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Abstract

An organization is autonomous if it has the right or power of self-government. Self-

government implies that autonomous organizations cannot rely on outside parties for

monitoring or contract enforcement. We present a model of the optimal power alloca-

tion in such an organization. The organization commits to a governance structure that

allocates managerial power to agents. Members with power (“managers”) can pun-

ish members without power (“subordinates”). This power is, however, limited by the

subordinates’ right to exit the organization. There are three main results. First, the

goals of autonomy, decentralization, and efficiency conflict with one another. We call

this result the Organizational Trilemma. Second, there is a Paradox of Power: an agent

can be made worse off by their own power. Third, optimal governance structures

in autonomous organizations are centralized and populist: the powerful party shows

restraint in early periods, only to abuse their power in later periods.
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1 Introduction

In his reappraisal of Coase’s (1937) “The Nature of Firm,” Steven N. S. Cheung illustrates

the team production problem with the following example:

My own favorite example is riverboat pulling in China before the communist regime,

when a large group of workers marched along the shore towing a good-sized wooden

boat. The unique interest of this example is that the collaborators actually agreed to the

hiring of a monitor to whip them. (Cheung (1983), p. 8).

Riverboat pulling is a collective endeavor in which each member would rather free-ride

on the efforts of others. This example illustrates that team members may benefit from the

existence of an outside party whose only role is to monitor them.

Third-party monitoring is an efficient solution only if the third party is honest, com-

petent, and inexpensive. In the riverboat example, the whip holder may choose to extract

bribes from the workers in exchange for lighter whipping. The monitor could also under-

punish shirkers (perhaps due to laziness) or punish the wrong workers. Finally, the mon-

itor could demand too high a fee to perform her duties. In any of these cases, the workers

may prefer not to employ a third-party monitor.

This paper studies the problem of incentivizing team members when hiring a third-

party monitor is infeasible or undesirable. Specifically, we consider the optimal allocation

of power among the members of an autonomous organization. The Merriam-Webster Dic-

tionary defines “autonomous” as “having the right or power of self-government.” In the

riverboat pulling example, self-government means that power (i.e., the whip) must be

assigned to a team member (or to no one).

We present a model of an autonomous organization that produces a common good

with individual inputs (i.e., effort) from its members. Members can write contracts spec-

ifying effort provisions. However, crucially, the enforcement of such contracts must be

carried out by the organization members themselves. Specifically, some members have

the power to punish members who do not fulfill their contractual obligations. This power

is, however, limited by members’ right to exit the organization.
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The model is as follows. Two ex-ante identical agents contribute individual inputs to

the production of a non-excludable good. Because inputs are costly, agents have incen-

tives to underprovide such inputs. External enforcement is not feasible, implying that

contracts in autonomous organizations must be relational. Because the game is infinitely

repeated, the efficient outcome can be sustained by the threat of exit only if agents are

sufficiently patient. If, instead, the discount factor is low, agents play the inefficient static

Nash equilibrium.

We augment this canonical relational contract setup in two ways. First, we allow the

organization to designate one of the members as a manager. In each period, the manager

decides how much effort the other player (the subordinate) must provide. If the subordi-

nate does not follow the manager’s instructions, the manager can punish the subordinate.

As in the riverboat pulling example, the manager holds a “whip” that she can use to dis-

cipline the subordinate. Because the subordinate always wants to avoid being whipped,

when facing an instruction from the manager, she has two options: follow the instruction

or leave the organization.

Second, we allow the organization members to agree upon and commit to a governance

structure: a set of rules that allocate power (i.e., the whip) to different members contingent

on the history of the game. Our problem is the optimal design of such a governance struc-

ture. The organization may choose a fully decentralized governance structure (power is

spread evenly across members over time), a fully centralized structure (power is assigned

to one member forever), or any combination of these two polar cases.

Our main result is what we call the Organizational Trilemma: the goals of autonomy, de-

centralization, and efficiency typically conflict with one another. If we insist on autonomy,

there is a trade-off between efficiency and decentralization. If decentralization is a goal in

itself, efficiency or autonomy must be compromised. If efficiency is the goal, we cannot

have both autonomy and decentralization.

The Organizational Trilemma implies that, in autonomous organizations, the optimal

(i.e., surplus-maximizing) governance structure is centralized. That is, in an optimal struc-

ture, the power to punish others should reside with a few selected members. This power
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asymmetry leads to asymmetric payoffs across members. In equilibrium, powerful mem-

bers (i.e., managers) abuse their power and enjoy higher ex-post payoffs than those with-

out power (i.e., subordinates). This abuse of power takes the form of asking subordinates

to “overwork,” under the threat of punishment. Because managers benefit from the extra

effort that subordinates exert, managers are incentivized to exert effort in order to keep

the organization intact. This is the Paradox of Power: by letting the strong party abuse

his/her power, the weak party gains power over the strong party via exiting. In some

situations, if the strong party becomes more powerful, the strong party exerts more effort

in equilibrium without changing the behavior of the weak party. Thus, the Paradox of

Power implies that an agent can be made worse off by their own power.

To illustrate the Paradox of Power and the Organizational Trilemma, we first solve an

organization design problem under the assumption of stationarity. We then consider the

general organization design problem without imposing stationarity. As in the stationary

case, we show that the optimal organization is fully centralized: the same agent holds

the whip in all periods. However, the equilibrium actions are nonstationary. In the early

periods of the game, both the manager and the subordinate exert the same amount of

effort. In later periods, the manager abuses his/her power and forces the subordinate to

overwork. The powerful agent behaves like a “populist dictator:” benevolent at first but

abusive later.

Our model is useful for understanding the strengths and limitations of the so-called

Decentralized Autonomous Organizations (DAOs), which serve as our main motivation

and application. The typical DAO is a blockchain-based entity that raises funds from

its members and allocates such funds towards a common goal. Members decide on the

allocation of funds collectively, typically through voting. DAOs resemble the canonical

notion of an autonomous organization because they rely mostly on a combination of self-

executing and relational contracts, with little use of externally enforced contracts. DAOs

typically seek greater autonomy than traditional organizational forms for two reasons.

First, blockchain technology makes designing and implementing self-executing contracts

(also called “smart contracts”) easier. Second, contract enforcement by outside authorities
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is often infeasible because they do not have the expertise, information, or recourse to a

legal framework for adjudicating disputes.

Self-executing contracts can be very powerful, but their application is limited to “on-

chain” actions, i.e., actions that occur on the blockchain where the DAO lives. Anything

that requires off-chain actions cannot be fully automated and is thus subject to gover-

nance risk. Unlike the idealized vision of DAOs often found in Internet descriptions, in

real-world DAOs, off-chain transactions are governed not by code but by relational con-

tracts (i.e., reputation and trust). For example, before an on-chain vote, DAO members

often discuss proposals on internet forums (in platforms such as Discord) and conduct

rounds of off-chain votes (using tools such as Snapshot).1 Thus, in real-world DAOs,

autonomy is achieved by designing self-executing contracts that complement relational

contracts. Self-executing contracts are thus a governance structure that supports relational

contracts.2 In our model, the organization uses self-executing contracts to commit to a

history-contingent power allocation.

Our results suggest that DAOs face the Organizational Trilemma: A truly decentral-

ized autonomous organization will be inefficient. Our model thus helps us understand

many of the practical difficulties encountered by DAOs. As we illustrate in the next

section, real-world DAOs have been plagued by issues such as centralization (and often

abuse) of power, lack of contractual enforcement, and poor performance. Our model also

shows that powerful actors have incentives to show restraint and behave benevolently in

the early days of an organization, only to abuse their power once the organization is suf-

ficiently mature. Thus, our model offers a cautionary note for participants of blockchain

projects with powerful players, such as founders, foundations, core developers, and com-

panies. Trust in blockchain “benevolent dictators” cannot be justified by observing their

behavior in the early stages of a project.

This paper is related to several strands of literature. Our basic model setup is one

1Snapshot is a voting platform that allows DAOs built on Ethereum to vote off-chain. Off-chain voting
avoids Ethereum transaction fees (called gas fees). For more about off-chain discussion and voting, see
https://t.ly/dGISZ.

2This notion of governance structure is similar to that of Williamson (2002).
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of moral hazard in teams à la Alchian and Demsetz (1972), Holmström (1982), and the

extensive literature that ensued (see, for example, Bolton and Dewatripont (2004) for a

textbook treatment). Unlike Holmström (1982), we focus on solving the moral hazard

problem within the team rather than relying on an external enforcer.

This paper is also related to the literature on relational contracting, especially papers

that consider how to design relationships to foster cooperation; see, for example, Baker,

Gibbons, and Murphy (1994, 2002, 2023), Che and Yoo (2001), Halonen (2002), Kvaloy

and Olsen (2006, 2009), Rayo (2007), Mukherjee and Vasconcelos (2011), Deb et al. (2016),

Barron and Guo (2021), Fahn and Zanarone (2022), and Troya-Martinez and Wren-Lewis

(2023). A unique feature of our paper is that we introduce interpersonal power to the

relationship, and the central question of our analysis is how to allocate power. In addition,

by interpreting our history-contingent power allocation as a self-executing contract, we

show how “smart contracts” can support relational contracts in the absence of external

enforcement.

While the theoretical literature on blockchain economics is large, it mostly focuses on

the properties and limitations of specific blockchain protocols. In contrast, our paper fo-

cuses on a simple collective action problem, which may or may not live on a blockchain.

