks to maximize

Êt

∞∑
τ=t

βτ−t
[
u
(
Ci

τ

)
−ϖ

(
N i

τ

)]
, (2.1)

where Ci
τ is the consumption composite at date τ and N i

τ is the labor supply of household

i. Function u(·) denotes a periodic utility, which is strictly increasing and concave, while

function ϖ(·) denotes a periodic disutility of labor supply, which is strictly increasing and

convex. Parameter 0 < β < 1 is the subjective discount factor. Operator Êt represents the

subjective expectation of household i at time t. We will specify this expectation operator

later which features a finite planning horizon.

The consumption basket Ci
τ is an aggregate of home goods, Ci

H,τ , and imported foreign
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goods, Ci
F,τ . The aggregation follows a constant elasticity of substitution (CES):

Ci
τ =

[
(1− α)

1
η (Ci

H,τ )
η−1
η + α

1
η (Ci

F,τ )
η−1
η

] η
η−1

,

where 1− α governs the degree of home bias and η represents the elasticity of substitution

between home and foreign goods. Ci
H,τ and C

i
F,τ are the Dixit-Stiglitz aggregates of the home

and foreign varieties, respectively; that is,

Ci
H,τ =

(∫ 1

0

Ci
H,τ (j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

, Ci
F,τ =

(∫ 1

0

Ci
F,τ (j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

,

where ϵ represents the elasticity of substitution between within-country varieties.

The household faces the following sequential budget constraint:

PτC
i
τ +

Bi
τ+1

1 + iτ
+

EτB∗,i
τ+1

1 + i∗τ
= Bi

τ + EτB∗,i
τ +WτN

i
τ + Φτ , (2.2)

where Pτ is the consumer price index (CPI), Bi
τ+1 is the nominal payoff in period τ + 1 of

the household’s domestic bond holdings at the end of period τ , and 1 + iτ is the short-term

riskless nominal interest rate of the domestic bond. Variable Eτ is the effective nominal

exchange rate between the home country and the rest of the world, representing the price

of foreign currency in units of domestic currency. Variable B∗,i
τ+1 is the nominal payoff of a

foreign bond in foreign currency and 1 + i∗τ is its associated nominal foreign interest rate.

Variable Wτ is the nominal wage and Φτ is the nominal dividends from firms that household

i receives.5

The household’s static cost minimization problem for consumption expenditure yields

the following demand functions for each variety:

Ci
H,τ (j) =

(
PH,τ (j)

PH,τ

)−ϵ

Ci
H,τ , Ci

H,τ = (1− α)

(
PH,τ

Pτ

)−η

Ci
τ ,

Ci
F,τ (j) =

(
PF,τ (j)

PF,τ

)−ϵ

Ci
F,τ , Ci

F,τ = α

(
PF,τ

Pτ

)−η

Ci
τ ,

where the price indices for the two consumption bundles are

PH,τ =

(∫ 1

0

PH,τ (j)
1−ϵdj

) 1
1−ϵ

, PF,τ =

(∫ 1

0

PF,τ (j)
1−ϵdj

) 1
1−ϵ

.

5Households own the domestic firms, but the dividends transfer is beyond household i’s control. Thus,
Φτ is not indexed by i.
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The aggregate price level (CPI) is

Pτ =
[
(1− α)P 1−η

H,τ + αP 1−η
F,τ

] 1
1−η .

For the sake of parsimony, we follow the assumption on the labor market in Woodford

(2019). That is, the country has a labor organization in which each household is asked by

firms to supply its share of the aggregate domestic labor demandNτ . Thus, the expected path

of N i
τ = Nτ is beyond household i’s control. This implies the expected path of equilibrium

income (in domestic currency), that is,

WτNτ + Φτ = PH,τYτ , (2.3)

is exogenous to individual household i.

Now, we characterize the intertemporal decision-making of household i to maximize (2.1)

under limited foresight. Suppose in each period, household i engages in explicit forward

planning for finite h periods ahead; that is, household i has a planning horizon h. We

assume that h is exogenous and time-invariant. At time t, the household chooses state-

contingent plans {Ci
τ (zτ )} for all possible states zτ within periods t ≤ τ ≤ t + h. The

household chooses the finite-horizon plans to maximize the objective

Eh
t

[
t+h∑
τ=t

βτ−tu(Ci
τ ) + βh+1v

(
Bi
t+h+1,B

∗,i
t+h+1

)]
, (2.4)

where v(·) is the value function that the household uses at time t to approximate continuation

values if the asset portfolio it holds at the end of the planning horizon is Bi
t+h+1(zt+h) and

B∗,i
t+h+1(zt+h). It is a coarse value function such that it is contingent only on individual

state variables instead of the complete state-contingent structure as under the RE case.

Here Bτ ≡ Bτ/Pτ−1 and B∗
τ ≡ B∗

τ/P
∗
τ−1 denote the nominal value of bonds maturing in

period τ deflated by last-period price indices, and thus Bτ and B∗
τ are real variables that are

purely predetermined in period τ − 1. Operator Eh
t (·) is the subjective expectation Êt(·) in

expression (2.1), representing the expectations at time t of a decision maker that plans h

periods ahead.

By combining (2.2) and (2.3), household i’s budget constraint can be expressed in real

terms as follows:

Ci
τ +

Bi
τ+1

1 + iτ
+
QτB∗,i

τ+1

1 + i∗τ
=

Bi
τ

Πτ

+
QτB∗,i

τ

Π∗
τ

+ SτYτ , (2.5)

where Πτ+1 ≡ Pτ+1/Pτ and Π∗
τ+1 ≡ P ∗

τ+1/P
∗
τ are the domestic and foreign inflation rates,

7



Qτ ≡ EτP ∗
τ /Pτ is the real exchange rate, and SτYτ is the household income from wages and

dividends (beyond the household’s control). Sτ ≡ PH,τ/Pτ is the ratio between the price

index for domestically produced goods and the price index for the aggregate consumption

basket.

Note that in the household’s finite-horizon forward planning problem (2.4), if the house-

hold’s subjective expectation operator Eh
t [·] is the model-consistent expectation and the

value function v (·) is the accurate model-consistent value function with a complete state-

contingent structure (as in standard dynamic programming under infinite planning horizons),

the household’s optimization problem replicates the conventional intertemporal optimization

problem. That is, in such a case, the household makes the optimal infinite-horizon contingent

plans under RE.

However, the decision-making under limited foresight features optimal plans and expec-

tation formations that deviate from the infinite-horizon RE benchmark. At date t, the

household constructs a contingent plan for the subsequent h forward dates but implements

the plan only for the current date t. When the following date t + 1 arrives, the household

reconstructs the contingent plans for future h dates, which are not necessarily identical to

those made at the previous date t. The household implements the new plans only for the

current date t + 1. In terms of expectation formation, at each date t, the h-horizon house-

hold makes a contingent plan up to date t+ h. At each date τ within the planning horizon

t ≤ τ ≤ t+h, the household is assumed to plan forward for the remaining t+h− τ dates. In

addition, the household assumes that spending and pricing decisions made by other house-

holds and firms at any date τ within its planning horizon are made with the same remaining

planning horizon t+ h− τ .

We now define how the expectation operator for the h-horizon household is linked to the

model-consistent expectation. For any endogenous variable Xτ determined at future date

τ within the planning horizon (t ≤ τ ≤ t + h), the household’s expectation conditional on

state zt at date t is assumed to satisfy

Eh
t [Xτ |zt] = Et

[
X t+h−τ

τ

]
,

where operator Eh
t [·] represents the expectation of the decision maker made at period t

that plans h-periods ahead. Et[·] is the standard model-consistent expectation operator

conditional on being in state zt and the superscript t + h − τ indexes the (remaining)

planning horizon when the household forecasts variable Xτ at date τ .6 The household’s

6We follow the notation in Woodford (2019) for the definition of expectation operator with finite planning
horizon. The superscript t + h − τ here is needed because decision-makers could have different planning
horizons, hence their forecasted Xτ is contingent on their remaining planning horizon at date τ . We consider
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expectation for Xτ conditional on future state zτ in its period-t planning exercise is given

by

Eh
t [Xτ |zτ ] = Eτ

[
X t+h−τ

τ

]
.

Finally, the household’s expectation for Xτ+1 conditional on the same information structure

above is given by

Eh
t [Xτ+1|zτ ] = Eτ

[
X t+h−τ−1

τ+1

]
.

By imposing the expectation operator transformation, the first-order conditions to max-

imize the objective (2.4) with respect to Ci
τ , Bi

τ+1, and B∗,i
τ+1, with horizon h ≥ 1 at any date

t ≤ τ ≤ t+ h− 1, yield

u′(Ct+h−τ
τ ) = βEτ

[
(1 + it+h−τ

τ )
u′(Ct+h−τ−1

τ+1 )

Πt+h−τ−1
τ+1

]
, (2.6)

u′(Ct+h−τ
τ ) = βEτ

[
(1 + i∗,t+h−τ

τ )
u′(Ct+h−τ−1

τ+1 )

Π∗,t+h−τ−1
τ+1

Qt+h−τ−1
τ+1

Qt+h−τ
τ

]
. (2.7)

In terminal period τ = t+h where the forward planning is truncated, or in the case of h = 0,

the first-order conditions related to the value function are

u′(C0
t+h) = β(1 + i0t+h)v1(B0

t+h+1,B
∗,0
t+h+1), (2.8)

u′(C0
t+h) = β(1 + i∗,0t+h)v2(B

0
t+h+1,B

∗,0
t+h+1)/Q

0
t+h. (2.9)

In the nonstochastic steady state, we have that 1 + ī = β−1Π̄ and 1 + ī∗ = β−1Π̄∗, and

the (time-invariant) value function in the steady state is given by

v(B,B∗) = (1− β)−1u

(
(1− β)B

Π̄
+

(1− β)Q̄B∗

Π̄∗ + S̄Ȳ
)
. (2.10)

Details of deriving (2.10) can be found in Appendix A.

We define the domestic variables after log-linear approximation as

ĉt ≡ log

(
Ct

C̄

)
, ŷt ≡ log

(
Yt
Ȳ

)
, ı̂t ≡ log

(
1 + it
1 + ī

)
,

b̂t ≡
Bt − B̄
Π̄C̄

, q̂t ≡ log

(
Qt

Q̄

)
, πt ≡ log

(
Πt

Π̄

)
,

an extension to heterogeneous planning horizons in Section 6.
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and for the foreign variables,

ı̂∗t ≡ log

(
1 + i∗t
1 + ī∗

)
, b̂∗t ≡

Q̄(B∗
t − B̄∗)

Π̄∗C̄
, π∗

t ≡ log

(
Π∗

t

Π̄∗

)
,

Throughout the paper, we use lowercase to denote variables after taking logs unless otherwise

stated, and further use hats to denote log-deviation from the steady state.

Log-linearizing equations (2.6) and (2.7) yield

ĉt+h−τ
τ = Eτ [ĉ

t+h−τ−1
τ+1 ]− σ−1

[
ı̂t+h−τ
τ − Eτπ

t+h−τ−1
τ+1

]
, (2.11)

ĉt+h−τ
τ = Eτ [ĉ

t+h−τ−1
τ+1 ]− σ−1

[
ı̂∗,t+h−τ
τ + Eτ (q̂

t+h−τ−1
τ+1 − q̂t+h−τ

τ − π∗,t+h−τ−1
τ+1 )

]
, (2.12)

for any date t ≤ τ ≤ t + h − 1 with horizon h ≥ 1, where σ−1 ≡ −u′(C̄)/(u′′(C̄)C̄) is the

elasticity of intertemporal substitution of households.

Under the assumption that households always adopt the steady-state value function in

their forward-planning exercise, log-linearizing equations (2.8) and (2.9) yields

ĉ0τ = −σ−1ı̂0τ + (1− β)b̂0τ+1 + (1− β)b̂∗,0τ+1, (2.13)

ĉ0τ = −σ−1ı̂∗,0τ + (1− β)b̂0τ+1 + (1− β)b̂∗,0τ+1 + σ−1q̂0τ . (2.14)

Details of the derivation can be found in Appendix B. In Section 2.5, we also introduce a

learning process for updating the value function over time by averaging past experiences.

2.2 Firms

A set of continuum producers f ∈ [0, 1] in the economy produce a variety of differentiated

intermediate goods as inputs for the domestically produced final goods. The intermediate

goods market is monopolistically competitive, and the producers of each intermediate good

can be price-setters in domestic currency but face staggered pricing, as in the style of Calvo

(1983) and Yun (1996). Specifically, we assume that at each time, fraction 1− θ of firms are

randomly selected to be able to reoptimize their prices. A producer j that belongs to the

remaining fraction θ cannot reset its price, and we assume that its price satisfies PH,t(j) =

PH,t−1(j)Π̄H , where Π̄H is the inflation rate of the domestic goods in the nonstochastic

steady state. This implies that the prices are automatically revised by considering the long-

run inflation rate for domestically produced goods. This assumption is an open-economy

variation of Woodford (2019), which implies that all equilibrium relative prices among the

varieties of domestic goods are the same as those under flexible prices in the steady state.

At time t, similar to the objective function of households, firm f with a k-period planning
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horizon that can reset its price chooses P f
H,t to maximize

max
P f
H,t

Ek
t

[
t+k∑
τ=t

(βθ)τ−tλτH
(
rfτ ;Sτ ,Zτ

)
+ ṽ

(
rft+k

)]
, (2.15)

where λτ ≡
∫
uc(C

i
τ )di is the average marginal utility of household consumption and rfτ ≡

P f
H,t

PH,τ
Π̄τ−t

H denotes the relative price between firm f ’s goods price and domestically produced

final goods. H
(
rfτ
)
represents the real profits of the firm at date τ , where Zτ is the vector

of real state variables that are beyond firm f ’s control. A detailed expression of the func-

tional form H(·) can be found in Appendix C. The last term ṽ(rft+k) in (2.15) is the firm’s

value function at the end of the planning horizon that is used to approximate the value of

discounted future real profits from date t+ k + 1 onward.

We begin with the assumption that the firm’s value function ṽ(·) is the one learned from

the nonstochastic steady-state equilibrium; that is, we now consider the following steady-

state firm value function:

ṽ
(
rf
)
= (1− θβ)−1λ̄H

(
rf ; S̄, Z̄

)
,

where λ̄ = uc(C̄) is the constant value of λτ in the steady state. In Section 2.5, we relax this

assumption by incorporating a learning process into ṽt(·).
The firm’s expectation formation Ek

t [·] is isomorphic to that of the household. That is,

the firm with planning horizon k assumes that the endogenous variables determined at any

date τ in t ≤ τ ≤ t + k are based on the decisions of all agents in the economy with the

remaining planning horizon t+ k − τ . Therefore, the firm’s subjective expectation operator

for endogenous variables is represented by the model-consistent expectation in the same

fashion as in equations (2.1)-(2.1), where h is now replaced with k.

Then, with the notation pfH,t ≡ log[P f
H,t/(PH,t−1Π̄H)], any firm f that reoptimizes its

price at time t with a k-period planning horizon sets pfH,t = pkH,t, which is given by

pkH,t = Et

t+k∑
τ=t

(βθ)τ−t
[
πt+k−τ
H,τ + (1− βθ)m̂ct+k−τ

τ

]
, (2.16)

where m̂cτ ≡ log
(
MCτ/MC

)
is the log-deviation of the real marginal cost, MCτ ≡ MCτ

PH,τ
,

around its steady state at date τ . In particular, it satisfies m̂ct = −H ′(1; 1,Zt)/H
′′(1; 1, Z̄).

The details of deriving (2.16) and m̂ct can be found in Appendix C.
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The evolution of the aggregate domestic price index PH,t satisfies

P 1−ϵ
H,t = θ(PH,t−1Π̄H)

1−ϵ + (1− θ)(P f
H,t)

1−ϵ,

and its log-linear approximation around the steady state yields πk
H,t = (1− θ)pkH,t.

Thus, equation (2.16) becomes

πk
H,t = (1− θ)Et

t+k∑
τ=t

(βθ)τ−t
[
πt+k−τ
H,τ + (1− βθ)m̂ct+k−τ

τ

]
.

The isomorphic form of the equation holds if we replace k with any horizon j ≥ 0. That is,

{πj
H,t} for any horizon j ≥ 1 satisfies the following recursive form:

πj
H,t = κm̂cjt + βEtπ

j−1
H,t+1, (2.17)

where κ ≡ (1− θ)(1− βθ)/θ, and when j = 0, we have

π0
H,t = κm̂c0t . (2.18)

2.3 Labor Market and Real Marginal Cost

The wage is determined following the approach of Woodford (2019), which abstracts labor

supply decision-making from any individual household while maintaining the aggregate labor-

supply curve as in the canonical New Keynesian models. As mentioned in Section 2.1, the

labor market organization has representatives who bargain for wages on behalf of households.

Henceforth, we drop the superscripts on the planning horizon for the sake of parsimony when

they are redundant for explicitly understanding the equilibrium relationships. We formally

state the full equilibrium conditions with the FH in Section 3.

A representative determines the number of working hours provided by households for any

given wage, and households must supply that number of hours and receive the same wage.

There are many such representatives, and no representative has any market power. Then,

the representatives choose the number of hours Nt to maximize the average utility of the

households in the economy, which yields the following labor supply:

ϖN(Nt) = λt
Wt

Pt

.
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We assume the standard disutility function of the labor supply in the form of

ϖ(Nt) =
N1+φ

t

1 + φ
,

where φ is the inverse of the Frisch elasticity of labor supply. Then, the labor supply equation

after taking log becomes

φnt = −σct + wt − pt. (2.19)

Each firm j ∈ [0, 1] has a linear technology represented by the production function

Yt(j) = AtNt(j), hence the marginal cost is common across domestic firms. The real marginal

cost in terms of domestic prices is then given by

MCt =
Wt

PH,tAt

,

and thus the log of the real marginal cost becomes:

mct = wt − pH,t − at. (2.20)

2.4 Closing the Economy

Exchange Rate and the Terms of Trade. From the definition of the real exchange

rate, we have the following accounting relationship between the log of the nominal exchange

rate, real exchange rate, and domestic and foreign price indices:

qt = et + p∗t − pt, (2.21)

which yields the following log-linearized equation

ε̂t = q̂t − q̂t−1 + πt − π∗
t . (2.22)

Here, ε̂t ≡ log( Et
ε̄Et−1

) is the log-deviation of the nominal depreciation rate from its steady-

state value ε̄.

