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Abstract

Despite the popularity of the Phillips curve, there is little consensus on the forcing variable

driving inflation, i.e., on the appropriate measure of “slack” in the economy. In this work,

we systematically assess the ability of popular variables at (i) predicting and (ii) explaining

inflation fluctuations over time and across US metropolitan areas. In particular, we exploit

a newly constructed panel dataset with job openings and vacancy filling cost proxies

covering 1982-2022. We find that the vacancy-unemployment (V/U) ratio and vacancy

filling cost proxies outperform other slack measures, in particular the unemployment rate.

Beveridge curve shifts —notably, movements in matching efficiency— are responsible for

the superior performance of the V/U ratio over unemployment.
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1 Introduction

The main framework to explain inflation dynamics, the Phillips curve, links inflation to the

amount of unused capacity (or slack) in the economy. The underlying intuition is that, as the

economy heats up, demand tends to exceed capacity, causing upward pressure on prices and

thus higher inflation. As inflation remained remarkably stable throughout successive business

cycles over 1990-2020, many economists considered the Phillips curve to be “dormant”, but

the recent surge in inflation led to a revival of Phillips curve studies, notably on the ability of

a Phillips type framework to account for the ups and downs in inflation in the post COVID

recovery (e.g., Ball et al., 2022; Benigno and Eggertsson, 2023; Blanchard and Bernanke, 2023).

Since the original Phillips paper (Phillips, 1958) linking the unemployment rate to (wage)

inflation, a number of theoretical studies have focused on deriving foundations for the Phillips

curve —the Aggregate Supply (AS) relationship of the macroeconomy. Phelps (1967) and

Friedman (1968) emphasized the concept of unemployment gap; the deviation of unemployment

from its natural level, a concept later microfounded by the New-Keynesian literature (e.g.,

Blanchard and Gaĺı, 2010; Gaĺı, 2015). However, unemployment is by far not the only measure

of slack that has been proposed. Instead, average real marginal cost, the labor share or the

output gap (see e.g., Gaĺı, 2015), and more recently the job-switching rate (Moscarini and

Postel-Vinay, 2017, 2023) and the vacancy–unemployment ratio (Barnichon and Shapiro, 2022;

Ball et al., 2022) have been proposed as slack candidates.

There is currently little consensus on the most appropriate measure of slack, or more specif-

ically on the most appropriate forcing variable in a Phillips curve framework. That is, which

variable can best explain the movements in inflation caused by changes in aggregate demand?

We tackle this question with a dual approach. First, we conduct an out-of-sample forecasting

exercise, which is robust to over-fitting issues inherent to in-sample analysis. We assess which

slack measures best predicts inflation at one-year horizons. From the post-Covid period all the

way back to the upsurge in inflation of the 1960s as well as the interwar period, a set of variables

consistently provide superior information about future inflation: the vacancy–unemployment

(V/U) ratio, and more generally proxies for vacancy filling costs —firms’ cost of filling a job

opening.

Second, we aim to assess whether the structural Phillips curve —the causal effect of slack

on inflation— fits the data better using the V/U ratio instead of the traditional unemployment

rate as a measure of slack. OLS estimates again confirm the superior performances of the V/U

ratio over unemployment, though coefficient estimates are likely biased by endogeneity issues:

unobserved inflation expectations, unobserved natural rates, confounding from supply shocks,

and downward bias from counter-cyclical monetary policy (e.g., McLeay and Tenreyro, 2020;

Barnichon and Mesters, 2020).

To address these endogeneity issues, we take a three-pronged approach. First, we estimate

the model on a narrower measure of inflation, the San Francsico Fed’s “cyclical core” infla-

tion measure, which is plausibly less contaminated by supply disturbances. Second, we use

the Romer and Romer (2004) monetary shocks as instrumental variables. Third, we exploit
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Hazell et al. (2022)’s insight that cross-sectional information can address (or at least lessen)

endogeneity biases, and we use a newly assembled panel of V/U data at the MSA level over

1980-2022.The V/U ratio performs well across these three models, explaining inflation better

than the unemployment rate.

The superior performance of the V/U ratio may seem surprising since vacancy and unem-

ployment are highly correlated; the so-called Beveridge curve. In fact, one can conjecture that

the V/U ratio has been ignored by the earlier Phillips curve literature for this very reason—

because V/U and unemployment are so highly correlated. At times, however, this correlation

can deteriorate sharply due to shifts in the Beveridge curve shifts. We show that these Bev-

eridge curve shifts are responsible for the superior performance of the V/U ratio in explaining

inflation dynamics. The post-COVID outburst in inflation is an example of such a Beveridge

curve shift, and the V/U ratio explains the rise in inflation much better than the unemployment

rate alone.

A simple accounting framework shows how Beveridge curve shifts are related to changes in

matching efficiency —the efficiency with which the labor market matches job openings to job

seekers. These shifts are relatively rare, explaining why a Phillips curve with the V/U ratio

typically performs just as well as a traditional Phillips curve with unemployment. At times

however, matching efficiency can decline markedly —in the 2008-2009 recession for instance or

most strikingly in the aftermath of the Covid pandemic—, and these drops are associated with

higher inflation.

2 The Phillips curve forcing variable

Our starting point is the Phillips curve which is a formal statement of the intuition that

an expanding economy will result in a tight labor market, where firms compete for workers,

see rising labor costs and thus raise prices. A standard formulation of the Phillips curve is the

New-Keynesian equation:

πt = γEtπt+1 + κxt + νt, (1)

where xt is the relevant measure of “slack”, or more specifically the Phillips curve forcing

variable, and νt captures cost-push shocks. The Phillips curve is a central equation in macroe-

conomics. Despite its importance, however, there is is much uncertainty about the most relevant

measure of slack, that is about the forcing variable that best explains inflation.

Economic slack

The most popular forcing variables are proxies for tightness in the labor market, typically

the unemployment rate or unemployment gap (Phillips, 1958). A potential drawback of the

unemployment rate however is that it ignores workers outside of the labor force.1 To address

1If nonparticipants return to the labor force during times of strong economic growth, they could reduce
upward wage and price pressures by increasing the supply of workers available. In this case, the unemployment
rate would overstate inflationary pressures Hobijn and Şahin (2021).
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this limitation, Hornstein et al. (2014) proposed an extended concept of unused labor. Their

Non-Employment Index (NEI) includes potential job seekers outside of the labor force.

More recently, a new proxy for labor market tightness has recently been proposed (e.g.,

Barnichon and Shapiro, 2022; Ball et al., 2022): the vacancy–unemployment ratio (or V/U

ratio for short). Intuitively, the ratio represents the number of job vacancies, or demand for

labor, relative to the number of unemployed individuals, or supply of labor. As with the

unemployment rate however, the V/U ratio misses job seekers outside the labor force, and it

also misses on-the-job job seekers, that is employed workers who search for another job. To

take into account all possible job seekers, Abraham et al. (2020) constructed a generalized V/U

ratio that replaces unemployment with a measure of effective job searchers.

