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Abstract

We examine cost-plus lagged-price reimbursement contracts, focusing on Medicare

Part B’s payment for physician-administered drugs. While previous research showed

Part B increased launch prices, we estimate its effect on later prices and find that

lagged-price reimbursement lowers prices in later periods. Drugs more exposed to

Medicare reimbursement have lower price growth (net of rebates): a drug with above

median Part B exposure has a 10% lower price after 3 years than a below median

exposure drug that launched at the same price, with a larger effect for newly approved

molecules.
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1 Introduction

Governments purchase goods and services from private firms ranging from defense contrac-

tors to healthcare providers. When contracting with the government, prices are rarely deter-

mined by a market mechanism, which can lead to distortions. In an efficient market, prices

signal firm production costs and consumers’ willingness to pay. Absent such an information

aggregating mechanism, governments frequently use cost-plus contracts. Absent good infor-

mation on costs, the government may use proxies, including past prices. The combination of

cost-plus contracting and dynamic incentives can amplify or dampen distortions, especially

when firms price strategically: the input price set by the firm today will affect the future

reimbursement that contractors buying these inputs will receive from the payer.

This paper empirically characterizes the effects of lagged-price cost-plus reimbursement

on dynamic incentives for price setting. We focus on physician-administered drugs covered by

Medicare Part B, which includes anti-cancer/chemotherapy drugs and immunosuppressives.

However, lagged-price cost-plus procurement contracts show up in other markets as well.

For instance, in construction contracting, a producer sets a price for a construction-related

input (e.g. asphalt), a construction contractor purchases that input, and the government

makes additional payments to contractors if they have an economic price adjustment clause

if an index of prices is higher than forecasted.1

Payment for prescription drugs is particularly controversial, as the government (via Medi-

care) is a major purchaser from pharmaceutical firms who often hold a monopoly on the drug.

In Medicare Part B, which covers physician-administered drugs, the government pays physi-

cians using cost-plus reimbursement based on lagged-prices. However, widespread concern

about rising drug prices has driven proposals to change how drugs are paid for and recent

policy reforms in which government will directly negotiate drug prices.2 Moreover, in addi-

tion to affecting drug spending, Part B policy could have important consequences for enrollee

health. Medicare is a major payer for cancer care in the US, and Part B drugs are a major

source of revenue for oncology practices.

Part B has a buy-and-bill policy, in which physicians purchase drugs (either on their

own, or as part of a group purchasing organization). Medicare pays physicians when they

deliver these drugs based on lagged average cost (from two quarters ago) plus a percentage

1See economic price adjustment clauses in construction and defense contracts discussed in Crocker and
Reynolds (1993) and Kosmopoulou and Zhou (2014).

2In addition to the 2022 Inflation Reduction Act, e.g. as discussed in Cutler (2022), potential policy
reforms are discussed in Ridley and Zhang (2017); Dubois et al. (2022); Ginsburg and Lieberman (2021).
Lakdawalla (2018) provides a review of the literature on the economics of pharmaceuticals. By contrast,
in Medicare Part D, which covers most self-administered drugs, the government has largely devolved price
negotiation to private firms that offer insurance plans.
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markup. The policy has different incentives than either a simple fixed price or cost-plus

contract (see Bajari and Tadelis (2001)). In particular, since physician margin is increasing

in lagged-price, higher prices may ultimately lead physicians to prescribe more. While the

introduction of the current Part B payment policy has been linked to higher drug prices at

launch (Howard et al. 2015; Ridley and Lee 2020), it is unknown how Part B affects changes

in prices over time.

We first examine empirically how Part B’s payment policy affects prices changes over

time during the period 2006-2019. Our identifying variation comes from drugs that are more

or less exposed to Part B: the share of expenditures for a drug that comes via Medicare

Part B, as opposed to private insurers. A similar research design is used by Yurukoglu et al.

(2017) to show that exposure to Part B led to shortages in the generic market.3 We observe

average prices net of rebates. Our identification strategy includes a drug fixed effect, so it

does not rely on Medicare market share not being correlated with drug value or demand.

For a drug whose Medicare market share at launch is above the median, we estimate that

prices 3 years after launch are at least 10% lower than a drug with below median exposure

that launched at the same price, with a larger effect for newly approved molecules. Previous

literature shows that physician-administered drug prices at launch have been increasing over

time ((Howard et al. 2015) on anti-cancer drugs), and changes to Part B reimbursement in

2006 led to higher launch prices (Ridley and Lee 2020). We show that, following launch,

more exposure to Part B payment led to slower price growth. We further document that

the dynamic impact dampens but likely does not erase the overall upward pressure on prices

generated by the Medicare program.

We then develop a conceptual framework to understand the economic forces that could

generate the observed pricing patterns, which contrast common “invest-then-harvest” pricing

that is typically observed in this market (e.g. Farrell and Shapiro (1988); Ericson (2014)).

We model the key features of Medicare payment for physician-administered drugs: pharma-

ceutical firms set prices, physicians buy the drug on behalf of patients and choose how much

to consume, and Medicare reimburses physicians based on lagged market average prices. In

our theoretical model, pharmaceutical firms account for changes in future reimbursement

when setting prices. Physician demand is affected by both current price and reimbursement,

the difference between which is their margin. But because reimbursement levels affect not

only physician reimbursement but patients’ level of cost-sharing, the model allows price and

reimbursement to have different impacts on demand. We show that lagged-price cost-plus

3Duggan and Scott Morton (2010) also use this strategy to show that the introduction of Medicare Part
D lowered the cost of covered drugs, as plan formularies made the demand of newly insured individuals
more elastic. Ippolito and Levy (2023) also show that drugs more exposed to Medicare Part D have larger
differences between net and list prices of drugs.
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reimbursement, as implemented in Part B, can lead to both higher initial prices but and

lower prices relative to launch in later periods.

Our paper is related to a large literature that explores the impact of contracting and pro-

curement rules in healthcare (e.g. Gaynor et al. (2023); Decarolis (2015)), construction(e.g.

Bosio et al. (2022); Krasnokutskaya and Seim (2011)), and telecommunications (e.g. Kang

and Miller (2022)). However, many of these papers do not examine the effects on how prices

evolve over time (for an exception, see Ji and Rogers (2023)). Our paper examines these

dynamic forces theoretically and empirically.

2 Institutional Setting

The Medicare program provides health insurance to elderly and disabled individuals in the

United States. Part B covers outpatient care, including drugs administered by physicians.

The majority of Part B drug payments are for services rendered in physician office settings;

Part D covers outpatient drugs.Spending on Medicare Part B drugs totaled $37.1 billion in

2019, which is about one-fifth the size of spending on Part D drugs. (MedPAC 2022). The

top ten drugs ranked by Medicare Part B expenditures constitute about 40% of Part B drug

spending. Since 2005, Medicare has reimbursed providers based on average sales price (ASP)

(Jacobson et al. 2010; Yurukoglu et al. 2017; Ridley and Lee 2020).

The provider pays a price to the manufacturer that is averaged to construct an average

sales price (ASP). The provider is then typically reimbursed at lagged ASP times a multiplier,

here 106% the ASP from two quarters ago.4 The out-of-pocket costs for the patient are

20% of the reimbursed amount in the form of coinsurance; the Medicare program covers

the remaining 80%.5 Initial period reimbursement cannot rely on lagged-prices, and is set

at a markup over the “list” price, either Wholesale Average Cost (WAC)+6% or Average

Wholesale Price (AWP) -5%. WAC is a list price reported by hospitals for drugs acquired

through drug wholesalers. AWP is also a list price, reported by drug wholesalers. As noted

by Ridley and Lee (2020), list prices at launch may be artificially high in these markets.

The Part B reimbursement system is controversial for several reasons. First, it is difficult

for any administered price system to capture marginal costs. While some worry about over-

payment, particularly for biologics (Morton and Boller 2017), others note that government

policy can put a financial strain on providers (Polite et al. 2015). Lagged-price reimburse-

ment will additionally create dynamic pricing incentives that may affect provider treatment

4The controversial 340B program allows some providers treating low-income patients to buy at a discount
and (in some time periods) receive lower reimbursement. See Desai and McWilliams (2018).

5Patient cost-sharing is substantially reduced if they purchase additional Medigap insurance or are dual-
eligible for Medicaid.

3



decisions and the lifetime profitability of drugs. For some physicians, reimbursements for

these drugs constitute a substantial share of revenue. Financial incentives for physicians may

be particularly strong in oncology because average drug margins for chemotherapy can range

anywhere from a few cents to $2,000 for a single dose. Physicians might have a preference

for drugs with higher price levels, in so far as these yield a higher margin.

To build intuition, consider how the Part B reimbursement rules may affect a monopolist’s

pricing incentives (62% of drugs covered under Part B have a monopoly manufacturer). A

pharmaceutical firm introducing a new drug into the market may want to enter at a low price

to encourage physicians to adopt the new treatment, but Part B reimbursement rules imply

that physicians will get reimbursed at low rates in subsequent periods, which may cause them

to stop prescribing the drug future periods. If physicians who prescribe the drug are sensitive

to both the acquisition price and the reimbursement rate of a particular drug, then lagged-

price reimbursement affects the pharmaceutical firm’s trade-off between current and future

profits. Because the pharmaceutical monopolist can control future reimbursement through

its choice of current prices, the firm has an incentive to raise prices in the current in order

to ensure that Medicare reimburses physicians at a high rate in the future period. These

pricing incentives are exactly the opposite of ”invest-then-harvest” pricing: if physicians are

reluctant to adopt new drugs, then setting high prices with high future reimbursement rates

may be unprofitable. Thus, the effect of lagged-price reimbursement rules on price growth

is theoretically ambiguous, ex-ante.