Without loss of generality, the price of foreign composite goods in the foreign currency

is normalized to one; that is, p∗t = 1. We further assume that the law of one price (LOP)

always holds (for each variety of goods j), hence et = pF,t. Then, taking into account the

linearized CPI index

pt = (1− α)pH,t + αpF,t, (2.23)
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we have

πt = (1− α)πH,t + αε̂t. (2.24)

The terms of trade between the domestic country and the rest of the world is defined as

St ≡ PF,t/PH,t. Taking the log of this expression yields

st = pF,t − pH,t. (2.25)

By further combining (2.21) and (2.23), the terms of trade in the first-order approximation

satisfies

ŝt =
q̂t

(1− α)
. (2.26)

International Goods Market Clearing. The international market clearing condition

for domestically produced goods is

Yt = CH,t + C∗
H,t, (2.27)

where C∗
H,t is the foreign demand from the RoW. Following the literature (e.g., Davis and

Presno, 2017), we assume an elastic foreign demand for the home country:

C∗
H,t =

(
P ∗
H,t

P ∗
t

)−γ

C∗
t , (2.28)

where γ > 0 is the demand elasticity of the RoW for domestically produced goods and C∗
t

represents the RoW consumption. We abstract from the foreign demand shock and thus C∗
t

is time-invariant.

Log-linearizing (2.27) and (2.28) yields the following goods market clearing condition:

ŷt = ϑycĉt + ϑysŝt, (2.29)

where ϑyc and ϑys are constant. They are functions of structural parameters and steady-state

equilibrium values. Details of (2.29) can be found in Appendix D.

Utilizing the log-linearized production function ŷt = ât+ n̂t and the labor supply function

(2.19), along with (2.23), (2.25), and (2.29), the log-linearized real marginal cost (2.20) is

given by

m̂ct = (σ + φϑyc)ĉt + (α + φϑys)ŝt − (1 + φ)ât. (2.30)

Without loss of generality, we assume that the steady-state level of domestic productivity is

Ā = 1, which implies ā = 0 and ât = at.
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Domestic Monetary Policy. For the domestic interest rate, we consider a monetary

policy rule intended to stabilize the domestic CPI inflation rate following a standard Taylor-

type form; that is,

ı̂t = ϕππt, (2.31)

where ϕπ > 1 is a constant parameter.

Evolution of Foreign Bond Holdings. Without loss of generality, we assume that the

foreign inflation rate is always one; that is, Π∗
t = Π̄∗ = 1 and π∗

t = 0 for any t. Then,

the foreign nominal interest rate ı̂∗t is equal to r̂∗t and the steady-state relationship satisfies

1 + r̄∗ = β−1. In addition, given that the domestic bonds are not internationally tradable

and are cleared domestically in equilibrium, we assume the net supply of domestic bonds in

this small open economy is always zero (Bt = 0 for any t).

In equilibrium, the resource constraint (2.5) of the domestic economy now becomes:

QtB∗
t+1

1 + i∗t
=
QtB∗

t

Π∗
t

+ StYt − Ct.

After log-linearization around the steady state and by noticing Ŝt = −αŝt, we have

b̂∗t+1 = β−1(b̂∗t + ϑ1q̂t − ϑ2αŝt + ϑ2ŷt − ĉt)− ϑ1q̂t + ϑ1r̂
∗
t , (2.32)

where ϑ1 ≡ B̄∗Q̄
C̄

and ϑ2 ≡ S̄Ȳ
C̄
. Equation (2.32) governs the evolution of the foreign bond

holdings (net foreign asset position) b̂∗t in the equilibrium.

Foreign Interest Rate. We assume that the foreign interest rate faced by the domestic

country endogenously responds to its level of net foreign asset position:

r̂∗t = ϕbb̃
∗
t+1 + µt, (2.33)

where b̃∗t+1 is the cross-sectional average of the foreign bond holdings across households (which

is beyond household i’s control), ϕb < 0 is a constant, and µt is the random foreign interest

rate shock. In equilibrium, we have b̃∗t+1 = b̂∗t+1. Here ϕb < 0 indicates that as the country

borrows more from the rest of the world (b̃∗t+1 < 0), it is charged with a higher interest

rate by the international market. This specification follows Schmitt-Grohé and Uribe (2003)

through an external debt-elastic foreign interest rate, a common device to induce stationarity

in linearized small open-economy models under RE with incomplete asset markets.

As discussed in Woodford (2019) and Xie (2020), a model with limited foresight by design
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always guarantees a unique equilibrium solution in the closed-economy setting, regardless of

the restrictions on the monetary/fiscal policy reaction function. This feature of equilibrium

determinacy also holds in our small open-economy model under limited foresight.7 However,

we still impose the same assumption (2.33) in the model of limited foresight to facilitate its

comparison with the counterpart model under RE, so that we can isolate the role of limited

foresight on the different equilibrium performances.

2.5 Decision-makers’ Learning in Value Functions

Thus far, we have assumed that the value functions of households v (B,B∗) and of firms

ṽ
(
rf
)
are the fixed ones learned from the nonstochastic stationary environment. Starting

from this section, we relax this assumption such that decision-makers update their value

functions over time based on their past experiences. Similar to Woodford (2019), we assume

that the learning behaviors of households and firms follow a constant-gain process:

vt+1(B,B∗) = γvv
est
t (B,B∗) + (1− γv)vt(B,B∗),

ṽt+1

(
rf
)
= γṽṽ

est
t

(
rf
)
+ (1− γṽ)ṽt

(
rf
)
,

where γv, γṽ ∈ [0, 1] are learning gain parameters. That is, decision-makers extrapolate their

priors of future value functions (which will be used in the planning exercise at time t + 1)

using their priors of the value functions at time t and estimates of the value function obtained

as a result of their planning exercises at time t. Therefore, the value functions that describe

decision-makers’ perceptions of the future beyond their planning horizons reflect past and

estimated value functions.

We now consider a local approximation of the dynamics implied by the constant-gain

learning rule through a perturbation of the steady-state solution. We parameterize a log-

linear approximation of v1(B,B∗) in the household’s optimal finite-horizon plan with respect

to the domestic bond as

log(v1,t(B,B∗)/v∗1(B̄, B̄∗)) = −σ
[
νt + χtb̂+ ζtb̂

∗
]
.

Here we use v∗(·) to denote the steady-state value function. Using this approximation, we can

compute a log-linear approximation of the solution to the household’s optimal finite-horizon

plan in period t.

7When there is no learning in agents’ value function, the equilibrium under limited foresight is stationary
even with an exogenous path of r̂∗t . However, when agents learn and update their value function, a device
similar to (2.33) is necessary to guarantee the stationarity of equilibrium.
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Let Ci
t(B,B∗) denote the optimal expenditure plan of household i under the counter-

factual assumption Bi = B. Then, the derivative of the estimated value function is equal

to

vest1,t (B,B∗) = Ei
t[uC(C

i
t(B,B∗)/Πt].

By log-linearization, we then have

log(vest1,t (B,B∗)/v∗1(B̄, B̄∗)) = −σĉht (b̂, b̂∗)− πh
t , (2.34)

where h is the planning horizon of household i. Our log-linear approximation of the optimal

household plan satisfies ĉht (b̂, b̂
∗) = ĉht (b̄, b̄

∗) + ĉh1,tb̂+ ĉh2,tb̂
∗. Approximating the left-hand side

as −σ
[
νestt + χest

t b̂+ ζestt b̂∗
]
of equation (2.34) directly implies

νestt = ĉht + σ−1πh
t − ζestt b̂∗t ,

where we have used the condition b̂t = 0 for all t. Equating the coefficients on both sides by

substituting the expression of ĉht (b̂, b̂
∗) yields

χest
t = ĉh1,t, ζestt = ĉh2,t.

The intercept term of the estimated marginal value of the domestic bond, νestt , depends on

current consumption, the CPI inflation, and the predetermined net foreign asset position.

νestt increases with a decline in both current consumption and inflation. The intuition is

that an increase in the marginal utility of consumption raises the marginal value of the real

domestic bond via the standard wealth effect, while inflation reduces the domestic bond’s

real value.

Together with the constant-gain learning rule, we have

νt+1 = γvν
est
t + (1− γv)νt,

χt+1 = γvχ
est
t + (1− γv)χt,

ζt+1 = γvζ
est
t + (1− γv)ζt.

We can show that χt and ζt are univariately mean-reverting to a constant 1 − β, and thus

we assume that these two variables have converged. Details can be found in Appendix E.

Similarly, we parameterize a log-linear approximation of v2(B,B∗) in the households’
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optimal finite-horizon plan with respect to the foreign bond as

log(v2,t(B,B∗)/v∗2(B̄, B̄∗)) = −σ
[
ν∗t + χ′

tb̂+ ζ ′tb̂
∗
]
.

Using this approximation, we can compute a log-linear approximation of the solution to the

household’s optimal finite-horizon plan in period t.

Let Ci
t(B,B∗) denote the optimal expenditure plan of household i under the counterfac-

tual assumption B∗i = B∗. Then, the derivative of the estimated value function will be equal

to

vest2,t (B,B∗) = Êi
t[uC(C

i
t(B,B∗))Qt/Π

∗
t ].

Note we have assumed that Π∗
t = 1 for any t. By log-linearization, we then have

log(vest2,t (B,B∗)/v∗2(B̄, B̄∗)) = −σĉht (b̂, b̂∗) + q̂ht . (2.35)

Our log-linear approximation of the optimal household plan satisfies ĉht (b̂, b̂
∗) = ĉht (b̄, b̄

∗) +

ĉh1,tb̂ + ĉh2,tb̂
∗. Approximating the left-hand side as −σ[ν∗,estt + χ′,est

t b̂ + ζ ′,estt b̂∗] and equating

coefficients yield

ν∗,estt = ĉht − σ−1q̂ht − (1− β)b̂∗t ,

χ′,est
t = ĉh1,t = χest

t ,

ζ ′,estt = ĉh2,t = ζestt ,

where we have utilized the fact that ζestt = 1−β as shown in Appendix E. Thus, the estimated

marginal value of the foreign bond, ν∗,estt , depends on the current real exchange rate, the

CPI inflation, and the predetermined net foreign asset position. ν∗,estt decreases as current

consumption falls and the real exchange rate depreciates. The intuition is that an increase

in the marginal utility of consumption raises the marginal value of the real foreign bond via

the standard wealth effect, and a depreciation of the real exchange rate increases the foreign

bond’s real value (in domestic currency).

Note further that the constant-gain learning rule yields

ν∗t+1 = γvν
∗,est
t + (1− γv)ν

∗
t .

Therefore, we have characterized the learning process of the household value function.

For the firm (with planning horizon k), we similarly have

ν̃estt = (1− θ)−1πk
H,t,
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and

ν̃t+1 = γṽν̃
est
t + (1− γṽ)ν̃t.

3 Equilibrium Characterization with Homogeneous

Planning Horizons across Agents

In this section, we focus on the steps to pin down the equilibrium path with the assumption

that all the agents share the same planning horizon h. Therefore, the equilibrium dynamics

of aggregate variables satisfy ŷt = ŷht , πt = πh
t , etc., and also b̂∗t+1 = b̂∗,ht+1 = b̃∗t+1. Focusing on

the case of homogeneous agents allows us to abstract from the aggregation problem across

the population, while we can still analyze how the equilibrium dynamics change with respect

to the degree of foresight (i.e., the common planning horizon h). In Section 6, we extend the

analyses to heterogeneous agents with different planning horizons and discuss the robustness

of the main results.8

First, given state variables {q̂t−1, b̂
∗
t , νt, ν

∗
t , ν̃t} and exogenous shocks {at, µt} that follow

AR(1) processes, we solve the problem of the finite planning exercise in period t. Let ŷjτ |t be

the expected value of ŷτ at date τ , as a result of aggregation of decisions made by agents

with (counterfactual) planning horizon j in that period. Here |t in the subscript indexes the

date at which the finite planning takes place. It matters because different value functions are

used in finite planning in different periods. ŷjτ |t is a function of the state {q̂t−1, b̂
∗
t , νt, ν

∗
t , ν̃t}

and {at, µt} in period t. Then, we have the actual aggregate output in period t given by

ŷt = ŷht|t. Similarly, we can define other variables in the finite planning exercise with the

same notation.

The equilibrium conditions for the finite planning exercise in period t are given in Ap-

pendix F. The system consists of a finite number of equations as a function of state variables

{q̂t−1, b̂
∗
t , νt, ν

∗
t , ν̃t} and exogenous shocks {at, µt}. Thus, we can solve for all endogenous

variables {ĉjτ |t, ŷ
j
τ |t, ı̂

j
τ |t, r̂

∗,j
τ |t , π

j
H,τ |t, π

j
τ |t, q̂

j
τ |t, ŝ

j
τ |t, ε̂

j
τ |t, b̂

∗,j
τ+1|t}

t+h
τ=t with a unique solution, where

j = h+ t− τ . The actual aggregate variables in period t are then given by

ĉt = ĉht|t, ŷt = ŷht|t, ı̂t = ı̂ht|t, r̂∗t = r̂∗,ht|t , πH,t = πh
H,t|t,

πt = πh
t|t, q̂t = q̂ht|t, ŝt = ŝht|t, ε̂t = ε̂ht|t, b̂∗t+1 = b̂∗,ht+1|t. (3.1)

8Our conclusions are also robust when extending the set of exogenous shocks to include domestic demand
shock and domestic interest rate shock, in addition to the productivity shock and foreign interest rate shock.
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From period t to period t+ 1, the value functions evolve over time; that is,

Vt+1 = ΓV est
t + (I − Γ)Vt, (3.2)

where Vt ≡ [νt ν̃t ν
∗
t ]

′, V est
t ≡ [νestt ν̃estt ν∗,estt ]′, Γ ≡ diag(γv, γv, γṽ), and I is an identity

matrix. The details expression of V est
t can be found in Appendix F.

Now, we describe how to solve the planned solution at date τ calculated in period t,

which is characterized by the equilibrium conditions of the finite planning exercise as shown

in Appendix F. We can write the solution to any endogenous variable xjτ |t except b̂
∗j
τ+1|t in

forward planning as a function of the state variables and exogenous shocks; that is,

xjτ |t = ψj
x,q q̂

j+1
τ−1|t + ψj

x,bb̂
∗,j+1
τ |t + ψj

x,aaτ + ψj
x,µµτ + ψj

x,ννt + ψj
x,ν̃ ν̃t + ψj

x,ν∗ν
∗
t , (3.3)

for any (counterfactual) j ≥ 0, and similarly,

b̂∗jτ+1|t = ψj
b,q q̂

j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t . (3.4)

Then, one can solve the undetermined coefficients via the equilibrium conditions of the

finite planning exercise for any j in the following steps: (i) utilizing the equilibrium conditions

for j = 0 and equating the coefficients yields the coefficients for j = 0; (ii) solving the

undetermined coefficients for any (counterfactual) j by forward induction. That is, given

the coefficients for j − 1, the undetermined coefficients for j are uniquely given by the

equilibrium conditions for j. See Appendix G for the detailed procedure.

Thus far, we have derived the solution of the entire forward planning calculated in period

t. Then, one can easily solve for the equilibrium path (3.1) with the evolution of the state

variables (F.23)-(F.24) together with exogenous shocks.

4 Equilibrium Analyses

This section investigates the equilibrium features of the FH model. We first explore the

characteristics of finite planning horizons by focusing on the Law of Iterated Expectation. We

then calibrate the model parameters to match key moments of macro-international aggregates

of Canada, in conjunction with the U.S. Following this calibration, we analyze the equilibrium

dynamics of the model by examining impulse responses. Lastly, we discuss how the model

with limited foresight generates systematic forecast errors in the real exchange rate.
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4.1 The Breakdown of the Law of Iterated Expectation

The LIE holds true in a model with RE. However, it no longer holds in the FH model when

the learning gain parameter, utilized in updating agents’ value functions, is non-zero.

Proposition 1 The Law of Iterated Expectation (LIE) does not hold when the economy is

not always at the steady state and the learning gain of value function is not zero (γv, γṽ ̸= 0),

that is,

Êtxt+2 ̸= ÊtÊt+1xt+2.

Proof: see Appendix H.

Proposition 1 is a result of the updating behavior of the agents’ value function. Intuitively,

Êtxt+2 is a function of the time-t value function vt, whereas Êt+1xt+2 is a function of the

time-(t + 1) value function vt+1. Since the evolution from vt to vt+1 follows constant-gain

learning, it implies vt ̸= Êtvt+1 as long as γv, γṽ ̸= 0. Instead, if γv, γṽ = 0, vt+1 = vt at any

time t and then the LIE holds. One should note that the breakdown of the LIE in the FH

model comes from the assumption that the value function in agents’ finite forward planning

exercise is coarse; if the value function is accurate enough, being the same as the one under

RE, vt becomes time-invariant and thus the LIE holds. We demonstrate in Section 5 that

this feature of the FH model provides a natural micro-foundation for the puzzling aspect of

the RE-UIP condition across the forecast horizons, as documented by Gaĺı (2020).

4.2 Calibrated Parameters

We calibrate the FH model to a quarterly frequency; see Table 1. Following the common

practice in the open-economy macro literature, we assume a symmetric steady state across

the domestic country and the rest of the world, with B̄∗ = 0, 1 + r̄∗ = 1/β, and Q̄ = 1. It

directly implies S̄ = S̄ = 1 and C̄ = Ȳ .