Marginal hiring costs

Despite the popularity of these slack measures, the New-Keynesian literature has made

clear that the key determinant of inflation is not slack per se, but instead firms’ real marginal

costs. To address this concept, Gali and Gertler (1999); Gaĺı (2015) proposed using the share

of output going to labor compensation —the labor share— as a proxy for firm’s marginal costs.

While the labor share is straightforward and easy to construct, it measures the average cost

of labor, which need not coincide with the marginal cost of labor. Interestingly, the vacancy–

unemployment ratio has also been proposed in this context, building on the intuition that the

V/U should proxy for firms’ marginal labor costs, specifically the cost of finding and hiring an

additional worker.

To see that point more formally, consider a standard model with search frictions (Pissarides,

2000). In that model, a key determinant of firms’ real marginal cost is the cost of hiring

a marginal worker —the vacancy filling cost— (e.g., Krause and Lubik, 2007; Krause et al.,

2008), which is given by

χt =
c

qt
where qt ≡

mt

Vt
(2)

where c is the cost of posting a vacancy, Vt the number of vacancies, and qt is the vacancy

filling rate —the rate at which firms fill vacancies— which is given by the flow of new matches

at instant t (mt) divided the number of posted vacancies (Vt). Intuitively, the vacancy filling

cost is the vacancy posting cost times the expected duration of that open vacancy, and that

expected duration is 1/qt.

In a standard search and matching model (Mortensen and Pissarides, 1994), the vacancy fill-

ing rate can be related to the vacancy–unemployment ratio by means of the matching function.

The matching function relates the flow of new hires to the stocks of vacancies and unemploy-

ment, and for a constant returns to scale matching function, the vacancy filling rate is given

by qt =
m(Ut,Vt)

Vt
= qt(θt) where θt =

Vt

Ut
is the vacancy unemployment ratio. If we postulate

that the matching function is Cobb-Douglas, we can write mt = m0tU
σ
t V

1−σ
t with m0t matching
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efficiency,2 and simplify the vacancy filling cost as χt = c
θσt
m0t

or

χ̂θ
t = σθ̂t − m̂0t , (3)

where “hats” denote (log) deviations from steady-state. Thus, if matching efficiency is constant

(m̂0t = 0), the (log) V/U ratio θ̂t is a proxy for vacancy fillings costs, confirming the earlier

intuition that the V/U ratio could be a relevant forcing variable for the Phillips curve. The

benefit of the V/U ratio is that it is available over a long sample period, in fact all the way

back to 1919. The cost is that it relies on the assumption of constant matching efficiency.

If matching efficiency is not constant, (2) makes clear that the V/U ratio will not perfectly

capture variations in firms’ recruiting costs.

The previous discussion ignores that firms can also hire directly from (i) the pool of employed

workers who may search on the job or (ii) the pool of nonparticipants. With transitions from

employment into employment and nonparticipation into employment, firms’ vacancy filling rate

becomes qt =
mt

Vt
=

puet Ut+peet Et+pne
t Nt

Vt
where peet is the Employment-to-Employment transition

rate and pnet is the Nonparticipation-to-Employment transition rate. We get the (generalized)

vacancy filling cost proxy3

χ̂ee
t = θ̂t − p̂uet − γ̂t where γt = 1 +

peet
puet

1− ut
ut

+
pnet
puet

1− lt
ltut

, (4)

where ut and ut are the unemployment and job openings numbers expressed as fractions of the

labor force and lt is the labor force participation rate. Comparing with (??) —vacancy filling

costs under hiring from unemployment alone—, we can see that the term γt is a correction

factor that allows for changes in the relative importance of hiring from Employment (
peet
puet

) or

Nonparticipation (
pne
t

puet
).4

As we will see, these expressions for the vacancy filling cost are attractive, because they can

be measured over a relatively long period of time by exploiting CPS micro data.

Other costs

While the cost of labor can drive up price pressures, it is not the only input of production for

businesses, and thus not the only factor determining marginal costs. Raw materials, machines,

and other types of capital infrastructure also play an important role. Similar to labor costs,

increases in the cost of these inputs may force businesses to raise prices for their products to

stay profitable. In this context, we consider two additional measures of slack based on industrial

production. One is the Federal Reserve Board’s measure of capacity utilization, which measures

2The Cobb-Douglas matching function is used in most macro models with search and search and matching
frictions (Pissarides, 2000). The matching efficiency term m0,t can be seen as the residual of the Cobb-Douglas
matching function. Matching efficiency is akin to the Hicks-neutral productivity term in an aggregate production
function.

3Start from qt =
mt

Vt
=

pue
t Ut+pee

t Et+pne
t Nt

Vt
, combine with χee

t = c
qt

and log-linearize around the steady-state.
4Our generalized vacancy filling cost is related to (Moscarini and Postel-Vinay, 2017), who recently argued

that the job-switching rate can proxy for marginal hiring costs, building on the wage determination mechanism
of Postel-Vinay and Robin (2002).
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the fraction of resources used to produce goods in manufacturing, mining, and electric and gas

utilities. The second measure is the industrial production (IP) share, or the share of output

in the economy attributable to industrial production, as proposed in Shapiro (2008). These

two measures capture the intuition that material inputs, such as primary metals, wood, and

machinery, become relatively more costly during an economic expansion.

3 Forecasting inflation

In this section, we assess the forecasting performances of the forcing variables discussed

above. To generate forecasts, we estimate local projections (Jordà, 2005) of the form

πt+h = γlπt−1 + λxt + ηt+h

where xt is a forcing variable.

We run a horse race between candidate forcing variables to assess which is the most accurate

in forecasting price inflation. We estimate the model using a 10-year rolling window and we

create one-year ahead (h = 4) forecasts following the last date in each rolling sample.5 For each

measure, we then calculate the forecast errors, which are the differences between their predicted

values of inflation and actual inflation values. We measure overall forecasting performance using

the mean of the squared values of these forecasting errors.

We consider the following variables as measures of slack: the raw unemployment rate (uraw),

the unemployment rate excluding temporary layoffs (u) in order to remove the Covid-specific

spike of 2020, the Non-Employment Index (NEI), the V/U ratio (θ̂t), the generalized V/U ratio

(θ̂∗t ) of Abraham et al. (2020), the vacancy filling cost (χ̂ue
t ), the generalized vacancy filling cost

(χ̂ee
t ), (real time) capacity utilization as estimated by the Board of Governors of the Federal

Reserve, the IP share, the unemployment gap and the log output gap as estimated from the

CBO. The main series are depicted in the Appendix.