3 Data and Descriptive Statistics

3.1 Data

We construct a sample of prices and Medicare market shares for physician-administered

drugs spanning 2006 through 2019. Our unit of analysis is the drug-quarter, where drugs are

uniquely identified by Health Care Procedure Coding System (HCPCS) codes. We combine

data from three sources: pricing files, aggregate Medicare claims, and Truven Marketscan

spending aggregates.

To measure the price and reimbursement of a drug, we use the Average Sales Price (ASP)

of Part B drugs from 2005 through 2019, which are publicly available from the Center for

Medicare Services (CMS). ASP data are reported at the HCPCS level. We include only

HCPCS introduced later than 2005 and exclude drugs in the ASP files that are reimbursed

under alternative methodologies (vaccines and blood/clotting products), limiting to ”J Code”

HCPCS.
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We measure price by inverting the reimbursement rate. The ASP pricing files contain

quarterly data on the reimbursement rate, which is a function of the lagged sale price of the

drug. We construct our price variable for each drug 𝑗 in quarter 𝑡 by taking the reimburse-

ment rate from quarter 𝑡 + 2 and dividing it by 1.06.

To measure exposure to the Medicare Part B program, we construct Medicare market

share (MMS) for each HCPCS, following a similar approach to Yurukoglu et al. (2017). We

aggregate drug payments both from private insurers and from Medicare, and define MMS

for each drug-year as Medicare over Medicare plus private drug payments in that year.

We obtain Medicare’s aggregate drug payments from the CMS Part B National Summary

Data File, which contains yearly data on aggregate payments for each HCPCS code in by

Part B. We obtain aggregate private drug payments at the HCPCS-year level using Truven

MarketScan data for each year. We follow Yurukoglu et al. (2017) and scale these payments

up by the ratio all commercial insurance enrollees to the number of Marketscan enrolees

in that particular year, assuming that Marketscan provides an approximately nationally

representative sample of the commercial insurance market, which allows us to construct a

national private drug payments figure.

Our key treatment variable is a drug 𝑗’s Medicare market share at launch, which we term

𝑀𝑀𝑆 𝑗. We focus at MMS at launch to measure a persistent characteristic of a drug– its

exposure to the pricing incentives created by Medicare Part B. Finally, drugs are launched

in different years, so we use 𝜏 to describe time in quarters relative to a drug’s launch. The

first period that HCPCS is observed is normalized to 𝜏 = 1.

3.2 Descriptive Statistics

Prices evolve quite heterogeneously across drugs. We give some examples in Figure 1 Panel

A, which displays the price paths (relative to launch price) of the top 10 Medicare Part B

expenditure drugs across the 2015-2019 period. We plot prices relative to prices in 2015,

though note that these drugs were introduced are a variety of different times. While many of

these drugs show a steady increase across time, there are exceptions, such as Ranibizumab

(a drug used for macular degeneration), that show declining prices over time. Various drugs

experience a drop in prices after prior increases; these drop-offs are sometimes but not always

related to billing-code entry.

Medicare quantity sold, measured as revenue divided by price, varies over time (See

Appendix Figure A0). While highly heterogeneous across drugs, on average quantity sold

doubles in the first two years post-launch. As a result, prices in later periods contribute

more to the volume-weighted lifetime cost of a drug than the launch price, motivating our
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analysis of the dynamic pricing impact of Part B reimbursement.

Table 1 gives descriptive statistics on our cohort of drugs, and Appendix Figure A1 shows

the distribution of MMS at launch. We identify 215 unique HCPCS, and split them into

above and below median MMS at launch, which is 0.193. Relative prices 2 years after launch

are about 3% higher for above median MMS and 8% higher for below median MMS drugs.

However, above Median MMS drugs are about 1.3 years “newer.”

Prices grow at a slow enough rate to leave positive profit margins for the average provider.

Constructing the average annual and quarterly growth rate for each drug provides insight

into the profits that prescribing providers make. A provider who acquires the drug at a price

equal to ASP every quarter will make zero profit margin on a drug whose price grows at 6%

over two quarters. (The reimbursement rate will equal acquisition costs in this case.) Note

that for prices to grow by 6% over two quarters, the compound quarterly growth rate has to

be 2.96%, since (1.0296)2 = 1.06. Here, the mean compound quarterly growth rate is 0.92%.

Figure 1 Panel B shows the price evolution of drugs over time, split by exposure to Part

B. We split the sample by whether the drug was above or below median MMS at launch

to allow us to compare prices between drugs that are more or less exposed to the Medicare

market. This figure normalizes the price at launch (𝜏 = 1) and plots price in later quarters,

weighting by total market size. Weighted by market size, prices are 10-20% more expensive

2 years after launch, with greater price growth for drugs more exposed to Part B.

4 Empirical Strategy and Results

4.1 Estimation

Our empirical strategy uses cross-sectional variation in individual drug exposure to the Medi-

care market to identify the effects of Part B’s lagged ASP reimbursement rule on drug price

growth. We estimate:

𝑙𝑛(𝑝 𝑗𝑡) = 𝛽𝜏𝑗𝑡𝑀𝑀𝑆 𝑗 × 𝜏𝑗𝑡 + 𝜏𝑗𝑡 + 𝑋𝑗𝑡 + 𝜖 𝑗𝑡 (1)

where 𝑝 𝑗𝑡 is the price (ASP) of drug j in year t, 𝜏𝑗𝑡 is a set of indicator variables for the

quarter relative to when drug 𝑗 was introduced, 𝑀𝑀𝑆 𝑗 is the Part B share of drug 𝑗’s claims

in its first quarter. We include drug and year fixed effects in 𝑋𝑗𝑡 . Note that 𝑀𝑀𝑆 𝑗 does

not vary over time– it is constant within a drug– and we include drug fixed effects. (MMS

is highly correlated within a drug over time, above 0.9.)

The key coefficients of interest are the 𝛽𝜏𝑗𝑡 , the coefficients on the interactions between

time since launch 𝜏𝑗𝑡 and 𝑀𝑀𝑆 𝑗. The estimates describe how prices in later periods com-
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pare to the launch price for HCPCS with relatively high Medicare market share at launch.

The identifying assumption is that drugs with different 𝑀𝑀𝑆 𝑗 would have had the same

percentage change in price in later periods in the absence of incentives created by the Medi-

care reimbursement program. Conditional on drug fixed effects, the regression coefficients

can be interpreted as percentage price changes relative to launch. While we cannot identify

the effect of Medicare market share on launch prices, this strategy has a number of advan-

tages. For example, we do not need that the price per standardized dosage of one drug is

comparable to the price per dosage of another.

We weight our regressions by a drug’s average total market size over the time of our

sample. This allows us to identify the average causal effect of Medicare market share per

dollar spent, rather the average per drug, as there are many small drugs that are relatively

unimportant for overall drug spending. (See Solon et al. (2015) on weights).

4.2 Main Results

Panel A of Figure 2 shows that drugs that are more exposed to Medicare Part B have slower

price growth. The confidence intervals on each individual interaction coefficient are wide,

but we can test the hypothesis that the interactions between MMS and time since launch

are all zero (𝐹(23, 214) = 3.52, 𝑝 < 0.001). We thus reject the hypothesis that high Medicare

market share drugs have the same price path as low Medicare market share drugs.

To interpret the results, note that the interaction coefficient on 𝜏 × 𝑀𝑀𝑆 𝑗 tells us how

higher versus Medicare market share drugs will be priced in period 𝜏, relative to their launch

price. The interaction coefficient of −0.18 on 𝜏 = 24 × 𝑀𝑀𝑆 𝑗 tells us that high Medicare

market share drugs will have increased their prices less than low Medicare market share

drugs. For a drug sold only to Medicare (MMS=1), the estimates predict that after 6 years,

its price would be about 18% below a drug with no Medicare market share that launched at

the same price. (They may, however, launch at different prices.)

We summarize our results succinctly in Table 2, which presents results for both the full

analysis sample and a balanced panel of drugs. In Column 1, we impose a linear time trend

in prices post launch, and interact that with MMS. These specifications indicate that drugs

with zero MMS grow at about 0.7% per quarter, while drugs with 100% MMS grow about

-0.8 percentage points less per quarter than zero MMS drugs. Results in Column 3 for a

balanced panel show a similar pattern, but with a stronger interaction where 𝑀𝑀𝑆 = 1

drugs grow about -1.5 percentage points per quarter less than 𝑀𝑀𝑆 = 0 drugs.

However, a linear specification in time and MMS may not be appropriate. Table 2 also

presents a specification in which time period is split into early (𝜏 <= 12) and late, and drugs
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are split into above and below median MMS. Holding launch price constant, prices of above

median MMS drugs are 11% below those of below median MMS drugs after 3 years in our

Analysis Sample, with a smaller estimate for the balanced panel.