The following parameters are standard in the literature. We set the subjective discount

factor β = 0.99, the inverse of intertemporal elasticity of substitution σ = 2, and the inverse

of the Frisch elasticity of labor supply φ = 1. Parameter α, which governs the home bias

(1−α), is set to 0.2, a common value in the literature (e.g., Valchev, 2020). The Calvo-Yun

price stickiness parameter is set to θ = 0.75, implying an average duration of four quarters

between two consecutive price adjustments. We set the parameter of policy reaction in the

Taylor rule ϕπ = 2.15, following Clarida, Gaĺı and Gertler (1999), and the parameters of

trade elasticity γ and η to 1.5, following Backus, Kehoe and Kydland (1994) and Chari,

Kehoe and McGrattan (2002). The sensitivity of the foreign interest rate to foreign bond

holdings is set to ϕb = −0.01, following Benigno (2009) and Justiniano and Preston (2010).
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Table 1: Calibrated Parameters

Parameter Value Description

h 8 Length of Planning Horizon (quarter)
β 0.99 Subjective Discount Factor
σ 2 Inverse of Intertemporal Elasticity of Substitution
α 0.2 1 - Home Bias
φ 1 Inverse of the Frisch Elasticity of Labor Supply
θ 0.75 Calvo-Yun Sticky Price Parameter
γ 1.5 Foreign Demand Elasticity for Home Goods
η 1.5 Elasticity of Substitution between Goods of Home and Foreign
ϕπ 2.15 Monetary Policy Reaction Coefficient to the CPI Inflation Rate
ϕb -0.01 External Bond Sensitivity of the Foreign Interest Rate
ρx 0.9 Persistence of TFP and Foreign Interest Rate Shocks

σa/σµ 2.55 Relative Std. Deviations of Shocks
γv 0.14 Household’s Learning Gain

Notes: We normalize the standard deviation of the foreign interest rate shock to one without loss
of generality, as we do not target the absolute standard deviation of variables.

Together with the steady-state values, we calculate the coefficients ϑ1, ϑ2, ϑyc, and ϑys in

(2.30) and (2.32) by their definitions.

Following Woodford and Xie (2022), we set the length of the planning horizon h = 8

(that is, eight quarters). This is a conservative value because empirical findings suggest an

even shorter planning horizon; for instance, Gust, Herbst and López-Salio (2022) estimate an

average planning horizon as being one-quarter of the U.S. economy.9 If the planning horizon

is shorter, our conclusions are strengthened as they deviate more from the case under RE.

We set the persistence of the TFP shock to ρa = 0.9, following Candian and De Leo

(2023). We also set the persistence of the foreign interest rate shock, ρµ, to 0.9, the same

as that of the TFP shock. This is in line with the commonly assumed interest rate inertia

coefficient for the U.S. (e.g., Valchev, 2020). We then calibrate the two remaining parame-

ters: the relative standard deviations between the TFP shock and the foreign interest rate

shock, σa/σµ, and the household’s learning gain parameter, γv.
10 These two parameters

are calibrated to match the following two moments, utilizing Canadian data from 1970:Q3

to 2007:Q4: (i) the relative standard deviation of consumption growth to output growth,

σ(∆c)/σ(∆y); and (ii) the persistence of the real exchange rate growth ρ(∆q).11 We obtain

9The survey evidence in Coibion et al. (2023) suggests that household planning horizons in the U.S. are
no more than two years and they may well be capable of planning forward about three or four quarters.

10In our benchmark numerical analysis, we nullify the firm’s learning behavior on its value function by
setting γṽ = 0 for parsimony. Incorporating the firm’s learning behavior has negligible effects on our findings
in Sections 4 and 5. Thus, we leave the case of incorporating the firm’s learning behavior in the robustness
checks; see Appendix L.

11Appendix I presents the data source and variable construction. The exchange rate we use in calibration
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Table 2: Data and Model-Implied Second-Order Moments

Data Calibrated FH Non-calibrated RE Calibrated RE
(1) (2) (3) (4)

Targeted Moments
σ(∆c)/σ(∆y) 0.94 0.94 1.15 0.94
ρ(∆q) 0.30 0.30 0.19 0.24

Non-Targeted Moments
ρ(q) 0.98 0.97 0.90 0.96
ρ(ε) 0.34 0.40 0.21 0.25
ρ(ε,∆q) 0.94 0.97 0.97 0.99
σ(ε)/σ(∆y) 2.41 2.05 2.06 0.88
σ(∆q)/σ(∆y) 2.44 1.56 1.68 0.75
ρ(∆y,∆c) 0.51 0.30 0.30 0.86
ρ(∆c,∆q) -0.11 -0.42 -0.54 0.21

Notes: Column (1) shows the interested moments in the data. Column (2) shows the moments from
the FH model with calibrated parameters in Table 1. Column (3) shows the moments from the RE
model with the same parameters as in Column (2). Column (4) shows the moments from the RE
model by re-calibrating the shock persistence and relative standard deviations to match the same
targeted moments. σ(∆c)/σ(∆y) represents the relative standard deviation between consumption
growth and output growth; ρ(∆q) represents the persistence of the real exchange rate growth;
and ρ(∆y,∆c) represents the cross-correlation between output growth and consumption growth.
Similar notations apply to the other moments. For model-implied second-order moments, each
entry is the median of the moments derived from 10,000 simulations, each spanning 150 quarters.
The length of quarters matches that of the Canadian data we utilize.

a relative standard deviation of σa/σµ = 2.55 and a learning gain of γv = 0.14. The cali-

brated learning gain parameter is also close to the benchmark estimate in Gust, Herbst and

López-Salio (2022) using the U.S. data, which is around 0.14.

Table 2 reports a number of moments for the macroeconomic aggregates, comparing both

the data and the model-generated moments with the calibrated parameters. The FH model

matches the overall moments reasonably well, including the two targeted moments and other

non-targeted ones. Among the non-targeted moments, the FH model matches the data well

for the autocorrelations of real exchange rate level and nominal exchange rate growth, as

well as the high correlation close to one between nominal and real exchange rate growth.

The FH model also successfully predicts significantly higher exchange rate growth volatility

is the one between Canada and the U.S. The sample starts from 1970:Q3 because the US-Canada exchange
rate was pegged prior to this date and stops at 2007:Q4 to exclude the period of the Great Recession. In
addition, we target the growth rate of the real exchange rate to ensure consistency among the targeted
moments, where the first moment includes the growth rates of consumption and output. Nonetheless, our
results are robust even if we target the persistence of the real exchange rate level rather than growth (see
the first row of non-targeted moments in Table 1).
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(both real and nominal) compared to output volatility, though the ratio is slightly lower

than in the data. It also captures the negative correlation between consumption growth and

real exchange rate growth, albeit with a higher magnitude than in the data.

Table 2 also shows that the FH model fits the aggregate data better than the RE models.

Given that the parameter values in Table 1 are calibrated to fit the FH model to the data,

it is not surprising that the RE counterpart with the same parameters does not perform

better than the FH model (shown in Column (3)). However, even when the RE model is

recalibrated to match the same targeted moments (shown in Column (4)), it does not match

the data as well as the FH model does.12 The recalibrated RE model cannot accurately

match the targeted persistence of real exchange rate growth. Additionally, it fails to match

the non-targeted moments in several dimensions, including the higher volatility of exchange

rate growth compared to output growth volatility, and the negative correlation between

consumption growth and real exchange rate growth. It also predicts a positive correlation

between output growth and consumption growth, which is opposite to the data.

4.3 Impulse Responses

We now analyze the equilibrium dynamics by comparing the impulse response functions

between the FH model and its RE counterpart (Column (3) in Table 2). To isolate the role

of value function learning, we also compare with the FH model in which the learning gain

in value function is zero (that is, γv = 0, labeled as FH-NG).

Figure 1 illustrates the impulse responses of the variables of interest to the two structural

shocks, respectively, with a size of one standard deviation. In essence, across all three models,

the foreign interest rate and domestic productivity shocks (shown in panels (a) and (b),

respectively) conform to their roles in price and quantity determination. The former shock

causes real exchange rate depreciation, decreases consumption, and elevates CPI inflation

via exchange rate pass-through. The latter shock depreciates the real exchange rate, raises

consumption, and triggers a small temporary rise in CPI inflation due to the exchange rate

pass-through, followed by a decline in inflation induced by the positive supply shock.

Both shocks prompt households to boost savings, resulting in a gradual rise in net foreign

asset positions b̂∗t in subsequent periods. Defined by r̂t − r̂∗t (with r̂t being the nominal

interest rate minus expected one-period ahead inflation), the real interest rate differential

between domestic and foreign bonds experiences an initial surge but later adjusts downwards,

indicating higher subsequent real returns from foreign bonds.13

12In this case, the persistence of the shocks in the RE model has to increase to 0.99 and the relative
standard deviation σa/σµ increases to 16.63.

13Figure 1 shows an initial surge in the real interest rate differential in both the FH and RE models. Thus,
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Figure 1: Impulse Responses to Exogenous Shocks

(a) Foreign Interest Rate Shock
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(b) Domestic Productivity Shock
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Notes: This figure shows the impulse responses of selected variables in three models, subject to one standard
deviation foreign interest rate shock (panel (a)) and to one standard deviation domestic productivity shock
(panel (b)). “FH” refers to the benchmark calibrated finite planning horizon model, “RE” refers to the
rational expectation model, and “FH-NG” refers to the finite planning horizon model with no learning gain
(γv = 0). “RER Fore. Err.” represents the forecast error of the real exchange rate (RER), defined as

q̂t+1− Êtq̂t+1; and “Real Int. Differential” represents the real interest rate differential between domestic and
foreign bonds, defined as r̂t − r̂∗t . The x-axis is time in quarters.

this surge is not specific to the FH model but is attributed to the substantial persistence of shocks, set at
0.9.
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These shared patterns of impulse responses across the FH and RE models suggest that

the FH model need not compromise its ability to match aggregate moments compared to

the RE model while offering a genuine expectation formation. This expectation formation

of the FH model, as discussed in more detail in Section 5, contributes to explaining the RE-

UIP violations. Therefore, the FH model, without sacrificing matching aggregate moments

and, if anything, potentially improving upon them, provides a more realistic depiction of

expectation formation on exchange rate dynamics compared to the RE model.

Despite those common patterns, we also observe notable differences across the models.

Particularly, in contrast to the RE model, the FH model typically demonstrates more per-

sistent, hump-shaped movements of the aggregate variables. Furthermore, the FH model

generates non-trivial dynamics of the forecast errors, a distinctive feature absent in the RE

model. We now examine these differences in detail.

Dynamics of the Value Functions. Figure 1 shows a hump-shaped dynamics of νt

and ν∗t . As detailed in Section 2.5, νt and ν
∗
t capture the log-linear approximations of the

derivatives of the value function of households in the FH model to domestic and foreign

bonds, v1,t(B,B∗) and v2,t(B,B∗), respectively. Similarly, νestt and ν∗,estt capture the log-

linear approximations of the derivatives of the estimated value function of households to

domestic and foreign bonds, vest1,t (B,B∗) and vest2,t (B,B∗), respectively.

When shocks occur at t = 0, households use the steady-state evaluated priors ν0 and

ν∗0 for planning. Subsequently, they observe the realized macroeconomic outcomes and esti-

mate νest0 and ν∗,est0 .14 As outlined in equation (3.2), households then update ν1 and ν∗1 for

planning exercise at t = 1 by averaging the estimates with the previous priors ν0 and ν∗0 .

After observing the realized macroeconomic outcomes at the end of t = 1, they obtain new

estimates νest1 and ν∗,est1 and update ν2 and ν∗2 similarly for planning at t = 2. This process

is repeated thereafter.

Since the household value function shapes their long-run beliefs of the future beyond

their planning horizons, their updating behavior on the value function leads to dynamic ad-

justments of their long-run beliefs. Initially, households behave based on the long-run beliefs

derived from the steady-state value function, resulting in an underreaction due to the coarse-

ness of the value function and the finite planning horizon. Over time, households gradually

update their value function via constant gain (with γv = 0.14), which eventually leads to

excess extrapolation of long-run beliefs and subsequent overreaction. This sequence of initial

underreaction followed by gradual overreactions results in the hump-shaped dynamics of νt

and ν∗t shown in Figure 1.

14See the expressions of νest0 and ν∗,est0 as a function of realized macroeconomic outcomes in Appendix F.

26



It is worth noting that because the macroeconomic aggregates respond to the two shocks

in different directions, the hump-shaped dynamics of the value functions via learning also

move in different directions. As shown in Section 2.5, given the predetermined net foreign

asset position b̂∗t , ν
est
t increases with a decline in both consumption and inflation; on the

other hand, ν∗,estt decreases as consumption falls and the real exchange rate depreciates.

With the calibrated parameters, {νestt , ν∗,estt } follow: νestt = ĉt + 0.5πt − 0.01b̂∗t and

ν∗,estt = ĉt − 0.5q̂t − 0.01b̂∗t .
15 The values of these coefficients suggest that consumption,

inflation, and the real exchange rate are the primary drivers of νestt and ν∗,estt quantitatively.

Given that Figure 1 shows the two shocks affect these endogenous macroeconomic variables

differently, both in direction and magnitude, νt and ν
∗
t follow U-shaped dynamics in response

to the foreign interest rate shock and inverse U-shaped dynamics in response to the domestic

productivity shock.

This adjustment process in long-run beliefs plays a crucial role in shaping the equilibrium

response of macroeconomic outcomes. Simultaneously, the realized macroeconomic outcomes

reciprocally impact the process of belief updating. In equilibrium, this interactive feedback

leads to distinctive hump-shaped dynamics of macroeconomic aggregates in the FH model,

distinguishing it from the corresponding dynamics in the RE model.

Dynamics of RER Forecast Errors. Another crucial feature of the FH model is that it

generates dynamic overshooting of forecast errors, characterized by a sign reversal over time.

Here, we focus on the dynamics of the one-period ahead forecast errors of the real exchange

rate, q̂t+1 − Êtq̂t+1. Panel (a) in Figure 1 shows that when subject to the foreign interest

rate shock, the FH model initially exhibits a positive forecast error in the short-run and then

reverses to negative in the subsequent periods. That is, in the FH model, households initially

underestimate the depreciation in response to a foreign interest rate shock, but overestimate

it across the time horizon. The dynamic overshooting of the forecast error also applies to

the domestic productivity shock but in the opposite direction. Nonetheless, one can also

observe that the magnitude of the forecast errors subject to the foreign interest rate shock

are substantially larger than those under the productivity shock.

Although the FH-NG model also displays dynamic forecast errors, the magnitudes and

dynamic reversals are significantly less pronounced compared to the FH model, due to the

absence of the value function learning. To see the quantitative significance of value function

learning, we decompose the forecast error of the one-period ahead real exchange rate in the

FH and FH-NG models as follows:

15See Appendix F for the details of these two expressions.
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q̂t+1 − Êtq̂t+1 =
(
ψ8
q,q − ψ7

q,q

)
q̂t︸ ︷︷ ︸

q part

+
(
ψ8
q,b − ψ7

q,b

)
b̂∗t+1︸ ︷︷ ︸

b∗ part

+
(
ψ8
q,µ − ψ7

q,µ

)
ρµµt︸ ︷︷ ︸

µ part

+
(
ψ8
q,a − ψ7

q,a

)
ρaat︸ ︷︷ ︸

a part︸ ︷︷ ︸
forecast errors from finite forward planning

+
(
ψ8
q,ννt+1 − ψ7

q,ννt
)︸ ︷︷ ︸

ν part

+
(
ψ8
q,ν∗ν

∗
t+1 − ψ7

q,ν∗ν
∗
t

)︸ ︷︷ ︸
ν∗ part︸ ︷︷ ︸

forecast errors from value function extrapolation

. (4.1)

The decomposition (4.1) indicates that the forecast error of the real exchange rate in the

FH model can be decomposed into two broad categories stemming from: (i) finite forward

planning (q, b∗, µ, a), and (ii) gradual excess extrapolation through value function learning

(ν, ν∗). The FH-NG model only contains the first category. Figure 2 shows the decomposition

of the forecast errors of the real exchange rate shown in Figure 1. One can observe that the

value function extrapolation of households in the FH model, from both νt and ν∗t , plays a

major role in contributing to the dynamic overshooting of the forecast error.

Equation (4.1) also sheds light on why the forecast errors of real exchange rates exhibit

different signs in response to the two types of shocks in this quantitative exercise. Based on

the calibration in Table 1, the coefficients of the µ and a parts are ψ8
q,µ − ψ7

q,µ = 0.11 and

ψ8
q,a − ψ7

q,a = −0.02, respectively. The different signs of the coefficients indicate opposite

initial responses of the forecast errors to the shocks when the value functions ν and ν∗t have

not moved much yet. The values of these coefficients also account for the different magnitudes

of the forecast errors between the two panels in Figure 1. In the subsequent periods, the

dynamics of the value functions dominate the movement of forecast errors, hence the forecast

errors exhibit an overshooting.

Despite the real exchange rate forecast errors showing opposite impulse responses to the

two shocks in Figure 1, we find that this feature depends on the length of the planning

horizon. Whereas our benchmark analyses adopt a conservative calibration for the planning

horizon, the coefficient of the µ part in equation (4.1) becomes more positive and the co-

efficient in the a part becomes less negative as the planning horizon shortens. When the

horizon is less than four quarters (h ≤ 4), the latter even turns positive. In this scenario,

the impulse responses of the forecast errors move in the same direction subject to a positive

innovation in the two shocks.
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Figure 2: Decomposition of the Forecast Errors of the Real Exchange Rate
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Notes: This figure shows the selected components of the impulse response of the one-period ahead forecast
errors of the real exchange rate in the two models, subject to one standard deviation foreign interest rate
shock (panel (a)) and one standard deviation domestic productivity shock (panel (b)). “FH” refers to the
benchmark finite planning horizon model and “FH-NG” refers to the finite planning horizon model with
γv = 0. The x-axis is time in quarters. The q part is omitted because it is quantitatively negligible.