To construct vacancy filling cost proxies, we exploit CPS micro data to build estimates

for the Unemployment-Employment transition rate puet and the Nonparticipation-Employment

transition rate pnet over 1967-2023, and the Employment-to-Employment transition rate over

1995-2023 (Fujita et al., 2020). Our first vacancy filling cost proxy is χ̂ue
t = θ̂t − p̂uet over 1967-

2023, a proxy that ignores variations in the hiring rate from Employment or Nonparticipation

(γ̂t = 0). Our second (and closely related) proxy is χ̂f
t = θ̂t − f̂t where ft is the unemployment

outflow rate can be constructed from unemployment duration data over 1951-2023 (Shimer,

2012). Last, our generalized vacancy filling cost proxy χ̂ee
t can be constructed from the worker

transition rates over 1995-2023.

We consider two sample periods: (i) 1995-2023 where we could study and compare the

performances of the largest number of forcing variables, and (ii) 1960-2023, which allows us

to explore forecasting performance during the previous episode of high inflation —the 60s and

70s—.

5Using two-year head forecasts (h = 8) gives similar conclusions.
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1995-2023

Figure 1a plots the mean-squared forecast errors of the different slack measures in predicting

core personal consumption expenditures (core PCE) price inflation one year ahead over 2005–

2023. The forecast errors are expressed in percentage terms relative to the baseline performance

of the unemployment rate; thus, they can be interpreted as indicating how much better or worse

they perform than the unemployment rate.

First, we can see that the V/U ratio, and more generally all the vacancy filling costs proxies,

perform better than the other measures. The generalized V/U ratio does slightly better than

the raw V/U ratio. Second, the vacancy filling cost proxies outperform the V/U ratio. The

superior performances of our vacancy filling cost proxies relative the V/U ratio indicate that

two factors beyond V/U are important to understand inflation fluctuations: (i) time-varying

matching efficiency (m̂0t ̸= 0) —recall that χue
t = σθ̂t−m̂0t—, and (ii) time-varying hiring rates

outside the unemployment pool (γ̂t = 0). In particular, our more general vacancy filling cost

proxy (χ̂ee
t ), which allows for hiring from unemployment, employment and non-participation,

does best among all measures.

Figure 1: Forecasting performances, 1995-2024
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(b) 10-year Rolling MSEs

Notes: Inflation is measured from Core PCE. Left panel: the mean-squared errors (MSE) are relative to the MSE of forecasts with the unemployment

rate. “θ̂” is the log V/U ratio, “θ̂∗” is the generalized log V/U ratio, “û” is the log unemployment rate, the “χ̂s” are the three vacancy filling cost

proxies, “NEI” is the Non-Employment Index, “LS” is the labor share, “CapU” is the Board of Governors capacity utilization rate”, “IPs” is the

(detrended) share of industrial production in GDP, “ŷcbo” and “u gap” are the output gap and unemployment gap estimated by the CBO, and “u” is

the unemployment rate. The orange and red bars decompose the superior performances of θ̂ over û into the contribution of the Beveridge curve shifts.

The superior performances of the χ measures is all the more remarkable given the larger

measurement error in the transition rates.6 Note in particular that χf
t performs better χue

t ,

even though both proxy for the same vacancy filling cost. But one difference between the

two proxies that is that χf
t is constructed from unemployment duration data, while χue

t is

constructed from flow data, which are inherently noisier. This could explain the consistently

superior performances of χf
t over χue

t .

Last, note that none of the traditional measures —the output gap, the unemployment gap,

6Flow-based measures like χt are more noisy than stock-based measures like the V/U ratio. See Figure 9.
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the non-employment index or the labor share— outperform the V/U ratio. In addition, neither

the output gap nor the unemployment gap outperform the V/U ratio, even though the gaps are

constructed ex-post by the CBO taking into account the later behavior of inflation and other

indicators.

To better understand performances over time, Figure 1b plots the 10-year average rolling

MSEs for the different forcing variables over 2005-2023. Two things to notice. First, the dif-

ferences in performance are tiny during the stable inflation period of 2005-2019. Second, it is

only during the post-COVID recovery —during large inflation fluctuations— that the differ-

ences become noticeable. All forcing variables measures see large deterioration in forecasting

performance, but the V/U ratios and the vacancy filling cost proxies (χ̂t) do perform markedly

better.

These observations indicate that large movements in inflation are necessary to discriminate

between competing forcing variables. For these reasons, we will now evaluate the performances

of the V/U ratios and vacancy filling costs proxies during the large inflation movements of the

60s and 70s.

1960-2023

Figure 2: Forecasting performances, 1968-2023
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Notes: Inflation is measured from Core PCE. Left panel: the mean-squared errors (MSE) are relative to the MSE of forecasts with the unemployment

rate

Figure 2 shows the same information as Figure 1 for a restricted set of slack measures over

a longer sample period: 1960-2023, which allows us to include the build up in inflation of the

late 60s and the stagflation of the 70s. The available forcing variables are the (log) V/U ratio,

the vacancy filling cost proxies χ̂ue and χ̂ee that includes job seekers from outside the labor

force.7

Again, we find that the V/U ratio and the vacancy filling cost proxies outperform other

measures, notably the unemployment rate by about 30 percent. Most importantly, this exercise

7Since Employment-to-Employment transitions are not available before 1995, we omit the role of hiring from
employment in χ̂ee, effectively imposing a constant puet /peet ratio.
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confirms that the superior performances of 2022-2023 is not a unique occurrence: θ̂t (blue line)

systematically outperforms ut (red line) over 1970-2023.8

Longer samples

We find similar results using core CPI (Figure 3a) instead of core PCE over a slightly longer

sample (1958-2023). In addition, we can extend our V/U ratio—unemployment horse-race

before WWII, since vacancy data (“Advertising in Newspapers, Metropolitan Life Insurance

Company”) are available from the NBER macro history database. Again, we find that the V/U

ratio outperforms unemployment in the interwar period (1919-1940), see Figure 3b.

Figure 3: Longer samples
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Notes: Inflation is measured from Core CPI for panel (a) and Healdine CPI for Interwar data in panel (b).

4 Estimating the structural Phillips curve

The discussion has so far focused on finding a measure that can best help forecast inflation,

and we found that the V/U ratio or vacancy filling costs proxies were the most informative to

predict inflation. A related, but separate, question is whether the superior prediction perfor-

mance of the V/U ratio and vacancy filling cost capture a structural relation between hiring

costs and inflation, or whether these variables simply proxy for other variables that are causing

inflation.

This question is important for two reasons. First, it is hard to put much faith on superior

forecasting performance alone without understanding the underlying reasons for such perfor-

mance. If the V/U ratio only predicts better because it correlates with a variable that causes

inflation over our evaluation sample, there is no guarantee that the superior performances con-

tinue to hold in other samples or in the future. This can be seen as as issue of external validity.

In contrast, establishing that firms’ hiring costs cause inflation is a more stringent test. Second,

8Again, we note that it is difficult to separate competing forcing variables during periods of stable inflation
(Figure 2b).
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while a large literature has focused on consistently estimating structural macro Phillips curve

—the (AS) relation of the economy— (Mavroeidis et al., 2014; Barnichon and Mesters, 2020),

there is still much uncertainty about the appropriate forcing variable in such a Phillips curve.

