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1 Introduction

Governments in emerging economies heavily depend on bonds issued in liquid international

capital markets for their overall financing. The behavior of investors in these markets is

thus crucial to understanding governments’ borrowing costs, default risk, and optimal debt

management. Standard sovereign debt models often assume that investor demand is perfectly

elastic, implying that investors are willing to lend any amount governments request at the

risk-free rate plus a default risk premium. This assumption on investor behavior contrasts

with a body of recent work for other asset markets that allows for a richer investor demand

structure, typically involving an inelastic or downward-sloping demand (Koijen and Yogo,

2019; Gabaix and Koijen, 2021; Vayanos and Vila, 2021; Gourinchas et al., 2022; Greenwood

et al., 2023).

In this paper, we present novel evidence of downward-sloping demand curves in risky

sovereign bond markets and analyze their impact on governments’ optimal debt policies. We

first estimate high-frequency bond price reactions to well-identified flow shocks, using monthly

variation in the composition of the largest benchmark index for emerging economies dollar

bonds. Changes in this index affect the demand of passive investors that seek to replicate its

composition and imply a shift in the available supply of bonds to active investors. We find

that bond prices significantly react to these shocks, even when they are orthogonal to country

fundamentals. Our estimates imply an inverse price demand elasticity of −0.30, which we

refer to as a reduced-form elasticity.

We then formulate a quantitative sovereign debt model that features endogenous bond

issuances and default risk, and we discipline it based on our reduced-form estimates. The goal

of the model is twofold. First, we use the model to isolate the part of our empirical estimates

explained by endogenous responses in bonds’ future payoffs and identify a structural elasticity.

Our findings show that over one-third of the reduced-form elasticity is explained by these

endogenous forces. Second, we analyze the aggregate implications of facing a downward-

sloping demand. Under inelastic investors, an additional unit of debt leads to a decrease in

bond prices even if default risk is constant, which increases government’s borrowing costs.

Since governments internalize this effect, an inelastic demand limits debt issuances and acts

as a commitment device. Using our calibrated model, we show that this channel significantly

reduces default risk and bond spreads.

We start our analysis with a simple framework to guide our identification strategy. This

setup features heterogeneous investors who differ in how they allocate their funds across
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risky assets. Specifically, they exhibit differences in their levels of activism and passivism.

We define the passive demand as the portion of investors’ holdings aimed at replicating the

composition of the index they follow. This demand is perfectly inelastic and shifts with

changes in index weights. For any asset in fixed supply, a higher passive demand implies

a leftward shift in the “effective supply,” namely the quantity available to active investors.

If this shift is exogenous, and under the assumption that future asset payoffs remain fixed,

one can use that variation to examine whether demand curves for active investors slope

downward (Pandolfi and Williams, 2019; Pavlova and Sikorskaya, 2022). Nevertheless, if

expected payoffs endogenously respond to changes in the effective supply, any observed price

variation resulting from the shift could over or underestimate the demand elasticity. Since

asset prices and payoffs are jointly determined, this potential response motivates the need of

a structural model in which prices, the bond supply, and expected payoffs are endogenous

outcomes.

On the empirical front, we identify exogenous shifts in a country’s effective supply of

sovereign bonds by using monthly rebalancings in the J.P. Morgan Emerging Markets Bond

Index Global Diversified (EMBIGD), the most widely tracked index by institutional investors

for U.S. dollar-denominated sovereign bonds issued by emerging economies. Changes in

the composition of this index affect the effective bond supply because they lead to similar

rebalancings in the portfolios of passive investors who, due to potential tracking error costs,

tend not to deviate from the index. Given the EMBIGD’s popularity, these rebalancings can

have market-wide effects and affect sovereign bond prices.

We derive a measure of flows implied by rebalancings (FIR) by combining the assets

passively tracking the EMBIGD with the index’s monthly rebalancings. Qualifying new bond

issuances are incorporated into the EMBIGD each month, while maturing bonds are removed.

These frequent adjustments lead to changes in country weights within the index, generating

passive funds flows. To avoid endogeneity issues, we construct an instrument that exploits

changes in the FIR generated by the issuance or retirement of bonds from other countries

in the index. As such, these changes are orthogonal to a country’s own fundamentals. In

addition, we focus on changes in the face amount of the FIR (as opposed to market value) to

exclude changes in index composition triggered by endogenous changes in bond prices. We

combine this instrument with the specific timing of the reabalancings, which are effective on

the last business day of each month. This identification strategy allows us to analyze how

bond prices react to FIR shocks in a small window of time around the rebalancing date.

Our analysis reveals that a higher FIR leads to higher bond prices. On average, a 1
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percentage point (p.p.) increase in the FIR corresponds to a 30 basis point increase in bond

prices. These estimates imply a reduced-form inverse demand elasticity of −0.30. We find

that these price reactions vary across countries with different levels of default risk. Specifically,

for countries with higher default risk, a 1 p.p. FIR inflow can result in up to a 41 basis point

increase in bond prices. In contrast, for safer countries, the estimates are smaller (imply a

11 basis point increase) and statistically not significant. Overall, these findings suggest that

investors demand a premium as a compensation for holding risky bonds, which gives rise to

an inconvenience yield.

On the quantitative front, we formulate a sovereign debt model where the government has

limited commitment and can endogenously default on its debt obligations. Standard models

of this nature typically assume a perfectly elastic demand for sovereign bonds, with changes

in bond prices driven solely by variations in default risk (Arellano, 2008; Chatterjee and

Eyigungor, 2012). We extend these models using a richer demand structure that includes both

active and passive investors and a downward-sloping demand curve for active investors. We

introduce an inelastic demand following Gabaix and Koijen (2021). Specifically, we assume

that active investors have a mandate that specifies how they should allocate their funds.

They can deviate from that mandate based on bonds’ expected returns but are limited in

the extent to which they can do so. To create a tight link with our empirical analysis, we

introduce secondary markets in which bonds trade. In this way, by shocking the passive

demand, we can replicate within the model our empirical reduced-form elasticity.

We use the calibrated model to decompose the channels behind our empirical elasticity.

Since the FIR shock is persistent, part of the documented price reaction may be capturing

changes in future bond issuances and expected payoffs. We find that these endogenous

responses account for a third of the reduced-form elasticity, and that the effects are larger

the higher the persistence of the shock. Overall, our results underscore the importance of

accounting for issuers’ endogenous responses and changes in the expected repayment of assets.

These factors must be considered to avoid potential biases in estimating demand elasticities.

Our FIR measure is inherently more temporary than other instruments used in the literature,

such as index additions or deletions or index methodological recompositions. Still, we find

that the bias can represent about one-third of the total price response.

More importantly, our model allows us to examine the impact of a downward-sloping

demand on the optimal debt and default policies of governments. In the presence of an

inelastic demand, we observe lower default risk and higher bond prices compared to a scenario

with a perfectly elastic demand and similar debt levels. This outcome is not driven by a
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convenience yield (i.e., a higher price that investors are willing to pay for the bond) but rather

by the inelastic demand serving as a commitment device for the government. The mechanism

behind it is as follows: With a downward-sloping demand, issuing an additional unit of debt

decreases bond prices even if default risk remains fixed. As a result, the government finds

issuing large amounts of debt too costly and opts not to do so. An inelastic demand thus

limits the maximum amount of debt the government is willing to issue. In our quantitative

analysis, we find that this limit leads to a large reduction in default risk and bond spreads.

Apart from the commitment device, an inelastic demand imposes some costs because it leads

to a debt policy that is less responsive to shocks. Overall, we find that the benefits derived

from the commitment device dominate and the government is better off in the presence of

inelastic investors.

Our findings contribute to several strands of literature. First, we contribute to a long-

standing literature using index rebalancings to estimate asset price reactions, demand

elasticities, and changes in investors’ portfolios across different asset classes (Harris and

Gurel, 1986; Shleifer, 1986; Greenwood, 2005; Hau et al., 2010; Chang et al., 2014; Raddatz

et al., 2017; Pandolfi and Williams, 2019; Pavlova and Sikorskaya, 2022).1 Our contribution

lies in showing that demand curves slope downward in one of the most relevant markets for

government financing in emerging economies: the international U.S. dollar bond market.

An important contribution of our work is showing that, even in response to exogenous

supply-shifting shocks, part of the price movement can be attributed to changes in assets’

expected payoffs, rather than solely reflecting an inelastic demand component. Our analysis

can be applied to any asset, beyond sovereign bonds, whose future cash flows or payoffs

are affected by movements in the effective supply. As such, it can be extended to a vast

literature that uses exogenous shifts in the effective supply as an instrument to estimate

demand elasticities. Typical examples are sovereign and corporate bonds and equities from

both developed and emerging economies.

Second, a growing literature on inelastic financial markets emphasizes the role of the

demand side in explaining asset prices across various financial markets (Koijen and Yogo, 2019;

Gabaix and Koijen, 2021; Vayanos and Vila, 2021). Taking as given expected asset payoffs,

this literature analyzes how an inelastic demand affects the pricing of risk-free U.S. Treasuries

(Krishnamurthy and Vissing-Jorgensen, 2012; Greenwood et al., 2015; Mian et al., 2022; Jiang

et al., 2021b) and international financial assets (Koijen and Yogo, 2020; Gourinchas et al.,

1Beyond index rebalancings, Droste et al. (2023) use high-frequency U.S. Treasury auctions to estimate the
effect of demand shocks on Treasury yields.
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2022; Greenwood et al., 2023).2 Similar to our study, Choi et al. (2022) analyze the effects of

a downward-sloping demand on the optimal issuance of safe government bonds. In contrast,

we focus on the interplay between a downward-sloping demand curve, default risk, and the

provision of risky bonds.3 We show that the demand elasticity interacts with default risk and

influences a government’s supply of risky bonds.

Third, our study also connects to a body of work examining how changes in the investor

base of government debt impact bond yields (Warnock and Warnock, 2009; Dell’Erba et al.,

2013; Peiris, 2013; Arslanalp and Poghosyan, 2016; Ahmed and Rebucci, 2022). In related

work, Fang et al. (2022) develop a demand system to quantify how changes in the composition

of investors (domestic versus foreign, banks versus non-banks) affect government bond yields in

international markets. Zhou (2024) focuses on emerging market sovereign debt and shows that

differences in a country’s foreign investor base can help explain the heterogeneous influence

of the global financial cycle. In this paper, we exploit exogenous changes in the composition

of the investor base (passive versus active funds) to provide evidence of downward-sloping

demand curves for risky sovereign bonds.

Fourth, our paper relates to a large literature on quantitative sovereign debt models

(Aguiar and Gopinath, 2006; Arellano, 2008; Chatterjee and Eyigungor, 2012). Our framework

extends standard models by introducing a downward-sloping demand for bonds, different

investor types (active and passive), and secondary bond markets, which creates a tight link

with our empirical analysis and allows us to discipline the model based on our reduced-form

estimates.4 Using this setup, we show that an inelastic demand serves as a commitment

device that lowers default risk. In this regard, our paper connects to a broader literature on

the use of fiscal rules as commitment devices (Alfaro and Kanczuk, 2017; Dovis and Kirpalani,

2020; Hatchondo et al., 2022; Bianchi et al., 2023). We show that if the demand for bonds is

inelastic, the market by itself can create incentives that discourage borrowing and decrease

default risk.

In our analysis, we are agnostic about the mechanisms behind the downward-sloping

demand. Previous work by Borri and Verdelhan (2010), Lizarazo (2013), Pouzo and Presno

2A related literature focuses on U.S. and international corporate bond markets (Dathan and Davydenko, 2020;
Bretscher et al., 2022; Calomiris et al., 2022; Kubitza, 2023).
3Kaldorf and Rottger (2023) analyze the implications of convenience yields on the pricing and optimal supply
of risky sovereign bonds. In their setup, and similarly to Choi et al. (2022), investors are willing to pay a higher
price for holding risky sovereign bonds due to their collateral services. In contrast, based on our empirical
results, our model assumes that investors demand a premium (an inconvenience yield) for holding risky bonds.
4In this regard, our paper connects with recent work by Costain et al. (2022), who introduce endogenous
default risk into a Vayanos-Vila preferred habitat model to analyze the term structure of interest rates in the
European Monetary Union.
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(2016), and Arellano et al. (2017) analyze sovereign debt models with risk-averse investors. In

these models, investors are inelastic because they must be compensated for each additional

unit of risky debt they hold. There are several other mechanisms that can explain a

downward-sloping demand. For example, it can be driven by regulatory limitations such as a

Value-at-Risk (VaR) constraint (Gabaix and Maggiori, 2015; Miranda-Agrippino and Rey,

2020), by liquidity considerations (He and Milbradt, 2014; Moretti, 2020; Chaumont, 2021;

Passadore and Xu, 2022), by investors’ buy-and-hold strategies, or by fixed-share mandates

specifying how investors should allocate their funds across assets (as in Gabaix and Koijen,

2021). Our setup relies on a flexible demand structure that can accommodate any of these

potential drivers. Our aim is not to uncover the causes of investors’ inelastic behavior but

rather to examine its aggregate implications.

The rest of the paper is structured as follows. Section 2 introduces a simple framework

to guide our analysis. Section 3 presents the empirical analysis, including details on the

institutional setup of the EMBIGD index, data sources, identification strategy, and results.

Section 4 formulates a sovereign debt model with endogenous default and inelastic investors,

and Section 5 presents the quantitative analysis. Section 6 concludes.