5 Addressing the UIP Puzzles

In this section, we show that the FH model adeptly addresses several puzzling characteristics

concerning the time- and forecast-horizon aspects of the UIP puzzles. Recognizing that the

calibrated parameters in Table 1 do not specifically target any empirical moments associ-

ated with UIP violations, our analyses thus provide external validity. This underscores the

capability of the calibrated model to explain both the qualitative and quantitative aspects

of expectation formations related to the UIP puzzles.

We begin by formally describing the RE-UIP condition and its implications.

5.1 RE-UIP Condition and Its Implications

The asset pricing equations of the real domestic currency bond and the real foreign currency

bond in the RE framework (corresponding to (2.6)-(2.9) in the FH model) are:

u′ (Ct) = βEt [(1 + it)u
′(Ct+1)/Πt+1] , (5.1)

u′ (Ct) = βEt

[
(1 + i∗t )u

′(Ct+1)(Qt+1/Qt)(1/Π
∗
t+1)

]
. (5.2)
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Combining (5.1) and (5.2) yields

Et

[
u′(Ct+1)

u′ (Ct)

(
1 + it
Πt+1

− 1 + i∗t
Π∗

t+1

Qt+1

Qt

)]
= 0. (5.3)

The log-linear approximation of equation (5.3) around the nonstochastic steady state

gives

Etq̂t+1 − q̂t = r̂t − r̂∗t , (5.4)

where r̂t ≡ ı̂t − Etπt+1 and r̂∗t ≡ ı̂∗t − Etπ
∗
t+1. Equation (5.4) is the RE-UIP condition in real

form. This implies that when the real interest rate differential between domestic and foreign

currency bonds is positive (that is, r̂t − r̂∗t > 0), future real depreciation Etq̂t+1 − q̂t > 0

should result of the same magnitude.16

We define the ex-post real excess return on foreign currency bonds from period t to t+1

as follows:

∆t+1 ≡ q̂t+1 − q̂t + r̂∗t − r̂t. (5.5)

Then, the UIP condition (5.4) under RE implies

Et∆t+1 = 0, (5.6)

indicating that the ex-post excess return ∆t+1 should be unpredictable with the information

set at time t.

Furthermore, by extending equation (5.6) to time t+ k and applying the law of iterated

expectation (LIE), one can obtain a corollary of the unpredictability result:

Et∆t+k = 0, (5.7)

where ∆t+k ≡ q̂t+k− q̂t+k−1+ r̂
∗
t+k−1− r̂t+k−1 is the ex-post one-period excess return between

time t+ k− 1 and t+ k. Thus, the RE-UIP condition implies that the ex-post excess return

for any future time horizon t+k is unpredictable based on the information set at time t. We

regard this feature of unpredictability as the time-horizon aspect of the RE-UIP condition.

In addition, the RE-UIP condition also exhibits another feature from the perspective

of term structure. Iterating the expectation term of real exchange rate Etq̂t+1 forward in

16The literature also often uses the nominal version of the RE-UIP condition. Choosing either nominal or
real version is not consequential for our results. We use the real version simply to facilitate the discussion
with Section 4. Also, note that the RE-UIP condition (5.4) is a simple specification and it can be extended
to more complex forms, for example, by considering a stationary trend in the real exchange rate dynamics.
For the sake of parsimony, we use the simplest specification to emphasize the role of behavioral biases from
the FH models in addressing the UIP puzzles that we focus on in an essential modeling environment.
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equation (5.4) by the LIE yields

q̂t =
∞∑
k=0

Et[r̂
∗
t+k − r̂t+k] + lim

T→∞
Etq̂t+T .

Following Gaĺı (2020), we decompose the sum of expectations into the short-term and long-

term:

q̂t = DS
t (M) +DL

t (M) + lim
T→∞

Etq̂t+T , (5.8)

where M is the threshold period for the short-term and the long-term summations, and

DS
t (M) ≡

M−1∑
k=0

Et[r̂
∗
t+k − r̂t+k], DL

t (M) ≡
∞∑

k=M

Et[r̂
∗
t+k − r̂t+k],

are defined as the sum of expectations on the short- and long-term real interest rate differ-

ential, respectively.17 Since the real exchange rate is a stationary variable, one can assume

that limT→∞ Etq̂t+T = 0. Then, (5.8) indicates that the RE-UIP condition predicts the hori-

zon invariance for the impact of the forecast of the real interest rate differential on the real

exchange rate. That is, the forecast of the short-term interest rate differential DS
t (M) and

that of the long-term interest rate differential DL
t (M) have identical effects on the current

real exchange rate with the same weight of one. We regard this feature of horizon invariance

as the forecast-horizon aspect of the RE-UIP condition.

5.2 Excess Return Predictability and the Predictability Reversal

A challenge to the RE-UIP condition (5.4) is a predictable excess return observed in the

data. Early studies, such as Fama (1984) and Eichenbaum and Evans (1995), show a short-

run positive predictable excess return of currency bonds that bear higher interest rates.

Recent studies (e.g., Bacchetta and van Wincoop, 2010; Engel, 2016; Valchev, 2020) further

document that the movements of the predictable excess return are more complicated over the

time horizon: the excess return is positive in the short run, whereas it reverses to negative

in the medium to long run. Thus, the UIP violations have time horizon variability.

Within both the FH and RE models, the ex-post one-period excess return on foreign

currency bonds between time t and t + 1 is, by construction, equivalent to the one-period-

17The definition of the real interest rate differential in Gaĺı (2020) is represented as r̂∗ − r̂. Thus, in the
discussion regarding the forecast horizon invariance, we follow Gaĺı (2020)’s definition to maintain consis-
tency, whereas in the rest of the paper, we adopt the common practice by defining the real interest rate
differential as r̂ − r̂∗.
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ahead forecast error of the real exchange rate:

∆t+1 ≡ q̂t+1 − q̂t + r̂∗t − r̂t = q̂t+1 − Êtqt+1,

where the symbol Ê is intended to encompass both FH and RE expectation operators. This

formulation intentionally disregards other potential factors in excess return predictability

driven by time-varying risk or liquidity premia. Thus, our model isolates the expectation

channel from other factors and this formulation is also consistent with the empirical finding

that emphasizes the importance of subjective forecast errors in explaining the UIP deviations

in advanced countries (e.g., Froot and Frankel, 1989; Chinn and Frankel, 2019; Kalemli-Özcan

and Varela, 2022; Candian and De Leo, 2023).

Following the empirical specification in the literature, we run the regression model using

the simulated data from the RE and FH models as follows:

∆t+k = β0 + βk(r̂t − r̂∗t ) + ξt+k, (5.9)

where the coefficient βk captures the predictable excess return at time t for future horizon

k. A negative βk suggests that the foreign currency bonds yield a positive real excess return

when the foreign bonds carry a higher real interest rate (r̂∗t > r̂t). Conversely, a positive βk

implies the opposite.

The left panel in Figure 3 illustrates the estimates of excess return coefficients, β̂k, from

the two models, together with the empirical estimates obtained from the actual data.18 In the

RE model, the confidence intervals for the estimates nearly always contain zero, highlighting

the unpredictability of excess returns as implied by the RE-UIP condition. In contrast, the

FH model demonstrates that excess returns are predictable. It initially exhibits a negative β̂k

for the first five horizons, which then reverses to positive, peaks at time horizon k = 21, and

diminishes thereafter. Thus, the FH model predicts that the foreign currency bond yields

a short-run positive real excess return when the foreign bond bears a higher real interest

rate. Meanwhile, it predicts a negative excess return in the medium- and long-run time

horizons. Furthermore, one can observe that the estimates from the simulated FH model

match the overall dynamics of the empirical estimates reasonably well, both qualitatively

and quantitatively. Considering that we do not specifically target the UIP deviation in

calibrating the FH model, its successful matching serves as evidence of external validity.

18The empirical estimates are conducted using real exchange rates and real interest rate differentials
between Canada and the U.S. To construct the real interest rates in the data, we consider ex-ante real interest
rates based on AR(1) fitted forecasted inflation. We also consider alternative approaches of constructing real
interest rates based on current and ex-post inflation and find that the results are robust. For details on the
construction of the data and further results, see Appendix J.1.
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Figure 3: Excess Return Predictability across Time Horizons: Regression Coefficients
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Notes: This figure presents the estimates of excess return coefficients, β̂k, across time horizon k. The bold
lines represent point estimates and the surrounding thin dotted lines represent 95% confidence intervals. In
the left panel, “FH” refers to the benchmark finite planning horizon model and “RE” refers to the rational
expectation model. “Data” refers to the point estimates from the regressions using actual data, in which the
ex-ante real interest rates are calculated based on AR(1) fitted forecasted inflation. The models in the left
panel use the series generated by the two shocks. The right panel presents the regression coefficients in the
FH model, using simulated data series conditional on the foreign interest rate shock (µ) and the domestic
productivity shock (a), respectively. All estimates from the models are obtained using samples from 100
simulations with each spanning 150 quarters (15,000 observations in total).

Whereas the left panel of Figure 3 shows the unconditional profile of excess return pre-

dictability, the right panel of Figure 3 displays the β̂k estimates, each conditioned on a

distinct shock. Consistent with Figure 1 and the discussion in Section 4.3, the real exchange

rate forecast errors in the FH model respond in qualitatively opposite ways to the two shocks,

mirroring the behavior of the estimated β̂k. Despite both shocks indicating opposite excess

return profiles in the FH model, the foreign interest rate shock dominates the unconditional

profile of excess return.19

The sign reversal of forecast errors in the FH model, induced by the finite planning horizon

and value function learning, introduces a novel explanation for the reversal of excess return

predictability. It enriches existing theoretical explanations in the literature that attribute

this phenomenon to infrequent portfolio decisions (Bacchetta and van Wincoop, 2010), con-

venience yields (Valchev, 2020), or over-extrapolation on misperceived shocks (Candian and

19The opposite conditional profiles depend on the length of the planning horizon. As the planning horizon
becomes shorter (h ≤ 4), whereas the conditional profile of β̂k for the foreign interest rate shock remains
qualitatively similar, the conditional profile for the domestic productivity shock flips its sign. Furthermore,
in this case, the foreign interest rate shock becomes more quantitatively dominating compared with the
productivity shock. So, recognizing that we adopt a conservative calibration of the length of the planning
horizon, our findings are even stronger if the horizon is shorter.
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De Leo, 2023).

5.3 Breakdown of the Forecast Horizon Invariance

Another challenge to the RE-UIP condition is the empirical breakdown of the forecast horizon

invariance. Consider the following regression specification based on equation (5.8):

q̂t = γ0 + γSD
s
t (M) + γLD

L
t (M) + ζt, (5.10)

where γ0, γS, and γL are regression coefficients and ζt is an orthogonal error term. If the

forecast horizon invariance from the RE-UIP condition holds, the regression model should

yield estimates of γ̂S = 1 and γ̂L = 1.

Gaĺı (2020) tests specification (5.10) using the data of government zero-coupon bond

yields and inflation swaps at different maturities from the U.K. and Germany, paired with

the U.S. He finds robust results on γ̂S > 1 and γ̂L < 1 for those countries.20 The empirical

findings imply that the current real exchange rate overreacts to the forecast of the short-

term interest rate differential but underreacts to the forecast of the long-term interest rate

differential. Thus, the UIP violations exhibit forecast horizon variability, and Gaĺı (2020)

refers to this phenomenon as the “forward guidance exchange rate puzzle.”

We conduct the same exercise using the series generated by the FH model and show

that the FH model can address the short-term overreaction and the long-term underreaction

of the real exchange rate. For a given threshold horizon M between the short-term and

the long-term, together with the given planning horizon h, we construct the expected real

interest rate differentials under limited foresight as

DS
t (M) =

M−1∑
k=0

Eh
t [r̂

∗
t+k − r̂t+k], DL

t (M) =
h∑

k=M

Eh
t [r̂

∗
t+k − r̂t+k], (5.11)

where 0 < M ≤ h; see the detailed construction procedure in Appendix K.

We run the regression for the empirical specification (5.10), using the constructed vari-

ables from the FH model. Figure 4 shows the estimates of the reaction coefficients γ̂S and

γ̂L under the threshold 1 ≤ M ≤ 8.21 We have also labeled the corresponding empirical

estimates of Canadian data (paired with the U.S. data) at the threshold M = 4 in Figure 4

20Gaĺı (2020) documents that this phenomenon is empirically robust after controlling a time trend, or
taking first-order differences, or controlling term premia.

21Figure K.9 in Appendix K shows the conditional estimates of the reaction coefficients γ̂S and γ̂L, each
conditioned on a distinct shock. The foreign interest rate shock primarily drives the breakdown of the forecast
horizon invariance in the unconditional profile shown in Figure 4, whereas the domestic productivity shock
plays a lesser role.
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Figure 4: Reaction of Real Exchange Rate to Expected Interest Rate Differentials
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Notes: This figure shows the (unconditional) estimates of γ̂S and γ̂L in specification (5.10), representing the
reaction of the real exchange rate to the forecasts of short- and long-term real interest rate differentials in
the benchmark FH model. The simulated data series are generated by the two shocks and the estimates
are obtained using samples from 100 simulations with each spanning 150 quarters (15,000 observations in
total). The black cross- and circle-markers represent the empirically estimated γ̂S and γ̂L using actual data,
respectively.

for illustration purposes.22

Figure 4 shows that, across all the threshold M , γ̂S > 1 and γ̂L < 1. At the threshold

M = 4, the estimates from the model simulations are close to the empirical estimates from the

actual data, even though they are not targeted. As the threshold M increases, the reaction

coefficients decrease monotonically, which is also consistent with the empirical estimates

shown in Appendix J.2. Thus, the FH model predicts the breakdown of the forecast horizon

invariance reasonably well with the actual data, which also aligns with the empirical findings

for other countries documented in Gaĺı (2020).

In contrast to the FH model, the simulated series consistently yields γ̂S = γ̂L = 1 in both

the RE and FH-NG models. Hence, the value function learning in the FH model plays a

pivotal role in the breakdown of the forecast horizon invariance in Figure 4. What are the

mechanisms at play here? First, as shown in Proposition 1, the LIE does not apply in the FH

model with value function learning. This variation disrupts the forecast horizon invariance

(5.8), a result based on the LIE. Indeed, an alternative interpretation of the empirical finding

in Gaĺı (2020) is that it rejects the LIE.

22As considered in Gaĺı (2020), we also obtain empirical estimates after controlling a time trend or taking
first-order differences. The results show a similar pattern. For more details, see Appendix J.2.
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Second, the intuition of why γ̂S > γ̂L comes from the channel of increasing marginal

impact of value function along the planning horizons. Decision-makers form expectations

at time t for future period t + k (k ≤ h) by assuming that the aggregate conditions are

determined by agents with a remaining planning horizon of h− k. As the date approaches

the end of planning horizon (that is, k increases), the marginal impact of the value function

on agents’ forecasted variables becomes stronger. Thus, its marginal impact is greater on

DL
t than on DS

t and is the smallest on q̂t. As a result, the response of q̂t to D
S
t is larger than

its response to DL
t , that is, γ̂S > γ̂L.

To see the marginal impact of value function explicitly, consider the decision-makers’

perception of the counterfactual interest rate differential at the end of their planning horizon

(h = 8). The real interest rate differential at date t+ 8 is governed by

r̂∗,0t+8|t − r̂0t+8|t = q̂0t+8|t + σ(ν∗t − νt), (5.12)

where the value function term ν∗t − νt directly influences the counterfactual real interest

rate differential at that date.23 Intuitively, when decision-makers perceive a higher relative

marginal value of holding foreign bonds over domestic bonds (that is, a drop in ν∗t − νt),

it leads to an increase in relative foreign bond prices and thus a corresponding decrease in

the counterfactual interest rate differential r̂∗,0t+8|t − r̂0t+8|t. As agents make forecasts for more

recent dates, the marginal impact of the value function becomes weaker.

Figure 5 visualizes this insight by showing the impulse response of the related variables in

the FH model to the two structural shocks. Regardless of the type of shock, the figure sug-

gests the following common patterns. The left plot of each panel shows that q̂t ̸= DS
t +DL

t ,

reflecting the breakdown of LIE. It is also worth noting that even though νt and ν∗t show

opposite dynamics for each shock, as displayed in Figure 1, their gaps ν∗t −νt display a move-

ment of similar shapes. The right plot shows the forecasts of real interest rate differentials

r̂∗,h−k
t+k|t − r̂h−k

t+k|t at different forecast horizons k = 2, 4, 6, and 8, respectively. One can observe

that as k increases, the dynamics of the forecasts become more similar to that of ν∗t − νt.

This is especially pronounced when k = 8, in line with equation (5.12). On the other hand,

the forecasts with smaller k show more similarity to that of q̂t, being further away from

ν∗t − νt. Thus, the marginal impact of value function ν∗t − νt is larger on D
L
t than DS

t and is

the smallest on q̂t, causing the asymmetric reaction coefficients γ̂S > γ̂L.

23See Appendix F for the derivation of (5.12).
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Figure 5: Breakdown of the Forecast Horizon Invariance: Intuition

(a) Foreign Interest Rate Shock
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(b) Domestic Productivity Shock
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Notes: This figure shows impulse responses to a one standard deviation foreign interest rate shock (panel
(a)) and a one standard deviation domestic productivity shock (panel (b)). In each panel, the left plot
presents the real exchange rate (q̂t), the sum of the forecasts for the short- and long-term real interest rate
differentials (DS

t + DL
t ), and the difference between the marginal values of holding foreign and domestic

bonds in value function (ν∗t − νt). The right plot presents the forecast of the real interest rate differential,

r̂∗,h−k
t+k|t − r̂h−k

t+k|t, at different horizons k ∈ {2, 4, 6, 8}. The planning horizon h is set to 8 quarters and the
x-axis is time in quarters.