In this section, we thus estimate and compare structural Phillips curves with different forcing

variables: the V/U ratio, vacancy filling costs, and the unemployment rate.

4.1 Time series evidence

To estimate an aggregate Phillips curve, we use the representation of Hazell et al. (2022).

Specifically, some manipulation of (1) gives

πt = Etπ∞ + κEt

∞∑
j=0

βj (x̂t − Etx̂∞) + ωt , (5)

where x̂t is a forcing variable (in deviation from steady-state), Etx̂∞ its permanent component,

and the residual captures all other transitory determinants of inflation beyond xt.

If transitory fluctuations in the forcing variable follow an AR(1) with autocorrelation ρ, the

expression simplifies to

πt = Etπ∞ + ψ (x̂t − Etx̂∞) + ωt (6)

where ψ = κ
1−βρ

.

We will thus estimate a Phillips curve of the form (6) with the regression (at quarterly

frequency)

πt = α + βxx̂t−4 + βπEtπ∞ + υt, (7)

where inflation πt is core PCE inflation, Etπ∞ is proxied with long-run inflation expectations

taken from the Livingston survey, and the forcing variable x̂t is either the unemployment rate

ut, the V/U ratio θ̂t, or our vacancy filling cost proxies χ̂t.

Table 1 reports the estimation results for the 1995-2023 sample period. All odd-numbered

columns report “naive” OLS estimates. Table 2 reports the same set of results for the 1960-2023

sample period. We z-scored the forcing variables (i..e, normalized them to have unit variance),

so that the coefficients are directly comparable across columns —each coefficient capturing the

“effect” of a one standard-deviation increase in the forcing variable on inflation—. A larger

coefficient thus indicates a larger explanatory power.

Confirming our out-of-sample prediction results, we can see that the V/U ratio outperforms

the unemployment rate: the coefficient on θ̂t is 50 percent larger than the coefficient on ut

over 1995-2023 —column (3) vs column (1) in Table 1—, and with a larger p-value. Similar

results hold over 1960-2023 with a 22 percent larger coefficient on θ̂t (Table 2, columns (1) and

(3)). In fact, over 1960-2023 the partial R2 —the R2 of a regression where we first partialled

out the effect of πe
∞— is twice as large using the V/U ratio than using unemployment alone.

As in the forecasting exercise, the vacancy filling cost proxy does appear to perform better

than unemployment, but the evidence is not as conclusive. Last, the generalized V/U ratio of

Abraham et al. (2020) does perform best overall, with a 15 percent higher coefficient than the
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baseline V/U ratio. The adjusted R2 is also higher than with V/U —column (7) vs column

(3)—.

An important caveat of Tables 2 and 1 however, is that these OLS coefficient estimates

need not be informative about the structural Phillips curve (5), because OLS estimates could

be biased by endogeneity issues. Indeed, the Phillips curve (5) postulates that inflation is

determined by three main factors —expected future inflation, slack, and supply factors—, all

of which lead to endogeneity-related biases: (i) inflation expectations are measured with error,

(ii) the long-run level of the forcing variable (Etx̂∞) is unobserved and (iii) supply shocks lead

to confounding (see e.g., Barnichon and Mesters, 2020). An additional source of endogeneity

bias is that of counter-cyclical policy: as the central bank works to mute the effects of aggregate

shocks on inflation, OLS estimate of the slope of the Phillips curve will be downward biased

(McLeay and Tenreyro, 2020).

To address these endogeneity issues, we run three exercises. First, we estimate the Phillips

curve on a narrower measure of inflation, the San Francisco Fed’s “cyclical core PCE inflation”

measure (Shapiro (2020)). This measure isolates those categories within the PCE price index

that move systematically with the unemployment rate and are plausibly less contaminated by

supply disturbances. This approach allows us to alleviate some of the endogeneity issues on

the most recent sample period. Second, we use the Romer and Romer (2004) monetary shocks

as instrumental variables in the Phillips curve regression, following Barnichon and Mesters

(2020). While this approach will in principle address all endogeneity issues, the instrument is

too weak post 1985 —monetary shocks are small and rare during the Great Moderation (e.g.,

Ramey, 2016)— and can only be used over the longer 1960-2023 sample. Third, we turn to

MSA-level data in order to estimate MSA-level Phillips curves, building on Hazell et al. (2022)’s

insight that cross-sectional information allows to address (or at least substantially lessen) these

endogeneity biases.

Evidence using cyclical core PCE inflation

The San Francisco Fed cyclical core inflation measure is “trained” on data up to up 2007,

meaning each category (e.g., transportation services) is placed in the “cyclical” group based

on its relationship with the unemployment rate between 1988 and 2007. For this reason, we

estimate the Phillips curve on the cyclical inflation series between 2005 and 2023, so as to

avoid any mechanical in-sample relationship. The results are shown in the even-numbered

columns of table 1. The coefficients are all larger in magnitude, and fit of all models improves

substantially, using the cyclical inflation measure. And again,θ̂t and θ̂
∗
t perform better than the

unemployment rate.

Using monetary shocks as instrumental variables

The odd-numbered columns of Table 2 report the coefficients estimated using lags of mon-

etary shocks as instrumental variables. The coefficients are bigger than using OLS —in line

with a downward bias coming from supply shocks or systematic monetary policy—, though the
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coefficients are now roughly of similar magnitudes: All forcing variables perform similarly. One

reason could be that the IV estimator uses only a small share of the variation in the forcing

variable —the fraction explained by monetary shocks—, and there is no longer enough vari-

ation to discriminate among competing forcing variables. This can also be seen in the much

larger standard errors. To discriminate among competing forcing variables and address the

endogeneity issues, we will now exploit additional variation by estimating Phillips curves at the

US metropolitan level.

4.2 Evidence from US Metropolitan Statistical Areas

Building on McLeay and Tenreyro (2020) and Hazell et al. (2022), we consider an MSA

level version of (6) with

πit = Etπi∞ + ψ (x̂it − Etx̂i∞) + ωit . (8)

We exploit a new panel with information on labor market tightness over 17 MSAs between

1982 and 2022, estimating a panel regression of the form:

πi,t = ψx̂i,t−4 + δt + αi0 + αi1t+ βXi,t−4 + υit, (9)

at the quarterly frequency where inflation, πi,t, is measured as the four-quarter change in

the core CPI in MSA i. Adding a cross-sectional dimension offers a number of advantages:

(i) it allows for the inclusion of time fixed-effects (δt) which control for time-specific factors

common to all MSAs, such as unobserved inflation expectations (πe
t ), monetary policy, and

global supply shocks, (ii) it includes MSA level fixed effects (αi0), and MSA-specific time trends

(αi1t) which control for unobserved natural MSA-level slack level, and (iii) it considerably

increases the effective sample size providing more variation in inflation and labor market slack.

