The Effect of Mandatory Profit-Sharing on Workers and Firms Evidence from France

Elio Nimier-David (Cornell) David Sraer (UC Berkeley) David Thesmar (MIT)

July~8,~2024

The paper

- Labor share has gone down globally (Karabarbounis and Neiman, 2013).
- Stagnant income growth for low-skill workers in many developed countries (Piketty et al., 2018; Drechsel-Grau et al., 2021)
- Concerns of increased firm market power in local labor markets (Stansbury and Summers, 2020)
- \Rightarrow Increased demand for redistribution from capital to labor

The paper

Simple model

- Labor share has gone down globally (Karabarbounis and Neiman, 2013).
- Stagnant income growth for low-skill workers in many developed countries (Piketty et al., 2018;
 Drechsel-Grau et al., 2021)
- Concerns of increased firm market power in local labor markets (Stansbury and Summers, 2020)
- \Rightarrow Increased demand for redistribution from capital to labor

This paper: we study a non-fiscal form of redistribution – mandatory profit-sharing

- Question: how does it affect labor share? wages? investment? productivity?
- Challenge: existing literature provides XS evidence
- This paper: leverages the French setting, which is large, to answer these questions causally

- Since 1967, all firms with >100 employees set aside an amount PS each year
- PS then distributed to all employees, (mostly) in proportion to wages
- PS is tax exempt Other tax implications: I will not discuss this much for clarity here
- PS determined by **formula**:

$$PS = \frac{1}{2} \left(\frac{\text{wage bill}}{\text{value added}} \right) (\text{net income} - .05 \times \text{book equity})^+$$

- 5% = cost of equity
- wage bill value added: workers receive more when they contribute more to output
- \rightarrow Large transfer Calibration: labor share \approx 53%; ROE \approx 10%

$$\frac{PS}{\text{Net Income}} = \left(\frac{1}{2}\right) \times .53 \times \left(1 - \frac{.05}{10\%}\right) \approx 10\%$$

Preview of main results

Simple model

We exploit one discontinuity and one reform:

- Before 1990, profit sharing mandatory > 100 employees
 - firms bunch below 100 employees avoidance at extensive margin
 - not surprising: increase in average "tax rate" (not marginal)

Preview of main results

Simple model

We exploit one discontinuity and one reform:

- Before 1990, profit sharing mandatory > 100 employees
 - firms bunch below 100 employees avoidance at extensive margin
 - not surprising: increase in average "tax rate" (not marginal)
- After 1990, threshold down to 50 employees
 - newly treated firms: btw 50 and 100 employees
 - No attempt to reduce PS formula \rightarrow no avoidance at *intensive* margin
 - No < 0 effect on base wage except for managers/engineers
 - \rightarrow Total compensation at individual level $\nearrow 3.5\%$; redistributes $\approx .7\%$ of value added
 - No impact on investment, leverage, productivity

Roadmap

Simple model

Simple model

Bunching Analysis

Difference-in-difference

Firm-level evidence

Employee-level evidence

Conclusion

Bunching Analys

Difference-in-difference
Firm-level evidence
Employee level evidence

Conclusio

How does profit-sharing affect cost of capital?

write simple user cost model of capital:

$$\frac{\partial F}{\partial k}(k,l) = \underbrace{\frac{r}{1-\tau} + \delta}_{\text{pre tax standard user cost}} + \underbrace{\left(1 - \frac{d}{k}\right)(r_e - 5\%) \frac{\gamma}{1 - \gamma(1-\tau)}}_{\text{distortion from profit sharing}}$$

where:

- ullet key assumption: base wage does not respond (holds empirically)
- r = WACC, $\tau = \text{corporate tax rate}$
- $r_e = \cos t$ of equity, d/k = financial leverage
- $\gamma = \%$ of profit that firm needs to share

How does profit-sharing affect cost of capital?