Our main analysis examines price and reimbursement for all newly introduced J-codes,

regardless of whether the underlying molecule was newly approved. However, the pricing

dynamics of older drugs might be different, due to greater generic competition (or the threat

thereof), as well as potential anchoring on prices that pre-dated the introduction of the

new HCPCS code. Indeed, Appendix Figure A2 shows that competitor entry can happen

quickly for new J-codes for existing molecules. To address these concerns, we created a

narrow sample of drugs whose molecule FDA approval date was concurrent (within 1 year)

with the introduction of the HCPCS code.6 The resulting estimates displayed in Panel B of

Figure 2 show that the MMS interaction effects are larger in magnitude and more precisely

estimated in this sample, with coefficients approximately -0.13 after 12 quarters and -0.29

after 24 quarters, compared to about -.09 and -0.18 in our main results. This suggests our

main specification is conservative.7

4.3 Robustness

Appendix Figure A4 shows that our results are robust to using a variety of alternative

two-way fixed effects estimators that remove these concerns. Point estimates in each case

are quite similar. (To test robustness to alternative estimators, we need to discretize our

treatment. We do this by splitting our sample into above versus below median MMS, as in

Table 2.)

We also consider a series of additional robustness checks in Appendix Figure A5. Each

panel presents an analogue of Figure 2 Panel A run on a different sample. In Panel A, we

show that excluding outliers does not meaningfully affect our results. In Panel B, we weight

all drugs equally, rather than by drug market size. The results are noisier, thought the point

estimates are larger in magnitude. To address any concerns that our results are driven by

an unbalanced panel, we construct a sample with a balanced panel. We first shorten our

estimation window to the first 4 years since launch in order to maximize sample size, and

show the regression results on an unbalanced panel in Panel C. Panel D then shows the

balanced panel results. The results are quite similar, and in fact more precisely estimated

than our main results.

6This required merging the HCPCS to NDC using string matching on drug names. The narrow sample is
smaller– 88 unique HCPCS, rather than 215 in our main analysis sample. Appendix Figure A3 shows that
this sample has a longer time until competitor entry in the billing code.

7A linear specification in time gives a coefficient on 𝜏 × 𝑀𝑀𝑆 of -0.013, about twice that in Table 2
column 1.
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In Appendix Figure A6, we consider a set of additional robustness checks related to

sample composition. Panel A reproduces our main Figure 2 on a common axis for reference.

The negative trend becomes, if anything, stronger in three robustness checks: excluding

the initial (and largest) cohort of observations in Panel B, excluding small cohorts of two

or fewer drugs in Panel C, and excluding drugs that ever have a period of missing price

data in Panel D. We also examine whether the effect of MMS is different in cohorts of

drugs introduced sooner versus later after Part B’s lagged-price reimbursement system was

introduced. Appendix Table A1 shows no clear evidence that the effect is different for these

cohorts.

Finally, to address concerns that MMS might be endogenous to firm pricing strategy,

we create another independent measure of exposure to Medicare’s pricing incentives. We

examine individuals with commercial insurance not on Medicare, and compare drugs with

higher market share among older versus younger commercially insured individuals. The

correlation at launch between MMS and this alternative measure is 0.46. Appendix Tables

A2 and A3 give details and show that we find similar and perhaps more negative estimated

impacts of this alternative measure of exposure on price growth.

4.4 Medicare Market Share and Launch Price

To place in context our estimates of the dynamic effects of lagged-price reimbursement, we

also provide estimates of the impact of Medicare Part B on initial launch price. We view these

estimates with skepticism. Our main results include drug fixed effects and simply require

that counterfactual percentage changes in prices be the same across groups. However, to

identify whether drugs with higher Part B exposure have higher launch prices, we must

remove drug fixed effects from our regression. The identification assumption required is

now much stronger: in the absence of Part B’s reimbursement formula, the types of drugs

with greater exposure to Medicare Part B would have had initial prices that were the same

on average as drugs with less exposure to Part B. Moreover, in the absence of a clearly

comparable unit of measure for drug pricing, we anticipate greater variation in measured

HCPCS prices.

Nonetheless, Table A4 shows the results of regressions that parallel those in our Table

2, but now drops drug fixed effects and displays the effect of 𝑀𝑀𝑆 𝑗 on launch prices. We

estimate that drugs with above median MMS have launch prices that are 64 log points (90%)

higher, but this is imprecisely estimated and we cannot reject declines of 26 log points or

increases of 154 log points. Despite the imprecision, these results plus those of Ridley and

Lee (2020), suggest that the effects of Part B on initial price are larger than the declines in
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later periods.8

4.5 Implications

What is the overall impact of high (above-median) exposure to Medicare on the lifecycle

price of drugs? We compare our estimates to the estimates we would get if we ignored the

dynamic price effect and simply extrapolated the estimated Part B effect on launch price

to all future periods. We focus on the first 6 years (24 quarters), and assume no difference

after that time, as this is the window for which we are able to estimate results. The lifecycle

price of a drug is
∑24

𝜏=1 𝑝𝜏𝑄𝜏∑24
𝜏=1 𝑄𝜏

, ignoring discounting over this short horizon. Each period’s price

is weighted by the quantity sold 𝑄𝜏 in that period using the estimates from Figure A0.

Our estimate of the effect of being above median MMS in years 3-6 comes from Table 2

Column 2. The estimate of the effect of being above median MMS on launch is taken from

Table A4 Column 2. We transform these log point changes into percentage changes. Naively

extrapolating the launch price effect implies that being above median MMS raises lifecycle

price by 89%. However, the lifecycle price is actually only 79% higher accounting for the

decline in years 3-6. Ignoring the dynamic price changes would lead to an overestimate of

the lifecycle price.

The estimated net effect is that more exposure to Part B leads to higher lifecycle prices.

This result is robust to a range of possible launch price effects– it holds even if the actual

increase in launch price was only about one-tenth our observed estimate.

5 Conceptual Framework

We develop a stylized model of monopolist pricing under lagged-price reimbursement to

interpret our empirical findings. In the model, some drug purchases are reimbursed by the

government with lagged-price reimbursement, and the remainder are reimbursed by private

insurers at an independently determined rate. The model shows the conditions under which

Medicare’s lagged-price reimbursement will lead to slower price growth or declining prices

over time.

8Ridley and Lee (2020) estimates that the average effect of being exposed to Part B’s lagged-price reim-
bursement payment system, compared to Medicare’s previous reimbursement system, was a 0.61 log point
price increase at launch. That estimate is not directly comparable to ours, as our estimate comes from
variation in exposure to Medicare versus private payment.
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5.1 Demand

Consider a two period (𝑡 = 1, 2) model of pharmaceutical pricing.9 Physicians acquire drugs

directly from a pharmaceutical firm each period, and pharmaceutical firms set prices. (We

abstract away from intermediaries, such as pharmacy benefit managers.) Physicians then

receive payment for the drug purchases from the government using lagged-price reimburse-

ment. Private firms use their own independent payment methodology, which is determined

outside the model. The fraction of patients with Medicare insurance is 𝜇, with the remainder

in private insurance.

Drug demand depends on physician utility, which consists of both profits and (potentially)

patient well-being. A physician makes a binary decision of whether to prescribe a drug to

each patient, and the utility of administering a drug to patient 𝑖 in time period 𝑡 is:

𝑉𝑖𝑡 = (𝑟𝑖𝑡 − 𝑝𝑖𝑡)︸     ︷︷     ︸
physician profits

+�̃� (ℎ𝑖𝑡 − 𝑜𝑜𝑝(𝑟𝑖𝑡))︸            ︷︷            ︸
patient utility

where 𝑟𝑖𝑡 is the reimbursement received by the physician, 𝑝𝑖𝑡 is the price the physician pays

to acquire the drug, �̃� is the physician’s weight on patient utility, ℎ𝑖𝑡 the health benefit from

administering the drug to patient 𝑖, and 𝑜𝑜𝑝(𝑟𝑖𝑡) is the patient out-of-pocket cost, which

can depend on reimbursement levels. 10 Reimbursement and acquisition prices will differ

between patients. Reimbursement depends on the patient’s source of insurance. Acquisition

prices will depend on a variety of supply-side factors and, indirectly, the mix of patients

a physician serves. For simplicity, we assume that the provider faces different acquisition

prices depending on whether they have a Medicare patient (𝑝𝑀𝑡 ) or a privately insured patient

(𝑝𝑃𝑡 ). While this assumption is stylized, evidence suggests there is substantial heterogeneity

in acquisition price across providers (Medicare Payment Advisory Commission 2016).

Whether a physician prescribes the drug depends on the physician’s margin– the differ-

ence between reimbursement and acquisition price–which can vary across patients. It also

depends on the utility of the patient, which is comprised both of a stochastic health com-

ponent and out-of-pocket spending. To simply expressions, define the physician’s effective

margin in period 𝑡 as the difference between the weighted reimbursement and the price:

𝑚𝑖𝑡 ≡ 𝜆𝑟𝑖𝑡 − 𝑝𝑖𝑡 , where the weight on reimbursement 𝜆 ≡ (1− �̃�
𝑜𝑜𝑝(𝑟𝑖𝑡)

𝑟𝑖𝑡
) accounts for both the

effect of reimbursement on physician profits and patient cost-sharing.