This is especially important to distinguish between competing labor market slack measures

when differences are hard to detect. The vector Xit includes time-varying MSA-specific control

variables including lagged values of inflation and the relative price of goods and services.

Specification (9) alleviates many of the endogeneity issues discussed above. First, the time

fixed effects control for movements in aggregate inflation expectations, movements in long-run

marginal costs, aggregate supply shocks as well as counter-cyclical monetary policy. Second,

the inclusion of MSA fixed effect and LSA linear trends allows for MSA-specific deviations of

Etπi,∞ and Etx̂i,∞ from their aggregate counterparts as long as they follow a linear trend.9

Data construction

Our panel includes MSA-level data on unemployment, CPI inflation and job openings be-

tween 1982 and 2022 for 17 MSAs. Unemployment data at the MSA level are available from the

Bureau of Labor Statistic’s (BLS) Local Are Unemployment Statitics (LAUS), however, only

9This is an extension of McLeay and Tenreyro (2020) who posit that MSA-level deviations from aggregate
inflation expectations are constant and can be controlled by region fixed effects. Our specification allows for
time-varying Etπit+∞ and Etx̂it+∞ as long as they deviate “slowly” from their aggregate counterparts.
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back to 1990. To extend the sample back to 1982, we construct the MSA-level unemployment

rate from CPS micro data, adjusting for the MSA redefinition in October 1985. Vacancy data

are not readily available at the MSA level. However, three separate sources of information can

be used to build a consistent time series for job openings at the MSA level over 1982-2022.

A first measure of vacancy posting is the Conference Board’s Help-Wanted Index (HWI)

available over 1951-2008. The HWI measures the number of help-wanted advertisements in 51

major newspapers. Since each newspaper advertises for the local job market, an MSA-level HWI

index has also been constructed by the Conference Board over 1951-2008. Starting in the mid-

1990s however, this “print” measure of vacancy posting became increasingly unrepresentative

as advertising over the internet became more prevalent. A second measure of vacancy positing

is online-help-wanted advertising, which was published by the Conference Board spanning 2005-

2010.

Building on Barnichon (2010), we combine these two series —“print” and “online” job

advertising— to create an help-wanted index at the MSA level. A key variable in this exercise

is the share of newspaper help-wanted advertising in total advertising. Since this print share

is not directly observable, we model the development of online job advertising as the diffusion

of a new technology —online job posting and job search— with a Mixed Information Source

Model, which has been shown to successfully capture the diffusion of the internet in the US

population (e.g., Geroski, 2000). The model is then estimated over the subsample when both

vacancy series overlap. Finally, our third source of vacancy data is from The Burning Glass

Institute, which spans 2010 to 2022.

Results

Results of the MSA-level Phillips curve estimation are shown in Table 3, where we consider

two forcing variables—the unemployment rate and the V/U ratio. Estimates using the unem-

ployment rate as the slack measure are shown in columns 1 and 2, while estimates using the log

of the V/U ratio, θ̂, are shown in columns 3 and 4. Columns 5 and 6 report estimates with both

the unemployment rate and the V/U ratio. We report models with no time or MSA fixed effects

(columns 1,3, and 5), and including time and MSA fixed effects (columns 2, 4, and 6). Both

forcing variables are normalized to a unit standard deviation for comparability. The inclusion

of time and MSA fixed effects removes a great deal of upward bias on the unemployment rate

and downward bias on θ̂. Both measures of slack are statistically significant, but again the

coefficient on θ̂ is about 30 percent larger, with larger t-statistics, and the regression R2 is

higher with the V/U ratio as forcing variable. Confirming our time series evidence, the MSA

variation supports the V/U ratio as the better forcing variable over the unemployment rate.

In fact, columns 5 and 6 show that the V/U ratio provides additional explanatory power over

and above the unemployment rate. This indicates that the vacancy rate is providing additional

information about inflation, which we expound on in the next section.
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5 Phillips meets Beveridge

Based on our time series and MSA-level results, we conclude that the most successful spec-

ification for the Phillips curve is one with the V/U ratio (θ̂t) or vacancy filling costs (χ̂t) as

the forcing variable. Notably, we find that θ̂t or χ̂t substantially outperform the unemployment

rate—the original forcing variable in the Phillips equation. This improvement can seem sur-

prising in light of a well known empirical regularity called the Beveridge curve: the existence

of a tight relationship between vacancy posting and unemployment.

Figure 4: The Beveridge curve
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As illustrated in Figure 4, vacancy posting and unemployment rates comove negatively,

and are highly correlated with a correlation of −.89 over the 1960-2023 period. An intriguing

follow-up question is then the following: what additional information does the V/U ratio bring

above and beyond the unemployment rate alone? To shed light on this issue, we dissect the

theoretical underpinnings of the Beveridge curve—that is, the reasons underlying the high (but

not perfect) correlation between unemployment and job openings. We will see that our results

point to an important, yet so far overlooked, determinant of inflation: shifts in the Beveridge

curve and more specifically changes in matching efficiency.

5.1 The Beveridge curve

To help understand the emergence of a Beveridge curve as well as the reasons behind its

shifts, we consider a simple stock-flow accounting framework (e.g., Shimer, 2012) augmented

with an aggregate matching function (e.g., Petrongolo and Pissarides, 2001).
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Steady-state unemployment

Let Ut, Et, and It denote the number of unemployed, employed and inactive (out of the

labor force) individuals, respectively, at instant t ∈ R+. Letting pAB
t denote the hazard rate

of transiting from state A ∈ {E,U, I} to state B ∈ {E,U, I}, unemployment, employment and

inactivity (i.e., out of the labor force) will satisfy the system of differential equations
U̇t = pEU

t Et + pIUt It − (pUE
t + pUI

t )Ut

Ėt = pUE
t Ut + pIEt It − (pEU

t + pEI
t )Et

İt = pEI
t Et + pUI

t Ut − (pIEt + pIUt )It

(10)

As first argued by Shimer (2012), the magnitudes of the hazard rates is such that the half-life

of a deviation of unemployment from its steady state value is about a month. As a result,

at a quarterly frequency, the unemployment rate ut =
Ut

LFt
is very well approximated by its

steady-state value usst so that

ut ≃
st

st + ft
≡ usst (11)

with st and ft defined by {
st = pEU

t +
pEI
t pIUt
1−pIIt

ft = pUE
t +

pUI
t pIEt
1−pIIt

.

Expression (11) generalizes the simpler two-states case without movements in-and-out of the

labor force where Ut satisfies U̇t = pEU
t Et − pUE

t Ut and usst =
pEU
t

pEU
t +pUE

t
. With movements in-

and-out of the labor force, workers can transition between U and E either directly (U-E) or

in two steps by first leaving the labor force (U-I) and then by finding a job directly from

inactivity (I-U). As a result, ft, the “U-E transition probability” that matters for steady-state

unemployment rate is a weighted average of pUE
t and pUI

t pIEt , with weights of 1 and 1
1−pIIt

,

the average time that a worker going U→I→E spends transitioning through state I.10 st has a

similar expression.