2 Index Rebalancings as Passive Demand Shocks

We introduce a simple framework featuring active and passive investors to guide our empirical

analysis. The setup follows Pavlova and Sikorskaya (2022) and illustrates how one can use

index rebalancings to identify changes in the passive demand which, in turn, imply a shift in

the available bond supply. These shifts can then be utilized to estimate reduced-form price

demand elasticities. Although we focus on the case of sovereign bonds, the same methodology

can be applied to any asset (e.g., equities).

Consider a bond i that is part of a benchmark index I. Investors are heterogeneous in their

degree of activism or pasivism. In particular, investors track the composition of the I index

but differ in how actively or passively they do so. The underlying mechanism is that, due to

potential tracking error costs, passive investors do not want to deviate from the composition

of the index they follow. Let wt =
{
w1
t , ..., w

N
t

}
denote the vector of time-varying index

weights for each constituent bond of I. We define the passive demand, T i
t (w

i
t), as the portion

of investors’ holdings aimed at replicating the composition of the I index. We explicitly write

T i
t (w

i
t) as a function of wi

t to emphasize its dependence on the index weights. This demand

captures the holdings of both semi- and fully passive investors, it is perfectly inelastic, and
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Figure 1
Index rebalancing and the demand elasticity

(a) Fixed Expected Payoffs
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Note: The figure depicts a decrease in the effective supply driven by an increase in T i. Panel (a) considers the case
when the expected payoffs do not change as a consequence of the lower effective supply. Panel (b) considers a case in
which the expected payoffs increase.

shifts with changes in the index.

Let Bi denote the supply for bond i, which we assumed fixed for now. By decomposing

the demand into an active and passive component, we can write the market-clearing condition

for bond i as Bi = Ai
t + T i

t

(
wi
t

)
, where Ai

t denotes the active demand. For any bond i in

fixed supply, an increase in the passive demand implies a decrease in the supply of bonds

available to active investors (i.e., a leftward shift in the effective or residual supply). If this

increase is exogenous, one can use that variation to analyze whether the demand curves for

active investors slope downward. Panel (a) of Figure 1 illustrates this point. If the active

demand is inelastic, an exogenous increase in T i
t (w

i
t) should lead to a higher bond price.

Based on this graphical intuition, one could exploit changes in index weights wi
t to compute

shifts in the passive demand, ∆T i
t ≡ T i

t+1(w
i
t+1)−T i

t (w
i
t), and estimate bond price responses

around those shifts, ∆qit. With this, one can then estimate the following reduced-form

(inverse) demand elasticity:

η̂i = (−)
∆qit
∆T i

t

Bi − T i
t

qit
. (1)

Exploiting observed variations in index weights wi
t can still pose challenges. First, changes

in wi
t might be driven by endogenous changes in asset prices or can coincide with large

issuances or redemptions. Second, the estimated price reactions in Equation (1) might

capture not only an inelastic demand component but also potential (endogenous) changes in

expected payoffs. Put differently, to directly map Equation (1) into a structural elasticity (ηi),

we would need to assume that the intrinsic value of asset i is unaffected by the ∆T i
t shock.

However, the shock itself might influence the expected payoffs. For example, for long-term
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bonds, a larger ∆T i
t may affect next-period payoffs if the shock is persistent. Moreover, the

issuer can react to the shock (for instance, by increasing its supply), which may also affect

the expected payoffs from holding the asset. If investors anticipate these responses, they

should price them.

Panel (b) of Figure 1 provides a graphical illustration of this case. If a positive ∆T i
t raises

the next-period expected repayment, investors should be willing to pay a higher price for

any given quantity of the bond, leading to an upward shift in the active demand. Failing to

account for this effect might lead to the conclusion that the demand curve is steeper (more

inelastic) than it truly is. Conversely, if a positive ∆T i
t lowers the next-period expected

repayment, it would cause the active demand to shift downward. This shift might lead to the

demand curve being estimated as flatter (more elastic) than it truly is. Since bond prices

and payoffs are jointly determined, it is challenging to disentangle the effects on bond prices

due to the downward-sloping demand from those resulting from changes in expected payoffs.

Given these two challenges we proceed in two steps. In Section 3 we detail a novel

identification strategy, based on exogenous index rebalancings, to estimate reduced-form

elasticities for risky sovereign bonds. Then, to formally map these price reactions to structural

elasticities, we formulate in Section 4 a sovereign default model in which bond prices, the

bond supply, and bond payoffs are endogenous and determined simultaneously.

3 Empirical Analysis

3.1 Identifying Exogenous Shifts in Bond Supply

We exploit monthly rebalancings in the EMBIGD to identify exogenous shifts in the

available bond supply for active investors (i.e., the effective supply). The EMBIGD tracks the

performance of emerging market sovereign and quasi-sovereign bonds in U.S. dollars issued

in international markets.5 Among bond indexes for emerging economies, the EMBIGD is

the most widely tracked, followed by funds with combined assets under management (AUM)

of around US$300 billion in 2018 (Appendix Figure D2).6 Unlike other indexes that use a

traditional market capitalization-based weighting scheme, the EMBIGD restricts the weights

5The index includes bonds with a maturity of at least 2.5 years and a face amount outstanding of at least
US$500 million. To be classified as an emerging economy, a country’s gross national income (GNI) per capita
must be below an Index Income Ceiling (IIC) for three consecutive years. The IIC is defined by J.P. Morgan
and adjusted every year by the growth rate of the World GNI per capita, Atlas method (current US$), provided
by the World Bank. Bonds in the index must settle internationally and have accessible and verifiable bid
and ask prices. Once included, they can remain in the index until 12 months before maturity. Local law
instruments are not eligible.
6Appendix Figures D3 and D4 show the high preponderance of U.S. dollar-denominated sovereign debt issued
by emerging economies in international markets.
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of countries with above-average bonds outstanding (relative to other countries in the index)

by including only a fraction of their face amount. We refer to this methodology as a “cap

rule.”7

Rebalancings in the EMBIGD index, triggered by bond inclusions and exclusions, occur

on the last business day of each month in the United States. J.P. Morgan announces these

updates through a report detailing the updated index composition. Consequently, passive

investors tracking the index adjust their portfolios by buying or selling bonds to match the

new index weights.

Following Pandolfi and Williams (2019), we construct the flows implied by the rebalancings

(FIR) measure for each country c at each rebalancing date. The FIR quantitatively measures

the relative change in passive demand for a country’s sovereign bonds resulting from an index

rebalancing. A 1% FIR can be interpreted as a 1% reduction in the available bond supply in

the market. More precisely, the FIR measure is constructed as follows:

FIRc,t ≡
∆T̃c,t

qc,t−1Bc,t−1 − wc,t−1Wt−1
. (2)

The ∆T̃c,t term captures the change in passive demand implied by the index rebalancing. It

measures the amount of funds that, on a given rebalancing date, enter or leave a country

due to the rebalancing in the portfolio of passive investors tracking the EMBIGD index. For

convenience, we normalize ∆T̃c,t by the market value of the bonds available to active investors,

qc,t−1Bc,t−1 − wc,t−1Wt−1, where W denotes the AUM passively tracking the EMBIGD.

We define the implied change in the passive demand as ∆T̃c,t ≡ (wc,t − wBH
c,t )Wt. The

term wc,t is the benchmark weight for country c, at time t. It is defined as wc,t ≡ qc,tBc,tfc,t
qtIt

,

where qc,tBc,t denotes the market value of bonds from country c at time t; qc,t denotes the

price; and Bc,t denotes the face-amount outstanding. We define the diversified face amount

(DFA) as fc,tBc,t, where fc,t denotes the face-amount share of country c’s bonds in the index.

To preserve diversification, the EMBIGD applies a scheme that entails a country-level cap to

the index weight for countries with total greater-than-average face value bonds. For these

caped countries, the diversification coefficient is smaller than one, fc,t < 1, which efectively

reduces its index share.8

7The J.P. Morgan Emerging Markets Bond Index Global (EMBIG) has the same bond inclusion criteria
as the EMBIGD. The only difference between them is that while the EMBIG uses a market capitalization
weighting scheme, the EMBIGD modifies this scheme to limit the weights of countries with above-average debt
outstanding. Appendix Figure D1 plots the EMBIG country weights of both the EMBIG (a more traditional
market-based index) and EMBIGD versions for December 2018.
8Appendix A describes the rules that the EMBIGD uses to compute the weights of the instruments included
in the index. In a purely market capitalization-weighted indexes, fc,t = 1 for every country that is part of the
index.

9



The term qtIt denotes the market value of the EMBIGD index, where qt is the unit price

of the index and It is the number of available index units. Consequently, wc,t captures the

relative market capitalization of country c’s sovereign bonds included in the index. Lastly, the

term wBH
c,t denotes a “buy-and-hold weight,” defined as the weight country c would have had

at time t if the index composition had remained unchanged. That is, wBH
c,t ≡ wc,t−1

qc,t/qc,t−1

qt/qt−1
.9

Although index changes drive the FIR, this measure might not necessarily be orthogonal

to a country’s fundamentals, for two reasons. First, the FIR is affected by countries’ sovereign

bond issuances. When a country issues new bonds that become part of the index (or redeems

existing bonds), its weight changes, leading to changes in the FIR. Second, even for countries

whose Bc,t and fc,t remain constant, the FIR can be mechanically correlated to present or

past bond price changes. Given that we aim to isolate the impact of passive demand shocks

on bond prices, the potential endogeneity of the FIR could bias our estimates.

We address the potential FIR endogeneity in two ways. First, for each rebalancing event,

we consider only countries whose amount outstanding of bonds, Bc,t, does not change relative

to the previous month. In other words, we focus only on countries that experience no new

issuances, bond repurchases, or the removal of bonds from the index due to maturity on a

given month.

Second, we exploit the fact that the EMBIGD’s weighting scheme is based on the diversified

face amount of outstanding bonds. This is important as it allows us to net out the variation

potentially correlated with current or past bond price changes. In particular, we construct an

instrument for the FIR based on a synthetic index in which country weights are only a function

of the diversified face amount outstanding of bonds included in the index, w̃c,t ≡ fc,tBc,t∑
c fc,tBc,t

.

We then compute the fractional change in the synthetic index:

∆w̃c,t

w̃c,t−1
=

(
fc,tBc,t∑
c fc,tBc,t

− fc,t−1Bc,t−1∑
c fc,t−1Bc,t−1

)
/

[
fc,t−1Bc,t−1∑
c fc,t−1Bc,t−1

]
. (3)

Focusing on countries whose debt outstanding in the index remains unchanged (Bc,t = Bc,t−1),

the instrument becomes

Zc,t ≡
(

fc,t∑
c fc,tBc,t

− fc,t−1∑
c fc,t−1Bc,t−1

)
/

[
fc,t−1∑

c fc,t−1Bc,t−1

]
. (4)

By instrumenting the FIR with Zc,t, we can isolate the variation in the FIR that is solely

attributable to changes in the outstanding amount of bonds from other countries. These

9This buy-and-hold weight is computed as if no bonds had entered or exited the index at time t. Note that
wBH

c,t =
qc,tfc,t−1Bc,t−1

qtIt−1
. Absent any change in the index composition (i.e., inclusions or exclusions of new

bonds or countries), if the price of a country’s sovereign bonds increases more than that of other countries in
the index, the weight of that country in the index increases. Nevertheless, investors do not need to rebalance
their portfolios as the “buy-and-hold weight” coincides with the new weight in the index, wc,t.
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changes are a result of fluctuations in the relative size of other countries’ sovereign bond

markets or alterations in the diversification coefficient, fc,t. Because fc,t is not a function of

bond prices, and because we only consider countries where Bc,t is fixed,
∂Zc,t

∂qc,t
=

∂Zc,t

∂qc,t−1
= 0.

Importantly, as we illustrate next based on a simple example, due to the cap rule the

instrument Zc,t is heterogeneous across countries.

In our main analysis, we use the Zc,t instrument to estimate the effect of exogenous

demand changes induced by passive flows on sovereign bond prices. We take advantage of

the specific timing of the rebalancings: index changes always occur on the last business day

of each month. For each rebalancing date, we can therefore distinguish between pre- and

post-rebalancing days and estimate price reactions when the rebalancings occur.

3.2 The Rebalancing and Cap Rule in Practice

To illustrate how the rebalancings and the cap rule work in practice, we consider an

example involving 5 countries (c = {A,B,C,D,E}) with qualifying bonds in the index in

month t− 1. For simplicity, each of these countries has only one qualifying bond and does

not issue (nor redeem) bonds during month t. We assume that country F issues an eligible

bond for the first time during month t. This bond is included in the index on the rebalancing

date at the end of month t.

Table 1
The cap rule: Face amount vs diversified face amount

Country Before Rebalancing After Rebalancing

FAc,t−1 DFAc,t−1 FAc,t DFAc,t

A 1,000 1,000 1,000 1,000
B 2,000 2,000 2,000 2,000
C 3,000 3,000 3,000 3,000
D 7,000 6,429 7,000 6,769
E 12,000 10,000 12,000 11,000
F - - 8,000 7,615

ICA 5,000 5,500
FAmax 12,000 12,000

Note: The table assumes values for the face amount for each country.
It then computes the diversified face amount following Equation (A1).