That is, our autonomous organization is not necessarily a blockchain organization. De-

spite these fundamental differences, our paper shares similarities with blockchain eco-

nomics papers that study the limits of decentralization. Biais et al. (2019) present an anal-

ysis of the proof-of-work protocol as a repeated game and show the existence of inefficient

equilibria with persistent forks. Budish (2023) shows that the cost of sustaining trust in

blockchain protocols is prohibitively high. His analysis casts doubt on the ability of au-

tonomous blockchains to deter dishonest behavior without the help of governments or

other third parties. Ferreira, Li, and Nikolowa (2023) show that the proof-of-work pro-

tocol creates incentives for ownership concentration in the industries that support the

mining ecosystem. Han, Lee, and Li (2023) presents a theory of DAO governance based

on conflicts between small and large token-holders.

Our paper is also related to the extensive literature on power and authority in orga-
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nizations; see, for example, Simon (1951), Chwe (1990), Aghion and Tirole (1997), Rajan

and Zingales (1998), Piccione and Rubinstein (2007), Van den Steen (2010), Acemoglu and

Wolitzky (2011), and Rantakari (2023) (see also Bolton and Dewatripont (2013) for a sur-

vey). Most of the works in this literature study static power allocations, even when the

environment is dynamic. Our model, in contrast, studies dynamic power allocations,

highlighting the importance of the persistence of power.

2 Management and Governance Issues in DAOs

While Decentralized Autonomous Organizations can take many different forms, the typi-

cal example is an organization that raises funds from its members to pursue some collec-

tive goals. A famous example is ConstitutionDAO, which raised over $40 million in an

(ultimately unsuccessful) attempt to buy a copy of the U.S. Constitution in an auction. A

DAO usually raises funds by selling tokens created on a “smart contract” platform such

as Ethereum.3 “Decentralization” means that all members have the right to participate

directly in decision-making, such as how to spend treasury funds and how to govern

the organization. Typically, decision-making rights are distributed as governance tokens.

Most decisions are voted on by members who own the governance tokens.

DAOs face a traditional collective action problem: To achieve a common goal, the in-

dividual members must exert costly effort. For example, a DAO must often decide how to

allocate its funds across multiple projects. Individual members must gather information

to decide which projects to support. Because information acquisition is costly, members

have an incentive to free-ride on the effort of others.4 Because most DAOs are not le-

gal entities, DAO members usually cannot resort to the legal system to enforce contracts

3A smart contract is a piece of code that automatically executes a transaction once prompted by a mes-
sage. A famous analogy is that of a vending machine, in which a product is dispensed automatically once
coins are inserted. Smart contracts can be “state-dependent,” in the sense that a transaction is executed
automatically if a particular state occurs.

4See, e.g., Hall and Oak (2023): “Users of online systems expect convenience and are generally uninterested in
participating in governing the platforms that they use. Rates of voting in online communities in the web3 space are
generally quite low” (p.1).
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among members.5 Thus, contract enforcement is mainly based on code (i.e., self-executing

contracts) and relational incentives (i.e., trust and reputation).

While the ability to write code that automates contract execution is touted as the great-

est strength of DAOs, in reality, only some transactions can be automated. Most DAOs

depend on “off-chain” actions, which require human execution. In the example of Con-

stitutionDAO, someone must convert digital coins into fiat money, save them in a bank

account, and physically bid in the auction. After a failed bid, there is also the non-trivial

issue of returning (some of) the money to members and paying for operation costs. As

a matter of fact, ConstitutionDAO never held a single vote using its token.6 Because of

these off-chain actions, most DAOs have a core team (or a foundation), who often have

discretion over many decisions. These are essentially (in all but name) “managers.”7

The existence of managers implies that real-world DAOs are not as decentralized as

theoretical DAOs.8 Examples of abuse of power by DAO managers abound. The foun-

dation that manages the blockchain Arbitrum allegedly started to spend its funds even

though its nearly $ 1 billion budget had not yet been approved by governance token hold-

ers.9 The core team that runs Aragon—a DAO that builds tools for managing DAOs—

banned some DAO members from its governance discussion forums. Commenting on the

ban, CoinDesk contributor Danny Nelson concludes that “their banishment from Aragon’s

Discord for asking ‘probing questions’ and using ‘inappropriate language’ highlights the

disconnect between the censorship-resistant ideals of crypto governance and the reality

that insiders hold considerable sway.”10 In November 2023, without holding a vote, the

Aragon team decided to dissolve the DAO’s governing body and return most of its assets

5See https://t.ly/Mf806
6https://www.vice.com/en/article/bvnze5/constitutiondao-is-shutting-down-after-unrelenting-chaos
7DAO founders and key players understandably avoid using titles such as CEOs, executives and man-

agers. Instead, they often refer to themselves as “core developers,” “heads” and ”leads.”
8Ethereum—the “Layer-1” blockchain on which most DAOs are built—is also fairly centralized. For

example, Fracassi, Khoja, and Schär (2024) show that ten individual developers contributed 68% of all im-
plemented core Ethereum Improvement Proposals.

9https://t.ly/y2T6n.
10https://t.ly/A5Ru9. Note that, although notionally decentralized, Aragon has a “Head of Communi-

cations.”
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to tokenholders. DAO members voted to sue the Aragon Team, which shows that full

autonomy is often a myth.11

DAO managers’ power is not absolute. DAO members who are unhappy with man-

agement may leave the organization. A prominent example is Nouns, a DAO that invests

in several projects that promote their branded NFTs. Unhappy with management deci-

sions, 56% of Nouns NFT holders voted to leave the organization, taking about $27 mil-

lion worth of treasury funds along with them. The defectors created a new DAO, with the

same NFT artwork as the original, where each holder is allowed to “ragequit” and take

some of the funds with them.12

As these examples illustrate, real-world DAOs (as opposed to idealized DAOs) are

rife with governance, management, and performance problems. Because of their alleged

autonomy, external enforcement of contracts is limited. DAOs are typically centralized

due to the power of core teams and foundations. These managers may be able to punish

bad behavior, for example, by banning some members or canceling their tokens. But they

can also abuse their power and have discretion over the use of funds. Non-managing

members have the option to quit, thus imposing costs on those who stay.

3 Model

We present a model of an autonomous organization. The organization produces a non-

excludable good with inputs from its members. The model setup does not try to match the

workings of any particular real-world organization. Instead, the model aims to illustrate

the fundamental tension between decentralization and efficiency.

11https://cointelegraph.com/news/aragon-dao-lawsuit-founders-patagon-management
12https://decrypt.co/197400/nouns-fork-disgruntled-nft-holders-exit-27-million-from-treasury
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3.1 Setup

Consider an organization (to be formally defined later) with two members, called players,

i ∈ {1, 2} (she and he), who interact repeatedly and share a common discount factor, δ.

In each period t ∈ {1, 2, ..., ∞}, if both players participate in the organization, they jointly

produce output yt, which is equally shared between them. At each t, player i chooses

effort eit ∈ {0, 1, 2}, where the cost of effort is c(eit) = ceit, c > 0. The output of each

player i is

yit =


0 if eit = 0

B if eit = 1

B + b if eit = 2.

(1)

Total output is yt = y1t + y2t. All information is public. We assume the following:

Assumption 1. 2c > B > c > b > 0.

This assumption implies that the first-best effort levels are eFB
it = 1, for i ∈ {1, 2}.

However, B is not large enough, thus choosing eit = 1 is not a dominant strategy in the

single-stage game. Given this technology, players can shirk (eit = 0), work (eit = 1) or

overwork (eit = 2). For expositional simplicity only, we also assume:

Assumption 2. B + 1
2 b ≥ 2c.

This assumption implies that both players earn strictly positive payoffs when one

player works and the other overworks. This assumption is unnecessary for our analy-

sis and is made only to reduce the number of cases to consider.

We augment this standard relational contracts setup by introducing the concept of

power. We focus primarily on autonomous organizations: power must be allocated to a mem-

ber of the organization or no one. In Subsection 4.2, we also consider non-autonomous

organizations in which external contract enforcement is feasible. It is immediate that if

external enforcement is costless, efficiency can be achieved. Thus, the interesting case is

when the organization must be autonomous, either because external enforcement is costly

or because the organization’s members derive direct utility from autonomy.
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Our notion of power is similar to Simon’s (1951) notion of authority.13 At the beginning

of period t, one of the players may be designated as the manager. If player i is the manager,

she recommends an action ê−it ∈ {0, 1, 2} for the other player (the subordinate) and also

an action êit ∈ {0, 1, 2} for herself. The subordinate and the manager then decide whether

to exit or stay in the organization. We denote their participation decisions by dit ∈ {0, 1},

where 0 indicates exit and 1 indicates staying, and i ∈ {1, 2}. If the subordinate stays but

chooses an effort level strictly lower than ê−it, the manager can reduce the subordinate’s

payoff by D > B. Formally, the identity of the manager is given by gt ∈ {0, 1, 2}, with

gt = i designating player i ∈ {1, 2} as the manager and gt = 0 denoting the case of no

manager. We call gt the whip.14

Managerial power—here represented by the whip—is a scarce resource. Accordingly,

we assume that only one whip is available. In reality, there are many practical reasons

for managerial power to be concentrated in the hands of a few. In the case of DAOs, the

ability to ban or exclude members requires special administrative rights for managing

forums or editing the organization’s protocol (e.g., signatures). Even in large blockchain

projects such as Bitcoin and Ethereum, only a very small group of core developers have

the keys to modify the blockchain protocol.15

Whip assignment affects the set of feasible actions for each player: The manager can

suggest actions for both players (ê1t, ê2t), while the subordinate does not suggest actions.