Quantity demanded is thus a function of the physician’s effective margin, where 𝜆 is a

9This can be generalized to multiple periods but two periods suffices to show the dynamics.
10Cost-sharing depends on insurer reimbursement, not physician acquisition price. This cost-sharing can

vary across patients depending on whether they have supplemental coverage, but we abstract away from
that in the theory.
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weight that discounts the reimbursement based on disutility of patient cost-sharing. The

probability a physician prescribes the drug to a Medicare patient is thus 𝑄(𝑚𝑖𝑡) = ℙ(𝑚𝑖𝑡 +
�̃�ℎ𝑖𝑡) > 0. A parallel expression defines the probability𝑄𝑃 that a private patient is prescribed

the drug. Demand is increasing in the effective margin (𝑄′(𝑚𝑖𝑡) ≥ 0). The effective margin is

increasing in reimbursement so long as 𝜆 > 0, which requires the weight placed on physicians’

own reimbursement to outweigh any disutility from higher patient cost-sharing.

5.2 Lagged-Price Reimbursement and Private Insurance

The reimbursement received by the physician will depend on the insurance status of the

patient. The private reimbursement rate, 𝑟𝑃𝑡 , is independent of the Medicare rate and de-

termined outside the model. In order to focus on the pricing dynamics created by lagged-

price reimbursement in isolation, we assume private reimbursement stays constant over time,

𝑟𝑃𝑡 = 𝜌.

The Medicare reimbursement rate, 𝑟𝑀𝑡 , is a function of the average sale price in the

previous period times a multiplier (1 + 𝐴). That is, 𝑟𝑀𝑡 = (1 + 𝐴)𝑝𝑡−1 with 𝐴 > 0, for 𝑡 > 1.

When 𝑡 = 1 and there is no data available on lagged prices, the Medicare reimbursement is

based off of the manufacturer list price or wholesale price. We define the average price to be

�̄�𝑡 ≡ 𝜇𝑝𝑀𝑡 + (1 − 𝜇)𝑝𝑃𝑡 , weighting Medicare by its share of potential patients. In practice,

Medicare uses the transacted quantity-weighted price, which is endogenous to price. We

simplify the expressions by using the share of Medicare patients 𝜇. Our approach is, as a

result, closely tied to the empirical exercise. In the appendix, we show this assumption does

not change the key economic intuition.

5.3 Price Setting

We now consider a pharmaceutical monopolist with constant marginal cost 𝑐 choosing prices

for its drug to maximize profits. Given r = {𝑟𝑀1 , 𝑟𝑀2 (𝑝𝑀1 ), 𝜌}, the pharmaceutical firm chooses

a vector of prices p = {𝑝𝑀1 , 𝑝𝑀2 , 𝑝𝑃1 , 𝑝
𝑃
2 } to maximize:

Π(p; r) = 𝜇
(
𝜋(𝑝𝑀1 ; 𝑟𝑀1 ) + 𝛿𝜋(𝑝𝑀2 ; 𝑟𝑀2 (𝑝𝑀1 ))

)
︸                                    ︷︷                                    ︸

Medicare market profits

+(1 − 𝜇)
(
𝜋(𝑝𝑃1 ; 𝜌) + 𝛿𝜋(𝑝𝑃2 ; 𝜌)

)
︸                       ︷︷                       ︸

private market profits

+𝛿2 𝐸𝑉(𝑝𝑀2 )︸   ︷︷   ︸
cont. value

where 𝜋(𝑝𝑡 ; 𝑟𝑡) ≡ 𝑄(𝜆𝑟𝑡 − 𝑝𝑡)(𝑝𝑡 − 𝑐) are flow profits in period 𝑡, and the term 𝐸𝑉(𝑝𝑀2 )
captures total discounted continuation profits. To the extent that firms can affect future

reimbursement via their second period Medicare price, continuation profits are a function

of the period two Medicare price. For intuition, assume the continuation value is near zero
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(e.g. the firm faces generic entry), but the theory allows for positive continuation profits.

Optimal prices will depend on the elasticity of demand with respect to the effective

margin, since the payment a physician receives is the difference between list price and re-

imbursement. Define the semi-elasticity of demand with respect to the effective margin as

𝜂(𝑚) ≡ 𝑄′(𝑚)
𝑄(𝑚) .

In a single-period static model, the firm would set prices equal to marginal costs plus

a markup term based on the inverse semi-elasticity. In the private insurance market, the

pharmaceutical firm indeed chooses the same price in both periods, 𝑝𝑃𝑡 = 𝑝𝑃 given that

reimbursement rates are independent across periods and constant. Private demand will thus

be constant over time.11

However, Medicare’s lagged-price reimbursement links the prices set between periods.

The first order conditions for the the optimal Medicare prices are then:

𝑝𝑀1 = 𝑐 + 1

𝜂(𝑚1)
+ 𝛿(𝑝𝑀2 − 𝑐) 𝑄

′(𝑚2)
𝑄′(𝑚1)

(1 + 𝐴)𝜆𝜇︸                ︷︷                ︸
effect of ↑ 𝑝1
on 𝑄2 demand

, (2)

𝑝𝑀2 = 𝑐 + 1

𝜂(𝑚2)
+ 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄′(𝑚2)︸      ︷︷      ︸

effect of ↑ 𝑝𝑀2
on continuation profits

. (3)

The Medicare pricing decisions are not independent across time because 𝑚2 depends on

𝑝𝑀1 ; the optimal launch price depends on the period 2 price and vice versa. The margin in

period 2 will depend on the reimbursement level, which is determined by launch price. In

turn, period 1 price depends on the profit margin the firm anticipates in period 2. (Suppose–

outside the model– the firm expected to have to price at marginal cost in period 2. Then,

there would no longer be an incentive to raise launch price above the static monopoly price

in period 1.)

The first order condition for the choice of launch price shows that the difference between

static monopoly pricing and optimal prices depends on the marginal effect of launch prices

on future demand. Launch prices affect future demand by changing effective margin to

physicians in period 2. This impact on margin depends on share of Medicare patients 𝜇,

the ASP reimbursement multiplier 1 + 𝐴, and weight 𝜆 on reimbursement versus price in

11Formally, the profit-maximizing private price 𝑝𝑃𝑡 is characterized by 𝑝𝑃𝑡 = 𝑐 + 1

𝜂(𝜆𝜌−𝑝𝑃𝑡 )
in each period 𝑡.

Since private reimbursement 𝜌 is constant over time, the optimal period one price equals the optimal period
two price, 𝑝𝑃1 = 𝑝𝑃2 = 𝑝𝑃 .
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physician’s effective margin.

We make four technical assumptions formalized in the Theoretical Appendix. First, we

assume that the physician puts a positive weight on reimbursement and that the patient

out-of-pocket share is constant. Second, we assume that conditions hold such that the

pharmaceutical’s pricing problem is globally convex. Third, we assume that continuation

value profits are not too negative in the period 2 Medicare price. Fourth, we assume that the

firm cannot make infinite profits in the future by raising current prices (e.g. continuation

value of future profits are not convex in the period two Medicare price).

5.4 Results

Our theoretical results show when the Medicare lagged-price reimbursement system will lead

to declining prices over time, as opposed to the flat prices in the private sector. Proposition

1 provides an intuitive condition for the necessary and sufficient conditions for lagged-price

reimbursement will lead to a declining Medicare price path: so long as the semi-elasticity of

demand in period 2 is not too much more inelastic, price will decline over time. The larger

the ASP add-on (1 + 𝐴), the discount rate, and the share of Medicare patients, the more

semi-elasticity of demand can differ.

Proposition 1 The equilibrium Medicare price will decrease over time (𝑝𝑀1 > 𝑝𝑀2 ) if and

only if:
𝜂(𝑚1)
𝜂(𝑚2) <

1+𝛿(1+𝐴)𝜆𝜇𝑄(𝑚2)
𝑄(𝑚1)

(
1+𝛿

𝐸𝑉′(𝑝𝑀
2

)
𝑄(𝑚2)

)
1+𝛿

𝐸𝑉′(𝑝𝑀
2

)
𝑄(𝑚2)

.

Proof. The difference between the optimal Medicare prices in period 2 and period 1

from equations (3) and (4) can be written as:

𝑝𝑀2 − 𝑝𝑀1 =
1

𝜂(𝑚2)

[
1 − 𝛿

𝑄′(𝑚2)
𝑄′(𝑚1)

(1 + 𝐴)𝜆𝜇
]
− 1

𝜂(𝑚1)
+ 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄′(𝑚2)

[
1 − 𝛿

𝑄′(𝑚2)
𝑄′(𝑚1)

(1 + 𝐴)𝜆𝜇
]

This is negative if and only if 1
𝜂(𝑚2)

(
1 − 𝛿𝑄′(𝑚2)

𝑄′(𝑚1)(1 + 𝐴)𝜆𝜇
) (

1 + 𝛿
𝐸𝑉′(𝑝𝑀2 )
𝑄(𝑚2)

)
< 1

𝜂(𝑚1) . Given

that 𝜂 > 0, and that 𝑄′(𝑚2)
𝑄′(𝑚1) =

𝜂(𝑚2)𝑄(𝑚2)
𝜂(𝑚1)𝑄(𝑚1) , we can rearrange to yield the condition to yield(

1 + 𝛿
𝐸𝑉′(𝑝𝑀2 )
𝑄(𝑚2)

)
<

𝜂(𝑚2)
𝜂(𝑚1)

(
1 + 𝛿(1 + 𝐴)𝜆𝜇𝑄(𝑚2)

𝑄(𝑚1)

(
1 + 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄(𝑚2)

))
. Given that

(
1 + 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄(𝑚2)

)
≥ 0

by construction (see Assumption (iii) in Theoretical Appendix), can further rearrange to

yield the condition
𝜂(𝑚1)
𝜂(𝑚2) <

(
1 + 𝛿(1 + 𝐴)𝜆𝜇𝑄(𝑚2)

𝑄(𝑚1)

(
1 + 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄(𝑚2)

))
/
(
1 + 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄(𝑚2)

)
.