In practice, the unemployment outflow rate is much larger than the unemployment inflow

rate (by a factor of 10 or more), so that the steady-state unemployment can be approximated

with

ut ≃
st
ft
. (12)

The matching function

Using a Cobb-Douglas matching function mt = m0tU
σ
t V

1−σ
t , we can relate the flow of new

hires to the stocks of vacancies and unemployment. and express the unemployment exit ft

10Figure 7 in the appendix shows the behavior of pUE
t and

pUI
t pIE

t

1−pII
t

—the determinants of ft—. The two series

are highly correlated with a raw correlation of 0.75 and a correlation of 0.90 after detrending with a quadratic
polynomial.
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—the ratio of new hires to the stock of unemployed— as

ft =
mt

Ut

= m0,tθ
1−σ
t .

The top of figure 5 plots the actual unemployment outflow rate over 1948-2023 along with its

fitted value. Abstracted from the recent episode, the matching function does a very good job

at capturing fluctuations in the outflow rate.

The shifting Beveridge curve

The matching function is the cornerstone of the Beveridge curve. Combining with the

steady-state approximation, we get ut =
st

m0,tθ
1−σ
t

or

vt = µtu
−σ
1−σ

t where µt =

Å
st
m0t

ã 1
1−σ

(13)

Expression (13) is the Beveridge curve, and with a Cobb-Douglas matching function, the Bev-

eridge curve is a log-log relationship between unemployment and vacancies, consistent with

Figure 4.

Log-linearizing (13), we get

v̂t = − σ

1− σ
ût + µ̂t where µ̂t =

1

1− σ
ŝt −

1

1− σ
m̂0t, (14)

where µ̂t captures shifts in the Beveridge curve.

Expression (14) highlights two important points. First, without shifts in the Beveridge

curve, the V/U ratio and the (log) unemployment rate should provide the same information

about future inflation. With µ̂t = 0, we have θ̂t = − 1
1−σ

ût, and the V/U ratio and (log)

unemployment (ût) are perfectly collinear, and a horse race between θ̂t and ût should be in-

determinate.11 In other words, a finding that the V/U ratio provides superior information

about future inflation shows that Beveridge curve shifts are central to understand inflation

fluctuations —Phillips meets Beveridge—.

Second, the Beveridge curve can shift for different reasons. In this framework, the Beveridge

curve can shift with: (i) movements in the unemployment inflow rate (ŝt) and (ii) movements

in matching efficiency (m̂0t). To measure µ̂t —shifts in the Beveridge curve—, we run the

regression θ̂t = βuût + et and take µ̂t as the regression residual. Similarly, to measure m̂0t

—movements in matching efficiency— we run the regression θ̂t = βuût + βsŝt + et where st is

measured from short-term unemployment (see Shimer, 2012), and we take m̂0t as the regression

residual.

Figure 5 plots the time series for Beveridge curve shifts since 1951, decomposed into the

contribution of the job separation rate and matching efficiency, which we define as the residual of

11In fact, it would likely favor the unemployment rate since the V/U ratio is more prone to measurement
error given that job openings are only measured through a proxy from newspaper advertising.
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a regression of v̂t on ût and ŝt. We can see that matching efficiency displays cyclical fluctuations,

increasing in the early stages of recessions and worsening in the early stages of the recovery.

Figure 5: Beveridge curve shifts and matching efficiency
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Notes: The Beveridge curve is estimated over 1951-2007. The blue line (Beveridge curve shifts) is the sum of

the red line (matching efficiency movements) and dashed green line (unemployment inflow rate).

A number of factors can generate aggregate movements in matching efficiency: changes in

workers’ search intensity, changes in firms’ recruiting intensity (Davis et al., 2013), changes in

the composition of the unemployment pool (Barnichon and Figura (2015)), or changes in dis-

persion across labor markets (Barnichon and Figura (2015)) or mismatch (Şahin et al. (2014)).12

While the pre-2007 cyclical pattern of matching efficiency has been attributed to changes

in the composition of the unemployment pool —notably the share of long-term unemployed

(see Barnichon and Figura, 2015)13, matching efficiency has declined markedly since the end

of the financial crisis. The phenomenon worsened following COVID and the so-called Great

Resignation (e.g., Barlevy et al., 2023).

5.2 Beveridge curve shifts and inflation

To better understand how shifts in the Beveridge curve are important for inflation fluctu-

ations, we replicate our two previous exercises —out-of-sample forecasting and Phillips curve

12Two additional factors that can shift the Beveridge curve are (i) out-of-steady state dynamics and (ii)
on-the-job search. First, the residual term captures the out-of-steady-state transition dynamics. Though small,
out-of-steady-state dynamics can explain the slight time lag between the unemployment rate and the vacancy
rate. Second, with on-the-job search, the Beveridge curve residual could also capture variation in employed
search intensity over time (see e.g., Bagga et al., 2023). Since we measure matching efficiency as a residual of
a Beveridge curve regression, we can think of our 0t measure as capturing all these possible mechanisms.

13The long-term unemployed have a lower job finding rate than the short-term unemployed. In the early
stages of recessions, bursts of layoffs tilt the pool of unemployed towards short-term unemployed and this raises
matching efficiency: the aggregate job finding rate is higher than it would be given the level of the V/U ratio.

17



estimation—, and we split the (log) V/U ratio into two components: (i) movements along the

Beveridge curve, and (ii) shifts in the Beveridge curve.

Combining (14) with θ̂ = v̂t − ût, we get

θ̂t = − 1

1− σ
ût︸ ︷︷ ︸

Mvts along BC

+
1

1− σ
ŝt −

1

1− σ
m̂0t︸ ︷︷ ︸

Shifts in BC

(15)

so that we can decompose the performance of the log V/U ratio into the contribution of log

unemployment (movements along the curve) and the independent contribution of shifts in the

Beveridge curve (µ̂t).

Figures 1 and 2 (orange and red bars) use (15) to decompose the superior forecasting

performances of θ̂t over ût into the respective contributions of matching efficiency and the

unemployment inflow rate over 2005-2023 and 1970-2023, building on decomposition (14). In

both cases, we can see that most of the superior forecasting performance of labor market

tightness over unemployment comes from movements in matching efficiency.

Next, we can split the forcing variable θ̂t of our Phillips curve regressions into the sepa-

rate contributions of movements along the Beveridge curve and shifts in the Beveridge curve.

Specifically, we run the regressions

πt = βπEtπ∞ − βuût − βµµ̂t︸︷︷︸
Contribution of BC shifts

+ ωt.

Table 4 confirms the importance of Beveridge curve shifts in column (3). The coefficient on µ̂t

is significant: outward shifts in the Beveridge curve correlate strongly with rises in inflation.