If no player is the manager (i.e., gt = 0), no one suggests any action. To keep the space of

13Simon (1951) defines authority in the context of an employment relation between a boss (B) and a worker
(W): “We will say that B exercises authority over W if B permits W to select x” (p. 294).

14As in Van den Steen (2010), our notion of power is interpersonal. The manager can request the sub-
ordinate to deliver a minimum level of performance. If the subordinate underperforms, the manager can
punish the subordinate ex-post. To avoid punishment, the subordinate must either perform according to
expectations or exit the organization before the punishment stage.

15In our setup, the manager must initiate the punishment. That is, punishment does not automatically
occur given a state. This is in line with many blockchain projects. For example, in proof-of-stake protocols,
block producers and validators must “stake” some of their tokens, which remain frozen for a given period.
If a node discovers that some player broke the rules, it can punish that player by “slashing” their stake.
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actions constant, we define

ea
it :=

{
(ê1t, ê2t) if gt = i

∅ otherwise.
(2)

We use ea
t to denote the vector (ea

1t, ea
2t). Similarly, we define dt := (d1t, d2t) and et :=

(e1t, e2t). Player i’s end-of-the-period payoff is

uit(ea
t , dt, et) =

 d1td2t

(
e1t+e2t

2 − ceit − D1eit<êit

)
if gt = −i

d1td2t

(
e1t+e2t

2 − ceit

)
if gt ̸= −i,

(3)

where 1x is the indicator function. Within each period t, there are five dates (players

choose their actions simultaneously within each date):

Date 1. The outcome of a public randomization device xt is realized.

Date 2. The whip gt is assigned to one player (gt = 1 or gt = 2) or no player (gt = 0).

Then, players choose ea
it.

Date 3. Players decide whether to exit (dit = 0) or stay (dit = 1).

Date 4. Players choose eit ∈ {0, 1, 2}.

Date 5. Output yt ∈ {0, .., 4} and payoffs (u1t, u2t) are realized.

The role of xt is to allow the whip allocation and actions to depend on some publicly

observed external signal. The existence of a public randomization device is a common as-

sumption in the repeated games literature and is made to convexify the set of equilibrium

payoffs. Without loss of generality, we assume that xt is uniformly distributed on the unit

interval.16

We define the history at time t as ht =
{

x1, g1, ea
1, d1, e1, ..., xt−1, gt−1, ea

t−1, dt−1, et−1
}

. We

define a governance structure as G = {Gt}∞
t=1, where Gt : (ht, xt) → (gt). A governance

structure maps each history and signal realization to a whip allocation. That is, a gover-

nance structure fully determines the allocation of managerial power among players.17

16For clarity of exposition, we deviate from the literature and place the public signal at the beginning of
the period. The analysis is identical if the public signal is at the end of the period.

17Our notion of governance structure relates to Williamson’s (2002) view of governance structure as a
set of mechanisms that support an ongoing contractual relationship. See also Baker, Gibbons, and Murphy
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We interpret G as a contingent self-executing contract. In the DAO interpretation, G

completely specifies under what conditions some DAO members would gain special ad-

ministrative rights. That is, G is implemented on-chain. Because past actions (such as

participation in forums) are off-chain, they cannot trigger automated punishment. Off-

chain information must first be recorded on-chain, either by a member with special rights

or by a third party (called an oracle). In a truly autonomous organization, the designated

manager would observe off-chain behavior, record it in the underlying blockchain, and

then punish those who misbehave.

Let Γ denote the set of all governance structures and G0 ∈ Γ denote the governance

structure such that gt = 0 for all t ∈ {1, ..., ∞}. We call G0 the default governance structure.

Under the default governance structure, no player has power over the other player; i.e.,

there is no whip. Let γ0 denote the game associated with the default governance structure:

a set of members, action spaces for each member, and their payoff functions, for the case

where gt = 0 always. We call γ0 the primitive game. Because each G ̸= G0 is associated

with different action and payoff spaces, we can think of G as a particular modification of

the primitive game. We call the modified game, γ(G), the game induced by G.

For a given game induced by G, at each t, we denote player i’s (pure) actions by

Sit = (ea
it, dit(ea

t ), eit(ea
t , dt)), where subscript t indicates that the actions are conditional

on (ht, xt).18 Player i’s strategy is thus an infinite sequence of such actions, Si = {Sit}∞
t=1.

Let S = {St}∞
t=1 denote a strategy profile, where St : (ht, xt) → (ea

t , dt, et) is a mapping

from the history at time t to a set of actions for both players. We define Ψ(G) as the set of

Subgame Perfect Equilibrium (SPE) strategy profiles for game γ(G).

We can now define an organization:

Definition (Organization). An organization is a triplet ⟨γ0, G, S⟩ consisting of a primitive game

γ0, a governance structure G ∈ Γ, and an equilibrium profile S ∈ Ψ(G).

That is, an organization consists of a primitive game, a governance structure that mod-

ifies the rules of the primitive game, and a particular suggestion for how the members

(2023).
18Given public correlation, the restriction to pure actions is without loss of generality.
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should play the modified game. We include equilibrium strategies in the definition of or-

ganization to allow for soft or intangible aspects, such as culture, to be part of the design

of organizations. Because we will keep the primitive game fixed for most of the analysis

(the only exception is the non-autonomous organization described in Subsection 4.2), to

economize notation, we will often denote an organization simply by ⟨G, S⟩ ∈ Γ × Ψ(G).

3.2 Benchmark: The First Best

Let S0 ∈ Ψ(G0) denote an equilibrium under the default governance structure (i.e., an

equilibrium of the primitive game). We denote this organization by ⟨G0, S0⟩. Under G0,

cooperation can only be sustained by the threat of exit. Assumption 1 implies that the

first-best effort levels are eFB
1t = eFB

2t = 1. Under the first-best, the normalized payoff of

each player is B − c. We restrict attention to equilibria in trigger strategies, in which both

players leave if any player deviates from the equilibrium play. That is, if at time t player

i chooses an off-the-equilibrium-path action, for all t′ > t players choose d1t′ = d2t′ = 0.

Under such trigger strategies, the first-best payoffs can be sustained as an SPE if and only

if
B − c
1 − δ

≥ B
2

. (4)

The left-hand side of (4) is player i’s present value of working (eit = 1) forever, and the

right-hand side is the value of shirking (eit = 0) today followed by the dissolution of the

organization. Thus, the first-best can be sustained under the default governance structure

if δ ≥ 2c−B
B =: δFB. As a result of the Folk Theorem, any cooperative outcome can be

sustained if the discount factor is sufficiently high. The interesting case is δ < δFB, which

we now assume.

Assumption 3. δ < δFB := 2c−B
B .
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4 Organization Design

In this section, we consider the problem of designing an optimal organization. We start

from the primitive game γ0, which we modify by choosing a governance structure. We

then select an equilibrium strategy profile for the modified game. Formally, we consider

a planner who chooses an organization to maximize the normalized discounted sum of

payoffs:

max
⟨G,S⟩∈Γ×Ψ(G)

(1 − δ)E

[
∞

∑
t=1

δt−1 (u1t + u2t) | G, S

]
. (5)

The economic interpretation is that the organization designer chooses a set of immutable

rules, here summarized by G. These rules are enforced automatically, e.g., they are em-

bedded in the organization’s code. Our problem is to determine the set of rules that max-

imizes the organization’s surplus, assuming that the designer also selects the best SPE

associated with such rules. Alternatively, we could assume that the designer chooses only

the governance structure while players coordinate on the surplus-maximizing equilib-

rium.

Our focus on optimal organizations allows us to simplify the setup without any loss of

generality. First, from now on, we restrict the space of feasible whip allocations to {1, 2},

except for the case of the default governance structure, in which case we set gt = 0 always.

To see that this restriction is without loss of generality, consider an organization such that,

for some (ht, xt), we have gt(ht, xt) = 0. Let e∗t denote the associated equilibrium efforts.

Suppose instead that we set gt(ht, xt) = 1. It is immediate that by setting the manager’s

announcement to ea
1t = e∗t when (ht, xt) happens, the effort vector e∗t can be sustained

as an equilibrium under this new governance structure. Because nothing changes in all

other periods, this equilibrium is payoff-equivalent to the original one. Thus, from the

organization designer’s perspective, there is no reason to choose gt = 0 following any

realization of (ht, xt).

Second, we only consider organizations such that, in equilibrium, if i is the manager,

ea
it(h

t, xt) = et(ht, xt), for all (ht, xt). In words, the manager always recommends the equi-
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librium effort levels. It is easy to see that any equilibrium in which ea
it(h

t, xt) ̸= et(ht, xt)

is payoff-equivalent to an equilibrium that differs from the original one only by setting

ea
it(h

t, xt) = et(ht, xt). This simplification implies that we can ignore ea
t when characteriz-

ing an equilibrium.

Third, because we will consider only trigger strategies, the optimal participation deci-

sion is dit = 1 always unless a player has deviated in the previous period, in which case

the optimal decision is dit′ = 0 for all t′ ≥ t.

With these simplifications, we can think of the organization as an institution consisting

of a (possibly rotating) manager and a subordinate. The manager makes decisions con-

cerning productive efforts. The subordinate either carries out the manager’s instructions

or leaves the organization. The effort choices (or orders) depend only on (ht, xt), where

the history is now more succinctly described as ht = (x1, e1, ..., xt−1, et−1). Any given strat-

egy Si for i ∈ {1, 2} can now described by a sequence of effort functions eit = eit(ht, xt)

and participation decisions dit = dit(ht).