To see the intuition underlying the condition, consider the case where profits after period

2 are not impacted by period 2 price, so 𝐸𝑉′(𝑝𝑀2 ) = 0. Then, the condition reduces to
𝜂(𝑚1)
𝜂(𝑚2)
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being less than 1 plus an additional positive term that increases in 𝐴 (ASP add on) and 𝜇

(the fraction of Medicare patients). It is thus always satisfied when the semi-elasticities with

respect to margin are constant or larger in period 2. It is more likely to be satisfied when

period 1 demand is relatively inelastic 𝜂(𝑚1) < 𝜂(𝑚2), when Medicare is more generous (𝐴

is larger) and more important (𝜇 is larger).

Note that the theory also allows for time-invariant differences in Medicare versus private

reimbursement and demand. Private reimbursement may be higher or lower, and private

demand may be more or less elastic than Medicare demand, and the private market price

would still be constant, while the Medicare price would decline over time if and only if the

condition in Proposition 1 holds.

To facilitate application of the theory to our empirical results, we have the following

corollary:

Corollary 1 Prices for drugs with positive Medicare market share (𝜇 > 0) will have a larger

decline in average price (𝑝2−𝑝1) over time, compared to drugs with no Medicare market share

(𝜇 = 0).

When 𝜇 = 0, the theory tells us average price 𝑝𝑡 is constant, since it is determined by

the private market, while when 𝜇 > 0, price is declining (𝑝1 − 𝑝2 > 0) since it is an average

of the constant price price and the declining Medicare price.

Empirically, we see rising drug prices on average over time, in the private sector. However,

consistent with our theory, Medicare restrains those price increases: recall that Table 2

shows that 𝑝𝑡 has a smaller increase for drugs with above median Medicare market share, as

compared to drugs below the median. The corollary is applicable, as the average Medicare

market share in the below median group is close to zero– only 6%, compared to 48% in the

above median group all. The below median group experiences about 8% price growth after

12 quarters, compared to a decline of about 3% in the above median Medicare market share

group.

The link between the empirical application and the theory though, is more subtle. Medi-

care reports the quantity-weighted average sales price at each point in time, which is an

equilibrium outcome. Not only is the Medicare price changing over time, Medicare’s weight

in the average also changes over time. (In contrast, 𝑝𝑡 in the theory weighs by a constant

𝜇, the fraction of individuals with Medicare coverage.) When the Medicare market share is

constant, it is clear the quantity-weighted price will decline overtime if 𝜇 > 0. Appendix

Proposition A.1 shows the condition for the quantity weighted price to decline overtime with

𝜇 > 0, essentially showing the market shares cannot vary too much over time compared to
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the price variation.12

These results show that the dependence of drug reimbursement rates on lagged prices

distorts optimal pricing decisions so that firms charge high prices at launch, and lower prices

in subsequent periods. The reason is that margins, more so than prices, are what determines

quantity sold: setting a high price and lowering it gives a physician more margin in later

periods.

6 Conclusion

Understanding the dynamic pricing incentives in lagged-price reimbursement contracts is

important. Our model and empirical analysis show that these contracts can shape the

market prices that they in turn rely on. We find that lagged cost-based reimbursement in

Medicare Part B creates incentives to launch at high prices and then lower them over time.

Future theoretical work should explore the impact of price dispersion and negotiation in

the model. Future empirical work should examine how providers respond to changes in mar-

gin and how that affects patient health. Moreover, because Medicare Part B reimbursement

design affects prices and thus drug profitability, it may have impacted innovation.

Understanding how payment policy affects the pricing of pharmaceuticals is necessary to

evaluate policy reforms, such as reforms included in the 2022 Inflation Reduction Act. The

impact depends on both policy parameters and the elasticity of demand. Our model can be

used by policy-makers with context-specific estimates to predict how the design of contracting

in Medicare Part B will impact overall costs. It could also enrich models of external reference

pricing (in which countries set prices based on lagged-prices in other countries, see e.g. Maini

and Pammolli (2023)) and can be used for other non-pharmaceutical industries.

12A stronger theoretical claim would be the price decline increases in 𝜇 at each level of 𝜇:
𝑑(𝑝1−𝑝2)

𝑑𝜇 > 0,

but this is quite complex as 𝜇 both changes the Medicare price and Medicare market share.
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Table 1: Descriptive Statistics of Drugs

Full Sample Above Median MMS Below Median MMS

Mean Std Dev Mean Mean

Medicare Market Share (MMS) at 𝜏 = 1 0.270 0.261 0.480 0.062

Relative ASP at 𝜏 = 8 1.058 0.335 1.032 1.083

Average Year of Introduction 2010.7 3.8 2011.4 2010.1

Compound Annual Growth Rate over first 6 years 0.0409 0.1000 0.0196 0.0572

Compound Quarterly Growth Rate over first 6 years 0.0092 0.0239 0.0041 0.0131

N (Unique HCPCS) 215 107 108

Notes: Source: Authors’ calculations from CMS Data 2006-2019. Median Medicare Market Share at
Launch = 0.193

Table 2: Summarizing the Effect of MMS on Price Evolution

(1) (2) (3) (4)

Analysis Sample Balanced Panel

𝜏 0.007 0.008***

(0.005) (0.002)

𝜏× MMS -0.008* -0.015***

(0.005) (0.005)

𝜏 > 12 0.079** 0.033**

(0.035) (0.014)

𝜏 > 12 × 𝐴𝑏𝑜𝑣𝑒𝑀𝑒𝑑𝑖𝑎𝑛𝑀𝑀𝑆 = 1 -0.111** -0.030***

(0.051) (0.005)

Drug Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

𝑅2 0.070 0.087 0.383 0.364

N 4502 4502 588 588

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1 Dependent variable: ln 𝑝 𝑗𝑡 . Robust standard errors
clustered at the HCPCS level. Balanced panel only uses observations with 𝜏 ≤ 16 and requires that all
drugs have at least 𝜏 = 16.
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Figure 1: Price Evolution of Medicare Part B Drugs

(A) Price Evolution of Top 10 Medicare Part B Drugs
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(B) Price Evolution of Drugs by Exposure to Medicare Part B
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Notes: Panel A: Selects the top 10 Part B drugs by Medicare revenue 2015-2019. Panel B: Price
relative to launch by exposure to Medicare. Relative price is ASP in quarter 𝜏 divided by ASP in
quarter 𝜏 = 1. Plots the results of a regression of relative quantity against quarter 𝜏 fixed effects
and year fixed effects weighted by total drug market size.
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Figure 2: Exposure to Medicare Part B and Drug Prices

(A) Estimates of MMS Interaction Effect: Full Sample
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(B) Estimates of MMS Interaction Effect: Newly Approved Molecules
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Notes: Panel A: Plots point estimates and 95% confidence intervals for coefficients estimated
by the regression given in Equation 1 on the Analysis Sample weighted by total drug market
size. Panel B: Same as panel A, but estimated on sample of newly approved molecules. Robust
standard errors clustered at the HCPCS level.
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Online Appendix For: “Lagged-Price Reimbursement

Contracts: The Impact of Medicare Part B on

Pharmaceutical Price Growth”

Angie Acquatella, Keith Marzilli Ericson, and Amanda Starc

I Theoretical Appendix

Assumptions

Formally, the assumptions we make about the demand system are given by:

(i) effective margin is increasing in reimbursement (𝜆 > 0), and the patient out-of-pocket

share is constant,
𝑜𝑜𝑝(𝑟𝑡)

𝑟𝑡
= 𝑘 ∀𝑟𝑡 for some 𝑘 ∈ ℝ+;

(ii) that demand is weakly concave in the effective margin 𝑄′′(𝑚𝑡) ≤ 0;

(iii) the marginal continuation value profits with respect to the period 2 Medicare price are

bounded below by the negative inverse semi-elasticity, 𝛿
𝐸𝑉′(𝑝𝑀2 )
𝑄′(𝑚2) ≥ − 1

𝜂(𝑚2) ;

(iv) and that the effect of 𝑝2 on continuation profits is non-convex, such that 𝐸𝑉′′(𝑝𝑀2 ) ≤ 0.

I.A Quantity Weighted Price

As noted in the text, when the Medicare price is declining, it is clear that the average price

(weighted by the share of the population on Medicare) is declining, since private price is

constant. However, the quantity weighted price is more complicated: it is also the case that

the Medicare market share is changing over time. Moreover, even though the Medicare price

is falling, because quantity depends on price relative to reimbursement, it may not be the

case that Medicare market share rises over time.

Here, we examine the quantity weighted price. Let the equilibrium Medicare market

share in period 𝑡 be 𝑠𝑡 =
𝜇𝑄𝑀

𝑡

𝜇𝑄𝑀
𝑡 +(1−𝜇)𝑄𝑃

𝑡

, and then let the quantity weighted average sales price

be 𝑝𝑡 ≡ 𝑠𝑡𝑝
𝑀
𝑡 + (1 − 𝑠𝑡)𝑝𝑃𝑡 .