6 Robustness

We evaluate the robustness of the main results in Section 5 by taking into account alternative

lengths of planning horizon h and by extending the model to incorporate agents with het-

erogeneous planning horizons. In these robustness checks, we set all structural parameters

the same as in Section 4.3 except for the parameter of interest. The main results remain
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broadly robust. In addition, whereas the firm’s value function learning is muted in Sections

4 and 5 (that is, γν̃ = 0), we also vary the firm’s learning gain parameter γṽ and confirm

that the firm’s learning behavior has negligible effects on our findings. This is consistent

with intuition in the sense that the asset-pricing condition for the exchange rate and interest

rate differentials originates from households’ optimizations rather than those of firms. Thus,

households’ learning parameter plays an important role in explaining those UIP violations,

whereas firms’ learning parameter does not. To save space, we leave the details to Appendix

L.

7 Concluding Remarks

In this paper, we reconsider the conclusions from the RE assumption in a standard SOE-

NK model by assuming that decision-makers are subject to limited foresight when making

decisions. Our analysis indicates that the dynamics of the model’s equilibrium are signifi-

cantly influenced by both the degree of decision-makers’ foresight and how they update their

value functions. The FH model generates dynamic overshooting of the forecast errors of the

real exchange rate across time horizons, along with inherent differences in the formation of

short-term and long-term expectations.

Our model provides an intrinsic and comprehensive micro-foundation for those renowned

UIP puzzles that feature time- and forecast-horizon variability. We show that our model

can explain (i) the time-varying excess return predictability and its reversal of sign over

longer time horizons and (ii) the breakdown of the forecast horizon invariance, marked

by the diverse responses of the real exchange rate to the term structure of expected real

interest rate differentials. Our model’s predictions are both qualitatively and quantitatively

consistent with empirical estimates.

While our paper concentrates on the model’s capability to address the UIP puzzles, the

standard general equilibrium feature of our model leaves room for extension and application

in more general aspects. Natural extensions could involve the incorporation of additional

frictions and wedges, along with more endogenous variables such as capital and investment.

It may also be beneficial to estimate the quantitative model in line with dynamic moments

from a more comprehensive data set, including financial and expectation-related elements.

We leave these possibilities for future research.
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Expectations and the UIP Puzzles when Foresight is Limited

Seunghoon Na and Yinxi Xie

A Steady-State Value Function of Households

The steady-state value function solves the following Bellman equation:

v(B,B∗) = max
C,B′,B∗′

{u(C) + v(B′,B∗′)}

s.t.

βB′ + β
Q̄B∗′Π̄

Π̄∗ = B +
Q̄B∗Π̄

Π̄∗ + (S̄Ȳ − C)Π̄.

The first-order conditions yield

v1(B′,B∗′) =
βu′(C)

Π̄
, v2(B′,B∗′) =

βQ̄u′(C)

Π̄∗ ,

v1(B,B∗) =
u′(C)

Π̄
, v2(B,B∗) =

Q̄u′(C)

Π̄∗ ,

where the last two equations come from the envelope theorem.

It can be easily verified that the following solution satisfies the above system of first-order

conditions, which is given by

v(B,B∗) = (1− β)−1u

(
(1− β)B

Π̄
+

(1− β)Q̄B∗

Π̄∗ + S̄Ȳ
)
.

B Log-Linearization of the F.O.C.s of Households in

the Ending Period of Forward Planning

We now show the steps of log-linearizing equations (2.8) and (2.9) under the assumption

that households use a steady-state value function in their forward planning. First, taking

logs of (2.8) and conducting first-order Taylor expansion at the steady state with notation

τ = t+ h yields

lnu′(C0
τ ) = ln β + ln(1 + i0τ ) + ln v1(B0

τ+1,B
∗,0
τ+1)
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⇒ u′′(C̄)

u′(C̄)
(C0

τ − C̄) =
1 + i0τ − (1 + ī)

1 + ī
+
v1,1(B̄, B̄∗)

v1(B̄, B̄∗)
(B0

τ+1 − B̄) + v1,2(B̄, B̄∗)

v1(B̄, B̄∗)
(B∗,0

τ+1 − B̄∗)

⇒ u′′(C̄)C̄

u′(C̄)
ĉ0τ = ı̂0τ +

u′′(C̄)C̄

u′(C̄)

(1− β)

Π̄

B0
τ+1 − B̄
C̄

+
u′′(C̄)C̄

u′(C̄)

(1− β)Q̄

Π̄∗
B∗,0
τ+1 − B̄∗

C̄
. (B.1)

Given the definition of σ−1 ≡ − u′(C̄)

u′′(C̄)C̄
, (B.1) can be rewritten as

ĉ0τ = −σ−1ı̂0τ + (1− β)b̂0τ+1 + (1− β)b̂∗,0τ+1,

which gives (2.13).

Similarly, log-linearizing equation (2.9) yields

lnu′(C0
τ ) = ln β + ln(1 + i∗,0τ ) + ln v2(B0

τ+1,B
∗,0
τ+1)− lnQ0

τ

⇒ u′′(C̄)

u′(C̄)
(C0

τ−C̄) =
1 + i∗,0τ − (1 + ī∗)

1 + ī∗
+
v2,1(B̄, B̄∗)

v2(B̄, B̄∗)
(B0

τ+1−B̄)+v2,2(B̄, B̄
∗)

v2(B̄, B̄∗)
(B∗,0

τ+1−B̄∗)−Q
0
τ − Q̄

Q̄

⇒ u′′(C̄)C̄

u′(C̄)
ĉ0τ = ı̂0τ +

u′′(C̄)C̄

u′(C̄)

(1− β)

Π̄

B0
τ+1 − B̄
C̄

+
u′′(C̄)C̄

u′(C̄)

(1− β)Q̄

Π̄∗
B∗,0
τ+1 − B̄∗

C̄
− q0τ .

After plugging the definition of σ, we have

ĉ0τ = −σ−1ı̂∗,0τ + (1− β)b̂0τ+1 + (1− β)b̂∗,0τ+1 + σ−1q̂0τ ,

which gives (2.14).

C Firm Profit Function and Optimal Pricing Solution

In this section, we first show the explicit expression for profit function H(·) of the firms in

each period and then derive the firms’ optimal pricing decision given by (2.16). The period

profit function of firms is the same regardless of whether they are infinitely forward-looking

or have limited foresight. We therefore derive the profit function by considering the case of

the standard RE framework with infinite planning horizons.

In the RE framework, a firm f that is able to reoptimize its goods price sets P f
H,t to

maximize

max
P f
H,t

Et

∞∑
k=0

(βθ)k

[(
Ct+k

Ct

)−σ (
Pt

Pt+k

)
Yt+k(j)

(
P f
H,tΠ̄

k
H −MCt+k

)]
, (C.1)
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subject to the demand constraint

Yt+k(j) ≤

(
P f
H,tΠ̄

k
H

PH,t+k

)−ϵ(
CH,t+k +

∫ 1

0

C l
H,t+kdl

)
︸ ︷︷ ︸

≡Yt+k

.

We rewrite the firm’s problem (C.1) as follows:

max
P f
H,t

Et

∞∑
k=0

(βθ)k

[
C−σ

t+k

(
P f
H,tΠ̄

k
H

PH,t+k

)−ϵ

Yt+k
PH,t+k

Pt+k

(
P f
H,tΠ̄

k
H

PH,t+k

− MCt+k

PH,t+k

)]
, (C.2)

where we have applied the demand constraint and dropped Ct and Pt (note that they are

taken as given by firm f at time t, and dropping them does not change the solution to the

optimality problem).

Now, let us define

λt+k ≡ C−σ
t+k, rfH,t+k ≡

P f
H,tΠ̄

k
H

PH,t+k

,

St+k ≡
PH,t+k

Pt+k

, MCt+k ≡
MCt+k

PH,t+k

.

Then, the optimality problem (C.2) can be summarized as follows:

max
P f
H,t

Et

∞∑
k=0

(βθ)k
[
λt+kH(rfH,t+k;St+k,Zt+k)

]
, (C.3)

where H(rfH,t+k;St+k,Zt+k) is the function of real profit in period t+ k; that is,

H(rfH,t+k;St+k,Zt+k) =
(
rfH,t+k

)−ϵ

Yt+kSt+k

(
rfH,t+k −MCt+k

)
, (C.4)

and Zt+k is the vector of all real state variables at time t + k. In the steady state with

rfH = S = 1, the derivative of function H(·) becomes

H ′(1; 1, Z̄) = Ȳ (1− ϵ+ ϵ · MC) = 0 (C.5)

by noting that the real marginal cost in the steady state is MC = (ϵ− 1)/ϵ.

Now, we show that the firms’ optimal pricing decision is given by (2.16). We assume

that the firms use a value function to approximate discounted future profits beyond its

planning horizon that is learned from the nonstochastic steady state given by (2.2). Then,
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the first-order condition of maximizing the firm’s objective function (2.15) is

Ef
t

[
t+k∑
τ=t

(βθ)τ−tλτH1

(
P f
H,tΠ̄

τ−t
H

PH,τ
;Sτ ,Zτ

)
PH,tΠ̄

τ−t
H

PH,τ
+

(βθ)k+1

1− βθ
λ̄H1

(
P f
H,tΠ̄

k
H

PH,t+k
; S̄, Z̄

)
PH,tΠ̄

k
H

PH,t+k

]
= 0.

(C.6)

Log-linearizing (C.6) around the steady state yields

Ef
t

{
t+k∑
τ=t

(βθ)τ−t

[
pfH,t −

τ∑
s=t

πH,s −mτ

]
+

(βθ)k+1

1− βθ

[
pfH,t −

t+k∑
s=t

πH,s

]}
= 0, (C.7)

where

pfH,t ≡ log

(
PH,t(f)

PH,t−1Π̄H

)
, πH,t ≡ log

(
ΠH,t

Π̄H

)
,

and

mt ≡ −H
′(1; 1,Zt)

H ′′(1; 1, Z̄)
=
Yt
Ȳ

(
ϵ

ϵ− 1
mct − 1

)
. (C.8)

We define

m̂t ≡ mt − m̄, m̂ct ≡ log

(
MCt

MC

)
,

where m̄ is the value of mt in the nonstochastic steady state.

By noting that m̄ = Ȳ
Ȳ

(
ϵ

ϵ−1
MC − 1

)
= 0, we have m̂t = mt. Then, the log-linear

approximation of (C.8) yields

mt = m̂ct.

Thus, by replacing mt with m̂ct in (C.6) and reorganizing its expression, we have the

firms’ optimal pricing pfH,t characterized by (2.16).

D International Goods-Market Clearing Condition

The law of one price holds, implying EtP ∗
H,t = PH,t. With the assumption that P ∗

t = 1,

combining equations (2.27) and (2.28) yields

Yt = (1− α)

(
PH,t

Pt

)−η

Ct +

(
PH,t

Et

)−γ

C∗
t

= (1− α)

(
PH,t

Pt

)−η

Ct +

(
PH,t

Pt

)−γ (
Pt

Et

)−γ

C∗
t

= (1− α)S−η
t Ct + S−γ

t Qγ
tC

∗
t . (D.1)
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Log-linearizing (D.1) gives

Ȳ ŷt = (1− α)S̄−ηC̄ (ĉt + αηŝt) + S̄−γQ̄γC̄∗ (αγŝt + γq̂t + ĉ∗t ) , (D.2)

where we have utilized Ŝt = −αŝt. By further utilizing the relation ŝt = q̂t/(1 − α) and

assuming ĉ∗t = 0 (no foreign demand shock), (D.2) can be rewritten into

ŷt = ϑycĉt + ϑysŝt,

where ϑyc ≡ (1−α)S−ηC̄/Ȳ and ϑys ≡ [αη(1−α)S̄−ηC̄+γS̄−γQ̄γC̄∗]/Ȳ . This gives equation

(2.29).

Note, in Section 4.2, we assume a symmetric steady state between the home country and

the rest of the world with balanced trade, which implies Ȳ = C̄, S̄ = Q̄ = 1, and C̄∗ = αC̄.

In this case, ϑyc = (1− α) and ϑys = α[η(1− α) + γ].

E Proof of the Mean-Reverting Processes of χt and ζt

First, we log-linearize the resource constraint (2.5) as follows:

ĉt + β(b̂t+1 + b̂∗t+1)− βϑ′
1ı̂t + βϑ1(q̂t − r̂∗t ) = b̂t − ϑ′

1πt + b̂∗t + ϑ1q̂t + ϑ2(ŷt − αŝt),

where ϑ′
1 ≡ B̄

Π̄C̄
. Here we have used the relation Ŝt = −αŝt, π∗

t = 0, hence ı̂∗t = r̂∗t , together

with the steady-state relationship Π̄∗ = 1 and β−1 = (1 + ī)/Π̄ = (1 + ī∗)/Π̄∗. It can be

rewritten as

b̂t + b̂∗t = β(b̂t+1 + b̂∗t+1) + [ĉt − βϑ′
1ı̂t + βϑ1(q̂t − r̂∗t ) + ϑ′

1πt − ϑ1q̂t − ϑ2(ŷt − αŝt)] . (E.1)

In the FH model, we can rewrite equation (E.1) at any date τ as the version of interest:

b̂j+1
τ + b̂∗j+1

τ = β(b̂jτ+1 + b̂∗,jτ+1) +
[
ĉjτ − βϑ′

1ı̂
j
τ + βϑ1(q̂

j
τ − r̂∗,jτ ) + ϑ′

1π
j
τ − ϑ1q̂

j
τ − ϑ2(ŷ

j
τ − αŝjτ )

]
,

(E.2)

where j is the (counterfactual) planning horizon at date τ .

Let time t be the point at which forward planning occurs. Then, iterating (E.2) forward
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to the end of the planning horizon yields

b̂h+1
t + b̂∗,h+1

t

= Et

h∑
j=0

βj
[
ĉh−j
t+j − βϑ′

1ı̂
h−j
t+j + βϑ1(q̂

h−j
t+j − r̂∗,h−j

t+j ) + ϑ′
1π

h−j
t+j − ϑ1q̂

h−j
t+j − ϑ2(ŷ

h−j
t+j − αŝh−j

t+j )
]

+ βh+1Et(b̂
0
t+h+1 + b̂∗,0t+h+1), (E.3)

where b̂h+1
t and b̂∗,h+1

t are the household’s initial financial position in period t.

We parameterize the log-linear approximations of v1(B,B∗) and v2(B,B∗) by

log(v1,t(B,B∗)/v∗1(B̄, B̄∗)) = −σ(νt + χtb̂+ ξtb̂
∗),

log(v2,t(B,B∗)/v∗2(B̄, B̄∗)) = −σ(ν∗t + χ′
tb̂+ ξ′tb̂

∗).

Then the first-order conditions of a household’s optimality problem at the end of its planning

horizon (2.8) and (2.9) can be log-linearized as

ĉ0t+k = −σ−1ı̂0t+k + νt + χtb̂
0
t+k+1 + ξtb̂

∗,0
t+k+1,

ĉ0t+k = −σ−1ı̂∗,0t+k + ν∗t + χ′
tb̂

0
t+k+1 + ξ′tb̂

∗,0
t+k+1 + σ−1q̂0t+k,

which implies χt = χ′
t and ξt = ξ′t.

In the standard dynamic programming problem under the RE assumption in the bench-

mark model, the household’s holdings of domestic bonds b̂ and foreign bonds b̂∗ (in terms

of the domestic currency) are perfect substitutes in their value functions. Since the bond

holdings b̂ and b̂∗ are also perfect substitutes in the budget constraint of the household in

the finite planning problem, we have χt = ξt. Thus, the Euler equation at the end of the

planning horizon reduces to

b̃0t+h+1 ≡ b̂0t+h+1 + b̂∗,0t+h+1 = χ−1
t (ĉ0t+h − νt + σ−1ı̂0t+h), (E.4)

where b̃ represents the total holdings of bond positions.

Similar to Woodford (2019), by the household’s optimal expenditure conditions (2.11)

and (2.13), together with (E.3), we have

ĉht = gk(χt)b̃
h+1
t + rest,
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where “rest” indicates the terms not including total asset position b̃h+1
t and

gk(χt) ≡
χt

βk+1 +
(

1−βh+1

1−β

)
χt

.

Thus, we have χest
t = gk(χt). Because the evolution process of χt follows a constant-gain

learning rule; that is,

χt+1 = γgk(χt) + (1− γ)χt,

χt monotonically converges to the fixed point 1 − β. Similarly, since χt = ξt for any t, the

same is true for the evolution process of ξt.

F Equilibrium Conditions of the Forward Planning

This section summarizes the equilibrium conditions in the finite planning exercise calculated

in period t. Let yjτ |t be the value of ŷτ that is predicted at date τ as a result of aggregation

of decisions made by agents with (counterfactual) planning horizon j = h + t − τ , which

is calculated at date t by agents with planning horizon h. It is a function of the state

{q̂t−1, b̂
∗
t , νt, ν

∗
t , ν̃t} and exogenous shocks {at, µt} in period t. Then, the actual aggregate

output in period t is given by ŷt = ŷht|t. Similarly, we define other variables in the finite plan-

ning exercise with the same notation. The additional subscript |t matters because different

value functions are used in finite planning in different periods. All the exogenous shocks are

assumed to follow an AR(1) process.