4.1 Stationary Organizations

In this subsection, we consider the case of stationary autonomous organizations. We im-

pose stationarity only to facilitate the analysis and the exposition. As we will see in Sub-

section 4.3, the main messages from the results remain unchanged when we study the

general case of optimal autonomous organizations.

We first consider stationary organizations under the default governance structure, G0.

We say that organization ⟨G0, S0⟩ is stationary if the equilibrium actions (on the equilib-

rium path) in period t are independent of the history, ht. Under the default governance

structure, we have the following result.

Proposition 1 (Equilibrium under Default Governance). If S0 ∈ Ψ(G0) is a stationary

equilibrium, then e1t = e2t = 0 for all t.

Proposition 1 shows that under Assumption 3, the unique stationary equilibrium of the

primitive game is such that both players shirk. That is, there is a unique default organization
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⟨G0, S0⟩ where e1t = e2t = 0 always.19

We now consider an autonomous organization with G ̸= G0. For this organization to

be stationary, we also require its governance structure to be i.i.d.:

gt = g(xt; p) :=

{
1

2

if xt ≤ p

if xt > p
, (6)

where p ∈ [0, 1] is the probability that Player 1 has the whip at any given t (recall that

we have restricted the space of whip allocations for G ̸= G0 to {1, 2}). Thus, under

stationarity, we can fully describe a governance structure by p. In a stationary organi-

zation, we can write player i’s equilibrium effort decision as ei(ht, xt) = ei(xt) and define

e(xt) := (e1(xt), e2(xt)). The formal definition of stationarity is as follows.

Definition (Stationarity). An organization is stationary if its governance structure is stationary

and the equilibrium effort profile e(xt) is independent of ht.

Note that conditional on gt, effort can be stochastic through its dependence on xt. For

future use, we define µi(gt) as the probability distribution of eit over {0, 1, 2} conditional

on gt.

We define the centralization index of an organization with a stationary governance struc-

ture as c(p) := |2p− 1|. Stationarity implies that the centralization index is constant across

periods, histories, and strategy profiles. An organization with a stationary governance

structure is fully decentralized if p = 0.5 and fully centralized if p = 1 or p = 0. For

brevity, when considering fully centralized organizations, we focus only on the case in

which Player 1 is the manager (p = 1); the case in which p = 0 is exactly symmetrical.

The following lemma shows a link between decentralization and shirking.

Lemma 1 (Shirking Lower Bound). In a stationary organization, the player with the (weakly)

lower payoff shirks as manager.

Lemma 1 implies that if c(p) < 1 (i.e., the organization is not fully centralized), some

players will not work whenever they are managers. Specifically, the player with the

19This result generalizes to nonstationary organizations as well, but the proof is rather tedious.
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(weakly) lower (normalized discounted) payoff of the two must shirk when he/she is

the manager. To see why this is the case, assume that Player 2 has a lower payoff than that

of Player 1. Player 2’s payoff must be strictly lower than the first-best payoff (B − c). Be-

cause δ < δFB, Player 2’s loss in future payoff is smaller than the gain from saving the cost

of effort. It is thus impossible to induce Player 2 to exert effort unless there is additional

punishment for not doing so. But once Player 2 is the manager, no further punishment

can be imposed on him. As a result, Player 2 must shirk whenever he is the manager.

For a stationary organization with governance p, Lemma 1 implies a shirking lower

bound: in any equilibrium, the probability that at least one player shirks at any given t is

no lower than min{p, 1 − p} ≡ 1−c(p)
2 . Note that the shirking lower bound is decreasing

in the centralization index. This result illustrates the cost of decentralization: in more

decentralized organizations, the shirking lower bound is tighter.

We now introduce two special organizational structures. First, we say that a station-

ary autonomous organization is identity-blind if effort levels do not depend on players’

identities:

Definition (Identity-blindness). A stationary organization is identity-blind if effort choices are

such that µi(1) = µ−i(2) for i ∈ {1, 2}.

That is, the organization is identity-blind if the conditional effort distributions µi and

µj are symmetric. Second, we say that a stationary organization is power-blind if a player’s

identity alone determines his/her effort choice.

Definition (Power-blindness). A stationary organization is power-blind if effort choices are

such that µi(1) = µi(2) for i ∈ {1, 2}.

Identity-blindness and power-blindness are different types of symmetry with respect

to the “flipping” of a power allocation. In an identity-blind organization, when the power

allocation flips, the effort choices of the players also flip. In a power-blind organization,

the effort choices remain unchanged when the power allocation flips. As the next result

shows, if a stationary autonomous organization is either power-blind or identity-blind,

then no player can be induced to work.
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Proposition 2 (Symmetry leads to shirking). If a stationary autonomous organization with

c(p) < 1 is either power-blind or identity-blind, then e1(xt) = e2(xt) = 0 for all xt.

To see why this result holds, start with the power-blind case. Suppose Player 2 has a

(weakly) lower payoff than Player 1. Proposition 1 implies that Player 2 shirks when he

has the whip. Power-blindness then implies that Player 2 always shirks. Thus, Player 1

also shirks when she has the whip because her continuation payoff is insufficient to induce

her to work. Again, power-blindness implies that Player 1 always shirks. Next, consider

the identity-blind case. Proposition 1 implies that (say) Player 2 shirks when he is the

manager. Identity-blindness then implies that both players shirk whenever they become

managers. When managers don’t work, the total payoff is lowered to such an extent that

it is impossible to induce any worker to work.

Proposition 2 implies that no one works unless changes in whip assignments differ-

entially affect players’ behavior. That is, at least one player must change behavior when

the whip changes hands, and if both players do so, such changes cannot be symmetric.

In other words, one player must work harder than the other, either as a manager or as a

subordinate.

To streamline the exposition, we initially consider only the case where µi(gt) is degen-

erate, i.e., Player i’s effort choice is deterministic for a given gt. In this case, we can write

egt
i := ei(g−1(gt; p)) and egt := (egt

1 , egt
2 ). This restriction is without loss of generality for

the next three results. We will remove this restriction later when it becomes binding.

From now on, we assume that Player 1 has the (weakly) highest payoff in equilibrium.

The next result shows that abuse of power must occur in an optimal stationary organiza-

tion.

Lemma 2 (Equilibrium Abuse of Power). In an optimal stationary organization, the effort

profile e1 = (1, 2) must be played when Player 1 is the manager.

This result implies that maximization of the joint surplus requires Player 1 to abuse her

power as manager by asking the subordinate to overwork. Notice that we cannot have

both e1 = (1, 2) and e2 = (2, 1) because no identity-blind equilibrium with positive effort
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exists. Thus, an optimal organization must be asymmetric. In addition, Lemma 1 implies

that there is no equilibrium in which e2
2 > 0. Thus, an optimal stationary equilibrium must

have either e2 = (0, 0) or e2 = (1, 0).20

The next proposition shows the existence of asymmetric equilibria involving e1 =

(1, 2), provided the governance structure is not too decentralized.

Proposition 3 (The Paradox of Power). Define δ1 := 2c−B
B+b . There exist p2(δ) > p1(δ) > 0.5

such that, if δ ∈ [δ1, δFB),

1. e1 = (1, 2) and e2 = (0, 0) can be enforced by a stationary SPE if and only if p ≥ p1(δ),

2. e1 = (1, 2) and e2 = (1, 0) can be enforced by a stationary SPE if and only if p ≥ p2(δ).

Both p1(δ) and p2(δ) decrease in δ.

Proposition 3 shows that one can design an organization that improves upon the de-

fault organization. For this to happen, the organization must be sufficiently centralized,

i.e., p must be greater than some threshold p1(δ) > 0.5. In the equilibrium in Case 1, when

gt = 1, Player 1 works and Player 2 overworks; when gt = 2, both players shirk. When

Player 1 is the manager, she abuses her power and asks Player 2 to overwork. Thus, in

equilibrium, Player 1’s payoff is higher than Player 2’s payoff. Despite this asymmetry,

both players would agree that this equilibrium is preferable to the default organization,

which delivers zero payoff to both players. Player 2 is incentivized to overwork due to

fear of being whipped. Player 1 works only because of her continuation value. Centraliza-

tion is critical here because it delivers payoff asymmetry, which is necessary for providing

sufficient continuation value to Player 1.

Proposition 3 also shows that if the organization is sufficiently centralized (p ≥ p2(δ)),

Player 1 may work in every period. In such a case, Player 1 prefers the lower-surplus

equilibrium in Case 1 (e1 = (1, 2) and e2 = (0, 0)) to that in Case 2 (e1 = (1, 2) and

20It is easy to see that e2 = (2, 0) is dominated by e2 = (0, 0) or e2 = (1, 0): (i) it has a lower joint payoff,
(ii) it makes Player 1’s incentive constraint harder to meet, and (iii) Assumption 2 implies that Player 2’s
participation constraint is slack under e1 = (1, 2) and either e2 = (0, 0) or e2 = (1, 0).
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Figure 1: The Paradox of Power

e2 = (1, 0)). However, the organization members may coordinate instead on the higher-

surplus equilibrium. Thus, Player 1 can be made worse off by her own power. We call

this phenomenon The Paradox of Power. Intuitively, if power is sufficiently centralized in

Player 1’s hands, her continuation value is high. Player 2 can thus use the threat of exiting

to induce Player 1 to work in all periods.