When the Medicare market share is constant over time 𝑠𝑡 , then quantity weighted price

clearly declines over time (𝑝2−𝑝1 < 0). Proposition A.1 shows how much 𝑠𝑡 can vary overtime

and still have quantity weighted price decline. We think the most empirically relevant

case is case (a), which assumes that the private price is higher than the Medicare price,

since private insurance tends to set higher reimbursement rates than Medicare (Government
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Accountability Office 2016), thus allowing pharmaceutical firms to charge higher prices to

physicians who treat privately insured patients.

Proposition A.1 The quantity weighted average sales price declines over time (𝑝2−𝑝1 < 0)

if:

(a) the private price exceeds the Medicare price in the first period (𝑝𝑃 > 𝑝𝑀1 ) and Medicare

market share is weakly increasing such that shares satisfy 𝑠1
𝑠2

≤
(
1 − 𝑝𝑀2

𝑝𝑃

)
/
(
1 − 𝑝𝑀1

𝑝𝑃

)
;

(b) the private price exceeds the Medicare price in the first period (𝑝𝑀1 > 𝑝𝑃) and Medicare

market share is weakly decreasing such that shares satisfy 𝑠1
𝑠2

≥
(
1 − 𝑝𝑀2

𝑝𝑃

)
/
(
1 − 𝑝𝑀1

𝑝𝑃

)
;

(c) the Medicare price in the first period exceeds the private price, and both exceed the

Medicare price in the second period (𝑝𝑀1 > 𝑝𝑃 > 𝑝𝑀2 ).

Proof. To begin, first note that the difference in the quantity weighted average sales price

can be written as: 𝑝2 − 𝑝1 = 𝑠2𝑝
𝑀
2 − 𝑠1𝑝

𝑀
1 + (𝑠1 − 𝑠2)𝑝𝑃. Divide by 𝑝𝑃 and rearrange. Then,

the quantity weighted average sales price is declining iff:

𝑝2 − 𝑝1 ∝ 𝑠1

(
1 −

𝑝𝑀1

𝑝𝑃

)
− 𝑠2

(
1 −

𝑝𝑀2

𝑝𝑃

)
< 0 (A.1)

In case (a), 𝑝𝑃 > 𝑝𝑀1 implies that
(
1 − 𝑝𝑀1

𝑝𝑃

)
> 0. It then follows that 𝑝𝑃 > 𝑝𝑀1 and condition

𝑠1
𝑠2

<
(
1 − 𝑝𝑀2

𝑝𝑃

)
/
(
1 − 𝑝𝑀1

𝑝𝑃

)
jointly imply that (𝐴.3) holds.

In case (b), 𝑝𝑀1 > 𝑝𝑃 implies that
(
1 − 𝑝𝑀1

𝑝𝑃

)
< 0. It follows that 𝑝𝑀1 > 𝑝𝑃 and condition

𝑠1
𝑠2

>
(
1 − 𝑝𝑀2

𝑝𝑃

)
/
(
1 − 𝑝𝑀1

𝑝𝑃

)
jointly imply that (𝐴.3) holds

Finally, in case (c), 𝑝𝑀1 > 𝑝𝑃 implies that
(
1 − 𝑝𝑀1

𝑝𝑃

)
< 0. Since 𝑝𝑃 > 𝑝𝑀2 implies(

1 − 𝑝𝑀2
𝑝𝑃

)
> 0, (𝐴.3) always holds.

I.B Equilibrium Effects on Life Cycle Prices

While we have shown that lagged-price reimbursement disciplines price growth under certain

conditions, its effect on total Medicare expenditures is ex-ante ambiguous. Total Medicare

expenditures over the life-cycle of a pharmaceutical are a function of the reimbursement rate

level times the quantity prescribed, aggregated over the periods for which the pharmaceutical

has monopoly power.
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On the one hand, by inducing lower prices in future periods, the contract lowers the

Medicare reimbursement rate in future periods, which reduces what Medicare has to pay for

the pharmaceutical. On the other hand, if the pharmaceutical firm finds it optimal to price

in such a way that physicians get positive margins, then the induces higher quantities of

prescriptions, raising total Medicare expenditures.

Moreover, characterizing what counterfactual Medicare expenditures would be absent

lagged-price reimbursement feature is not obvious. One possibility would be to take private

insurer expenditures as the counterfactual.

I.B.1 Private Insurer Expenditures

In the context of our simple two period model, private insurer expenditures are determined

entirely by the private reimbursement rate level (which is constant over time). This is

because the reimbursement rate level constrains the extent to which the pharmaceutical firm

can raise prices: since demand is a function of the effective margin, in the extreme case of

setting price above the utility-weighted reimbursement, 𝑝𝑃 > 𝜆𝜌, the physician may be very

unwilling to prescribe the drug.

Under fairly general conditions, the physician’s effective margin in our model is positive

in equilibrium. If demand is elastic and the utility-weighted private reimbursement rate is

greater than the firm’s marginal costs of production, then the firm will price in such a way

that the effective margin is positive. Conversely, if demand is inelastic, the effective margin

in equilibrium will be negative; this is because physicians will continue to prescribe the drug

at a loss, and the firm always makes positive profits from raising prices (and lowering the

physician’s margin). Lemma A.1 below formalizes this intuition. Define the (usual) elasticity

of demand with respect to margin as 𝜀(𝑚) ≡ 𝑄′(𝑚)𝑚
𝑄(𝑚) .

Lemma A.1 The physician’s effective margin for privately insured patients is always posi-

tive at the optimal private price if and only if: 𝜀(𝑚𝑃) > 1 and 𝜆𝜌 > 𝑐.

Proof. The effective margin for prescribing to privately insured patients is given by 𝑚=𝜆𝜌−𝑝 .

In equilibrium. 𝑝𝑃 = 𝑐+ 1
𝜂(𝑚𝑃) . The equilibrium effective margin can thus also be written as:

𝑚𝑃 = (𝜆𝜌 − 𝑐)
(

𝜀(𝑚𝑃)
𝜀(𝑚𝑃) − 1

)
It follows that 𝑚𝑃 > 0 when either 𝜀(𝑚𝑃) > 1 and 𝜆𝜌 > 𝑐; or 𝜀(𝑚𝑃) < 1 and 𝜆𝜌 < 𝑐.

However, if 𝜆𝜌 < 𝑐, then price would have to be below marginal cost 𝑐 > 𝜆𝜌 > 𝑝𝑃 for

𝑚𝑃 > 0, which cannot be optimal.
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Turning to total private expenditures at the equilibrium prices, it is always the case that

private expenditures are higher when the private reimbursement 𝜌 is higher. To show this, we

first show that the equilibrium private price is always increasing in the private reimbursement

rate.

Proposition A.2 The optimal private insurance price is always increasing in the private

reimbursement rate 𝜌.

Proof. The optimal private insurance price is characterized by 𝑝𝑃 = 𝑐 + 𝑄(𝜆𝜌−𝑝𝑃)
𝑄′(𝜆𝜌−𝑝𝑃) . Totally

differentiating this expression with respect to 𝜌 yields:

𝑑𝑝𝑃

𝑑𝜌
=

(
𝜆 −

𝑑𝑝𝑃

𝑑𝜌

)
−

𝑄(𝜆𝜌 − 𝑝𝑃)
𝑄′(𝜆𝜌 − 𝑝𝑃)

𝑄′′(𝜆𝜌 − 𝑝𝑃)
𝑄′(𝜆𝜌 − 𝑝𝑃)

(
𝜆 − 𝑑𝑝𝑃

𝑑𝜌

)
.

By substituting in for the equilibrium price, and rearranging, the expression simplifies to:

𝑑𝑝𝑃

𝑑𝜌
= 𝜆

(
1 + (𝑝𝑃 − 𝑐)−𝑄

′′(𝜆𝜌−𝑝𝑃)
𝑄′(𝜆𝜌−𝑝𝑃)

)(
2 + (𝑝𝑃 − 𝑐)−𝑄

′′(𝜆𝜌−𝑝𝑃)
𝑄′(𝜆𝜌−𝑝𝑃)

) .
Given that 𝑄′′ ≤ 0 and that 𝜆 > 0 by assumption, it follows that

𝑑𝑝𝑃

𝑑𝜌 ≥ 0.

Private insurance expenditures on the drug will be identical across periods because we

have assumed that private reimbursement rate is constant and that the demand function is

time-invariant. Thus, the aggregate expenditures over the life-cycle will be the per-period

expenditures multiplied by the number of periods.

Let total private insurance expenditures across the first two periods be given by

𝑇𝐸𝑃
1,2 = 𝜌𝑄(𝜆𝜌 − 𝑝𝑃) + 𝜌𝑄(𝜆𝜌 − 𝑝𝑃).

Raising the private reimbursement rate will affect total expenditures through a mechanical

effect from having to pay more per unit drug prescribed; and a behavioral effect of how

reimbursement affects equilibrium prices and, in turn, quantities. The behavioral effect

on equilibrium quantity sold is always positive because the firm can raise prices and the

physician’s effect margin at the same time as 𝜌 increases, earning both a higher profit on

each unit sold and selling more units. Thus, despite the fact that higher reimbursement raises

the equilibrium price of the pharmaceutical (which could in turn lower physician margins), it

is also optimal for the firm to sell more units, which consequently raises total private insurer

expenditures.
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Proposition A.3 Total private insurance expenditures are always increasing in the private

reimbursement rate, 𝜌.