Table 1 shows the face amount FAc for each bond included in the index before and

after the rebalancing date t. Columns DFAc show the diversified face amount (i.e., fcBc)

calculated based on the methodology described in Appendix A. The EMBIGD methodology

caps the face amount outstanding included in the index for countries with above-average

11



Table 2
Flows Implied by Rebalancing (FIR)

c DFAc,t−1 DFAc,t qc,t MV BH
c,t MVc,t wc,t wBH

c,t FIRc,t

A 1,000 1,000 0.90 900 900 2.85% 3.97% -1.12%
B 2,000 2,000 1.25 2,500 2,500 7.91% 11.03% -3.12%
C 3,000 3,000 0.85 2,550 2,550 8.07% 11.25% -3.18%
D 6,429 6,769 1.20 7,714 8,123 25.72% 34.04% -8.32%
E 10,000 11,000 0.90 9,000 9,900 31.34% 39.71% -8.37%
F - 7,615 1.00 - 7,615 24.11% 0.00% 24.11%

Note: Market values MV BH
c,t and MVc,t are based on the diversified face amount (DFA) and bond price

(q) information. They are computed as MV BH
c,t ≡ DFAc,t−1 × qc,t and MVc,t ≡ DFAc,t × qc,t. Observed

and buy-and-hold index weights are given by wc,t =
MVc,t∑
c MVc,t

and wBH
c,t =

MV BH
c,t∑

c MV BH
c,t

. The FIR measure

is computed based on Equation (2), assuming a scaling factor of one (i.e., for each country, total assets
under management divided by the available bond supply equals one).

Table 3
Heterogeneity induced by the cap rule

c w̃c,t−1 =
DFAc,t−1∑
c DFAc,t−1

w̃c,t =
DFAc,t∑
c DFAc,t

Zt =
w̃c,t−w̃c,t−1

w̃c,t−1

A 4.46% 3.19% -28.54%
B 8.92% 6.37% -28.54%
C 13.38% 9.56% -28.54%
D 28.66% 21.57% -24.75%
E 44.59% 35.05% -21.39%
F - 24.26% -

Note: The table shows the theoretical index weights calculated based on the
diversified face amount. The last column shows the percentage change in the
theoretical weights, Z.

debt levels (denoted as ICA). The example assumes that countries D and E are capped in

periods t− 1 and t, while country F is also capped in t.

Table 2 (last column) shows our FIR measure for this example. To compute the FIR, we

first calculate each country’s market value (MVc,t), the buy-and-hold market value (MV BH
c,t ),

the (observed) weight (wc,t), and the buy-and-hold weight (wBH
c,t ). From this analysis, it is

clear that the FIR measure depends on current bond prices and is affected by changes in

the (diversified) face amount of each country. Country F , for instance, exhibit a large FIR

because it is issuing new qualifying bonds that enter the index.

In Table 3, we exclude country F and restrict our attention to the subset of countries

whose face value remained unchanged. The table reports the theoretical weights w̃, which

are only a function of the diversified fave amount, and our Z instrument —computed based

on Equation (4). Since we only consider countries with a constant face value, changes in w̃

are driven exclusively by country F ’s new issuances and the application of the EMBIGD cap

rule.

12



In our example, the issuance of new bonds by F reduces the weights for all other countries.

In the absence of a cap rule, the relative decrease is homogeneous across all countries. However,

due to the cap rule, the percentage change in the theoretical weights Z varies across countries.

This variation arises because the diversified face amount (used to calculate w̃) is capped for

countries with above-average amounts of outstanding bonds, and the cap changes after the

new issuances by country F . 10 The new bonds issued by F relax the index cap for countries

with above-average face amounts (D and E), resulting in a smaller relative drop in their

theoretical weights. In the next section, we exploit this variation across countries to estimate

bond price demand elasticities.

3.3 Estimation Strategy

We adopt an instrumented difference-in-differences (DDIV) design and estimate the

following main specification using two-stage least squares (2SLS):

log(qi,t,h) = θc(i),t + θb(i),t + γ1h∈Post + β(F̂ IRc(i),t × 1h∈Post) +Xi,t + εi,t,h, (5)

where qi,t,h is the price of bond i at rebalancing event t, h trading days before or after

the rebalancing information is confirmed.11 For example, h = 1 indicates the first trading

day after J.P. Morgan releases the EMBIGD’s new composition. This happens during the

trading hours on the last business day of each month, meaning that h = 1 falls on this day.

For each rebalancing event t, we consider a symmetric h-day window around it. θc(i),t are

country-month fixed effects, and θb(i),t are bond characteristics-month fixed effects, including

maturity, rating, and bond type (sovereign or quasi-sovereign). F̂ IRc(i),t represents the flows

implied by the rebalancing, instrumented with the percentage change in the theoretical index

weights, Zc,t. We obtain F̂ IRc(i),t by regressing FIRc,t on Zc,t (first stage). 1h∈Post is an

indicator function equal to 1 in the h days after the rebalancing and equal to 0 in the h

days before. Xi,t is a vector of monthly bond controls, including the bond’s face amount and

(beginning-of-month) spread. The coefficient of interest is β, which captures the FIR’s effect

on bond prices. Specifically, it measures how much the average bond log price changes with a

1 p.p. increase in F̂ IRc(i),t around the rebalancing day.

Our preferred specification replaces the country-month fixed effects, bond characteristics-

month fixed effects, and bond controls with bond-month fixed effects. This specification

10The inclusion of bonds from country F increases the average country face amount outstanding (ICA) from
$5, 000 to $5, 500. The diversified face amounts of countries A, B, and C are unaffected because their face
amounts are below the ICA. However, the increase in the ICA relaxes the cap for initially capped countries
D and E, altering their diversified face amounts outstanding even though their face values remain constant.
11Appendix Figure D5 provides a visual timeline of these events.
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exploits both within and across rebalancing variation in Zc,t. Additionally, we present results

that only exploit cross-sectional variation in Zc,t by including month-1h∈Post fixed effects.

We also estimate a leads and lags regression in which the instrumented FIR is interacted

with trading-day dummies around the rebalancing event. This analysis allows us to both

explore the dynamic effect of the FIR and test for parallel trends before the rebalancing. We

estimate the following regression:

log(qi,t,h) = θc(i),t + θb(i),t +
∑
h/∈−2

γh1h +
∑
h/∈−2

βh(F̂ IRc(i),t × 1h) +Xi,t + εi,t,h, (6)

where 1h are dummy variables equal to 1 for the h trading day in our [−5 : +5] estimation

window and 0 otherwise.

3.4 Data and Summary Statistics

We collect data from different sources to compute the FIR and our instrument. Most of

the variables used in the analysis come directly from J.P. Morgan. However, one variable

is not straightforward to measure: the AUM of funds that passively track the EMBIGD,

Wt. While J.P. Morgan provides data on the amount of assets benchmarked against their

indexes, it does not distinguish between passive and active funds. Additionally, even if these

data were available, many active funds might passively manage a significant share of their

portfolios, as highlighted by Pavlova and Sikorskaya (2022).

To compute Wt, we start with J.P. Morgan data on assets tracking the EMBIGD, which

we then adjust based on an estimate of the share of passive funds. The estimation of this

share involves the following steps. We retrieve data from Morningstar on the asset holdings

of funds benchmarked against the EMBIGD and EMBI Global Core for 2016–2017.12,13 For

each fund, we compute their Passive Share = 100−Active Share, where Active Share is

the measure developed by Cremers and Petajisto (2009). We first estimate this variable at

the country level, which is the level of the FIR measure.14 This allows us to separate, even

for active funds, the fraction of a fund’s portfolio that might be passive or active. We then

compute the average Passive Share weighted by each fund’s AUM. With this strategy, we

12The EMBI Global Core uses the same diversification methodology as the EMBIGD to calculate the bond
weights, as described in Appendix A. The criteria for including bonds in the EMBI Global Core is the same as
that for the EMBIGD (and the EMBI Global), except the minimum face amount of the bonds must be US$1
billion and the maturity required to be maintained in the index is of at least one year.
13The data sample periods utilized in the paper are determined by data access constraints.
14We compute the Active Share at the country level by using the country weights in the index and in the
funds’ portfolios rather than bond weights. For the portfolios, we only assign bonds to a given country if they
are included in the EMBIGD. Specifically, a country’s weight in a portfolio is determined by adding together
the weights of all bonds from that country that are included in the EMBIGD.
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Table 4
Summary statistics

Variable Mean Std. Dev. 25th Pctl 75th Pctl Min Max

log(Price) 4.64 0.13 4.59 4.68 3.07 5.19

Instrumented FIR (%) -0.15 0.20 -0.32 0.00 -0.66 0.23

Stripped spread (bps) 278 288 128 356 0 4904

EIR duration (%) 6.36 3.92 3.48 7.71 -0.03 19.08

Average life (years) 9.6 8.9 4.0 9.9 1.0 99.8

Face amount (billion U.S. dollars) 1.3 0.8 0.7 1.6 0.5 7.0

CDS (bps) 300 698 104 282 42 6171

Note: This table displays summary statistics for the main variables in the analysis. Stripped Spread is
the difference between a bond yield-to-maturity and the corresponding point on the U.S. Treasury spot
curve, where the value of collateralized flows are “stripped” from the bond. EIR Duration measures
the sensitivity of dirty prices to parallel shifts of the U.S. interest rates, expressed as the percentage
change of dirty price if all U.S. interest rates change by 100 basis points. Average Life is the weighted
average period until principal repayment, and CDS denotes the five-year credit default swap spread of
USD-denominated sovereign bonds. Sources: Bloomberg, Datastream, J.P. Morgan Markets, Morningstar
Direct, and authors’ calculations.

obtain an estimated passive fund share of 50%.15 We calculate Wt by adjusting the AUM

tracking the EMBIGD index, using a rescaling factor of 50%, thus obtaining the estimated

passive funds tracking the index we use to compute the FIR.16

We gather data on individual bond prices from Datastream and obtain several bond

characteristics (maturity and duration, among others) directly from J.P. Morgan Markets.

To clean our dataset, we drop extreme values of daily returns, stripped spreads, and Zc,t.
17

We drop stripped spreads below 0 or above 5, 000 basis points as well as observations below

the 5th or above the 95th percentiles in terms of the distribution of Zc,t. The reason for the

latter is that extreme values of Zc,t could be driven by large, pre-announced changes in the

EMBIGD and thus are not appropriate for our identification strategy, which relies on the

assumption that most information is known on the last business day of the month. Finally,

we exclude bond-month observations that experience daily returns below (above) the 1st

(99th) percentile in terms of the daily return distribution.

Our final dataset comprises 131,820 bond-time observations for 751 bonds in 68 countries.

Table 4 displays summary statistics for our main measure of the instrumented flows implied

by the rebalancing, F̂ IRc,t, as well as for the other key variables in our database. Bonds in

our sample have an average stripped spread of 278 basis points, an average maturity of 10

15Appendix Table D1 provides results using alternative shares of passive funds used to construct the FIR
measure. Although our quantitative estimates change slightly, the qualitative implications remain the same.
16For comparison, we construct Active Share at the bond level, obtaining a value-weighted average of 72%.
Cremers and Petajisto (2009) show an average value-weighted Active Share that fluctuates between 55% and
80%.
17Stripped spread is defined in the notes of Table 4.
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Figure 2
Flows implied by rebalancing (FIR)

(a) Relation between FIR and Z (b) Distribution of instrumented FIR values
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Notes: Panel (a) presents a scatter plot of the FIR and the Z instrument. Both variables are residualized based on
a regression with rebalancing-month and country fixed effects. The FIR is computed as in Equation (2) and Z as in
Equation (4). Panel (b) shows a histogram of the FIR instrumented with Z. For both panels, the sample period is
2016–2018.

years, and an average face amount of US$1.3 billion.

Figure 2, Panel (a) presents the results of our first stage. It shows a scatter plot of the FIR

and the Zc,t instrument after both variables have been residualized with rebalancing-month

and country fixed effects. The two variables have a clear positive relation, and the R-squared

is 86%. Panel (b) presents the distribution of our instrumented FIR measure. The values

range from −0.7% to around 0.25%, with more negative than positive observations. This

is consistent with the fact that over time, the number of bonds included in the EMBIGD

increased. Given that we restrict our analysis to countries whose face amount remains constant,

including bonds from other countries typically reduces the weight of sample countries (i.e., a

negative FIR).18

3.5 Results

Table 5 reports the results of our baseline estimation using a five-day window around

each rebalancing event (i.e., h ∈ [−5, 5]).19 Our coefficient of interest, β, is always positive

and statistically significant in the different specifications. The estimate in our preferred

specification, with bond-rebalancing and bond-month fixed effects (column 4), implies that a

1 p.p. increase in the FIR increases bond returns by around 0.30 p.p.