Figure 1 illustrates this argument. The figure shows the three relevant payoff profiles

from Proposition 3 on the u1 × u2 plane, where ui = (1 − δ)∑∞
t=1 Eδt−1uit. Suppose an

equilibrium involves e1 = (1, 2) and e2 = (1, 0) with probabilities p and 1 − p. If the

expected payoff profile is at point I, Player 1’s expected payoff is u1 = p(B + b
2 − c) +

(1− p)(B
2 − c) = 1−δ

δ (c − B
2 ), which is the expression that defines p2(δ) := 2C−B

δ(B+b) . For p =
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p2(δ), if the equilibrium involves e1 = (1, 2) and e2 = (0, 0), the expected payoff profile is

at point I I. Player 1 is better off at I I. However, the sum of payoffs (E(u1 + u2)) is higher at

I. If Player 1 were less powerful (i.e., if p < p2(δ)), point I would not be sustainable. Thus,

Player 1 can be made worse off by having more power. Intuitively, because more power

increases Player 1’s continuation value, it eventually becomes possible to coordinate on

an equilibrium where Player 1 always works (e1t = 1). In that equilibrium, Player 2 gains

power over Player 1 by threatening to exit in case Player 1 does not work.

In Figure 1, the sum of the payoffs increases as we move along the I − I I I line. Higher

p allows for equilibrium payoffs closer to I I I, and p = 1 can sustain the action profile

(1, 2) with probability 1 (point I I I), which dominates (i.e., has a larger sum of payoffs

than) all points on the I − I I I line. Thus, Proposition 3 implies the following result.

Corollary 1 (Centralization is Optimal). If δ ∈ [δ1, δFB), an optimal stationary organization

must be fully centralized (p = 1).

This corollary shows that if δ ∈ [δ1, δFB), an organization can implement (1, 2) every

period, but only under full centralization (p = 1). In fact, a fully-centralized stationary

organization can do even better. To improve upon profile (1, 2), Player 2 must choose

an effort level lower than 2 with some probability. Thus, we now remove the restriction

that µi(gt) is degenerate. The following proposition characterizes the optimal stationary

organization.

Proposition 4 (Optimal Stationary Organizations). Consider a stationary autonomous orga-

nization with p = 1. There exists α1(δ) such that for all δ ∈ [δ1, δFB), if α ∈ [α1(δ), 1], the action

profile that randomizes between (1, 2) and (1, 1) with probabilities α and 1 − α can be enforced by

some SPE. Furthermore, if δ ∈ [δ1, δFB), an organization with p = 1 and α = α1(δ) is an optimal

stationary organization.

Figure 2 illustrates Proposition 4. Suppose that δ ∈ [δ1, δFB). Let p = 1 and suppose

an equilibrium randomizes between action profiles (1, 2) and (1, 1) with probabilities α

and 1 − α. If the expected payoff profile is at point IV, Player 1’s expected payoff is
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Figure 2: Implementable payoffs under full centralization

u1 = α(B + b
2 − c) + (1 − α)(B − c) = 1−δ

δ (c − B
2 ), which is the expression that defines

α1(δ) := 2C−(1+δ)B
δb . Any payoff profile on the I I I − IV line can be sustained for some

α ≥ α1(δ). Note that the total sum of the payoffs is maximized at point IV, implying that a

fully centralized organization (i.e., p = 1) where the manager works in every period, and

the subordinate randomizes between “work” and “overwork” with probabilities α1(δ)

and 1 − α1(δ) is an optimal stationary organization.

Proposition 4 shows that under full centralization, for sufficiently high δ < δFB, there

exists a type of equilibrium in which neither player shirks. In this equilibrium, the man-

ager works in every period. The subordinate alternates between working and overwork-

ing. By overworking, Player 2 increases the value of the relationship for Player 1 and
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induces Player 1 to work. Proposition 4 shows that overworking must occur. The proba-

bility of overworking depends on the discount factor. It can be shown that as the discount

factor drops, the minimum probability of overworking increases.

The type of equilibrium in Proposition 4 has several features and lessons. First, the

equilibrium shows that a designated enforcer is helpful to induce effort. Different from

existing models of relational contracting, a key feature of our model is the introduction of

a whip. This whip enables better enforcement of desired behaviors because the deviator

can now also be punished by the whip. As discussed above, there can be many different

ways to allocate the whip. The results in this section indicate that a designated enforcer is

essential in stationary autonomous organizations. Without a designated enforcer, players

must have a sufficiently high payoff to be induced to work when they have the whip. But

since the sum of the players’ payoffs is bounded by the first-best payoff level, no division

of the payoffs is feasible to induce both players to work. By having one player always

as the designated enforcer (manager), the governance structure eliminates the need to

consider the incentive constraint of the other player as manager.

Another feature of the model is that, under full centralization, the manager has more

than half of the surplus. This payoff asymmetry arises because without giving sufficient

payoff to the manager, she will not put in effort. The possession of power, therefore, ne-

cessitates a high level of payoff. The positive association between “power” and “payoff”

is reminiscent of Alchian and Demsetz’s (1972) solution of “who monitors the monitor”

in the sense that, there, the residual claimant (owner) carries out the role of the manager

by measuring the effort of the subordinates. But the difference is that, here, the manager’s

role is not to measure output but instead to exert productive effort and enforce the con-

tract. In addition, the manager is not the residual claimant: she gets half of the surplus.

Finally, note that even if the players are ex-ante identical, our model leads to a hierar-

chical division of labor. At the top, there is the manager. She is motivated by a “carrot:”

the prospects of long-term rewards from a well-functioning organization. At the bottom,

there is the worker. He is driven by a “stick:” the immediate penalties for failing to carry

out the order given by the manager. The hierarchy places the worker under the manager’s

24



control, effectively limiting his autonomy within the relationship. Through this perspec-

tive, our model suggests that one (personal) benefit of power is the freedom it grants.

4.2 The Organizational Trilemma

Autonomous organizations must enforce contracts or promises internally by allocating

power to some members. By contrast, a non-autonomous organization may choose (or

be forced) to allocate the whip to a third party, such as courts, regulators, or independent

arbitrators. Suppose that an unbiased third party exists; call it Player 3. Player 3 is not a

member of the organization; thus, she cannot exert effort or enjoy a share of the output.

If Player 3 observes the output, she can still play an essential role by promising to punish

those players who shirk. We interpret Player 3 as an unbiased arbitrator (or court) that

enforces the formal contracts written between Players 1 and 2.

Formally, we consider an alternative primitive game, γ′
0, that is identical to γ0 except

for a third player with no productive actions and constant zero payoff. Consider the gov-

ernance structure g(ht, xt) = 3 for all (ht, xt). That is, the third party always has the whip.

Consider an equilibrium where the third party expects both other players to exert the

first-best effort level. The third-party punishes any deviation by reducing the payoff of

the deviating party by D (players can still avoid punishment by exiting at Date 3). It is

easily seen that the first-best payoffs can be sustained as an SPE for any discount factor

δ. Thus, a non-autonomous organization finds it easier to deliver efficient outcomes than

an autonomous organization. Note that, in this example, the non-autonomous organiza-

tion is also decentralized, in the sense that no organization member has power over one

another. Thus, a non-autonomous organization can achieve efficiency under full decen-

tralization.

One issue with this analysis is that it assumes that the third party is honest, competent

and inexpensive. A primary motivation for autonomy is a lack of trust in institutions. To

capture this idea, suppose that, with probability ϱ, the third party destroys the output yt.

This output destruction could be due to corruption (e.g., it is paid as a bribe), incompe-
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tence (e.g., excessive regulation), or the cost of the system (e.g., taxes to pay for the legal

system). Now, a non-autonomous organization can only sustain the first-best effort profile

if (1 − ϱ)B ≥ c. Even in that case, the first-best payoffs can no longer be attained.

The following proposition summarizes the trilemma of decentralization, autonomy,

and efficiency.

Proposition 5 (The Organizational Trilemma). For stationary organizations in which δ ∈[
δ1, δFB), we have the following tradeoffs.

1. (Decentralization + Autonomy → Inefficiency). A fully decentralized autonomous or-

ganization is inefficient and implements action profile (0, 0) in all periods.

2. (Autonomy + Efficiency → Centralization). An optimal autonomous organization is

fully centralized.

3. (Decentralization + Efficiency → Non-autonomy). A decentralized organization is op-

timal if and only if it is non-autonomous and 2ϱB < min {2(B − c), α1(δ)(c − b)}.

The Organizational Trilemma implies that decentralized autonomous organizations

must be inefficient unless players are sufficiently patient (i.e., Assumption 3 does not

hold). To restore efficiency, the organization must either become fully centralized or give

up its autonomy. The latter option may also be inefficient because a third-party monitor

may be expensive, dishonest or incompetent.

4.3 Optimal Organizations: The General Case

We now consider the general organization design problem without imposing stationar-

ity. In a nonstationary organization, the equilibrium payoffs may change as play evolves,

implying that following some history, the joint payoff may be lower than the ex-ante max-

imal joint payoff. In other words, the optimal equilibrium is not necessarily sequentially

optimal. Consequently, knowledge about suboptimal equilibrium play can be useful in

solving for the optimal organization.
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We solve this problem using the recursive method developed by Abreu, Pearce, and

Stacchetti (1990). This method focuses on characterizing the set of equilibrium payoffs

rather than the equilibrium actions. Once the equilibrium payoff set is known, we can use

it to derive the optimal equilibrium strategies and governance structures. This is done as

a step-by-step process. For each equilibrium payoff, we find the equilibrium actions and

governance structures associated with it. We then find the continuation payoffs associated

with the equilibrium actions and, for the continuation payoffs, we find the associated

governance structure and the equilibrium actions, and so on.