In the forward planning exercise by the agents in period t with planning horizon h, at
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any date t ≤ τ < t+ h− 1, we have

ĉh+t−τ
τ |t = Eτ ĉ

h+t−τ−1
τ+1|t − 1

σ
(̂ıh+t−τ

τ |t − Eτπ
h+t−τ−1
τ+1|t ), (F.1)

q̂h+t−τ
τ |t = Eτ q̂

h+t−τ−1
τ+1|t + r̂∗,h+t−τ

τ |t − (̂ıh+t−τ
τ |t − Eτπ

h+t−τ−1
τ+1|t ), (F.2)

ε̂h+t−τ
τ |t = q̂h+t−τ

τ |t − q̂h+t−τ+1
τ−1|t + πh+t−τ

τ |t , (F.3)

ŝh+t−τ
τ |t =

q̂h+t−τ
τ |t

1− α
, (F.4)

πh+t−τ
H,τ |t = κm̂ch+t−τ

τ |t + βEτπ
h+t−τ−1
H,τ+1|t , (F.5)

m̂ch+t−τ
τ |t = (σ + φϑyc)ĉ

h+t−τ
τ |t + (α + φϑys)ŝ

h+t−τ
τ |t − (1 + φ)aτ , (F.6)

ı̂h+t−τ
τ |t = ϕππ

h+t−τ
τ |t , (F.7)

ŷh+t−τ
τ |t = ϑysŝ

h+t−τ
τ |t + ϑycĉ

h+t−τ
τ |t , (F.8)

πh+t−τ
τ |t = (1− α)πh+t−τ

H,τ |t + αε̂h+t−τ
τ |t , (F.9)

r̂∗,h+t−τ
τ |t = ϕbb̂

h+t−τ
τ+1|t + µτ , (F.10)

b̂∗,h+t−τ
τ+1|t = β−1(b̂∗,h+t+1−τ

τ |t + ϑ1q̂
h+t−τ
τ |t − ϑ2αŝ

h+t−τ
τ |t + ϑ2ŷ

h+t−τ
τ |t − ĉh+t−τ

τ |t )

− ϑ1q̂
h+t−τ
τ |t + ϑ1r̂

∗,h+t−τ
τ |t , (F.11)

where q̂h+1
t−1|t is simply a notational simplification defined by q̂h+1

t−1|t ≡ q̂t−1 and similarly b̂h+1
t|t ≡

b̂∗t . Here ϑyc = (1− α) S̄
−ηC̄
Ȳ

, ϑys = α[γ + η(1− α)] S̄
−ηC̄
Ȳ

, ϑ1 =
B̄∗Q̄
C̄

, and ϑ2 =
S̄Ȳ
C̄
.

At the end of finite planning date τ = t+ h, we have

ĉ0τ |t = − 1

σ
ı̂0τ |t + (1− β)b̂∗,0τ+1|t + νt, (F.12)

q̂0τ |t = r̂∗,0τ |t − ı̂0τ |t + σ(νt − ν∗t ), (F.13)

ε̂0τ |t = q̂0τ |t − q̂1τ−1|t + π0
τ |t, (F.14)

ŝ0τ |t =
q̂0τ |t

1− α
, (F.15)

π0
H,τ |t = κm̂c0τ |t + (1− θ)βν̃t, (F.16)

m̂c0τ |t = (σ + φϑyc)ĉ
0
τ |t + (α + φϑys)ŝ

0
τ |t − (1 + φ)aτ , (F.17)

ı̂0τ |t = ϕππ
0
τ |t, (F.18)

ŷ0τ |t = ϑysŝ
0
τ |t + ϑycĉ

0
τ |t, (F.19)

π0
τ |t = (1− α)π0

H,τ |t + αε̂0τ |t, (F.20)

r̂∗,0τ |t = ϕbb̂
0
τ+1|t + µτ , (F.21)

b̂∗,0τ+1|t = β−1(b̂∗,1τ |t + ϑ1q̂
0
τ |t − ϑ2αŝ

0
τ |t + ϑ2ŷ

0
τ |t − ĉ0τ |t)− ϑ1q̂

0
τ |t + ϑ1r̂

∗,0
τ |t . (F.22)
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The above system of equations consists of a finite number of equations as a function of

state variables {q̂t−1, b̂
∗
t , νt, ν

∗
t , ν̃t} and exogenous shocks {at, µt}. Thus, we can solve for all

endogenous variables {ĉh+t−τ
τ |t , ŷh+t−τ

τ |t , ı̂h+t−τ
τ |t , r̂∗,h+t−τ

τ |t , πh+t−τ
H,τ |t , π

h+t−τ
τ |t , q̂h+t−τ

τ |t , ŝh+t−τ
τ |t , ε̂h+t−τ

τ |t ,

b̂∗,h+t−τ
τ+1|t }t+h

τ=t with a unique solution. See Appendix G for the detailed solution method.

From period t to period t+ 1, the value functions evolve over time; that is,

νt+1 = γvν
est
t + (1− γv)νt, (F.23)

ν̃t+1 = γṽν̃
est
t + (1− γṽ)ν̃t, (F.24)

ν∗t+1 = γvν
∗,est
t + (1− γv)ν

∗
t , (F.25)

where

νestt = ĉt + σ−1πt − (1− β)b̂∗t , (F.26)

ν̃estt = (1− θ)−1πH,t, (F.27)

ν∗,estt = νestt − σ−1(q̂t + πt). (F.28)

G Solution to Policy Functions

We show the solution to the policy functions for the equilibrium characterized in Section

3 and Appendix F. Similar to expressions (3.3)-(3.4), we can write the solution to any

endogenous variable xjτ |t except for b̂∗jτ+1|t in agents’ forward planning as a function of the

state variables with exogenous shocks; that is,

xjτ |t = ψj
x,q q̂

j+1
τ−1|t + ψj

x,bb̂
∗,j+1
τ |t + ψj

x,aaτ + ψj
x,µµτ + ψj

x,ννt + ψj
x,ν̃ ν̃t + ψj

x,ν∗ν
∗
t , (G.1)

for any (counterfactual) j ≥ 0, and

b̂∗jτ+1|t = ψj
b,q q̂

j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t . (G.2)

First, we aim to pin down the coefficients for j = 0. From (F.12)-(F.22), one can easily

eliminate {ε̂0τ |t, ŝ0τ |t, m̂c
0
τ |t, ı̂

0
τ |t, r̂

∗,0
τ |t}. Additionally, note that since y0τ |t only enters (F.19), we

only need to solve {ĉ0τ |t, q̂0τ |t, π0
τ |t, π

0
H,τ |t, b̂

∗,0
τ+1|t}, and then ŷ0τ |t is uniquely pinned down by

(F.19).

We solve {ĉ0τ |t, q̂0τ |t, π0
τ |t, π

0
H,τ |t} by equating coefficients. Note that from (F.12),

ĉ0τ |t = −ϕπ

σ
π0
τ |t + (1− β)b̂∗,0τ+1|t + νt,
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and equating the coefficients yields

ψ0
c,q = −ϕπ

σ
ψ0
π,q + (1− β)ψ0

b,q, ψ0
c,b = −ϕπ

σ
ψ0
π,b + (1− β)ψ0

b,b,

ψ0
c,a = −ϕπ

σ
ψ0
π,a + (1− β)ψ0

b,a, ψ0
c,µ = −ϕπ

σ
ψ0
π,µ + (1− β)ψ0

b,µ,

ψ0
c,ν = −ϕπ

σ
ψ0
π,ν + (1− β)ψ0

b,ν + 1, ψ0
c,ν̃ = −ϕπ

σ
ψ0
π,ν̃ + (1− β)ψ0

b,ν̃ ,

ψ0
c,ν∗ = −ϕπ

σ
ψ0
π,ν∗ + (1− β)ψ0

b,ν∗ .

Similarly, from (F.13),

q̂0τ |t = ϕbb̂
0
τ+1|t + µτ − ϕππ

0
τ |t + σ(νt − ν∗t ),

which yields

ψ0
q,q = ϕbψ

0
b,q − ϕπψ

0
π,q, ψ0

q,b = ϕbψ
0
b,b − ϕπψ

0
π,b

ψ0
q,a = ϕbψ

0
b,a − ϕπψ

0
π,a, ψ0

q,µ = ϕbψ
0
b,µ − ϕπψ

0
π,µ + 1,

ψ0
q,ν = ϕbψ

0
b,ν − ϕπψ

0
π,ν + σ, ψ0

q,ν̃ = ϕbψ
0
b,ν̃ − ϕπψ

0
π,ν̃ ,

ψ0
q,ν∗ = ϕbψ

0
b,ν∗ − ϕπψ

0
π,ν∗ − σ.

Similarly, from (F.16)-(F.17),

π0
H,τ |t = κ(σ + φϑyc)ĉ

0
τ |t +

κ(α + φϑys)

1− α
q̂0τ |t − κ(1 + φ)aτ + (1− θ)βν̃t,

which yields

ψ0
πH ,q = κ(σ + φϑyc)ψ

0
c,q +

κ(α+ φϑys)

1− α
ψ0
q,q, ψ0

πH ,b = κ(σ + φϑyc)ψ
0
c,b +

κ(α+ φϑys)

1− α
ψ0
q,b,

ψ0
πH ,a = κ(σ + φϑyc)ψ

0
c,a +

κ(α+ φϑys)

1− α
ψ0
q,a − κ(1 + φ), ψ0

πH ,µ = κ(σ + φϑyc)ψ
0
c,µ +

κ(α+ φϑys)

1− α
ψ0
q,µ,

ψ0
πH ,ν = κ(σ + φϑyc)ψ

0
c,ν +

κ(α+ φϑys)

1− α
ψ0
q,ν , ψ0

πH ,ν̃ = κ(σ + φϑyc)ψ
0
c,ν̃ +

κ(α+ φϑys)

1− α
ψ0
q,ν̃ + (1− θ)β,

ψ0
πH ,ν∗ = κ(σ + φϑyc)ψ

0
c,ν∗ +

κ(α+ φϑys)

1− α
ψ0
q,ν∗ .

Similarly, from (F.14) and (F.20),

π0
τ |t = (1− α)π0

H,τ |t + α(q̂0τ |t − q̂1τ−1|t + π0
τ |t),

52



which yields

(1− α)ψ0
π,q = (1− α)ψ0

πH ,q + αψ0
q,q − α, (1− α)ψ0

π,b = (1− α)ψ0
πH ,b + αψ0

q,b,

(1− α)ψ0
π,a = (1− α)ψ0

πH ,a + αψ0
q,a, (1− α)ψ0

π,µ = (1− α)ψ0
πH ,µ + αψ0

q,µ,

(1− α)ψ0
π,ν = (1− α)ψ0

πH ,ν + αψ0
q,ν , (1− α)ψ0

π,ν̃ = (1− α)ψ0
πH ,ν̃ + αψ0

q,ν̃ ,

(1− α)ψ0
π,ν∗ = (1− α)ψ0

πH ,ν∗ + αψ0
q,ν∗ .

Similarly, from (F.19) and (F.22),

b̂∗,0τ+1|t = β−1(b̂∗,1τ |t + ϑ1q̂
0
τ |t − ϑ2αŝ

0
τ |t + ϑ2ŷ

0
τ |t − ĉ0τ |t)− ϑ1q̂

0
τ |t + ϑ1r̂

∗,0
τ |t

= β−1

{
b̂∗,1τ |t +

[
ϑ1 − ϑ2

α− ϑys

(1− α)

]
q̂0τ |t − (1− ϑ2ϑyc)ĉ

0
τ |t

}
− ϑ1q̂

0
τ |t + ϑ1r̂

∗,0
τ |t ,

and it implies

(1− ϑ1ϕb)b̂
∗,0
τ+1|t = β−1

{
b̂∗,1τ |t +

[
ϑ1 − ϑ2

α− ϑys

(1− α)

]
q̂0τ |t − (1− ϑ2ϑyc)ĉ

0
τ |t

}
− ϑ1q̂

0
τ |t + ϑ1µτ ,

which yields

(1− ϑ1ϕb)ψ
0
b,q = β−1

{[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,q − (1− ϑ2ϑyc)ψ

0
c,q

}
− ϑ1ψ

0
q,q,

(1− ϑ1ϕb)ψ
0
b,b = β−1

{
1 +

[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,b − (1− ϑ2ϑyc)ψ

0
c,b

}
− ϑ1ψ

0
q,b,

(1− ϑ1ϕb)ψ
0
b,a = β−1

{[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,a − (1− ϑ2ϑyc)ψ

0
c,a

}
− ϑ1ψ

0
q,a,

(1− ϑ1ϕb)ψ
0
b,µ = β−1

{[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,µ − (1− ϑ2ϑyc)ψ

0
c,µ

}
− ϑ1ψ

0
q,µ + ϑ1,

(1− ϑ1ϕb)ψ
0
b,ν = β−1

{[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,ν − (1− ϑ2ϑyc)ψ

0
c,ν

}
− ϑ1ψ

0
q,ν ,

(1− ϑ1ϕb)ψ
0
b,ν̃ = β−1

{[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,ν̃ − (1− ϑ2ϑyc)ψ

0
c,ν̃

}
− ϑ1ψ

0
q,ν̃ ,

(1− ϑ1ϕb)ψ
0
b,ν∗ = β−1

{[
ϑ1 − ϑ2

α− ϑys
(1− α)

]
ψ0
q,ν∗ − (1− ϑ2ϑyc)ψ

0
c,ν∗

}
− ϑ1ψ

0
q,ν∗ .

Thus, in the case of j = 0, we have 35 simple linear equations for 35 undetermined coeffi-

cients. By solving these linear equations, we obtain the solution of {ĉ0τ |t, q̂0τ |t, π0
τ |t, π

0
H,τ |t, b̂

∗,0
τ+1|t}

at date τ calculated in period t. Then one can easily obtain all other endogenous variables

at date τ calculated in period t.

Next, we solve the undermined coefficients for any (counterfactual) j as a function of the

coefficients for j−1 through (F.1)-(F.11). Similarly, we can eliminate {ε̂jτ |t, ŝ
j
τ |t, m̂c

j
τ |t, ı̂

j
τ |t, ı̂

∗,j
τ |t}

53



in (F.1)-(F.11). Additionally, since ŷjτ |t only enters (F.8), we only need to solve {ĉjτ |t, q̂
j
τ |t, π

j
τ |t,

πj
H,τ |t, b̂

∗,j
τ+1|t}, and ŷ

j
τ |t is pinned down by (F.8).

To solve {ĉjτ |t, q̂
j
τ |t, π

j
τ |t, π

j
H,τ |t, b̂

∗,j
τ+1|t}, from (F.1), we have

ĉjτ |t = Eτ ĉ
j−1
τ+1|t −

1

σ
(ϕππ

j
τ |t − Eτπ

j−1
τ+1|t),

and substituting with the policy functions yields

ψj
c,q q̂

j+1
τ−1|t + ψj

c,bb̂
∗,j+1
τ |t + ψj

c,aaτ + ψj
c,µµτ + ψj

c,ννt + ψj
c,ν̃ ν̃t + ψj

c,ν∗ν
∗
t

= Eτ{ψj−1
c,q [ψj

q,q q̂
j+1
τ−1|t + ψj

q,bb̂
∗,j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

+ ψj−1
c,b [ψj

b,q q̂
j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

+ ψj−1
c,a aτ+1 + ψj−1

c,µ µτ+1 + ψj−1
c,ν νt + ψj−1

c,ν̃ ν̃t + ψj−1
c,ν∗ν

∗
t }

− ϕπ
σ
[ψj

π,q q̂
j+1
τ−1|t + ψj

π,bb̂
∗,j+1
τ |t + ψj

π,aaτ + ψj
π,µµτ + ψj

π,ννt + ψj
π,ν̃ ν̃t + ψj

π,ν∗ν
∗
t ]

+
1

σ
Eτ{ψj−1

π,q [ψj
q,q q̂

j+1
τ−1|t + ψj

q,bb̂
∗,j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

+ ψj−1
π,b [ψj

b,q q̂
j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

+ ψj−1
π,a aτ+1 + ψj−1

π,µ µτ+1 + ψj−1
π,ν νt + ψj−1

π,ν̃ ν̃t + ψj−1
π,ν∗ν

∗
t },

where we have substituted q̂jτ |t = ψj
q,q q̂

j+1
τ−1|t+ψ

j
q,bb̂

∗,j+1
τ |t +ψj

q,aaτ+ψ
j
q,µµτ+ψ

j
q,ννt+ψ

j
q,ν̃ ν̃t+ψ

j
q,ν∗ν

∗
t

and the similar expression of b̂∗,jτ+1|t.

By equating the coefficients, we obtain

ψj
c,q = ψj−1

c,q ψ
j
q,q + ψj−1

c,b ψ
j
b,q −

ϕπ
σ
ψj
π,q +

1

σ
[ψj−1

π,q ψ
j
q,q + ψj−1

π,b ψ
j
b,q],

ψj
c,b = ψj−1

c,q ψ
j
q,b + ψj−1

c,b ψ
j
b,b −

ϕπ
σ
ψj
π,b +

1

σ
[ψj−1

π,q ψ
j
q,b + ψj−1

π,b ψ
j
b,b],

ψj
c,a = ψj−1

c,q ψ
j
q,a + ψj−1

c,b ψ
j
b,a + ρaψ

j−1
c,a − ϕπ

σ
ψj
π,a +

1

σ
[ψj−1

π,q ψ
j
q,a + ψj−1

π,b ψ
j
b,a + ρaψ

j−1
π,a ],

ψj
c,µ = ψj−1

c,q ψ
j
q,µ + ψj−1

c,b ψ
j
b,µ + ρµψ

j−1
c,µ − ϕπ

σ
ψj
π,µ +

1

σ
[ψj−1

π,q ψ
j
q,µ + ψj−1

π,b ψ
j
b,µ + ρµψ

j−1
π,µ ],

ψj
c,ν = ψj−1

c,q ψ
j
q,ν + ψj−1

c,b ψ
j
b,ν + ψj−1

c,ν − ϕπ
σ
ψj
π,ν +

1

σ
[ψj−1

π,q ψ
j
q,ν + ψj−1

π,b ψ
j
b,ν + ψj−1

π,ν ],

ψj
c,ν̃ = ψj−1

c,q ψ
j
q,ν̃ + ψj−1

c,b ψ
j
b,ν̃ + ψj−1

c,ν̃ − ϕπ
σ
ψj
π,ν̃ +

1

σ
[ψj−1

π,q ψ
j
q,ν̃ + ψj−1

π,b ψ
j
b,ν̃ + ψj−1

π,ν̃ ],

ψj
c,ν∗ = ψj−1

c,q ψ
j
q,ν∗ + ψj−1

c,b ψ
j
q,ν∗ + ψj−1

c,ν∗ −
ϕπ
σ
ψj
π,ν∗ +

1

σ
[ψj−1

π,q ψ
j
q,ν∗ + ψj−1

π,b ψ
j
b,ν∗ + ψj−1

π,ν∗ ].