write simple user cost model of capital:

$$\frac{\partial F}{\partial k}(k,l) = \underbrace{\frac{r}{1-\tau} + \delta}_{\text{pre tax standard user cost}} + \underbrace{\left(1 - \frac{d}{k}\right)(r_e - 5\%) \frac{\gamma}{1 - \gamma(1-\tau)}}_{\text{distortion from profit sharing}}$$

where:

- \bullet key assumption: base wage does not respond (holds empirically)
- $r = \text{WACC}, \tau = \text{corporate tax rate}$
- $r_e = \cos t$ of equity, d/k = financial leverage
- $\gamma = \%$ of profit that firm needs to share
- \rightarrow calibration: increase user cost by .4ppt (compared to pre tax user cost of $\approx 20\%$)

00

Bunching Analysis

Some avoidance at the intensive margin

Simple model

Use post 1990 distribution as counterfactual (or Pareto)

- firms perceive mandatory PS as costly
 - intro calibration: profits drop by 10% when going from 99 to 100
- \rightarrow avoidance at extensive margin

Bunching Analysis

Difference-in-difference
Firm-level evidence

Conclusion

First stage: Treatment moves .7ppt of value added to workers

- treatment (in black): firms with 55-85 employees in 89-90
- large control (dashed with cross): firms with 120-300 employees in 89-90
- small control (dashed with diamonds): firms with 35-45 employees in 1989

No avoidance at the intensive margin

Simple model

- To check if firms avoid sharing profits, compute: $\frac{1}{2} \left(\frac{\text{wage bill}}{\text{value added}} \right) \left(\frac{\text{net income} .05 \times \text{book equity}}{\text{value added}} \right)^+$
- ask if it changes differently for treated firms

 \rightarrow firms do not change behavior *conditional* on treatment (but as we saw, firms try to *avoid* treatment)

No incidence on wages, total labor share increases

1985 1987 1989 1991 1993 1995 1997 1989 1991 1993 1995 1997 treated + control (>100) - control (<50)

Wage bill

Wage bill + profit-sharing

- wage bill (excl. profit-sharing) does not respond
 - no < 0 incidence overall, wage rigidity (collective agreements)
- \rightarrow (wage bill + profit-sharing) \nearrow .6 ppt of VA

No effect on investment and TFP

- No effect on investment, leverage, K/L substitution
- consistent with small distorsion of the cost of capital

Bunching Analysis

Difference-in-difference

Firm-level evidenc

Employee-level evidence

Conclusion

Incidence by skill: Evidence from Employer-employee data

$$Y_{wijlt} = \alpha_i + \delta_{jt} + \mu_{lt} + \beta \mathbb{1}_{\{\text{profit-sharing}_{ijlt} > 0\}} + \gamma X_{wijlt} + \epsilon_{wijlt},$$

where we instrument $\mathbb{1}_{\{\text{profit-sharing}_{i,i,t}>0\}}$ with $T_{it} \times POST90_t$

	$\log(\mathrm{wage})$		log(total compensation)	
$^{1}\{ \text{profit-sharing}{>}0\}$	0.0072 (0.0075)	0.0136* (0.0079)	0.0350*** (0.0076)	0.0422*** (0.0081)
1 {profit-sharing>0} $^{\times}$ 1 {Intermediate}		-0.0058		-0.0072
$^{1}_{\{\text{profit-sharing}>0\}} \times {}^{1}_{\{\text{High-skill}\}}$		(0.0209) -0.0823* (0.0429)		(0.0211) -0.0941** (0.0438)
K-P F stat	1,166	391	1,166	391
K-P F stat (Intermediate)		194		194
K-P F stat (High-skill)		67		66
Nul effect on high-skill (p-value) Observations	436,215	0.102 $436,215$	436,186	0.226 $436,186$

• noisy, but indicative of stronger incidence on skilled wages

00

Conclusion

Conclusion

Simple model

Mandated profit-sharing is non-distorsionary way of redistributing income to low-skill workers:

- labor share increase by ≈ 0.6 ppt
- mostly driven by increase in low-skill workers' compensation
 - $\bullet\,$ collective agreements, minimum wage \to wages rigid
- no discernible effects on investment, TFP
- low-distortion but not costless
 - profit-sharing is tax exempt
 - ullet if it were not, it'd be distortionary

References I

- Batut, Cyprien and Chakir Rachiq, "Les dispositifs de partage de la valeur en France et en Europe," Technical Report, Insee 2021.
- Drechsel-Grau, Moritz, Andreas Peichl, Johannes Schmieder, Kai D. Schmid, Hannes Walz, and Wolter Stefanie, "Inequality and Income Dynamics in Germany," Technical Report 2021.
- Karabarbounis, Loukas and Brent Neiman, "The Global Decline of the Labor Share*," The Quarterly Journal of Economics, 10 2013, 129 (1), 61–103.
- Piketty, Thomas, Emmanuel Saez, and Gabriel Zucman, "Distributional National Accounts: Methods and Estimates for the United States," The Quarterly Journal of Economics, 2018, 133 (2), 553-609.
- Stansbury, Anna and Lawrence H Summers, "The Declining Worker Power Hypothesis: An explanation for the recent evolution of the American economy," Working Paper 27193, National Bureau of Economic Research May 2020.

Mandated profit-sharing: Tax Implications

- for **workers**, money received is:

- 1. tax free if held 5 years on dedicated savings account
- 2. taxable if earned right away
- for firms, two main tax advantages:
 - 1. little/no payroll tax paid on PS
 - 2. PS is an expense, i.e. corporate tax exempt
- Firms with fewer than 100 workers can create profit-sharing plan (and benefit from tax advantages)
- Firms can share more than PS, up to a threshold (≈ €30k per employee/year in 2020) $^{\blacktriangleleft}$ Back

Profit-sharing in Europe (2015)

■ Back

Simple model

Share of workers covered by profit-sharing schemes vs. ESOP in Europe. Batut and Rachig (2021), Source: European Working Condition Survey, 2015.

Avoidance at the 50 employee threshold

- Probability of having fewer than 50 employees at t+1, by firm size in t
- \rightarrow active avoidance of passing the 50 threshold increases after reform

Conditional distribution of firm size: Pareto counterfactual

(d) Post-reform (1992-1997)

Mis-reporting?

- Firms may avoid regulation by misreporting their employment
- However, accounting items are certified by external auditors ⇒ harder to manipulate
- If bunching reflects misreporting, labor costs per employee should spike up left of the 100 threshold
- \rightarrow next slide

Total labor cost per employee at the 100 threshold

Y-axis: $asinh(\frac{labor\ cost}{\#\ of\ employees})$

Intent-to-treat and actual treatment

- "treated" = employment btw 55 & 85 in 1989-90
- "actually treated" = employment > 50 after 1990, > 100 before
- \rightarrow message: employment is persistent enough

Reconstituting the formula

Attrition

	(1) (2)		(3)	
	1 (Sick leave)	$1_{\{Overtime\}}$	Actual hours - Usual hours Usual hours	
Panel A: Relativ	e to large cor	ntrol		
Treatment x Post	-0.0012	0.0007	-0.0002	
	(0.0021)	(0.0019)	(0.0011)	
Panel B: Relativ	e to small co	ntrol		
Treatment x Post	-0.0035	0.0022	-0.0019*	
	(0.0022)	(0.0020)	(0.0011)	
Panel C: Relativ	e to both gro	ups		
Treatment x Post	-0.0022	0.0013	-0.0010	
	(0.0020)	(0.0017)	(0.0010)	
Firm-size FE	Yes	Yes	Yes	
Industry-Year FE	Yes	Yes	Yes	
Province-Year FE	Yes	Yes	Yes	
Adj R ²	0.00	0.01	0.01	
Observations	201,775	201,775	108,272	