To solve for the optimal equilibrium, it suffices to characterize the equilibrium pay-

off frontier: Player 2’s maximal equilibrium payoff for a given level of Player 1’s payoff.

Specifically, let u1 denote Player 1’s equilibrium payoff. The equilibrium payoff frontier,

which we denote as f (u1), is the solution of the following constrained maximization prob-

lem:

max
⟨G,S⟩∈Γ×Ψ(G)

(1 − δ)E

[
∞

∑
t=1

δt−1u2t | G, S

]
(7)

s.t. (1 − δ)E

[
∞

∑
t=1

δt−1u1t | G, S

]
= u1. (8)

We need to characterize only the equilibrium payoff frontier because it has a “self-

generating” property: for any payoff pair on the frontier, its continuation payoff pair (the

expected discounted payoffs of the players in the next period) will again stay on the fron-

tier along the equilibrium play. Applying the self-generating property repeatedly shows

that the continuation payoffs of the optimal equilibrium play remain on the frontier for-

ever. Therefore, knowledge about the equilibrium payoff frontier is sufficient to describe

the optimal governance structure and the equilibrium play.21

The standard method to characterize the equilibrium payoff frontier is to solve a func-

tional equation (the Bellman equation). Doing so, however, is unwieldy in our setting

21The self-generating property arises because the players can publicly observe the actions of Player 2.
When it is publicly known that Player 2 has carried out the equilibrium action, there’s no need to punish him
by reducing his payoff below the equilibrium payoff frontier. Therefore, the continuation payoffs associated
with the optimal equilibrium play will stay on the frontier again.
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because the equation would include many possible actions and governance structures.

Instead, we solve for the equilibrium payoff frontier by deriving an upper bound and

then showing that this upper bound can be supported as an equilibrium payoff. It thus

follows that the upper bound is the equilibrium payoff frontier.

We restrict the analysis to discount factors in [δ1, δFB) to facilitate the comparison with

the stationary case. We have the following result:

Proposition 6 (Equilibrium Payoff Frontier). For δ ∈ [δ1, δFB), the following holds.

1. f (u1) is symmetric along the 45-degree line.

2. For u1 ≥ 1
2(1 − δ)B, (u1, f (u1)) is on the line segments between (B − c, B − c) and (B +

1
2 b − c, B + 1

2 b − 2c).

3. For u1 ∈ ( f (1
2(1 − δ)B), 1

2(1 − δ)B), f (u1) is a negative 45-degree line.

Figure 3 illustrates the equilibrium payoff frontier. Part 1 of Proposition 6 shows that

the payoff frontier is symmetric along the 45-degree line. This arises naturally because

the roles of Player 1 and Player 2 are identical in our setup. Part 2 shows that for u1 ≥
1
2(1− δ)B, the equilibrium payoff frontier is the line segment I I I −V, which lies on the line

segment whose payoff pair on the one end requires both players to work (B− c, B− c) and

on the other end requires Player 1 to work and Player 2 to overwork (B+ b
2 − c, B+ b

2 − 2c).

This line segment is also part of the feasible payoff frontier of the stage game. As a result,

it is an upper bound for all equilibrium payoffs. Part 2 then shows that the equilibrium

frontier reaches this upper bound.

Notice that part of the line segment I I I − V can also be reached under the optimal

stationary organizational design (Proposition 4). Figure 2 illustrates that the optimal sta-

tionary equilibrium (under full centralization) can reach the feasible payoff frontier for

u1 ≥ 1−δ
δ (c − B

2 ), which is the line segment I I I − IV. Part 2 of Proposition 6 shows that

the feasible payoff frontier can be further extended to the left of IV to u1 = 1
2(1 − δ)B,

which is the minimal payoff Player 1 must receive to sustain the first-best outcome under

the default governance structure. This extension increases the joint payoff of the players.

28



(𝐵 − 𝑐, 𝐵 − 𝑐)

𝑉

𝐵 +
𝑏
2 − 𝑐, 𝐵 +

𝑏
2 − 2𝑐

𝑢!

𝑓(𝑢!)

(1 − 𝛿)
𝐵
2

(0,0)

𝐼𝑉

𝐵 +
𝑏
2
− 2𝑐, 𝐵 +

𝑏
2
− 𝑐

𝐼𝐼𝐼

(1 − 𝛿)
𝐵
2

𝑉𝐼

𝑉𝐼𝐼

Figure 3: Equilibrium Payoff Frontier

The further Player 1’s payoff is to the left, the more often both players choose to work

(rather than Player 1 working and Player 2 overworking), increasing the joint surplus.

Part 2 then implies that, for u1 ∈ [1
2(1 − δ)B, 1−δ

δ (c − B
2 )], the efficiency of the relationship

can be improved by using a nonstationary equilibrium strategy, which we will discuss

below.

Part 3 shows that when u1 ∈ ( f (1
2(1− δ)B), 1

2(1− δ)B), the equilibrium payoff frontier

is a negative 45-degree line (the line segment V − VI). The payoffs on the frontier are all

the same, and they are sustained by randomization between points V and VI. In this re-

gion, randomization is needed because the players cannot choose pure actions to reach the

equilibrium payoff pair. The payoffs of both players in this region are less than 1
2(1 − δ)B,
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which is the minimal payoff to induce working under the default governance structure.

As a result, regardless of who becomes the manager in this period, the manager cannot

be motivated to work. The necessity of randomization in this region has the same logic as

that in stationary organization design. To induce both players to work, asymmetry in the

payoffs is needed. Part 3, therefore, implies that to induce both players to work, one of

them must receive at least 1
2(1 − δ)B.

We now describe the optimal governance structure and equilibrium strategies. For

simplicity, we describe only the organization that gives Player 1 a payoff of 1
2(1 − δ)B.

Proposition 7 (Optimal Organization). For δ ∈ [δ1, δFB), the following organization is opti-

mal.

1. Player 1 is the manager in each period.

2. Both players choose to work in the first period until some (random) period T. From period

T+1 on, Player 1 works, and Player 2 overworks.

Part 1 of Proposition 7 shows that, as in the case of stationary optimal organizations,

the optimal governance structure is fully centralized, with Player 1 being the designated

enforcer in every period. The advantage of full centralization is that it eliminates the

need to consider Player 2’s incentive constraint to work. In other words, specialization in

enforcement, which implies a designated managerial role given to the same player for all

periods, is efficient for incentive provision.

The structure of the optimal equilibrium play in Part 2 is akin to that of deferred com-

pensation in optimal dynamic contract design. The payoff structure backloads the payoff

of Player 1, and this avoids inefficient actions at the beginning of the relationship. Despite

the similarity, the reason for backloading is somewhat different. The logic in this model

is that of rent extraction because, for any stationary relational contract (that requires over-

working with positive probability), we can increase its efficiency by reducing the man-

ager’s payoff. In particular, take any optimal stationary equilibrium. We can modify it by

asking Player 2 to work with probability 1 in the first period and keep the rest of the equi-
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librium play unchanged. It can be checked that this modification remains an equilibrium.

It increases the joint payoff of the players, and it reduces the payoff of Player 1.

The rent-extraction logic implies that the relationship dynamics in this model differ

from similar models of perfect information in the literature. When there is perfect in-

formation, the efficiency of the relationship improves over time (see Albuquerque and

Hopenhayn (2004), Thomas and Worrall (2018), and Barron et al. (2022)). In contrast, the

efficiency of the relationship in this model decreases over time, even if there is no im-

perfect information22. The price of efficiency in the earlier periods of the relationship is

that Player 2 needs to overwork in the long run. As a result, while the manager’s payoff

increases over time, the worker’s payoff decreases, and the efficiency of the relationship

declines.

From an economic perspective, the equilibrium described in Proposition 7 implies that

the powerful party will refrain from abusing her power until time T. That is, the powerful

party behaves as if she had no power in the early days of an organization. Such an ap-

parent benevolence eventually disappears; after T, the powerful party begins asking the

subordinate to overwork. The equilibrium thus displays a form of “populism:” power

is centralized in the hands of one agent, who initially behaves like a benevolent dictator,

only to eventually show her true colors and abuse her power by forcing the subordinate to

undertake inefficient actions. As the populist’s mask comes off, the organization becomes

less efficient.

5 Conclusion

In a relational contracts setup, we consider the optimal allocation of power among the

members of an autonomous organization. We show that the goals of autonomy, decen-

tralization, and efficiency conflict. This organizational trilemma results from the need for

22The performance of the relationship can decrease over time or cycle when there is private information;
see, for example, Clementi and Hopenhayn (2006), Padro i Miquel and Yared (2012), Li and Matouschek
(2013), Li et al. (2017), Li et al. (2023). When the players can discover new production possibilities, however,
it is possible that the performance of the relationship improves over time (Chassang (2010)).

31



payoff asymmetry to incentivize the monitor. At some level, the asymmetry in payoff ap-

pears to suggest that all the power is in the hands of the manager. But if this were true,

the manager wouldn’t be induced to work. The subordinate also has power over the man-

ager via his right to exit. If the manager does not work, then the subordinate will take his

outside option in the future. However, the threat of exit alone may not be sufficient to in-

duce the manager to work, especially when the total surplus is low. By allocating power

to the manager, more of the surplus goes to the manager. If the manager is sufficiently

powerful, the subordinate’s threat of exiting becomes credible and induces the manager

to work. That is, by giving more power to the manager, the subordinate gains power over

him. This is the paradox of power.