18When a bond is added to the index, it generally reduces the weight of other bonds in terms of their total face
amount. However, in certain situations, it could increase the weight of certain countries through a relaxation
of face amount caps, as the EMBIGD sets limits on the included face amount of countries to maintain a
diversified portfolio.
19Appendix Table D2 shows that our results are robust to alternative windows around the rebalancing events.
The results are also robust to excluding quasi-sovereign bonds from the analysis (Appendix Table D3).
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Table 5
Log price and FIR

Dependent Variable: Log Price

[-5:+5] No h=-1

FIR 0.006

(0.808)

FIR X Post 0.231** 0.232** 0.231** 0.300** 0.263*** 0.319**

(0.099) (0.100) (0.099) (0.134) (0.098) (0.135)

Post 0.001* 0.001* 0.001* 0.001**

(0.000) (0.000) (0.000) (0.000)

Bond FE Yes Yes No No No No

Month FE Yes No No No No No

Bond Characteristics-Month FE No Yes No No No No

Country-Month FE No Yes No No No No

Bond-Month FE No No Yes Yes Yes Yes

Month-Post FE No No No Yes No Yes

Bond Controls No Yes No No No No

Observations 105,548 105,508 105,548 105,548 84,433 84,433

N. of Bonds 738 738 738 738 738 738

N. of Countries 68 68 68 68 68 68

N. of Clusters 1,576 1,575 1,576 1,576 1,576 1,576

F (FS) 654 1,616 1,666 476 1,670 476

Note: This table presents 2SLS estimates of log bond prices on the FIR measure (Equation
(2)), instrumented by Z (Equation (4)), around rebalancing dates. The first- and second-
stage equations are described in Equation (5). The estimations use a symmetric five-
trading-day window, with Post as an indicator variable (equal to 1 for the five trading
days after rebalancing, and 0 otherwise) in Columns 1-4. Month fixed effects are dummy
variables equal to 1 for each rebalancing month (0 otherwise), and bond characteristics
are fixed effects that interact maturity, ratings, and bond type fixed effects. Maturity
fixed effects are constructed by dividing a bond’s time to maturity into four different
categories: short (less than 5 years), medium (5–10 years), long (10–20 years), and very
long (20+ years). Ratings from each bond are from Moody’s. Bond type differentiates
sovereign from quasi-sovereign bonds. Bond controls indicate whether the estimation
includes the log face amount and log stripped spread of the bond. The last two columns
in the analysis drops the trading day before rebalancing and the trading day h = +5 to
have a four-trading-day symmetrical window around the rebalancing. Standard errors are
clustered at the country-month level, and the sample period is 2016–2018. *, **, and ***
denote statistically significant at the 10%, 5%, and 1% level, respectively.

One potential concern with these results is that bonds receiving a larger or smaller FIR

during the rebalancings are on different price trends even before the rebalancing date. To

show that this is not the case, we use the specification with leads and lags described in

Equation (6). The estimated βh coefficients are reported in Figure 3.
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Figure 3
Leads and lags coefficients
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Note: This figure presents leads and lags coefficients from a 2SLS estimation of bond log prices on a set of
trading-day dummies around each rebalancing event, using the same 2SLS procedure as in Table 5. The
estimation includes bond characteristics-month fixed effects (maturity, rating, and bond type). The shaded
area indicates the rebalancing on the month’s last business day, with h = +1 for returns on that day and
h = −1 for returns on the preceding business day. The vertical red lines show a 95% confidence interval for
each horizon. Standard errors are clustered at the country-month level.

On the initial four of the five trading days before the index rebalancing, changes in the

FIR are not associated with systematic differences in bond prices. Instead, in the trading

days after the event, the coefficient increases, becomes positive and significant, and eventually

stabilizes below 0.35 by the end of our estimation window. We do observe a slight anticipation

in the day before the index rebalancing, which is not uncommon in these setups. For example,

this is consistent with the patterns of portfolio rebalancings by different institutional investors

highlighted in Escobar et al. (2021), who show that institutional investors could move in

the day before the actual index rebalancing event. In the last two columns of Table 5, we

show the estimates based on our preferred specification of Equation (5) but after excluding

the trading day before the index rebalancing. This leads to estimates between 0.26 and

0.32, which we take as our baseline since it does not contain any anticipation effect in the

pre-period.

One related concern is the potential for increased anticipation throughout the month.

Between the middle and end of every month, J.P. Morgan releases preliminary estimates

about end-of-month face amounts, market values, and bond weights. While it is conceivable

that active investors traded on this information before the actual index rebalancing date,

18



Table 6
Log price and FIR: Role of default risk

Dependent Variable: Log Price

High Spread Low Spread

FIR X Post 0.406*** 0.406*** 0.116 0.115

(0.147) (0.146) (0.097) (0.097)

Bond FE Yes No Yes No

Month FE Yes No Yes No

Bond-Month FE No Yes No Yes

Observations 42,169 42,166 42,267 42,267

N. of Bonds 500 500 494 494

N. of Countries 62 62 51 51

N. of Clusters 1,217 1,217 869 869

F (FS) 544 1,889 421 820

Note: This table presents 2SLS estimates of bond log
prices on the FIR measure, instrumented by Z, across
rebalancing dates. The sample is divided into high-
spread bonds in Columns 1 and 2, above the median
stripped spread, and low-spread bonds in Columns 3
and 4, below the median. The sample period and
the 2SLS procedure are identical to those described
in Table 5. The estimation excludes the trading day
before rebalancing and the trading day h = +5 to
have a four-trading-day symmetrical window around
the rebalancing. The coefficients for Post and FIR are
included in the estimation but not reported for brevity.
Standard errors are clustered at the country-month level.
*, **, and *** denote statistically significant at the 10%,
5%, and 1% level, respectively.

our data do not support this behavior. Normally, if a significant number of investors were

anticipating the index rebalancing, we would expect to observe pre-trends in bond prices

before the actual event. However, our analysis reveals no correlation between the FIR and

bond returns in the week leading up to the rebalancing (with the only exception being the

day before the event). Lastly, if part of the rebalancing-driven inflows were to occur before

the event, our FIR measure would overestimate them at the index rebalancing date. This, in

turn, implies that our estimates can be understood as a lower bound.20

The documented effects are heterogeneous across bonds with varying levels of default risk.

To show this heterogeneity, we divide our sample into high- and low-spread bonds, those

20Appendix Table D1 shows how our estimates change as we proportionally decrease the FIR measure (due
to a lower share of passive funds). These results could serve as guidance for what might happen if the FIR
measure were lower due to some investors’ portfolio rebalancings being anticipated.
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above and below the median spread in our sample, respectively. We estimate Equation (5)

for each of these subsamples and report the results in Table 6. The table shows that the

price of high-spread bonds is more sensitive to rebalancing shocks, with a 1 p.p. increase

in the FIR associated with a 0.41 p.p. increase in bond returns. In contrast, for low-spread

bonds, the effect is smaller (around 0.11 p.p.) and not statistically significant.21 Overall,

these findings suggest that investors demand a premium as compensation for holding risky

bonds, that is, an inconvenience yield.

We can directly map the estimated bond price reactions to a reduced-form demand

elasticity. Based on our FIR measure, we can rewrite Equation (1) as η̂ = (−)
∆log(qit)
FIRc,t

, which

is precisely what the β coefficient in Equation (5) captures. Based on the estimates in Table 5

(last columns), the inverse demand elasticity is around −0.3, implying a demand elasticity of

−3. Our inverse demand elasticity estimate is higher (in magnitude) than those for sovereign

bonds issued in advanced economies, but smaller relative to other asset classes, such as

equities. In Appendix Figure D6, we compare our estimates with other studies.

21Appendix Table D4 divides bonds into three groups according to their spreads. We find that bond prices
are positively associated with the FIR for both high (above 302 basis points) and medium (between 158 and
302 basis points) spread bonds. Instead, for low spread bonds (below 158 basis points), the relationship is
statistically insignificant. Additionally, the estimated coefficient increases with the risk profile of the bonds.
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4 A Sovereign Debt Model with Inelastic Investors

We next formulate a quantitative sovereign debt model to study the impact of a downward-

sloping demand on a government’s supply of risky bonds. The model features a risk-averse

government that lacks commitment and issues long-term debt in international debt markets.

We introduce a rich demand structure, allowing us to capture a downward-sloping demand

for government bonds that we discipline based on our empirical estimates.

4.1 Model Setup

We consider a small open economy with incomplete markets and limited commitment.

Output y is exogenous and follows a continuous Markov process with a transition function

fy (yt+1 | yt). Preferences of the representative consumer are given by

E0

∞∑
t=0

βtu (ct) , (7)

where β is the discount factor, c denotes consumption, and the function u (.) is strictly

increasing and concave.

An infinite-lived, risk-averse government issues long-term bonds in international markets.

Let Bt−1 denote the beginning-of-period stock of government debt. The government has

limited commitment and can default on its debt. Each unit of B matures in the next period

with probability λ. If a bond does not mature (and the government does not default), it

pays a coupon ν. Let dt = {0, 1} denote the default policy, where d = 1 indicates a default.

Default leads to a temporary exclusion from international debt markets and an exogenous

output loss, ϕ(yt). The government is benevolent and chooses {dt, Bt} to maximize Equation

(7), subject to the economy’s resource constraint.

International markets are competitive, and investors discount payoffs at the risk-free rate.

These markets are populated by a large number of heterogeneous investors (J) who differ in

how they allocate their funds across bonds. As in Gabaix and Koijen (2021), we introduce

a downward-sloping demand by assuming that each investor j has a mandate or rule that

specifies how they should allocate their funds across the N bonds (each issued by a different

country). A fraction of these investors are passive and track the composition of a benchmark

bond index I, of which the government’s bonds (B) are part of it.
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4.2 Inelastic Investors

Let j = {1, ..., J} denote the investor. Let i = {1, ..., N} denote the set of bonds in

which investors can invest and let wt =
{
w1
t , ..., w

N
t

}
denote the vector of time-varying index

weights for each constituent bond of index I. We define xijt =
qitB

i
jt

Wjt
as the share of wealth

that investor j invests in bond i at time t. The term qit denotes the unit price of bond i, Bi
j,t

denotes the holdings of investor j in bond i, and Wj,t denotes their wealth. The share xijt is

given by the following exogenous mandate:

xijt = θj

(
ξije

Λj π̂i,t(rit+1)
)
+ (1− θj)w

i
t, (8)

where θj parameterizes the degree of activeness or passiveness of investor j. Purely passive

investors can be characterized by θj = 0, indicating that their portfolio simply replicates the

benchmark index I. Conversely, active and semi-active investors are those with θj ∈ (0, 1],

which captures the fraction of their portfolio that is not linked to index I. Within their

active allocation, investors apportion a fixed fraction, ξij , of their wealth to bond i and a

varying component determined by Λj π̂i,t
(
rit+1

)
, where Λj > 0 parameterizes their demand

elasticity and π̂i,t is an arbitrary function of the next-period excess return of bond i, rit+1.

For instance, if π̂i,t
(
rit+1

)
= Et

(
rit+1

)
, investors allocate a higher share of their wealth to

bonds with higher expected excess returns.

The reduced-form mandate in Equation (8) allows us to introduce an aggregate demand

elasticity for bond i that can be parameterized by Λ ≡ {Λ1, ..,ΛJ}. While this mandate

can have different microfoundations (as shown in Appendix B), we take it as given for our

analysis. Our goal is not to explain the reasons behind the inelastic demand for risky bonds

but rather to examine its implications. After adding up all the individual demands, we can

write the market-clearing condition as follows:

qitB
i
t = Ãi

t + T̃ i
t (w

i
t), (9)

where Bi
t is the end-of-period bond supply, and Ãi

t ≡
∑

j Wj,tθj

(
ξije

Λj π̂i,t

)
and T̃ i

t (w
i
t) ≡∑

j Wj,t (1− θj)w
i
t denote the market-value active and passive demands, respectively. The

passive demand, T̃ i
t (w

i
t), is the portion of investors’ holdings aimed at replicating the index

composition they follow. It captures the holdings of both semi- and fully- passive investors.

We write T̃ i
t (w

i
t) as a function of wi

t to emphasize its dependence on the index weights.

We now put more structure behind the investor demand, allowing us to derive a closed-

form solution for the price. We assume that π̂i,t(r
i
t+1) =

Et(rit+1)
Vt(rit+1)

so that the active demand
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is a function of the bond’s expected excess return and its variance (the Sharpe ratio).22 We

define Ri
t+1 as the next-period repayment per unit of the bond so that rit+1 ≡

Ri
t+1

qit
−rf , where

rf denotes the risk-free rate. Based on these definitions and the market-clearing condition in

Equation (9), the equilibrium bond price is given by

qit =
Et

(
Ri

t+1

)
rf

Ψi
t. (10)

The term
Et(Ri

t+1)
rf

captures the price under perfectly elastic investors, which is only a function

of the expected next-period repayment. On the other hand, the Ψi
t function captures the

demand’s downward-sloping nature and is given by

Ψi
t ≡ 1− κit (Λ)

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t − Āi

t

)
. (11)

The term κit (Λ) ≡ 1∑
j ΛjWj,tθjξij

characterizes the elasticity of the active demand for bond i.

The Bi
t − T i

t component is what we have referred to as the residual supply, and Āi
t captures

the inelastic portion of the active demand, which depends on the fixed component of investors’

mandates, ξij (see Appendix B for the details and derivations). Notice that when κit (Λ) = 0,

the active demand is perfectly elastic and the price for bond i only depends on its expected

repayment. When κit (Λ) > 0, the demand is inelastic and differs across bonds with different

repayment variances (i.e., default risk), which is consistent with our empirical findings. We

view the Ψi
t term as capturing an inconvenience yield, that is, a premium demanded by

investors as compensation for holding the bond.

4.3 Government Problem: Recursive Formulation

We focus on a Recursive Markov Equilibrium (RME) and represent the infinite horizon

decision problem of the government as a recursive dynamic programming problem (see

Appendix C.2 for the equilibrium definition).

We introduce the pricing equations derived in the previous subsection into the problem of

the sovereign government, who issues a risky bond that is part of the index I. For simplicity,

we will omit the i subindex in what follows. In order to have a recursive formulation of the

problem, we assume that the passive demand is given by T ′ = T (τ,B′) where B′ denotes the

end-of-period stock of government bonds and τ is a (time-varying) index weight. We assume

that τ is exogenous and follows a continuous Markov process with a transition function

fτ (τ
′ | τ). Given an end-of-period bond supply B′, the market-clearing condition can we

22This is a similar specification to the one in Gabaix and Koijen (2021), which is a function of expected excess
returns and a shock to tastes or perceptions of risk.