Table 4, column (4) further shows that both the job separation rate and matching efficiency

correlate strongly with inflation. Last, column (5) shows that matching efficiency contains

additional information —above and beyond the V/U ratio— about future inflation. This finding

is consistent with vacancy filling cost being the relevant forcing variable in the Phillips curve.

Indeed, recall that we had ξ̂t = σθt − m̂0t. In other words, if the vacancy filling cost is the

relevant forcing variable, then matching efficiency should have an effect on inflation above and

beyond the effect of the V/U ratio on inflation. This is what column (5) shows.

We can run a similar analysis using the MSA level data. While we are not able to construct

a filling cost variable by geography, we can back out the MSA-level residual, µ̂t, which captures

shifts in the Beveridge curve. Specifically, to construct µ̂t we run MSA-level regressions of the

log vacancy rate on the log unemployment rate including time and MSA fixed effects, along

with MSA-specific trends. Table 5 shows results of this exercise on the MSA-level Phillips curve

estimates. Column 1 includes the log of the unemployment rate alone, while columns 2 and 3

include additional proxies for shifts in the Beveridge curve: either the inclusion of the log V/U

ratio or the inclusion of µ̂. The results show that both θ̂ and µ̂ are statistically significant, over

and above the inclusion of û.

While an exploration of the sources of the decline in matching efficiency is outside the scope
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of this paper, one lesson of our study is that the behavior of matching efficiency is an important

topic that extends beyond labor market studies: it has direct implications for our understanding

of inflation.

6 Non-linear effects of slack on inflation

In light of the post-COVID outburst in inflation, a number of recent work has argued that

slack has non-linear effects of inflation; that the Phillips curve can steepen substantially in tight

labor markets (Benigno and Eggertsson, 2023; Gitti, 2024).

Using our Beveridge curve decomposition (15), we can explore the sources of that non non-

linearity. Specifically, for a Phillips curve with the log V/U ratio as forcing variable —our

preferred specification—-, we have

πt = Etπ∞ + βθ(θt)θ̂t + ωt

= Etπ∞ + βu(θt)ût + βµ(θt)µ̂t + ωt (16)

Clearly, if βθ —the slope of the Phillips curve— depends on θ̂t, then the Phillips curve is

non-linear —a genuine non-linearity. However, equation (16) suggests another possibility: that

the Beveridge curve shifts (µt) systematically in tight labor markets; when the V/U ratio is

high.14 In that case, the Phillips curve can appear non-linear: in tight labor markets, systematic

Beveridge curve shifts would move inflation (above and beyond ût), and give the impression of

a non-linear Phillips curve. To test between these different possibilities, we run the regression:

πt = βπEtπ∞ + βuût + γuût1θt>θ̄ + βµµ̂t + γµµ̂t1θt>θ̄ + ωt , (17)

using as threshold variable θ̄ the median of θt.
15

Table 6, column (2) confirms the presence of non-linearities in the “effect” of the V/U ratio

on inflation. Interestingly however, Table 6 column (3) shows that the non-linearity appears to

stem from systematic shifts in the Beveridge curve: the non-linearity is entirely explained by

µ̂t. In tighter labor market (θt > θ̄), outward Beveridge curve shifts “raise” inflation but the

converse is not true in slack labor market.

We can use the MSA-level variation to further explore the presence of non-linearity. How-

ever, the evidence for non-linearity is much weaker as the MSA level. In Table 7, we report

tests for nonlinearities in θ̂ (column 2) as well as µ̂ (column 4).16 The results show that the

impact of θ̂t on inflation is quite linear, where the interaction term is positive but insignificant.

Similarly, the effect of µ̂t shows minimal nonlinearity. This can be seen more clearly in Figure

6 which plots a binned scatter plot of the inflation rate (4-quarter change) and θ̂. There is little

14This could happen if the matching function is not exactly Cobb-Douglas: for instance, if matching efficiency
declines systematically in tight labor markets.

15Using θ̄ = Eθt + 1.6σθ gives similar results.
16The threshold for the nonlinearity is 50th percentile by MSA, but results are generally similar when altering

the thresholds as shown in Figure 6.
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Figure 6: Nonlinearities in the MSA-Level Phillips Curve
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evidence of a non-linear relationship.
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7 Conclusion

In this work, we systematically assess the ability of popular variables at (i) predicting and

(ii) explaining inflation fluctuations over time and across US metropolitan areas. In particular,

we exploit a newly constructed panel dataset with job openings and vacancy filling cost proxies

covering 1982-2022. We find that the vacancy-unemployment (V/U) ratio and vacancy filling

cost proxies outperform other slack measures, in particular the unemployment rate. Beveridge

curve shifts —notably, movements in matching efficiency— are responsible for the superior

performance of the V/U ratio over unemployment.

As last word, we note an important caveat to this last finding: while we showed that Bev-

eridge curve shifts correlate strongly with (and predict) inflation movements, and in particular

that a decline in matching efficiency correlates with higher inflation, we did not establish a

causal link. For that purpose, one would need to find instrumental variables that move match-

ing efficiency and are independent of the other determinants of inflation. To the extent that

the large decline in matching efficiency owes to the post-Covid Great Resignation and recon-

sideration of career choices and work-life balance, the post-2022 decline in matching efficiency

could be interpreted as a convincing case in point of the effect of lower matching efficiency on

inflation. Identifying the causal effect of matching efficiency on inflation is an important topic

for future studies.
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Blanchard, O. and Gaĺı, J. (2010). Labor Markets and Monetary Policy: A New Keynesian
Model with Unemployment. American Economic Journal: Macroeconomics, 2(2):1–30.

Blanchard, O. J. and Bernanke, B. S. (2023). What caused the us pandemic-era inflation?
Technical report, National Bureau of Economic Research.

Davis, S. J., Faberman, R. J., and Haltiwanger, J. C. (2013). The establishment-level
behavior of vacancies and hiring. The Quarterly Journal of Economics, 128(2):581–622.

Friedman, M. (1968). The role of monetary policy. The American Economic Review, 58(1).

Fujita, S., Moscarini, G., and Postel-Vinay, F. (2020). Measuring employer-to-employer
reallocation. Technical report, National Bureau of Economic Research.
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Table 1: Philips Curve Estimates, 1995-2023

(1) (2) (3) (4) (5) (6) (7) (8)

ut −0.19∗∗∗
(0.08

−0.84∗∗∗
(0.12)

— — — — — —

θ̂t — — 0.28∗∗∗
(0.08)

1.08∗∗∗
(0.10)

— — — —

χ̂t — — — — 0.30∗∗∗
(0.09)

1.07∗∗∗
(0.11)

— —

θ̂∗t — — — — — — 0.35∗∗∗
(0.09)

1.17∗∗∗
(0.10)

Inflation core cyclical core cyclical core cyclical core cyclical
Sample 95-23 05-23 95-23 05-23 95-23 05-23 95-23 05-23
Adjusted R2 0.223 0.614 0.267 0.755 0.265 0.731 0.291 0.790

Notes: The forcing variables were z-scored (demeaned and normalized to unit standard-deviation) for compa-

rability across columns.