Similarly, from (F.2), we have

q̂jτ |t = Eτ q̂
j−1
τ+1|t + ϕbb̂

j
τ+1|t + µτ − (ϕππ

j
τ |t − Eτπ

j−1
τ+1|t),
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and substituting with the policy functions yields

ψj
q,q q̂

j+1
τ−1|t + ψj

q,bb̂
∗,j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t

= Eτ{ψj−1
q,q [ψj

q,q q̂
j+1
τ−1|t + ψj

q,bb̂
∗,j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

+ ψj−1
q,b [ψj

b,q q̂
j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

+ ψj−1
q,a aτ+1 + ψj−1

q,µ µτ+1 + ψj−1
q,ν νt + ψj−1

q,ν̃ ν̃t + ψj−1
q,ν∗ν

∗
t }

+ ϕb[ψ
j
b,q q̂

j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
q,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

+ µτ − ϕπ[ψ
j
π,q q̂

j+1
τ−1|t + ψj

π,bb̂
∗,j+1
τ |t + ψj

π,aaτ + ψj
π,µµτ + ψj

π,ννt + ψj
π,ν̃ ν̃t + ψj

π,ν∗ν
∗
t ]

+ Eτ{ψj−1
π,q [ψj

q,q q̂
j+1
τ−1|t + ψj

q,bb̂
∗,j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

+ ψj−1
π,b [ψj

b,q q̂
j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

+ ψj−1
π,a aτ+1 + ψj−1

π,µ µτ+1 + ψj−1
π,ν νt + ψj−1

π,ν̃ ν̃t + ψj−1
π,ν∗ν

∗
t }.

By equating the coefficients, we obtain

ψj
q,q = ψj−1

q,q ψ
j
q,q + ψj−1

q,b ψ
j
b,q + ϕbψ

j
b,q − ϕπψ

j
π,q + ψj−1

π,q ψ
j
q,q + ψj−1

π,b ψ
j
b,q,

ψj
q,b = ψj−1

q,q ψ
j
q,b + ψj−1

q,b ψ
j
b,b + ϕbψ

j
b,b − ϕπψ

j
π,b + ψj−1

π,q ψ
j
q,b + ψj−1

π,b ψ
j
b,b,

ψj
q,a = ψj−1

q,q ψ
j
q,a + ψj−1

q,b ψ
j
b,a + ρaψ

j−1
q,a + ϕbψ

j
b,a − ϕπψ

j
π,a + ψj−1

π,q ψ
j
q,a + ψj−1

π,b ψ
j
b,a + ρaψ

j−1
π,a ,

ψj
q,µ = ψj−1

q,q ψ
j
q,µ + ψj−1

q,b ψ
j
b,µ + ρµψ

j−1
q,µ + ϕbψ

j
b,µ + 1− ϕπψ

j
π,µ + ψj−1

π,q ψ
j
q,µ + ψj−1

π,b ψ
j
b,µ + ρµψ

j−1
π,µ ,

ψj
q,ν = ψj−1

q,q ψ
j
q,ν + ψj−1

q,b ψ
j
b,ν + ψj−1

q,ν + ϕbψ
j
b,ν − ϕπψ

j
π,ν + ψj−1

π,q ψ
j
q,ν + ψj−1

π,b ψ
j
b,ν + ψj−1

π,ν ,

ψj
q,ν̃ = ψj−1

q,q ψ
j
q,ν̃ + ψj−1

q,b ψ
j
b,ν̃ + ψj−1

q,ν̃ + ϕbψ
j
b,ν̃ − ϕπψ

j
π,ν̃ + ψj−1

π,q ψ
j
q,ν̃ + ψj−1

π,b ψ
j
b,ν̃ + ψj−1

π,ν̃ ,

ψj
q,ν∗ = ψj−1

q,q ψ
j
q,ν∗ + ψj−1

q,b ψ
j
b,ν∗ + ψj−1

q,ν∗ + ϕbψ
j
b,ν∗ − ϕπψ

j
π,ν∗ + ψj−1

π,q ψ
j
q,ν∗ + ψj−1

π,b ψ
j
b,ν∗ + ψj−1

π,ν∗ .

Similarly, from (F.5)-(F.6), we have

πj
H,τ |t = κ(σ + φϑyc)ĉ

j
τ |t +

κ(α + φϑys)

1− α
q̂jτ |t − κ(1 + φ)aτ + βEτπ

j−1
H,τ+1|t,
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and substituting with the policy functions yields

ψj
πH ,q q̂

j+1
τ−1|t + ψj

πH ,bb̂
j+1
τ |t + ψj

πH ,aaτ + ψj
πH ,µµτ + ψj

πH ,ννt + ψj
πH ,ν̃ ν̃t + ψj

πH ,ν∗ν
∗
t

= κ(σ + φϑyc)[ψ
j
c,q q̂

j+1
τ−1|t + ψj

c,bb̂
j+1
τ |t + ψj

c,aaτ + ψj
c,µµτ + ψj

c,ννt + ψj
c,ν̃ ν̃t + ψj

c,ν∗ν
∗
t ]

+
κ(α+ φϑys)

1− α
[ψj

q,q q̂
j+1
τ−1|t + ψj

q,bb̂
j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

− κ(1 + φ)aτ

+ βEτ{ψj−1
πH ,q[ψ

j
q,q q̂

j+1
τ−1|t + ψj

q,bb̂
j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

+ ψj−1
πH ,b[ψ

j
b,q q̂

j+1
τ−1|t + ψj

b,bb̂
j+1
τ |t + ψj

b,aaτ + ψj
b,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

+ ψj−1
πH ,aaτ+1 + ψj−1

πH ,µµτ+1 + ψj−1
πH ,ννt + ψj−1

πH ,ν̃ ν̃t + ψj−1
πH ,ν∗ν

∗
t }.

By equating the coefficients, we obtain

ψj
πH ,q = κ(σ + φϑyc)ψ

j
c,q +

κ(α+ φϑys)

1− α
ψj
q,q + β[ψj−1

πH ,qψ
j
q,q + ψj−1

πH ,bψ
j
b,q],

ψj
πH ,b = κ(σ + φϑyc)ψ

j
c,b +

κ(α+ φϑys)

1− α
ψj
q,b + β[ψj−1

πH ,qψ
j
q,b + ψj−1

πH ,bψ
j
b,b],

ψj
πH ,a = κ(σ + φϑyc)ψ

j
c,a +

κ(α+ φϑys)

1− α
ψj
q,a − κ(1 + φ) + β[ψj−1

πH ,qψ
j
q,a + ψj−1

πH ,bψ
j
b,a + ρaψ

j−1
πH ,a],

ψj
πH ,µ = κ(σ + φϑyc)ψ

j
c,µ +

κ(α+ φϑys)

1− α
ψj
q,µ + β[ψj−1

πH ,qψ
j
q,µ + ψj−1

πH ,bψ
j
b,µ + ρµψ

j−1
πH ,µ],

ψj
πH ,ν = κ(σ + φϑyc)ψ

j
c,ν +

κ(α+ φϑys)

1− α
ψj
q,ν + β[ψj−1

πH ,qψ
j
q,ν + ψj−1

πH ,bψ
j
b,ν + ψj−1

πH ,ν ],

ψj
πH ,ν̃ = κ(σ + φϑyc)ψ

j
c,ν̃ +

κ(α+ φϑys)

1− α
ψj
q,ν̃ + β[ψj−1

πH ,qψ
j
q,ν̃ + ψj−1

πH ,bψ
j
b,ν̃ + ψj−1

πH ,ν̃ ],

ψj
πH ,ν∗ = κ(σ + φϑyc)ψ

j
c,ν∗ +

κ(α+ φϑys)

1− α
ψj
q,ν∗ + β[ψj−1

πH ,qψ
j
q,ν∗ + ψj−1

πH ,bψ
j
b,ν∗ + ψj−1

πH ,ν∗ ].

Similarly, from (F.3) and (F.9), we have

πj
τ |t = (1− α)πj

H,τ |t + α(q̂jτ |t − q̂j+1
τ−1|t + πj

τ |t),

and substituting with the policy functions yields

(1− α)[ψj
π,q q̂

j+1
τ−1|t + ψj

π,bb̂
j+1
τ |t + ψj

π,aaτ + ψj
π,µµτ + ψj

π,ννt + ψj
π,ν̃ ν̃t + ψj

π,ν∗ν
∗
t ]

= (1− α)[ψj
πH ,q q̂

j+1
τ−1|t + ψj

πH ,bb̂
j+1
τ |t + ψj

πH ,aaτ + ψj
πH ,µµτ + ψj

πH ,ννt + ψj
πH ,ν̃ ν̃t + ψj

πH ,ν∗ν
∗
t ]

+ α[ψj
q,q q̂

j+1
τ−1|t + ψj

q,bb̂
j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]− αq̂j+1

τ−1|t.
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By equating the coefficients, we obtain

(1− α)ψj
π,q = (1− α)ψj

πH ,q + αψj
q,q − α, (1− α)ψj

π,b = (1− α)ψj
πH ,b + αψj

q,b,

(1− α)ψj
π,a = (1− α)ψj

πH ,a + αψj
q,a, (1− α)ψj

π,µ = (1− α)ψj
πH ,µ + αψj

q,µ,

(1− α)ψj
π,ν = (1− α)ψj

πH ,ν + αψj
q,ν , (1− α)ψj

π,ν̃ = (1− α)ψj
πH ,ν̃ + αψj

q,ν̃ ,

(1− α)ψj
π,ν∗ = (1− α)ψj

πH ,ν∗ + αψj
q,ν∗ .

Finally, from (F.8) and (F.11), we have

(1− ϑ1ϕb)b̂
∗,j
τ+1|t = β−1

{
b̂∗,j+1
τ |t +

[
ϑ1 − ϑ2

α− ϑys

(1− α)

]
q̂jτ |t − (1− ϑ2ϑyc)ĉ

j
τ |t

}
− ϑ1q̂

j
τ |t + ϑ1µτ ,

and substituting with the policy functions yields

(1− ϑ1ϕb)[ψ
j
b,q q̂

j+1
τ−1|t + ψj

b,bb̂
∗,j+1
τ |t + ψj

b,aaτ + ψj
q,µµτ + ψj

b,ννt + ψj
b,ν̃ ν̃t + ψj

b,ν∗ν
∗
t ]

= β−1b̂∗,j+1
τ |t + ϑ1µτ

+

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
[ψj

q,q q̂
j+1
τ−1|t + ψj

q,bb̂
j+1
τ |t + ψj

q,aaτ + ψj
q,µµτ + ψj

q,ννt + ψj
q,ν̃ ν̃t + ψj

q,ν∗ν
∗
t ]

− β−1(1− ϑ2ϑyc)[ψ
j
c,q q̂

j+1
τ−1|t + ψj

c,bb̂
j+1
τ |t + ψj

c,aaτ + ψj
c,µµτ + ψj

c,ννt + ψj
c,ν̃ ν̃t + ψj

c,ν∗ν
∗
t ]

By equating the coefficients, we obtain

(1− ϑ1ϕb)ψ
j
b,q =

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,q − β−1(1− ϑ2ϑyc)ψ

j
c,q

(1− ϑ1ϕb)ψ
j
b,b = 1 + (β−1 − 1) +

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,b − β−1(1− ϑ2ϑyc)ψ

j
c,b

(1− ϑ1ϕb)ψ
j
b,a =

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,a − β−1(1− ϑ2ϑyc)ψ

j
c,a

(1− ϑ1ϕb)ψ
j
b,µ =

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,µ − β−1(1− ϑ2ϑyc)ψ

j
c,µ + ϑ1

(1− ϑ1ϕb)ψ
j
b,ν =

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,ν − β−1(1− ϑ2ϑyc)ψ

j
c,ν

(1− ϑ1ϕb)ψ
j
b,ν̃ =

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,ν̃ − β−1(1− ϑ2ϑyc)ψ

j
c,ν̃

(1− ϑ1ϕb)ψ
j
b,ν∗ =

[
(β−1 − 1)ϑ1 − β−1ϑ2

α− ϑys
(1− α)

]
ψj
q,ν∗ − β−1(1− ϑ2ϑyc)ψ

j
c,ν∗ .

Thus, given the undetermined coefficients for j − 1, we have 35 simple linear equations

for the 35 undetermined coefficients for j, which yields a unique solution. Since we have

derived the undetermined coefficients for the case of j = 0, we can solve the expressions for

{ĉjτ |t, q̂
j
τ |t, π

j
τ |t, π

j
H,τ |t, b

∗,j+1
τ |t } by forward induction. All the other endogenous variables can be
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easily derived with the solutions of these four endogenous variables.

Thus far, we have derived the solution of the entire forward planning calculated in period

t. Then, one can easily solve the equilibrium path solution (3.1) with the evolution of the

state variables (F.23)-(F.24).

Policy Function Coefficients. With the calibrated parameters in Table 1, Figures G.6

and G.7 report the policy coefficients of the five variables x ∈ {q, b, c, π, πH} for different

planning horizons j ∈ [0, 50] quarters. As j increases, all coefficients converge to the unique

RE equilibrium values, with household value functions {ψj
x,ν , ψ

j
x,ν̃ , ψ

j
x,ν∗} becoming zero. As

planning horizon j decreases, policy coefficients deviate from RE values, exhibiting non-

monotonic, bumpy movements. Some coefficients, such as ψj
q,ν , may even change signs with

shorter horizons.

These policy coefficients entail several behavioral implications. Shorter planning horizons

give rise to deviations from the RE equilibrium, attributed by limited foresight. Moreover,

these biases do not consistently follow the same direction, as indicated by the non-monotonic

policy coefficients. As a consequence, when decision-makers operate within a relatively

short planning horizon, the resulting equilibrium can diverge in various ways from the RE

equilibrium. Conversely, even with an extended planning horizon, expectations regarding

distant future variables—assessed using policy coefficients for a truncated remaining planning

horizon—may substantially deviate from RE.
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Figure G.6: Policy Coefficients of the Five Variables with Planning Horizon j ∈ [0, 50]

(a) Real Exchange Rate
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Figure G.7: Policy Coefficients of the Five Variables with Planning Horizon j ∈ [0, 50]
(continued)

(d) CPI Inflation
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H Proof of Proposition 1

We prove Proposition 1 by contradiction. Assume the LIE holds. It must imply that

Êtx
j
t+2|t = ÊtÊt+1x

j
t+2|t (H.1)

for any j ≥ 0.
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For any endogenous variable in the FH model, it can be written in the form

xjτ |t = ΛjZ
j+1
τ |t +MjUτ +NjVt,

where vector Zj+1
τ |t denotes the vector of endogenous state variables at date τ in addition to

those of value functions, U j
τ denotes the vector of exogenous state variables at date τ , and Vt

denotes the vector of value functions. Λj, Mj, and Nj are the matrices of coefficients. From

expression (3.3), Zj+1
τ |t = [q̂j+1

τ−1|t b̂
∗,j+1
τ |t ]′, Uτ = [aτ µτ ]

′, and Vt = [νt ν̃t ν
∗
t ]

′.

Thus, the left-hand side of equation (H.1) is

Êtx
j
t+2|t = ΛjÊtZ

j+1
t+2|t +MjÊtUt+2|t +NjVt, (H.2)

and its right-hand side is

ÊtÊt+1x
j
t+2|t = Êt

[
ΛjÊt+1Z

j+1
t+2|t +MjÊtUt+2|t +NjVt+1

]
. (H.3)

Because the LIE holds, we have

ÊtZ
j+1
t+2|t = ÊtÊt+1Z

j+1
t+2|t, ÊtUt+2|t = ÊtÊtUt+2|t.

By equating (H.2) and (H.3), it yields

NjVt = NjÊtVt+1 (H.4)

for any j.

Meanwhile, the constant-gain learning rule implies

ÊtVt+1 = ΓV est
t + (I − Γ)Vt,

where Γ ≡ diag(γv, γv, γṽ) and I is an identity matrix. Plugging it into (H.4), we have

NjΓ(Vt − V est
t ) = 0. (H.5)

Since (H.5) has to hold for any j and Nj is not a zero matrix, it is equivalent to

Γ(Vt − V est
t ) = 0. (H.6)

Condition (H.6) means that either Γ = 0 or Vt = V est
t for all t, that is, either the learning

gain parameters are all zero, or the value functions are the fixed point of the constant-
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gain learning rule, which are the steady state value functions. Thus, once γv, γṽ ̸= 0 and

the economy is not always at its steady state, condition (H.6) does not hold, and the LIE

breaks.

I Data and Variable Construction for Calibration

The data used in the calibration of Section 4.2 are constructed as follows, all at a quarterly

frequency:

• Canadian per capita real output growth and consumption growth. We obtain the Cana-

dian data of real GDP [V6E06896], household real final consumption expenditure

[V6A89012], and population [V1] from Statistics Canada (StatsCan). The code in

brackets represents StatsCan mnemonic. We divide the two data series by population

to calculate the per capita real output and consumption and take the log difference

over time to get the corresponding growth rates.

• U.S. and Canada price levels. We obtain the headline consumer price index (CPI) of

the U.S. and Canada from Federal Reserve Economic Data [FRED: CPIAUCSL and

CPALCY01CAQ661N]. The U.S. CPI data is seasonally adjusted, whereas the latter is

not. Thus, we follow the U.S. Census Bureau model X-13ARIMA-SEATS to seasonally

adjust the Canadian CPI data series. We further normalize the data series such that

the average price level for both the U.S. and Canada in 2015 is 100.