23



written as B′ = A′ (.) + T (τ,B′), where A′(.) denotes the (end-of-period) active demand.

Under these assumptions, the state space can be summarized by the n-tuple (h,B, s),

where h captures the government’s current default status, B is the beginning-of-period stock

of debt, and s = (y, τ) are the exogenous states. For a given default status h and choice of

B′, the resource constraint of the economy can be written as

c(h = 0, B, y, τ ;B′) = y + q
(
y, τ, B′) (B′ − (1− λ)B

)
− (λ+ (1− λ)ν)B, (12)

c(h = 1) = y − ϕj(y),

where q (y, τ, B′) denotes the price of a unit of debt, B′ − (1− λ)B are new bond issuances,

and (λ+ (1− λ)ν)B are current debt services.

If the government is not in default, its value function is given by

V (y, τ, B) = Maxd={0,1}

{
V r (y, τ, B) , V d (y)

}
, (13)

where V r(.) denotes the value function in case of repayment and V d(.) denotes the default

value. If the government chooses to repay, then its value function is given by the following

Bellman equation:

V r (y, τ, B) = MaxB′ u(c) + β Es′|sV
(
y′, τ ′, B′) , (14)

subject to c = y + q(y, τ, B′)
(
B′ − (1− λ)B

)
− (λ+ (1− λ)ν)B.

While in default, the country is excluded from debt markets and cannot issue new debt.

The government exits a default with probability θ, with no recovery value. We further assume

that the demand from passive investors is zero while the government is in default. Under

these assumptions, the value function in case of default is given by

V d (y) = u (y − ϕ(y)) + β Es′|s

[
θV

(
y′, τ ′, 0

)
+ (1− θ)V d

(
y′
)]

. (15)

Based on the analysis in Section 4.2, given an exogenous state {y, τ} we can write the

bond price function that the government faces as a function of B′ as follows:

q
(
y, τ, B′) = β⋆ Es′|s

[
R

(
y′, τ ′, B′)] Ψ

(
y, τ, B′) , (16)

where β⋆ ≡ 1/rf is the lenders’ discount factor, R′(.) ≡ R (y′, τ ′, B′) denotes the next-period

repayment function, and Ψ(y, τ, B′) captures the downward-sloping component of the active

demand. In turn, the next-period repayment function is given by

R
(
y′, τ ′, B′) = [

1− d
(
y′, τ ′, B′)] [λ+ (1− λ)

(
ν + q(y′, τ ′, B′′)

)]
, (17)

24



where d(y′, τ ′, B′) is the next-period default choice and q(y′, τ ′, B′′) denotes the next-period

bond price, which is a function of next-period exogenous states, {y′, τ ′}, and the next-period

debt policy, B′′ ≡ B′ (y′, τ ′, B′).

From Equations (16) and (17), it is clear that the bond price decreases with the expected

default probability. Specifically, a larger B′ (weakly) increases the default risk (conditional

on a level of output), and thus q(y, τ, B′) (weakly) decreases in B′. The Ψ (y, τ, B′) term

introduces another mechanism for the bond price to be decreasing in B′: the downward-sloping

demand of active investors.

When choosing its optimal debt policy, the government internalizes the effects of changes

in B′ on the bond price q(y, τ, B′) through both changes in the expected repayment and the

downward-sloping component of the demand. Let ε ≡ ∂ log q(.)
∂ logB′ denote the (inverse) supply

elasticity, which can be expressed as

ϵ =
∂ logEs′|sR′ (.)

∂ logB′ +
∂ logΨ (.)

∂ logB′ . (18)

The first term on the right-hand side captures the elasticity of the expected repayment

function with respect to the bond supply. This elasticity is typically negative because a larger

B′ increases default risk and reduces the expected bond payoff. The second term captures the

additional decline in the bond price due to the downward-sloping demand. As we show in our

quantitative analysis, this mechanism limits the government’s debt and acts as a commitment

device.

4.4 Secondary Markets and Link with Empirical Analysis

We have introduced a passive demand in the model in order to compute the same reduced-

form elasticity of our empirical analysis in Section 3. Notice, however, that the empirical

elasticity relies on high-frequency (daily) data. Specifically, we estimated such elasticity in a

short window around the rebalancing of the I index. To address this frequency disconnect, we

introduce secondary markets in order to capture the high-frequency nature of our empirical

elasticity. In particular, we consider two instances of trading in secondary markets within a

period. The timing assumption is as follows:

1. The endowment y is realized. Initial states are: {y, τ, B}

2. The government chooses d (y, τ, B) and B′ (y, τ, B).

3. The primary and secondary market open. Let qSM,0 (y, τ, B′) denote the opening price.

4. The next-period index weights τ ′ are realized. Bond prices are updated.
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5. The secondary market closes. Let qSM,1 (y, τ ′, B′) denote the closing price.

Under this simple extension, we can compute “high-frequency” bond price reactions to

exogenous changes in index weights, just as we did in our empirical setup (i.e., price changes

during a rebalancing event). Notice that, the only difference between qSM,1 and qSM,0 is

due to the update of τ since both the endowment and the stock of debt are fixed while the

secondary market is open. In Appendix C, we describe in detail the pricing functions under

this extension. What it is important to note is that, absent secondary markets, the timing

assumption is exactly the same as in the baseline model. This implies that the proposed

extension nests our baseline model.

Let ∆T ′ ≡ T (τ ′, B′)− T (τ,B′) denote an exogenous shift in the passive demand implied

by a change in index weights. Given ∆T ′, and by means of simulations, we can compute the

same reduced-form elasticity η̂ of our empirical analysis:

η̂ = (−)
∆q

∆T ′
B′ − T (τ,B′)

qSM,0 (y, τ, B′)
, (19)

where ∆q ≡ qSM,1 (y, τ ′, B′)− qSM,0 (y, τ, B′). We can then use the model to decompose η̂

into a structural demand elasticity η and changes in expected repayment α. That is,

η̂ = (−)
∆Ψ

∆T
B′ − T (τ,B′)

ΨSM,0 (y, τ, B′)︸ ︷︷ ︸
≡ η

+(−)
∆ER′

∆T ′
B′ − T (τ,B′)

Ey′,τ ′|y,τR (y′, τ ′, B′)︸ ︷︷ ︸
≡α

, (20)

where ∆Ψ ≡ ΨSM,1 (y, τ ′, B′) − ΨSM,0 (y, τ, B′) is the difference in the bond price driven

by the inelastic demand component before and after the new index weight τ ′ is realized.

Similarly, ∆ER′ ≡ Ey′|yR (y′, τ ′, B′)−Ey′,τ ′|y,τR (y′, τ ′, B′) captures the change in the bond’s

expected repayment once the new τ ′ is realized.

There are two mechanisms underlying ER′ that are worth emphasizing. First, if the τ

process is persistent, an increase in τ today will have an effect on future Ψ (.) terms and,

thus, on future prices and expected payoffs (as shown in Equations 16 and 17). Second,

through its effects on current and future bond prices, changes in τ affect the government’s

value function V r(.) (Equation 14) and thus influence its debt and default policies, B′(.) and

d(.), respectively. Changes in these policies, in turn, impact expected payoff and the bond

price (Equations 16 and 17). These two mechanisms are interconnected, since chances in

B′(.), for instance, may significantly impact future Ψ (.) terms. In summary, part of the price

reaction captured in η̂ is reflecting these endogenous forces rather than a downward-sloping

demand component.
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5 Quantitative Analysis

5.1 Calibration

We calibrate the model at a quarterly frequency using data on Argentina, a benchmark

case commonly studied in the sovereign debt literature. The calibration follows a two-step

procedure. We first fix a subset of parameters to standard values in the literature or based on

historical Argentine data. We then internally calibrate the remaining parameters to match

relevant moments for Argentine spreads and other business cycle statistics.

In terms of functional forms and stochastic processes, we assume that the government

has CRRA preferences: u (c) = c1−γ

1−γ , where γ denotes the risk aversion. Output follows an

AR(1) process given by log (y′) = ρy log (y) + ϵ′y, with ϵ′y ∼ N(0, σy). If the government

defaults, output costs are governed by a quadratic loss function ϕ (y) = max
{
d0y + d1y

2, 0
}
.

For d0 < 0 and d1 > 0, the output cost is zero whenever 0 ≤ y ≤ −d0
d1

and rises more

than proportionally with y when y > −d0
d1
. This loss function is identical to the one used

in Chatterjee and Eyigungor (2012) and allows us to closely match the sovereign spreads

observed in the data. As for the demand of passive investors, we assume that it is proportional

to the (end-of-period) amount of bonds outstanding. Specifically, T ′ = T (τ,B′) = τ × B′.

We let τ follow an AR(1) process given by log(τ ′) = (1− ρτ ) log(τ
⋆) + ρτ log(τ) + ϵ′τ , where

ϵ′τ ∼ N (0, στ ).

Based on the analysis in Section 4.2, we consider the following functional form for the

downward-slopping Ψ(.) term:

Ψ
(
y, τ, B′) = exp

{
−κ

Vs′|s (R′(.))

Es′|s (R′(.))
×
(
B′ − T ′ − Ā

)}
, (21)

where κ ≥ 0 characterizes the elasticity of the demand function and Ā denotes the average

holdings of active investors (as determined by the fixed component of their mandates, ξij). For

tractability, we assume time-invariant values for both κ and Ā.23 This specification introduces

a wedge in the price of risky bonds (i.e., those with Vs′|s (R′(.)) > 0). As we show next,

it allows us to capture the two key features of our empirical analysis: a downward-sloping

demand for active investors and a demand elasticity that increases (in magnitude) with

default risk.

Table 7 lists the calibrated parameters. For the subset of fixed parameters (Panel a), we

set γ = 2, which is a standard value for risk aversion in the literature. We also set a quarterly

23As shown in Section 4.2, these terms could be, in principle, time-varying functions. We also use an exponential
specification purely for computational reasons: to avoid having a negative price.
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Table 7
Calibration of the model

Panel a: Fixed Parameters Panel b: Calibrated Parameters

Param. Description Value Param. Description Value

γ Risk aversion 2.00 β Discount rate 0.949
r Risk-free interest rate 0.01 d̄0 Default cost—level −0.24
λ Debt maturity 0.05 d̄1 Default cost—curvature 0.29
z Debt services 0.03 κ Slope parameter 60.0
θ Reentry probability 0.0385 Ā Active investors demand 0.526
ρy Output, autocorrelation 0.93
σy Output, shock volatility 0.02
τ⋆ Share of passive demand 0.123
ρτ FIR, autocorrelation 0.66
στ FIR, shock volatility 0.02

risk-free rate of rf = 0.01, in line with the average real risk-free rate observed in the United

States. The probability of re-entering international markets is set to θ = 0.0385, implying an

average exclusion duration of 6.5 years. We set λ = 0.05 to target a debt maturity of 5 years

and ν = 0.03 to match Argentina’s average debt services. The parameters for the endowment

process, ρy and σy, are based on log-linearly detrended quarterly real GDP data of Argentina.

All these parameters are taken from Morelli and Moretti (2023). Last, we set τ⋆ to match

the average share of Argentina’s external debt tracked by passive investors, and calibrate ρτ

and στ to match the persistence and volatility of our FIR measure.

We internally calibrate the remaining parameters (Table 7, Panel b). We jointly calibrate

the default cost level and curvature, {d0, d1}, together with the government’s discount factor

β, to target Argentina’s average ratio of (external) debt to GDP, average spread, and volatility

of spreads.24 Additionally, we calibrate κ to match the estimated (inverse) reduced-form

demand elasticity, η̂. Last, we set Ā to match the average holdings of active investors. That

is, Ā = B̄ − T̄ , where B̄ denotes the average debt stock and T̄ denotes passive investors’

average holdings. Given Equation (21), this is equivalent to targeting an average Ψ(.) of one,

which implies that the (in)convenience yield is zero on average. The introduction of Ψ(.) thus

only affects the sensitivity of the pricing kernel to changes in B′ around the {B̄, T̄ , Ā} point.

Figure 4 depicts the default set and the bond price function q(.) for different values of B′

and y. Panel (a) shows that the government defaults in states with high debt and low output.

Panel (b) shows that, as a consequence, the bond price is decreasing in B′ and increasing in

y. The dashed lines in Panel (b) show the bond prices under a counterfactual in which we

24Annualized spreads are computed as SP =

(
1+i(y,τ,B′)

1+rf

)4

− 1, where i (y, τ, B′) is the internal quarterly

return rate, which is the value of i(.) that solves q (y, τ, B′) = [λ+(1−λ)ν]
λ+i(y,τ,B′) .
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Table 8
Targeted moments

Target Description Data Model

E[SP ] Bond spreads 472bp 462bp
σ(SP ) Volatility of spreads 200bp 145bp
E[D/Y ] Debt to output 55% 62%
E[Ψ] Inconvenience yield 1.0 1.005
η̂ Reduced-form elasticity −0.30 −0.31

Note: The table reports the moments targeted in the calibration and
their model counterpart.

Figure 4
Default set and bond prices

(a) Default set
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(b) Bond price

0.52 0.56 0.60 0.64 0.68

0.4

0.6

0.8

1.0

B'

q(
.)