Table 2: Philips Curve Estimates, 1960-2023

(1) (2) (3) (4) (5) (6)

ut −0.27∗∗∗
(0.06

−1.12∗∗
(0.57)

— — — —

θ̂t — — 0.33∗∗∗
(0.06)

1.00∗∗
(0.51)

— —

χ̂t — — — — 0.27∗∗∗
(0.07)

1.05∗∗
(0.63)

Etπ∞ 1.04∗∗∗
(0.04)

0.79∗
(0.50)

0.95∗∗∗
(0.07)

0.86∗
(0.46)

0.95∗∗∗
(0.07)

0.90∗
(0.49)

Adjusted R2 0.815 0.824 0.829
Partial R2 0.039 0.080 0.092
IV No Yes No Yes No Yes

Notes: The forcing variables were z-scored (demeaned and normalized to unit standard-deviation) for compa-

rability across columns.
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Table 3: Philips Curve Estimates, MSA Level 1982-2022

Dep. variable: Core Inflation (∆4Q)

(1) (2) (3) (4) (5) (6)
u -0.0957∗∗∗ -0.647∗∗∗ 0.392∗∗∗ -0.308∗∗

(0.0282) (0.114) (0.0644) (0.123)

θ̂ 0.280∗∗∗ 0.809∗∗∗ 0.584∗∗∗ 0.591∗∗∗

(0.0351) (0.102) (0.0625) (0.128)
Observations 2431 2431 2431 2431 2431 2431
Adjusted R2 0.329 0.689 0.358 0.695 0.378 0.698
Adj. Within R2 0.329 0.199 0.358 0.215 0.378 0.223
MSA Fixed Effects No Yes No Yes No Yes
MSA Time Trends No Yes No Yes No Yes
Time Fixed Effects No Yes No Yes No Yes

All variables z-scored (demeaned and normalized to unit standard-deviation) for comparability across columns.

Controls included lagged inflation and the lagged ratio of the goods and services price level.

Standard errors clustered by MSA

Table 4: Philips Curve Estimates: Testing for Shifts in Beveridge Curve, 1960-2023

(1) (2) (3) (4) (5)

ût −0.91∗∗∗
(0.13)

1.45∗
(0.75)

−0.42
(0.30)

−0.55∗∗
(0.28)

—

θ̂t — 1.36∗∗∗
(0.39)

— — 0.52∗∗∗
(0.13)

µ̂t — — −1.36∗∗∗
(0.40)

— —

ŝt — — — 1.03∗
(0.54)

—

m̂0t — — — −1.43∗∗∗
(0.40)

−0.67∗∗∗
(0.32)

Etπ∞ 1.01∗∗∗
(0.07)

0.88∗∗∗
(0.07)

0.88∗∗∗
(0.07)

0.89∗∗∗
(0.07)

0.91∗∗∗
(0.07)

Adjusted R2 0.817 0.826 0.826 0.826 0.826
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Table 5: Philips Curve Estimates, MSA Level: Testing for Shifts in Beveridge Curve

Dep. variable: Core Inflation (∆4Q)

(1) (2) (3)
û -0.687∗∗∗ -0.368∗∗ -0.695∗∗∗

(0.0925) (0.140) (0.0856)

θ̂ 0.506∗∗∗

(0.159)

µ̂ -0.122∗∗∗

(0.0384)
Observations 2431 2431 2431
Adjusted R2 0.694 0.699 0.699
Adj. Within R2 0.211 0.225 0.225
MSA Fixed Effects Yes Yes Yes
MSA Time Trends Yes Yes Yes
Time Fixed Effects Yes Yes Yes

All variables z-scored (demeaned and normalized to unit standard-

deviation) for comparability across columns. Controls include

lagged inflation and the lagged ratio of the goods and services

price level. Standard errors clustered by MSA.

Table 6: Philips Curve Estimates: Testing for Curvature, 1960-2023

(1) (2) (3)

θ̂t 0.33∗∗∗
(0.06)

−0.10
(0.11)

—

θ̂t1θ>θ̄ — 0.56∗∗∗
(0.10)

—

ût — — −0.29∗∗
(0.13)

ût1θ>θ̄ — — 0.14
(0.10)

µ̂t — — 0.02
(0.10)

µ̂t1θ>θ̄ — — −0.54∗∗∗
(0.07)

Etπ∞ 0.95∗∗∗
(0.07)

1.02∗∗∗
(0.07)

0.99∗∗∗
(0.08)

Adjusted R2 0.826 0.846 0.860

Note: Inflation is core PCE inflation. The threshold is θ̄ = Eθ in columns (2)-(3).
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Table 7: Philips Curve Estimates, MSA Level: Testing for Curvature

Dep. variable: Core Inflation (∆4Q)

(1) (2) (3) (4)

θ̂ 0.809∗∗∗ 0.725∗∗∗

(0.102) (0.154)

θ̂ x (θ > θ̄) 0.203
(0.127)

û -0.695∗∗∗ -0.758∗∗∗

(0.0856) (0.113)

û x (θ > θ̄) 0.294
(0.264)

µ̂ -0.122∗∗∗ -0.0991∗

(0.0384) (0.0541)

µ̂ x (θ > θ̄) -0.206
(0.453)

Observations 2431 2431 2431 2431
Adjusted R2 0.695 0.696 0.699 0.699
Adj. Within R2 0.215 0.217 0.225 0.226
MSA Fixed Effects Yes Yes Yes Yes
MSA Time Trends Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes

All variables z-scored (demeaned and normalized to unit standard-deviation)

for comparability across columns. Controls include lagged inflation, the

lagged ratio of the goods and services price level, and threshold dummies.

Thresholds are the 50th percentile by MSA. Standard errors clustered by MSA
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8 Appendix

UE and UIE rates

Figure 7 plots the UE and UIE rate. We can see that the two flow rates are highly cor-
related.17 In fact, a matching function (going back to Pissarides, 1985) does a great job at
capturing the behavior of ft.

Figure 7: Unemployment outflow probabilities
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Measuring inflow and outflow rates

To measure the monthly inflow and outflow rates at the national level, we use the difference
equation

Ut+1 = (1− Ft)Ut + U<5wks
t+1

where Ut and U
<5wks
t denote respectively the total number of unemployed and the number of

unemployed for less than 5 weeks (the newly unemployed during the month).
This unemployment outflow probability is then given by

Ft = 1−
Ut+1 − U<5wks

t+1

Ut

,

and the outflow rate is ft = − ln (1− Ft).
The unemployment inflow probability is obtained from

St(Lt − Ut) = U<5wks
t+1

where Lt is the labor force size . The inflow rate is then st = − ln (1− St).

17The raw correlation of 0.75 and a correlation of 0.90 after detrending with a quadratic polynomial.
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Raw series for inflation and candidate forcing variables

Figure 8: Raw series 1985-2023
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Figure 9: Raw series 1960-2023
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