Proof. The marginal effect of raising 𝜌 on total expenditures is given by:

𝑑𝑇𝐸𝑃
1,2

𝑑𝜌
= 2

(
𝑄(𝜆𝜌 − 𝑝𝑃) + 𝜌𝑄′(𝜆𝜌 − 𝑝𝑃)

(
𝜆 −

𝑑𝑝𝑃

𝑑𝜌

))
where the first term captures the mechanical effect and the second term captures the behav-

ioral effect. The mechanical effect, 𝑄(𝜆 − 𝑝𝑃) is always positive. The sign of the behavioral

effect can be determined by substituting in for the equilibrium
𝑑𝑝𝑃

𝑑𝜌 from Proposition A.2,

which yields
𝑑𝑇𝐸𝑃

1,2

𝑑𝜌 = 2

(
𝜆𝜌𝑄′(𝜆𝜌 − 𝑝𝑃)

(
1(

2+(𝑝𝑃−𝑐)−𝑄
′′(𝜆𝜌−𝑝𝑃 )

𝑄′(𝜆𝜌−𝑝𝑃 )

)
)
+𝑄(𝜆𝜌 − 𝑝𝑃)

)
. The expression

is always positive since 𝑄′′ ≤ 0 by assumption.

The private segment of the market can provide a benchmark to understand the effect of

lagged-price reimbursement contracts. Absent lagged-price incentives, it is already apparent

that optimal prices are set such that the physician’s effective margin is positive (when de-

mand is elastic) because the firm raises total sales by doing so. It is also apparent that the

level of the private reimbursement rate is a key determinant of total private insurer expendi-

tures because it affects the equilibrium quantities, indirectly, and the per unit expenditures,

directly. Thus, we would similarly expect Medicare expenditures to be large in the initial

period if the initial Medicare reimbursement rate is set to be very large, independent of any

dynamic incentives.

I.B.2 Medicare Expenditures

We now turn to the effects of lagged-price reimbursement contracts.

Lemma A.2 The equilibrium effect of raising 𝑟1 on the optimal Medicare price in period 2

is proportional to the equilibrium effect of raising 𝑟1 on the Medicare launch price.

Proof. From the pharmaceutical firm’s first order condition, the Medicare period 2 price

is characterized by 𝑝𝑀2 = 𝑐 + 𝑄(𝑚2)
𝑄′(𝑚2) + 𝛿

𝐸𝑉′(𝑝𝑀2 )
𝑄′(𝑚2) . Totally differentiating the expression with

respect to 𝑟𝑀1 results in

𝑑𝑝𝑀2
𝑑𝑟1

=

((
𝜆(1 + 𝐴)𝜇

𝑑𝑝𝑀1
𝑑𝑟1

−
𝑑𝑝𝑀2
𝑑𝑟1

)
+

𝐸𝑉′′(𝑝𝑀2 )
𝑄′(𝑚2)

𝑑𝑝𝑀2
𝑑𝑟1

)
−

(𝑄(𝑚2) + 𝛿𝐸𝑉′(𝑝𝑀2 ))
𝑄′(𝑚2)︸                     ︷︷                     ︸
=(𝑝𝑀2 −𝑐)

𝑄′′(𝑚2)
𝑄′(𝑚2)

(
𝜆(1 + 𝐴)𝜇

𝑑𝑝𝑀1
𝑑𝑟1

−
𝑑𝑝𝑀2
𝑑𝑟1

)
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Substituting in for the equilibrium Medicare price and rearranging results in the following

expression:

𝑑𝑝𝑀2
𝑑𝑟1

= 𝜆(1 + 𝐴)𝜇

(
1 + (𝑝𝑀2 − 𝑐)−𝑄

′′(𝑚2)
𝑄′(𝑚2)

)
(
2 + −𝐸𝑉′′(𝑝𝑀2 )

𝑄′(𝑚2) + (𝑝𝑀2 − 𝑐)−𝑄′′(𝑚2)
𝑄′(𝑚2)

)
︸                                      ︷︷                                      ︸
≥0 because 𝑄′′, 𝐸𝑉′′ ≤ 0 by assumption

𝑑𝑝𝑀1
𝑑𝑟1

Since 𝜆 > 0 by assumption, and 𝐴, 𝜇 ≥ 0, it follows that
𝑑𝑝𝑀2
𝑑𝑟1

∝ 𝑑𝑝𝑀1
𝑑𝑟1

.

Proposition A.4 Suppose that the second order terms are small such that
𝛿𝜆2(1+𝐴)2𝜇2(

2+
−𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)
+(𝑝𝑀2 −𝑐)−𝑄

′′(𝑚2)
𝑄′(𝑚2)

) ≈

0. Then, the equilibrium launch price is increasing in the initial Medicare reimbursement.

Proof. From the pharmaceutical firm’s first order condition, the Medicare period 2 price

is characterized by 𝑝𝑀2 = 𝑐 + 𝑄(𝜆𝑟1−𝑝𝑀1 )+𝛿(𝑝𝑀2 −𝑐)𝑄′(𝑚2)𝜆(1+𝐴)𝜇
𝑄′(𝜆𝑟1−𝑝𝑀1 ) . Totally differentiating this ex-

pression with respect to 𝑟1 and substituting in for the equilibrium Medicare profit margin

at launch (𝑝𝑀1 − 𝑐) yields the following expression:

𝑑𝑝𝑀1
𝑑𝑟1

=

(
𝜆 −

𝑑𝑝𝑀1
𝑑𝑟1

)
+

𝛿𝜆(1 + 𝐴)𝜇
𝑄′(𝑚1)

𝑑

𝑑𝑟1

[
(𝑝𝑀2 − 𝑐)𝑄′(𝑚2)

]
− (𝑝𝑀1 − 𝑐)𝑄

′′(𝑚1)
𝑄′(𝑚1)

(
𝜆 −

𝑑𝑝𝑀1
𝑑𝑟1

)
.

Rearranging, substituting in for
𝑑𝑝𝑀2
𝑑𝑟1

from Lemma A.2, and simplifying results in:

𝑑𝑝𝑀1
𝑑𝑟1

=

𝜆
(
1 + (𝑝𝑀1 − 𝑐)−𝑄

′′(𝑚1)
𝑄′(𝑚1)

)
©«2 + (𝑝𝑀1 − 𝑐)−𝑄′′(𝑚1)

𝑄′(𝑚1) + 𝛿𝜆2(1+𝐴)2𝜇2𝑄′(𝑚2)
𝑄′(𝑚1)

©«
(𝑝𝑀2 −𝑐)𝑄

′′(𝑚2)
𝑄′(𝑚2)

(
𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)

)
−1(

2+
−𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)
+(𝑝𝑀2 −𝑐)−𝑄

′′(𝑚2)
𝑄′(𝑚2)

) ª®¬ª®¬
Given that 𝑄′′, 𝐸𝑉′′ ≤ 0 and that 𝜆 > 0 by assumption, all the terms in the expression are

positive with the exception of 𝛿𝜆2(1+𝐴)2𝜇2𝑄
′(𝑚2)

𝑄′(𝑚1)
−1(

2+
−𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)
+(𝑝𝑀2 −𝑐)−𝑄

′′(𝑚2)
𝑄′(𝑚2)

) in the denomina-

tor. However, we have supposed that the second order terms are approximately zero, which
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implies that this negative term is ≈ 0.

𝑑𝑝𝑀1
𝑑𝑟1

≈
𝜆

(
1 + (𝑝𝑀1 − 𝑐)−𝑄

′′(𝑚1)
𝑄′(𝑚1)

)
©«2 + (𝑝𝑀1 − 𝑐)−𝑄′′(𝑚1)

𝑄′(𝑚1) + 𝛿𝜆2(1+𝐴)2𝜇2𝑄′(𝑚2)
𝑄′(𝑚1)

©«
(𝑝𝑀2 −𝑐)𝑄

′′(𝑚2)
𝑄′(𝑚2)

(
𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)

)
(
2+

−𝐸𝑉′′(𝑝𝑀
2

)
𝑄′(𝑚2)

+(𝑝𝑀2 −𝑐)−𝑄
′′(𝑚2)

𝑄′(𝑚2)

) ª®¬ª®¬
≥ 0

Therefore, the equilibrium Medicare launch price is increasing in the initial Medicare reim-

bursement.

Proposition A.5 Let total Medicare expenditures across the first two periods be given by

𝑇𝐸𝑀
1,2 = 𝑟1𝑄(𝜆𝑟1 − 𝑝𝑀1 ) + (1 + 𝐴)�̄�1𝑄(𝜆(1 + 𝐴)�̄�1 − 𝑝𝑀2 ).

Suppose that the second order terms are small such that
𝛿𝜆2(1+𝐴)2𝜇2(

2+
−𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)
+(𝑝𝑀2 −𝑐)−𝑄

′′(𝑚2)
𝑄′(𝑚2)

) ≈ 0 (as

in Proposition A.3). Then, total Medicare expenditures are always increasing in the initial

reimbursement rate, 𝑟1.