Medium endowment, y
Small endowment, y

Note: Panel (a) shows the default policy for different combinations of B′ and y. The black area depicts combinations of
B′ and y such that default probability is zero. Lighter colors indicate a higher default probability. In Panel (b), the
solid lines show the bond pricing kernel q(y, τ, B′) for different values of B′ and for two values of output. The dashed
lines show the bond price under a perfectly elastic demand, taking as given the same bond and repayment policies as in
our baseline model (i.e., q(.)/Ψ(.)).

take the baseline B′(.) policy but assume that the demand is perfectly elastic (i.e., it shows

the q(.)/Ψ(.) function). At lower B′ levels, where default risk is minimal, bond prices remain

largely unaffected by the downward-sloping demand. However, as B′ increases, increased

return volatility decreases Ψ, subsequently lowering the bond price q.

5.2 Decomposing the Reduced-form Demand Elasticity

We formally disentangle the different channels through which changes in T affect bond

prices. As shown in Equation (20), index rebalancing affects bond prices through two

mechanisms: (i) the (inverse) structural demand elasticity of active investors, η, and (ii)

changes in expected repayment, α. Using the calibrated model, we can isolate the effects

driven by changes in expected repayment to properly identify the structural demand elasticity.

Figure 5 decomposes the channels outlined in Equation (20). The black line shows the
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Figure 5
Disentangling the demand elasticity

(a) As a function of B′
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(b) As a function of spreads
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Note: The figure shows the reduced-form inverse demand elasticity η̂ (black lines) and the structural one η (blue lines).
The vertical differences between the two lines (represented by the red lines) capture the endogenous changes in bonds’
expected repayment, α. Panel (a) shows the results as a function of B′, while Panel (b) shows the results as a function
of annualized bond spreads.

Table 9
Persistence of shocks and demand elasticity

Moment Baseline Lower persistence Low persistence Higher persistence

Reduced-form η̂ -0.31 -0.26 -0.29 -0.35
Structural η -0.19 -0.2 -0.19 -0.18
Bias, 1− η/η̂ 41% 25% 34% 48%

Note: The table compares the reduced-form inverse demand elasticity η̂ with the structural one η. The “Baseline”
column shows the elasticities under our baseline calibration. In the “Lower persistence” case, we decrease the
persistence of the {τ} process by setting ρτ = 0.50. The “Higher persistence” column shows the results for ρτ = 0.80.

reduced-form (inverse) demand elasticity η̂, while the blue line depicts the model-implied

structural elasticity, η. The vertical differences between these two curves (red lines) indicate

the portion of the reduced-form elasticity attributable to endogenous changes in the repayment

function, α. We find that the magnitude of η̂ is always higher than that of η. The difference

can be substantial, particularly for larger values of B′ and for higher bond spreads. The first

column of Table 5 shows the unconditional average for both the reduced-form elasticity, η̂,

and the structural elasticity, η. On average, the structural elasticity accounts for less than

two-thirds of the reduced-form elasticity.

The magnitudes of the documented biases critically depend on the persistence of the τ

process. The last two columns of Table 9 compare the reduced-form and structural elasticities

for different persistence values for the {τ} process (i.e., ρτ ). When the process is more (less)

persistent, a smaller (larger) share of the total price response is accounted by the inelastic

component of the investors’ demand. In Appendix C.3, we analyze these biases in more
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Table 10
Comparison with perfectly elastic case: Unconditional moments

Moment Description Baseline Perfectly elastic

E (SP ) Bond spreads 462bp 817bp
σ (SP ) Volatility of spreads 145bp 456bp
E (B/y) Debt to output 62% 59%
E (d) Default frequency 3.73% 4.39%
σ(B)/σ(y) Standard deviation of debt, relative to output 1.41 1.99
ρ (SP, y) Correlation between spreads and output -0.78 -0.57

Note: The table compares a set of key moments between our baseline model with inelastic investors and a counterfactual
scenario in which investors are perfectly elastic (κ = 0).

detail.

Overall, our analysis highlights the importance of accounting for issuers’ endogenous

responses to an exogenous (supply-shifting) shock and the resulting changes in assets’ expected

repayment. Neglecting these factors can introduce significant biases into the estimated demand

elasticity, particularly if the shock is persistent. As argued in Section 3, our FIR measure

is inherently more temporary than other supply-shifting instruments used in the literature,

such as index additions or deletions. However, even in that case, the bias can represent over

one-third of the reduced-form elasticity.

5.3 Implications of a Downward-sloping Demand

As shown in Equation (18), in determining its optimal debt policy, the government

internalizes not only the effects of a higher B′ on q(.) through changes in its default probability

but also its effects through the inelastic demand. This section quantifies the implications of

a downward-sloping demand on bond prices, default risk, and government policies. To this

end, we compare our downward-sloping demand model with an alternative scenario where

investors are perfectly elastic.

Table 10 reports a set of targeted and untargeted moments for our baseline model and for

an alternative case with a perfectly elastic demand (κ = 0). All the other model parameters

remain the same. Despite similar values of debt, we find that the default frequency and

average spreads are lower relative to the perfectly elastic case when facing an inelastic

demand.

Two factors explain the lower default rate and bond spreads. First, the government debt

policy is significantly affected by a downward-sloping demand. Panel (a) of Figure 6 shows

the optimal debt policy B′(y, τ, B) in our baseline model and in the perfectly elastic case.

For large values of B (in states where V (R′(.)) is high), an additional unit of B′ reduces
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the bond price q(.) due to both higher default risk and investors’ inelastic behavior. As a

result, the government does not find it optimal to issue large amounts of debt because it is

too costly to do so. An inelastic demand thus introduces a limit to the maximum amount of

debt that a government is willing to issue.

Second, these changes in the optimal bond policy have important effects on the pricing of

bonds (Figure 6, Panel (b)). For small values of B′ (low default risk), q(.) is actually higher

than under the perfectly elastic case. As shown in Panel (c), this larger bond price is not

driven by a convenience yield because, given our calibration, Ψ(.) is typically smaller than

one. Instead, the higher bond price is explained by a lower default risk (Panel (d)), which is

a direct consequence of the government’s lower incentives to issue large values of B′.

Figure 6
Comparison with perfectly elastic case: Policy functions and prices

(a) Bond policy
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Note: The top panel presents bond policies and prices as a function of B. We evaluate all the functions at the mean
value for output, y. Blue solid lines show the results for our baseline model with inelastic investors and the orange
dashed lines shows the results in an alternative model in which investors are perfectly elastic. The bottom panel depicts
the Ψ(y, τ, B′) function and the annualized default risk.

Overall, an inelastic demand diminishes a government’s incentives to issue additional

units of debt, acting as a commitment device that reduces default risk and increases bond

prices.
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How does an inelastic demand affect the optimal government response to shocks? It is

well-known that in models with limited commitment and endogenous default, the optimal

bond policy is pro-cyclical (Arellano, 2008). While the government would like to issue debt

more in “bad” times (i.e., when output is low) to smooth its consumption, the resulting

increase in spreads, due to higher default risk, leads the government to actually decrease

its debt. On the other hand, in “good” times (when output is high and default risk is low),

the government benefits from cheaper credit and increases its debt issuances. This standard

mechanism in sovereign debt models explains the well-known excess volatility of consumption

in emerging markets.

We find that this pro-cyclicality is dampened in the presence of inelastic investors. In

Figure 7, we analyze the impulse responses to endowment shocks. For a positive shock

(Panel a), the figure shows a higher increase in debt issuance when investors are perfectly

elastic. Under a perfectly elastic demand, the government can take full advantage of the lower

financing costs due to the implied decrease in default risk. Under inelastic demand, however,

the government response is muted since it internalizes that, despite the cheaper financing,

an additional unit of debt decreases bond prices due to the downward-sloping demand. In

this sense, the inelasticity of the demand imposes a cost: it prevents the government from

issuing more in periods in which debt is cheap. The right panel shows a smaller increase

in the consumption rate (c/y) under inelastic demand. For a negative shock (Panel b), the

story is analogous. A lower output increases borrowing costs, and the government finds it

optimal to decrease its debt. Under an inelastic demand, however, reducing the stock of debt

decreases the inconvenience yield demanded by investors, which lowers spreads; hence, the

contraction in debt is muted.

Overall, the previous analysis implies that the government debt policy is less responsive

to shocks. Figure 8 compares the unconditional distribution for the debt-to-output ratios

between our baseline model and the perfectly elastic case. Under an inelastic demand, this

distribution is significantly less dispersed (Panel a). In fact, the standard deviation of debt is

about 30% smaller under inelastic investors (as shown in Table 10). In line with the impulse

response dynamics, the debt-to-output ratio exhibits a smaller unconditional correlation with

output when investors are inelastic (Panel b). This, in turn, leads to a larger correlation (in

magnitude) between spreads and output (Table 10).

We conclude our analysis by examining the welfare implications of an inelastic demand.

We define the certainty equivalent consumption (CEC) as the proportional increase in

consumption under the perfectly elastic case, such that the household is indifferent between
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Figure 7
Impulse responses to an output shock

(a) Positive output shock
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(b) Negative output shock
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Note: Figure shows the impulse response dynamics to a positive (panel a) and negative (panel b) endowment shock.
Blue lines show the dynamics for our baseline model with inelastic investors. The orange lines show the perfectly elastic
case.

Figure 8
Stock of sovereign debt under inelastic investors

(a) Distribution of B/y (b) Relation with output

Note: Panel (a) shows the model simulated distributions for debt-to-output. Panel (b) shows a binscatter plot between
the debt-to-output ratio and output. Blue bars and dots are for the baseline model with inelastic investors. Orange
bars and dots are for an alternative model in which investors are perfectly elastic.
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Figure 9
Inelastic investors: Welfare analysis

(a) CEC as a function of B
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(b) CEC based on model simulations

Note: Figure shows the CEC defined as the proportional increase in consumption under the perfectly elastic counterfactual
such that the household is indifferent between that case and the inelastic one. Panel (a) shows the CEC across different
levels of B. The blue dots in Panel (b) show the the relation between the CEC and debt-to-output ratio B/y, based on
model simulations. The gray bars show the histogram for the distribtuion of B/y.

that scenario and the inelastic one.25 Figure 9 shows the results. We find a positive CEC,

which implies that the commitment device is strong enough so that the household prefers a

world with inelastic investors. The CES decreases with a larger stock of debt, due to the

large inconvenience yield demanded by investors (as shown in Figure 6).

6 Conclusion

In this paper, we present evidence of downward-sloping demand curves in risky sovereign

debt markets and analyze their implications for the optimal supply of sovereign bonds. Our

approach combines evidence from high-frequency bond-level price reactions to well-identified

shocks with a structural model featuring endogenous debt issuances and default risk. This

methodology allows us to isolate endogenous changes in expected bond payoffs behind the

estimated price reactions and to back out a structural demand elasticity. Empirically, we

find that a 1 p.p. exogenous reduction in the effective bond supply leads to a 30 basis point

increase in bond prices. Our structural model reveals that over one-third of this response is

due to endogenous changes in the expected repayment of bonds. We show that an inelastic

demand can have important macroeconomic effects. In particular, we find that the inelastic

demand influences and shapes the governmental policies on optimal debt and default. By

25The CEC is implicitly defined as the value of x̃ such that
∑∞

t=0 β
tEtu(ct) =

∑∞
t=0 β

tEtu ((1 + x̃) c̃t), where
ct denotes the consumption under an inelastic demand and c̃t denotes the consumption under a perfectly

elastic case. Exploiting the power utility function, the CEC is given by: x̃ =
[
V (y,τ,B)

Ṽ (y,τ,B)

] 1
1−γ − 1, where Ṽ (.) is

the government’s value function under the perfectly elastic case.
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diminishing the government’s incentives to issue additional units of debt, an inelastic demand

acts as a commitment device that reduces default risk and borrowing costs. Moreover, we find

that the pro-cyclicality of the debt policy is dampened in the presence of inelastic investors.

Our results highlight the importance of considering issuers’ endogenous responses and

the resulting changes in expected asset payoffs. Failing to account for these responses can

introduce significant biases when estimating demand elasticities, particularly for risky assets.

Our paper can lead to further research along several dimensions. For example, given the

model predictions, it would be interesting to empirically study the impact of inelastic demand

on government debt issuances. More importantly, our framework can be extended to other

assets and markets, notably equity and corporate bonds. The endogenous responses that we

emphasize in this paper can be applied to other issuers’ of risky assets, which we leave for

future research.
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A Diversification Methodology

Relative to a market capitalization-weighted index, the EMBIGD employs a diversification

methodology to produce a more even distribution of country weights. This ensures that

countries with large market capitalization do not dominate the index. To achieve this goal,

the methodology restricts the weights of countries with above-average debt levels by including

only a portion of their outstanding debt.

The methodology is anchored on the average country face amount in the index, called

Index Country Average (ICA), and defined as:

ICAt =
C∑
c=1

FAc,t

C
,

where FAc,t denotes country c’s bond face amount included in the index at time t, and C

denotes the number of countries in the index.

The diversified face amount for any country in the index is derived according to the

following rule:

1. The maximum threshold is determined by the country with the largest face amount

(FAmax), capped at twice the ICA (ICA× 2).

2. If a country’s face amount is between the ICA and FAmax, its diversified face amount

is linearly interpolated.

3. If a county’s face amount is below the ICA, the entire face amount is eligible for

inclusion.

The diversified country face amount (DFAc,t) is calculated as follows:

DFAc,t


ICAt × 2 if FAc,t = FAmax,t

ICAt +
ICAt

FAmaxt−ICAt
(FAc,t − ICAt) if FAc,t > ICAt

FAc,t if FAc,t ≤ ICAt

(A1)

For countries with a restricted face amount in the EMBIGD, the proportional decrease

applied to the country-level face amount is also applied to their respective bonds. The

diversified market value is calculated by multiplying the diversified face amount by the bond

price. The diversified weight of each bond is determined by its share of the total diversified

market capital in the index.
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Additionally, country weights are capped at 10%. Any excess weight above this cap

will be redistributed pro rata to smaller countries below the cap, across all bonds from

countries not capped at 10%. Appendix Figure A1 compares the country-level diversified and

non-diversified face amount for December 2018.