• U.S.-Canada real exchange rate. We obtain the average of the daily nominal exchange

rate between U.S. and Canadian dollars from Federal Reserve Economic Data [FRED:

CCUSMA02CAM618N]. The data is in units of Canadian dollars. We calculate the

real exchange rate by multiplying the nominal exchange rate with the U.S. price level

and dividing it by the Canadian price level.

J Empirical Analyses with Actual Data

J.1 Excess Return Predictability Regression

The data is directly from the replication file of Valchev (2020). It contains forward and spot

exchange rates of multiple countries (each paired with the U.S.) and inflation rates. The

original data sources for forward and spot rates are Reuters/WMR and Barclays, and the

original data source for inflation rates is the OECD. We select the exchange rate data for

Canada (paired with the U.S.), as well as the inflation rate data for both Canada and the
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U.S. The frequency of the exchange rates is daily, whereas the frequency of inflation rates is

monthly. To align the frequencies, we use the end date of each month for the exchange rates

data, same as in Engel (2016). The converted data starts from 1976Q1 and up until 2007Q4.

We construct the real depreciation rate, qt+1−qt, which equals the nominal depreciation rate

plus the U.S. inflation rate and minus the Canadian inflation rate.

To construct the real interest rate differential rt − r∗t , we take the following steps. First,

we construct the Canada-U.S. nominal interest rate differential by computing the forward-

to-spot ratio, employing the result from the covered interest rate parity (CIP), following the

standard practice in the literature. Second, we subtract the respective inflation rates from

the nominal interest rates of each country. We consider three approaches of constructing the

real interest rate (symmetric specifications are applied for the U.S. real interest rate):

(1) Real interest rate based on current inflation: rt = it − πt.

(2) Real interest rate based on forecasted inflation: rt = it − Êtπt+1, where Êtπt+1 is the

inflation forecast based on AR(1) regression.

(3) Real interest rate based on ex post inflation: rt = it − πt+1.

We run the regression model (5.9) with the constructed data of the real depreciation rate

and the real interest rate differential. The regression coefficients are then quarterly averaged

to match the frequency of the model. Figure J.8 shows the estimates β̂k under the three

approaches of constructing the real interest rate. It also includes the estimated β̂k from

the FH model for comparison. Overall, the dynamic patterns of β̂k across the time horizon

k are both qualitatively and quantitatively robust across the three lines. All share close

similarity to the estimates from the FH model. We have placed the estimates from the data

construction method (2) into Figure 3 for illustration purposes.24

J.2 Forward Guidance Exchange Rate Puzzle

Below we first list the data sources and variable construction used in regression (5.10). Most

of the variables are from monthly market prices or indices, following the data sources in Gaĺı

(2020). Unless otherwise noted, data represent the last price of each month.

• U.S. inflation expectation. We obtain the measure of U.S. inflation expectations

through inflation swap rates. The inflation swap rates are collected from Bloomberg

24In either data construction method (1) or (2), the unpredictability feature of excess return under RE
based on time-t information set is always rejected. We choose specification (2) as the benchmark since this
method is closer to the conventional meaning of an ex-ante real interest rate and is also commonly used in
the literature (see, e.g., Valchev, 2020).
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Figure J.8: Excess Return Regression with Alternative Formulations of Real Interest Rates

5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

0.6

Ex-Ante (current)

Ex-Ante (AR(1) forecasted)

Ex-Post

Model (FH)

Notes: This figure shows the estimates of excess return coefficients, β̂k, across time horizon k. The dashed
line represents the point estimates by constructing the real interest rate via rt = it − πt. The dash-dotted

line represents the point estimates by constructing the real interest rate via rt = it − Êtπt+1, where Êtπt+1

is the inflation forecast based on AR(1) regression. The solid line with cycles represents the point estimates
by constructing the real interest rate via rt = it − πt+1. Similar construction applies to the foreign real
interest rate accordingly. The solid blue line represents the point estimates using FH model simulated data
from Figure 3. The x-axis represents horizon k (in quarters).

under the mnemonics “USSWIT[M] Curncy,” where [M] is the maturity for inflation

swap rates (in years). We obtain the data series for M = 1, 2, 5, 10, and 30.

• U.S. expected nominal interest rate. We obtain the U.S. expected nominal interest

rates through the zero-coupon yields of the U.S. Treasuries from Bloomberg under the

mnemonics “I025[M]Y Index,” where [M] is the maturity in years. We obtain the data

series for M = 1, 2, 5, 10, and 30.

• Canadian inflation expectation. Since the inflation swap is not available for Canada,

we obtain the survey-based Canadian inflation expectations for maturities M = 1, 2,

5, and 10 years from the Consensus Forecast. The data is available at a quarterly

frequency since 2014Q3 but is only available semi-annually before that. To construct

monthly data for the regressions in Gaĺı (2020), we first interpolate the missing values

with the average of two adjacent observations and assume that the inflation expectation

is the same within the same quarter. We also assume inflation expectations at maturity

M = 30 years is the same as those at M = 10 years. We then translate the data into

the average inflation expectations over fixed horizons following the approach in Dovern,

Fritsche and Slacalek (2012).
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Table 3: Forward Guidance Exchange Rate Puzzle, U.S.-Canada

(1) (2) (3) (4) (5)
M = 4 M = 8 M = 20 M = 40 M = 120

Baseline

γS 4.14∗∗∗ 3.46∗∗∗ 2.47∗∗∗ 2.03∗∗∗ 0.27**
(1.51) (1.16) (0.48) (0.26) (0.12)

γL 0.18 0.12 -0.08 -0.37∗∗∗

(0.11) (0.12) (0.13) (0.14)

Time trend

γS 3.71∗∗∗ 3.14∗∗∗ 2.01∗∗∗ 1.50∗∗∗ -0.09
(0.82) (0.72) (0.27) (0.15) (0.14)

γL -0.17 -0.25∗∗ -0.40∗∗∗ -0.61∗∗∗

(0.14) (0.12) (0.09) (0.09)

First differences

γS 1.93∗∗∗ 1.56∗∗∗ 0.99∗∗∗ 0.73∗∗∗ 0.14∗∗∗

(0.20) (0.19) (0.15) (0.12) (0.04)
γL 0.09∗∗∗ 0.07∗ 0.05 -0.03

(0.03) (0.04) (0.04) (0.04)

Notes: This table reports the estimated γS and γL in the three specifications in Gaĺı (2020) for the
case of U.S.-Canada: the original form of specification (5.10), the version with a time trend, and
the version after taking first-order differences. Standard errors are reported in brackets, using the
Newey-West adjustment with 12 lags. The sample period starts from July 2004 to December 2023.
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

• Canadian expected nominal interest rate. We obtain the expected nominal interest rates

through the zero-coupon yields of the Canadian government bonds from Bloomberg

under the mnemonics “I007[M]Y Index,” where [M] is the maturity in years. We obtain

the data series for M = 1, 2, 5, 10, and 30.

• U.S.-Canada real exchange rate. We obtain the nominal exchange rate between U.S.

and Canadian dollars from Bloomberg under mnemonics [CADUSD Curncy], the Cana-

dian CPI price level under mnemonics [CACPI Index], and the U.S. CPI price level

under mnemonics [CPURNSA Index]. Since the nominal exchange rate data is in units

of US dollars, we calculate the real exchange rate in Canadian dollars by multiplying

the inverse of the nominal exchange rate with the U.S. price level and dividing it by

the Canadian price level.
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Following Gaĺı (2020), we construct the expected real interest differentials by calculating

DS
t (M) ≡

M−1∑
k=0

Et [̂ı
∗
t+k − π̂∗

t+k − (̂ıt+k − π̂t+k)],

where M = 4, 8, 20, 40, and 120 quarters. Then the expected long-term interest rate

differentials are

DL
t (M) ≡ DS

t (120)−DS
t (M)

for M = 4, 8, 20, and 40.

Table 3 reports the estimated γS and γL in the three specifications in Gaĺı (2020) for

the case of U.S.-Canada: the original form of specification (5.10), the version with a time

trend, and the version after taking first-order differences. Because the U.S. inflation swap

data has only been available since July 2004, the sample period in the regressions starts

from July 2004 to December 2023. Table 3 suggests similar findings as in Gaĺı (2020), in

which the estimated γS is significantly larger than one in most cases and the estimated γL is

significantly smaller than one. Same as in Figure 4 using model-generated data, the empirical

estimated γS and γL become smaller as the threshold M increases.

K Construction of Short-Term and Long-Term

Interest Rate Differentials

We construct the corresponding model-generated series via the following steps. First, to

construct the simulated expected real interest rate differential under limited foresight, for

each time t and for any horizon k, we need to pin down {q̂h−k
t+k|t, b̂

h−k
t+k+1|t}hk=0 to back up

{π̂h−k
t+k|t, ı̂

h−k
t+k|t, r̂

∗,h−k
t+k|t }hk=0. For each k, the solution to the forward planning exercise (3.3)

yields

Etq̂
h−k
t+k|t = ψh−k

q,q Etq̂
h−k+1
t+k−1|t + ψh−k

q,b Etb̂
h−k+1
t+k|t + ψh−k

q,a ρkaat + ψh−k
q,µ ρkµµt + ψh−k

q,ν νt + ψh−k
q,ν∗ ν

∗
t ,

where Etq̂
h+1
t−1|t = q̂t−1 and Etb̂

h+1
t|t = b̂t (that is, the equilibrium pre-determined real exchange

rate and the net foreign asset position at time t). Then, the expected inflation under limited

foresight satisfies

Eh
t πt+k ≡ Etπ

h−k
t+k|t = ψh−k

π,q Etq̂
h−k+1
t+k−1|t+ψ

h−k
π,b Etb̂

h−k+1
t+k|t +ψh−k

π,a ρ
k
aat+ψ

h−k
π,µ ρ

k
µµt+ψ

h−k
π,ν νt+ψ

h−k
π,ν∗ν

∗
t .
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Since ı̂h+t−τ
τ |t = ϕππ̂

h+t−τ
τ |t , we have the expected nominal interest rate given by

Eh
t ı̂t+k ≡ Etı̂

h−k
t+k|t = ϕπEtπ

h−k
t+k|t,

and then we construct the expected real interest rate under limited foresight as

Eh
t r̂t+k ≡ Etı̂

h−k
t+k|t − Etπ

h−k−1
t+k+1|t, (K.1)

for any 0 ≤ k < h, and for the case of k = h, we construct Eh
t r̂t+h ≡ Etı̂

0
t+h|t.

Second, for the expected foreign real interest rate under limited foresight, since (2.33)

yields r̂∗,h+t−τ
τ |t = ϕbb̂

h+t−τ
τ+1|t + µτ for any t ≤ τ ≤ t+ h, we construct

Eh
t r̂

∗
t+k ≡ Etr̂

h−k
t+k|t = ϕbEtb̂

h−k
t+k+1|t + ρkµµt. (K.2)

Therefore, for a given threshold horizon for the short-term and the long-term M and the

given planning horizon h, we can construct the cumulative forecasts of real interest rate

differentials under limited foresight as

DS
t (M) =

M−1∑
k=0

Eh
t [r̂

∗
t+k − r̂t+k], DL

t (M) =
h∑

k=M

Eh
t [r̂

∗
t+k − r̂t+k], (K.3)

where 0 < M ≤ h.

Using model-simulated data, whereas Figure 4 shows the conditional estimates of γ̂S and

γ̂L in specification (5.10), Figure K.9 shows the conditional ones, each conditioned on a

distinct shock.

L Robustness Checks

Planning Horizon h. First, we consider planning horizon h ∈ {2, 4, 40} in the benchmark

model with homogeneous agents. Subject to the two exogenous shocks, Figure L.10 illustrates

the regression coefficients for both excess return predictability and the real exchange rate’s

response to short- and long-term real interest rate differentials with each planning horizon

h. In summary, the attributes of the primary findings in Section 5 become stronger when

planning horizons shorten and weaker as they lengthen, in comparison to the benchmark

planning horizon h = 8.

Firm’s Learning Gain γṽ. Next, we consider firm’s learning behavior on its value function

with various learning gain γṽ ∈ {0.1, 0.5, 0.99}. Figure L.11 illustrates the related regression
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Figure K.9: Reaction of Real Exchange Rate to Expected Interest Rate Differentials
(Conditional)
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Notes: This figure shows the conditional estimates of γ̂S and γ̂L in specification (5.10), representing the
reaction of the real exchange rate to the forecasts of short- and long-term real interest rate differentials in
the benchmark FH model. The left panel uses the series from the domestic productivity shock only and
the right panel uses the series from the foreign interest rate shock only. The estimates are obtained using
samples from 100 simulations with each spanning 150 quarters (15,000 observations in total).

coefficients based on each learning gain γṽ. The outcomes for excess return predictability

are not significantly impacted by variations in γṽ. Moreover, the results of the breakdown

of the forecast horizon invariance are found to be unaffected by γṽ. This is consistent with

intuition in the sense that the asset-pricing condition for the exchange rate and interest

rate differentials comes from the F.O.C.s of households rather than those of firms. Thus,

households’ learning parameter plays a key role in explaining the UIP puzzles, whereas firms’

learning parameter does not.

Heterogeneous Planning Horizons across Agents. Lastly, we extend the model to

heterogeneous planning horizons across agents and examine its consequences for the aggre-

gate variables. We assume that fraction ωh ∈ (0, 1) of households and fraction ω̃h ∈ (0, 1)

of firms have planning horizon h. Following Woodford (2019), we further assume that those

agents with horizon h make their decisions by assuming that all other agents have the same

planning horizon of h. After the planning exercises in each period, the estimated value

functions across households are aggregated by

νestt =
∑
h

ωh

[
ĉht + σ−1πh

t − (1− β)b̂∗,ht

]
, (L.1)

ν∗,estt =
∑
h

ωh

[
νestt − σ−1(q̂ht + πh

t )
]
, (L.2)
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and the estimated value functions across firms are aggregated by

ν̃estt =
∑
h

ω̃h(1− θ)−1πh
H,t. (L.3)

We consider a special case in which fractions ωh and ω̃h follow the same geometric dis-

tributions:

ωh = ω̃h = ρh(1− ρ)

for any h ≥ 0, where ρ ∈ (0, 1). Then, the aggregate variables become the weighted average

among the population. The current endogenous variables are aggregated as follows:

ĉt =
∑
h

ωhĉ
h
t , ŷt =

∑
h

ωhŷ
h
t , ı̂t =

∑
h

ωhı̂
h
t , r̂∗t =

∑
h

ωhr̂
∗,h
t , πH,t =

∑
h

ωhπ
h
t ,

πt =
∑
h

ωhπ
h
t , q̂t =

∑
h

ωhq̂
h
t , ŝt =

∑
h

ωhŝ
h
t , ε̂t =

∑
h

ωhε̂
h
t , b̂∗t+1 =

∑
h

ωhb̂
h
t+1.

(L.4)

The k-period ahead expectations for CPI inflation are aggregated as follows:

Eagg
t πt+k ≡

∑
h

whEh
t πt+k =

∑
h

whEtπ
h−k
t+k|t

= Et

[
ρk(1− ρ)π0

t+k|t + ρk+1(1− ρ)π1
t+k|t + ρk+2(1− ρ)π2

t+k|t + · · ·
]

= ρkEt

[
πt+k|t

]
.

Similarly, we obtain

Eagg
t q̂t+k = ρkEt

[
q̂t+k|t

]
, Eagg

t ı̂t+k = ρkEt

[
ı̂t+k|t

]
, Eagg

t r∗t+k = ρkEt

[
r∗t+k|t

]
.

Thus, we have

Et

[
πt+k|t

]
= ρ−kEagg

t πt+k, Et

[
q̂t+k|t

]
= ρ−kEagg

t q̂t+k,

Et

[
ı̂t+k|t

]
= ρ−kEagg

t ı̂t+k, Et

[
r̂∗t+k|t

]
= ρ−kEagg

t r̂∗t+k,

and the k-step ahead domestic real interest rate becomes

Et[r̂t+k|t] = Et

[
ı̂t+k|t

]
− Et

[
πt+k+1|t

]
. (L.5)

We can then construct DS
t (M) =

∑M−1
k=0 Et[r̂

∗
t+k|t − r̂t+k|t] and D

L
t (M) =

∑∞
k=M Et[r̂

∗
t+k|t −
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r̂t+k|t].

For the numerical exercise, we set ρ = 8/9 so that the average planning horizon in the

economy is ρ/(1 − ρ) = 8 quarters, the same as the planning horizon of the homogeneous

agents in Section 4.25 Figure L.12 illustrates the related regression coefficients; it shows

that the coefficients for excess return predictability across various time horizons display a

pattern similar to our benchmark results, as shown in Section 5. Additionally, there is a

breakdown of the forecast horizon invariance, as shown in the middle and right panels. One

observation is that the long-term reaction coefficient of the real exchange rate, γ̂S, exhibits

quantitatively small variations across different thresholds M . This is because the long-term

expected real interest rate differential DL
t (M) also shows relatively small variations across

these thresholds, due to the aggregation effect of the value functions across heterogeneous

planning horizons.

Figure L.10: Robustness Check with Alternative Planning Horizons h ∈ {2, 4, 40}

(a) Excess Return Predictability across Time Horizons
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(b) Reaction Coefficients of Real Exchange Rate to Expected Real Interest Rate Differentials
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25For numerical aggregation, we consider planning horizons ranging from 0 to 100. Also, we nullify the
firms’ learning in their value function.
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Figure L.11: Robustness Check with Different Firm’s Learning Gains γṽ ∈ {0.1, 0.5, 0.99}

(a) Excess Return Predictability across Time Horizons
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(b) Reaction Coefficients of Real Exchange Rate to Expected Real Interest Rate Differentials
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Figure L.12: The Case of Heterogeneous Planning Horizon across Agents
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Notes: The average planning horizon of the population is set to be eight quarters (ρ = 8/9). The left panel
shows the regression coefficients for the excess return predictability. The middle and right panels show the
regression coefficients for the response of the real exchange rate to expected real interest rate differentials
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