Proof. By Proposition A.3,
𝑑𝑝𝑀1
𝑑𝑟1

≥ 0 under the assumed condition. Given that the second

order terms are approximately zero, it follows that
(
𝜆 − 𝑑𝑝𝑀1

𝑑𝑟1

)
is also positive:

𝜆 −
𝑑𝑝𝑀1
𝑑𝑟1

≈ 𝜆

©«1 + 𝛿𝜆2(1+𝐴)2𝜇2𝑄′(𝑚2)
𝑄′(𝑚1)

©«
(𝑝𝑀2 −𝑐)𝑄

′′(𝑚2)
𝑄′(𝑚2)

(
𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)

)
(
2+

−𝐸𝑉′′(𝑝𝑀
2

)
𝑄′(𝑚2)

+(𝑝𝑀2 −𝑐)−𝑄
′′(𝑚2)

𝑄′(𝑚2)

) ª®¬ª®¬©«2 + (𝑝𝑀1 − 𝑐)−𝑄′′(𝑚1)
𝑄′(𝑚1) + 𝛿𝜆2(1+𝐴)2𝜇2𝑄′(𝑚2)

𝑄′(𝑚1)
©«

(𝑝𝑀2 −𝑐)𝑄
′′(𝑚2)

𝑄′(𝑚2)

(
𝐸𝑉′′(𝑝𝑀

2
)

𝑄′(𝑚2)

)
(
2+

−𝐸𝑉′′(𝑝𝑀
2

)
𝑄′(𝑚2)

+(𝑝𝑀2 −𝑐)−𝑄
′′(𝑚2)

𝑄′(𝑚2)

) ª®¬ª®¬
≥ 0

The marginal effect of raising 𝑟1 on total expenditures is given by:

𝑑𝑇𝐸𝑀
1,2

𝑑𝑟1
= 𝑟1𝑄

′(𝑚1)
(
𝜆 −

𝑑𝑝𝑀1
𝑑𝑟1

)
︸        ︷︷        ︸

≥0

+𝑄(𝑚1)︸ ︷︷ ︸
≥0

+ (1 + 𝐴)𝜇𝑄(𝑚2)︸            ︷︷            ︸
≥0

𝑑𝑝𝑀1
𝑑𝑟1

+ (1 + 𝐴)�̄�1𝑄′(𝑚2)
©«𝜆(1 + 𝐴)𝜇

©«
1 + −𝐸𝑉′′(𝑝𝑀2 )

𝑄′(𝑚2)(
2 + −𝐸𝑉′′(𝑝𝑀2 )

𝑄′(𝑚2) + (𝑝𝑀2 − 𝑐)−𝑄′′(𝑚2)
𝑄′(𝑚2)

) ª®®¬
ª®®¬︸                                                                                  ︷︷                                                                                  ︸

≥0

𝑑𝑝𝑀1
𝑑𝑟1
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Therefore, given that 𝐸𝑉′′, 𝑄′′ ≤ 0 by assumption, it is immediate to see that all the terms

in
𝑑𝑇𝐸𝑀

1,2

𝑑𝑟1
are positive, and therefore

𝑑𝑇𝐸𝑀
1,2

𝑑𝑟1
≥ 0.
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Table A1: Effect of MMS on Price Growth: Early Versus Late Cohorts

(1) (2) (3) (4)

Early Cohort (2005-2011) Late Cohort (2012-2019)

𝜏 0.004 0.008***

(0.007) (0.002)

𝜏× MMS -0.007 -0.011***

(0.008) (0.004)

𝜏 > 12 0.112 0.057**

(0.071) (0.027)

𝜏 > 12 × 𝐴𝑏𝑜𝑣𝑒𝑀𝑒𝑑𝑖𝑎𝑛𝑀𝑀𝑆 = 1 -0.152* -0.062**

(0.087) (0.031)

Drug Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

𝑅2 0.072 0.104 0.199 0.171

N 2945 2945 1557 1557

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Dependent variable: ln 𝑝 𝑗𝑡 . Data: Analysis Sample, limited
to observations with non-missing PMSOI. “Private Market Share of Older Individuals” is created for
each HCPCS-year as the total revenue for the older age category (age 56 to 64) over the total revenue
for the older and younger (26 to 44 years old) age categories summed. Robust standard errors clustered
at the HCPCS level.

Table A2: Descriptive Statistics, Split By Private Market Share of Older Individuals

Full Sample Above Median PMSOI Below Median PMSOI

Mean Std Dev Mean Mean

Private Market Share of Older Individuals (PMSOI) at 𝜏 = 1 0.591 0.326 0.866 0.319

Relative ASP at 𝜏 = 8 1.041 0.293 1.022 1.059

Average Year of Introduction 2010.9 3.8 2011.3 2010.5

Compound Annual Growth Rate over first 6 years 0.0382 0.0933 0.0247 0.0505

Compound Quarterly Growth Rate over first 6 years 0.0086 0.0227 0.0053 0.0117

N (Unique HCPCS) 197 98 99

Notes: Source: Authors’ calculations from CMS Data 2006-2019 and aggregate Truven Marketscan
spending by age. “Private Market Share of Older Individuals” (PMSOI) is created for each HCPCS-
year as the total revenue for the older age category (age 56 to 64) over the total revenue for the older
and younger (26 to 44 years old) age categories summed. Number of observations is lower than in
the Analysis Sample due to missing data (HCPCS with no private spending). Median Private Market
Share of Older Individuals at Launch = .69
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Table A3: Private Market Share of Older Individuals (PMSOI) and Price Growth

(1) (2)

𝜏 0.020***

(0.005)

𝜏× PMSOI -0.021***

(0.006)

𝜏 > 12 = 1 0.081**

(0.033)

𝜏 > 12× Above Median PMSOI =1 -0.134**

(0.057)

Drug Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

𝑅2 0.111 0.105

N 4080 4080

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Dependent variable: ln 𝑝 𝑗𝑡 . Data: Analysis Sample.
Robust standard errors clustered at the HCPCS level.

Table A4: Effect of MMS on launch price

(1) (2) (3) (4)

Weighted Unweighted

MMS 2.650*** 1.021

(0.875) (0.729)

Above Median MMS 0.639 0.503

(0.449) (0.349)

Drug FE No No No No

Year FE Yes Yes Yes Yes

𝜏 FE Yes Yes Yes Yes

𝜏 FE × MMS Yes No Yes No

𝜏 FE × Above Median MMS No Yes No Yes

R-squared 0.220 0.060 0.020 0.020

N 4502 4502 4502 4508

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Dependent variable: ln 𝑝 𝑗𝑡 . Data: Analysis Sample.
Robust standard errors clustered at the HCPCS level.
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Figure A0: Medicare Quantity Sold, Relative to Launch Period
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Notes: Data: Analysis Sample. Quantity in each quarter is calculated as total
Medicare revenue divided by ASP. Relative quantity is quantity in quarter 𝜏
divided by quantity in quarter 𝜏 = 1. Relative quantity is winsorized at the 1st
and 99th percentiles due to outliers. Plots the results of a regression of relative
quantity against quarter 𝜏 fixed effects and year-quarter fixed effects weighted
by total drug market size. Point estimates and 95% confidence intervals of the
quarter 𝜏 fixed effects are present. Standard errors clustered at the HCPCS level.

Note that 2 years after launch, median quantity sold is very similar to quantity
at launch (relative quantity=0.99), while the 99th percentile of relative quantity
is over 20. This accounts for the jump in standard errors in the figure beginning
2 years after launch.
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Figure A1: Distribution of MMS at Launch
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Notes: Data: Analysis Sample
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Figure A2: Time Until Competitor Entry in Billing Code
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Notes: Plots Kaplan-Meier survivor function for being billing code monopolist
split by above versus below median Medicare market share. Early entry due in
part to new J-Codes that have old products. In Cox proportional hazard model,
above median MMS products are more likely to have entry, but this different
is not statistically significant (Hazard ratio 0.975, 95% CI 0.54 to 1.75). Data:
Analysis Sample.
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Figure A3: Time Until Competitor Entry in Billing Code: Sample of Newly Approved
Molecules

0.
00

0.
25

0.
50

0.
75

1.
00

Sh
ar

e 
of

 P
ro

du
ct

s

0 10 20 30 40 50
t

Below Median MMS
Above Median MMS

Quarters Survived Without Generic Entry

Notes: Plots Kaplan-Meier survivor function for being billing code monopolist.
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Figure A4: Robustness Checks
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Notes: Plots point estimates and 95% confidence intervals for coefficients from
four different estimators. OLS is estimated by regression Equation 1 in which
treatment is discretized into above versus below median MMS. Then, results
from three additional two-way fixed effects estimators are presented: Callaway
and Sant’Anna (2021), Chaisemartin and d’Haultfoeuille (2020) and Sun and
Abraham (2021). Data: Analysis Sample. Robust standard errors clustered at
the HCPCS level.
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Figure A5: Robustness Checks
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Equal Weighted Regression
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Notes: Plots point estimates and 95% confidence intervals for coefficients esti-
mated by regression Equation 1. Data: Analysis Sample with modifications as
shown in each subfigure’s title. Robust standard errors clustered at the HCPCS
level.
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Figure A6: Additional Robustness Checks
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Results Without Initial Cohort
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Results Without Small Cohorts
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Results Without Products Missing Data

Notes: Plots point estimates and 95% confidence intervals for coefficients es-
timated by regression Equation 1. Data: Analysis Sample, with modifications
as follows. Main Figure recreates the estimates of Figure 2 on a common axis
for reference. Results “Without Initial Cohort” estimates the effects without the
earliest (and largest) treatment cohort (7.9% of observations). Results “Without
Small Cohorts” estimates the effects without cohorts of two or fewer products
(3.8% of observations). Results “Without Products Missing Data” estimates the
effects without products which are missing any quarter of data (6.8% of observa-
tions). Robust standard errors clustered at the HCPCS level.
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