Appendix Figure A1
Effect of the diversification methodology on the country face amount
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Note: The figure illustrates the differences between the country-level face amount and their diversified versions, which
the EMBIGD uses to generate the diversified bond weights. The data used are from December 2018. Sources: J.P.
Morgan Markets, and authors’ calculations.
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B Appendix: A Model of Inelastic Investors

In this appendix, we first provide additional material and derivations for the analysis in

Section 4.2. We then describe microfoundations for the assumed demand structure, analyzing

two related cases. In the first one, the inelasticity comes from investor risk aversion, while

the second case is rooted in a Value-at-Risk (VaR) constraint to which investors are subject.

B.1 Additional Derivations

From Equation (8) in the main text, and based on a first-order approximation for the

elastic component of the demand eκj π̂i,t around π̄i, we can write the market-value demand of

active investors as follows:

Ãi
t =

∑
j

(1− Λj π̄i)Wj,tθjξ
i
je

Λj π̄i + π̂i,t
∑
j

ΛjWj,tθjξ
i
je

Λj π̄i . (B1)

The first term captures investors’ average purchases of bond i, which are given by their

exogenous mandates ξij . The second term captures deviations from those purchases (i.e., the

elastic component of the demand), which is a function of π̂i,t.

For the remainder of the analysis, we focus on the case in which π̂i,t
(
rit+1

)
=

Et(rit+1)
Vt(rit+1)

.

Define Ri
t+1 as the next-period repayment per unit of the bond so that rit+1 ≡ Ri

t+1

qit
− rf ,

where rf denotes the risk-free rate. We can then write π̂i,t
(
rit+1

)
= qit

EtRi
t+1−qitrf

VtRi
t+1

. Without

loss of generality, consider a case where π̄i is close to zero. After substituting these expressions

into the equation, we can rewrite Equation (B1) as follows:

Ãi
t = qitĀi

t + qit

(
EtRi

t+1 − qitrf

VtRi
t+1

)∑
j

ΛjWj,tθjξ
i
j , (B2)

where Āi
t is defined such that qitĀi

t+1 =
∑

j Wj,tθjξ
i
j . We can interpret Āi

t as active investors’

holdings aimed at satisfying the fixed part of their mandates.

As for the demand of passive investors, let Mt denote the market value of the index I and

define Si
t as bond i’s face amount included in this index. For simplicity, assume that bond

i is only included in index I. Then, wi
t =

Si
tq

i
t

Mt
, and we can write the market-value passive

demand as

T̃ i
t = qit S

i
t

∑
j

Wj,t (1− θj)

Mt
= qitT i

t , (B3)

where T i
t ≡ Si

t

∑
j
Wj,t(1−θj)

Mt
denotes the face amount of bond i’s passive holdings.

After replacing Equations (B2) and (B3) in the market-clearing condition (Equation (9)
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in the main text), we obtain a closed-form solution for the bond price:

qit =
Et

(
Ri

t+1

)
rf

[
1− κit

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t − Āi

t

)]
, (B4)

where κit (Λ) ≡ 1∑
j ΛjWj,tθjξij

parameterizes the downward-slopping behavior of the demand.

It is a weighted average of investors’ {Λj} parameters, where the weights are given by the

amount that each investor allocates on bond i.

Next, we show that we can obtain an analogous pricing kernel under risk-averse investors

or under risk-neutral investors subject to a standard VaR constraint.

B.2 Microfoundation Based on Risk-Averse Investors

Consider a case where investors are risk averse and have mean-var preferences. They care

about both the total return of their portfolio and their return relative to a benchmark index

I they track. Additionally, they are heterogeneous and differ in their degree of risk aversion

and how their compensation depends on their total and relative return. Following the same

notation as in the main text, let j = {1, ..., J} denote the investor type. Let i = {1, ..., N}

denote the set of bonds that are part of the I index, and let wt =
{
w1
t , ..., w

N
t

}
be the vector

of index weights for each constituent bond. The vector rt+1 =
{
r1t+1, ..., r

N
t+1

}
denotes the

next-period (gross) returns (i.e., the bond gross return in excess of the risk-free rate, rf ).

Last, let Bt =
{
B1

t , ..., B
N
t

}
denote the bond supply.

For an investor j, their total compensation is a convex combination between the return

of their portfolio and the relative return versus the index I. Let xj,t =
{
x1j,t, ..., x

N
j,t

}
be

investor j’s vector of portfolio weights. The investor’s compensation is

TCj,t = θj (xj,t)
′ · rt+1 + (1− θj) (xj,t −wt)

′ · rt+1

= [xj,t − (1− θj)wt]
′ · rt+1,

where θj captures the weight of relative returns on the compensation.

Each investor chooses a combination of portfolio weights xj,t to maximize Et (TCj,t)−
σj

2 Vt (TCj,t), where σj captures the investor’s risk aversion. In matrix form, we can write

this problem as follows:

Maxxj [xj,t − (1− θj)wt]
′µt −

σj
2

[xj,t − (1− θj)wt]
′ Σt [xj,t − (1− θj)wt] ,

where µt ≡ Et (rt+1) denotes the expected excess return of the portfolio and Σt ≡ Vt (rt+1)

denotes the variance-covariance matrix of excess returns. The optimal portfolio allocation for
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investor j is given by

xj,t =
1

σj
Σ−1

t µt + (1− θj)wt. (B5)

The first term on the right-hand side of Equation (B5) captures the usual mean-variance

portfolio. An analogous expression can also be derived under CARA preferences (see, e.g.,

Pavlova and Sikorskaya, 2022). The second term reflects the reluctance of some investors to

deviate from the benchmark portfolio, w, indicating an inherently inelastic demand. It is not

a function of the expected return or riskiness of the bonds; rather, it depends only on how

much investors penalize deviations from the benchmark. Purely passive investors (i.e., those

with θj = 0 and σj → ∞) never deviate from the benchmark portfolio and exhibit a perfectly

inelastic demand.

Let Wj,t denote the wealth of each type of investor j. Then Bi
j,t =

Wj,tx
i
j,t

qit
are investor j’s

purchases of bond i, where qit denotes the bond price. For each bond i, its market-clearing

condition is qitB
i
t =

∑
j Wj,tx

i
j,t. After replacing these with the investors’ optimal portfolio

weights, the market-clearing conditions are given by
q1tB

1
t

...

qNt BN
t

 =
∑
j

Wj,t

[
1

σj
Σ−1

t µt + (1− θj)wt

]
(B6)

= Ãt + T̃ t,

where Ãt ≡
∑

j Wj,t
1
σj
Σ−1

t µt denotes the active component of investors’ demand (at market

value). Since investors are risk averse, Ãi
t is downward sloping and is a function of the expected

return of bond i and its variance-covariance matrix. The term T̃ t ≡ wt
∑

j Wj,t (1− θj)

denotes the passive demand (at market value).

Take the market-clearing condition of Equation (B6), and assume for simplicity only two

assets. For ease of exposition, consider that bond i is risky and bond −i is not. Under these

assumptions, the price for bond i is given by

qit =
Et

(
Ri

t+1

)
rf

×Ψi
t, (B7)

where Ri
t+1 denotes the bond’s next-period repayment per unit and Ψi

t captures the downward-

sloping nature of the demand. Ψi
t is given by

Ψi
t ≡ 1− κRA

t

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t

)
, (B8)

where 1/κRA
t ≡

∑
j
Wj,t

σj
denotes the weighted-average risk aversion coefficient and T i

t ≡ T̃ i
t /q

i
t

44



denotes the (face amount) holdings of passive investors.

Note that the bond price in Equation (B8) is analogous to the one in Equation (B4).

The key difference is that with risk-averse lenders, the price elasticity is captured only by

investors’ risk aversion. In our main analysis, we do not specify the underlying mechanism

driving this elasticity.

B.3 Microfoundation Based on a VaR Constraint

An identical expression can also be derived for investors who are risk neutral and subject to

a VaR constraint. These constraints are common both in the literature and in the regulatory

sphere (e.g., Miranda-Agrippino and Rey, 2020).26

Consider an analogous setup to the one in the previous subsection. Investors are

heterogeneous and care about their absolute and relative return with respect to index

I. They are also risk neutral and subject to a VaR constraint that imposes an upper limit on

the amount of risk they can take. In particular, the problem for investor j can be written as

Max{x1
j,t+1,...x

N
j,t+1}

Et

(
[xj,t+1 − (1− αj) st+1]

′ · rt+1

)
subject to Φ2Vt

(
[xj,t+1 − (1− αj) st+1]

′ · rt+1

)
− 1 ≤ 0,

where the parameter Φ2 captures the intensity of the risk constraint. We view Φ2 as a

regulatory parameter that limits the amount of risk that an investor can take. Let ϱj denote

the Lagrange multiplier associated with the VaR constraint. It can be shown that the optimal

portfolio is given by

xj,t =
1

ϱjΦ2
Σ−1

t µt + (1− θj)wt. (B9)

The previous optimal portfolio is identical to that of Equation (B5), with the only

difference being that the risk-aversion parameter σ has been replaced by the product of the

Lagrange multiplier ϱj and the regulatory parameter Φ2. Following the same steps as before,

we can then derive an analogous pricing kernel to that of Equations (B7) and (B8). That is,

qit =
Et

(
Ri

t+1

)
rf

[
1− κVaRt

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t

) ]
, (B10)

where 1/κVaRt ≡
∑

j
Wj,t

λjΦ2 denotes the (weighted-average) intensity for which the VaR

constraint binds in the aggregate.

26Adrian and Shin (2014) provide a microfoundation for VaR constraints. Gabaix and Maggiori (2015) use a
similar constraint, in which a financier’s outside option is increasing in the size and variance of its balance
sheet.
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C Appendix: Quantitative Model

In this appendix, we provide additional details for the quantitative model of sections 4 and 5.

C.1 Secondary Markets

The empirical elasticity computed in Section 3 exploits exogenous variation in the passive

demand in a small window around announcement about changes in the EMBIGD index

weights. To tightly link our model with the empirical analysis, our baseline model in Section

4 already incorporates a passive demand and exogenous changes in index weights, τ . There

is, however, a frequency disconnect in the sense that the model is calibrated at quarterly

frequency so it is not suitable to quantify high-frequency price reactions to changes in τ .

To address this frequency disconnect, we introduce in the model secondary markets in

which bonds trade. This, allows us to capture the high-frequency nature of our empirical

elasticity. We consider two instances of trading in secondary markets within a period: before

and after the new index weights, τ ′ are realized. The timing assumption is as follows:

1. The endowment y is realized. Initial states are: {y, τ, B}

2. The government chooses d (y, τ, B) and B′ (y, τ, B).

3. The primary and secondary market open. Let qSM,0 (y, τ, B′) denote the opening price.

4. The next-period index weights τ ′ are realized.

5. The secondary market closes. Let qSM,1 (y, τ ′, B′) denote the bond closing price.

The first trading instance (SM0) is at the beginning of the period, just after the government

announces its default and debt choices. The bond price in this instance is given by

qSM,0(y, τ, B′) = β⋆Ey′,τ ′|y,τR
(
y′, τ ′, B′) ΨSM,0

(
y, τ, B′) . (C1)

The term Ey′,τ ′|y,τR (y′, τ ′, B′) is the expected next-period repayment of the bond, conditional

on the information available when the secondary market opens. Following the derivation in

Section 4.2 (see Equation (11)), the downward-sloping component of the price function is

ΨSM,0
(
y, τ, B′) = 1− κ0

V{y′,τ ′}|{y,τ}R (y′, τ ′, B′)

E{y′,τ ′}|{y,τ}R (y′, τ ′, B′)

(
B′ − T

(
τ,B′)− Ā

)
(C2)

Notice that qSM,0 (y, τ, B′) coincides with the price in the primary market q (y, τ, B′), which

is the price relevant to the government.

The second trading instance (SM1) occurs at the end of the period, when the secondary

markets closes and after the new index weights τ ′ are realized. In this case, the bond price is

qSM,1
(
B′, y, τ ′

)
= β⋆Ey′|yR

(
y′, τ ′, B′)ΨSM,1

(
y, τ ′, B′) . (C3)
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The term Ey′|yR (y′, τ ′, B′) is the expected next-period repayment of the bond, conditional

on the information available when the secondary market closes. This term is analogous to

the one in Equation (C1), but incorporates the information provided by the realization of τ ′.

Similarly, the downward-sloping component of the price function is given by

ΨSM,1
(
y, τ ′, B′) ≡ 1− κ0

Vy′|yR (y′, τ ′, B′)

Ey′|yR (y′, τ ′, B′)

(
B′ − T

(
τ ′, B′)− Ā

)
. (C4)

Notice that, the only difference between qSM,1 and qSM,0 is due to the update of τ ′ since

both the endowment and the stock of debt are fixed while the secondary market is open.

Moreover, absent secondary markets, the timing assumption is exactly the same as in the

baseline model.

C.2 Definition of Equilibrium

A Recursive Markov Equilibrium is a collection of value functions
{
V (·) , V r (·) , V d (·)

}
;

policy functions {d (·) , b′ (·)}; and bond prices q (·) such that:

1. Taking as given the bond price function q(.), the government’s policy functions b′ (·)

and d (·) solve the optimization problem in Equations (13), (14), and (15), and V (·),

V r (·), and V d (·) are the associated value functions.