It is perhaps helpful to compare this point to Alchian and Demsetz’s (1972) famous

statement that there is no difference in power between firms and markets. As Alchian

and Demsetz emphasize, power emanates from the option to exit (and withhold future

business) and to sue. In our model, an autonomous organization may design a payoff

structure that facilitates the use of power through exit.

Our model shows that, in the absence of external enforcement, self-executing contracts

can be used to support relational incentives. Thus, in a sense, the availability of self-

executing contracts improves the performance of autonomous organizations. The flip side

is that to realize such gains, an autonomous organization must use self-executing contracts

as a tool for centralizing power.

A Proofs

Proof of Proposition 1. Denote the players’ expected equilibrium payoffs as ui for i ∈ {1, 2}.

Without loss of generality, we assume that u1 ≥ u2. Then, because u1 + u2 ≤ 2(B − c),

we know that u2 ≤ B − c. Stationarity implies that e2t = e2, i.e., effort is independent of t.

There are two cases to consider: either e2 = 1 or e2 = 2. When e2 = 1, the incentive con-

straint is given by (1 − δ)
(
c − B

2

)
≤ δu2. Because u2 ≤ B − c, the constraint implies that

δ ≥ (2c − B)/B = δFB, which contradicts Assumption 3, implying e2 ̸= 1. Assumption 1
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implies that the payoff from a deviation is larger when e2 = 2, thus Player 2 also deviates

if she is required to choose e2 = 2. Thus, e2 = 0. Trivially, e1 = 0 because B
2 − c < 0 and

B+b
2 − 2c < 0.

Proof of Lemma 1. Without loss of generality, assume that u1 ≥ u2. Consider a period in

which Player 2 has the whip. Using the same arguments as in the proof Proposition 1, we

can show that Player 2 shirks. Thus, Player 2 always shirks when gt = 1.

Proof of Proposition 2. Without loss of generality, we assume that u1 ≤ u2. Then, by Lemma

1, Player 1 shirks whenever she has the whip. Suppose a stationary organization is power-

blind. Power-blindness implies that player 1 always shirks. Because Player 1 always

chooses e1 = 0, and B/2 < c, Player 2 will never choose e2 = 1. Similarly, because

(B + b)/2 < 2c, he will never choose e2 = 2. It follows that e2 = 0.

Next, suppose that a stationary autonomous organization is identity-blind. Recall that

Player 1 does not put in effort when she has the whip (because u1 ≤ u2). Now, sup-

pose that she does not have the whip. If she is forced to put in e1 = 1, her participation

constraint is given by

(1 − δ)

(
B
2
− c

)
+ δuc ≥ 0,

where uc is Player 1’s continuation payoff. Because u1 ≤ u2 implies uc ≤ B − c, this

constraint requires δ ≥ (2c − B)/B = δFB, which is a contradiction. If she is forced to put

in e1 = 2, her participation constraint is given by

(1 − δ)

(
B + b

2
− 2c

)
+ δuc ≥ 0.

Because we must have uc ≤ B+ b− 2c, this constraint requires δ ≥ (4c− B− b)/(B+ b) >

δFB. This, again, is a contradiction. Because Player 1 shirks, identity-blindness implies that

Player 2 also shirks.

Proof of Lemma 2. Consider a stationary equilibrium that maximizes the discounted sum

of payoffs. Let (u1, u2) be the expected payoff from the stationary allocation of the whip.
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Without loss of generality, assume that u1 ≥ u2. Then, by Lemma 1, Player 2 does not put

in effort when he has the whip, i.e., e2
2 = 0.

When Player 1 has the whip and chooses effort e1
1 > 0, we must have e1

1 = 1 and e1
2 = 2.

To see this, notice that if e1
2 < 2, then Player 1’s payoff is lower than B− c when she has the

whip, and her payoff is non-positive when Player 2 has the whip (as he chooses e2
2 = 0).

Therefore, u1 < B − c, implying that because δ < δFB, the future loss from deviating to

e1
1 = 0 will be smaller than the short-term gain. This shows that when e1

1 > 0, we must

have e1
2 = 2. Furthermore, when e1

1 = 2 and e1
2 = 2, the same argument as above shows

that u1 < B − c and Player 1 gains by choosing e1
1 = 0 because δ < δFB. Thus, when

e1
1 > 0, we must have e1

1 = 1 and e1
2 = 2.

The discussion above implies that we can restrict attention to two classes of equilib-

rium. In the first class, e1 = (1, 2) and e2 = (e, 0), where e = 0, 1, 2. In the second class,

e1 = (0, e) and e2 = (e′, 0), where e, e′ = 0, 1, 2. In the second class, the relevant constraint

is the participation constraint. Because the pair e1 = (0, 1) and e2 = (1, 0) have the highest

joint payoff within this class, this case is the easiest to satisfy the participation constraint.

However, this action profile is identity-blind, and thus not enforceable (see Proposition 2).

Therefore, the whole second class of equilibria is eliminated.

Proof of Proposition 3. Let (ui
1, ui

2) be the payoff pair when Player i has the whip and (u1, u2)

be the expected payoff from the stationary allocation of the whip.

(i) Analysis of the action profile e1 = (1, 2) and e2 = (0, 0). We can calculate the

expected payoffs of both players as follows:

u1
1 = (1 − δ)

(
B +

b
2
− c

)
+ δu1, u1

2 = (1 − δ)

(
B +

b
2
− 2c

)
+ δu2,

u2
1 = δu1, u2

2 = δu2,

u1 = pu1
1 + (1 − p)u2

1, u2 = pu1
2 + (1 − p)u2

2.

Solving these equations gives u1 = p(B + b
2 − c) and u2 = p(B + b

2 − 2c). (Note that these
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expressions can be obtained directly because in each period, with probability p Player 1

gets B + b
2 − c and Player 2 gets B + b

2 − 2c, while both players earn zero with probability

1 − p).

To sustain (u1, u2) as equilibrium payoffs, there are both incentive constraints and par-

ticipation constraints:

(IC) u1
1 ≥ (1 − δ)

B + b
2

,

(PCs) u1
1 ≥ 0, u2

1 ≥ 0, u1
2 ≥ 0, and u2

2 ≥ 0.

Notice that the two participation constraints of Player 2 are automatically satisfied because

B + 1
2 b ≥ 2c, and that u1

1 ≥ 0 implies that u2
1 ≥ 0 holds. Thus, if Player 1’s IC constraint

holds, her participation constraints also hold. The IC constraint can be written as:

1 − δ

δ

(
c − B

2

)
≤ p

(
B +

b
2
− c

)
.

Solving this constraint shows that for this action profile to be an equilibrium, we need the

following:

p =
(1 − δ)(2c − B)
δ(2B + b − 2c)

=: p1(δ).

Notice p1(δ) decreases in δ because (1 − δ)/δ decreases in δ. When δ = (2c − B)/(B +

b) =: δ1, p1(δ) = 1. It follows that the action profile of e1 = (1, 2) and e2 = (0, 0) can be

sustained by a stationary SPE if and only if δ ≥ δ1 and p ≥ p1(δ). This finishes the proof

of the first part.

(ii) Analysis of the action profile e1 = (1, 2) and e2 = (1, 0). We can calculate the

expected payoffs of both players as follows:

u1
1 = (1 − δ)

(
B +

b
2
− c

)
+ δu1, u1

2 = (1 − δ)

(
B +

b
2
− 2c

)
+ δu2,

u2
1 = (1 − δ)

(
B
2
− c

)
+ δu1, u2

2 = (1 − δ)
B
2
+ δu2,

u1 = pu1
1 + (1 − p)u2

1, u2 = pu1
2 + (1 − p)u2

2.
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Solving these equations gives that u1 = p(B + b
2 − c) + (1 − p)(B

2 − c) and u2 = p(B +
b
2 − 2c) + (1 − p)B

2 . (Note that these expressions can be obtained directly because in each

period, with probability p Player 1 gets B + b
2 − c and Player 2 gets B + b

2 − 2c, while with

probability 1 − p Player 1 gets B
2 − c and Player 2 gets B

2 ).

To sustain (u1, u2) as equilibrium payoffs, there are both incentive constraints and par-

ticipation constraints:

(IC) u1
1 ≥ (1 − δ)

B + b
2

,

(PCs) u1
1 ≥ 0, u2

1 ≥ 0, u1
2 ≥ 0, and u2

2 ≥ 0.

Notice that the two participation constraints of Player 2 are automatically satisfied because

B + 1
2 b ≥ 2c, and again the IC constraint implies Player 1’s participation constraints. The

IC constraint can be written as:

1 − δ

δ

(
c − B

2

)
≤ p

(
B +

b
2
− c

)
+ (1 − p)

(
B
2
− c

)
.

Solving this constraint shows that for this action profile to be an equilibrium, we need the

following:

p ≥ 2c − B
δ(B + b)

=: p2(δ).

Notice p2(δ) decreases in δ because 1/δ decreases in δ. When δ = δ1 = (2c − B)/(B + b),

p2(δ) = 1. It follows that the action profile of e1 = (1, 2) and e2 = (1, 0) can be sustained

by a stationary SPE if and only if δ ≥ δ2 and p ≥ p2(δ). This finishes the proof of the

second part.

Proof of Corollary 1. Without loss of generality, suppose u1 ≥ u2. Lemma 1 implies that

payoffs in which Player 2 works or overworks when he is the manager cannot be sus-

tained. Thus, if p < 1, the best profile that can be sustained is e1 = (1, 2) and e2 = (1, 0),

which is Case 2 in Proposition 3. Proposition 3 thus implies that, if p < 1, the max-

imum joint payoff the organization can produce is p(B + b − c) + B − c if p ≥ p2(δ),

p(2B + b − 2c) if p ∈ [p1(δ), p2(δ)), and zero if p < p1(δ). Because the maximum joint

payoff is increasing in p (and strictly increasing if p ≥ p2(δ)), the optimal organization
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must have p = 1.

Proof of Proposition 4. Set e1 = (1, 2) and e2 = (1, 1), and let (ui
1, ui

2), i = 1, 2, denote the

associated payoff profiles. Consider the action profile that randomizes between e1 and e2

with probabilities α and 1 − α. Let (u1, u2) be the expected payoffs for this mixed action

profile. In each period, Player 1 gets B+ b
2 − c with probability α and B− c with probability

1 − α, thus, her expected payoff equals B − c + α b
2 . Similarly, Player 2’s expected payoff

equals B − c + α( b
2 − c). The payoff pairs {(ui

1, ui
2)}i=1,2 can be written as

u1
1 = (1 − δ)

(
B +

b
2
− c

)
+ δu1, u1

2 = (1 − δ)

(
B +

b
2
− 2c

)
+ δu2

u2
1 = (1 − δ) (B − c) + δu1, u2

2 = (1 − δ) (B − c) + δu2,

where u1 = B − c + α b
2 and u2 = B − c + α( b

2 − c).

Because u2
2 > u1

2, we need to check only one of Player 2’s participation constraint:

u1
2 ≥ 0, which holds for any δ and α because of Assumption 2. Similarly, because u1

1 > u2
1,

we need to check only one of Player 1’s incentive-compatibility constraints: u2
1 ≥ (1 −

δ)B
2 ⇒ δu1 ≥ (1 − δ)

(
c − B

2

)
. Solving Player 1’s incentive constraint implies

α ≥
(1 − δ)

(
c − B

2

)
− δ(B − c)

δ b
2

=: α1(δ).

Because (1 − δ)/δ decreases in δ and 2c > B, α1(δ) decreases in δ. Note that α1(δ1) = 1.

Because α1(δ) decreases in δ, we know that if δ ∈ [δ1, δFB), 0 ≤ α1(δ) ≤ 1.

Finally, to maximize the joint surplus the designer must choose the lowest possible α

to minimize the frequency of overworking. Thus, α = α(δ) is the optimal randomization

weight.

Proof of Proposition 5. Part 1. As before, to streamline the analysis, we consider only the

case in which µi(gt) is degenerate; the case of non-degenerate µi(gt) can be proven using

the same line of arguments. Suppose p = 0.5. Without loss of generality, suppose that in

equilibrium, u1 ≥ u2. From Lemma 1, Player 2 shirks as manager. Proposition 3 implies

that effort profile e1 = (1, 2) cannot be supported with either e2 = (0, 0) or e2 = (1, 0)
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(choosing e2 = (2, 0) is also not an option because it contradicts u1 ≥ u2). If we choose

either e1 = (1, 1) or e1 = (2, 2), we must have e2 = (0, 0), otherwise we have u1 < u2. But

then Assumption 3 implies that these profiles are also not sustainable. Setting e1 = (0, 1)

with e2 = (0, 0) or e2 = (1, 0) does not meet Player 2’s participation constraint (setting

e2 = (2, 0) contradicts u1 ≥ u2). The latter argument also applies to e1 = (0, 2). Finally,

profiles e1 = (1, 0), e1 = (2, 0) and e1 = (2, 1) all contradict u1 ≥ u2 (given that Player

2 must shirk as manager). The only e1 that is not ruled out is (0, 0), which must imply

e2 = (0, 0). This action profile yields zero surplus and is trivially a Nash equilibrium.

This equilibrium is inefficient because the equilibrium described in Proposition 4 delivers

a strictly positive payoffs to both players.

Part 2. It is implied by Corollary 1.

Part 3. A decentralized autonomous organization can only implement (0, 0) (see Part

1), thus it cannot be optimal for δ ≥ δ1, as the equilibrium described in Proposition

4 delivers strictly positive payoffs. If the organization is non-autonomous, it can im-

plement the first-best effort profile if (1 − ϱ)B ≥ c. In this case, the joint surplus is

2(1 − ϱ)B − 2c. To be an optimal organization, this surplus must be greater than that

implied by Proposition 4, which is 2(B − c) + α1(δ)(b − c). These two inequalities jointly

imply 2ϱB < min {2(B − c), α1(δ)(c − b)}.

Proof of Proposition 6. Part 1 is straightforward due to the symmetric structure of the game.

For Part 2, notice that the line segment between (B− c, B− c) and (B+ 1
2 b− c, B+ 1

2 b− 2c)

is a subset of the feasible payoff frontier of the stage game. Therefore, if a payoff pair on this

line segment is attainable, it must coincide with (u1, f (u1)). In this direction, Proposition

4 has shown that if u1 ≥ 1−δ
δ (c − B

2 ) and (u1, u2) belongs to the line segment considered,

the payoff pair can be sustained by some SPE.

Consider the point on the line segment where u1 = 1−δ
δ (c − B

2 ) (this is point IV in

Figures 2 and 3). Proposition 4 implies that IV is sustained by the following equilibrium:

Player 1 always holds the whip and the action profile randomizes between (1, 2) and (1, 1)

with probabilities α1(δ) and 1− α1(δ). In particular, when profile (1, 1) realizes, Player 1’s
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payoff can be written as

(1 − δ)(B − c) + δ · 1 − δ

δ
(c − B

2
),

which equals 1
2(1 − δ)B. Then, because no player deviates given this contingency, the

point with u1 = 1
2(1− δ)B on the line segment between (B − c, B − c) and (B + 1

2 b − c, B +
1
2 b − 2c) (this is point V in Figure 3, which is to the left of IV) can be sustained by the

following nonstationary SPE: Player 1 always holds the whip, and the action profile is

(1, 1) in period 1 and then it randomizes between (1, 2) and (1, 1) with probabilities α1(δ)

and 1 − α1(δ) from period 2 on. Player 1’s IC constraint at t = 1 is satisfied with equality

(1
2(1− δ)B ≥ 1

2(1− δ)B) and Player 2’s participation constraint at t = 1 also trivially holds.

This proves Part 2.

Note: The equilibrium payoff frontier may extend to the right of point I I I (as shown

in Figure 3). We note that this region is irrelevant for finding the optimal organization

because it is dominated by point I I I.

To prove Part 3, it is sufficient to show that no payoff pair can achieve a joint surplus

greater than 1
2(1− δ)B+ f (1

2(1− δ)B). Suppose to the contrary that this is not the case. Let

(u′
1, u′

2) denote a payoff pair that maximizes the joint surplus. Without loss of generality,

we assume that (u′
1, u′

2) is sustained by a pure action profile. We first show that (u′
1, u′

2)

must be sustained by action profile (1, 1). To see this, decomposing u′
1 and u′

2 into current

payoffs and continuation payoffs leads to

u′
1 = (1 − δ)u1(e′1, e′2) + δu′

1,c, and u′
2 = (1 − δ)u2(e′1, e′2) + δu′

2,c,

where (e′1, e′2) is the action profile in period 1, and u′
1,c and u′

2,c denote the continuation

payoffs. Notice that, because (u′
1, u′

2) maximizes the joint surplus, we have u′
1,c + u′

2,c ≤
u′

1 + u′
2. Therefore,

u1(e′1, e′2) + u2(e′1, e′2) ≥ u′
1 + u′

2.

Also note that, because playing the effort profile (1, 2) forever is an equilibrium, we

have u′
1 + u′

2 > 2B + b − 3c, where the latter is the payoff sustained by the effort pro-

file (1, 2). Since only effort profile (1, 1) gives a higher payoff than (1, 2), we then must
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have (e′1, e′2) = (1, 1).

However, because (u′
1, u′

2) is between points VI and V in Figure 3, we know that both

u′
1 and u′

2 must be smaller than 1
2(1 − δ)B. In this case, regardless of how the whip is

allocated, one of the two players would prefer to shirk. This is a contradiction.

Proof of Proposition 7. Consider the following strategy profile in which Player 1 always

holds the whip. In period 1, the state of the dynamics is given by (u1, u2) = (1
2(1 −

δ)B, f (1
2(1 − δ)B)), the action is fixed as (1, 1), and the continuation payoff is given by

(u1, u2) = (1−δ
δ (c − B

2 ), f (1−δ
δ (c − B

2 )). In period 2, the state of the dynamics randomizes

between (u1, u2) = (1
2(1− δ)B, f (1

2(1− δ)B)) and (u1, u2) = (B + b
2 − c, B + b

2 − 2c). If the

former realizes, the state of the dynamics gets back to what happens in period 1. If the

latter realizes, the state of the dynamics is absorbed by (u1, u2) = (B + b
2 − c, B + b

2 − 2c).

This strategy profile constitutes an SPE because the proof of Proposition 6 has shown that

in period 1, action (1, 1) can be enforced with continuation payoffs (u1, u2) = (1−δ
δ (c −

B
2 ), f (1−δ

δ (c − B
2 )), and action (1, 2) with (u1, u2) = (B + b

2 − c, B + b
2 − 2c) is an SPE due

to Assumption 2. Following the SPE we construct, the dynamics in the long run fall into

(u1, u2) = (B + b
2 − c, B + b

2 − 2c) with probability one, where the action is (1, 2) forever.

This completes the proof.
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