2. Given b′ (·) and d (·), the next-period repayment function R′(.) satisfies Equation (17).

3. Taking the repayment function as given, bond prices q(.) are consistent with Equation

(16).

C.3 Understanding the Source of the Biases

What does explain the difference between the reduced-form and structural elasticity? To

answer this question, we analyze the mechanisms behind changes in the expected repayment

function due to a change in τ .

The first three panels of Figure C1 show the “high-frequency” effects (i.e., changes within

the same period) of shifts in the passive demand on bond prices, expected repayment, default

risk, and debt. To this end, we shock τ ′, and analyze the responses of bond prices, expected

repayment, and default risk from the opening to the closing of the secondary market.27 The

blue lines shows the results under our baseline parameterization. The solid and dotted brown

lines show the results for cases in which the τ process is less persistent. Panels (a) and (b)

show that there is a monotone relation between changes in the passive demand and bond

27In all cases, we evaluate these changes at the mean value for endowment y and end-of-period debt B′.
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Appendix Figure C1
Effects of Changes in demand on prices and policies

(a) Bond price, ∆q(.)/q(.)
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(b) Expected repayment, ∆ER(.)′/ER(.)′
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(c) Default risk, ∆Ed(.)′/Ed(.)′
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(d) Stock of debt, ∆B′(.)/B′(.)
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Note: The figure shows how changes in the passive demand (i.e., FIR) affect bond prices, expected repayment, default
risk, and the bond supply. The blue lines show results under our baseline calibration. The brown lines show results for
parameterizations in which we decrease the persistence of the FIR. For these cases, we set ρτ = 0.50 and ρτ = 0.25.

prices and expected repayment. For a 5% increase in the passive demand (as a share of the

total stock of debt), bond prices increase by almost 1.5% and about 40% of that increase is

explained by an increase in the bonds’ expected repayment. Panel (c) shows the change in

one-period ahead default risk. For a 5% increase in the passive demand, default risk decreases

about 15%. As the persistence of the τ process decreases, the implied changes on bond prices,

expected repayment, and default risk decrease. For the “lower persistence” case, for instance,

default risk almost does not change, even for large shifts in the passive demand.

Panel (d) shows that the government reacts to the τ ′ shock (one period after the shock).

In particular, the government finds it optimal to increase its stock of debt in response to an

increase in the passive demand. The response, however, is rather small: for every 1% increase
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Appendix Figure C2
Impulse response to an increase in the passive demand

(a) Effects on debt and bond prices
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(b) Decomposition: Counterfactual with fixed debt
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Note: The top panel shows impulse responses to an increase in the passive demand. The bottom panel shows a
decomposition for bond price changes across time, in a counterfactual in which the stock of debt remains fixed.

in the passive demand (as a share of the stock of debt), the government increases its debt by

0.10%.

To shed further light on the dynamics of debt and default, Figure C2b shows the impulse

response to an increase in the passive demand. The top panel shows the responses for debt

and bond prices. Even though the government increase its debt, bond prices still increase as

the result of the larger demand. The orange line shows a counterfactual in which we keep the

bond policy fixed. In this case, the bond price increases about 40% more on impact. The

bottom panel decomposes the change in bond prices for the counterfactual in which debt is

fixed.
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D Appendix: Additional Figures and Tables

Appendix Figure D1
EMBI Global country-level weights in December 2018
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Note: The figure illustrates the EMBI Global country-level diversified and non-diversified weights for December 2018.
Country-level weights are computed as the sum of the weights of all bonds from each country included in the index.
Sources: J.P. Morgan Markets, and authors’ calculations.
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Appendix Figure D2
Assets under management benchmarked to emerging economies bond indexes
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Note: The figure shows assets under management, in billions of U.S. dollars, benchmarked to emerging economies bond
indexes. Sources: J.P. Morgan Markets, and authors’ calculations.

Appendix Figure D3
Share of U.S. dollar-denominated emerging economies sovereign debt
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Note: The bars show the U.S. dollar-denominated sovereign debt in the EMBI Global index as a percentage of each
country’s general government debt securities issued in international markets. Averages are derived by calculating
this percentage for each country and year, and then averaging these values annually across countries. Each country’s
percentage is weighted by its debt amount outstanding included in the EMBI Global indexes. Sources: BIS, J.P. Morgan
Markets, and authors’ calculations.
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Appendix Figure D4
Share of U.S. dollar-denominated emerging economies sovereign debt
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Note: The bars show the U.S. dollar-denominated sovereign debt in the EMBI Global index as a percentage of each
country’s general government debt securities issued in international markets. The averages are derived by calculating
this percentage for each country and year, and then averaging these values across the years 2016–2022. Sources: BIS,
J.P. Morgan Markets, and authors’ calculations.

52



Appendix Figure D5
Timeline

Month t Month t+1

Rebalancing
date t-1

Rebalancing
date t

Rebalancing
date t+1

Bond inclusions
and exclusions

-5 -4 -3 -2 -1 1 2 3 4 5

h (days)

Pre-rebalancing
estimation window

Post-rebalancing
estimation window

Appendix Figure D6
Estimated inverse demand elasticities for financial markets
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Note: EM IUSD Sovereign Bonds stands for emerging economies sovereign bonds issued internationally in U.S. dollars,
while EM LC Sovereign Bonds stands for those issued in local currency. The elasticities in Jiang et al. (2021a),
Krishnamurthy and Vissing-Jorgensen (2012), and Greenwood et al. (2015) are taken from the review Table 2 of Mian
et al. (2022) and are converted into an inverse demand price elasticity, assuming a duration of 7 for the average bond.
For Choi et al. (2022), we take the midpoint elasticity from the IV estimates, while for our paper, we compute the
midpoint in elasticity from Table 5. For the emerging economies local currency sovereign bonds, we take the estimated
number in Table 15, Panel D of Pandolfi and Williams (2019) for GBI bonds, which we adjust by the share of AUM
(23.6%) that behave de facto in a passive way. For that, we compute the asset share in EPFR tracking the GBI-EM
Global Diversified with an R2 exceeding that of ETFs tracking the same index. We determine the average R2 for ETFs
by using a weighted average (based on assets) of the R2 of the ETFs.
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Appendix Table D1
Log price and FIR: varying the share of passive funds

Dependent Variable: Log Price

25% 30% 35% 40% 45%

FIR X Post 0.547*** 0.442** 0.367** 0.310** 0.266**

(0.190) (0.188) (0.156) (0.132) (0.114)

Bond-Month FE Yes Yes Yes Yes Yes

Observations 105,548 105,548 105,548 105,548 105,548

N. of Bonds 738 738 738 738 738

N. of Countries 68 68 68 68 68

N. of Clusters 1,576 1,576 1,576 1,576 1,576

F (FS) 419 1,862 1,813 1,764 1,715

Note: This table presents 2SLS estimates of log bond prices on
the FIR measure (defined in Equation (2)), instrumented by Z
(defined in Equation (4)), around rebalancing dates. The first-
and second-stage equations are described in Equation (5). The
estimations use a symmetric five-trading-day window, with Post
as an indicator variable (equal to 1 for the five trading days after
rebalancing, and 0 otherwise). Each different column indicates
the share of passive funds used to construct the FIR face amount
measure. Month fixed effects are dummy variables equal to 1 for
each rebalancing month, and 0 otherwise. Standard errors are
clustered at the country-month level, and the sample period is
2016–2018. *, **, and *** denote statistically significant at the
10%, 5%, and 1% level, respectively.
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Appendix Table D2
Log price and FIR: different windows

Panel A-Dependent Variable: Log Price

[-2:+2] [-3:+3] [-4:+4] [-5:+5]

FIR X Post 0.146*** 0.197*** 0.221** 0.231**

(0.053) (0.071) (0.086) (0.099)

Bond-Month FE Yes Yes Yes Yes

Observations 42,217 63,327 84,435 105,548

N. of Bonds 738 738 738 738

N. of Countries 68 68 68 68

N. of Clusters 1,576 1,576 1,576 1,576

F (FS) 1,660 1,662 1,664 1,666

Panel B-Dependent Variable: Log Price (Excl. h=-1)

[-2:+1] [-3:+2] [-4:+3] [-5:+4]

FIR X Post 0.220*** 0.257*** 0.271*** 0.263***

(0.056) (0.074) (0.087) (0.098)

Bond-Month FE Yes Yes Yes Yes

Observations 21,106 42,216 63,325 84,433

N. of Bonds 738 738 738 738

N. of Countries 68 68 68 68

N. of Clusters 1,576 1,576 1,576 1,576

F (FS) 1,667 1,667 1,669 1,670

Note: This table presents 2SLS estimates of bond log prices
on the FIR measure, with each column reporting estimates
for different h-day symmetric windows before and after a
rebalancing event. The sample period, the construction of
h−day windows, and the 2SLS procedure are identical to
those described in Table 5. Standard errors are clustered at
the country-month level. *, **, and *** denote statistically
significant at the 10%, 5%, and 1% level, respectively.

55



Appendix Table D3
Log price and FIR: dropping quasi-sovereign bonds

Dependent Variable: Log Price

FIR 1.078

(0.924)

FIR X Post 0.249** 0.249** 0.249** 0.175*

(0.107) (0.108) (0.107) (0.103)

Post 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Bond FE Yes Yes No No

Month FE Yes No No No

Bond Characteristics-Month FE No Yes No No

Country-Month FE No Yes No No

Bond-Month FE No No Yes Yes

Month-Post FE No No No Yes

Bond Controls No Yes No No

Observations 73,140 73,100 73,140 73,140

N. of Bonds 430 430 430 430

N. of Countries 65 65 65 65

N. of Clusters 1,513 1,512 1,513 1,513

F (FS) 0 3,151 3,231 1,099

Note: This table presents 2SLS estimates of log bond prices on the FIR
measure (Equation (2)), instrumented by Z (Equation (4)), around
rebalancing dates. The first- and second-stage equations are described
in Equation (5). The estimations use a symmetric five-trading-day
window, with Post as an indicator variable (equal to 1 for the five
trading days after rebalancing, and 0 otherwise). Month fixed effects are
dummy variables equal to 1 for each rebalancing month (0 otherwise),
and bond characteristics are fixed effects that interact maturity and
ratings fixed effects. Maturity fixed effects are constructed by dividing
a bond’s time to maturity into four different categories: short (less
than 5 years), medium (5–10 years), long (10–20 years), and very
long (20+ years). Ratings from each bond are from Moody’s. Bond
controls indicate whether the estimation includes the log face amount
and log stripped spread of the bond. Standard errors are clustered at
the country-month level, and the sample period is 2016–2018. *, **,
and *** denote statistically significant at the 10%, 5%, and 1% level,
respectively.
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Appendix Table D4
Log price and FIR: spread heterogeneity (3 groups)

Dependent Variable: Log Price

High Spread Median Spread Low Spread

FIR 2.179 0.140 0.391

(1.810) (0.508) (0.361)

FIR X Post 0.380** 0.381** 0.325** 0.322** 0.087 0.087

(0.166) (0.165) (0.152) (0.151) (0.098) (0.098)

Post 0.001* 0.001* 0.001** 0.001** -0.000 -0.000

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Bond FE Yes No Yes No Yes No

Month FE Yes No Yes No Yes No

Bond-Month FE No Yes No Yes No Yes

Observations 28,105 28,104 28,055 28,053 28,276 28,276

N. of Bonds 381 381 453 453 375 375

N. of Countries 58 58 51 51 43 43

N. of Clusters 975 975 837 837 634 634

F (FS) 501 2,342 436 720 0 882

Note: This table presents 2SLS estimates of log bond prices on the FIR
measure (Equation (2)), instrumented by Z (Equation (4)), around
rebalancing dates. The first- and second-stage equations are described
in Equation (5). The estimations use a symmetric four-trading-day
window excluding h = −1 and h = +5, with Post as an indicator
variable (equal to 1 for the five trading days after rebalancing, and
0 otherwise). The sample is divided into bonds with high spreads
(Columns 1 and 2), median spreads (Columns 3 and 4), and low spread
(Columns 5 and 6), with spreads divided according to their 33.3 and
66.6 percentile into the three different buckets. Month fixed effects
are dummy variables equal to 1 for each rebalancing month, and 0
otherwise. Standard errors are clustered at the country-month level,
and the sample period is 2016–2018. *, **, and *** denote statistically
significant at the 10%, 5%, and 1% level, respectively.

57


	Introduction
	Index Rebalancings as Passive Demand Shocks
	Empirical Analysis
	Identifying Exogenous Shifts in Bond Supply
	The Rebalancing and Cap Rule in Practice
	Estimation Strategy
	Data and Summary Statistics
	Results

	A Sovereign Debt Model with Inelastic Investors
	Model Setup
	Inelastic Investors
	Government Problem: Recursive Formulation
	Secondary Markets and Link with Empirical Analysis

	Quantitative Analysis
	Calibration
	Decomposing the Reduced-form Demand Elasticity
	Implications of a Downward-sloping Demand

	Conclusion
	Diversification Methodology
	Appendix: A Model of Inelastic Investors
	Additional Derivations
	Microfoundation Based on Risk-Averse Investors
	Microfoundation Based on a VaR Constraint

	Appendix: Quantitative Model
	Secondary Markets
	Definition of Equilibrium
	Understanding the Source of the Biases

	Appendix: Additional Figures and Tables

